WO2010013502A1 - 不飽和ポリエステル樹脂とミクロフィブリル化植物繊維を含有する成形材料 - Google Patents

不飽和ポリエステル樹脂とミクロフィブリル化植物繊維を含有する成形材料 Download PDF

Info

Publication number
WO2010013502A1
WO2010013502A1 PCT/JP2009/051693 JP2009051693W WO2010013502A1 WO 2010013502 A1 WO2010013502 A1 WO 2010013502A1 JP 2009051693 W JP2009051693 W JP 2009051693W WO 2010013502 A1 WO2010013502 A1 WO 2010013502A1
Authority
WO
WIPO (PCT)
Prior art keywords
unsaturated polyester
polyester resin
molding material
fiber
plant fiber
Prior art date
Application number
PCT/JP2009/051693
Other languages
English (en)
French (fr)
Inventor
矢野 浩之
佐藤 明弘
アントニオ ノリオ ナカガイト
文明 中坪
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to US12/737,562 priority Critical patent/US8877841B2/en
Priority to CN2009801298960A priority patent/CN102112509B/zh
Priority to EP09802747.7A priority patent/EP2308907B1/en
Priority to JP2010522636A priority patent/JP5531295B2/ja
Priority to KR1020117004665A priority patent/KR101415099B1/ko
Publication of WO2010013502A1 publication Critical patent/WO2010013502A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/06Unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/06Unsaturated polyesters

