WO2010010603A1 - クロック乗せ換え回路およびそれを用いた試験装置 - Google Patents
クロック乗せ換え回路およびそれを用いた試験装置 Download PDFInfo
- Publication number
- WO2010010603A1 WO2010010603A1 PCT/JP2008/001995 JP2008001995W WO2010010603A1 WO 2010010603 A1 WO2010010603 A1 WO 2010010603A1 JP 2008001995 W JP2008001995 W JP 2008001995W WO 2010010603 A1 WO2010010603 A1 WO 2010010603A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- clock
- latch
- phase
- transfer circuit
- circuit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/02—Speed or phase control by the received code signals, the signals containing no special synchronisation information
- H04L7/033—Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
- H04L7/0337—Selecting between two or more discretely delayed clocks or selecting between two or more discretely delayed received code signals
- H04L7/0338—Selecting between two or more discretely delayed clocks or selecting between two or more discretely delayed received code signals the correction of the phase error being performed by a feed forward loop
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/02—Speed or phase control by the received code signals, the signals containing no special synchronisation information
- H04L7/027—Speed or phase control by the received code signals, the signals containing no special synchronisation information extracting the synchronising or clock signal from the received signal spectrum, e.g. by using a resonant or bandpass circuit
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/26—Testing of individual semiconductor devices
Definitions
- the present invention relates to a data transmission technique between different clock domains.
- FIG. 1 is a block diagram showing the configuration of the test apparatus.
- the test apparatus 100 is equipped with a pattern generator (PG) 2 that generates a test pattern to be applied to the DUT 200 and a timing generator (TG) 4 that defines the timing at which the test pattern is applied to the DUT 200.
- PG pattern generator
- TG timing generator
- the timing generator 4 is mounted as a combination of the logic circuit 12 and the high-precision circuit 14, but these are often integrated on the same semiconductor substrate in order to improve the mounting density.
- the logic circuit 12 since the logic circuit 12 generates a large switching noise, the logic circuit 12 affects the high-precision circuit 14, and as a result, the timing accuracy deteriorates.
- the power sources 1a and 1b of the logic circuit 12 and the high precision circuit 14 are divided, and the distribution paths of reference clocks (hereinafter simply referred to as clocks) LREFCK and HREFCK are also different.
- the logic circuit 12 operates in synchronization with the clock LREFCK, and delivers data synchronized with the clock LREFCK to the high-precision circuit 14.
- the high precision circuit 14 includes a minute delay circuit (not shown), sets a delay amount according to the data from the logic circuit 12, and supplies data to the DUT 200 at a timing designated by the user.
- the logic circuit 12 operates with a relatively low speed, for example, a 286 MHz clock LREFCK.
- the high precision circuit 14 uses a high speed, for example, a 2.28 GHz clock HREFCK obtained by multiplying 286 MHz by 8.
- FIG. 2 is a block diagram showing the relationship between the logic circuit 12 and the high-precision circuit 14.
- a multiplexer 16 is provided between the logic circuit 12 and the high precision circuit 14.
- N is a natural number
- a plurality of logic circuits can be connected in parallel to one high-precision circuit, and the logic circuit 12 has a frequency N times that of the original clock LREFCK. An operation equivalent to the operation is realized.
- the two clocks LREFCK and HREFCK are generated based on the clock obtained from the same oscillator, it is guaranteed that the ratios of the periods match, but the phases do not necessarily match. Further, the phase relationship between the two clocks fluctuates due to process variations or the like. However, if the clock speed increases, the fluctuation range of the phase relationship approaches the clock cycle, and normal operation cannot be guaranteed. Therefore, adjustment means for correctly receiving the data output from the logic circuit 12 by the high-precision circuit 14 is required.
- the present invention has been made in view of these problems, and one of its purposes is to provide a technique for accurately transmitting data between different clock domains.
- One embodiment of the present invention relates to a clock transfer circuit.
- the circuit includes: a first latch that latches input data with a first clock; a second latch that latches output data of the first latch with a third clock having the same frequency as the first clock; And a third latch that latches output data with a second clock having a frequency N times that of the first and third clocks.
- the second clock and the third clock are in a frequency division / multiplication relationship.
