WO2010016214A1 - ガラス基板再生装置 - Google Patents

ガラス基板再生装置 Download PDF

Info

Publication number
WO2010016214A1
WO2010016214A1 PCT/JP2009/003654 JP2009003654W WO2010016214A1 WO 2010016214 A1 WO2010016214 A1 WO 2010016214A1 JP 2009003654 W JP2009003654 W JP 2009003654W WO 2010016214 A1 WO2010016214 A1 WO 2010016214A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
glass substrate
defective
unit
acid solution
Prior art date
Application number
PCT/JP2009/003654
Other languages
English (en)
French (fr)
Inventor
瀬川達弥
浅井究
中西俊介
茅根博之
鈴木充
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to JP2010523741A priority Critical patent/JP5299428B2/ja
Priority to KR1020117001385A priority patent/KR101243545B1/ko
Priority to CN2009801308322A priority patent/CN102112244B/zh
Publication of WO2010016214A1 publication Critical patent/WO2010016214A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B43/00Operations specially adapted for layered products and not otherwise provided for, e.g. repairing; Apparatus therefor
    • B32B43/006Delaminating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2315/00Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
    • B32B2315/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2398/00Unspecified macromolecular compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays

Definitions

  • the present invention relates to a glass substrate recycling apparatus that regenerates a glass substrate from a defective substrate (a substrate that does not satisfy quality standards) generated in a manufacturing process of a color filter used in a liquid crystal display device or the like.
  • FIG. 15 is a cross-sectional view showing an example of a color filter used in a color liquid crystal display device.
  • the color filter 1 includes a glass substrate 2, a black matrix (BM) 3 formed thereon, a red colored pixel (R pixel) 4R, a green colored pixel (G pixel) 4G, and a blue colored pixel.
  • B pixel) 4B (hereinafter, each pixel of RGB is collectively referred to as “colored pixel 4”), a transparent electrode 5 such as ITO (Indium Tin Oxide), a photo spacer (PS), and vertical alignment (VA) 7 With.
  • a method for manufacturing the color filter 101 having such a structure a photolithography method, a printing method, and an ink jet method are known.
  • FIG. 16 is a flowchart showing each step of the photolithography method.
  • BM is formed on a glass substrate (S101).
  • the glass substrate is washed (S102), any of RGB colored photoresists is applied on the glass substrate and preliminarily dried (S103), and then the colored photoresist on the substrate is dried and cured.
  • Pre-baking is performed (S104).
  • the colored photoresist on the substrate is exposed using a photomask (S105), developed (S106), and then the patterned colored photoresist is cured (S107).
  • S105 photomask
  • S106 developed
  • S107 the processes in S102 to S107 are repeated until pixels of three colors R, G, and B are formed on the glass substrate (S108).
  • PS and VA are formed on the transparent electrode (S110).
  • the BM is formed on the glass substrate by, for example, forming a metal thin film on the glass substrate, applying a photoresist on the metal thin film, and then performing exposure, development, and etching by a photolithography method.
  • a method of forming a pattern can be employed.
  • a method of applying a black photoresist on a glass substrate and exposing and developing the black photoresist by a photolithography method to form a pattern having a BM shape is employed.
  • the adoption of BM made of a metal thin film tends to be avoided. This is because the photolithography method using a black resin photoresist is more advantageous in terms of both cost and environment than using a metal such as chromium to form a metal thin film by a vacuum apparatus.
  • a substrate in which such a defect has occurred is a defective substrate that does not meet the quality standard, and decreases the yield.
  • color filter glass substrates are becoming larger, and glass substrates having a thickness of 1 mm or less and a side length of 1 to 2 m are used. Since such a glass substrate is easily damaged, there is a danger in the disposal work of the defective substrate itself.
  • a glass substrate recycling apparatus that can regenerate a glass substrate from a defective substrate that does not satisfy quality standards.
  • the glass substrate regenerated by the glass substrate regenerating apparatus can be reintroduced into the manufacturing process.
  • FIG. 17 is a flowchart showing the regeneration processing of the color filter glass substrate.
  • the first alkaline solution treatment (S201), brush cleaning (S202), and water rinse ( S203) is performed in order to peel off the PS and VA films on the uppermost layer of the glass substrate.
  • an acid solution treatment (S204) and a water rinse (S205) are performed, and the transparent electrode as the intermediate layer is peeled off.
  • the second alkaline solution treatment (S206), brush cleaning (S207), and water rinse (S208) are sequentially performed to peel off the BM, R pixel, G pixel, and B pixel on the glass substrate surface. Thereafter, the cleaning residue remaining in a trace amount on the glass substrate is removed by brush cleaning (S209), and the glass substrate is dried by draining (S210).
  • FIG. 18 is a diagram showing a conventional glass substrate recycling apparatus.
  • the glass substrate recycling apparatus 90 performs an alkaline liquid treatment (S201, S206 in FIG. 17) for peeling the resin film (PS, VA, BM, colored pixels) on the surface of the defective substrate 1, , A pump 92, a nozzle 93, an alkaline liquid replenishing tank 94, a stripping liquid replenishing tank 95, and a recovery pan 96.
  • treatment liquids containing an alkali liquid and a stripping liquid and having their respective compositions and concentrations adjusted in advance are stored.
  • the processing liquid in the storage tank 91 is supplied to the discharge nozzle 93 via the pipe 97 by the pump 92 and is discharged from the discharge nozzle 93 to the defective substrate 1.
  • the surface of the defective substrate is cleaned by a cleaning brush (not shown), and the resin film such as PS or VA is peeled off.
  • the defective substrate 1 is subjected to a peeling process using a processing liquid and a cleaning brush while being transported in a predetermined direction at a constant speed by a transport device (not shown).
  • the treatment liquid discharged to the defective substrate 1 and the peeled resin (for example, resin used for forming PS and VA) are collected from the collection pan 96 into the storage tank 91 through the pipe 100.
  • the recovered resin is precipitated in the storage tank 91 and then discharged from the pipe 102 to the outside.
  • a filter may be installed in the storage tank 91 to separate the resin.
  • the alkali solution concentration and stripping solution concentration in the storage tank 91 are measured at regular intervals.
  • the concentration is insufficient, the alkaline liquid and the stripping liquid are replenished from the alkaline liquid replenishing tank 94 and the stripping liquid replenishing tank 95 to the storage tank 91 through the pipe 98 and the pipe 99, respectively.
  • Patent Document 1 describes a method of regenerating a glass substrate by immersing a defective substrate in an aqueous solution containing a water-soluble organic amine compound and an inorganic alkali metal compound.
  • Patent Document 2 a defective substrate is immersed in concentrated sulfuric acid having a concentration of 98% for 10 minutes, washed with water, immersed in an alkaline aqueous solution containing alkyl diol and glycol ether heated to 55 ° C., and if necessary, a sponge.
  • a method of performing rubbing is described.
  • Patent Document 2 describes a method of stripping an ITO film, RGB pixels, and BM by performing a primary acid solution treatment and a secondary acid solution treatment.
  • RGB pixels and BM are obtained by a two-step process including a process of pre-processing a defective substrate with a pre-treatment liquid containing an inorganic acid and a process of post-processing the defective substrate with a stripping solution containing an alkali. Is described.
  • JP 2001-124916 A Japanese Unexamined Patent Publication No. 7-230081 JP 2006-154752 A JP 2002-179438 A JP 2003-279915 A JP 2005-189679 A
  • the PS / VA peeling step (first alkaline solution treatment), the transparent electrode peeling step (acid solution treatment), and the RGB pixel / BM peeling step (second alkaline solution treatment) are performed.
  • first alkaline solution treatment the transparent electrode peeling step
  • second alkaline solution treatment the RGB pixel / BM peeling step
  • Patent Documents 1 to 4 have a problem that the glass substrate is damaged because it is necessary to immerse the defective substrate in the processing solution for 10 minutes to 2 hours. Moreover, since the resin film residue of the lowest layer (glass substrate surface) remains, it is common to perform a grinding
  • an object of the present invention is to provide a glass substrate reproducing apparatus capable of peeling a resin film and a metal film thereon in a short time without damaging the color filter glass substrate.
  • the present invention relates to a glass substrate reproducing apparatus that reproduces a glass substrate from a defective substrate while conveying the defective substrate in which one or more layers made of either resin or metal are formed on the glass substrate.
  • the glass substrate recycling apparatus is provided downstream of the first alkaline processing section, which processes a defective substrate with an alkaline liquid and peels off the first resin layer on the surface of the defective substrate.
  • a second alkaline solution treatment part for peeling off the second resin layer on the surface of the glass substrate.
  • the glass substrate reproducing apparatus According to the glass substrate reproducing apparatus according to the present invention, the glass substrate can be regenerated in a short time because the peeling process is sequentially performed while the substrate is being conveyed. Moreover, it becomes possible to prevent damage to the glass substrate by shortening the processing time.
  • FIG. 1A is a cross-sectional view illustrating an example of a defective substrate generated in a color filter manufacturing process.
  • FIG. 1B is a cross-sectional view showing another example of a defective substrate generated in the color filter manufacturing process.
  • FIG. 1C is a cross-sectional view showing another example of a defective substrate generated in the color filter manufacturing process.
  • FIG. 1D is a cross-sectional view illustrating another example of a defective substrate generated in the color filter manufacturing process.
  • FIG. 1E is a cross-sectional view showing another example of a defective substrate generated in the color filter manufacturing process.
  • FIG. 2 is a flowchart showing the glass substrate recycling method according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing a schematic configuration of the glass substrate reproducing apparatus according to the first embodiment of the present invention.
  • FIG. 4 is a flowchart showing a glass substrate recycling method according to the second embodiment of the present invention.
  • FIG. 5A is a diagram showing a schematic configuration of a glass substrate reproducing apparatus according to the second embodiment of the present invention.
  • FIG. 5B is a diagram illustrating another example of the glass substrate reproducing device according to the second embodiment of the present invention.
  • FIG. 6 is a view showing another example of the glass substrate reproducing apparatus according to the second embodiment of the present invention.
  • FIG. 7 is a diagram showing a schematic configuration of an alkaline liquid processing unit according to the third embodiment of the present invention.
  • FIG. 8 is a diagram illustrating another example of the alkaline liquid processing unit according to the third embodiment of the present invention.
  • FIG. 9 is a perspective view showing a part of a transport apparatus according to the fourth embodiment of the present invention.
  • FIG. 10 is a diagram viewed from the IX-IX line in FIG.
  • FIG. 11 is a view showing a glass substrate reproducing apparatus according to the fifth embodiment of the present invention.
  • FIG. 12 is a diagram showing a schematic configuration of the transmissive optical sensor shown in FIG.
  • FIG. 13 is a view showing a glass substrate reproducing apparatus according to the sixth embodiment of the present invention.
  • FIG. 14 is a diagram illustrating another example of the etching solution management unit according to the sixth embodiment of the present invention.
  • FIG. 15 is a cross-sectional view showing an example of a color filter used in a color liquid crystal display device.
  • FIG. 16 is a flowchart showing each step of the photolithography method.
  • FIG. 17 is a flowchart showing the regeneration process of the color filter glass substrate.
  • FIG. 18 is a diagram showing a conventional glass substrate reproducing apparatus.
  • 1A to 1E are cross-sectional views showing examples of defective substrates generated in the color filter manufacturing process.
  • the defective substrate is a substrate that does not satisfy the quality standard generated in each step of the photolithography method, and a resin film (BM, R pixel, G pixel, B pixel, PS, VA) is formed on the glass substrate. And a substrate in which one or both of a metal film (transparent electrode) is formed.
  • a resin film BM, R pixel, G pixel, B pixel, PS, VA
  • a defective substrate 1a shown in FIG. 1A was discovered by inspection after the PS / VA formation process, and is a transparent electrode made of BM3, RGB colored pixels 4 and a metal film such as ITO on a glass substrate 2. 5, PS6, and VA7 are formed.
  • the film forming conditions for the transparent electrode metal film are determined using the defective substrate found in the inspection.
  • the defective substrate 1b shown in FIG. 1B is a result of the formation of the metal film forming conditions using the defective substrate shown in FIG. 1A. Further, a metal film such as ITO is formed on PS6 and VA7. 8 has.
  • the defective substrate 1c shown in FIG. 1C is generated as a result of determining the film formation conditions of the metal film using the defective substrate discovered after the metal film formation process and before the PS / VA formation process.
  • a metal film 9 such as ITO on the back surface of the glass substrate 2 (the surface opposite to the surface on which the BM 3 and the colored pixels 4 are formed).
  • the defective substrate 1e shown in FIG. 1E further has PS6 and VA7 on the overcoat layer 33 of the defective substrate 1d shown in FIG. 1D.
  • the overcoat layer 33 is provided for the purpose of flattening the colored pixels 4, preventing components from flowing out of the colored pixels 4, and protecting the colored pixels 4.
  • a defective substrate can occur in any process shown in the photolithography method (FIG. 15). Therefore, in addition to the defective substrate shown in FIGS. 1A to 1E, a defective substrate in which at least one of BM 3 and colored pixels 4 (R pixel, G pixel, B pixel) is formed on the glass substrate 2, or on the glass substrate 2 There are also defective substrates on which only BM3, colored pixels 4 and transparent electrodes 5 are formed.
  • FIG. 2 is a flowchart showing the glass substrate recycling method according to the first embodiment of the present invention.
  • the glass substrate regeneration method is suitable for regenerating a glass substrate from the defective substrate 1a having the structure of FIG. 1A.
  • Each of these steps S11 to S13 is not performed as an independent batch process, but is performed continuously on a defective substrate transported by the transport device.
  • a final water washing treatment step (S14) is performed, and the regeneration of the glass substrate is completed.
  • FIG. 3 is a view showing the glass substrate reproducing apparatus according to the first embodiment of the present invention.
  • the glass substrate regeneration apparatus 10 is an apparatus that performs a regeneration process on a substrate that is transported by a transport device in a substantially horizontally supported state, and in order in the transport direction of a defective substrate,
  • the acid solution processing unit 14 and the second alkaline solution processing unit 16 are provided.
  • a substrate carry-in unit 11 is disposed upstream of the first alkaline solution processing unit 12.
  • the water rinse units 13, 15 and 17 are arranged, respectively.
  • a final rinsing processing unit 18 and a glass substrate carry-out unit 19 are arranged in this order downstream of the rinsing rinse unit 17.
  • the first alkaline solution processing unit 12 injects an alkaline solution onto the defective substrate carried in from the substrate carrying-in unit 11 and peels off the uppermost resin layer (PS6, VA7 in FIG. 1A).
  • the rinsing rinse section 13 removes the alkaline liquid adhering to the defective substrate surface by the first alkaline liquid processing section 12 by washing with water.
  • the acid solution processing unit 14 sprays the acid solution onto the defective substrate rinsed by the water rinse unit 13 to peel off the intermediate metal layer (transparent electrode 5 in FIG. 1A).
  • the rinse rinse section 15 removes the acid solution adhering to the defective substrate surface in the acid solution processing section by washing with water.
  • the second alkaline solution treatment unit 16 sprays the alkaline solution onto the defective substrate rinsed by the water rinse unit 15 to peel off the lowermost resin layer (BM3, colored pixel 4 in FIG. 1A).
  • the rinsing rinse section 17 removes the alkaline liquid adhering to the defective substrate surface in the second alkaline liquid processing section 16 by washing with water.
  • the glass substrate 2 rinsed by the rinse rinse section 17 is again washed by the final rinse treatment section 18 and then discharged from the glass substrate carry-out section 19.
  • the discharge pressure and temperature of the treatment liquid, the discharge time, and the substrate conveyance speed can be arbitrarily set. it can. By making these items changeable, even when the material or thickness of each layer (PS6, VA7, transparent electrode 5, BM3, colored pixel 4) on the glass substrate 2 is changed due to a design change or the like, Optimum conditions for peeling can be set.
  • the first alkaline solution treatment unit 12, the acid solution treatment unit 14, and the second alkaline solution treatment unit 16 are provided with a brush, a sponge roll, or the like as needed to peel off the layer on the substrate. Further, the acid solution processing unit 14 may discharge the acid solution to both surfaces of the substrate.
  • Example 1 Hereinafter, as Example 1, specific processing conditions when the glass substrate reproducing apparatus 10 illustrated in FIG. 3 is used will be described.
  • composition of the alkali solution used in the alkali treatment step and the acid solution used in the acid solution treatment step is as follows.
  • Alkaline liquid used in the first alkaline liquid processing section 12 and the second alkaline liquid processing section 16
  • Potassium hydroxide 8% by weight Monoethanolamine 12% by weight Butyl carbitol 15% by weight 2% by weight of benzyl alcohol 63% by weight of water
  • Acid solution used in the acid solution processing unit 14
  • Table 1 shows the results of evaluating the presence / absence of residues in each layer after peeling treatment with “ ⁇ : no residue, x: residue” after changing the discharge conditions (temperature, discharge time) of the chemical solution.
  • the discharge pressure of the alkaline liquid in the first and second alkaline liquid processing sections was both 0.1 MPa, and the discharge pressure of the acidic liquid in the acidic liquid processing section was 0.15 MPa.
  • the upward arrow “ ⁇ ” in the table indicates the same value as that in the upper row.
  • the uppermost resin layer (PS, VA) has a liquid temperature of 40 ° C., a discharge time of 60 ° C.
  • the film was completely peeled off under the conditions of a second or more, or the liquid temperature of 30 ° C. and the discharge time of 90 seconds or more, and no residue was generated.
  • the alkaline solution corrodes the glass substrate, in this embodiment, since the peeling treatment is performed in a short time, the influence of the alkaline solution on the glass substrate was not seen.
  • the metal film (transparent electrode) of the intermediate layer has a liquid temperature of 55 ° C. and a discharge time of 180 seconds or more, or the liquid temperature The film was completely peeled off at 65 ° C. and a discharge time of 150 seconds or longer, and no residue was generated.