Definitions

  • the present invention relates to a molding material containing an unsaturated polyester resin and microfibrillated plant fibers.
  • reinforcing materials such as particles and fibers are used.
  • fiber reinforcing materials glass fibers, carbon fibers, ceramic fibers, silicon carbide fibers, metal fibers, boron fibers, and the like; whiskers such as metals, ceramics, and polymer compounds; vegetable fibers such as pulp; synthetic fibers Etc. are used for general purposes.
  • microfibrillated cellulose has attracted attention among plant fibers.
  • Microfibrillated cellulose is a generic term for fibrous cellulose having a micro-unit fiber diameter, and the raw material derived from it is not limited to pulp, but includes various plants and microorganisms. There are various forms depending on the treatment method or chemical treatment method. As a specific example in which this microfibrillated cellulose is used as a fibrous reinforcing material for a thermosetting resin, an example in which it is blended with a phenol resin or a bisphenol A type epoxy resin is known.
  • an outer plate member and a sliding member obtained by forming a mixture obtained by mixing and stirring 20% by weight of microfibrillated cellulose “Cerish” (Daicel Chemical Industries, Ltd.) and 80% by weight of a phenol resin are known (See Patent Documents 1 and 2).
  • This “Serisch” is made from cotton linter and other raw materials, and is highly cracked and refined by applying high shearing force and high impact force.
  • the average fiber diameter is 3 ⁇ m or less (0.01-3 ⁇ m), and the average fiber It is a microfibrillated cellulose having a length of 5 to 3000 ⁇ m and a specific surface area of 50 to 300 m 2 / g (Patent Document 3).
  • Patent Document 4 a composite obtained by impregnating a bisphenol A type epoxy resin into a non-woven fabric made of microfilbrylated cellulose having a maximum fiber diameter of 1500 nm or less and then thermosetting with a hot press.
  • Patent Document 4 a composite obtained by impregnating a bisphenol A type epoxy resin into a non-woven fabric made of microfilbrylated cellulose having a maximum fiber diameter of 1500 nm or less and then thermosetting with a hot press.
  • Patent Document 4 In order to maintain the transparency of the bisphenol A type epoxy resin to be blended, the microfibrillated cellulose is subjected to a refining treatment about 20 times using a cotton linter using a high-pressure homogenizer or an ultra-high pressure homogenizer. It is a thing.
  • Patent Document 5 A part of the present inventors, produced a laminate from cellulose microfibril suspension, impregnated with a phenol resin, and heated and pressed in a mold to produce a composite.
  • Yano et al. (1) impregnated a sheet of microfibrillated cellulose derived from bacterial cellulose (BC) with a phenol resin and air-dried for several hours to obtain a highly transparent member. After being laminated, the resin composite sheet is manufactured by thermosetting with a hot press (Patent Documents 6 to 8). And (2) impregnating a UV-curable acrylic resin monomer liquid (TCDMA) into the BC-derived microfibrillated cellulose or pulp-derived microfibrillated cellulose sheet, and then UV-curing the resin composite sheet. (Patent Documents 9 to 11).
  • TCDMA UV-curable acrylic resin monomer liquid
  • BC having a small fiber diameter is originally used, or a pulp is subjected to a high-pressure homogenizer treatment and then subjected to a grinder treatment 30 times.
  • fibrillated cellulose having a fiber diameter of nano-order and high specific surface area is characterized by using fibrillated cellulose having a fiber diameter of nano-order and high specific surface area.
  • a filler, a curing agent, a release agent, a pigment, a thickener and the like are added to an unsaturated polyester resin to obtain a resin composition.
  • the resin composition is impregnated into a reinforcing fiber material such as glass fiber to form a sheet.
  • unsaturated polyester resin molding materials formed in bulk are called sheet molding compound (SMC), bulk molding compound (BMC), etc., mainly compression molded, and housing equipment, industrial parts, automobile parts, etc. Widely used in
  • microfibrillated plant fibers impart mechanical strength by being blended with phenol resin or epoxy resin.
  • a molding pressure as high as several tens of MPa is usually required.
  • two or more sheet-shaped resin materials containing microfibrillated plant fibers are stacked and compressed into one molded body, each sheet-shaped resin material becomes one molded body when the pressure is low. It had the problem of not becoming.
  • microfibrillated cellulose as a fibrous reinforcing material as described above and blended with a thermosetting resin or UV cross-linked resin
  • thermosetting resin or UV cross-linked resin examples include phenol resin, bisphenol A type epoxy resin and TCDDMA (tricyclodecane diacrylate). Only known, and an example blended with an unsaturated polyester resin was not specifically known.
  • a fibrous reinforcing material when added to a curable resin such as a phenolic resin and cured, in order to improve the impregnation property, the resin is heat-melted and then impregnated into the fibrous reinforcing material.
  • a method in which a fibrous solution is impregnated with a resin solution dissolved in a solvent and the solvent is evaporated and then cured is used.
  • unsaturated polyester resin is a liquid resin, these methods cannot be used.
  • the liquid resin flows in the middle of the mold clamping, so that pressure cannot be applied like hydrostatic pressure.
  • the compatibility between the resin and the microfibrillated cellulose is poor, there is a problem peculiar to the unsaturated polyester in that the molding pressure is biased and uniform molding becomes difficult and the mechanical strength is lowered.
  • the unsaturated polyester resin is simply blended with the microfibrillated cellulose described in Patent Documents 1 to 13 because the compatibility between the highly hydrophobic unsaturated polyester resin and the highly hydrophilic microfibrillated cellulose is low. Even so, it was unclear whether it was excellent in compatibility with microfibrillated cellulose. Therefore, whether or not a molding material excellent in moldability can be obtained even if an unsaturated polyester resin is blended with the microfibrillated cellulose described in Patent Documents 1 to 13 above, and the obtained molded article is also an excellent machine. It was not clear whether it had strength. In fact, the microfibrillated cellulose described in Patent Documents 1 to 13 described above does not necessarily provide a molding material having excellent moldability, and as a result, a molded article having excellent mechanical strength can be obtained. There wasn't.
  • the problem to be solved by the first embodiment of the present invention is to provide excellent mechanical strength to the obtained molded article while providing excellent moldability to the unsaturated polyester resin. It is an object of the present invention to provide an unsaturated polyester molding material capable of being molded, a molded body obtained by molding the molding material, and a method for producing the molding material.
  • the second embodiment of the present invention has an object to provide a method for producing an unsaturated polyester resin molded article containing microfibrillated plant fibers at a low molding pressure.
  • the present inventor imparts excellent mechanical strength to the obtained molded article while imparting excellent moldability to the unsaturated polyester resin.
  • a microfibrillated plant fiber hereinafter referred to as microfibrillated plant fiber
  • the microfibrillated plant fiber contains hemicellulose, and It was found that it is important that the specific surface area of the microfibrillated plant fiber is within a specific range.
  • the molded object obtained by the manufacturing method of this invention is excellent in mechanical strength.
  • the first embodiment of the present invention has been completed based on such findings and further investigation. That is, the first embodiment of the present invention provides the molding material shown in the following items 1 to 7, a method for producing the molding material, and a molded body obtained by curing the molding material.
  • Item 1 Molding material containing unsaturated polyester resin and microfibrillated plant fiber, wherein the microfibrillated plant fiber contains cellulose and hemicellulose, and the specific surface area of the microfibrillated plant fiber is 5 to 20 m 2 / g material.
  • Item 2. The molding material according to Item 1, wherein hemicellulose is contained in an amount of 5 to 30% by weight in the total amount of hemicellulose and cellulose.
  • Item 3. Item 3.
  • the molding material according to Item 1 or 2 wherein the content of the unsaturated polyester resin contained in the molding material is 3 to 95% by weight.
  • Item 4. Item 4.
  • Item 5. A molded body obtained by curing the molding material according to any one of Items 1 to 4.
  • Item 6. A method for producing a molding material comprising an unsaturated polyester resin and a microfibrillated plant fiber, comprising a cellulose and a hemicellulose and having a specific surface area of 5 to 20 m 2 / g and an unsaturated polyester resin And a method for producing a molding material.
  • a method for producing a molding material comprising an unsaturated polyester resin and a microfibrillated plant fiber, comprising a cellulose and hemicellulose, and a microfibrillated plant fiber sheet having a specific surface area of 5 to 20 m 2 / g
  • a method for producing a molding material which comprises impregnating an unsaturated polyester resin.
  • the inventor can compress and cure a molding material containing microfibrillated plant fibers and an unsaturated polyester resin, so that an unsaturated polyester resin molded body containing microfibrillated plant fibers can be obtained even at a low molding pressure. It was found that it can be obtained.
  • the second embodiment of the present invention has been completed through further studies based on such knowledge. That is, the second embodiment of the present invention provides a method for producing an unsaturated polyester resin molded article according to Items 8 to 12.
  • Item 8 A method for producing an unsaturated polyester resin molded article, comprising: molding a molding material containing an unsaturated polyester resin and a fibrillated plant fiber at a pressure of 0.1 to 100 MPa. Production method.
  • Item 9. Item 9. The method for producing an unsaturated polyester resin molded article according to Item 8, wherein the content of the unsaturated polyester resin contained in the molding material is 3 to 95% by weight.
  • Item 10. Item 10. The method for producing an unsaturated polyester resin molded article according to Item 8 or 9, wherein the fibrillated plant fiber has a specific surface area of 5 to 20 m 2 / g.
  • Item 11. Item 11.
  • the molding material is a molding material containing an unsaturated polyester resin and a microfibrillated plant fiber, and the microfibrillated plant fiber Is characterized in that it contains hemicellulose and the microfibrillated plant fiber has a specific surface area of 5 to 20 m 2 / g.
  • the microfibrillated plant fiber used in the first embodiment of the present invention contains hemicellulose.
  • the content of hemicellulose in the microfibrillated plant fiber is not particularly limited as long as it does not impair the effects of the present invention. Usually, the presence thereof can be confirmed, but preferably the microfibrillated plant fiber
  • the lower limit is preferably about 5% by weight, more preferably about 8% by weight, and even more preferably about 11% by weight, while the upper limit is 30% with respect to the total content of hemicellulose.
  • % Preferably about 20% by weight, more preferably about 17% by weight.
  • the type of hemicellulose in the microfibrillated plant fiber is not particularly limited, and specific examples include polysaccharides such as glucomannan, glucuronoxylan, and arabinoglucuronoxylan.
  • the microfibrillated plant fiber used in the first embodiment of the present invention is obtained by defibrating a cellulose fiber-containing material containing hemicellulose.
  • a cellulose fiber-containing material containing hemicellulose In order to adjust the content of hemicellulose, depending on the type of the cellulose fiber-containing material that is the raw material, the application of the molding material, the processing method, etc., it cannot be said unconditionally.
  • a solution containing hemicellulose such as an alkaline extract of plant fibers, to the microfibrillated plant fibers. From the viewpoint of productivity, it is preferable to use a fiber obtained by defibrating a cellulose fiber-containing material having a hemicellulose content in the above range as a microfibrillated plant fiber.
  • the alkaline solution treatment may be carried out by a known and conventional method using an alkali such as sodium hydroxide, potassium hydroxide, or aqueous ammonia as long as the cellulose crystal form is not changed.
  • an alkali such as sodium hydroxide, potassium hydroxide, or aqueous ammonia
  • sodium hydroxide when sodium hydroxide is used, it is treated at a concentration of about 10% or less, preferably 3 to 5%, at room temperature or less for 12 to 24 hours, so that the hemicellulose content in the microfibrillated plant fiber is as described above. What is necessary is just to make it fit in the range.
  • hemicelluloses associate with cellulose through hydrogen bonding in plants to form cell walls.
  • hemicellulose has an effect of reinforcing the bond strength between fibers of the fiber assembly of fibrillated plant fibers by this hydrogen bonding ability, resulting in a molded product. It is thought that it contributes to the improvement of strength. For this reason, the presence of hemicellulose in the microfibrillated plant fiber is preferred.
  • the resin ratio content of unsaturated polyester resin contained in the molding material
  • the resin ratio in the molded product tends to be low. Therefore, by setting the hemicellulose content in the microfibrillated plant fiber within the above range, the impregnation property with the unsaturated polyester is improved, and the optimum resin ratio can be achieved, so that the compounding and moldability are further improved. As a result, it is preferable because a molded body having higher mechanical strength can be obtained.
  • the numerical value of the hemicellulose content may be appropriately set within the above range according to the mechanical properties required when the molded body is obtained.
  • cellulose fiber-containing material known and conventional materials can be used as long as they contain hemicellulose.
  • plant materials more specifically, wood, bamboo, hemp, jute, kenaf, cotton, beet, Agricultural wastes, cloths, and pulps obtained from these plant materials can be mentioned.
  • the pulps can be mentioned as preferred raw materials.
  • the pulp includes chemical pulp (kraft pulp (KP), sulfite pulp (SP)), semi-chemical pulp (SCP) obtained by pulping plant raw materials chemically or mechanically, or a combination of both. ), Semi-ground pulp (CGP), chemimechanical pulp (CMP), groundwood pulp (GP), refiner mechanical pulp (RMP), thermomechanical pulp (TMP), chemithermomechanical pulp (CTMP), and these plant fibers Preferred examples include deinked waste paper pulp, corrugated waste paper pulp, and magazine waste paper pulp as the main component. These raw materials can be delignified or bleached as necessary to adjust the amount of lignin in the plant fiber. The delignification or bleaching step may be performed before defibration or after defibration.
  • NUKP coniferous unbleached kraft pulps
  • NOKPs softwood oxygen-bleached unbleached kraft pulps
  • NBKP microfibrillated plant fibers produced by defibrating conifer bleached kraft pulp
  • microfibrillated plant fiber used in the first embodiment of the present invention is preferably obtained by defibrating pulp having a hemicellulose content in the above preferred range.
  • the hemicellulose content in the microfibrillated plant fiber is the content (%) of the hemicellulose content (weight) in the total amount (weight) of hemicellulose and cellulose contained in the microfibrillated plant fiber ( (% By weight).
  • the specific surface area of the microfibrillated plant fiber used in the first embodiment of the present invention has a lower limit of 5 m 2 / g, preferably 7 m 2 / g, more preferably 9 m 2 / g, while the upper limit.
  • the value is 20 m 2 / g, preferably 18 m 2 / g, more preferably 16 m 2 / g.
  • the microfibrillated plant fiber is within the above range, as the specific surface area increases, many entanglements and hydrogen bonds between the plant fibers are generated, and as a result, a high-strength shaped product can be obtained.
  • the specific surface area is larger than 20 m 2 / g, the strength of the molded body is reduced, or interface peeling occurs in the molded body and a predetermined mechanical strength cannot be obtained.
  • productivity and moldability may be lowered, for example, it takes much time for dehydration and drying to obtain a fiber assembly of fibrillated plant fibers before obtaining a composite material with a resin.
  • the specific surface area exceeds 20 m 2 / g, the mechanical strength of the molded body may be lowered even if the resin ratio in the molded body is appropriate.
  • the specific surface area of microfibrillated plant fibers should be adjusted to 5 ⁇ 20m 2 / g, molded bodies having excellent mechanical strength within the above range can be obtained, inter alia 7 ⁇ 18m 2 / g approximately, in particular A molded article having particularly excellent mechanical strength can be obtained within a range of about 9 to 16 m 2 / g.
  • the numerical value of the specific surface area may be appropriately set within the above range according to the mechanical properties required when the molded body is obtained.
  • the specific surface area of the microfibrillated plant fiber is preferably adjusted within the above range by appropriately adjusting the raw material hemicellulose fiber-containing material by a known and conventional defibrating method.
  • the cellulose fiber-containing material is defibrated by, for example, suspending the cellulose fiber-containing material in water and stirring it into a slurry, which is mechanically ground by a refiner, a high-pressure homogenizer, a grinder, a twin-screw kneader, or the like.
  • a method of defibration by crushing or beating is mentioned. If necessary, it is preferable to perform a combination of the above-described defibrating methods such as performing a twin-screw kneader process after the refiner process.
  • the microfibrillated plant fiber may be obtained by treating a cellulose fiber-containing material with an alkali solution such as an alkali hydroxide aqueous solution or ammonia water.
  • an alkali solution such as an alkali hydroxide aqueous solution or ammonia water.
  • the microfibrillated plant fiber is formed into a shape (for example, powder, fiber, sheet, etc.) in which the cellulose fiber-containing material can be efficiently treated with a refiner or the like, and then treated with the alkali solution.
  • the treated product may be obtained by defibrating treatment with a biaxial kneader or the like, or after performing defibrating treatment with a refiner treatment, a high-pressure homogenizer treatment, a grinder treatment, a biaxial kneader, or the like, It may be obtained by treating with an alkaline solution.
  • the microfibrillated plant fiber in the first embodiment of the present invention is usually prepared by preparing a water dispersion in which the microfibrillated plant fiber is dispersed in water, and then performing a dehydration step such as filtration or pressing or a drying step. It is obtained through.
  • the molding material in the present invention is usually obtained by mixing a resin with the microfibrillated plant fiber.
  • the specific surface area used in the present invention is a value measured by a BET method using N 2 gas for a sample obtained by drying an aqueous dispersion of microfibrillated plant fibers as described in detail in Examples. Shall be used.
  • distilled water was added to the microfibrillated plant fiber so as to have a solid content of 10% by weight, and these were freeze-dried and then dried (pre-treatment) for 30 minutes under heating at 100 ° C.
  • the surface area was measured with gas (N 2 30%, He 70%), and the specific surface area was calculated.
  • the fiber diameter of the microfibrillated plant fiber used in the first embodiment of the present invention is not particularly limited as long as the effects of the present invention can be obtained.
  • the average fiber diameter is 4 nm to 400 nm. It is preferably 4 nm to 200 nm, more preferably 4 nm to 100 nm.
  • the fiber length is not particularly limited as long as the effects of the present invention can be obtained.
  • the average fiber length is preferably 50 nm to 50 ⁇ m, and more preferably 100 nm to 10 ⁇ m.
  • the microfibrillated plant fiber used in the first embodiment of the present invention usually has a shape of a fiber aggregate in which fibers or fiber-like materials are entangled into a united state by defibrating treatment.
  • the size of the aggregate itself is not particularly limited, and various sizes can be used.
  • the lignin content in the microfibrillated plant fiber is usually about 2 to 70% by weight, preferably about 5 to 70% by weight. Since the unsaturated polyester resin is a hydrophobic resin, it may be preferable in terms of resin impregnation properties and the like when the surface of the microfibrillated plant fiber is covered with a hydrophobic lignin.
  • the lignin content in the microfibrillated plant fiber is a value obtained by measurement according to the method described in Examples below.
  • the unsaturated polyester resin used in the first embodiment of the present invention a commonly used unsaturated polyester resin may be used.
  • a dibasic acid ( ⁇ , ⁇ -unsaturated) containing an unsaturated dibasic acid may be used.
  • a liquid resin in which an unsaturated polyester having an ester bond and an unsaturated bond in the main chain is dissolved in a vinyl monomer that functions as a crosslink, obtained by a polycondensation reaction between a dibasic acid and the like and a polyhydric alcohol In the present invention, known additives such as a polymerization inhibitor, a curing accelerator and a crosslinking agent may be further contained.
  • the unsaturated polyester resin is cured by adding a curing agent and heating.
  • Examples of the ⁇ , ⁇ -unsaturated dibasic acid used in preparing the unsaturated polyester resin include maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride and the like.
  • the saturated dibasic acids include phthalic acid, phthalic anhydride, halogenated phthalic anhydride, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, tetrahydrophthalic anhydride, hexahydrophthalic acid, hexahydrophthalic anhydride, hexahydroterephthalic acid.
  • Acid hexahydroisophthalic acid, succinic acid, malonic acid, glutaric acid, adipic acid, sebacic acid, 1,12-dodecanedioic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 2,3- Examples thereof include naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid anhydride, 4,4′-biphenyldicarboxylic acid, and dialkyl esters thereof. These may be used alone or in combination of two or more.
  • polyhydric alcohols include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, 2-methyl- 1,3-propanediol, 1,3-butanediol, neopentyl glycol, hydrogenated bisphenol A, 1,4-butanediol, bisphenol A and an adduct of propylene oxide or ethylene oxide 1,2,3,4-tetrahydroxybutane, glycerin, trimethylolpropane, 1,3-propanediol, 1,2-cyclohexane glycol, 1,3-cyclohexane glycol, 1,4- Cyclohexane glycol, 1,4-cyclohexanedimethanol, paraxylene glycol, bicycl Hexyl-4,4' Geo - le, 2,6-decalin glycolate - le, 2,7-decalin glyco - can be exemplified Le
  • vinyl monomer examples include styrene, vinyl toluene, chlorostyrene, diallyl phthalate, triallyl cyanurate, and methyl methacrylate. You may use these individually or in combination of 2 or more types.
  • polymerization inhibitor examples include trihydrobenzene, toluhydroquinone, 14-naphthoquinone, parabenzoquinone, hydroquinone, benzoquinone, hydroquinone monomethyl ether, p-tert-butylcatechol, 2,6-di-tert-butyl-4-methylphenol. Etc.
  • a polymerization inhibitor it is preferable to add about 10 to 1000 ppm of these polymerization inhibitors to the resin composition. You may use these individually or in combination of 2 or more types.
  • curing accelerator examples include metal soaps such as cobalt naphthenate, cobalt octylate, zinc octylate, vanadium octylate, copper naphthenate, barium naphthenate, vanadium acetyl acetate, cobalt acetyl acetate, iron acetylacetonate, and the like.
  • metal soaps such as cobalt naphthenate, cobalt octylate, zinc octylate, vanadium octylate, copper naphthenate, barium naphthenate, vanadium acetyl acetate, cobalt acetyl acetate, iron acetylacetonate, and the like.
  • crosslinking agent examples include polyfunctional vinyl monomers other than the vinyl monomers, such as divinylbenzene and polyfunctional (meth) acrylates. You may use these individually or in combination of 2 or more types.
  • the unsaturated polyester resin in the first embodiment of the present invention includes various additives such as curing agents, waxes, mold release agents, ultraviolet absorbers, pigments, anti-aging agents, plasticizers, flame retardants, and stabilizers. Agents, antifoaming agents, leveling agents, silane coupling agents and the like may be used.
  • the curing agent examples include organic peroxides. Specifically, known and publicly used ones such as methyl ethyl ketone peroxide, acetylacetone peroxide, cyclohexanone peroxide, and benzoyl peroxide are used.
  • the addition amount of the curing agent is preferably about 0.5 to 3 parts by weight with respect to 100 parts by weight of the total amount of unsaturated polyester resin.
  • waxes examples include paraffin wax, polyethylene wax, higher fatty acids such as stearic acid and 1,2-hydroxystearic acid, and paraffin wax is preferably used.
  • pigments examples include inorganic pigments such as titanium white and carbon black, and organic pigments such as phthalocyanine blue and quinacridone red, and various colorants can be used depending on the hue.
  • the molding material in the first embodiment of the present invention contains the unsaturated polyester resin and the fibrillated plant fiber as essential components.
  • the content (resin ratio) of the unsaturated polyester resin in the molding material is usually about 3 to 95% by weight, preferably about 10 to 90% by weight.
  • the resin ratio may be appropriately adjusted by balancing the mechanical strength required according to the use of the molded body and other general characteristics.
  • the molding material in the first embodiment of the present invention may contain other components as necessary in addition to the unsaturated polyester resin and the fibrillated plant fiber.
  • Other components include, in addition to the polymerization inhibitors, curing accelerators, curing agents, various additives, for example, starches, polysaccharides such as alginic acid, natural proteins such as gelatin, glue, casein, ceramics, and metal powder.
  • Inorganic compounds such as coloring agents, plasticizers, fragrances, pigments, flow regulators, leveling agents, conductive agents, antistatic agents, ultraviolet absorbers, ultraviolet dispersants, deodorants and the like.
  • a method for producing a molding material containing an unsaturated polyester resin and microfibrillated plant fibers according to the first embodiment of the present invention includes cellulose and hemicellulose and has a specific surface area. It is characterized by mixing microfibrillated plant fibers of 5 to 20 m 2 / g and unsaturated polyester resin.
  • the molding material in the first embodiment of the present invention is obtained by mixing the unsaturated polyester resin, the fibrillated plant fiber, and other components added as necessary.
  • the mixing method of these components is not particularly limited.
  • a fiber aggregate of fibrillated plant fibers is impregnated with an unsaturated polyester resin, or a fiber aggregate of fibrillated plant fibers and an unsaturated polyester resin are kneaded. A method is mentioned.
  • the form of the fiber assembly of the fibrillated plant fiber is not particularly limited.
  • the dispersion of the fibrillated plant fiber is filtered with a wire or mesh and then dried, and then applied to a sheet or a wire substrate. After that, it is put into a film obtained by drying, a mold or the like, and then demolded by pressing or heating, or a powder obtained by pulverizing them. It ’s fine.
  • the fiber aggregates of the fibrillated plant fibers in a water-containing state were washed with a solvent several times before obtaining the fiber aggregates of the above fibrillated plant fibers within a range that does not adversely affect productivity, energy consumption, etc. Thereafter, the fiber aggregate of fibrillated plant fibers may be obtained by drying, or the fiber aggregate of fibrillated plant fibers may be obtained by freeze-drying the fiber aggregate in a hydrated state.
  • a sheet-shaped molding material can be obtained.
  • the thickness of the fiber aggregate is usually about 10 to 500 ⁇ m, preferably about 50 to 300 ⁇ m. If the sheet-like material is too thin, the strength and the like may be reduced, and if the sheet-like material is too thick, it may take time to combine with the resin.
  • the impregnation method may be appropriately selected depending on the shape of the fiber assembly of the fibrillated plant fiber, and examples thereof include a method of immersing an unsaturated polyester resin in the fiber assembly of the fibrillated plant fiber. Immersion is performed under normal pressure or reduced pressure.
  • the molding material When the molding material is a sheet, it can be used by stacking the required number.
  • the thickness of the sheet-shaped molding material may be appropriately adjusted according to the intended use of the molded article, and is not particularly limited, but is usually about 10 ⁇ m to 10 cm.
  • the fiber assembly of fibrillated plant fibers is impregnated with unsaturated polyester resin and other components as required, hemicellulose is contained in the microfibrillated plant fibers, and the specific surface area of the microfibrillated plant fibers is in the above range. If it is inside, the degree of impregnation of unsaturated polyester resin into the fiber aggregate (particularly sheet-like material) of fibrillated plant fibers is good, excellent in moldability, and excellent in mechanical strength after curing the molding material. A molded body is obtained.
  • the shape of the molding material in the first embodiment of the present invention may be appropriately selected according to the ease of molding and processing, the shape of the target molded body, the mechanical strength, and the like.
  • the molded body according to the first embodiment of the present invention is obtained by curing the molding material.
  • a method for curing the molding material any of the same methods as those for molding a normal thermoplastic resin composition can be applied.
  • mold molding, injection molding, extrusion molding, hollow molding, foam molding, etc. can be adopted.
  • the molded body of the present invention is preferably obtained by curing the molding material by heat compression.
  • the heating temperature and pressure may be appropriately selected according to the composition and shape of the molding material.
  • the heating temperature for curing the molding material is usually about 60 to 150 ° C., preferably about 80 to 130 ° C.
  • the pressure at which the molding material is cured is about 0.1 to 100 MPa, preferably about 0.2 to 10 MPa, more preferably about 0.5 to 5 MPa.
  • the heat compression time may be appropriately selected according to the heating temperature, pressure, etc., and is usually about 3 minutes to 10 hours.
  • the molding material is in the form of a sheet
  • a method in which the molding material in the form of a sheet is placed in a mold and cured by heating and compression can be employed. Two or more sheet-shaped molding materials can be stacked and heated and compressed to obtain a single molded body.
  • the resin ratio (ratio of unsaturated polyester resin in the molded body) of the molded body in the first embodiment of the present invention is the adjustment of molding conditions such as pressing pressure and pressing time when producing the molding material, and microfibrillation
  • the content of hemicellulose in the plant fiber and the specific surface area of the microfibrillated plant fiber can be appropriately set by adjusting the content within the above range, and is usually about 3 to 95% by weight, preferably about 10 to 90% by weight. is there.
  • the density of the molded body in the first embodiment of the present invention varies depending on the type of microfibrillated plant fiber and unsaturated polyester resin used, the ratio of use, etc., but is usually 1.0 to 1.5 g / cm 3. Degree.
  • the density, bending elastic modulus, and bending strength of the molded product of the present invention are values measured by the methods described in the examples.
  • the molded body obtained by the first embodiment of the present invention has high mechanical strength, for example, conventionally, a microfibrillated plant fiber molded body or a microfibrillated plant fiber-containing resin molded body has been used. In addition to the field, it can also be used in fields that require higher mechanical strength (impact resistance, etc.) than conventional microfibrillated plant fiber molded products and microfibrillated plant fiber-containing resin molded products.
  • interior materials, exterior materials, structural materials, etc. for transportation equipment such as automobiles, trains, ships, airplanes, etc .
  • housings, structural materials, internal parts, etc. for electrical appliances such as personal computers, televisions, telephones, watches, etc .
  • the method for producing an unsaturated polyester resin molded body according to the second embodiment of the present invention is characterized by compression-molding a molding material containing an unsaturated polyester resin and fibrillated plant fibers at a pressure of 0.1 to 100 MPa. To do.
  • the molding material in the second embodiment of the present invention is a molding material containing an unsaturated polyester resin and microfibrillated plant fibers.
  • a method for producing microfibrillated cellulose is known, and in general, cellulose fiber-containing material is defibrated or refined by grinding and / or beating with a refiner, high-pressure homogenizer, medium stirring mill, stone mill, grinder or the like. And can be produced by a known method such as the method described in JP-A-2005-42283. Moreover, it can also manufacture using microorganisms (for example, acetic acid bacteria (Acetobacter)). Furthermore, commercially available products such as “Serish” (Daicel Chemical Industries, Ltd.) can also be used.
  • Cellulose fiber-containing materials are used for plants (for example, wood, bamboo, hemp, jute, kenaf, agricultural waste, cloth, pulp, recycled pulp, waste paper), animals (for example, ascidians), algae, microorganisms (for example, acetic acid bacteria (Acetobacter) )), And those originating from microbial products are known.
  • Examples of the method for defibrating the cellulose fiber-containing material include a method in which the cellulose fiber-containing material is suspended in water and stirred to form a slurry, which is defibrated using a high-pressure homogenizer, a twin-screw kneader, or the like. If necessary, a refiner treatment may be performed before the defibrating treatment with a high-pressure homogenizer, a twin-screw kneader or the like.
  • the microfibrillated plant fiber may be one obtained by treating a cellulose fiber-containing material with an alkaline solution such as an aqueous alkali hydroxide solution or aqueous ammonia.
  • an alkaline solution such as an aqueous alkali hydroxide solution or aqueous ammonia.
  • the microfibrillated plant fiber is formed into a shape (for example, powder, fiber, sheet, etc.) in which the cellulose fiber-containing material can be efficiently treated with a refiner or the like, and then treated with the alkali solution.
  • the treated product may be obtained by grinding and / or beating with a high-pressure homogenizer, twin-screw kneader, medium stirring mill, stone mill, grinder, etc., or after refiner treatment, the high-pressure homogenizer, twin-screw kneading. It may be obtained by an alkali solution treatment after performing a defibrating treatment by grinding and / or beating using a machine, a medium stirring mill, a stone mill, a grinder, or the like.
  • the fiber diameter of the microfibrillated plant fiber used in the second embodiment of the present invention is not particularly limited as long as the effect of the present invention is obtained.
  • the average fiber diameter is 4 nm to 400 nm. It is preferably 4 nm to 200 nm, more preferably 4 nm to 100 nm.
  • the fiber length is not particularly limited as long as the effects of the present invention can be obtained.
  • the average fiber length is preferably 50 nm to 50 ⁇ m, and more preferably 100 nm to 10 ⁇ m.
  • the microfibrillated plant fiber used in the second embodiment of the present invention usually has a shape of a fiber aggregate in which fibers or fibrous objects are entangled by a defibrating process to be in a united state.
  • the size of the aggregate itself is not particularly limited, and various sizes can be used.
  • the microfibrillated plant fiber when producing a molded article excellent in mechanical strength at a low temperature and at a lower molding pressure, contains hemicellulose. It is preferable to use a microfibrillated plant fiber containing a specific surface area of 5 to 20 m 2 / g.
  • preferred microfibrillated plant fibers contain hemicellulose.
  • the content of hemicellulose in the microfibrillated plant fiber is not particularly limited as long as the effect of the present invention is not impaired. Usually, the presence thereof can be confirmed, but the lower limit is preferably 5 wt. %, Preferably about 8% by weight, more preferably about 11% by weight, while the upper limit is preferably about 30% by weight, more preferably about 20% by weight, and further preferably about 17% by weight.
  • the type of hemicellulose in the microfibrillated plant fiber is not particularly limited, and specific examples include polysaccharides such as glucomannan, glucuronoxylan, and arabinoglucuronoxylan.
  • polysaccharides such as glucomannan, glucuronoxylan, and arabinoglucuronoxylan.
  • a solution containing hemicellulose such as an alkaline extract of plant fibers, to the microfibrillated plant fibers. From the viewpoint of productivity, it is preferable to use a microfibrillated plant fiber obtained by defibrating a cellulose fiber-containing material having a hemicellulose content within the above range.
  • the alkali solution treatment may be carried out by a known and conventional method using an alkali such as sodium hydroxide, potassium hydroxide, or aqueous ammonia as long as the cellulose crystal form is not changed.
  • an alkali such as sodium hydroxide, potassium hydroxide, or aqueous ammonia
  • the hemicellulose content in the microfibrillated plant fiber is controlled within the above range by treating it at a concentration of about 10% or less, preferably 3 to 5%, at room temperature or less for 12 to 24 hours. Just go inside.
  • these hemicelluloses associate with cellulose through hydrogen bonding to form a cell wall in the plant.
  • hemicellulose has an effect of reinforcing the bond strength between fibers of the fiber assembly of fibrillated plant fibers by this hydrogen bonding ability, resulting in a molded product. It is thought that it contributes to the improvement of strength. For this reason, the presence of hemicellulose in the microfibrillated plant fiber is preferred.
  • the resin ratio in the molded body (content of unsaturated polyester resin in the molding material) tends to be high.
  • the hemicellulose content is high, in the molded body The resin ratio tends to be low. Therefore, by setting the hemicellulose content in the microfibrillated plant fiber within the above range, the impregnation property with the unsaturated polyester is improved, and the optimum resin ratio can be achieved, so that the compounding and moldability are further improved. As a result, it is preferable because a molded body having higher mechanical strength can be obtained.
  • the numerical value of the hemicellulose content may be appropriately set within the above range according to the mechanical properties required when the molded body is obtained.
  • cellulose fiber-containing material known and conventional materials can be used as long as they contain hemicellulose.
  • plant materials more specifically, wood, bamboo, hemp, jute, kenaf, cotton, beet, Agricultural wastes, cloths, and pulps obtained from these plant materials can be mentioned.
  • the pulps can be mentioned as preferred raw materials.
  • the pulp includes chemical pulp (kraft pulp (KP), sulfite pulp (SP)), semi-chemical pulp (SCP) obtained by pulping plant raw materials chemically or mechanically, or a combination of both.
  • CGP Semi-ground pulp
  • CMP chemimechanical pulp
  • GP groundwood pulp
  • RMP refiner mechanical pulp
  • TMP thermomechanical pulp
  • CMP chemithermomechanical pulp
  • plant fibers thereof Preferred examples include deinked waste paper pulp, corrugated waste paper pulp, and magazine waste paper pulp.
  • These raw materials can be delignified or bleached as necessary to adjust the amount of lignin in the plant fiber.
  • the delignification or bleaching step may be performed before defibration or after defibration.
  • NUKP coniferous unbleached kraft pulps
  • NOKPs softwood oxygen-bleached unbleached kraft pulps
  • NBKP microfibrillated plant fibers produced by defibrating conifer bleached kraft pulp
  • microfibrillated plant fiber used in the second embodiment of the present invention is preferably obtained by defibrating pulp having a hemicellulose content within the above preferred range.
  • the hemicellulose content in the microfibrillated plant fiber is the content (%) of the hemicellulose content (weight) in the total amount (weight) of hemicellulose and cellulose contained in the microfibrillated plant fiber ( (% By weight).
  • the specific surface area of the preferred microfibrillated plant fiber used in the second embodiment of the present invention usually has a lower limit of 5 m 2 / g, preferably 7 m 2 / g, more preferably 9 m 2 / g, On the other hand, the upper limit is 20 m 2 / g, preferably 18m 2 / g, more preferably 16m 2 / g.
  • the microfibrillated plant fiber is within the above range, as the specific surface area increases, many entanglements and hydrogen bonds between the plant fibers are generated, and as a result, a high-strength shaped product can be obtained.
  • the specific surface area is larger than 20 m 2 / g, the strength of the molded body is reduced, or interface peeling occurs in the molded body and a predetermined mechanical strength cannot be obtained.
  • productivity and moldability may be lowered, for example, it takes more time for dehydration and drying to obtain a fiber assembly of fibrillated plant fibers before obtaining a composite material with a resin.
  • the specific surface area exceeds 20 m 2 / g, the mechanical strength of the molded body may be lowered even if the resin ratio in the molded body is appropriate.
  • the specific surface area of the microfibrillated plant fiber is preferably adjusted to 5 to 20 m 2 / g, and a molded article having excellent mechanical strength within the above range can be obtained.
  • a molded body having particularly excellent mechanical strength is obtained in the range of 18 m 2 / g, particularly 9 to 16 m 2 / g.
  • the numerical value of the specific surface area may be appropriately set within the above range according to the mechanical properties required when forming a molded body.
  • the specific surface area of the microfibrillated plant fiber is preferably adjusted within the above range by appropriately adjusting the raw material hemicellulose fiber-containing material by a known and conventional defibrating method.
  • the cellulose fiber-containing material is defibrated by, for example, suspending the cellulose fiber-containing material in water and stirring it into a slurry, which is mechanically ground by a refiner, a high-pressure homogenizer, a grinder, a twin-screw kneader, or the like.
  • a method of defibration by crushing or beating is mentioned. If necessary, it is preferable to perform a combination of the above-described defibrating methods such as performing a twin-screw kneader process after the refiner process.
  • the microfibrillated plant fiber may be obtained by treating a cellulose fiber-containing material with an alkali solution such as an alkali hydroxide aqueous solution or ammonia water.
  • an alkali solution such as an alkali hydroxide aqueous solution or ammonia water.
  • the microfibrillated plant fiber is formed into a shape (for example, powder, fiber, sheet, etc.) in which the cellulose fiber-containing material can be efficiently treated with a refiner or the like, and then treated with the alkali solution.
  • the treated product may be obtained by defibrating treatment with a biaxial kneader or the like, or after performing defibrating treatment with a refiner treatment, a high-pressure homogenizer treatment, a grinder treatment, a biaxial kneader, or the like, It may be obtained by treating with an alkaline solution.
  • the microfibrillated plant fiber in the second embodiment of the present invention is usually prepared by preparing a water dispersion in which the microfibrillated plant fiber is dispersed in water, and then performing a dehydration step such as filtration or pressing or a drying step. It is obtained through.
  • the molding material in the present invention is usually obtained by mixing a resin with the microfibrillated plant fiber.
  • the specific surface area used in the present invention is a value measured by a BET method using N 2 gas for a sample obtained by drying an aqueous dispersion of microfibrillated plant fibers as described in detail in Examples. Shall be used.
  • distilled water was added to the microfibrillated plant fiber so as to have a solid content of 10% by weight, and these were freeze-dried and then dried (pre-treatment) for 30 minutes under heating at 100 ° C.
  • the surface area was measured with gas (N 2 30%, He 70%), and the specific surface area was calculated.
  • the lignin content in the microfibrillated plant fiber is usually about 2 to 70% by weight, preferably about 5 to 70% by weight. Since the unsaturated polyester resin is a hydrophobic resin, it may be preferable in terms of resin impregnation properties and the like when the surface of the microfibrillated plant fiber is covered with a hydrophobic lignin.
  • the lignin content in the microfibrillated plant fiber is a value obtained by measurement according to the method described in Examples below.
  • the unsaturated polyester resin used in the second embodiment of the present invention is the same as the unsaturated polyester resin used in the first embodiment of the present invention, and is obtained by the same preparation method. .
  • the unsaturated polyester resin in the second embodiment includes various additives similar to those in the first embodiment, such as curing agents, waxes, mold release agents, ultraviolet absorbers, pigments, anti-aging agents, and plasticizers. Flame retardants, stabilizers, antifoaming agents, leveling agents, silane coupling agents and the like may be used.
  • the molding material used in the second embodiment of the present invention contains the unsaturated polyester resin and the fibrillated plant fiber as essential components.
  • the content (resin ratio) of the unsaturated polyester resin in the molding material is usually about 3 to 95% by weight, preferably about 10 to 90% by weight.
  • the resin ratio may be appropriately adjusted by balancing the mechanical strength required according to the use of the molded body and other general characteristics.
  • the molding material used in the second embodiment of the present invention may contain other components as needed in addition to the unsaturated polyester resin and the fibrillated plant fiber, as in the first embodiment.
  • Examples of other components include the same components as those in the first embodiment.
  • the molding material used in the second embodiment of the present invention mixes the unsaturated polyester resin, the fibrillated plant fiber, and other components added as necessary. Can be obtained.
  • the mixing method of these components is not particularly limited. For example, a fiber aggregate of fibrillated plant fibers is impregnated with an unsaturated polyester resin, or a fiber aggregate of fibrillated plant fibers and an unsaturated polyester resin are kneaded. A method is mentioned.
  • the form of the fiber assembly of the fibrillated plant fiber is not particularly limited.
  • the dispersion of the fibrillated plant fiber is filtered with a wire or mesh and then dried, and then applied to a sheet or a wire substrate. After that, it is put into a film obtained by drying, a mold or the like, and then demolded by pressing or heating, or a powder obtained by pulverizing them. It ’s fine.
  • the fiber aggregates of the fibrillated plant fibers in a water-containing state were washed with a solvent several times before obtaining the fiber aggregates of the above fibrillated plant fibers within a range that does not adversely affect productivity, energy consumption, etc. Thereafter, the fiber aggregate of fibrillated plant fibers may be obtained by drying, or the fiber aggregate of fibrillated plant fibers may be obtained by freeze-drying the fiber aggregate in a hydrated state.
  • a sheet-shaped molding material can be obtained.
  • the thickness of the fiber aggregate is usually about 10 to 500 ⁇ m, preferably about 50 to 300 ⁇ m. If the sheet-like material is too thin, the strength and the like may be reduced, and if the sheet-like material is too thick, it may take time to combine with the resin.
  • the impregnation method may be appropriately selected depending on the shape of the fiber assembly of the fibrillated plant fiber, and examples thereof include a method of immersing an unsaturated polyester resin in the fiber assembly of the fibrillated plant fiber. Immersion is performed under normal pressure or reduced pressure.
  • the molding material When the molding material is a sheet, it can be used by stacking the required number.
  • the thickness of the sheet-shaped molding material may be appropriately adjusted according to the intended use of the molded article, and is not particularly limited, but is usually about 10 ⁇ m to 10 cm.
  • the degree of impregnation of unsaturated polyester resin into the fiber aggregate (particularly sheet-like material) of fibrillated plant fibers is good, excellent in moldability, and excellent in mechanical strength after curing the molding material. Since a molded object is obtained, it is preferable.
  • the shape of the molding material used in the present invention may be appropriately selected according to the ease of molding and processing, the shape of the target molded body, the mechanical strength, and the like.
  • the molded body used in the second embodiment of the present invention is obtained by curing the molding material.
  • any of the same methods as those for molding a normal thermoplastic resin composition can be applied.
  • mold molding, injection molding, extrusion molding, hollow molding, foam molding, etc. can be adopted.
  • the molded body of the present invention is preferably obtained by curing the molding material by heat compression.
  • the heating temperature and pressure may be appropriately selected according to the composition and shape of the molding material.
  • the heating temperature for curing the molding material is usually about 60 to 150 ° C., preferably about 80 to 130 ° C.
  • the pressure at which the molding material is cured is about 0.1 to 100 MPa, preferably about 0.2 to 10 MPa, more preferably about 0.5 to 5 MPa.
  • the heat compression time may be appropriately selected according to the heating temperature, pressure, etc., and is usually about 3 minutes to 10 hours.
  • the molding material is in the form of a sheet
  • a method in which the molding material in the form of a sheet is placed in a mold and cured by heating and compression can be employed. Two or more sheet-shaped molding materials can be stacked and heated and compressed to obtain a single molded body.
  • the resin ratio (ratio of unsaturated polyester resin contained in the molded body) of the molded body in the second embodiment of the present invention is the adjustment of molding conditions such as pressing pressure and pressing time when producing the molding material, micro
  • the content of hemicellulose in the fibrillated plant fiber and the specific surface area of the microfibrillated plant fiber can be appropriately set by adjusting the content within the above range, and is usually about 3 to 95% by weight, preferably 10 to 90% by weight. Degree.
  • the density of the molded body in the second embodiment of the present invention varies depending on the type of microfibrillated plant fiber and unsaturated polyester resin used, the ratio of use, etc., but usually 1.0 to 1.5 g / cm 3. Degree.
  • the density, bending elastic modulus, and bending strength of the molded body are values measured by the methods described in the examples.
  • the molded body obtained in the second embodiment of the present invention has high mechanical strength, for example, conventionally, a microfibrillated plant fiber molded body or a microfibrillated plant fiber-containing resin molded body has been used. In addition to the field, it can also be used in fields that require higher mechanical strength (impact resistance, etc.) than conventional microfibrillated plant fiber molded products and microfibrillated plant fiber-containing resin molded products.
  • interior materials, exterior materials, structural materials, etc. for transportation equipment such as automobiles, trains, ships, airplanes, etc .
  • housings, structural materials, internal parts, etc. for electrical appliances such as personal computers, televisions, telephones, watches, etc .
  • the unsaturated polyester molding material of the present invention can be uniformly molded by mixing the microfibrillated plant fiber of the present invention with an unsaturated polyester resin. As a result, excellent mechanical strength can be imparted to the resulting molded body. Further, the unsaturated polyester molding material can be provided by the method for producing the molding material.
  • a target molded body can be obtained from a sheet-shaped molding material even at a low temperature and a low molding pressure.
  • the target molded body can be obtained from the sheet-shaped molding material even at a low molding pressure. There is an excellent effect.
  • the molded body obtained by the production method of the present invention can be effectively used in a field where high mechanical strength is required.
  • Production Example I-2 (NUKP refiner treatment once + biaxial defibration) A microfibrillated plant fiber (2) was obtained in the same manner as in Production Example I-1, except that the refiner treatment was performed only once.
  • Production Example I-3 (NOKP refiner treatment 4 times + 2-axis defibration) Microfibrils were prepared in the same manner as in Production Example I-1, except that unbleached kraft pulp (Oji Paper Co., Ltd.) (NOKP) was used instead of unbleached kraft pulp (NUKP) for papermaking. Chemical plant fiber (3) was obtained.
  • unbleached kraft pulp Oji Paper Co., Ltd.
  • NUKP unbleached kraft pulp
  • Production Example I-4 (NBKP (multiple hemicelluloses) refiner treatment 4 times + biaxial defibration) Microfibrillation was conducted in the same manner as in Production Example I-1, except that softwood bleached kraft pulp (Oji Paper Co., Ltd.) (“NBKP”) was used instead of unbleached kraft pulp (NUKP) for papermaking. A plant fiber (4) was obtained.
  • NNKP softwood bleached kraft pulp
  • NUKP unbleached kraft pulp
  • Production Example I-5 (NBKP (small hemicellulose) refiner treatment 4 times + biaxial defibration) 12 g of the microfibrillated plant fiber (4) produced in Production Example I-4 was dispersed in 1.2 L of 3% aqueous sodium hydroxide and stirred at room temperature for 24 hours. After completion of the reaction, suction filtration was performed, and the residue was sufficiently dispersed in 1 L of distilled water, and then the slurry was filtered again. This operation was repeated until the filtrate was completely neutral. After confirming that it was neutral, it was filtered again to obtain a defibrillated microfibrillated plant fiber (5).
  • NNKP small hemicellulose
  • Reference Production Example I-1 (Serish) Serisch (manufactured by Daicel Chemical Industries, Ltd., KY100G concentration 10%) was used as the microfibrillated plant fiber (7).
  • Reference production example I-2 NUKP refiner treatment once, no biaxial defibration NUKP for papermaking was suspended in water and stirred sufficiently to make a 4 wt% slurry, and then refiner treatment was performed once to obtain microfibrillated plant fibers (8).
  • Measurement Example I-1 Measurement of specific surface area
  • Distilled water was added to the microfibrillated plant fibers (1) to (9) to a solid content of 10% by weight, and these were freeze-dried.
  • Each obtained freeze-dried sample was made fine so as to enter the sample cell, and then subjected to a measuring apparatus.
  • a measuring apparatus a flow type specific surface area automatic measuring apparatus Flowsorb II 2300 (manufactured by Micromeritics) was used.
  • the sample was placed in a sample cell, dried (pretreatment) by flowing a mixed gas (N 2 30%, He 70%) at 100 ° C. for 30 minutes, and then subjected to the BET single point method (mixed gas (N 2 30%, He 70). %) After measurement, the amount of the sample in the cell was precisely weighed to calculate the specific surface area, and the results are shown in Table 1.
  • Measurement Example I-2 Measurement of lignin content
  • the Klason method sulfuric acid method
  • the wood-constituting polysaccharide was made water-soluble by acid hydrolysis, and lignin was separated and quantified as a water-insoluble substance by acid-catalyzed degeneracy reaction.
  • the measurement method will be described in detail.
  • Measurement Example I-3 Measurement of Hemicellulose Content
  • the alditol acetate method was applied. That is, the sample was acid hydrolyzed to reduce the released monosaccharide, and then the alditol produced was acetylated and quantified by gas chromatography. Details will be described below.
  • Freeze-dried microfibrillated plant fibers (1) to (9) are added to 30 mg each and added with 0.3 ml of 72% sulfuric acid, and left at 30 ° C. for 1 hour. Thereafter, 8.4 ml of water was added, and the mixture was heated in an autoclave at 120 ° C. for 1 hour. After adding 0.5 ml of 2% inositol to the reaction solution, the pH was adjusted to 5.5 to 5.8 using a saturated aqueous solution of Ba (OH) 2 . Subsequently, 2 ml of the supernatant was taken and sodium borohydride (NaBH 4 ) was added to reduce the monosaccharide in the aqueous solution to obtain alditol.
  • NaBH 4 sodium borohydride
  • Acetic anhydride (2 ml) and sulfuric acid (0.1 ml) were added to the produced alditol and acetylated, followed by quantitative analysis by gas chromatography (Shimadzu GC-18A, manufactured by Shimadzu Corporation).
  • the total weight of galactoglucomannan and xylan was defined as the hemicellulose weight, and the hemicellulose content (H (wt%)) in the total amount of cellulose, hemicellulose and lignin contained in the microfibrillated plant fiber was calculated.
  • H hemicellulose content
  • Examples I-1 to I-6 and Reference Examples I-1 to I-3 (Production of MFPF sheet and resin-impregnated composite) Water was added to the microfibrillated plant fibers (1) to (9) so that the solids would be 0.5% by weight, respectively, and stirred at high speed for 5 minutes with a mixer (“HX-V200” manufactured by Matsushita Electric Industrial Co., Ltd.). As a result, a microfibrillated plant fiber (MFP) aqueous dispersion was obtained.
  • MFP microfibrillated plant fiber
  • MFPF aqueous dispersion filter paper manufactured by Advantec Toyo Kaisha, Ltd.; 5A
  • a wet paper round basis weight 100 g / m 2 (radius 8 cm).
  • the wet paper was sandwiched between dry filter papers, and then a couch was performed using a metal roller for preliminary dehydration.
  • the wet paper was dried on a hot plate to prepare MFPF sheet materials (1) to (9).
  • the obtained MFPF sheet-like materials (1) to (9) were cut into a width of 30 mm mm ⁇ a length of 40 mm mm, dried at 105 ° C. for 2 hours, and the weight was measured.
  • 1 part by weight of benzoyl peroxide (“NIPER FF” manufactured by NOF Corporation) is added to 100 parts by weight of unsaturated polyester resin (“Sandoma FG-283” manufactured by DH Material Co., Ltd.) on the MFPF sheet. It was immersed in the added resin liquid. Immersion was performed under reduced pressure (degree of vacuum: 0.01 MPa, time: 0.5 h) to obtain unsaturated polyester resin-impregnated MFPF sheets (1) to (9).
  • the unsaturated polyester resin-impregnated MFPF sheet-like materials (1) to (9) were stacked on the same 12 sheets, and the excess resin was handled, and then placed in a mold and heated with a press (temperature : 90 ° C., time: 0.5 ° h) to obtain molded products (1) to (9) of MFPF-unsaturated polyester resin composite.
  • the weights of the obtained molded products (1) to (9) were measured, and the resin ratio (% by weight) was calculated from the difference from the dry weight of the MFPF sheet materials (1) to (9). Table 2 shows the measurement results.
  • Test Example I-1 Density measurement
  • the lengths and widths of the molded products (1) to (10) were accurately measured with calipers (manufactured by Mitutoyo Corporation).
  • the thickness was measured with several micrometers (manufactured by Mitutoyo Corporation) and the volume of the molded product was calculated. Separately, the weight of the molded product was measured. The density was calculated from the obtained weight and volume. The results are shown in Table 2.
  • Test Example I-2 Measurement of flexural modulus and flexural strength
  • a universal material testing machine Instron 3365 type (Instron Japan Company Limited) was used as a measuring machine. The measurement results are shown in Table 2.
  • Production Example I-7 (NUKP Refiner 4 times + 2-axis defibration Large specific surface area) Microfibrillated plant fibers (1) were produced in the same manner as in Production Example I-1 except that the fibrillation was advanced with a twin-screw kneader until the specific surface area of the microfibrillated plant fibers (1) was 15.4 m 2 / g. 11) was obtained. The specific surface area and hemicellulose content were calculated in the same manner as in Measurement Examples I-1, I-2, and I-3. The results are shown in Table 3.
  • Examples I-7 to I-8 (Production of MFPF sheet and resin impregnated composite) Using the microfibrillated plant fibers (1) and (11) obtained in Production Example I-1 and Production Example I-7, in the same manner as in Examples I-1 to I-6, MFPF sheet-like Products (1 ′) and (11) were produced.
  • the obtained MFPF sheet-like material was cut into a width of 15 mm ⁇ length of 65 mm and impregnated with resin to produce the unsaturated polyester resin-impregnated MFPF sheet-like materials (1 ′) and (11). Except that the sheets were overlapped and heated and pressed, the same procedure as in Example I-1 was carried out to obtain molded products (1 ′) and (11) of MFPF-unsaturated polyester resin composite. The density was measured in the same manner as in Test Example I-1. The results are shown in Table 4.
  • Test Example I-3 Measurement of flexural modulus and flexural strength
  • a universal material testing machine Instron 3365 type (Instron Japan Company Limited) was used as a measuring machine. Table 4 shows the measurement results.
  • Examples I-1, I-2, I-6 and Reference Example I-2 are all microfibrillated plant fibers obtained from plant fibers containing the same amount (6% by weight) of lignin. From these comparisons, it can be seen that the bending strength and the flexural modulus of the molded product obtained by increasing the specific surface area of the microfibrillated plant fiber within the above-mentioned range can be improved. It is considered that the strength of the obtained molded body was improved because the interaction (hydrogen bond, etc.) between the microfibrillated plant fibers increased due to the increase in the specific surface area.
  • Examples I-4 and I-5, and Reference Examples I-1 and I-3 are also microfibrillated plant fibers obtained from plant fibers containing 0% by weight of lignin.
  • the specific surface area and the amount of hemicellulose of the microfibrillated plant fiber are different.
  • Reference Example I-3 which has a high specific surface area and a large amount of hemicellulose, the impregnation property of the unsaturated polyester resin is very poor under the same molding conditions, and the molded product in which the resin is uniformly impregnated into the microfibrillated plant fiber assembly. could not be created. For this reason, the bending strength and bending elastic modulus of the obtained molded body were greatly inferior compared with other molded bodies.
  • Reference Example I-1 is an example having a large specific surface area and a small amount of hemicellulose. Even if the specific surface area is high, a molded product can be obtained if the amount of hemicellulose is small, but the strength of the obtained molded product is greatly inferior compared with Examples I-4 and I-5. Furthermore, Examples I-4 and I-5 have the same specific surface area, but the molded body of Example I-5 has a smaller amount of hemicellulose than Example I-4. As shown in Table 2, Example I-4 is superior to Example I-5 in both bending strength and flexural modulus.
  • Hemicellulose appears to have a function to promote fiber-to-fiber bonding in microfibrillated plant fibers, and if this is large, the interfacial bond between unsaturated polyester resin and microfibrillated plant fibers is the same as when the specific surface area is too high. It seems that the strength of the resulting molded product tends to be low because the strength tends to decrease. From these, it can be seen that in order to obtain a resin molded body having high strength, it is necessary to adjust the specific surface area of the microfibrillated plant fiber containing hemicellulose to the above-mentioned range. Furthermore, it can be seen that in order to obtain a resin molded body with higher strength, it is necessary to adjust the specific surface area of the microfibrillated plant fiber combined with the resin and the amount of hemicellulose within the aforementioned ranges.
  • Second embodiment production example II-1 (NUKP refiner 4 times + biaxial defibration) Unbleached kraft pulp for papermaking (manufactured by Oji Paper Co., Ltd.) (NUKP) was suspended in water and sufficiently stirred to give a 4% by weight slurry. This slurry was treated with a refiner four times and then filtered to adjust the pulp concentration to 20% by weight. Subsequently, the microfibrillated plant fiber (MFP) was obtained by putting it into a twin-screw kneader under the following conditions and performing a defibrating treatment (treatment speed: 120 g / h). When the obtained microfibrillated plant fiber was observed with a scanning electron microscope (SEM), defibrated fibers having a nanofibrous fiber diameter of several tens of nm were observed.
  • SEM scanning electron microscope
  • Measurement Example II-1 Measurement of specific surface area
  • Distilled water was added to the microfibrillated plant fiber to a solid content of 10% by weight, and these were freeze-dried. Each obtained freeze-dried sample was made fine so as to enter the sample cell, and then subjected to a measuring apparatus.
  • a measuring apparatus a flow type specific surface area automatic measuring apparatus Flowsorb II 2300 (manufactured by Micromeritics) was used.
  • the sample was placed in a sample cell, dried (pretreatment) by flowing a mixed gas (N 2 30%, He 70%) at 100 ° C. for 30 minutes, and then subjected to the BET single point method (mixed gas (N 2 30%, He 70). %)) And the surface area was measured. After the measurement, the sample amount in the cell was precisely weighed and the specific surface area was calculated. The results are shown in Table 5.
  • Measurement Example II-2 Measurement of lignin content
  • the Klason method sulfuric acid method
  • the wood-constituting polysaccharide was made water-soluble by acid hydrolysis, and lignin was separated and quantified as a water-insoluble substance by acid-catalyzed degeneracy reaction.
  • the measurement method will be described in detail.
  • Measurement Example II-3 Measurement of Hemicellulose Content
  • the alditol acetate method was applied. That is, the sample was acid hydrolyzed to reduce the released monosaccharide, and then the alditol produced was acetylated and quantified by gas chromatography. Details will be described below.
  • Acetic anhydride (2 ml) and sulfuric acid (0.1 ml) were added to the produced alditol and acetylated, followed by quantitative analysis by gas chromatography (Shimadzu GC-18A, manufactured by Shimadzu Corporation).
  • the total weight of galactoglucomannan and xylan was defined as the hemicellulose weight, and the hemicellulose content (H (% by weight)) in the total amount of cellulose and hemicellulose and lignin contained in the microfibrillated plant fiber was calculated. The results are shown in Table 5.
  • the hemicellulose content (H ′ (% by weight)) in the total amount of hemicellulose and cellulose contained in the microfibrillated plant fiber was calculated.
  • the components in the microfibrillated plant fiber were calculated as consisting of cellulose, lignin and hemicellulose. The results are shown in Table 5.
  • Example II-1 Production of MFPF sheet and unsaturated polyester resin impregnated composite
  • Water is added to the microfibrillated plant fiber so that the solid content is 0.5% by weight, and the mixture is stirred at a high speed for 5 minutes with a mixer (“HX-V200” manufactured by Matsushita Electric Industrial Co., Ltd.).
  • MFPF A water dispersion was obtained.
  • the MFPF aqueous dispersion was dehydrated under reduced pressure using a filter paper (manufactured by Advantech Toyo Co., Ltd .; 5A) at room temperature to prepare a circular (radius 8 cm) wet paper having a basis weight of 100 g / m 2 . Thereafter, the wet paper was sandwiched between dry filter papers, and then a couch was performed using a metal roller for preliminary dehydration. Next, the wet paper was dried on a hot plate to produce an MFPF sheet.
  • a filter paper manufactured by Advantech Toyo Co., Ltd .
  • the obtained MFPF sheet-like material was cut into a width of 30 mm ⁇ length of 40 mm, dried at 105 ° C. for 2 hours, and the weight was measured.
  • 1 part by weight of benzoyl peroxide (“NIPER FF” manufactured by NOF Corporation) is added to 100 parts by weight of unsaturated polyester resin (“Sandoma FG-283” manufactured by DH Material Co., Ltd.) on the MFPF sheet. It was immersed in the added resin liquid. Immersion was performed under reduced pressure (degree of vacuum: 0.01 MPa, time: 0.5 h) to obtain an unsaturated polyester resin-impregnated MFPF sheet.
  • Example II-1 Production of FRP sheet (unsaturated polyester resin and glass fiber)
  • Example II-1 except that instead of the microfibrillated plant fiber sheet material, a sheet material made of glass fiber (“PB-549” manufactured by Nittobo Co., Ltd.) was used in an amount of 25 to 30% by weight.
  • PB-549 manufactured by Nittobo Co., Ltd.
  • FRP glass fiber-unsaturated polyester resin composite
  • Reference Example II-2 Production of unsaturated polyester resin sheet-like molded product
  • a sheet-like product made of resin alone was obtained.
  • Resin ratio (% by weight) and mechanical strength were measured in the same manner as in Example II-1 (Tables 6 to 9).
  • Reference Example II-3 (Production of MFPF sheet material and phenol resin resin impregnated composite) Implemented except that phenolic resin ("PL2340" manufactured by Gunei Chemical Industry Co., Ltd.) was used instead of unsaturated polyester resin, and that the impregnation time of the phenolic resin in methanol solution was as shown in Tables 6-9.
  • phenolic resin ("PL2340" manufactured by Gunei Chemical Industry Co., Ltd.) was used instead of unsaturated polyester resin, and that the impregnation time of the phenolic resin in methanol solution was as shown in Tables 6-9.
  • a sheet of a molded product of MFPF-phenol resin composite was obtained. Resin ratio (% by weight) and mechanical strength were measured in the same manner as in Example II-1 (Tables 6 to 9).
  • Test Example II-1 Measurement of Mechanical Strength (Bending Elastic Modulus and Bending Strength) From the molded bodies obtained in Example II-1 to Reference Example II-3, a thickness of about 1.2 mm, a width of 7 mm, and a length A 40 mm sample was prepared, and the bending elastic modulus and bending strength were measured at a deformation rate of 5 mm / min (load cell: 5 kN). A universal material testing machine Instron 3365 type (Instron Japan Company Limited) was used as a measuring machine. The results are shown in Tables 6-9.
  • the unsaturated polyester molding material according to the first embodiment of the present invention can be uniformly molded by mixing the microfibrillated plant fiber of the present invention with an unsaturated polyester resin, and as a result, molding obtained. Excellent mechanical strength can be imparted to the body.
  • the molded body can be effectively used in fields where high mechanical strength is required. Further, the unsaturated polyester molding material can be provided by the method for producing the molding material.
  • a target molded body can be obtained from a sheet-shaped molding material even at a low temperature and a low molding pressure.
  • the target molded body can be obtained from the sheet-shaped molding material even at a low molding pressure.
  • the molded body obtained by the production method of the present invention can be effectively used in a field where high mechanical strength is required.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