  • the lowermost resin layer (BM, colored pixel) has a liquid temperature of 65 ° C. and a discharge time. It was completely peeled off for 240 seconds or longer, and no residue was generated.
  • the alkaline solution corrodes the glass substrate, in this embodiment, since the peeling treatment is performed in a short time, the influence of the alkaline solution on the glass substrate was not seen.
  • FIG. 4 is a flowchart showing a glass substrate recycling method according to the second embodiment of the present invention.
  • the glass substrate recycling method shown in FIG. 4 allows the defective substrates 1b to 1e shown in FIGS. 1B to 1E to be reproduced in addition to the defective substrate 1a shown in FIG. 1A.
  • a first acid solution treatment step (S21) is further added to the regeneration method (FIG. 2).
  • the glass substrate recycling method includes a first acid solution treatment step (S21) for peeling off the metal film 8 formed by determining the deposition conditions of the metal film, and the uppermost layer.
  • Each of these steps S21 to S24 is not performed as an independent batch process, but is performed continuously on the defective substrate transported by the transport device. Further, after the second alkaline solution treatment step (S24), a final water washing treatment step (S25) is performed.
  • FIG. 5A is a diagram showing a schematic configuration of a glass substrate reproducing apparatus according to the second embodiment of the present invention.
  • the glass substrate regeneration apparatus 20a is an apparatus that performs a regeneration process on a substrate that is transported by a transport device in a substantially horizontally supported state, in order in the transport direction of a defective substrate, and the first acid solution processing unit 22a.
  • the first alkaline solution processing unit 24, the second acid solution processing unit 26, and the second alkaline solution processing unit 28 are provided.
  • the glass substrate reproducing apparatus 20a is suitable for processing the defective substrates 1a and 1b having the laminated structure shown in FIGS. 1A and 1B.
  • a substrate carry-in unit 21 is disposed upstream of the first acid solution processing unit 22a.
  • the rinse rinse units 23, 25, 27, and 29 are provided. are arranged respectively.
  • a final rinsing processing unit 30 and a glass substrate carry-out unit 31 are arranged in this order downstream of the rinsing rinse unit 29.
  • the first acid solution processing unit 22a sprays the acid solution onto the defective substrate carried in from the substrate carry-in unit 21, and peels off the metal film 8 (FIG. 1B) formed under the film forming conditions.
  • the rinse rinse section 23 removes the acid solution adhering to the defective substrate surface by the first acid solution processing section 21 by washing with water.
  • the first alkaline solution treatment unit 24 peels off the uppermost resin layer (PS6, VA7).
  • the rinsing rinse section 25 removes the alkaline liquid adhered to the defective substrate surface by the first alkaline liquid processing section 24 by washing with water.
  • the second acid solution processing unit 26 sprays the acid solution onto both surfaces of the defective substrate rinsed by the water rinse rinse unit 25 to peel off the metal layers (transparent electrode 5 and metal film 9) on both surfaces of the glass substrate 2. To do.
  • the rinsing rinse unit 27 removes the acid solution adhering to the defective substrate surface in the second acid solution processing unit 26 by washing with water.
  • the second alkaline solution treatment unit 28 sprays the alkaline solution onto the defective substrate rinsed by the water rinse rinse unit 27 to peel off the lowermost resin layer (BM3, colored pixel 4).
  • the rinsing rinse section 29 removes the alkaline liquid adhering to the defective substrate surface in the second alkaline liquid processing section 28 by washing with water.
  • the glass substrate 2 rinsed by the rinse rinse section 29 is again rinsed by the final rinse treatment section 30 and then discharged from the glass substrate carry-out section 31.
  • the discharge pressure, solution temperature, and discharge time of the treatment solution are used.
  • the substrate transport speed can be arbitrarily set. By making these items changeable, the material and thickness of each layer (PS6, VA7, transparent electrode 5, BM3, colored pixel 4, metal films 8 and 9) on the glass substrate 2 are changed due to a design change or the like. Even in such a case, it is possible to set optimum conditions for peeling of each layer.
  • the first acid solution treatment unit 22a, the first alkaline solution treatment unit 24, the second acid solution treatment unit 26, and the second alkali solution treatment unit 28 have brushes for peeling off the layers on the substrate. A sponge roll or the like is provided as necessary.
  • the peeling process of each layer differs depending on the laminated structure of the defective substrates.
  • the PS6 and VA7 in the uppermost layer are not peeled off in the first acid solution processing unit 22a, and a part of the exposed transparent electrode 5 is peeled off. Thereafter, in the same manner as in the first embodiment, each layer is sequentially peeled off by the first alkaline solution treatment unit 24, the second acid solution treatment unit 26, and the second alkaline solution treatment unit 28, and the glass substrate 2 is regenerated.
  • the metal layer 8 formed for obtaining the film forming conditions is peeled off in the first acid solution processing unit 22a. Thereafter, similarly to the first embodiment, each layer is sequentially peeled off by the first alkaline solution treatment unit 24, the second acid solution treatment unit 26, and the second alkaline solution treatment unit 28, and the glass substrate 2 is regenerated. .
  • FIG. 5B is a diagram illustrating another example of the glass substrate reproducing device according to the second embodiment of the present invention.
  • the glass substrate regeneration device 20b is provided with a first acid solution treatment unit 22b instead of the first acid solution treatment unit 22a of the glass substrate regeneration device 20a (FIG. 5A).
  • the first acid solution processing unit 22b ejects the acid solution on both surfaces of the defective substrate 1 carried in from the substrate carry-in unit 21 to peel off the metal film.
  • the glass substrate recycling apparatus 20b is suitable for processing FIGS. 1C to 1E in addition to the defective substrates 1a and 1b having the laminated structure shown in FIGS. 1A and 1B.
  • the acid solution is sprayed on both surfaces of the defective substrate 1d in the first acid solution processing unit 22b, and the transparent electrode 34 on the back surface is peeled off. Thereafter, the resin layer (PS 6, VA 7, overcoat layer 33, BM 3, colored pixel 4) on the glass substrate 2 is peeled off by the first alkaline solution processing unit 28, and the glass substrate 2 is regenerated.
  • a metal film (ITO film) is directly formed on the back surface of the glass substrate 2.
  • the alkali treatment liquid penetrates into the gaps between the porous crystals of the metal film and erodes the glass substrate 2.
  • the surface of the glass substrate 2 becomes polished glass, and the glass substrate 2 cannot be reused as a base material. Therefore, in the apparatus shown in FIG. 5B, the acid solution treatment is first performed to peel off the metal film directly formed on the surface of the glass substrate 2.
  • the regenerated glass substrate 2 (elementary glass state) is processed by the second alkaline solution processing unit 28. Since the time is short, the erosion of the glass substrate 2 is suppressed.
  • the glass substrate 2 can be regenerated by one acid solution treatment and one alkali solution treatment. Therefore, the defective substrates 1c to 1e may be put into the second acid solution processing unit 26 from the substrate carry-in unit 21 instead of being put into the first acid solution processing unit 22a or 22b.
  • unnecessary alkaline solution processing is not performed, and thus erosion of the substrate can be minimized.
  • the second acid solution processing unit 26 sprays the acid solution on both surfaces of the defective substrate.
  • the second acid solution processing unit may be configured as follows. good.
  • FIG. 6 is a view showing another example of the glass substrate reproducing apparatus according to the second embodiment of the present invention.
  • a glass substrate recycling apparatus 20c shown in FIG. 6 is disposed between the first alkaline solution treatment unit 24 and the second alkaline solution treatment unit 28, and a pair of second solutions that eject the acid solution only on one surface of the defective substrate.
  • the acid solution treatment units 26a and 26b and a pair of water rinse units 27a and 27b arranged immediately after each of the second acid solution treatment units 26a and 26b are provided. Further, an inversion (not shown) for inverting the front and back of the defective substrate between the rinsing rinse section 27a and the second acid solution processing section 26b and between the rinsing rinse section 27b and the second alkaline solution processing section 28 is performed.
  • a mechanism is provided.
  • a first acid solution processing unit 22b (FIG. 5B) that discharges the acid solution to both surfaces of the defective substrate may be employed.
  • the glass substrate reproducing apparatuses 20a and 20b according to the present embodiment it is possible to reproduce a glass substrate from various types of defective substrates regardless of the laminated structure of the defective substrates.
  • Example 2 Specific processing conditions when a defective substrate having the laminated structure of FIG. 1B is processed using the glass substrate reproducing device 20a of FIG. 5A are shown.
  • the alkaline solution used in the first and second alkali treatment steps and the acid solution used in the first and second acid treatment steps were the same as those used in Example 1 above.
  • Table 2 shows the results of evaluating the presence / absence of residues in each layer after peeling treatment with “ ⁇ : no residue, x: residue” after changing the discharge conditions (temperature, discharge time) of the chemical solution.
  • the discharge pressure of the alkaline liquid in the first and second alkaline liquid treatment sections was 0.1 MPa
  • the discharge pressure of the acid liquid in the first and second acidic liquid treatment sections was 0.15 MPa.
  • the upward arrow “ ⁇ ” in the table indicates the same value as that in the upper row.
  • the uppermost resin layer (PS, VA) has a liquid temperature of 40 ° C., a discharge time.
  • the film was completely peeled off under conditions of 60 seconds or more, or at a liquid temperature of 30 ° C. and a discharge time of 90 seconds or more, and no residue was generated.
  • the transparent electrode and the metal film for determining the film formation condition have a liquid temperature of 55.
  • the film was completely peeled off under the conditions of °C, discharge time of 180 seconds or more, or liquid temperature of 65 ° C, discharge time of 150 seconds or more, and no residue was generated.
  • the lowermost resin layer (BM, colored pixel) has a liquid temperature of 65 ° C. and a discharge time. It was completely peeled off for 240 seconds or longer, and no residue was generated.
  • FIG. 7 is a diagram showing a schematic configuration of an alkaline liquid treatment unit according to the third embodiment of the present invention.
  • the alkali solution processing unit 40a is an apparatus for peeling the resin layer (PS6, VA7, BM3, colored pixel 4) on the glass substrate in order to regenerate the glass substrate from the defective substrate.
  • the alkaline liquid treatment unit 40a can be used as one or both of the first and second alkaline liquid treatment units provided in the glass substrate recycling apparatus according to the first and second embodiments.
  • the alkaline liquid processing unit 40a is arranged in series along the defective substrate conveyance direction, and a pair of processing units 41a and 41b capable of performing a separation process independently on the defective substrate, an alkaline liquid replenishment tank 42, and the like. , A stripping solution replenishment tank 43 and recovery pans 44a and 44b.
  • the processing unit 41a includes a storage tank 45a that stores the processing liquid, a nozzle 46a that discharges the processing liquid to the defective substrate, a pump 48a that supplies the processing liquid in the storage tank 45a to the nozzle 46a through the pipe 47a, and a substrate. And a cleaning brush (not shown) for cleaning the surface by rubbing.
  • the processing unit 41b is disposed downstream of the processing unit 41a, and a storage tank 45b similar to that provided in the processing unit 41a, a nozzle 46b, and a pump 48b for supplying a processing liquid to the nozzle 46b via a pipe 47b, A cleaning brush (not shown).
  • the processing liquid in the storage tank 45a is sent to the nozzle 46a by the pump 48a, and discharged from the nozzle 46a to the surface of the defective substrate 1 in a shower shape. A part of the resin layer is peeled off by rubbing the surface of the defective substrate 1 with a cleaning brush (not shown).
  • the processing liquid and the release resin used for cleaning the defective substrate 1 are recovered from the recovery pan 44a to the storage tank 45a through the pipe 49a.
  • the release resin is precipitated in the storage tank 45a and then discharged to the outside from the pipe 50a.
  • a filter mechanism may be provided in the middle of the pipe 49a or in the storage tank 45a to remove the resin in the processing liquid.
  • the processing liquid in the storage tank 45b is fed from the pump 48b to the nozzle 46b and discharged from the nozzle 46b to the surface of the defective substrate 1 in a shower shape.
  • the remaining resin layer is peeled off by rubbing the surface of the defective substrate 1 with a cleaning brush (not shown).
  • the treatment liquid and the release resin used for the cleaning are recovered from the recovery pan 44b to the storage tank 45b through the pipe 49b.
  • the release resin is precipitated in the storage tank 45b and then discharged to the outside from the pipe 50b.
  • a filter mechanism may be provided in the middle of the pipe 49b or in the storage tank 45b to remove the resin in the processing liquid.
  • the storage tanks 45a and 45b store a processing liquid that has been adjusted to a predetermined concentration in advance, and the processing liquid concentration in the storage tank 45a and 45b is monitored at regular intervals by a measuring device (not shown).
  • a measuring device not shown.
  • the treatment liquid concentration in the storage tank 45a is reduced, the alkaline liquid and the stripping liquid are replenished from the alkaline liquid replenishing tank 42 and the stripping liquid replenishing tank 43 to the storage tank 45a through the pipes 51a and 52, Is adjusted.
  • the treatment liquid concentration in the storage tank 45b decreases, the alkaline liquid is replenished from the alkaline liquid replenishment tank 42 to the storage tank 45b through the pipe 51b, and the treatment liquid concentration in the storage tank 45b is adjusted.
  • FIG. 8 is a view showing another example of the alkaline liquid treatment unit according to the third embodiment of the present invention.
  • the alkali solution processing unit 40b is provided with alkali solution replenishing tanks 42a and 42b and stripping solution replenishing tanks 43a and 43b, respectively, for the processing units 41a and 41b similar to those shown in FIG.
  • the alkaline liquid is supplied from the alkaline liquid replenishment tanks 42a and 42b to the storage tanks 45a and 45b through the pipes 51a and 51b.
  • the stripping solution is supplied from the stripping solution replenishing tanks 43a and 43b to the storage tanks 45a and 45b through the pipes 52a and 52b.
  • the alkali treatment units 40a and 40b are different in at least one of the composition and concentration of the treatment liquid between the treatment unit 41a and the treatment unit 41b.
  • the composition of the processing liquid used in the processing units 41a and 41b differs by mixing the stripping liquid only with the processing liquid used in the upstream processing unit 41a.
  • the concentration of the alkaline solution contained in the processing liquid used in the downstream processing unit 41b is lower than that in the processing unit 41a (FIGS. 7 and 8), or the stripping solution contained in the processing liquid used in the downstream processing unit.
  • the density may be lower than that of the processing unit 41a (FIG. 8).
  • the concentration of the treatment liquid (alkali liquid concentration, stripping solution concentration) is lowered from upstream to downstream, the alkaline liquid or stripping liquid can be used efficiently. That is, in the initial stage of the alkaline liquid treatment with the largest amount of resin to be peeled off, a strong release treatment is performed with a relatively high concentration treatment liquid, and in the stage after the release treatment progresses and the resin amount is reduced, the low concentration The peeling treatment is performed with the treatment liquid. As a result, compared to the case of using a treatment liquid having a constant concentration, the usage amount of the alkaline liquid and the stripping liquid can be reduced, and the cost required for glass substrate regeneration can be reduced. Further, by gradually reducing the concentration of the treatment liquid, the time during which the glass substrate is exposed to the high-concentration treatment liquid can be shortened, and as a result, damage to the glass substrate due to alkali components can be prevented.
  • the resin layer peeling processing unit in the processing units 41a and 41b Any configuration can be employed.
  • the treatment liquid may be sprayed onto the defective substrate at a predetermined pressure to remove the resin film to some extent, and then the surface may be rubbed with a sponge for cleaning. Further, a sponge roll may be used instead of the cleaning brush.
  • the defective substrate may be transported while being immersed in the processing liquid, and then the processing liquid may be sprayed onto the defective substrate at a high pressure to peel and remove the resin film.
  • Examples 3 to 6 when the alkaline solution treatment unit 40a of FIG. 7 is used (more specifically, the first alkaline solution treatment unit 12 and the second alkali of the glass substrate recycling apparatus shown in FIG. 3). Specific processing conditions in the case where the alkaline liquid processing unit 40a of FIG. 7 is applied to the liquid processing unit 16 are shown. Further, as a comparative example, processing conditions when the glass substrate reproducing apparatus having the configuration shown in FIG. 18 is used are shown. The nozzle shown in FIG. 18 is obtained by connecting the nozzles shown in FIG. 7 in series.
  • a glass substrate (size: 2160 mm ⁇ 2460 mm, thickness: 0.7 mm) made of non-alkali glass on which BM, colored pixels, ITO transparent electrodes, PS, and VA are formed is used (see FIG. 1A).
  • the composition of the alkaline solution was as follows. Further, the same treatment liquid was used in the first alkaline liquid treatment unit 12 and the second alkaline liquid treatment unit 16.
  • Treatment liquid 1 for upstream treatment unit 41a: 11% by weight of inorganic alkali (potassium hydroxide) Organic alkali (monoethanolamine / triethanolamine) 20% by weight Glycol ether 28% by weight Benzyl alcohol 8% by weight 33% by weight of water
  • Treatment liquid 2 for the treatment unit 41b on the downstream side: 11% by weight of inorganic alkali (potassium hydroxide) 89% by weight of water
  • Example 3 55 ° C
  • Example 4 45 ° C
  • Example 5 60 ° C
  • Example 6 65 ° C
  • the treatment in the first alkaline solution treatment unit and the second alkaline solution treatment unit was performed as follows. While discharging the treatment liquid at the above temperature from the nozzle as a shower having a discharge pressure of 0.1 MPa, the substrate to be treated was washed with a brush, and the resin tank (PS, VA, BM, colored pixels) was peeled off. The substrate conveyance speed was 1000 mm / min, and the processing time by the upstream and downstream processing units was 90 seconds (total processing time was 180 seconds).