本発明は、不飽和ポリエステル樹脂とミクロフィブリル化植物繊維とを含む成形材料であって、ミクロフィブリル化植物繊維がセルロースとヘミセルロースを含有し、かつミクロフィブリル化植物繊維の比表面積が5~20 m/gである成形材料、該成形材料の製造方法、該成形材料を硬化してなる成形体、ミクロフィブリル化植物繊維を含有する不飽和ポリエステル樹脂成形体を低い成形圧力で製造する方法に関する。

Description

不飽和ポリエステル樹脂とミクロフィブリル化植物繊維を含有する成形材料
 本発明は、不飽和ポリエステル樹脂とミクロフィブリル化植物繊維を含有する成形材料に関する。
 熱硬化性樹脂に、耐熱性や機能的強度等を付与することを目的として、粒子状、繊維状等の補強材が用いられている。このうち繊維状補強材として、ガラス繊維、カーボン繊維、セラミックス繊維、炭化ケイ素繊維、金属繊維、ボロン繊維等の繊維;金属、セラミックス、高分子化合物等のウィスカー;パルプ等の植物性繊維;合成繊維等が汎用的に使用されている。近年、植物性繊維のなかで、ミクロフィブリル化セルロースが注目されている。
 ミクロフィブリル化セルロースはミクロ単位の繊維径を有する繊維状セルロースの総称で、その由来となる原材料もパルプに限らず、各種植物や微生物等が挙げられ、それらの由来となる原材料や、その機械的処理法ないし化学的処理法によっても種々さまざまな形態のものが存在する。このミクロフィブリル化セルロースを繊維状補強材として熱硬化性樹脂に用いた具体例としては、フェノール樹脂、ビスフェノールA型エポキシ樹脂に配合した例が知られている。
 たとえば、ミクロフィブリル化セルロース「セリッシュ」(ダイセル化学工業株式会社)20重量%とフェノール樹脂80重量%を混合・攪拌した混合物を成形して得られる外板部材、摺動部材が知られている(特許文献1、2参照)。この「セリッシュ」は、コットンリンター等を由来原料として、高剪断力、高衝撃力を作用させることによって、高度に裂解・微細化した、平均繊維径3μm以下(0.01~3μm)、平均繊維長5~3000μm、比表面積50~300m/gのミクロフィブリル化セルロースである(特許文献3)。
 さらに、「セリッシュ」以外にも、最大繊維径1500nm以下のミクロフィルブリル化セルロースからなる不織布にビスフェノールA型エポキシ樹脂を含浸させた後、熱プレスにて熱硬化させて得られる複合体が知られている(特許文献4)。このミクロフィブリル化セルロースは、配合するビスフェノールA型エポキシ樹脂の透明性を維持するため、コットンリンターを高圧ホモジナイザーや超高圧ホモジナイザー等の微細化装置を用いて、20回程度繰り返し微細化処理が施されたものである。
 一方、本発明者の一部である矢野らは、セルロースミクロフィブリルの懸濁液からシートを作製して積層した後、フェノール樹脂を含浸させて金型内で加熱加圧して複合体を製造している(特許文献5)。
 また、矢野らは、高透明性部材を得る目的で、(1)バクテリアセルロース(BC)由来のミクロフィブリル化セルロースのシート状物にフェノール樹脂を含浸させて数時間風乾燥させた後、必要枚数積層してから熱プレスにて熱硬化させて樹脂複合シートを製造している(特許文献6~8)。また、(2)前記BC由来のミクロフィブリル化セルロースやパルプ由来のミクロフィブリル化セルロースのシート状物に紫外線硬化型アクリル樹脂のモノマー液(TCDDMA)を含浸させた後、UV硬化させて樹脂複合シートも製造している(特許文献9~11)。さらに、(3)前記BC由来のミクロフィブリル化セルロースやパルプ由来のミクロフィブリル化セルロースとビスフェノールA型エポキシ樹脂とを含む複合樹脂組成物を製造し、硬化させて接着剤や封止材として用いている(特許文献12)。
 これらは、いずれも高透明性の樹脂複合材料を得ることを目的としており、そのため、もともと繊維径の小さいBCを用いるか、または、パルプに高圧ホモジナイザー処理を行った後、グラインダー処理30回を施して、ナノオーダーで高比表面積の繊維径のフィブリル化セルロースを用いることを特徴としている。
 そして、矢野らは、水酸化カリウム水溶液で脱リグニン処理/脱ヘミセルロース処理して得られるミクロフィブリル化セルロースのシート状物に紫外線硬化型アクリル樹脂のモノマー液(TCDDMA)を含浸させた後、UV架橋させて樹脂複合シートを製造している(特許文献13)。
 一方、不飽和ポリエステル樹脂に充填剤、硬化剤、離型剤、顔料、増粘剤等を加えて樹脂組成物とし、この樹脂組成物をガラス繊維等の強化用繊維物質に含浸し、シート状あるいはバルク状に形成した不飽和ポリエステル樹脂成形材料は、シートモールディング・コンパウンド(SMC)、バルクモールディング・コンパウンド(BMC)などと呼ばれ、主に圧縮成形されて、住宅設備、工業部品、自動車部品等に広く用いられている。
 これらの成形材料は、通常、加熱下、圧縮成形される。しかし、圧縮成形法において、適用製品を拡大(大型化、多品種化)しようとすると、大型成形機の確保、高額な金型投資等の費用負担が非常に大きくなるという欠点を有している。従来、圧縮成形温度は120~160℃程度、圧縮成形圧力は8~10MPa程度の高圧で成形されているが、より低温、低圧で圧縮成形できれば、上記費用負担が低減される。しかし、低温、低圧で圧縮成形しようとすると、欠肉したり、巣、ピンホールが成形品表面に生じ易いという欠点が生じる。巣、ピンホールは、外観が悪い上に機械的強度にも悪影響を及ぼすため好ましくない。
 また、ミクロフィブリル化植物繊維は、フェノール樹脂やエポキシ樹脂に配合することにより機械的強度を付与することが知られている。しかし、ミクロフィブリル化植物繊維を含むフェノール樹脂成形材料やエポキシ樹脂成形材料を成型する際には、通常、数十MPaという高い成形圧力が必要であった。さらに、ミクロフィブリル化植物繊維を含むシート状の樹脂材料を2枚以上重ね、これを圧縮して1つの成形体とする場合には、圧力が低いと各シート状の樹脂材料が1つの成形体にならないといった問題点を有していた。
特開2006-312281号公報 特開2006-312688号公報 特開平9-124950号公報 特開2006-316253号公報 特開2003-201695号公報 特開2005-60680号公報 特開2006-35647号公報 特開2006-36926号公報 特開2006-240295号公報 特開2006-241450号公報 特開2007-51266号公報 特開2007-146143号公報 特開2008-24788号公報 特開2005-42283号公報 特開2008-13621号公報
 上記のようにミクロフィブリル化セルロースを繊維状補強材として用い、熱硬化性樹脂ないしUV架橋型樹脂に配合した具体例としては、フェノール樹脂、ビスフェノールA型エポキシ樹脂やTCDDMA(トリシクロデカンジアクリレート)のみが知られており、不飽和ポリエステル樹脂に配合した例は具体的には知られていなかった。
 通常、フェノール樹脂等の硬化性樹脂に繊維状補強材を添加して硬化させる場合には、含浸性を向上させるために、樹脂を熱溶融して繊維状補強材に含浸させた後に硬化するか、または、溶媒に溶解した樹脂溶液を繊維状補強材に含浸させて、溶媒を蒸発させた後に硬化する方法が用いられている。しかしながら、不飽和ポリエステル樹脂は液状樹脂のため、これらの方法を用いることができない。
 さらに、不飽和ポリエステル樹脂は、金型内で加熱圧縮成型する場合に型締めの途中で液状樹脂が流れるため、静水圧のように圧力をかけることができない。この結果、樹脂とミクロフィブリル化セルロースとの相溶性が悪い場合には、成形圧力に偏りができ均質な成形が困難になり、機械強度が低くなるという不飽和ポリエステル特有の問題があった。
 もともと疎水性の高い不飽和ポリエステル樹脂と親水性の高いミクロフィブリル化セルロースとでは相溶性が低いことから、上記特許文献1~13に記載のミクロフィブリル化セルロースに、不飽和ポリエステル樹脂を単純に配合したとしてもミクロフィブリル化セルロースとの相溶性に優れるかどうかは不明であった。このため、上記特許文献1~13に記載のミクロフィブリル化セルロースに、不飽和ポリエステル樹脂を配合しても成形性に優れる成形材料が得られるかどうか、さらに、得られた成形体も優れた機械強度を有するかどうかも明かではなかった。また、実際に、上述した特許文献1~13に記載のミクロフィブリル化セルロースでは、必ずしも成形性に優れる成形材料が得られるわけではなく、その結果、機械強度に優れた成形体が得られるわけでもなかった。
 そこで、本発明の第1の実施形態が解決しようとする課題は、不飽和ポリエステル樹脂に対して優れた成形性を付与しつつ、さらに得られる成形体に対して優れた機械強度を付与することが可能な不飽和ポリエステル成形材料、該成形材料を成形して得られる成形体、該成形材料の製造方法を提供することにある。
 また、上記の通り、ミクロフィブリル化植物繊維を含むフェノール樹脂成形材料やエポキシ樹脂成形材料を成型する際には、高温下で、通常、数十MPaという高い成形圧力が必要であり、低温、低圧で圧縮成形しようとすると、欠肉したり、巣、ピンホールが成形品表面に生じ易いという欠点が生じる。巣、ピンホールは、外観が悪い上に機械的強度にも悪影響を及ぼすという問題点があった。
 そこで、本発明の第2の実施形態は、ミクロフィブリル化植物繊維を含有する不飽和ポリエステル樹脂成形体を低い成形圧力で製造する方法を提供することを課題とする。
 本発明者は、上記課題を解決するために鋭意研究を重ねた結果、不飽和ポリエステル樹脂に対して優れた成形性を付与しつつ、さらに得られた成形体に優れた機械強度を付与することが可能な成形材料を提供するためには、ミクロフィブリル化された植物繊維(以後、ミクロフィブリル化植物繊維という)を用い、該ミクロフィブリル化植物繊維にヘミセルロースが含まれていること、かつ、該ミクロフィブリル化植物繊維の比表面積を特定の範囲内にすることが重要であることを見いだした。また、本発明の製造方法により得られた成形体は、機械強度に優れている。本発明の第1の実施形態は、この様な知見に基づき、さらに検討を重ねて完成されたものである。すなわち、本発明の第1の実施形態は、下記項1~7に示す成形材料、該成形材料の製造方法、該成形材料を硬化してなる成形体を提供する。
 項1. 不飽和ポリエステル樹脂とミクロフィブリル化植物繊維とを含む成形材料であって、ミクロフィブリル化植物繊維がセルロースとヘミセルロースを含み、かつミクロフィブリル化植物繊維の比表面積が5~20m/gである成形材料。
項2. ヘミセルロースがヘミセルロースとセルロースの合計量中5~30重量%含まれる項1に記載の成形材料。
項3. 成形材料中に含まれる不飽和ポリエステル樹脂の含有量が3~95重量%である項1又は2に記載の成形材料。
項4. ミクロフィブリル化植物繊維が、ヘミセルロースを含むセルロース繊維含有材料を解繊することによって得られたものである項1~3のいずれかに記載の成形材料。
項5. 項1~4のいずれかに記載の成形材料を硬化してなる成形体。
項6. 不飽和ポリエステル樹脂とミクロフィブリル化植物繊維とを含む成形材料の製造方法であって、セルロースとヘミセルロースを含み、かつ比表面積が5~20m/gであるミクロフィブリル化植物繊維と不飽和ポリエステル樹脂とを混合することを特徴とする成形材料の製造方法。
項7. 不飽和ポリエステル樹脂とミクロフィブリル化植物繊維とを含む成形材料の製造方法であって、セルロースとヘミセルロースを含み、かつ比表面積が5~20m/gであるミクロフィブリル化植物繊維のシート状物に不飽和ポリエステル樹脂を含浸することを特徴とする成形材料の製造方法。
 また、本発明者は、ミクロフィブリル化植物繊維と不飽和ポリエステル樹脂とを含む成形材料を圧縮して硬化させることにより、低い成形圧力でもミクロフィブリル化植物繊維を含有する不飽和ポリエステル樹脂成形体が得られることを見出した。本発明の第2の実施形態は、この様な知見に基づき、さらに検討を重ねて完成されたものである。すなわち、本発明の第2の実施形態は、項8~12に係る不飽和ポリエステル樹脂成形体の製造方法を提供する。
 項8. 不飽和ポリエステル樹脂成形体の製造方法であって、不飽和ポリエステル樹脂とフィブリル化植物繊維とを含む成形材料を圧力0.1~100MPaで圧縮成形することを特徴とする不飽和ポリエステル樹脂成形体の製造方法。
項9. 成形材料中に含まれる不飽和ポリエステル樹脂の含有量が3~95重量%である項8記載の不飽和ポリエステル樹脂成形体の製造方法。
項10. フィブリル化植物繊維の比表面積が5~20 m/gである項8または9に記載の不飽和ポリエステル樹脂成形体の製造方法。
項11. フィブリル化植物繊維がセルロースとヘミセルロースを含む項8~10のいずれかに記載の不飽和ポリエステル樹脂成形体の製造方法。
項12. 前記ヘミセルロースがヘミセルロースとセルロースの合計量中5~30 重量%含まれる項8~11のいずれかに記載の不飽和ポリエステル樹脂成形体の製造方法。
 以下、本発明の第1の実施形態及び第2の実施形態について詳述する。
 I.第1の実施形態
 (I-1)成形材料
 本発明の第1の実施形態において、成形材料は、不飽和ポリエステル樹脂とミクロフィブリル化植物繊維とを含む成形材料であって、ミクロフィブリル化植物繊維がヘミセルロースを含有し、かつミクロフィブリル化植物繊維の比表面積が5~20m2/gであることを特徴とする。
 本発明の第1の実施形態に使用するミクロフィブリル化植物繊維はヘミセルロースを含有する。ミクロフィブリル化植物繊維中のヘミセルロースの含有量は、本発明の効果を損なう範囲でなければ特に限定されるものではなく、通常、その存在が確認できればよいが、好ましくは、ミクロフィブリル化植物繊維中のヘミセルロースの含有量がヘミセルロースとセルロースの合計含有量に対し、その下限値は5重量%程度が好ましく、8重量%程度がより好ましく、11重量%程度がさらに好ましく、一方、上限値は30重量%程度が好ましく、20重量%程度がより好ましくは、17重量%程度がさらに好ましい。
 ミクロフィブリル化植物繊維中のヘミセルロースの種類としては特に制限はないが、具体的にはグルコマンナン、グルクロノキシラン、アラビノグルクロノキシラン等の多糖が挙げられる。
 本発明の第1の実施形態に用いるミクロフィブリル化植物繊維は、ヘミセルロースを含むセルロース繊維含有材料を解繊することによって得られたものである。ヘミセルロースの含有量を調整するには、原材料であるセルロース繊維含有材料の種類や成形材料の用途、加工法等によって異なるため一概には言えないが、例えば、目的に応じセルロース繊維含有原材料をアルカリ溶液で処理することにより減少させたり、植物繊維のアルカリ抽出物等のヘミセルロースを含む溶液をミクロフィブリル化植物繊維に加えることで上記範囲内に調整することができる。生産性の観点からは、ヘミセルロースの含有量が上記範囲内にあるセルロース繊維含有材料を解繊することによって得られたものを、ミクロフィブリル化植物繊維として使用することが好ましい。
 該アルカリ溶液処理は、セルロース結晶形を変化させない範囲であれば水酸化ナトリウム、水酸化カリウム、アンモニア水等のアルカリを用い、公知慣用の方法で処理すればよい。例えば、水酸化ナトリウムを用いた場合では、概ね10%以下、好ましくは3~5%の濃度で、室温以下、12~24時間処理して、ミクロフィブリル化植物繊維中のヘミセルロース含有量を上記の範囲内に収めるように行えばよい。
 なお、これらのヘミセルロースは植物中ではセルロースと水素結合により会合し細胞壁を形成している。ミクロフィブリル化植物繊維と不飽和ポリエステル樹脂とを含む成形体中において、ヘミセルロースはこの水素結合能によりフィブリル化植物繊維の繊維集合体の繊維間の結合強度を補強する効果があり、結果として成形体の強度向上に寄与すると考えられる。このため、ミクロフィブリル化植物繊維中のヘミセルロースの存在は好ましい。
 なお、ミクロフィブリル化植物繊維中のヘミセルロース含有量が低いと成形体中の樹脂率(成形材料中に含まれる不飽和ポリエステル樹脂の含有量)が高くなる傾向にあり、一方、ヘミセルロース含有率が高いと成形体中の樹脂率が低くなる傾向にある。そのため、ミクロフィブリル化植物繊維中のヘミセルロース含有量を上記範囲内とすることで、不飽和ポリエステルとの含浸性が向上し、最適な範囲の樹脂率を達成できるので複合化や成形性もさらに良くなり、その結果、より機械強度に優れた成形体を得ることができるため好ましい。ヘミセルロース含有量の数値は、成形体とした時に求められる機械特性等に応じ、上記範囲内で適宜設定すればよい。
 上述したセルロース繊維含有材料としては、ヘミセルロースを含有するものであれば公知慣用のものを使用でき、例えば、植物原料、より具体的には、木材、竹、麻、ジュート、ケナフ、綿、ビート、農産物残廃物、布や、これらの植物原料から得られるパルプが挙げられ、特に、該パルプが好ましい原材料として挙げられる。
 前記パルプとしては、植物原料を化学的、又は機械的に、または両者を併用してパルプ化することで得られるケミカルパルプ(クラフトパルプ(KP)、亜硫酸パルプ(SP))、セミケミカルパルプ(SCP)、セミグランドパルプ(CGP)、ケミメカニカルパルプ(CMP)、砕木パルプ(GP)、リファイナーメカニカルパルプ(RMP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)、及びこれらの植物繊維を主成分とする脱墨古紙パルプ、段ボール古紙パルプ、雑誌古紙パルプが好ましいものとして挙げられる。これらの原材料は、必要に応じ、脱リグニン、又は漂白を行い、当該植物繊維中のリグニン量を調整することができる。脱リグニン、又は漂白工程は解繊前に行っても良いし解繊後に行っても構わない。
 これらのパルプの中でも、繊維の強度が強い針葉樹由来の各種クラフトパルプ(針葉樹未漂白クラフトパルプ(以下、NUKPということがある)、針葉樹酸素晒し未漂白クラフトパルプ(以下、NOKPということがある)、針葉樹漂白クラフトパルプ(以下、NBKPということがある))を解繊処理して製造されたミクロフィブリル化植物繊維を使用することが特に好ましい。
 本発明の第1の実施形態で用いるミクロフィブリル化植物繊維は、ヘミセルロース含有量が上記の好ましい範囲内にあるパルプを解繊することによって得られたものであることが好ましい。
 なお、ミクロフィブリル化植物繊維中のヘミセルロース含有量は、ミクロフィブリル化植物繊維中に含まれるヘミセルロースとセルロースとの合計量(重量)中のヘミセルロースの含有量(重量)を百分率で表した含有率(重量%)で表される値とする。
 本発明の第1の実施形態で使用するミクロフィブリル化植物繊維の比表面積は、その下限値が5m/g、好ましくは7m/g、より好ましくは9m/gであり、一方、上限値は20m/g、好ましくは18m/g、より好ましくは16m/gである。
 ミクロフィブリル化植物繊維が上記範囲内の場合には比表面積が大きくなるに伴い、植物繊維間の絡み合いや水素結合が多数生じる結果、高い強度の成形体が得られるものと考えられる。しかし、比表面積が20m/gを越えて大きくなると、成形体の強度が低くなったり、また、成形体に界面剥離が発生して所定の機械強度が得られなかったり、例えば、含浸法により成形材料を得る場合、樹脂との複合材料を得る前のフィブリル化植物繊維の繊維集合体を得るのに脱水や乾燥により多くの時間を要する等、生産性や成形性が低くなることがある。また、比表面積が20m/gを越えて大きくなると、成形体中の樹脂率が適切であっても成形体の機械強度が低くなることもある。
 一方、比表面積が5m/gより小さいと(例えば、未解繊のセルロース繊維含有材料を使用)、成形体中の樹脂の含有率(樹脂率)が高くなり、成形体の機械強度が低くなる傾向にある。この為、ミクロフィブリル化植物繊維の比表面積は5~20m/gに調整する必要があり、上記範囲内で機械強度に優れた成形体が得られ、中でも7~18m/g程度、特に9~16m/g程度の範囲内で特に優れた機械強度を有する成形体が得られる。比表面積の数値は、成形体とした時に求められる機械特性等に応じ、上記範囲内で適宜設定すればよい。
 ミクロフィブリル化植物繊維の比表面積は、原材料のヘミセルロース繊維含有材料を公知慣用の解繊方法により適宜調整して、上記範囲内にすることが好ましい。セルロース繊維含有材料の解繊処理の方法は、例えば、前記セルロース繊維含有材料を水に懸濁、撹拌してスラリーとし、これをリファイナー、高圧ホモジナイザー、グラインダー、2軸混練機等により機械的に摩砕、ないし叩解することにより解繊する方法が挙げられる。必要に応じて、リファイナー処理後に2軸混練機処理を行うといったように、上記の解繊方法を組み合わせて処理することが好ましい。
 また、上述のとおり、ミクロフィブリル化植物繊維は、セルロース繊維含有材料を水酸化アルカリ水溶液、アンモニア水等のアルカリ溶液で処理されたものであってもよい。アルカリ処理を行う場合、ミクロフィブリル化植物繊維は、セルロース繊維含有材料をリファイナー等によりアルカリ溶液処理を効率よく行える形状(例えば、粉体、繊維状、シート状等)とした後、アルカリ溶液処理し、この処理物を2軸混練機等により解繊処理して得られるものであってもよいし、リファイナー処理、高圧ホモジナイザー処理、グラインダー処理、2軸混練機等により解繊処理を行った後に、アルカリ溶液処理して得られるものであってもよい。
 なお、本発明の第1の実施形態におけるミクロフィブリル化植物繊維は、通常、ミクロフィブリル化植物繊維を水に分散させた水分散体を作製した後、ろ過や圧搾等の脱水工程や乾燥工程を経て得られる。また、本発明における成形材料は、通常、このミクロフィブリル化植物繊維に樹脂を混合することにより得られている。この為、本発明で用いる比表面積は実施例においても詳述しているとおり、ミクロフィブリル化植物繊維の水分散液を乾燥させた試料について、Nガスを用いたBET法にて測定した値を用いるものとする。すなわち、ミクロフィブリル化植物繊維に、固形分10重量%になるように蒸留水を加え、これらを凍結乾燥したのち、100 ℃加熱下で30分間乾燥(前処理)した後、BET一点法(混合ガス(N 30%、He 70% )で表面積を測定し、比表面積を算出した値とする。
 本発明の第1の実施形態で使用するミクロフィブリル化植物繊維の繊維径は、本発明の効果が得られる範囲であれば特に限定されることはないが、例えば、平均繊維径が4nm~400nmであることが好ましく、4nm~200nmであることがより好ましく、4nm~100nmであることがより一層好ましい。また、繊維長も本発明の効果が得られる範囲であれば特に限定されることはないが、例えば、平均繊維長が50nm~50μmであることが好ましく、100nm~10μmであることがより好ましい。
 本発明の第1の実施形態に使用するミクロフィブリル化植物繊維は、通常、解繊処理により繊維または繊維状のものが絡まり合ってひとまとまりの状態になった繊維集合体の形状を呈しているが、集合体自体の大きさは特に限定されず、さまざまな大きさのものを用いることができる。
 ミクロフィブリル化植物繊維中のリグニン含有量は、通常2~70 重量%程度、好ましくは5~70 重量%程度である。不飽和ポリエステル樹脂は疎水性の樹脂である為、ミクロフィブリル化植物繊維の表面が疎水性のリグニンで覆われていると樹脂含浸性等の面で好ましいことがある。ミクロフィブリル化植物繊維中のリグニン含有量は、後述の実施例に記載の方法により測定して得られた値である。
 本発明の第1の実施形態で使用する不飽和ポリエステル樹脂は、一般的に使用される不飽和ポリエステル樹脂を使用すればよく、不飽和二塩基酸を含む二塩基酸(α,β-不飽和二塩基酸等)と多価アルコールの重縮合反応により得られ、主鎖にエステル結合と不飽和結合とをもつ不飽和ポリエステルを、架橋の働きをするビニルモノマーに溶解した液状樹脂であって、本発明においては、さらに重合禁止剤、硬化促進剤、架橋剤等公知慣用の添加物を含んでいてもよい。不飽和ポリエステル樹脂は、硬化剤を添加して加熱等することにより硬化する。
 不飽和ポリエステル樹脂を調製するにあたって使用されるα,β-不飽和二塩基酸としては、例えば、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、無水イタコン酸等を挙げることができる。また、飽和二塩基酸としては、フタル酸、無水フタル酸、ハロゲン化無水フタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロフタル酸、ヘキサヒドロ無水フタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、コハク酸、マロン酸、グルタル酸、アジピン酸、セバシン酸、1,12-ドデカン2酸,2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸無水物、4,4'-ビフェニルジカルボン酸、またこれらのジアルキルエステル等を挙げることができる。これらは、単独でも2種類以上組み合わせて使用しても良い。
 多価アルコ-ル類としては、例えばエチレングリコ-ル、ジエチレングリコ-ル、トリエチレングリコ-ル、ポリエチレングリコ-ル、プロピレングリコ-ル、ジプロピレングリコ-ル、ポリプロピレングリコ-ル、2-メチル-1,3-プロパンジオ-ル、1,3-ブタンジオ-ル、ネオペンチルグリコ-ル、水素化ビスフェノ-ルA、1,4-ブタンジオ-ル、ビスフェノ-ルAとプロピレンオキシド又はエチレンオキシドの付加物、1,2,3,4-テトラヒドロキシブタン、グリセリン、トリメチロ-ルプロパン、1,3-プロパンジオ-ル、1,2-シクロヘキサングリコ-ル、1,3-シクロヘキサングリコ-ル、1,4-シクロヘキサングリコ-ル、1,4-シクロヘキサンジメタノ-ル、パラキシレングリコ-ル、ビシクロヘキシル-4,4'-ジオ-ル、2,6-デカリングリコ-ル、2,7-デカリングリコ-ル等を挙げることができる。これらは単独又は2種以上の組み合わせで使用しても良い。
 ビニルモノマーとしては、例えば、スチレン、ビニルトルエン、クロロスチレン、フタル酸ジアリル、シアヌル酸トリアリル、メタクリル酸メチル等を挙げることができる。これらは単独又は2種以上の組み合わせで使用しても良い。
 重合禁止剤としては、例えばトリハイドロベンゼン、トルハイドロキノン、14-ナフトキノン、パラベンゾキノン、ハイドロキノン、ベンゾキノン、ハイドロキノンモノメチルエーテル、p-tert-ブチルカテコール、2,6-ジ-tert-ブチル-4-メチルフェノール等を挙げることができる。重合禁止剤を使用する場合、これらの重合禁止剤は、樹脂組成物に、10~1000ppm程度添加するのが好ましい。これらは単独又は2種以上の組み合わせで使用しても良い。
 硬化促進剤としては、例えばナフテン酸コバルト、オクチル酸コバルト、オクチル酸亜鉛、オクチル酸バナジウム、ナフテン酸銅、ナフテン酸バリウム等金属石鹸類、バナジウムアセチルアセテート、コバルトアセチルアセテート、鉄アセチルアセトネート等の金属キレート類、アニリン、N,N-ジメチルアニリン、N,N-ジエチルアニリン、p-トルイジン、N,N-ジメチル-p-トルイジン、N,N-ビス(2-ヒドロキシエチル)-p-トルイジン、4-(N,N-ジメチルアミノ)ベンズアルデヒド、4-[N,N-ビス(2-ヒドロキシエチル)アミノ]ベンズアルデヒド、4-(N-メチル-N-ヒドロキシエチルアミノ)ベンズアルデヒド、N,N-ビス(2-ヒドロキシプロピル)-p-トルイジン、N-エチル-m-トルイジン、トリエタノールアミン、m-トルイジン、ジエチレントリアミン、N,N-ジメチルアセトアセトアミド、ジメチルピリジン、フェニリモルホリン、ピペリジン、N,N-ビス(ヒドロキシエチル)アニリン、ジエタノールアニリン等のN,N-置換アニリン、N,N-置換-p-トルイジン、4-(N,N-置換アミノ)ベンズアルデヒド等のアミン類が挙げられる。本発明においてはアミン系、金属石鹸系の硬化促進剤が好ましい。なお、硬化促進剤は、2種以上の組み合わせで使用しても良く、また予め樹脂に添加しておいても良いし、使用時に添加しても良い。
 架橋剤としては、前記ビニルモノマー以外の多官能ビニルモノマー、例えば、ジビニルベンゼン、多官能(メタ)アクリレート等が挙げられる。これらは単独又は2種以上の組み合わせで使用しても良い。
 さらに、本発明の第1の実施形態における不飽和ポリエステル樹脂には、各種添加剤、例えば硬化剤、ワックス類、離型剤、紫外線吸収剤、顔料、老化防止剤、可塑剤、難燃剤、安定剤、消泡剤、レベリング剤、シランカップリング剤等を使用してもよい。
 硬化剤としては、有機過酸化物が挙げられ、具体的にはメチルエチルケトンパーオキサイド、アセチルアセトンパーオキサイド、シクロヘキサノンパーオキサイド、ベンゾイルパーオキサイド等公知公用のものが使用される。硬化剤の添加量は、好ましくは不飽和ポリエステル樹脂の合計量100重量部に対して、0.5~3重量部程度である。
 かかるワックス類としては、パラフィンワックス、ポリエチレンワックスやステアリン酸、1,2-ヒドロキシステアリン酸等の高級脂肪酸等が挙げられるが、好ましくはパラフィンワックスが用いられる。
 かかる顔料としては、たとえばチタンホワイト、カーボンブラック等無機顔料類やフタロシアニンブルー、キナクリドンレッド等有機顔料類があり、色相に応じて、種々の着色剤を用いることができる。
 本発明の第1の実施形態における成形材料は、前記不飽和ポリエステル樹脂及び前記フィブリル化植物繊維を必須成分として含む。該成形材料中の、不飽和ポリエステル樹脂の含有量(樹脂率)は通常3~95重量%程度、好ましくは10~90重量%程度の範囲内である。該樹脂率は、成形体の用途に応じて必要とされる機械強度と、他の一般特性とのバランスをとって適宜調整すればよい。
 本発明の第1の実施形態における成形材料は、不飽和ポリエステル樹脂及びフィブリル化植物繊維に加えて、必要に応じて他の成分を含んでいてもよい。他の成分としては、前記重合禁止剤、硬化促進剤、硬化剤、各種添加剤の他に、例えば、でんぷん類、アルギン酸等の多糖類、ゼラチン、ニカワ、カゼイン等の天然たんぱく質、セラミックス、金属粉末等の無機化合物、着色剤、可塑剤、香料、顔料、流動調整剤、レベリング剤、導電剤、帯電防止剤、紫外線吸収剤、紫外線分散剤、消臭剤等が挙げられる。
 (I-2)成形材料の製造方法
 本発明の第1の実施形態に係る不飽和ポリエステル樹脂とミクロフィブリル化植物繊維とを含む成形材料の製造方法は、セルロースとヘミセルロースを含み、かつ比表面積が5~20m/gであるミクロフィブリル化植物繊維と不飽和ポリエステル樹脂とを混合することを特徴とする。
 本発明の第1の実施形態における成形材料は、前記不飽和ポリエステル樹脂、前記フィブリル化植物繊維及び必要に応じて添加される他の成分を混合することにより得られる。これらの成分の混合方法は特に限定されないが、例えば、フィブリル化植物繊維の繊維集合体に不飽和ポリエステル樹脂を含浸させる方法や、フィブリル化植物繊維の繊維集合体と不飽和ポリエステル樹脂とを混練させる方法が挙げられる。
 フィブリル化植物繊維の繊維集合体の形態は特に限定はないが、例えばフィブリル化植物繊維の分散体をワイヤーやメッシュ等でろ過した後、乾燥して得られるシート化状物や、ワイヤー基盤に塗布後、乾燥することで得られるフィルム状物、型等に入れた後、プレスや加温にて脱水することにより作成されるモールド状物、あるいはそれらを粉砕して得られた粉体物とすれば良い。また、生産性や、エネルギー消費量等に悪影響を及ぼさない範囲で、上記のフィブリル化植物繊維の繊維集合体を得る前の含水状態のフィブリル化植物繊維の繊維集合体を数回溶媒で洗浄した後に、乾燥することでフィブリル化植物繊維の繊維集合体としたり、含水状態の繊維集合体を凍結乾燥させることでフィブリル化植物繊維の繊維集合体を得ても良い。
 例えば、フィブリル化植物繊維のシート状物に不飽和ポリエステル樹脂及び必要に応じてその他の成分を含浸させるとシート状の成形材料を得ることができる。
 フィブリル化植物繊維の繊維集合体をシート状物とする場合、繊維集合体の厚みは、通常10~500μm程度、好ましくは50~300μm程度である。シート状物が薄すぎると強度等が低下したりする恐れがあり、また、シート状物の厚さが厚すぎると樹脂との複合に時間を要することがある。
 含浸方法は、フィブリル化植物繊維の繊維集合体の形状等により適宜選択すればよいが、例えば、フィブリル化植物繊維の繊維集合体に不飽和ポリエステル樹脂を浸漬させる方法が挙げられる。浸漬は、常圧下、又は減圧下で行われる。
 成形材料がシート状である場合、必要枚数を積層して使用することができる。シート状の成形材料の厚みは目的とする成形体の用途に合わせて適宜調整すればよく、特に限定されるものではないが、通常10μm~10cm程度である。
 フィブリル化植物繊維の繊維集合体に不飽和ポリエステル樹脂及び必要に応じてその他の成分を含浸させる際、ミクロフィブリル化植物繊維中にヘミセルロースを含有し、かつミクロフィブリル化植物繊維の比表面積が上記範囲内にあると、フィブリル化植物繊維の繊維集合体(特にシート状物)への不飽和ポリエステル樹脂の含浸程度が良好で、成形性に優れ、かつ成形材料を硬化した後、機械強度に優れた成形体が得られる。
 本発明の第1の実施形態における成形材料の形状は、成形・加工のしやすさ、目的とする成形体の形状・機械強度等に応じて適宜選択すればよい。
 (I-3)成形体
 本発明の第1の実施形態における成形体は、前記成形材料を硬化することによって得られる。成形材料の硬化方法としては、通常の熱可塑性樹脂組成物の成形方法と同様な方法をいずれも適用することができ、例えば、金型成形、射出成形、押出成形、中空成形、発泡成形等を採用することができる。本発明の成形体は、前記成形材料を加熱圧縮により硬化して得られるものが好ましい。
 成形材料を加熱圧縮して硬化する場合、加熱温度、圧力は、成形材料の組成・形状等に応じて適宜選択すればよい。成形材料を硬化する際の加熱温度は、通常60~150℃程度、好ましくは80~130℃程度である。
 また、成形材料を硬化する際の圧力は、0.1~100MPa程度、好ましくは0.2~10MPa程度、より好ましくは0.5~5MPa程度である。また、加熱圧縮時間は、加熱温度、圧力等に応じて適宜選択すればよく、通常3分~10時間程度である。
 成形材料がシート状である場合、例えば、該シート状の成形材料を金型に入れ、加熱圧縮して硬化する方法を採用することができる。シート状の成形材料を2枚以上重ね、これを加熱圧縮して1つの成形体を得ることもできる。
 本発明の第1の実施形態における成形体の樹脂率(成形体中の不飽和ポリエステル樹脂の割合)は、成形材料を作製する際のプレス圧やプレス時間等の成形条件の調整、ミクロフィブリル化植物繊維中のヘミセルロースの含有量及びミクロフィブリル化植物繊維の比表面積を上記範囲内で調節することにより適宜設定することができ、通常3~95重量%程度、好ましくは10~90重量%程度である。
 本発明の第1の実施形態における成形体の密度は、使用するミクロフィブリル化植物繊維、不飽和ポリエステル樹脂等の種類、使用割合等によって変化するが、通常1.0~1.5g/cm程度である。本発明の成形体の密度、曲げ弾性率及び曲げ強度は、実施例に記載の方法により測定した値である。
 本発明の第1の実施形態によって得られる成形体は、高い機械強度を有しているので、例えば、従来ミクロフィブリル化植物繊維成形体、ミクロフィブリル化植物繊維含有樹脂成形体が使用されていた分野に加え、従来のミクロフィブリル化植物繊維成形体及びミクロフィブリル化植物繊維含有樹脂成形体よりも高い機械強度(耐衝撃性等)が要求される分野にも使用できる。例えば、自動車、電車、船舶、飛行機等の輸送機器の内装材、外装材、構造材等;パソコン、テレビ、電話、時計等の電化製品等の筺体、構造材、内部部品等;携帯電話等の移動通信機器等の筺体、構造材、内部部品等;携帯音楽再生機器、映像再生機器、印刷機器、複写機器、スポーツ用品等の筺体、構造材、内部部品等;建築材;文具等の事務機器等として有効に使用することができる。
 II.第2の実施形態
 次に、本発明の第2の実施形態について詳述する。本発明の第2の実施形態に係る不飽和ポリエステル樹脂成形体の製造方法は、不飽和ポリエステル樹脂とフィブリル化植物繊維とを含む成形材料を圧力0.1~100MPaで圧縮成形することを特徴とする。
 (II-1)成形材料
 本発明の第2の実施形態における成形材料は、不飽和ポリエステル樹脂とミクロフィブリル化植物繊維とを含む成形材料である。
 ミクロフィブリル化セルロースの製造方法は公知であり、一般的には、セルロース繊維含有材料をリファイナー、高圧ホモジナイザー、媒体撹拌ミル、石臼、グラインダー等により磨砕及び/又は叩解することによって解繊又は微細化して製造され、特開2005-42283号公報に記載の方法等の公知の方法で製造することもできる。また、微生物(例えば酢酸菌(アセトバクター))を利用して製造することもできる。さらに、「セリッシュ」(ダイセル化学工業株式会社)などの市販品を利用することも可能である。
 セルロース繊維含有材料は、植物(例えば木材、竹、麻、ジュート、ケナフ、農産物残廃物、布、パルプ、再生パルプ、古紙)、動物(例えばホヤ類)、藻類、微生物(例えば酢酸菌(アセトバクター))、微生物産生物等を起源とするものが知られている。
 セルロース繊維含有材料の解繊処理の方法は、例えば、前記セルロース繊維含有材料を水に懸濁、撹拌してスラリーとし、これを高圧ホモジナイザー、2軸混練機等により解繊する方法が挙げられる。必要に応じて、高圧ホモジナイザー、2軸混練機等により解繊処理を行う前に、リファイナー処理してもよい。
 また、ミクロフィブリル化植物繊維は、セルロース繊維含有材料を水酸化アルカリ水溶液、アンモニア水等のアルカリ溶液で処理されたものであってもよい。アルカリ処理を行う場合、ミクロフィブリル化植物繊維は、セルロース繊維含有材料をリファイナー等によりアルカリ溶液処理を効率よく行える形状(例えば、粉体、繊維状、シート状等)とした後、アルカリ溶液処理し、この処理物を高圧ホモジナイザー、2軸混練機、媒体撹拌ミル、石臼、グラインダー等により磨砕及び/又は叩解して得られるものであってもよいし、リファイナー処理後、高圧ホモジナイザー、2軸混練機、媒体撹拌ミル、石臼、グラインダー等により磨砕及び/又は叩解等により解繊処理を行った後に、アルカリ溶液処理して得られるものであってもよい。
 本発明の第2の実施形態で使用するミクロフィブリル化植物繊維の繊維径は、本発明の効果が得られる範囲であれば特に限定されることはないが、例えば、平均繊維径が4nm~400nmであることが好ましく、4nm~200nmであることがより好ましく、4nm~100nmであることがより一層好ましい。また、繊維長も本発明の効果が得られる範囲であれば特に限定されることはないが、例えば、平均繊維長が50nm~50μmであることが好ましく、100nm~10μmであることがより好ましい。
 また、本発明の第2の実施形態で使用するミクロフィブリル化植物繊維は、通常、解繊処理により繊維または繊維状のものが絡まり合ってひとまとまりの状態になった繊維集合体の形状を呈しているが、集合体自体の大きさは特に限定されず、さまざまな大きさのものを用いることができる。
 ただし、本発明の第2の実施形態に係る製造方法において、低温で、かつ、より低い成形圧力で、機械的強度に優れた成形体を製造する場合には、ミクロフィブリル化植物繊維がヘミセルロースを含み、かつ比表面積が5~20m/gのミクロフィブリル化植物繊維を用いることが好ましい。
 本発明の第2の実施形態において、好ましいミクロフィブリル化植物繊維は、ヘミセルロースを含有する。ミクロフィブリル化植物繊維中のヘミセルロースの含有量は、本発明の効果を損なう範囲でなければ特に限定されるものではなく、通常、その存在が確認できればよいが、好ましくは、その下限値は5重量%程度が好ましく、8重量%程度がより好ましく、11重量%程度がさらに好ましく、一方、上限値は30重量%程度が好ましく、20重量%程度がより好ましく、17重量%程度がさらに好ましい。
 ミクロフィブリル化植物繊維中のヘミセルロースの種類は特に制限はないが、具体的にはグルコマンナン、グルクロノキシラン、アラビノグルクロノキシラン等の多糖が挙げられる。ヘミセルロースの含有量を調整するには、原材料であるセルロース繊維含有材料の種類や成形材料の用途、加工法等によって異なるため一概には言えないが、例えば、目的に応じセルロース繊維含有原材料をアルカリ溶液で処理することにより減少させたり、植物繊維のアルカリ抽出物等のヘミセルロースを含む溶液をミクロフィブリル化植物繊維に加えることで上記範囲内に調整することができる。生産性の観点からはヘミセルロースの含有量が上記範囲内にあるセルロース繊維含有材料を解繊することによって得られたものをミクロフィブリル化植物繊維として使用することが好ましい。
 該アルカリ溶液処理は、セルロース結晶形を変化させない範囲であれば水酸化ナトリウム、水酸化カリウム、アンモニア水などのアルカリを用い、公知慣用の方法で処理すればよい。例えば水酸化ナトリウムを用いた場合では、概ね10%以下、好ましくは3~5%の濃度で、室温以下、12~24時間処理して、ミクロフィブリル化植物繊維中のヘミセルロース含有量を上記の範囲内に収めるように行えばよい。
 なお、前記の通り、これらのヘミセルロースは植物中ではセルロースと水素結合により会合し細胞壁を形成している。ミクロフィブリル化植物繊維と不飽和ポリエステル樹脂とを含む成形体中において、ヘミセルロースはこの水素結合能によりフィブリル化植物繊維の繊維集合体の繊維間の結合強度を補強する効果があり、結果として成形体の強度向上に寄与すると考えられる。このため、ミクロフィブリル化植物繊維中のヘミセルロースの存在は好ましい。
 ミクロフィブリル化植物繊維中のヘミセルロース含有量が低いと成形体中の樹脂率(成形材料中の不飽和ポリエステル樹脂の含有量)が高くなる傾向にあり、一方、ヘミセルロース含有率が高いと成形体中の樹脂率が低くなる傾向にある。そのため、ミクロフィブリル化植物繊維中のヘミセルロース含有量を上記範囲内とすることで、不飽和ポリエステルとの含浸性が向上し、最適な範囲の樹脂率を達成できるので複合化や成形性もさらに良くなり、その結果、より機械強度に優れた成形体を得ることができるため好ましい。ヘミセルロース含有量の数値は、成形体とした時に求められる機械特性等に応じ、上記範囲内で適宜設定すればよい。
 上述したセルロース繊維含有材料としては、ヘミセルロースを含有するものであれば公知慣用のものを使用でき、例えば、植物原料、より具体的には、木材、竹、麻、ジュート、ケナフ、綿、ビート、農産物残廃物、布や、これらの植物原料から得られるパルプが挙げられ、特に、該パルプが好ましい原材料として挙げられる。前記パルプとしては、植物原料を化学的、又は機械的に、または両者を併用してパルプ化することで得られるケミカルパルプ(クラフトパルプ(KP)、亜硫酸パルプ(SP))、セミケミカルパルプ(SCP)、セミグランドパルプ(CGP)、ケミメカニカルパルプ(CMP)、砕木パルプ(GP)、リファイナーメカニカルパルプ(RMP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)、及び、これらの植物繊維を主成分とする脱墨古紙パルプ、段ボール古紙パルプ、雑誌古紙パルプが好ましいものとして挙げられる。
 これらの原材料は、必要に応じ、脱リグニン、又は漂白を行い、当該植物繊維中のリグニン量を調整することができる。脱リグニン、又は漂白工程は解繊前に行っても良いし解繊後に行っても構わない。
 これらのパルプの中でも、繊維の強度が強い針葉樹由来の各種クラフトパルプ(針葉樹未漂白クラフトパルプ(以下、NUKPということがある)、針葉樹酸素晒し未漂白クラフトパルプ(以下、NOKPということがある)、針葉樹漂白クラフトパルプ(以下、NBKPということがある))を解繊処理して製造されたミクロフィブリル化植物繊維を使用することが特に好ましい。
 本発明の第2の実施形態に用いるミクロフィブリル化植物繊維は、ヘミセルロース含有量が上記の好ましい範囲内にあるパルプを解繊することによって得られたものであることが好ましい。
 なお、ミクロフィブリル化植物繊維中のヘミセルロース含有量は、ミクロフィブリル化植物繊維中に含まれるヘミセルロースとセルロースとの合計量(重量)中のヘミセルロースの含有量(重量)を百分率で表した含有率(重量%)で表される値とする。
 本発明の第2の実施形態で使用する好ましいミクロフィブリル化植物繊維の比表面積は、通常、その下限値が5m/g、好ましくは7m/g、より好ましくは9m/gであり、一方、上限値は20m/g、好ましくは18m/g、より好ましくは16m/gである。
 ミクロフィブリル化植物繊維が上記範囲内の場合には比表面積が大きくなるに伴い、植物繊維間の絡み合いや水素結合が多数生じる結果、高い強度の成形体が得られるものと考えられる。しかし、比表面積が20m/gを越えて大きくなると、成形体の強度が低くなったり、また、成形体に界面剥離が発生して所定の機械的強度が得られなかったり、例えば、含浸法により成形材料を得る場合、樹脂との複合材料を得る前のフィブリル化植物繊維の繊維集合体を得るのに脱水や乾燥により多くの時間を要する等、生産性や成形性が低くなることがある。また、比表面積が20m/gを越えて大きくなると、成形体中の樹脂率が適切であっても成形体の機械強度が低くなることもある。
 一方、比表面積が5m/gより小さいと(例えば、未解繊のセルロース繊維含有材料を使用)、成形体中の樹脂の含有率(樹脂率)が高くなり、成形体の機械的強度が低くなる傾向にある。この為、機械強度の観点からは、ミクロフィブリル化植物繊維の比表面積は5~20m/gに調整することが好ましく、上記範囲内で機械強度に優れた成形体が得られ、中でも7~18m/g、特に9~16m/gの範囲内で特に優れた機械強度を有する成形体が得られる。比表面積の数値は、成形体とした時に求められる機械特性等に応じ、上記範囲内で適宜設定してもよい。
 ミクロフィブリル化植物繊維の比表面積は、原材料のヘミセルロース繊維含有材料を公知慣用の解繊方法により適宜調整して、上記範囲内にすることが好ましい。セルロース繊維含有材料の解繊処理の方法は、例えば、前記セルロース繊維含有材料を水に懸濁、撹拌してスラリーとし、これをリファイナー、高圧ホモジナイザー、グラインダー、2軸混練機等により機械的に摩砕、ないし叩解することにより解繊する方法が挙げられる。必要に応じて、リファイナー処理後に2軸混練機処理を行うといったように、上記の解繊方法を組み合わせて処理することが好ましい。
 また、上述のとおり、ミクロフィブリル化植物繊維は、セルロース繊維含有材料を水酸化アルカリ水溶液、アンモニア水等のアルカリ溶液で処理されたものであってもよい。アルカリ処理を行う場合、ミクロフィブリル化植物繊維は、セルロース繊維含有材料をリファイナー等によりアルカリ溶液処理を効率よく行える形状(例えば、粉体、繊維状、シート状等)とした後、アルカリ溶液処理し、この処理物を2軸混練機等により解繊処理して得られるものであってもよいし、リファイナー処理、高圧ホモジナイザー処理、グラインダー処理、2軸混練機等により解繊処理を行った後に、アルカリ溶液処理して得られるものであってもよい。
 なお、本発明の第2の実施形態におけるミクロフィブリル化植物繊維は、通常、ミクロフィブリル化植物繊維を水に分散させた水分散体を作製した後、ろ過や圧搾等の脱水工程や乾燥工程を経て得られる。また、本発明における成形材料は、通常、このミクロフィブリル化植物繊維に樹脂を混合することにより得られている。この為、本発明で用いる比表面積は実施例においても詳述しているとおり、ミクロフィブリル化植物繊維の水分散液を乾燥させた試料について、Nガスを用いたBET法にて測定した値を用いるものとする。すなわち、ミクロフィブリル化植物繊維に、固形分10重量%になるように蒸留水を加え、これらを凍結乾燥したのち、100 ℃加熱下で30分間乾燥(前処理)した後、BET一点法(混合ガス(N 30%、He 70% )で表面積を測定し、比表面積を算出した値とする。
 ミクロフィブリル化植物繊維中のリグニン含有量は、通常2~70 重量%程度、好ましくは5~70 重量%程度である。不飽和ポリエステル樹脂は疎水性の樹脂である為、ミクロフィブリル化植物繊維の表面が疎水性のリグニンで覆われていると樹脂含浸性等の面で好ましいことがある。ミクロフィブリル化植物繊維中のリグニン含有量は、後述の実施例に記載の方法により測定して得られた値である。
 本発明の第2の実施形態で使用する不飽和ポリエステル樹脂は、前記本発明の第1の実施形態で使用する不飽和ポリエステル樹脂と同じものが挙げられ、同様の調製方法により得られるものである。
 また、第2の実施形態における不飽和ポリエステル樹脂には、第1の実施形態と同様の各種添加剤、例えば硬化剤、ワックス類、離型剤、紫外線吸収剤、顔料、老化防止剤、可塑剤、難燃剤、安定剤、消泡剤、レベリング剤、シランカップリング剤等を使用してもよい。
 本発明の第2の実施形態に使用する成形材料は、前記不飽和ポリエステル樹脂及び前記フィブリル化植物繊維を必須成分として含む。該成形材料中の、不飽和ポリエステル樹脂の含有量(樹脂率)は通常3~95重量%程度、好ましくは10~90重量%程度の範囲内である。該樹脂率は、成形体の用途に応じて必要とされる機械強度と、他の一般特性とのバランスをとって適宜調整すればよい。
 本発明の第2の実施形態に使用する成形材料は、第1の実施形態と同様、不飽和ポリエステル樹脂及びフィブリル化植物繊維に加えて、必要に応じて他の成分を含んでいてもよい。他の成分としては、前記第1の実施形態と同じものが挙げられる。
 (II-2)成形材料の製造方法
 本発明の第2の実施形態に使用する成形材料は、前記不飽和ポリエステル樹脂、前記フィブリル化植物繊維及び必要に応じて添加される他の成分を混合することにより得られる。これらの成分の混合方法は特に限定されないが、例えば、フィブリル化植物繊維の繊維集合体に不飽和ポリエステル樹脂を含浸させる方法や、フィブリル化植物繊維の繊維集合体と不飽和ポリエステル樹脂とを混練させる方法が挙げられる。
 フィブリル化植物繊維の繊維集合体の形態は特に限定はないが、例えばフィブリル化植物繊維の分散体をワイヤーやメッシュ等でろ過した後、乾燥して得られるシート化状物や、ワイヤー基盤に塗布後、乾燥することで得られるフィルム状物、型等に入れた後、プレスや加温にて脱水することにより作成されるモールド状物、あるいはそれらを粉砕して得られた粉体物とすれば良い。また、生産性や、エネルギー消費量等に悪影響を及ぼさない範囲で、上記のフィブリル化植物繊維の繊維集合体を得る前の含水状態のフィブリル化植物繊維の繊維集合体を数回溶媒で洗浄した後に、乾燥することでフィブリル化植物繊維の繊維集合体としたり、含水状態の繊維集合体を凍結乾燥させることでフィブリル化植物繊維の繊維集合体を得ても良い。
 例えば、フィブリル化植物繊維のシート状物に不飽和ポリエステル樹脂及び必要に応じてその他の成分を含浸させるとシート状の成形材料を得ることができる。
 フィブリル化植物繊維の繊維集合体をシート状物とする場合、繊維集合体の厚みは、通常10~500μm程度、好ましくは50~300μm程度である。シート状物が薄すぎると強度等が低下したりする恐れがあり、また、シート状物の厚さが厚すぎると樹脂との複合に時間を要することがある。
 含浸方法は、フィブリル化植物繊維の繊維集合体の形状等により適宜選択すればよいが、例えば、フィブリル化植物繊維の繊維集合体に不飽和ポリエステル樹脂を浸漬させる方法が挙げられる。浸漬は、常圧下、又は減圧下で行われる。
 成形材料がシート状である場合、必要枚数を積層して使用することができる。シート状の成形材料の厚みは目的とする成形体の用途に合わせて適宜調整すればよく、特に限定されるものではないが、通常10μm~10cm程度である。