  • Comparative example In the comparative example, a treatment liquid having the same composition as the treatment liquid 1 was used. While discharging the processing liquid at 55 ° C. from the nozzle as a shower having a discharge pressure of 0.1 MPa, the substrate to be processed was washed with a brush to remove PS and VA. The substrate conveyance speed was 1000 mm / min, and the processing time was 180 seconds.
  • the transparent electrode film was peeled off and removed using a known treatment apparatus and treatment solution.
  • the glass substrates regenerated in Examples 3 to 6 and the comparative example were subjected to visual inspection to check for residue adhesion and unevenness, indium detection by elemental analysis, and surface roughness measurement.
  • any of the glass substrates regenerated in any of Examples 1 to 4 and the comparative example adhesion of residue, unevenness, and detection of indium were not observed.
  • the surface roughness of the glass substrate was 0.501 nm in Examples 3 to 6 and 0.544 nm in the comparative example, and both satisfied the quality standards of the glass substrate.
  • the alkaline liquid processing unit was divided into the upstream processing unit and the downstream processing unit, and the processing liquid having a low alkali concentration was used in the downstream processing unit. It was confirmed that the glass substrate could be regenerated.
  • FIG. 9 is a perspective view showing a part of a transport apparatus according to the fourth embodiment of the present invention
  • FIG. 10 is a view as seen from the line IX-IX in FIG.
  • the transport device 60 includes a plurality of rollers 61 that support the lower surface of the defective substrate 1 at each upper end portion, and a drive mechanism (not shown) that rotates each of the rollers 61 around the central axis.
  • Each of the rollers 61 is arranged at predetermined intervals so that the central axes are parallel to each other, and the defective substrate is rotated in the direction in which the central axes are connected by the rotation of the driving mechanism (the left-right direction in FIGS. 9 and 10). 1 is transported.
  • a squeegee 62 for scraping off the liquid 62 adhering to the roller 61 is provided below the upper end of the roller 61.
  • the squeegee 62 has a long plate shape extending in the axial direction of the roller 61, and is fixed in a state in which one piece abuts against the outer surface of the roller 61.
  • a liquid receiving portion 63 is provided below the contact portion between the squeegee 62 and the roller 61, as shown in FIG. 10, for receiving the liquid 67 that is scraped and dropped by the squeegee 62.
  • the liquid 67 received by the liquid receiving part 63 is stored in the recovery tank 64.
  • the processing liquid 66 is discharged from the nozzle 65 onto the defective substrate 1.
  • the discharged processing liquid and the liquid containing the separated material of each layer wrap around the lower surface of the defective substrate 1 and adhere to the roller 61.
  • the glass substrate recycling apparatus is not an immersion method in which a plurality of defective substrates are collectively immersed in a processing solution, but transports defective substrates one by one.
  • a single-wafer conveyance system that sequentially processes while being employed.
  • this single-wafer conveyance method there is a problem that after the resist, ITO, or the like peeled off by the regenerating process adheres to the roller 61, it is retransferred and fixed to the regenerating substrate and becomes a foreign object. Therefore, conventionally, in the water washing process, it was necessary to carefully wash the both surfaces of the substrate to perform cleaning, and it was necessary to clean the transfer device at a short interval, resulting in poor maintenance. .
  • the transport device 60 since the squeegee 62 is in contact with the surface of the roller 61, the liquid adhering to the surface of the roller 61 is removed as the roller 61 rotates. As a result, it is possible to suppress the removed object from reattaching to the glass substrate, and to prevent the removed object from being brought into another process in a certain process. In glass substrate regeneration processing by the single wafer transfer method, acid treatment and alkali treatment are alternately performed, so that the peeling ability is reduced and precipitates are generated by mixing the removed material in one process with the processing liquid in the next process. However, according to the transport device 60 according to the present embodiment, such a problem can be prevented. Moreover, since the liquid 67 scraped off from the roller 61 can be efficiently recovered, it is possible to improve the maintainability of the transport device 60 and reduce the load on the filter. Furthermore, it is possible to greatly reduce the amount of water used during washing.
  • the material of the squeegee 62 may be any material that does not react with the treatment liquid, but elastomers, ultrahigh molecular weight polyethylene, polyacetal, polytetrafluoroethylene, and the like can be used. In particular, since the squeegee 62 is fixed in a state of being pressed against the roller 61, it is preferable to use a material having excellent wear resistance.
  • the squeegee 62 may be provided for all the rollers 61, it is efficient to provide the squeegee 62 for a part of the rollers 61 around the portion where the liquid wraps around frequently.
  • an upper roller that presses the substrate to be transported from above may be further provided.
  • a squeegee may be attached to the upper roller. If comprised in this way, since the liquid adhering to an upper roller can be removed, it becomes possible to improve further the effect acquired when the squeegee 62 is attached to the roller 61.
  • FIG. 11 is a diagram showing a glass substrate reproducing apparatus according to the fifth embodiment of the present invention
  • FIG. 12 is a diagram showing a schematic configuration of the transmissive photosensor shown in FIG. In FIG. 11, the arrow indicates the substrate transport direction.
  • the glass substrate reproducing apparatus includes a determination unit 70 that determines whether or not there is a transparent electrode on a defective substrate, and a distribution unit that distributes the transfer destination of the defective substrate based on the determination result by the determination unit 70 71.
  • the determination unit 70 includes a light transmission type sensor 72 that detects the transmittance of light of a predetermined wavelength at a plurality of points on the defective substrate.
  • the light transmission type sensor 72 detects a light source 73a that emits light of a first wavelength, a light source 73b that emits light of a second wavelength different from the first wavelength, and the intensity of light of the first wavelength.
  • an optical sensor 74b for detecting the intensity of light having the second wavelength.
  • the determination unit 70 senses the transmittance of a plurality of points on the raw glass portion (portion that is not covered with the BM and the colored pixels) of the defective substrate 1 using the light transmission sensor 72 and the presence or absence of the transparent electrode 5. Determine.
  • the transmittance of light emitted from the light sources of these wavelengths and transmitted only through the glass substrate 2 is 100%, the transmittance of light transmitted through both the transparent electrode 5 and the glass substrate 2 is 92 to 95%. Therefore, if the transmittance of the two wavelengths is detected at a plurality of points on the defective substrate 1, the presence or absence of the transparent electrode can be determined.
  • the distribution unit 71 throws the defective substrate into the first alkaline solution processing unit 12. Therefore, in this case, each layer of the defective substrate that has been input is peeled in order through the first alkaline solution treatment unit 12, the acid solution treatment unit 14, and the second alkaline solution treatment unit 16, and the glass substrate is regenerated.
  • the determination unit 70 determines that there is no transparent electrode on the defective substrate
  • the distribution unit 71 throws the defective substrate into the second alkaline solution processing unit 16. Therefore, in this case, the loaded defective substrate is peeled only by the second alkaline solution processing unit 16 to regenerate the glass substrate.
  • the process of glass substrate regeneration treatment is broadly divided into alkaline liquid treatment for peeling off the resin resist and acid treatment for peeling off the metal film (transparent electrode).
  • a defective substrate without a metal film that is, a defective substrate in which a part or all of BM / colored pixels are formed on a glass substrate can be regenerated by simply performing the second alkaline solution treatment. If all types of substrates are handled in the same way, it is necessary to wastefully perform the first alkaline solution treatment and acid solution treatment that are not necessary.
  • the defective substrate can be classified by paying attention to the presence or absence of the transparent electrode on the defective substrate, and the defective substrate can be efficiently regenerated without the need for acid treatment. .
  • the defective substrate can be efficiently regenerated without the need for acid treatment.
  • the determination unit 70 and the sorting unit 71 are added to the glass substrate reproducing apparatus according to the first embodiment, but the same applies to the glass substrate reproducing apparatus according to the second embodiment. It is also possible to add a determination unit 70 and a distribution unit 71 to the above.
  • FIG. 13 is a view showing a glass substrate reproducing apparatus according to the sixth embodiment of the present invention.
  • the glass substrate regeneration apparatus further includes an etchant management unit 75a and an etchant supply / discharge unit 81 in addition to the glass substrate regeneration apparatus 10 according to the first embodiment.
  • Etching solution management unit 75a includes a contact-type surface shape measurement unit 76 for measuring the film thickness of the transparent electrode on the surface of the defective substrate, and a total calculation / determination unit 77 for calculating the total of the measured film thicknesses.
  • the contact-type surface shape measuring unit 76 scans the surface of the transparent electrode film on the processing target substrate with a contact-type needle, and measures the film thickness of the transparent electrode film based on the level difference between the glass substrate and the transparent electrode film surface. .
  • the needle pressure during this measurement is about 3 mg, and the scanning speed is about 50 ⁇ m / sec.
  • the total calculation / determination unit 77 calculates the total film thickness by integrating the film thickness of the transparent electrode film on each substrate measured by the contact-type surface shape measurement unit 76.
  • the cumulative calculation / determination unit 77 compares the reference value (which is a preset value) indicating the cumulative film thickness that is a reference for the replenishment and replacement timing of the etching solution with the calculated cumulative film thickness. It is determined whether or not the cumulative film thickness exceeds a reference value. When the calculated cumulative film thickness exceeds the reference value, the cumulative calculation / determination unit 77 instructs the acid solution processing unit 14 and the etching solution supply / discharge unit 81 to replenish or replace the etching solution through the transmission path 80. .
  • the etching solution supply / discharge unit 81 includes a filter 82, a pump 83, a relay tank 84, a solenoid valve 85, and a flow meter 86 that are connected in this order via a pipe.
  • the filter 82 is connected to a storage tank 79 in the acid solution processing unit 14 via a pipe 89.
  • the flowmeter 86 is connected to a pipe 87 for supplying an etching solution, and the relay tank 84 is connected to a pipe 88 for discharging a waste liquid.
  • the etching solution supplied through the pipe 87 is temporarily stored in the relay tank 84, and then the etching solution in the relay tank 84 is stored using the pump 83. It is sent out to the tank 79.
  • the etching solution in the acid solution processing unit 14 is discharged, the etching solution in the storage tank 79 is once discharged to the relay tank 84 and then discharged from the relay tank 84 to the outside through the pipe 88.
  • etching solution for removing a transparent electrode such as ITO for example, a mixed solution of hydrochloric acid and nitric acid, a mixed solution of ferric chloride and hydrochloric acid, or an acid solution such as dilute hydrochloric acid is used. Since the etchant gradually becomes fatigued every time the peeling process is performed, it is necessary to replenish or replace at an appropriate time.
  • the film thickness of the transparent electrode on the defective substrate produced in the color filter manufacturing process is usually about 140 nm. Therefore, if the film thickness of the transparent electrodes of all the defective substrates is substantially constant, the timing of replenishment or renewal of this etching solution can be calculated by counting the number of defective substrates introduced into the acid solution processing section. it can.
  • a glass substrate (hereinafter referred to as “dummy substrate”) for predetermining the film forming conditions is required. ”) Is used to confirm the film forming conditions. This dummy substrate is repeatedly used for determining the film forming conditions, and then subjected to a peeling process of the laminated transparent electrode film to regenerate the glass substrate.
  • the thickness of the transparent electrode film on the dummy substrate is several times to several tens of times the normal film thickness. Therefore, when the dummy substrate is put into the acid solution processing section, the etching solution fatigues very quickly regardless of the number of pieces. As a result, the processing capability of the acid solution processing unit is reduced, and there is a possibility that defective removal of the transparent electrode film occurs.
  • the glass substrate recycling apparatus is based on the actual thickness of the transparent electrode film formed on the substrate put into the acid solution processing unit by the etching solution management unit 75a, and the degree of fatigue of the etching solution. And replenish or replace the etchant at an appropriate time.
  • the maximum amount (volume) of the transparent electrode film that can be peeled off with a certain amount of etching solution (having a predetermined composition) is substantially constant. Therefore, when the areas of the substrate to be processed and the transparent electrode film are constant, if the area of the transparent electrode film and the composition and amount of the etching solution are known, the etching ability (reference value) of the etching solution can be determined. It can be expressed by thickness. Therefore, the cumulative calculation / determination unit 77 accumulates the thicknesses measured using the contact-type surface shape measurement unit 76, whereby the appropriate replenishment / replacement timing of the etching solution can be grasped.
  • the following configuration may be adopted so that the etching solution can be managed even when the size of the glass substrate is not constant.
  • FIG. 14 is a diagram showing another example of the etching solution management unit according to the sixth embodiment of the present invention.
  • the etchant management unit 75b further includes an area measurement unit 78 in addition to the configuration of the etchant management unit 75a shown in FIG.
  • the area measuring unit 78 measures the area of the substrate to be input, and outputs the measured area to the cumulative calculation / determination unit 77.
  • various known methods such as a method of calculating an area by analyzing an image taken by a camera can be used.
  • the cumulative calculation / determination unit 77 calculates a value obtained by multiplying the thickness of the transparent electrode film on a certain substrate measured by the contact surface shape measuring unit 76 by the area of the certain substrate measured by the area measuring unit 78.
  • the total calculation / determination unit 77 adds up the values obtained by multiplication (corresponding to the volume) to obtain a total value.
  • the cumulative calculation / determination unit 77 uses the maximum amount of the transparent electrode film that can be peeled (corresponding to the value obtained by multiplying the film thickness and the area of the transparent electrode film) as a value representing the reference for the replenishment and replacement timing of the etching solution. Use.
  • the cumulative calculation / determination unit 77 determines that the calculated cumulative value exceeds the reference value, it instructs the acid solution processing unit 14 and the etching solution supply / discharge unit 81 to replenish or replace the etching solution through the transmission path 80. To do.
  • the glass substrate recycling apparatus is configured using the etching solution management unit 75b of FIG. 14, even when the size of the defective substrate or the dummy substrate that is put into the acid solution processing unit 14 changes, the timing of replenishment or replacement of the etching solution Can be reliably determined.
  • the acid solution processing unit 14 is preferably configured as follows.
  • the time required for etching increases with the fatigue of the etching solution.
  • the reactivity of etching is improved by raising the temperature of the etching solution.
  • a temperature raising device is provided at any location of the acid solution processing unit 14 to raise the temperature of the solution stepwise according to the degree of fatigue of the etching solution.
  • the degree of fatigue of etching is defined by the amount (volume) of the peeled transparent electrode film, and a plurality of stepwise threshold values and a liquid temperature corresponding to each of the threshold values are set. Then, it is determined whether or not the cumulative value obtained by the cumulative calculation / determination unit 77 exceeds a set threshold value. When it is determined that the obtained cumulative value exceeds a certain threshold value, the cumulative calculation / determination unit 77 instructs the acid solution processing unit 14 to increase the temperature of the etching solution to the liquid temperature set to the certain threshold value.
  • a plurality of cumulative film thickness values (threshold values) and liquid temperatures corresponding thereto are set as shown in Table 3 below. To do.
  • the processing time can be kept constant and the exhausted etchant can be used up efficiently. Can do.
  • the etching solution is managed based on the cumulative value obtained by multiplying the film thickness and the substrate area as in the configuration of FIG. 14, it corresponds to the amount of the peeled transparent electrode film instead of the cumulative film thickness.
  • a value to be set (corresponding to a value obtained by multiplying the thickness and area of the transparent electrode film) may be set as the threshold value.
  • the etching solution management units 75a and 75b stop the operations of the processing units upstream and downstream of the acid solution processing unit 14 when the calculated cumulative value exceeds a predetermined reference value.
  • the etching solution in the storage tank 79 is replaced, it is possible to prevent the substrate from being transported from the upstream device or the substrate that has not been subjected to the acid solution treatment from being transported to the downstream device. it can.
  • the configurations according to the above embodiments can be arbitrarily combined. That is, the glass substrate recycling apparatus according to the first and second embodiments, the alkaline liquid processing unit according to the third embodiment, the transport apparatus according to the fourth embodiment, the distribution mechanism according to the fifth embodiment, Any of the management mechanisms for the etching solution (acid solution) according to the sixth embodiment can be freely combined.
  • the present invention can be used in a glass substrate reproducing apparatus that reproduces a glass substrate from a defective substrate produced in a color filter manufacturing process such as a liquid crystal display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Optical Filters (AREA)
  • Processing Of Solid Wastes (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