 フィブリル化植物繊維の繊維集合体に不飽和ポリエステル樹脂及び必要に応じてその他の成分を含浸させる際、ミクロフィブリル化植物繊維中のヘミセルロースを含有し、かつミクロフィブリル化植物繊維の比表面積が上記範囲内にあると、フィブリル化植物繊維の繊維集合体(特にシート状物)への不飽和ポリエステル樹脂の含浸程度が良好で、成形性に優れ、かつ成形材料を硬化した後、機械強度に優れた成形体が得られるため好ましい。
 本発明に使用する成形材料の形状は、成形・加工のしやすさ、目的とする成形体の形状・機械強度等に応じて適宜選択すればよい。
 (II-3)成形体
 本発明の第2の実施形態に使用する成形体は、前記成形材料を硬化することによって得られる。成形材料の硬化方法としては、通常の熱可塑性樹脂組成物の成形方法と同様な方法をいずれも適用することができ、例えば、金型成形、射出成形、押出成形、中空成形、発泡成形等を採用することができる。本発明の成形体は、前記成形材料を加熱圧縮により硬化して得られるものが好ましい。
 成形材料を加熱圧縮して硬化する場合、加熱温度、圧力は、成形材料の組成・形状等に応じて適宜選択すればよい。成形材料を硬化する際の加熱温度は、通常60~150℃程度、好ましくは80~130℃程度である。
 また、成形材料を硬化する際の圧力は、0.1~100MPa程度、好ましくは0.2~10MPa程度、より好ましくは0.5~5MPa程度である。また、加熱圧縮時間は、加熱温度、圧力等に応じて適宜選択すればよく、通常3分~10時間程度である。
 成形材料がシート状である場合、例えば、該シート状の成形材料を金型に入れ、加熱圧縮して硬化する方法を採用することができる。シート状の成形材料を2枚以上重ね、これを加熱圧縮して1つの成形体を得ることもできる。
 本発明の第2の実施形態における成形体の樹脂率(成形体中に含まれる不飽和ポリエステル樹脂の割合)は、成形材料を作製する際のプレス圧やプレス時間等の成形条件の調整、ミクロフィブリル化植物繊維中のヘミセルロースの含有量及びミクロフィブリル化植物繊維の比表面積を上記範囲内で調節することにより適宜設定することができ、通常3~95重量%程度、好ましくは10~90重量%程度である。
 本発明の第2の実施形態における成形体の密度は、使用するミクロフィブリル化植物繊維、不飽和ポリエステル樹脂等の種類、使用割合等によって変化するが、通常1.0~1.5g/cm程度である。成形体の密度、曲げ弾性率及び曲げ強度は、実施例に記載の方法により測定した値である。
 本発明の第2の実施形態で得られる成形体は、高い機械強度を有しているので、例えば、従来ミクロフィブリル化植物繊維成形体、ミクロフィブリル化植物繊維含有樹脂成形体が使用されていた分野に加え、従来のミクロフィブリル化植物繊維成形体及びミクロフィブリル化植物繊維含有樹脂成形体よりも高い機械強度(耐衝撃性等)が要求される分野にも使用できる。例えば、自動車、電車、船舶、飛行機等の輸送機器の内装材、外装材、構造材等;パソコン、テレビ、電話、時計等の電化製品等の筺体、構造材、内部部品等;携帯電話等の移動通信機器等の筺体、構造材、内部部品等;携帯音楽再生機器、映像再生機器、印刷機器、複写機器、スポーツ用品等の筺体、構造材、内部部品等;建築材;文具等の事務機器等として有効に使用することができる。
 本発明の第1の実施形態によれば、本発明の不飽和ポリエステル成形材料は、不飽和ポリエステル樹脂に本発明のミクロフィブリル化植物繊維を混合することによって、均質な成形が可能になり、その結果、得られる成形体に対して優れた機械強度を付与することができる。また、該成形材料の製造方法により該不飽和ポリエステル成形材料を提供できる。
 また、通常、ミクロフィブリル化植物繊維を含む樹脂材料を成形するには、数十MPaという高い成形圧力が必要であるが、ミクロフィブリル化植物繊維及び不飽和ポリエステル樹脂を使用する本発明の第2の実施形態に係る製造方法によれば、低温で、かつ低い成形圧力であっても、シート状の成形材料から目的とする成形体を得ることができる。特に、シート状の成形材料を2枚以上重ね、これを圧縮して1つの成形体とする場合にも、低い成形圧力であっても、シート状の成形材料から目的とする成形体が得られるという優れた効果を奏する。本発明の製造方法によって得られた成形体は、高い機械強度が求められる分野に有効に利用できる。
 以下、本発明の第1の実施形態及び第2の実施形態の実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
 I.第1の実施形態
 製造例I-1(NUKP リファイナー4回+2軸解繊)
 製紙用針葉樹未漂白クラフトパルプ(王子製紙株式会社製)(NUKP)を水に懸濁し、十分に攪拌して4重量%スラリーとした。このスラリーをリファイナーで4回繰り返し処理した後、ろ過し、パルプ濃度を20重量%に調整した。次いで、下記の条件で2軸混練機に投入して解繊処理(処理速度120g/h)を行うことによりミクロフィブリル化植物繊維(1)(MFPF(1))を得た。得られたミクロフィブリル化植物繊維(1)を走査型電子顕微鏡(SEM)で観察したところ、繊維径が数十nmのナノ解繊繊維が観察された。
 2軸混練機
株式会社テクノベル製二軸押出機
スクリュウ直径=15mm
スクリュウ長さ/スクリュウ直径比=45
スクリュウ回転数=400rpm。
 製造例I-2(NUKP リファイナー処理1回+2軸解繊)
 リファイナー処理を1回のみとした以外は製造例I-1と同様にしてミクロフィブリル化植物繊維(2)を得た。
 製造例I-3(NOKP リファイナー処理4回+2軸解繊)
 製紙用針葉樹未漂白クラフトパルプ(NUKP)の替わりに、製紙用針葉樹酸素晒し未漂白クラフトパルプ(王子製紙株式会社製)(NOKP)を用いたこと以外は製造例I-1と同様にしてミクロフィブリル化植物繊維(3)を得た。
 製造例I-4(NBKP(ヘミセルロース多) リファイナー処理4回+2軸解繊)
 製紙用針葉樹未漂白クラフトパルプ(NUKP)の替わりに、製紙用針葉樹漂白クラフトパルプ(王子製紙株式会社製)(「NBKP」)を用いたこと以外は製造例I-1と同様にしてミクロフィブリル化植物繊維(4)を得た。
 製造例I-5(NBKP(ヘミセルロース少) リファイナー処理4回+2軸解繊)
 製造例I-4で製造したミクロフィブリル化植物繊維(4)12 gを3%水酸化ナトリウム水溶液1.2 Lに分散させ、室温にて24時間攪拌した。反応終了後、吸引ろ過し、残渣を蒸留水1 Lに十分に分散させた後、再度スラリーをろ過した。ろ液が完全に中性になるまでこの操作を繰り返した。中性であることを確認した後、再度ろ過し、脱ヘミセルロース化したミクロフィブリル化植物繊維(5)を得た。
 製造例I-6 (NUKP リファイナー処理4回 2軸解繊なし)
 製紙用NUKPを水に懸濁して、十分に攪拌し、4重量%スラリーとした後、リファイナー処理を4回繰り返して、ミクロフィブリル化植物繊維(6)を得た。
 参考製造例I-1 (セリッシュ)
 セリッシュ(ダイセル化学工業株式会社製。KY100G 濃度10%)をミクロフィブリル化植物繊維(7)とした。
 参考製造例I-2 (NUKP リファイナー処理1回 2軸解繊なし)
 製紙用NUKPを水に懸濁して、十分に攪拌し、4重量%スラリーとした後、リファイナー処理を1回行い、ミクロフィブリル化植物繊維(8)を得た。
 参考製造例I-3 (NBKP リファイナー処理を30回 高圧ホモジナイザー処理)
 製紙用NBKPを水に懸濁して、十分に攪拌し、2重量%スラリーとした後、リファイナー処理を30回繰り返した。その後、0.5重量%へ希釈した後、処理圧力:120MPaで高圧ホモジナイザ処理を10回繰り返してミクロフィブリル化植物繊維(9)を得た。
 測定例I-1(比表面積の測定)
 ミクロフィブリル化植物繊維(1)~(9)に、それぞれ固形分10重量%になるように蒸留水を加え、これらを凍結乾燥した。得られた各凍結乾燥試料をサンプルセルに入るように細かくしてから測定装置に供した。測定装置は、流動式比表面積自動測定装置 フローソーブII 2300(Micromeritics(マイクロメリティックス)社製)を使用した。試料はサンプルセルに入れ、100 ℃、30分間、混合ガス(N 30%、He 70%)を流して乾燥(前処理)した後、BET一点法(混合ガス(N 30%、He 70% )で表面積を測定した。測定後、セル中の試料量を精秤し、比表面積を算出した。結果を表1に示す。
 測定例I-2 (リグニン含有量の測定)
 ミクロフィブリル化植物繊維中のリグニン含有量の測定には、Klason法(硫酸法)を採用した。すなわち、木材構成多糖類を酸加水分解により水可溶とし、リグニンを酸触媒縮重反応により水不溶物として分離し定量した。以下、測定方法を詳述する。
 凍結乾燥したミクロフィブリル化植物繊維(1)~(9)各1000 mgに、それぞれ72%硫酸15 mlを徐々に加えて20℃で2時間加温した。その後、560 mlの水を加えオートクレーブ中120 ℃で1時間加熱した。得られた不溶沈殿物を濾過し秤量した。以下の式にてリグニン含有量(R)を算出した。結果を表1に示す。
リグニン含有量(重量%)=(不溶沈殿物の重量(mg)/試料重量(mg))×100
 測定例I-3 (ヘミセルロース含有量の測定)
 アルジトールアセテート法を適用した。すなわち、試料を酸加水分解し、遊離した単糖類を還元した後、生成したアルジトールをアセチル化してガスクロマトグラフィにより定量した。以下、詳述する。
 凍結乾燥したミクロフィブリル化植物繊維(1)~(9)各30 mgに、それぞれ72%硫酸0.3 mlに加えて30℃で1時間放置する。その後、水8.4 mlを加え、オートクレーブ中で120 ℃で1時間加熱した。その反応液に2%イノシトール0.5 mlを加えた後、飽和Ba(OH)水溶液を用いてpH5.5~5.8に調整した。次いで、その上澄み2 mlを取り、水酸化ホウ素ナトリウム(NaBH)を加えて水溶液中の単糖類を還元してアルジトールとした。生成したアルジトールに無水酢酸2 mlと硫酸0.1 mlを加えて、アセチル化した後にガスクロマトグラフィ((株)島津製作所製 Shimadzu GC-18A型)により定量分析した。なお、ガラクトグルコマンナンとキシランの合計の重量をヘミセルロース重量として、ミクロフィブリル化植物繊維中に含まれるセルロース、ヘミセルロースおよびリグニンの合計量中のヘミセルロース含有量(H (重量%))を算出した。結果を表1に示す。
 測定例I-2と測定例I-3より、ミクロフィブリル化植物繊維中に含まれるヘミセルロースとセルロースの合計量中のヘミセルロースの含有量(H’ (重量%))を算出した。ただし、ミクロフィブリル化植物繊維中の構成成分は、セルロース、リグニン及びヘミセルロースからなるものとして計算した。この結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例I-1~I-6及び参考例I-1~I-3 (MFPFシート状物と樹脂含浸複合体の製造)
 ミクロフィブリル化植物繊維(1)~(9)を、それぞれ固形物が0.5 重量%になるよう水を加えて、ミキサー(松下電気産業株式会社製「HX-V200」)で5分間高速攪拌し、ミクロフィブリル化植物繊維(MFPF)水分散体を得た。次に、室温下で上記MFPF水分散体をろ紙(アドバンテック東洋株式会社製;5A)を用いて減圧脱水し、坪量100g/mの円形(半径8 cm)の湿紙を作製した。その後、湿紙を乾いたろ紙で挟んだ後、金属製のローラーを用いてクーチを行い、予備脱水を行った。次いで、湿紙をホットプレートで乾燥させ、MFPFシート状物(1)~(9)を作製した。
 得られたMFPFシート状物(1)~(9)を幅30 mm × 長さ40 mm にカットして105 ℃、2時間乾燥させ、重量を測定した。次に、該MFPFシート状物に不飽和ポリエステル樹脂(ディーエイチ・マテリアル株式会社製「サンドーマFG-283」)100重量部にベンゾイルパーオキサイド(日油株式会社製「ナイパーFF」)1重量部を加えた樹脂液に浸漬させた。浸漬は減圧下(真空度:0.01 MPa、時間:0.5 h)で行い、不飽和ポリエステル樹脂含浸MFPFシート状物(1)~(9)を得た。次に、該不飽和ポリエステル樹脂含浸MFPFシート状物(1)~(9)を、それぞれ同じものを12枚重ねた後、余分な樹脂を扱き出した後、金型に入れ、加熱プレス(温度:90 ℃、時間:0.5 h)を行い、MFPF-不飽和ポリエステル樹脂複合体の成形物(1)~(9)を得た。なお、得られた成形物(1)~(9)の重量を測定し、前記MFPFシート状物(1)~(9)の乾燥重量との差から樹脂率 (重量%)を算出した。各測定結果を表2に示す。
 参考例I-4(不飽和ポリエステルのみからなる成形物の製造)
 不飽和ポリエステル樹脂液のみを金型に入れ、実施例I-1~I-6及び参考例I-1~I-3と同様にして加熱プレスを行い、成形物(10)を得た。各測定結果を表2に示す。
 試験例I-1(密度の測定)
 成形物(1)~(10)の長さ、幅をノギス(株式会社ミツトヨ製)で正確に測定した。厚さを数箇所マイクロメーター(株式会社ミツトヨ製)で測定し、成形物の体積を計算した。別途、成形物の重量を測定した。得られた重量、体積より密度を算出した。結果を表2に示す。
 試験例I-2(曲げ弾性率及び曲げ強度の測定)
 成形物(1)~(10)から厚さ約1.2 mm、幅7 mm、長さ40 mmのサンプルを作製し、変形速度5 mm/minで曲げ弾性率及び曲げ強度を測定した(ロードセル:5kN)。測定機として万能材料試験機インストロン3365型(インストロンジャパンカンパニイリミテッド製)を用いた。測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 製造例I-7(NUKP リファイナー4回+2軸解繊 比表面積大)
 ミクロフィブリル化植物繊維(1)の比表面積が15.4m/gとなるまで2軸混練機での解繊を進めたこと以外は製造例I-1と同様にしてミクロフィブリル化植物繊維(11)を得た。測定例I-1、I-2、I-3と同様にして、比表面積及びヘミセルロース含有量を算出した。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 実施例I-7~I-8(MFPFシート状物と樹脂含浸複合体の製造)
製造例I-1、製造例I-7において得られたミクロフィブリル化植物繊維(1)、(11)を用いて、実施例I-1~I-6と同様の方法にて、MFPFシート状物(1’)、(11)を製造した。得られたMFPFシート状物を幅15mm × 長さ65 mmにカットして樹脂を含浸させ該不飽和ポリエステル樹脂含浸MFPFシート状物(1’)、(11)を作製した後、同じものを25枚重ねて加熱プレスした以外は、実施例I-1と同様に行い、MFPF-不飽和ポリエステル樹脂複合体の成形物(1’)、(11)を得た。試験例I-1と同様にして密度を測定した。その結果を表4に示す。
 試験例I-3(曲げ弾性率及び曲げ強度の測定)
 成形物(1’)、(11)から厚さ約2 mm、幅7 mm、長さ50 mmのサンプルを作製し、変形速度5 mm/minで曲げ弾性率及び曲げ強度を測定した(ロードセル:5kN)。測定機として万能材料試験機インストロン3365型(インストロンジャパンカンパニイリミテッド製)を用いた。測定結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 実施例I-1、I-2、I-6と参考例I-2は何れもリグニンを同程度(6 重量%)含む植物繊維を原料として得られたミクロフィブリル化植物繊維である。これらの比較より前述の範囲でミクロフィブリル化植物繊維の比表面積を上げることにより得られた成形体の曲げ強度および曲げ弾性率が向上できることが分かる。比表面積の増大によりミクロフィブリル化植物繊維間の相互作用(水素結合等)が増大した為、得られた成形体の強度が向上したものと思われる。
 また、実施例I-4、I-5、参考例I-1、I-3もリグニン0 重量%の植物繊維を原料として得られたミクロフィブリル化植物繊維である。ミクロフィブリル化植物繊維の比表面積やヘミセルロース量が異なる。比表面積が高く、かつヘミセルロース量も多い参考例I-3では同じ成形条件では、不飽和ポリエステル樹脂の含浸性が非常に悪く、ミクロフィブリル化植物繊維集合体中に樹脂が均一に含浸した成形体を作成できなかった。この為、得られた成形体の曲げ強度および曲げ弾性率は他の成形体と比較し大きく劣った。参考例I-1は比表面積が大きく、ヘミセルロース量が少ない例である。比表面積が高くても、ヘミセルロース量が少なければ成形体を得られるものの得られた成形体の強度は実施例I-4、I-5と比較し大きく劣る。更に、実施例I-4、I-5は比表面積が同等であるが、実施例I-5の成形体は実施例I-4よりもヘミセルロース量が少ない。表2に示されるように、実施例I-4の方が実施例I-5よりも曲げ強度および曲げ弾性率ともに優れる。
 ヘミセルロースはミクロフィブリル化植物繊維中で繊維間結合を促進する働きがあるものと思われ、これが多いと比表面積が高すぎる場合と同様に、不飽和ポリエステル樹脂とミクロフィブリル化植物繊維間の界面結合強度が低下する傾向にある為、結果として得られた成形体の強度が低くなる傾向にあるものと思われる。これらより、高い強度の樹脂成形体を得る為には、ヘミセルロースを含むミクロフィブリル化植物繊維の比表面積を前述の範囲に調整する必要があることが分かる。さらに、より高い強度の樹脂成形体を得る為には、樹脂と複合するミクロフィブリル化植物繊維の比表面積や、ヘミセルロース量を前述の範囲に調整する必要があることが分かる。
 II.第2の実施形態
 製造例II-1(NUKP リファイナー4回+2軸解繊)
 製紙用針葉樹未漂白クラフトパルプ(王子製紙株式会社製)(NUKP)を水に懸濁し、十分に攪拌して4重量%スラリーとした。このスラリーをリファイナーで4回繰り返し処理した後、ろ過し、パルプ濃度を20 重量%に調整した。次いで、下記の条件で2軸混練機に投入して解繊処理(処理速度120g/h)を行うことによりミクロフィブリル化植物繊維(MFPF)を得た。得られたミクロフィブリル化植物繊維を走査型電子顕微鏡(SEM)で観察したところ、ナノ繊維化繊維径が数十nmの解繊繊維が観察された。
 2軸混練機
株式会社テクノベル製二軸押出機
スクリュウ直径=15mm
スクリュウ長さ/スクリュウ直径比=45
スクリュウ回転数=400rpm。
 測定例II-1(比表面積の測定)
 ミクロフィブリル化植物繊維に、固形分10重量%になるように蒸留水を加え、これらを凍結乾燥した。得られた各凍結乾燥試料をサンプルセルに入るように細かくしてから測定装置に供した。測定装置は、流動式比表面積自動測定装置 フローソーブII 2300(Micromeritics(マイクロメリティックス)社製)を使用した。試料はサンプルセルに入れ、100℃、30分間、混合ガス(N 30%、He 70%)を流して乾燥(前処理)した後、BET一点法(混合ガス(N 30%、He 70% ))で表面積を測定した。測定後、セル中の試料量を精秤し、比表面積を算出した。結果を表5に示す。
 測定例II-2 (リグニン含有量の測定)
 ミクロフィブリル化植物繊維中のリグニン含有量の測定には、Klason法(硫酸法)を採用した。すなわち、木材構成多糖類を酸加水分解により水可溶とし、リグニンを酸触媒縮重反応により水不溶物として分離し定量した。以下、測定方法を詳述する。
 凍結乾燥したミクロフィブリル化植物繊維1000 mgに、72%硫酸15 mlを徐々に加えて20℃で2時間加温した。その後、560 mlの水を加えオートクレーブ中120 ℃で1時間加熱した。得られた不溶沈殿物を濾過し秤量した。以下の式にてリグニン含有量(R)を算出した。結果を表5に示す。
リグニン含有量(重量%)=(不溶沈殿物の重量(mg)/試料重量(mg))×100
 測定例II-3 (ヘミセルロース含有量の測定)
 アルジトールアセテート法を適用した。すなわち、試料を酸加水分解し、遊離した単糖類を還元した後、生成したアルジトールをアセチル化してガスクロマトグラフィにより定量した。以下、詳述する。
 凍結乾燥したミクロフィブリル化植物繊維30 mgに、72%硫酸0.3 mlに加えて30℃で1時間放置する。その後、水8.4 mlを加え、オートクレーブ中で120 ℃で1時間加熱した。その反応液に2%イノシトール0.5 mlを加えた後、飽和Ba(OH)水溶液を用いてpH5.5~5.8に調整した。次いで、その上澄み2 mlを取り、水酸化ホウ素ナトリウム(NaBH)を加えて水溶液中の単糖類を還元してアルジトールとした。生成したアルジトールに無水酢酸2 mlと硫酸0.1 mlを加えて、アセチル化した後にガスクロマトグラフィ((株)島津製作所製 Shimadzu GC-18A型)により定量分析した。なお、ガラクトグルコマンナンとキシランの合計の重量をヘミセルロース重量として、ミクロフィブリル化植物繊維中に含まれるセルロース、及びヘミセルロース及びリグニンの合計量中のヘミセルロース含有量(H(重量%))を算出した。結果を表5に示す。
 測定例II-2と測定例II-3より、ミクロフィブリル化植物繊維中に含まれるヘミセルロースとセルロースの合計量中のヘミセルロースの含有量(H’(重量%))を算出した。ただし、ミクロフィブリル化植物繊維中の構成成分は、セルロース、リグニン及びヘミセルロースからなるものとして計算した。この結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 実施例II-1 (MFPFシート状物と不飽和ポリエステル樹脂含浸複合体の製造)
 ミクロフィブリル化植物繊維を、固形物が0.5 重量%になるよう水を加えて、ミキサー(松下電気産業株式会社製「HX-V200」)で5分間高速攪拌し、ミクロフィブリル化植物繊維(MFPF)水分散体を得た。次に、室温下で上記MFPF水分散体をろ紙(アドバンテック東洋株式会社製;5A)を用いて減圧脱水し、坪量100g/mの円形(半径8 cm)の湿紙を作製した。その後、湿紙を乾いたろ紙で挟んだ後、金属製のローラーを用いてクーチを行い、予備脱水を行った。次いで、湿紙をホットプレートで乾燥させ、MFPFシート状物を作製した。
 得られたMFPFシート状物を幅30 mm × 長さ40 mm にカットして105 ℃、2時間乾燥させ、重量を測定した。次に、該MFPFシート状物に不飽和ポリエステル樹脂(ディーエイチ・マテリアル株式会社製「サンドーマFG-283」)100重量部にベンゾイルパーオキサイド(日油株式会社製「ナイパーFF」)1重量部を加えた樹脂液に浸漬させた。浸漬は減圧下(真空度:0.01 MPa、時間:0.5 h)で行い、不飽和ポリエステル樹脂含浸MFPFシート状物を得た。次に、該不飽和ポリエステル樹脂含浸MFPFシート状物を、それぞれ同じものを12枚重ねた後、余分な樹脂を扱き出した後、金型に入れ、表6~9に記載の加熱温度、加熱時間にて加熱プレスを行い、MFPF-不飽和ポリエステル樹脂複合体の成形物を得た。なお、得られた成形物の重量を測定し、前記MFPFシート状物の乾燥重量との差から樹脂率 (重量%)を算出した(表6~9)。また、下記試験例II-1に従い機械的強度を測定した(表6~9)。
 参考例II-1 (FRPシート状物(不飽和ポリエステル樹脂とガラス繊維)の製造)
 ミクロフィブリル化植物繊維シート状物の替わりにガラス繊維(日東紡株式会社製「PB-549」)からなるシート状物を25~30重量%になるように用いたこと以外は実施例II-1と同様にして、ガラス繊維-不飽和ポリエステルル樹脂複合体(FRP)の成形物のシート状物を得た。実施例II-1と同様に樹脂率(重量%)と機械的強度を測定した(表6~9)。
 参考例II-2 (不飽和ポリエステル樹脂シート状成形物の製造)
 不飽和ポリエステル樹脂100重量部にベンゾイルパーオキサイド1重量部を加えた後、金型に入れ、実施例II-1と同様、表に記載の加熱温度、加熱時間にて加熱プレスを行い不飽和ポリエステル樹脂のみからなる成形物のシート状物を得た。実施例II-1と同様に樹脂率(重量%)と機械的強度を測定した(表6~9)。
 参考例II-3 (MFPFシート状物とフェノール樹脂樹脂含浸複合体の製造)
 不飽和ポリエステル樹脂の替わりにフェノール樹脂(群栄化学工業株式会社製「PL2340」)を用いたこと、及びフェノール樹脂のメタノール溶液の含浸時間を表6~9に記載のとおりとしたこと以外は実施例II-1と同様にして、MFPF-フェノール樹脂複合体の成形物のシート状物を得た。実施例II-1と同様に樹脂率(重量%)と機械的強度を測定した(表6~9)。
 試験例II-1 機械的強度(曲げ弾性率及び曲げ強度)の測定
 実施例II-1~参考例II-3で得られた成形体から厚さ約1.2 mm、幅7 mm、長さ40 mmのサンプルを作製し、変形速度5 mm/minで曲げ弾性率及び曲げ強度を測定した(ロードセル:5 kN)。測定機として万能材料試験機インストロン3365型(インストロンジャパンカンパニイリミテッド製)を用いた。その結果を表6~9に記載する。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 本発明の第1の実施形態に係る不飽和ポリエステル成形材料は、不飽和ポリエステル樹脂に本発明のミクロフィブリル化植物繊維を混合することによって、均質な成形が可能になり、その結果、得られる成形体に対して優れた機械強度を付与することができる。該成形体は、高い機械強度が求められる分野に有効に利用できる。また、該成形材料の製造方法により該不飽和ポリエステル成形材料を提供できる。
 また、本発明の第2の実施形態に係る製造方法によれば、低温で、かつ低い成形圧力であっても、シート状の成形材料から目的とする成形体を得ることができる。特に、シート状の成形材料を2枚以上重ね、これを圧縮して1つの成形体とする場合にも、低い成形圧力であっても、シート状の成形材料から目的とする成形体が得られるという優れた効果を奏する。本発明の製造方法によって得られた成形体は、高い機械強度が求められる分野に有効に利用できる。