 ガラス基板再生装置10は、ほぼ水平に支持した状態で搬送装置によって搬送される基板に対して再生処理を行う装置であり、不良基板の搬送方向へと順に、第1のアルカリ液処理部12と、酸液処理部14と、第2のアルカリ液処理部16とを備える第1のアルカリ液処理部12は、基板搬入部11から搬入された不良基板に対してアルカリ液を噴射して、最上層の樹脂層を剥離する。酸液処理部14は、水洗リンス部13によってリンスされた不良基板に酸液を噴射して、中間層の金属層を剥離する。第2のアルカリ液処理部16は、水洗リンス部15によってリンスされた不良基板に対してアルカリ液を噴射して、最下層の樹脂層を剥離する。ガラス基板再生装置10によれば、短時間でガラス基板2再生処理が完了でき、ガラス基板2の損傷も抑制される。

Description

ガラス基板再生装置
 本発明は、液晶表示装置等に用いられるカラーフィルタの製造工程で発生した不良基板(品質基準を満たさない基板)からガラス基板を再生するガラス基板再生装置に関するものである。
 図15は、カラー液晶表示装置に用いられるカラーフィルタの一例を示す断面図である。
 カラーフィルタ1は、ガラス基板2と、その上に形成されたブラックマトリックス(BM)3と、赤の着色画素(R画素)4Rと、緑の着色画素(G画素)4Gと、青の着色画素(B画素)4B(以下、RGBの各画素を併せて「着色画素4」という)と、ITO(Indium Tin Oxide)等の透明電極5と、フォトスペーサー(PS)と、バーティカルアライメント(VA)7とを備える。このような構造のカラーフィルタ101の製造方法としては、フォトリソグラフィ法、印刷法、インクジェット法が知られている。
 図16は、フォトリソグラフィ法の各工程を示すフローチャートである。
 まず、ガラス基板上にBMを形成する(S101)。次に、ガラス基板を洗浄し(S102)、ガラス基板上にRGBのいずれかの着色フォトレジストを塗布して予備乾燥させた後(S103)、基板上の着色フォトレジストを乾燥、硬化させるためにプリベークを行う(S104)。次に、フォトマスクを用いて基板上の着色フォトレジストを露光し(S105)、現像処理を行った後(S106)、パターニングされた着色フォトレジストを硬化させる(S107)。上記のS102~S107の処理は、ガラス基板上にR・G・Bの3色の画素が形成されるまで繰り返す(S108)。その後、着色画素上に透明電極を成膜した後(S109)、透明電極上にPS、VAを形成する(S110)。以上の工程を経て、図15に示したカラーフィルタが製造される。
 尚、ガラス基板上へのBMの形成は、例えば、ガラス基板上に金属薄膜を形成し、金属薄膜上にフォトレジストを塗布した後にフォトリソグラフィ法によって露光、現像、エッチングを行って、BM形状のパターンを形成する方法を採用できる。あるいは、ガラス基板上に黒色のフォトレジストを塗布し、この黒色のフォトレジストをフォトリソグラフィ法によって露光及び現像を行い、BM形状を有するパターン(いわゆる樹脂BM)を形成する方法が採用される。
 また、カラーフィルタ用ガラス基板の大型化に伴い、金属薄膜よりなるBMの採用が回避される傾向にある。これは、クロム等の金属を用いて真空装置によって金属薄膜を形成するよりも、黒色の樹脂フォトレジストを用いてフォトリソグラフィ法を行う方が価格面及び環境面の両方で有利なためである。
 上記のカラーフィルタには高い信頼性が必要であるが、図16に示したように、その製造のためには多くの工程を経る必要があり、その途中でゴミや樹脂カス等の異物の付着や混入、ピンホール、パターン欠け等の欠陥が生じ得る。このような欠陥が生じた基板は、品質基準に満たない不良基板であり、歩留まりを低下させる。また、近年の大画面液晶テレビの普及に伴って、カラーフィルタ用ガラス基板が大型化しており、厚みが1mm以下で1辺の長さが1~2mもあるガラス基板が使用されている。このようなガラス基板は、破損しやすいので、不良基板の廃棄作業そのものに危険が伴う。
 そこで、品質基準を満足しない不良基板からガラス基板を再生することができるガラス基板再生装置が求められている。ガラス基板再生装置によって再生されたガラス基板は、製造工程に再投入することができる。
 図17は、カラーフィルタ用ガラス基板の再生処理を示すフローチャートである。
 PS・VA形成工程以降に発生した不良基板(図15のカラーフィルタと同じ積層構造を有する)を再生する場合、まず、第1のアルカリ液処理(S201)、ブラシ洗浄(S202)及び水洗リンス(S203)を順に行って、ガラス基板の最上層にあるPS、VA膜を剥離する。次に、酸液処理(S204)及び水洗リンス(S205)を行って、中間層である透明電極を剥離する。次に、第2のアルカリ液処理(S206)、ブラシ洗浄(S207)、水洗リンス(S208)を順に行って、ガラス基板表面のBM、R画素、G画素、B画素を剥離する。その後、ブラシ洗浄(S209)によりガラス基板上に微量に残存する洗浄残渣を除去し、水切りによってガラス基板を乾燥させる(S210)。
 図18は、従来のガラス基板再生装置を示す図である。
 ガラス基板再生装置90は、不良基板1表面の樹脂膜(PS、VA、BM、着色画素)を剥離するためのアルカリ液処理(図17のS201、S206)を行うものであり、貯留槽91と、ポンプ92と、ノズル93と、アルカリ液補充タンク94と、剥離液補充タンク95と、回収パン96とを備える。
 貯留槽91には、アルカリ液及び剥離液を含み、予めそれぞれの組成と濃度が調整された処理液が貯留されている。貯留槽91内の処理液は、ポンプ92によって配管97を介して吐出ノズル93に供給され、吐出ノズル93から不良基板1へと吐出される。処理液の吐出と並行して、図示しない洗浄ブラシによって不良基板表面が洗浄され、PS、VA等の樹脂膜が剥離される。不良基板1は、図示しない搬送装置によって一定速度で所定方向に搬送されながら、処理液及び洗浄ブラシによる剥離処理を受ける。
 不良基板1に吐出された処理液及び剥離された樹脂(例えば、PS、VA形成に用いられた樹脂)は、回収パン96から配管100を通じて貯留槽91に回収される。回収された樹脂は、貯留槽91内で沈殿させた後に配管102から外部に排出される。あるいは、貯留槽91内にフィルタを設置して樹脂を分離させても良い。
 貯留槽91内のアルカリ液濃度及び剥離液濃度は一定時間毎に測定されている。濃度不足が生じた場合は、アルカリ液及び剥離液が、アルカリ液補充タンク94及び剥離液補充タンク95から、それぞれ配管98及び配管99を通じて貯留槽91に補充される。
 上記の図17及び18に示したガラス基板再生方法の他に、いくつかの方法が提案されている。例えば、特許文献1には、水溶性有機アミン化合物と無機アルカリ金属化合物を含有する水溶液に不良基板を浸漬することでガラス基板を再生する方法が記載されている。特許文献2には、濃度98%の濃硫酸に不良基板を10分浸漬した後に水洗し、55℃に加温したアルキルジオールとグリコールエーテルとを含有するアルカリ水溶液に浸漬し、必要に応じてスポンジラビング(手こすり)を行う方法が記載されている。特許文献2には、一次酸液処理と二次酸液処理とを行ってITO膜、RGB画素及びBMを剥離する方法が記載されている。特許文献4には、無機酸を含有する前処理液で不良基板を前処理する工程と、アルカリを含有する剥離液で不良基板を後処理する工程とからなる2段階の処理によってRGB画素及びBMを剥離する方法が記載されている。
特開2001-124916号公報 特開平7-230081号公報 特開2006-154752号公報 特開2002-179438号公報 特開2003-279915号公報 特開2005-189679号公報
 上記の図17では、図示の都合上、PS・VA剥離工程(第1のアルカリ液処理)、透明電極剥離工程(酸液処理)、RGB画素・BM剥離工程(第2のアルカリ液処理)を一続きに記載しているが、これらの各工程の処理時間が異なるため、実際には、各工程は独立したバッチ処理で行われる。このため、ガラス基板の再生処理に多大な時間を費やしていた。
 また、特許文献1~4の処理方法では、不良基板を処理液に10分~2時間もの間浸漬する必要があるので、ガラス基板が損傷してしまうという問題がある。また、最下層(ガラス基板表面)の樹脂膜残渣が残るため、剥離後に研磨処理を行うことが一般的であり、処理工程数が増えるという問題もある。
 それ故に、本発明は、カラーフィルタ用ガラス基板を損傷することなく、その上の樹脂膜及び金属膜を短時間で剥離することができるガラス基板再生装置を提供することを目的とする。
 本発明は、ガラス基板上に樹脂及び金属のいずれかよりなる1以上の層が形成された不良基板を搬送しながら、不良基板からガラス基板を再生するガラス基板再生装置に関するものである。当該ガラス基板再生装置は、アルカリ液で不良基板を処理して、不良基板の表面にある第1の樹脂層を剥離する第1のアルカリ液処理部と、第1のアルカリ処理部の下流に設けられ、酸液で不良基板を処理して、不良基板の表面にある金属膜を剥離する第1の酸液処理部と、酸液処理部の下流に設けられ、アルカリ液で不良基板を処理して、ガラス基板の表面にある第2の樹脂層を剥離する第2のアルカリ液処理部とを備える。
 本発明に係るガラス基板再生装置によれば、基板を搬送しながら順に剥離処理を行うため、短時間でガラス基板を再生することができる。また、処理時間が短くなることで,ガラス基板の損傷を防止することが可能となる。
図1Aは、カラーフィルタ製造工程で生じる不良基板の一例を示す断面図である。 図1Bは、カラーフィルタ製造工程で生じる不良基板の他の一例を示す断面図である。 図1Cは、カラーフィルタ製造工程で生じる不良基板の他の一例を示す断面図である。 図1Dは、カラーフィルタ製造工程で生じる不良基板の他の一例を示す断面図である。 図1Eは、カラーフィルタ製造工程で生じる不良基板の他の一例を示す断面図である。 図2は、本発明の第1の実施形態に係るガラス基板再生方法を示すフローチャートである。 図3は、本発明の第1の実施形態に係るガラス基板再生装置の概略構成を示す図である。 図4は、本発明の第2の実施形態に係るガラス基板再生方法を示すフローチャートである。 図5Aは、本発明の第2の実施形態に係るガラス基板再生装置の概略構成を示す図である。 図5Bは、本発明の第2の実施形態に係るガラス基板再生装置の他の一例を示す図である。 図6は、本発明の第2の実施形態に係るガラス基板再生装置の他の一例を示す図である。 図7は、本発明の第3の実施形態に係るアルカリ液処理部の概略構成を示す図である。 図8は、本発明の第3の実施形態に係るアルカリ液処理部の他の一例を示す図である。 図9は、本発明の第4の実施形態に係る搬送装置の一部を示す斜視図である。 図10は、図9のIX-IXラインから見た図である。 図11は、本発明の第5の実施形態に係るガラス基板再生装置を示す図である。 図12は、図11に示される透過型光センサーの概略構成を示す図である。 図13は、本発明の第6の実施形態に係るガラス基板再生装置を示す図である。 図14は、本発明の第6の実施形態に係るエッチング液管理部の他の一例を示す図である。 図15は、カラー液晶表示装置に用いられるカラーフィルタの一例を示す断面図である。 図16は、フォトリソグラフィ法の各工程を示すフローチャートである。 図17は、カラーフィルタ用ガラス基板の再生処理を示すフローチャートである。 図18は、従来のガラス基板再生装置を示す図である。
 図1A~1Eは、カラーフィルタ製造工程で生じる不良基板の例を示す断面図である。
 ここで、不良基板とは、フォトリソグラフィ法の各工程で発生した品質基準を満たさない基板であって、ガラス基板上に、樹脂膜(BM、R画素、G画素、B画素、PS、VA)及び金属膜(透明電極)の一方または両方が形成された状態の基板をいう。
 図1Aに示される不良基板1aは、PS・VA形成工程後の検査で発見されたものであり、ガラス基板2上にBM3と、RGBの着色画素4と、ITO等の金属膜よりなる透明電極5と、PS6と、VA7とが形成されたものである。
 また、カラーフィルタの製造プロセスでは、検査で発見された不良基板を用いて、透明電極用金属膜の成膜条件出しが行われる。
 図1Bに示される不良基板1bは、図1Aに示される不良基板を用いて金属膜の成膜条件出しを行った結果として生じたものであり、PS6、VA7の上に更にITO等の金属膜8を有する。
 図1Cに示される不良基板1cは、金属膜の形成工程以降であってPS・VA形成工程前に発見された不良基板を用いて金属膜の成膜条件出しを行った結果として生じたものであり、ガラス基板2の裏面(BM3及び着色画素4の形成面と反対側の面)にITO等の金属膜9を有する。
 図1Dに示される不良基板1dは、着色画素4上に形成されたオーバーコート層33と、ガラス基板2の裏面に形成された透明電極34とを有する。図1Eに示される不良基板1eは、図1Dに示される不良基板1dのオーバーコート層33上に、更にPS6及びVA7を有する。オーバーコート層33は、着色画素4上の平坦化や、着色画素4中の成分の流出の防止、着色画素4の保護の目的で設けられるものである。
 尚、不良基板は、フォトリソグラフィ法(図15)に示したどの工程でも生じ得る。したがって、図1A~1Eに示した不良基板の他に、ガラス基板2上にBM3及び着色画素4(R画素、G画素、B画素)の少なくとも1つが形成された不良基板や、ガラス基板2上にBM3、着色画素4、透明電極5のみが形成された不良基板も存在する。
 以下、必要に応じて図1A~1Eを参照しながら、各実施形態に係るガラス基板再生装置を説明する。
 (第1の実施形態)
 図2は、本発明の第1の実施形態に係るガラス基板再生方法を示すフローチャートである。
 図2に示したガラス基板再生方法は、図1Aの構造を有する不良基板1aからガラス基板を再生するのに適している。具体的に、本実施形態に係るガラス基板再生方法は、最上層の樹脂膜(PS6、VA7)を剥離する第1のアルカリ液処理工程(S11)と、中間層の金属膜(透明電極5)を剥離する酸液処理工程(S12)と、最下層の樹脂膜(BM3、着色画素4)を剥離する第2のアルカリ液処理工程(S13)とを備える。これらの各工程S11~S13は、独立したバッチ処理として行われるのではなく、搬送装置によって搬送される不良基板に対して連続して行われる。更に、第2のアルカリ液処理工程(S13)の後には、最終水洗処理工程(S14)が行われて、ガラス基板の再生が完了する。
 図3は、本発明の第1の実施形態に係るガラス基板再生装置を示す図である。
 ガラス基板再生装置10は、ほぼ水平に支持した状態で搬送装置によって搬送される基板に対して再生処理を行う装置であり、不良基板の搬送方向へと順に、第1のアルカリ液処理部12と、酸液処理部14と、第2のアルカリ液処理部16とを備える。
 また、第1のアルカリ液処理部12の上流には、基板搬入部11が配置されている。第1のアルカリ液処理部12、酸液処理部14及び第2のアルカリ液処理部16の直後には、水洗リンス部13、15及び17がそれぞれ配置されている。更に、水洗リンス部17の下流には、最終水洗処理部18とガラス基板搬出部19とがこの順に配置されている。
 第1のアルカリ液処理部12は、基板搬入部11から搬入された不良基板に対してアルカリ液を噴射して、最上層の樹脂層(図1AのPS6、VA7)を剥離する。水洗リンス部13は、第1のアルカリ液処理部12で不良基板表面に付着したアルカリ液を水洗により除去する。
 酸液処理部14は、水洗リンス部13によってリンスされた不良基板に酸液を噴射して、中間層の金属層(図1Aの透明電極5)を剥離する。水洗リンス部15は、酸液処理部において不良基板表面に付着した酸液を水洗により除去する。
 第2のアルカリ液処理部16は、水洗リンス部15によってリンスされた不良基板に対してアルカリ液を噴射して、最下層の樹脂層(図1AのBM3、着色画素4)を剥離する。水洗リンス部17は、第2のアルカリ液処理部16において不良基板表面に付着したアルカリ液を水洗により除去する。
 水洗リンス部17によってリンスされたガラス基板2は、最終水洗処理部18によって再度水洗された後、ガラス基板搬出部19から排出される。
 上記の第1のアルカリ液処理部12、酸液処理部14及び第2のアルカリ液処理部16では、処理液の吐出圧力や液温、吐出時間、基板の搬送速度を任意に設定することができる。これらの項目を変更可能とすることで、設計変更等で、ガラス基板2上の各層(PS6、VA7、透明電極5、BM3、着色画素4)の材料や厚みが変更された場合でも、各層の剥離に最適な条件を設定することができる。また、第1のアルカリ液処理部12、酸液処理部14及び第2のアルカリ液処理部16には、基板上の層を剥離するためのブラシやスポンジロール等が必要に応じて設けられる。更に、酸液処理部14では、基板の両面に対して酸液を吐出しても良い。
 <実施例1>
 以下、実施例1として、図3に示したガラス基板再生装置10を用いた場合の具体的な処理条件を示す。
 アルカリ処理工程で使用されるアルカリ液及び酸液処理工程で使用される酸液の組成の一例は、以下の通りである。
(1)アルカリ液(第1のアルカリ液処理部12及び第2のアルカリ液処理部16で使用):
 水酸化カリウム 8重量%
 モノエタノールアミン 12重量%
 ブチルカルビトール 15重量%
 ベンジルアルコール 2重量%
 水 63重量%
(2)酸液(酸液処理部14で使用):
 塩化第二鉄 35重量%
 硝酸 3重量%
 水 62重量%
Figure JPOXMLDOC01-appb-T000001
 表1は、薬液の吐出条件(温度、吐出時間)を変えて、剥離処理後における各層の残渣の有無を「○:残渣なし、×:残渣あり」で評価した結果を示す。このとき、第1及び第2のアルカリ液処理部におけるアルカリ液の吐出圧力はいずれも0.1MPaとし、酸液処理部における酸液の吐出圧力は0.15MPaとした。尚、表中の上向きの矢印「↑」、上の行の値と同一であることを示す。
 条件9~13から把握されるように、第1のアルカリ液処理におけるアルカリ液の吐出圧力が0.1MPaの場合、最上層の樹脂層(PS、VA)は、液温40℃、吐出時間60秒以上の条件、もしくは、液温30℃、吐出時間90秒以上の条件で完全に剥離され、残渣も発生しなかった。また、アルカリ液はガラス基板を侵すが、本実施形態では短時間で剥離処理が行われるため、ガラス基盤上にアルカリ液による影響は見られなかった。
 条件5~8から把握されるように、酸液の吐出圧力0.15MPaの場合、中間層の金属膜(透明電極)は、液温55℃、吐出時間180秒以上の条件、もしくは、液温65℃、吐出時間150秒以上の条件で完全に剥離され、残渣も発生しなかった。
 条件1~4から把握されるように、第2のアルカリ液処理におけるアルカリ液の吐出圧力が0.1MPaの場合、最下層の樹脂層(BM、着色画素)は、液温65℃、吐出時間240秒以上の条件で完全に剥離され、残渣も発生しなかった。また、アルカリ液はガラス基板を侵すが、本実施形態では短時間で剥離処理が行われるため、ガラス基盤上にアルカリ液による影響は見られなかった。
 (第2の実施形態)
 図4は、本発明の第2の実施形態に係るガラス基板再生方法を示すフローチャートである。
 図4に示したガラス基板再生方法は、図1Aに示した不良基板1aに加えて、図1B~1Eに示した不良基板1b~1eも再生可能とするものであり、第1の実施形態に係る再生方法(図2)に、第1の酸液処理工程(S21)を更に付加したものである。
 より具体的には、本実施形態に係るガラス基板再生方法は、金属膜の成膜条件出しによって形成された金属膜8を剥離するための第1の酸液処理工程(S21)と、最上層の樹脂膜(PS6、VA7)を剥離する第1のアルカリ液処理工程(S22)と、中間層の金属膜(透明電極5)及び裏面の金属膜9を剥離する第2の酸液処理工程(S23)と、最下層の樹脂膜(BM3、着色画素4)を剥離する第2のアルカリ液処理工程(S24)とを備える。これらの各工程S21~S24は、独立したバッチ処理として行われるのではなく、搬送装置によって搬送される不良基板に対して連続して行われる。更に、第2のアルカリ液処理工程(S24)の後には、最終水洗処理工程(S25)が行われる。
 図5Aは、本発明の第2の実施形態に係るガラス基板再生装置の概略構成を示す図である。
 ガラス基板再生装置20aは、ほぼ水平に支持した状態で搬送装置によって搬送される基板に対して再生処理を行う装置であり、不良基板の搬送方向へと順に、第1の酸液処理部22aと、第1のアルカリ液処理部24と、第2の酸液処理部26と、第2のアルカリ液処理部28とを備える。ガラス基板再生装置20aは、図1A及び1Bに示した積層構造を有する不良基板1a及び1bを処理するのに適している。
 また、第1の酸液処理部22aの上流には、基板搬入部21が配置されている。第1の酸液処理部21、第1のアルカリ液処理部12、第2の酸液処理部14及び第2のアルカリ液処理部16の直後には、水洗リンス部23、25、27及び29がそれぞれ配置されている。更に、水洗リンス部29の下流には、最終水洗処理部30とガラス基板搬出部31とがこの順に配置されている。
 第1の酸液処理部22aは、基板搬入部21から搬入された不良基板に対して酸液を噴射して、成膜条件出しで形成された金属膜8(図1B)を剥離する。水洗リンス部23は、第1の酸液処理部21で不良基板表面に付着した酸液を水洗により除去する。
 第1のアルカリ液処理部24は、最上層の樹脂層(PS6、VA7)を剥離する。水洗リンス部25は、第1のアルカリ液処理部24で不良基板表面に付着したアルカリ液を水洗により除去する。
 第2の酸液処理部26は、水洗リンス部25によってリンスされた不良基板の両面に酸液を噴射して、ガラス基板2の両面にある金属層(透明電極5及び金属膜9)を剥離する。水洗リンス部27は、第2の酸液処理部26において不良基板表面に付着した酸液を水洗により除去する。
 第2のアルカリ液処理部28は、水洗リンス部27によってリンスされた不良基板に対してアルカリ液を噴射して、最下層の樹脂層(BM3、着色画素4)を剥離する。水洗リンス部29は、第2のアルカリ液処理部28において不良基板表面に付着したアルカリ液を水洗により除去する。
 水洗リンス部29によってリンスされたガラス基板2は、最終水洗処理部30によって再度水洗された後、ガラス基板搬出部31から排出される。
 上記の第1の酸液処理部22a、第1のアルカリ液処理部24、第2の酸液処理部26及び第2のアルカリ液処理部28では、処理液の吐出圧力や液温、吐出時間、基板の搬送速度を任意に設定することができる。これらの項目を変更可能とすることで、設計変更等で、ガラス基板2上の各層(PS6、VA7、透明電極5、BM3、着色画素4、金属膜8及び9)の材料や厚みが変更された場合でも、各層の剥離に最適な条件を設定することができる。また、第1の酸液処理部22a、第1のアルカリ液処理部24、第2の酸液処理部26及び第2のアルカリ液処理部28には、基板上の層を剥離するためのブラシやスポンジロール等が必要に応じて設けられる。
 本実施形態に係るガラス基板再生装置20で図1A及び1Bに示した不良基板1a及び1bを処理した場合、不良基板の積層構造に応じて各層の剥離過程が異なる。
 図1Aに示した不良基板1aを投入した場合、第1の酸液処理部22aでは、最上層のPS6及びVA7は剥離されず、露出した透明電極5の一部が剥離される。その後、第1の実施形態と同様に、第1のアルカリ液処理部24、第2の酸液処理部26及び第2のアルカリ液処理部28で順に各層が剥離されてガラス基板2が再生される。
 図1Bに示した不良基板1bを投入した場合、第1の酸液処理部22aにおいて、成膜条件出しのために形成された金属層8が剥離される。その後、第1の実施形態と同様に第1のアルカリ液処理部24、第2の酸液処理部26及び第2のアルカリ液処理部28で順に各層が剥離されてガラス基板2が再生される。
 尚、第2の酸液処理部26では、不良基板の裏面に対しても薬液を噴射しているが、その液性が酸性のため、図1A及び1Bのように裏面にガラス基板が剥き出しになった不良基板に対してダメージを与えることはない。
 図5Bは、本発明の第2の実施形態に係るガラス基板再生装置の他の一例を示す図である。
 ガラス基板再生装置20bは、ガラス基板再生装置20a(図5A)の第1の酸液処理部22aに代えて、第1の酸液処理部22bを設けたものである。第1の酸液処理部22bは、基板搬入部21から搬入された不良基板1の両面に酸液を噴射して金属膜を剥離する。ガラス基板再生装置20bは、図1A及び1Bに示した積層構造を有する不良基板1a及び1bに加えて、図1C~1Eを処理するのに適している。
 図1Cに示した不良基板1cを投入した場合、第1の酸液処理部22bにおいて、不良基板1cの両面に酸液が噴射され、表面の透明電極5と裏面の金属膜9の両方が剥離される。その後、第1のアルカリ液処理部28で最下層の樹脂層が剥離されてガラス基板2が再生される。
 図1D及び1Eに示した不良基板1d及び1eを投入した場合、第1の酸液処理部22bにおいて、不良基板1dの両面に酸液が噴射され、裏面の透明電極34が剥離される。その後、第1のアルカリ液処理部28でガラス基板2上の樹脂層(PS6、VA7、オーバーコート層33、BM3、着色画素4)が剥離されて、ガラス基板2が再生される。
 図1C~1Eに示した構造では、ガラス基板2の裏面上に直接金属膜(ITO膜)が形成されている。この状態で最初にアルカリ処理を行うと、金属膜のポーラス状の結晶の隙間にアルカリ処理液が浸透してガラス基板2を浸食する。ガラス基板2の裏面上には本来のガラス表面部分と浸食された部分とが生じることにより、ガラス基板2の表面が磨りガラス状となり、ガラス基板2を基材として再使用できなくなってしまう。そこで、図5Bの装置では、最初に酸液処理を行って、ガラス基板2の表面に直接形成された金属膜を剥離している。不良基板1c~1eを第1の酸液処理部22aまたは22bに投入した場合、再生されたガラス基板2(素ガラスの状態)が第2のアルカリ液処理部28で処理されるが、その処理時間が短いため、ガラス基板2の浸食は抑制される。
 また、図1C~1Eに示した構造の不良基板1c~1eを再生する場合、1回の酸液処理と1回のアルカリ液処理とでガラス基板2の再生が可能である。したがって、不良基板1c~1eを第1の酸液処理部22aまたは22bに投入する代わりに、基板搬入部21から第2の酸液処理部26に投入しても良い。一方、不良基板1c~1eを第2の酸液処理部26に直接投入した場合は、不要なアルカリ液処理が行われないので、基板の浸食を最小限に抑えることができる。
 また、図5A及び5Bの構成例では、第2の酸液処理部26が不良基板の両面に酸液を噴射しているが、次のように第2の酸液処理部を構成しても良い。
 図6は、本発明の第2の実施形態に係るガラス基板再生装置の他の一例を示す図である。
 図6に示されるガラス基板再生装置20cは、第1アルカリ液処理部24及び第2アルカリ液処理部28の間に配置され、不良基板の一方面にのみ酸液を噴出する一対の第2の酸液処理部26a及び26bと、第2の酸液処理部26a及び26bの各々の直後に配置される一対の水洗リンス部27a及び27bとを備える。また、水洗リンス部27a及び第2の酸液処理部26bの間と、水洗リンス部27b及び第2のアルカリ液処理部28の間とには、不良基板の表裏を反転させるための図示しない反転機構が設けられる。このように構成しても、図4の装置と同様に、ガラス基板の裏面に形成された金属膜9を剥離することができる。尚、図6の例において、第1の酸液処理部22aに代えて、不良基板の両方面に酸液を吐出する第1の酸液処理部22b(図5B)を採用しても良い。