Claims (12)

  1.  不飽和ポリエステル樹脂とミクロフィブリル化植物繊維とを含む成形材料であって、ミクロフィブリル化植物繊維がセルロースとヘミセルロースを含み、かつミクロフィブリル化植物繊維の比表面積が5~20m/gである成形材料。
  2.  ヘミセルロースがヘミセルロースとセルロースの合計量中5~30重量%含まれる請求項1に記載の成形材料。
  3.  成形材料中に含まれる不飽和ポリエステル樹脂の含有量が3~95重量%である請求項1又は2に記載の成形材料。
  4.  ミクロフィブリル化植物繊維が、ヘミセルロースを含むセルロース繊維含有材料を解繊することによって得られたものである請求項1~3のいずれかに記載の成形材料。
  5.  請求項1~4のいずれかに記載の成形材料を硬化してなる成形体。
  6.  不飽和ポリエステル樹脂とミクロフィブリル化植物繊維とを含む成形材料の製造方法であって、セルロースとヘミセルロースを含み、かつ比表面積が5~20m/gであるミクロフィブリル化植物繊維と不飽和ポリエステル樹脂とを混合することを特徴とする成形材料の製造方法。
  7.  不飽和ポリエステル樹脂とミクロフィブリル化植物繊維とを含む成形材料の製造方法であって、セルロースとヘミセルロースを含み、かつ比表面積が5~20m/gであるミクロフィブリル化植物繊維のシート状物に不飽和ポリエステル樹脂を含浸することを特徴とする成形材料の製造方法。
  8.  不飽和ポリエステル樹脂成形体の製造方法であって、不飽和ポリエステル樹脂とフィブリル化植物繊維とを含む成形材料を圧力0.1~100MPaで圧縮成形することを特徴とする不飽和ポリエステル樹脂成形体の製造方法。
  9.  成形材料中に含まれる不飽和ポリエステル樹脂の含有量が3~95重量%である請求項8に記載の不飽和ポリエステル樹脂成形体の製造方法。
  10.  フィブリル化植物繊維の比表面積が5~20 m/gである請求項8または9に記載の不飽和ポリエステル樹脂成形体の製造方法。
  11.  フィブリル化植物繊維がセルロースとヘミセルロースを含む請求項8~10のいずれかに記載の不飽和ポリエステル樹脂成形体の製造方法。
  12.  前記ヘミセルロースがヘミセルロースとセルロースの合計量中5~30 重量%含まれる請求項8~11のいずれかに記載の不飽和ポリエステル樹脂成形体の製造方法。
PCT/JP2009/051693 2008-07-31 2009-02-02 不飽和ポリエステル樹脂とミクロフィブリル化植物繊維を含有する成形材料 WO2010013502A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/737,562 US8877841B2 (en) 2008-07-31 2009-02-02 Molding material containing unsaturated polyester resin and microfibrillated plant fiber
CN2009801298960A CN102112509B (zh) 2008-07-31 2009-02-02 含有不饱和聚酯树脂和微纤化植物纤维的成型材料
EP09802747.7A EP2308907B1 (en) 2008-07-31 2009-02-02 Molding material containing unsaturated polyester resin and microfibrillated plant fiber
JP2010522636A JP5531295B2 (ja) 2008-07-31 2009-02-02 不飽和ポリエステル樹脂とミクロフィブリル化植物繊維を含有する成形材料
KR1020117004665A KR101415099B1 (ko) 2008-07-31 2009-02-02 불포화 폴리에스테르 수지와 마이크로피브릴화 식물 섬유를 함유하는 성형 재료