 以上説明したように、本実施形態に係るガラス基板再生装置20a及び20bによれば、不良基板の積層構造に関わらず、様々な種類の不良基板からガラス基板を再生することが可能となる。
 <実施例2>
 以下、実施例2として、図5Aのガラス基板再生装置20aを用いて、図1Bの積層構造を有する不良基板を処理した場合の具体的な処理条件を示す。尚、第1及び第2のアルカリ処理工程で使用されるアルカリ液及び第1及び第2の酸液処理工程で使用される酸液は、上記の実施例1と同一のものを使用した。
Figure JPOXMLDOC01-appb-T000002
 表2は、薬液の吐出条件(温度、吐出時間)を変えて、剥離処理後における各層の残渣の有無を「○:残渣なし、×:残渣あり」で評価した結果を示す。このとき、第1及び第2のアルカリ液処理部におけるアルカリ液の吐出圧力はいずれも0.1MPaとし、第1及び第2の酸液処理部における酸液の吐出圧力は0.15MPaとした。尚、表中の上向きの矢印「↑」、上の行の値と同一であることを示す。
 条件9~13から把握されるように、第1のアルカリ液処理部におけるアルカリ液の吐出圧力が0.1MPaの場合、最上層の樹脂層(PS、VA)は、液温40℃、吐出時間60秒以上の条件で、もしくは、液温30℃、吐出時間90秒以上の条件で完全に剥離され、残渣も発生しなかった。
 条件5~8から把握されるように、第1及び第2の酸液処理部における酸液の吐出圧力が0.15MPaの場合、透明電極及び成膜条件出し用の金属膜は、液温55℃、吐出時間180秒以上の条件、もしくは、液温65℃、吐出時間150秒以上の条件で完全に剥離され、残渣も発生しなかった。
 条件1~4から把握されるように、第2のアルカリ液処理におけるアルカリ液の吐出圧力が0.1MPaの場合、最下層の樹脂層(BM、着色画素)は、液温65℃、吐出時間240秒以上の条件で完全に剥離され、残渣も発生しなかった。
 (第3の実施形態)
 図7は、本発明の第3の実施形態に係るアルカリ液処理ユニットの概略構成を示す図である。
 アルカリ液処理ユニット40aは、不良基板からガラス基板を再生するために、ガラス基板上の樹脂層(PS6、VA7、BM3、着色画素4)を剥離するための装置である。アルカリ液処理ユニット40aは、上記の第1及び第2の各実施形態に係るガラス基板再生装置が備える第1及び第2のアルカリ液処理部の一方または両方として利用できる。
 アルカリ液処理ユニット40aは、不良基板の搬送方向に沿って直列に配置され、不良基板に対して独立して剥離処理を行うことができる一対の処理部41a及び41bと、アルカリ液補充タンク42と、剥離液補充タンク43と、回収パン44a及び44bとを備える。
 処理部41aは、処理液を貯留する貯留槽45aと、不良基板に対して処理液を吐出するノズル46aと、配管47aを通じて貯留槽45a内の処理液をノズル46aに供給するポンプ48aと、基板表面を擦って洗浄する洗浄ブラシ(図示せず)とを含む。処理部41bは、処理部41aの下流に配置され、処理部41aに設けられるものと同様の貯留槽45bと、ノズル46bと、配管47bを介してノズル46bに処理液を供給するポンプ48bと、洗浄ブラシ(図示せず)とを含む。
 処理部41aにおいて、貯留槽45a内の処理液は、ポンプ48aによってノズル46aに送液され、ノズル46aから不良基板1表面にシャワー状に吐出される。そして、図示しない洗浄ブラシによって不良基板1表面を擦ることによって樹脂層の一部が剥離される。不良基板1の洗浄に用いられた処理液及び剥離樹脂は、回収パン44aから配管49aを通じて貯留槽45aへと回収される。剥離樹脂は、貯留槽45a内で沈殿させた後、配管50aから外部に排出される。あるいは、配管49aの途中や貯留槽45a内にフィルタ機構を設けて処理液中の樹脂を除去しても良い。
 処理部41bでも同様に、貯留槽45b内の処理液がポンプ48bからノズル46bに送液され、ノズル46bから不良基板1表面にシャワー状に吐出される。図示しない洗浄ブラシによって不良基板1表面を擦ることによって残存している樹脂層が剥離される。洗浄に用いられた処理液及び剥離樹脂は、回収パン44bから配管49bを通じて貯留槽45bへと回収される。剥離樹脂は、貯留槽45b内で沈殿させた後、配管50bから外部に排出される。あるいは、配管49bの途中や貯留槽45b内にフィルタ機構を設けて処理液中の樹脂を除去しても良い。
 貯留槽45a及び45bには、予め所定濃度に調整された処理液が貯留されており、その内部の処理液濃度は、図示しない測定装置によって一定時間毎にモニターされている。貯留槽45a内の処理液濃度が低下した場合、アルカリ液補充タンク42及び剥離液補充タンク43から配管51a及び52を通じて、貯留槽45aへとアルカリ液及び剥離液を補充して、貯留槽45a内の処理液濃度が調整される。一方、貯留槽45b内の処理液濃度が低下した場合、アルカリ液補充タンク42から配管51bを通じて、貯留槽45bへとアルカリ液を補充して、貯留槽45b内の処理液濃度が調整される。
 また、図7に示したアルカリ処理ユニット40aに代えて、次のような構成を採用しても良い。
 図8は、本発明の第3の実施形態に係るアルカリ液処理ユニットの他の一例を示す図である。
 アルカリ液処理ユニット40bは、図7に示したものと同様の処理部41a及び41bに対して、アルカリ液補充タンク42a及び42b、剥離液補充タンク43a及び43bをそれぞれ設けたものである。
 図8のアルカリ処理ユニット41bでは、貯留槽45a及び45b内の処理液濃度が低下した場合、アルカリ液補充タンク42a及び42bから配管51a及び51bを通じて、アルカリ液が貯留槽45a及び45bへと供給される。また、剥離液補充タンク43a及び43bから配管52a及び52bを通じて、剥離液が貯留槽45a及び45bへと供給される。
 図7及び8に示したアルカリ処理ユニット40a及び40bにおいては、処理部41aと処理部41bとで処理液の組成または濃度の少なくとも一方が異なっている。具体的には、図7の構成では、上流側の処理部41aで用いる処理液のみに剥離液を混合することで、処理部41a及び41bで用いる処理液の組成が異なる。また、下流側の処理部41bで用いる処理液に含まれるアルカリ液濃度を処理部41aと比べて低くしたり(図7及び図8)、下流側の処理部で用いる処理液に含まれる剥離液濃度を処理部41aと比べて低くしたりしても良い(図8)。
 このように上流から下流に向かうにつれて、処理液の濃度(アルカリ液濃度、剥離液濃度)を低くすれば、アルカリ液や剥離液を効率的に使用することができる。すなわち、剥離すべき樹脂量が最も多いアルカリ液処理の初期段階では、比較的高濃度の処理液で強力に剥離処理を行い、剥離処理が進んで樹脂量が減少した後の段階では、低濃度の処理液で剥離処理を行う。この結果、一定濃度の処理液を使用する場合と比べて、アルカリ液及び剥離液の使用量を低減できるので、ガラス基板再生に要するコストを削減できる。また、処理液の濃度を徐々に低下させることで、ガラス基板が高濃度の処理液に晒される時間を短くすることができ、この結果、アルカリ成分によるガラス基板の損傷を防止することができる。
 尚、上記の説明では、ノズル46a及び46からの処理液の吐出と洗浄ブラシによる擦り取りとの組み合わせによって不良基板を処理する例を示したが、処理部41a及び41bにおける樹脂層の剥離処理部としては、あらゆる構成を採用することができる。例えば、不良基板に所定圧力で処理液を噴射して樹脂膜をある程度剥離させた後、スポンジで表面を擦って洗浄を行っても良い。また、洗浄ブラシに代えて、スポンジロールを利用しても良い。あるいは、不良基板を処理液中に浸漬させた状態で搬送し、その後、高圧で処理液を不良基板に噴射して樹脂膜を剥離・除去しても良い。
 また、図7及び8の例では、2つの処理部41a及び41bを用いてアルカリ処理ユニットを構成した例を説明したが、複数の処理部が直列に配置されていれば良く、処理部の数は2以上の任意で良い。
 <実施例3~6>
 以下、実施例3~6として、図7のアルカリ液処理ユニット40aを使用した場合(より詳細には、図3に示したガラス基板再生装置の第1のアルカリ液処理部12及び第2のアルカリ液処理部16に図7のアルカリ液処理ユニット40aを適用した場合)の具体的な処理条件を示す。また、比較例として、図18に示した構成のガラス基板再生装置を用いた場合の処理条件を示す。尚、図18に示したノズルは、図7に示したノズルを直列に接続したものである。
 処理対象の基板として、無アルカリガラスよりなるガラス基板(サイズ:2160mm×2460mm、厚み:0.7mm)上に、BM、着色画素、ITO透明電極、PS、VAを形成したものを使用した(図1A)。
 アルカリ液の組成は以下の通りとした。また、第1のアルカリ液処理部12と第2のアルカリ液処理部16とで同一の処理液を使用した。
(1)処理液1(上流側の処理部41a用):
 無機アルカリ(水酸化カリウム) 11重量%
 有機アルカリ(モノエタノールアミン・トリエタノールアミン) 20重量%
 グリコールエーテル 28重量%
 ベンジルアルコール 8重量%
 水 33重量%
(2)処理液2(下流側の処理部41b用)
 無機アルカリ(水酸化カリウム) 11重量%
 水 89重量%
 第1及び第2のアルカリ液処理部における処理液の温度は次の通りとした。
(1)実施例3:55℃
(2)実施例4:45℃
(3)実施例5:60℃
(4)実施例6:65℃
 また、第1のアルカリ液処理部及び第2のアルカリ液処理部における処理は、次の通りに行った。上記の温度の処理液をノズルから吐出圧力0.1MPaのシャワーとして吐出しながら、ブラシによって処理対象基板を洗浄し、樹脂槽(PS、VA、BM、着色画素)を剥離除去した。基板の搬送速度は1000mm/分とし、上流側及び下流側の処理部による処理時間はいずれも90秒(合計の処理時間は180秒)とした。
 (比較例)
 比較例では、上記の処理液1と同一組成の処理液を使用した。55℃の処理液をノズルから吐出圧力0.1MPaのシャワーとして吐出しながら、ブラシによって処理対象基板を洗浄し、PS、VAを剥離除去した。基板の搬送速度は1000mm/分とし、処理時間は180秒とした。
 尚、酸液処理工程では、公知の処理装置や処理液を用いて透明電極膜を剥離、除去した。
 実施例3~6及び比較例で再生したガラス基板について、目視検査による残渣の付着やムラの有無の確認、元素分析によるIndiumの検出、表面粗さ測定を行った。実施例1~4及び比較例のいずれで再生したガラス基板においても、残渣の付着やムラ、Indiumの検出は見られなかった。ガラス基板の表面粗さは、実施例3~6では0.501nm、比較例では0.544nmであり、いずれもガラス基板の品質基準を満たしていた。このように、実施例3~6では、アルカリ液処理部を上流側の処理部及び下流側の処理部に2分割し、下流側の処理部でアルカリ濃度が低い処理液を使用したが、問題なくガラス基板の再生ができることが確認された。
 (第4の実施形態)
 図9は、本発明の第4の実施形態に係る搬送装置の一部を示す斜視図であり、図10は、図9のIX-IXラインから見た図である。
 搬送装置60は、各々の上端部で不良基板1の下面を支持する複数のローラー61と、ローラー61の各々を中心軸周りに回転させる駆動機構(図示せず)とを備える。ローラー61の各々は、中心軸が互いに平行となるように所定間隔毎に配置されており、駆動機構による回転によって、各々の中心軸が連なる方向(図9及び10の左右方向)へと不良基板1を搬送する。
 また、ローラー61の上端部より下方には、ローラー61に付着した液体62を掻き取るためのスキージ62が設けられている。スキージ62は、ローラー61の軸方向に伸びる長尺プレート形状を有し、その一片がローラー61の外面に当接した状態で固定されている。スキージ62及びローラー61との接触部分の下方には、図10に示すように、スキージ62によって掻き取られて落下する液体67を受けるための液体受け部63が設けられる。液体受け部63によって受け止められた液体67は、回収槽64に貯留される。
 ローラー61上を移動する不良基板1を処理するため、不良基板1には、ノズル65から処理液66が吐出される。吐出された処理液及び剥離された各層の材料を含む液体は、不良基板1の下面にまで回り込んでローラー61に付着する。
 上記の第1及び第2の実施形態でも説明したように、本発明に係るガラス基板再生装置では、複数の不良基板をまとめて処理液に浸漬する浸漬方式ではなく、不良基板を1枚ずつ搬送しながら逐次処理する枚葉搬送方式が採用されている。この枚葉搬送方式では、再生処理で剥離されたレジストやITO等がローラー61に付着した後、再生基板に再転写されて固着し、異物化するという問題がある。したがって、従来、水洗工程において、基板の両面に水を噴射して念入りに洗浄を行う必要があった他、短い間隔で搬送装置を清掃する必要があり、メンテナンス性が良くないという問題があった。
 本実施形態に係る搬送装置60では、スキージ62がローラー61の表面に接触しているので、ローラー61の回転に伴ってローラー61表面に付着した液体が除去される。この結果、除去物がガラス基板に再付着することが抑制され、ある工程での除去物が他の工程に持ち込まれることを防止できる。枚葉搬送方式によるガラス基板再生処理では、酸処理及びアルカリ処理が交互に行われるため、ある工程での除去物と次の工程の処理液との混合によって、剥離能力の低下や析出物の発生を招く場合があるが、本実施形態に係る搬送装置60によれば、そのような不具合を防止できる。また、ローラー61から掻き取られた液体67を効率的に回収することができるので、搬送装置60のメンテナンス性の向上やフィルタへの負荷の軽減も図ることができる。更に、水洗時に使用する水の量を大幅に削減することも可能となる。
 尚、スキージ62の材質は、処理液と反応しないものであれば良いが、エラストマーや、超高分子量ポリエチレン、ポリアセタール、ポリテトラフルオロエチレン等を利用できる。特に、スキージ62はローラー61に押し付けられた状態で固定されるため、耐摩耗性に優れた材料を用いることが好ましい。
 また、スキージ62は、全てのローラー61に対して設けても良いが、液体の回り込みが多く発生する部分を中心として一部のローラー61に対して設けることが効率的である。
 更に、搬送装置60では、基板の下面を指示するローラー61に加えて、搬送される基板を上から押さえる上部ローラーが更に設けられる場合がある。この上部ローラーに対しても同様にスキージを取り付けても良い。このように構成すると、上部ローラーに付着した液体を除去することができるので、ローラー61にスキージ62を取り付けた場合に得られる効果を一層向上させることが可能となる。
 (第5の実施形態)
 図11は、本発明の第5の実施形態に係るガラス基板再生装置を示す図であり、図12は、図11に示される透過型光センサーの概略構成を示す図である。尚、図11において、矢印は基板の搬送方向を表す。
 本実施形態に係るガラス基板再生装置は、不良基板上に透明電極があるか否かを判定部する判定部70と、判定部70による判定結果に基づいて、不良基板の搬送先を振り分ける振り分け部71とを更に備える。
 判定部70は、不良基板上の複数の点における所定波長の光の透過率を検出する光透過型センサー72を含む。光透過型センサー72は、第1の波長の光を出射する光源73aと、第1の波長とは異なる第2の波長の光を出射する光源73bと、第1の波長の光の強度を検出する光センサー74aと、第2の波長の光の強度を検出する光センサー74bとを有する。判定部70は、光透過型センサー72を用いて、不良基板1のうち、素ガラス部分(BM及び着色画素に覆われていない部分)上の複数点の透過率をセンシングし透明電極5の有無を判定する。
 具体的には、第1の波長及び第2の波長として、青色領域の450nm及び緑色領域の600nmを用いる。これらの波長の光源から出射されガラス基板2のみを透過した光の透過率を100%とすると、透明電極5及びガラス基板2の両方を透過した光の透過率は、92~95%となる。したがって、不良基板1上の複数の点でこの2波長の透過率を検出すれば、透明電極の有無を判定できる。
 不良基板上に透明電極が存在すると判定部70が判定した場合、振り分け部71は、不良基板を第1のアルカリ液処理部12に投入する。したがって、この場合、投入された不良基板は、第1のアルカリ液処理部12、酸液処理部14、第2のアルカリ液処理部16を経て順に各層が剥離され、ガラス基板が再生される。一方、不良基板上に透明電極が存在しないと判定部70が判定した場合、振り分け部71は、不良基板を第2のアルカリ液処理部16に投入する。したがって、この場合、投入された不良基板は、第2のアルカリ液処理部16でのみ剥離処理が行われ、ガラス基板が再生される。
 上述したように、カラーフィルタの製造プロセスでは、様々な積層構造を有する不良基板が発生する。一方で、ガラス基板再生処理の工程は、樹脂レジストを剥離するアルカリ液処理と、金属膜(透明電極)を剥離する酸処理とに大別される。金属膜のない不良基板、すなわち、ガラス基板上にBM・着色画素の一部または全部が形成された不良基板は、第2のアルカリ液処理を行うだけでガラス基板の再生が可能であるが、全ての種類の基板を同一に取り扱うと、本来必要でない第1のアルカリ液処理や酸液処理を無駄に行う必要がある。
 本実施形態に係るガラス基板再生装置によれば、不良基板上の透明電極の有無に着目して不良基板を区分し、酸処理の必要がない不良基板の再生処理を効率的に行うことができる。また、透明基板のない不良基板に不要な酸処理を行わないことによって、酸液処理部から第2のアルカリ液処理部へと不必要に酸液が持ち込まれることを抑制することができる。よって、第2のアルカリ液処理部の処理液の劣化速度を遅らせることができる。
 尚、本実施形態では、第1の実施形態に係るガラス基板再生装置に判定部70及び振り分け部71を付加した例を説明したが、第2の実施形態に係るガラス基板再生装置に対しも同様に判定部70及び振り分け部71を付加することも可能である。
 (第6の実施形態)
 図13は、本発明の第6の実施形態に係るガラス基板再生装置を示す図である。
 本実施形態に係るガラス基板再生装置は、第1の実施形態に係るガラス基板再生装置10に加えて、エッチング液管理部75aと、エッチング液給排部81とを更に備える。
 エッチング液管理部75aは、不良基板表面の透明電極の膜厚を測定するための接触式表面形状測定部76と、測定した膜厚の累計を算出する累計算出/判定部77とを含む。
 接触式表面形状測定部76は、処理対象基板上の透明電極膜表面を接触式の針で走査し、ガラス基板と透明電極膜表面との段差に基づいて、透明電極膜の膜厚を測定する。この測定時の針圧は約3mg、走査速度は約50μm/secである。
 累計算出/判定部77は、接触式表面形状測定部76が測定した各基板上の透明電極膜の膜厚を積算して、累計膜厚を算出する。累計算出/判定部77は、エッチング液の補充や入れ替え時期の基準となる累計膜厚を示す基準値(予め設定された値である)と、算出した累計膜厚とを比較して、算出した累計膜厚が基準値を超えたか否かを判定する。算出した累計膜厚が基準値を超えた場合には、累計算出/判定部77は、伝送路80を通じて、酸液処理部14及びエッチング液給排部81にエッチング液の補充や入れ替えを指示する。
 エッチング液給排部81は、配管を介してこの順に接続されるフィルタ82、ポンプ83、中継タンク84、電磁弁85、流量計86を備える。フィルタ82は、配管89を介して酸液処理部14内の貯留槽79に接続されている。流量計86には、エッチング液供給用の配管87が接続され、中継タンク84には、廃液排出用の配管88が接続されている。
 酸液処理部14にエッチング液の供給を行う際には、配管87を通じて供給されるエッチング液を中継タンク84に一時的に貯留した後、ポンプ83を用いて中継タンク84内のエッチング液を貯留槽79へと送出する。一方、酸液処理部14のエッチング液を排出する際には、貯留槽79内のエッチング液を一旦中継タンク84に排出した後、配管88を通じて中継タンク84から外部に排出する。
 ITO等の透明電極を剥離するためのエッチング液としては、例えば、塩酸と硝酸の混合液や、塩化第二鉄と塩酸の混合液や、希塩酸などの酸液が用いられる。エッチング液は、剥離処理を行う度に次第に疲労するので、適当な時点で補充あるいは入れ替えを行う必要がある。カラーフィルタ製造プロセスで生じた不良基板上の透明電極の膜厚は通常140nm程度である。したがって、すべての不良基板の透明電極の膜厚がほぼ一定であれば、酸液処理部に投入した不良基板の枚数をカウントすることによって、このエッチング液の補充あるいは更新の時期を算定することができる。
 しかしながら、実際には、処理対象基板の中には、透明電極の膜厚が通常の製造プロセスで形成される厚みよりも極めて大きいものが存在する。
 より詳細には、透明電極膜を形成するためのスパッタ装置をメンテナンス等で一時的に停止させた後、再稼働させる際には、事前に成膜条件出し用のガラス基板(以下、「ダミー基板」という)を用いて成膜条件を確認する。このダミー基板は、成膜条件出しのために繰り返し利用された後、積層された透明電極膜の剥離処理に供され、ガラス基板が再生される。
 ダミー基板上の透明電極膜の厚みは、通常の膜厚の数倍~数十倍である。したがって、ダミー基板を酸液処理部に投入すると、投入枚数にかかわらず、エッチング液の疲労が極めて早く進行する。この結果、酸液処理部による処理能力が低下し、透明電極膜の除去不良を発生させる可能性がある。
 そこで、本実施形態に係るガラス基板再生装置は、エッチング液管理部75aによって、酸液処理部に投入される基板上に形成された透明電極膜の実際の厚みに基づいて、エッチング液の疲労度合いを管理し、適切なタイミングでエッチング液の補充や入れ替えを行う。
 ある一定量のエッチング液(所定の組成を有する)で剥離可能な透明電極膜の最大量(体積)は略一定である。したがって、処理対象基板及び透明電極膜の面積が一定である場合、透明電極膜の面積と、エッチング液の組成及び量が判っていれば、エッチング液のエッチング能力(基準値)を透明電極膜の厚みで表現できる。したがって、接触式表面形状測定部76を用いて測定した厚みを累計算出/判定部77が累計することで、適切なエッチング液の補充・入れ替えタイミングを把握することができる。
 また、ガラス基板のサイズが一定でない場合にもエッチング液の管理が可能となるように、次のような構成を採用しても良い。
 図14は、本発明の第6の実施形態に係るエッチング液管理部の他の一例を示す図である。
 エッチング液管理部75bは、図13に示したエッチング液管理部75aの構成に加えて、面積測定部78を更に備える。面積測定部78は、投入される基板の面積を測定し、測定した面積を累計算出/判定部77に出力する。尚、面積測定部78による面積の測定には、カメラで撮影した画像を解析して面積を割り出す方法など公知の種々の方法を利用できる。
 累計算出/判定部77は、接触式表面形状測定部76が測定したある基板上の透明電極膜の厚みに、面積測定部78によって測定された当該ある基板の面積を乗じた値を算出する。累計算出/判定部77は、乗算により得た値(体積に相当)を積算して、累計値を求める。また、累計算出/判定部77は、エッチング液の補充や入れ替え時期の基準を表す値として、剥離可能な透明電極膜の最大量(透明電極膜の膜厚と面積を乗じた値に対応)を用いる。累計算出/判定部77は、算出した累積値がこの基準値を超えたと判定した場合に、伝送路80を通じて、酸液処理部14及びエッチング液給排部81にエッチング液の補充や入れ替えを指示する。
 図14のエッチング液管理部75bを用いてガラス基板再生装置を構成すれば、酸液処理部14に投入される不良基板やダミー基板のサイズが変化する場合でも、エッチング液の補充や入れ替えの時期を確実に判定することができる。
 更に、上記の図13及び14の構成に加えて、酸液処理部14を次のように構成することが好ましい。
 一般に、エッチング液の疲労に伴って、エッチングに要する時間が長くなる。一方、エッチングの反応性は、エッチング液の温度を上げることによって向上する。
 そこで、酸液処理部14のいずれかの箇所に昇温装置を設け、エッチング液の疲労程度に応じて段階的に液温を上昇させる。エッチングの疲労程度は、剥離した透明電極膜の量(体積)によって定義し、段階的な複数の閾値と閾値の各々に対応する液温を設定する。そして、累計算出/判定部77が求めた累計値が設定された閾値を超えたか否かを判定する。求めた累計値がある閾値を超えたと判定された場合、累計算出/判定部77は、酸液処理部14に指示して、当該ある閾値に設定された液温にまでエッチング液の温度を上昇させる。
 一例として、図13の構成のように、累計膜厚でエッチング液を管理する場合、下記の表3のように、複数の累計膜厚の値(閾値)と、これに対応する液温を設定する。累計算出/判定部77によって算出される累計膜厚が各閾値を超える度に液温を上昇させることで、処理時間を一定に維持することができると共に、疲労したエッチング液を効率的に使い切ることができる。
Figure JPOXMLDOC01-appb-T000003
 尚、図14の構成のように、エッチング液を膜厚と基板面積とを掛け合わせた値の累計に基づいて管理する場合は、累計膜厚に代えて、剥離した透明電極膜の量に相当する値(透明電極膜の膜厚と面積を乗じた値に対応)を閾値として設定すれば良い。
 また、エッチング液管理部75a及び75bは、算出した累計値が所定の基準値を超えた場合には、酸液処理部14の上流及び下流にある各処理部の動作を停止させることが好ましい。この場合、貯留槽79内のエッチング液を入れ替える際に、上流の装置から基板が搬送されて来たり、酸液処理が完了していない基板が下流の装置に搬送されるのを防止することができる。
 尚、上記の各実施形態に係る構成は、任意に組み合わせが可能である。すなわち、第1及び第2の実施形態に係るガラス基板再生装置に、第3の実施形態に係るアルカリ液処理ユニット、第4の実施形態に係る搬送装置、第5の実施形態に係る振り分け機構、第6の実施形態に係るエッチング液(酸液)の管理機構の任意のいくつかを自在に組み合わせることができる。
 本発明は、液晶表示装置等のカラーフィルタ製造工程で生じた不良基板からガラス基板を再生するガラス基板再生装置に利用できる。
1 不良基板
2 ガラス基板
3 ブラックマトリックス(BM)
4 着色画素
5 透明電極
6 フォトスペーサー(PS)
7 バーティカルアライメント
8 金属膜
9 金属膜
10 ガラス基板再生装置
12 第1のアルカリ液処理部
14 酸液処理部
16 第2のアルカリ液処理部
20 ガラス基板再生装置
22 第1の酸液処理部
24 第1のアルカリ液処理部
26 第2の酸液処理部
28 第2のアルカリ液処理部
40 アルカリ液処理ユニット
41 処理部
60 搬送装置
61 ローラー
62 スキージ
70 判定部
71 振り分け部
75 エッチング液管理部
76 表面形状測定部
77 累計算出/判定部
81 エッチング液給排部