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-198224 2008-07-31
JP2008198224 2008-07-31
JP2008-198288 2008-07-31
JP2008198288 2008-07-31

Publications (1)

Publication Number Publication Date
WO2010013502A1 true WO2010013502A1 (ja) 2010-02-04

Family

ID=41610212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051693 WO2010013502A1 (ja) 2008-07-31 2009-02-02 不飽和ポリエステル樹脂とミクロフィブリル化植物繊維を含有する成形材料

Country Status (6)

Country Link
US (1) US8877841B2 (ja)
EP (1) EP2308907B1 (ja)
JP (1) JP5531295B2 (ja)
KR (1) KR101415099B1 (ja)
CN (1) CN102112509B (ja)
WO (1) WO2010013502A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102093734A (zh) * 2010-12-31 2011-06-15 杭州师范大学 一种木塑复合材料及其制备方法
US20130005866A1 (en) * 2010-03-19 2013-01-03 Nippon Paper Industries Co., Ltd. Molding material and manufacturing method therefor
EP2623545A1 (en) * 2010-09-29 2013-08-07 DIC Corporation Method for pulverizing cellulose, cellulose noanofiber, materbatch and resin composition
JP2015044892A (ja) * 2013-08-27 2015-03-12 静岡県公立大学法人 セルロースナノファイバーの製造方法、セルロースナノファイバーシートの製造方法
JP2017149838A (ja) * 2016-02-24 2017-08-31 京セラ株式会社 セルロース質部材および積層体
JP2018066098A (ja) * 2016-10-14 2018-04-26 大王製紙株式会社 セルロースナノファイバー成形体
JP2018066099A (ja) * 2016-10-14 2018-04-26 大王製紙株式会社 セルロースナノファイバー成形体
US11459373B2 (en) 2019-12-06 2022-10-04 Regeneron Pharmaceuticals, Inc. Anti-VEGF protein compositions and methods for producing the same

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010022186A1 (de) * 2010-05-21 2011-11-24 Hans Korte Faserverstärkte Thermoplastverbundwerkstoffe
EP2642020A4 (en) * 2010-11-16 2017-03-01 Oji Holdings Corporation Cellulose fiber assembly and production method for same, fibrillated cellulose fiber and production method for same, and cellulose fiber complex
CN102408530B (zh) * 2011-09-14 2013-01-02 福建农林大学 改性化学竹浆纤维复合材料及其制备方法
CN104334615B (zh) * 2012-03-09 2016-10-26 Dic株式会社 包含改性微纤化植物纤维的树脂组合物的制造方法、以及该树脂组合物
CA2894825A1 (en) 2013-01-29 2014-08-07 Akzo Nobel Chemicals International B.V. Process for preparing a fibre-reinforced composite material
US20140272359A1 (en) * 2013-03-15 2014-09-18 The Procter & Gamble Company Nonwoven substrates
US20160177066A1 (en) * 2013-05-25 2016-06-23 Applied Cleantech Inc. Manufacturing Materials from Wastewater Effluent
CN106414505B (zh) * 2013-09-06 2020-08-11 芬兰国家技术研究中心股份公司 表面改性的纤维素纳米纤维、生物复合树脂组合物及其制造方法
JP5904309B2 (ja) * 2013-10-02 2016-04-13 Dic株式会社 セルロースナノファイバー含有樹脂組成物の製造方法及び成形体
FR3015530B1 (fr) * 2013-12-19 2017-08-11 Peugeot Citroen Automobiles Sa Procede de preparation de fibres vegetales pour un materiau composite contenant une matrice en polymere
WO2015127053A1 (en) * 2014-02-19 2015-08-27 The University Of Akron Bio-mass fillers for cure thermoset polymers
US9499637B2 (en) * 2014-06-23 2016-11-22 Api Intellectual Property Holdings, Llc Nanocellulose compositions and processes to produce same
WO2016036376A1 (en) 2014-09-04 2016-03-10 Beijing University Of Chemical Technology Method for controlling shrinkage of a composite
US9822285B2 (en) 2015-01-28 2017-11-21 Gpcp Ip Holdings Llc Glue-bonded multi-ply absorbent sheet
US10458197B2 (en) 2015-06-16 2019-10-29 Baker Huges, A Ge Company, Llc Disintegratable polymer composites for downhole tools
ES2741514T3 (es) * 2015-10-14 2020-02-11 Fiberlean Tech Ltd Material laminado conformable en 3D
US10774476B2 (en) 2016-01-19 2020-09-15 Gpcp Ip Holdings Llc Absorbent sheet tail-sealed with nanofibrillated cellulose-containing tail-seal adhesives
CN109071063B (zh) * 2016-04-14 2020-10-30 凸版印刷株式会社 纸杯、酸性食品用纸杯
US10738560B2 (en) 2017-04-25 2020-08-11 Baker Hughes, A Ge Company, Llc Packers having controlled swelling and methods of manufacturing thereof
SE542997C2 (en) * 2018-04-25 2020-09-22 Stora Enso Oyj A method to produce an adhesive comprising starch and microfibrillated cellulose, a corrugated board and an adhesive
KR102141932B1 (ko) * 2018-11-16 2020-08-06 주식회사 마린이노베이션 해조류 펄프를 이용한 몰드 제조 방법
CN113508163B (zh) * 2019-05-16 2022-11-11 星光Pmc株式会社 成形材料用树脂组合物、成形体以及成形材料用树脂组合物的制造方法
SE543676C2 (en) * 2019-07-03 2021-05-25 Stora Enso Oyj Moldable cellulose fiber based material
KR102421044B1 (ko) * 2020-07-31 2022-07-14 에코밴스 주식회사 생분해성 폴리에스테르 수지 조성물, 생분해성 폴리에스테르 필름 및 이의 제조 방법
KR102410620B1 (ko) * 2020-05-28 2022-06-17 에코밴스 주식회사 생분해성 폴리에스테르 수지 조성물, 생분해성 부직포 및 이의 제조 방법

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09124950A (ja) 1995-11-01 1997-05-13 Daicel Chem Ind Ltd 液状樹脂組成物およびその製造方法
JP2003201695A (ja) 2001-12-26 2003-07-18 Kansai Tlo Kk セルロースミクロフィブリルを用いた高強度材料
JP2005042283A (ja) 2003-07-08 2005-02-17 Kansai Tlo Kk 脂肪族ポリエステル組成物の製造方法とそれに用いるパルプ及びセルロース系繊維並びにそのミクロフィブリル化方法
JP2005060680A (ja) 2003-07-31 2005-03-10 Kyoto Univ 繊維強化複合材料及びその製造方法並びに配線基板
JP2006036926A (ja) 2004-07-27 2006-02-09 Kyoto Univ 繊維強化複合材料
JP2006035647A (ja) 2004-07-27 2006-02-09 Kyoto Univ 透明積層体
JP2006240295A (ja) 2005-02-07 2006-09-14 Kyoto Univ 繊維強化複合材料及びその製造方法
JP2006241450A (ja) 2005-02-07 2006-09-14 Kyoto Univ 繊維強化複合材料及びその製造方法並びに繊維強化複合材料製造用前駆体
JP2006312281A (ja) 2005-05-09 2006-11-16 Toyota Industries Corp 外板部材
JP2006312688A (ja) 2005-05-09 2006-11-16 Toyota Industries Corp 摺動部材
JP2006316253A (ja) 2005-03-31 2006-11-24 Asahi Kasei Chemicals Corp セルロース含有樹脂複合体
JP2007051266A (ja) 2005-02-01 2007-03-01 Kyoto Univ 繊維強化複合材料及びその製造方法
JP2007146143A (ja) 2005-10-26 2007-06-14 Kyoto Univ 繊維強化複合樹脂組成物並びに接着剤及び封止剤
WO2008010464A1 (fr) * 2006-07-19 2008-01-24 Kyoto University Cellulose microfibrillée possédant une structure cristalline de cellulose de type ii et article moulé contenant cette cellulose microfibrillée
JP2008013621A (ja) 2006-07-04 2008-01-24 Sekisui Chem Co Ltd セルロース繊維強化成形体とその製造方法
JP2008024795A (ja) * 2006-07-19 2008-02-07 Kyoto Univ 強度の向上したミクロフィブリル化セルロース含有樹脂成形体
JP2008024788A (ja) 2006-07-19 2008-02-07 Kyoto Univ ナノファイバーシート及びその製造方法並びに繊維強化複合材料

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4439561A (en) * 1982-03-24 1984-03-27 Union Carbide Corporation Sealant composition and method
DE3932347A1 (de) * 1989-09-28 1991-04-11 Feldmuehle Ag Herstellung chemo-mechanischer und/oder chemo-thermo-mechanischer holzstoffe
NL9101920A (ja) 1991-11-18 1993-06-16 Dsm Nv
FR2716887B1 (fr) * 1994-03-01 1996-04-26 Atochem Elf Sa Polymères renforcés de microfibrilles de cellulose, latex, poudres, films, joncs correspondants, et leurs applications.
DE69733415T2 (de) * 1996-03-06 2006-04-27 Mitsubishi Rayon Co., Ltd. Auf fibrillen basierende fasern, methode zu deren herstellung, dabei verwendete spinndüse und damit hergestellte formkörper
DE69723582T2 (de) * 1996-11-21 2004-05-13 Toyo Boseki K.K. Fasern aus regenerierte zellulose und verfahren zu ihrer herstellung
US5827610A (en) * 1997-01-10 1998-10-27 E. I. Du Pont De Nemours And Company Chitosan-coated pulp, a paper using the pulp, and a process for making them
US6630231B2 (en) * 1999-02-05 2003-10-07 3M Innovative Properties Company Composite articles reinforced with highly oriented microfibers
US6110588A (en) * 1999-02-05 2000-08-29 3M Innovative Properties Company Microfibers and method of making
US6596210B2 (en) * 1999-10-08 2003-07-22 W. R. Grace & Co.-Conn. Process of treating fibers
US20030091754A1 (en) * 2000-02-11 2003-05-15 Thami Chihani Method for treating cellulosic fibres
CN1246246C (zh) * 2000-10-04 2006-03-22 詹姆斯哈迪国际财金公司 使用上浆的纤维素纤维的纤维水泥复合材料
US6723802B2 (en) * 2001-08-24 2004-04-20 Board Of Trustees Of Michigan State University Epoxy resin and polyglycoside based polymers and process for the preparation thereof
JP2004143401A (ja) 2002-08-27 2004-05-20 Matsushita Electric Works Ltd 植物繊維を用いた繊維強化プラスチック
EP1620506B1 (en) * 2003-05-02 2011-03-09 E.I. Du Pont De Nemours And Company Polyesters containing microfibers, and methods for making and using same
WO2005012404A1 (ja) * 2003-07-31 2005-02-10 Kyoto University 繊維強化複合材料及びその製造方法と、その利用
JP4306373B2 (ja) * 2003-08-26 2009-07-29 パナソニック電工株式会社 植物繊維を用いた繊維強化プラスチック
US20080146701A1 (en) * 2003-10-22 2008-06-19 Sain Mohini M Manufacturing process of cellulose nanofibers from renewable feed stocks
US20050284595A1 (en) * 2004-06-25 2005-12-29 Conley Jill A Cellulosic and para-aramid pulp and processes of making same
GB0425691D0 (en) * 2004-11-23 2004-12-22 Hepworth David G Improved biocomposite material
TWI391427B (zh) 2005-02-01 2013-04-01 Pioneer Corp 纖維強化複合材料及其製造方法與用途,以及纖維素纖維集合體
CN101297000B (zh) 2005-10-26 2011-07-27 罗姆股份有限公司 纤维增强复合树脂组合物以及粘合剂和密封剂
CA2527325C (en) * 2005-11-18 2014-05-06 Mohini M. Sain Manufacturing process for high performance lignocellulosic fibre composite materials
US7740741B2 (en) * 2005-12-21 2010-06-22 E.I. Du Pont De Nemours And Company Para-aramid pulp including meta-aramid fibrids and processes of making same
US7727356B2 (en) * 2005-12-21 2010-06-01 E.I. Du Pont De Nemours And Company Polyareneazole/wood pulp and methods of making same
US8546558B2 (en) * 2006-02-08 2013-10-01 Stfi-Packforsk Ab Method for the manufacture of microfibrillated cellulose
KR101451291B1 (ko) * 2006-04-21 2014-10-15 니뽄 세이시 가부시끼가이샤 셀룰로스를 주체로 하는 섬유형상 물질
JP5099618B2 (ja) * 2006-07-19 2012-12-19 ローム株式会社 繊維複合材料及びその製造方法
JP2008053174A (ja) * 2006-08-28 2008-03-06 Toshiba Corp 絶縁構造材料
US7670678B2 (en) * 2006-12-20 2010-03-02 The Procter & Gamble Company Fibers comprising hemicellulose and processes for making same
US8406452B2 (en) * 2007-07-13 2013-03-26 Panasonic Corporation Diaphragm for speaker, speaker using the diaphragm, and system using the speaker
US7624879B2 (en) * 2007-12-10 2009-12-01 E. I. Du Pont De Nemours And Company Micropulp for filters
KR20100093080A (ko) * 2007-12-21 2010-08-24 미쓰비시 가가꾸 가부시키가이샤 섬유 복합체
JP5386866B2 (ja) * 2008-06-30 2014-01-15 国立大学法人京都大学 ナノファイバーシート
JP5717643B2 (ja) * 2009-10-23 2015-05-13 国立大学法人京都大学 ミクロフィブリル化植物繊維を含む組成物

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09124950A (ja) 1995-11-01 1997-05-13 Daicel Chem Ind Ltd 液状樹脂組成物およびその製造方法
JP2003201695A (ja) 2001-12-26 2003-07-18 Kansai Tlo Kk セルロースミクロフィブリルを用いた高強度材料
JP2005042283A (ja) 2003-07-08 2005-02-17 Kansai Tlo Kk 脂肪族ポリエステル組成物の製造方法とそれに用いるパルプ及びセルロース系繊維並びにそのミクロフィブリル化方法
JP2005060680A (ja) 2003-07-31 2005-03-10 Kyoto Univ 繊維強化複合材料及びその製造方法並びに配線基板
JP2006036926A (ja) 2004-07-27 2006-02-09 Kyoto Univ 繊維強化複合材料
JP2006035647A (ja) 2004-07-27 2006-02-09 Kyoto Univ 透明積層体
JP2007051266A (ja) 2005-02-01 2007-03-01 Kyoto Univ 繊維強化複合材料及びその製造方法
JP2006240295A (ja) 2005-02-07 2006-09-14 Kyoto Univ 繊維強化複合材料及びその製造方法
JP2006241450A (ja) 2005-02-07 2006-09-14 Kyoto Univ 繊維強化複合材料及びその製造方法並びに繊維強化複合材料製造用前駆体
JP2006316253A (ja) 2005-03-31 2006-11-24 Asahi Kasei Chemicals Corp セルロース含有樹脂複合体
JP2006312281A (ja) 2005-05-09 2006-11-16 Toyota Industries Corp 外板部材
JP2006312688A (ja) 2005-05-09 2006-11-16 Toyota Industries Corp 摺動部材
JP2007146143A (ja) 2005-10-26 2007-06-14 Kyoto Univ 繊維強化複合樹脂組成物並びに接着剤及び封止剤
JP2008013621A (ja) 2006-07-04 2008-01-24 Sekisui Chem Co Ltd セルロース繊維強化成形体とその製造方法
WO2008010464A1 (fr) * 2006-07-19 2008-01-24 Kyoto University Cellulose microfibrillée possédant une structure cristalline de cellulose de type ii et article moulé contenant cette cellulose microfibrillée
JP2008024795A (ja) * 2006-07-19 2008-02-07 Kyoto Univ 強度の向上したミクロフィブリル化セルロース含有樹脂成形体
JP2008024788A (ja) 2006-07-19 2008-02-07 Kyoto Univ ナノファイバーシート及びその製造方法並びに繊維強化複合材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2308907A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9327426B2 (en) * 2010-03-19 2016-05-03 Nippon Paper Industries Co., Ltd. Molding material and manufacturing method therefor
US20130005866A1 (en) * 2010-03-19 2013-01-03 Nippon Paper Industries Co., Ltd. Molding material and manufacturing method therefor
EP2548917A1 (en) * 2010-03-19 2013-01-23 Kyoto University Molding material and manufacturing method therefor
EP2548917A4 (en) * 2010-03-19 2014-10-01 Univ Kyoto FORMAT MATERIAL AND MANUFACTURING METHOD THEREFOR
EP2623545A1 (en) * 2010-09-29 2013-08-07 DIC Corporation Method for pulverizing cellulose, cellulose noanofiber, materbatch and resin composition
EP2623545A4 (en) * 2010-09-29 2014-08-20 Dainippon Ink & Chemicals CELLULOSE SPUTTERING METHOD, CELLULOSE NANOFIBERS, MASTER MIXTURE, AND RESIN COMPOSITION
CN102093734A (zh) * 2010-12-31 2011-06-15 杭州师范大学 一种木塑复合材料及其制备方法
JP2015044892A (ja) * 2013-08-27 2015-03-12 静岡県公立大学法人 セルロースナノファイバーの製造方法、セルロースナノファイバーシートの製造方法
JP2017149838A (ja) * 2016-02-24 2017-08-31 京セラ株式会社 セルロース質部材および積層体
JP2018066098A (ja) * 2016-10-14 2018-04-26 大王製紙株式会社 セルロースナノファイバー成形体
JP2018066099A (ja) * 2016-10-14 2018-04-26 大王製紙株式会社 セルロースナノファイバー成形体
US11459373B2 (en) 2019-12-06 2022-10-04 Regeneron Pharmaceuticals, Inc. Anti-VEGF protein compositions and methods for producing the same
US11459374B2 (en) 2019-12-06 2022-10-04 Regeneron Pharmaceuticals, Inc. Anti-VEGF protein compositions and methods for producing the same
US11732025B2 (en) 2019-12-06 2023-08-22 Regeneron Pharmaceuticals, Inc. Anti-VEGF protein compositions and methods for producing the same

Also Published As

Publication number Publication date
US20110263756A1 (en) 2011-10-27
EP2308907A4 (en) 2013-01-23
CN102112509A (zh) 2011-06-29
KR20110055583A (ko) 2011-05-25
EP2308907A1 (en) 2011-04-13
CN102112509B (zh) 2013-03-20
JPWO2010013502A1 (ja) 2012-01-05
KR101415099B1 (ko) 2014-07-08
JP5531295B2 (ja) 2014-06-25
US8877841B2 (en) 2014-11-04
EP2308907B1 (en) 2014-01-01

Similar Documents

Publication Publication Date Title
JP5531295B2 (ja) 不飽和ポリエステル樹脂とミクロフィブリル化植物繊維を含有する成形材料
Diop et al. Isolation of lignocellulose nanofibrils (LCNF) and application as adhesive replacement in wood composites: example of fiberboard
JP5398180B2 (ja) リグニン含有ミクロフィブリル化植物繊維及びその製造方法
CA2801369C (en) Cationic microfibrillated plant fibre and manufacturing method for same
Yano et al. Bio-composites produced from plant microfiber bundles with a nanometer unit web-like network
Yang et al. Preserving cellulose structure: delignified wood fibers for paper structures of high strength and transparency
JP5540176B2 (ja) ミクロフィブリル化植物繊維及びその製造方法、並びにそれを用いた成形材料、及び樹脂成形材料の製造方法
JP5638001B2 (ja) セルロースナノファイバー
JP5622412B2 (ja) 成形材料及びその製造方法
JP5207246B2 (ja) セルロースii型結晶構造を有するミクロフィブリル化セルロース及び該ミクロフィブリル化セルロースを含有する成形体
JP5836361B2 (ja) 透明樹脂複合材料
Jiang et al. Influence of chemical and enzymatic TEMPO-mediated oxidation on chemical structure and nanofibrillation of lignocellulose
JP2022051784A (ja) セルロース分散液組成物及びセルロース樹脂複合材
Yang et al. Reengineering waste boxwood powder into light and high-strength biodegradable composites to replace petroleum-based synthetic materials
JP6503182B2 (ja) 成形体及びその製造方法
JP7055756B2 (ja) セルロース分散液組成物の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980129896.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802747

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009802747

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010522636

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12737562

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117004665

Country of ref document: KR

Kind code of ref document: A