Claims (6)

  1.  ガラス基板上に樹脂及び金属のいずれかよりなる1以上の層が形成された不良基板を搬送しながら、前記不良基板から前記ガラス基板を再生するガラス基板再生装置であって、
     アルカリ液で前記不良基板を処理して、前記不良基板の表面にある第1の樹脂層を剥離する第1のアルカリ液処理部と、
     前記第1のアルカリ処理部の下流に設けられ、酸液で前記不良基板を処理して、前記不良基板の表面にある金属膜を剥離する第1の酸液処理部と、
     前記酸液処理部の下流に設けられ、アルカリ液で前記不良基板を処理して、前記ガラス基板の表面にある第2の樹脂層を剥離する第2のアルカリ液処理部とを少なくとも備える、ガラス基板再生装置。
  2.  前記第1のアルカリ液処理部の上流に設けられ、酸液で前記不良基板を処理して、前記不良基板の表面にある金属層を剥離する第2の酸液処理部を更に備える、請求項1に記載のガラス基板再生装置。
  3.  前記第1及び第2のアルカリ液処理部の少なくとも一方には、前記アルカリ液で前記基板を処理する複数の処理手段が直列に設けられる、請求項1に記載のガラス基板再生装置。
  4.  各々の上端部で前記不良基板の下面を支持し、各々が中心軸周りに回転することによって前記不良基板を搬送する複数のローラーを含む搬送機構を備え、
     前記ローラーの前記上端部より下方に配置され、前記ローラーの外面に接して前記ローラー表面の液体を除去するスキージが設けられる、請求項1に記載のガラス基板再生装置。
  5.  前記不良基板を前記ガラス基板再生装置に投入する前に、前記不良基板上の複数点における所定波長の光の透過率を検出し、検出結果に基づいて前記不良基板上に前記金属層があるか否かを判定する判定部と、
     前記不良基板上に前記金属層があると前記判定部によって判定された場合には、前記不良基板を前記第1のアルカリ液処理部に投入し、前記不良基板上に前記金属層がないと前記判定部によって判定された場合には、前記不良基板を前記第2のアルカリ液処理部に投入する振り分け部とを更に備える、請求項1に記載のガラス基板再生装置。
  6.  前記第1の酸液処理部へ投入される前記不良基板の各々について、表面にある前記金属層の厚みを測定する接触式表面形状測定部と、
     前記接触式表面形状測定部によって測定された金属層の厚みを積算して累計膜厚を算出し、算出された累計膜厚に応じて、前記第1の酸液処理部による処理時間及び処理温度を制御し、算出された累計膜厚が所定値を超えた場合に、前記第1の酸液処理部の上流側及び下流側の処理部を停止させる累計算出/判定部を更に備える、請求項1に記載のガラス基板再生装置。
PCT/JP2009/003654 2008-08-04 2009-07-31 ガラス基板再生装置 WO2010016214A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010523741A JP5299428B2 (ja) 2008-08-04 2009-07-31 ガラス基板再生装置
KR1020117001385A KR101243545B1 (ko) 2008-08-04 2009-07-31 유리 기판 재생 장치
CN2009801308322A CN102112244B (zh) 2008-08-04 2009-07-31 玻璃基板再生装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-200648 2008-08-04
JP2008200648 2008-08-04
JP2009-018080 2009-01-29
JP2009018080 2009-01-29

Publications (1)

Publication Number Publication Date
WO2010016214A1 true WO2010016214A1 (ja) 2010-02-11

Family

ID=41663443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003654 WO2010016214A1 (ja) 2008-08-04 2009-07-31 ガラス基板再生装置

Country Status (5)

Country Link
JP (1) JP5299428B2 (ja)
KR (1) KR101243545B1 (ja)
CN (1) CN102112244B (ja)
TW (1) TWI478888B (ja)
WO (1) WO2010016214A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012022177A (ja) * 2010-07-15 2012-02-02 Toppan Printing Co Ltd カラーフィルタ用基板の再生処理システム
JPWO2014050700A1 (ja) * 2012-09-26 2016-08-22 大日本印刷株式会社 ガラス再生処理方法および再生ガラス基板とそれを用いたフォトマスクブランクスとフォトマスク

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102615083B (zh) * 2012-02-15 2016-05-04 深圳市华星光电技术有限公司 破片处理方法及用于该方法的破片处理袋
CN104280905B (zh) * 2014-09-29 2017-04-05 南京中电熊猫液晶材料科技有限公司 防结晶的tft‑lcd彩色滤光片返修设备
CN104375295A (zh) * 2014-11-25 2015-02-25 南京中电熊猫液晶材料科技有限公司 Tft-lcd彩色滤光片返修设备的风帘防结晶装置
CN105700207B (zh) * 2016-04-06 2019-10-18 深圳市华星光电技术有限公司 框胶固化率测试样品的制备方法及框胶固化率测试方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07230081A (ja) * 1994-02-17 1995-08-29 Toppan Printing Co Ltd ガラス基板の回収方法
JPH1149533A (ja) * 1997-07-29 1999-02-23 Arakawa Chem Ind Co Ltd カラーフィルタ用ガラス基板の再生方法
JP2002179438A (ja) * 2000-12-08 2002-06-26 The Inctec Inc 画素の剥離方法
JP2003279915A (ja) * 2002-01-16 2003-10-02 Nishiyama Stainless Chem Kk ガラス基板の再生方法
JP2004125950A (ja) * 2002-09-30 2004-04-22 Dainippon Printing Co Ltd カラーフィルター用ガラス基板の再生方法
JP2004186208A (ja) * 2002-11-29 2004-07-02 Se Techno Co Ltd 洗浄装置、洗浄方法及び半導体製造装置
JP2006154752A (ja) * 2004-11-02 2006-06-15 Shinryo Corp カラーフィルター用ガラス基板の再生方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3503129B2 (ja) * 1997-06-30 2004-03-02 荒川化学工業株式会社 カラーフィルタ層用剥離剤およびカラーフィルタ用ガラス基板の再生方法
JP2001091731A (ja) * 1999-09-27 2001-04-06 Ueyama Denki:Kk 樹脂遮光層を有するカラーフィルターガラス基板の再生方法
JP2001124913A (ja) * 1999-10-27 2001-05-11 Toray Ind Inc カラーフィルター用ガラス基板の再生方法
JP3589947B2 (ja) * 2000-05-24 2004-11-17 シャープ株式会社 廃液晶パネルの処理方法
JP2002159937A (ja) * 2000-11-28 2002-06-04 Kagawaken Sangyo Gijutsu Shinko Zaidan 液晶パネルガラスの回収方法及び回収装置
JP2005010816A (ja) * 2002-01-16 2005-01-13 Nishiyama Stainless Chem Kk ガラス基板の再生方法
JP2004238533A (ja) * 2003-02-06 2004-08-26 Nagase Chemtex Corp ポリイミド膜用剥離剤組成物
JP4144797B2 (ja) * 2003-07-17 2008-09-03 旭平硝子加工株式会社 ガラス基板から金属薄膜を剥離するシステム
KR100629416B1 (ko) * 2004-07-28 2006-09-28 주식회사 삼양이엠에스 레지스트 수계 박리액 조성물
CN1808187A (zh) * 2004-11-02 2006-07-26 株式会社新菱 滤色器用玻璃基板的再生方法
KR20060062628A (ko) * 2004-12-04 2006-06-12 삼성테크윈 주식회사 포토 솔더 레지스트 평탄화 장치 및, 그것을 이용한 인쇄회로 기판 제조 방법
CN101191940A (zh) * 2006-11-22 2008-06-04 杨闳舜 玻璃基板重复使用的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07230081A (ja) * 1994-02-17 1995-08-29 Toppan Printing Co Ltd ガラス基板の回収方法
JPH1149533A (ja) * 1997-07-29 1999-02-23 Arakawa Chem Ind Co Ltd カラーフィルタ用ガラス基板の再生方法
JP2002179438A (ja) * 2000-12-08 2002-06-26 The Inctec Inc 画素の剥離方法
JP2003279915A (ja) * 2002-01-16 2003-10-02 Nishiyama Stainless Chem Kk ガラス基板の再生方法
JP2004125950A (ja) * 2002-09-30 2004-04-22 Dainippon Printing Co Ltd カラーフィルター用ガラス基板の再生方法
JP2004186208A (ja) * 2002-11-29 2004-07-02 Se Techno Co Ltd 洗浄装置、洗浄方法及び半導体製造装置
JP2006154752A (ja) * 2004-11-02 2006-06-15 Shinryo Corp カラーフィルター用ガラス基板の再生方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012022177A (ja) * 2010-07-15 2012-02-02 Toppan Printing Co Ltd カラーフィルタ用基板の再生処理システム
JPWO2014050700A1 (ja) * 2012-09-26 2016-08-22 大日本印刷株式会社 ガラス再生処理方法および再生ガラス基板とそれを用いたフォトマスクブランクスとフォトマスク

Also Published As

Publication number Publication date
CN102112244B (zh) 2013-04-17
JP5299428B2 (ja) 2013-09-25
JPWO2010016214A1 (ja) 2012-01-12
KR20110019439A (ko) 2011-02-25
TW201012772A (en) 2010-04-01
TWI478888B (zh) 2015-04-01
CN102112244A (zh) 2011-06-29
KR101243545B1 (ko) 2013-03-20

Similar Documents

Publication Publication Date Title
JP5299428B2 (ja) ガラス基板再生装置
JP5728538B2 (ja) カラーフィルタ用ガラスシートの製造方法、カラーフィルタパネルの製造方法、および、ディスプレイ用ガラス基板
JP5251582B2 (ja) カラーフィルタ用ガラス基板の再生装置
JP2006154752A (ja) カラーフィルター用ガラス基板の再生方法
JP2011022313A (ja) ガラス基板再生装置
JP4031629B2 (ja) 基材洗浄装置およびその方法
KR101252481B1 (ko) 세정장치를 구비한 인-라인 현상장비 및 이를 이용한 액정표시장치의 제조방법
KR101848983B1 (ko) 유리 재생 처리 방법 및 재생 유리 기판과 그것을 사용한 포토마스크 블랭크와 포토마스크
JP2011224512A (ja) 搬送ローラ自動洗浄装置
JP5104605B2 (ja) カラーフィルタ用ガラス基板の再生方法
JP2010256686A (ja) カラーフィルタ基板用ガラス基板再生装置及び再生方法
CN216351768U (zh) 一种基于回收处理的再生光刻掩膜版
JP3040055B2 (ja) 感光性樹脂の現像方法
JP2011013529A (ja) エッチング液の管理方法、及びガラス基板再生装置
KR100724614B1 (ko) 글라스 표면의 이질층 초기 박리장치
JP2011141319A (ja) カラーフィルタ基板用ガラス基板再生装置及び再生方法
US20050247807A1 (en) System for automatically recycling flat glass from workpiece and method of the same
CN114885510A (zh) 一种减少铜面油墨黑点污染的方法
JP2010262019A (ja) カラーフィルタ基板用ガラス基板再生装置及び再生方法
JP2011123155A (ja) カラーフィルタ基板の再生処理システム
JP2013113887A (ja) カラーフィルタ用ガラス板の再生方法及び再生装置
KR20080062920A (ko) 기판 세정장치 및 이를 이용한 기판 세정방법
JPH09274854A (ja) シャドウマスクの製造方法
JP2011081116A (ja) カラーフィルタの製造方法及び製造装置
KR20060092554A (ko) 액정 표시 장치용 세정장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980130832.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804701

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010523741

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117001385

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09804701

Country of ref document: EP

Kind code of ref document: A1