- the “frequency division / multiplication relationship” refers to a relationship in which one is generated by frequency division using the other as a reference, or a relationship in which one is generated by multiplication using the other as a reference.
- the input data passes through two stages from the first clock to the third clock and from the third clock to the second clock. Since the phase of the second clock and the phase of the third clock are inherently synchronized, the clocks can be reliably switched as long as the phases of the first clock and the third clock satisfy the predetermined relationship. be able to.
- This circuit includes a first latch that latches input data with a first clock, a frequency dividing circuit that divides a second clock having a frequency N times that of the first clock by 1 / N and generates a third clock, A second latch that latches output data of the first latch with a third clock; and a third latch that latches output data of the second latch with a second clock. Also in this aspect, as long as the first clock and the third clock satisfy a predetermined relationship, reliable clock transfer can be realized.
- the clock change circuit may further include a multiplication circuit that multiplies the first clock by N (N is a natural number) and generates a second clock.
- the phase of the third clock obtained by dividing the second clock may be adjustable in units of the period of the second clock. According to this aspect, the timing of the third clock can be adjusted so as to satisfy the setup condition and hold condition of the second latch.
- the clock transfer circuit may further include a counter that counts the time difference between the edge timing of the third clock and the edge timing of the input data using the second clock.
- the count value of the counter serves as an index indicating the timing of the third clock with respect to the input data
- the phase of the third clock can be optimized so as to satisfy the setup condition and the hold condition based on the count value.
- the phase of the third clock may be adjusted so that the count value of the counter is included in a predetermined range.
- the phase of the third clock may be initialized through the following steps while sweeping the phase of the third clock. 1. In each phase, a predetermined pattern is applied as input data. 2. Read the count value of the counter after pattern application. 3. It is determined whether or not the read count value is included in a predetermined range.
- the phase of the third clock may be initialized by the following steps. 1. The phase of the third clock is set to a predetermined initial value. 2. In the set phase, a predetermined pattern is applied as input data. 3. Read the count value of the counter after pattern application. 4). When the read count value is larger than the upper limit value of the predetermined range, the phase of the third clock is set to a predetermined first value. When the count value is smaller than the lower limit value of the predetermined range, the phase of the third clock is set to a predetermined second value.
- phase of the third clock can be suitably initialized.
- test apparatus includes an oscillator that generates a first clock, and a clock transfer circuit according to any one of the above-described modes that receives input data synchronized with the first clock and transfers the input data to the second clock.
- data synchronized with the first clock can be accurately transferred to the second clock having a multiplication relationship therewith.
- the state in which the member A is connected to the member B means that the member A and the member B are physically directly connected, or the member A and the member B are in an electrically connected state. Including the case of being indirectly connected through other members that do not affect the above.
- the state in which the member C is provided between the member A and the member B refers to the case where the member A and the member C or the member B and the member C are directly connected, as well as an electrical condition. It includes the case of being indirectly connected through another member that does not affect the connection state.
- FIG. 3 is a circuit diagram showing a configuration of the timing generator 4 equipped with the clock transfer circuit 20 according to the embodiment.
- the timing generator 4 includes a logic circuit 12, a high-precision circuit 14, and a clock transfer circuit 20, and is integrated on a single semiconductor substrate. As described with reference to FIG. 1, the logic circuit 12 and the high-precision circuit 14 operate by receiving different power supply voltages Vdd1 and Vdd2.
- the clock generator 8 is a PLL circuit, for example, and outputs a first clock CK1 having a first frequency f1.
- the timing generator 4 receives a clock used in the logic circuit 12 and a clock used on the high precision circuit 14 side at different clock terminals P1 and P2, respectively.
- the first clock CK1 is branched, one first clock CK1 L is supplied to the logic circuit 12 via the clock terminal P1, and the other first clock CK1 H is supplied to the high precision circuit 14 via the clock terminal P2. Supplied to.
- the logic circuit 12 generates input data D IN synchronized with the first clock CK1 L having the first frequency f1 output from the clock generator 8.
- Clock hand circuit 20 the input data D IN in synchronism with the first clock CK1 L, replaced placed on the second clock CK2 having a second frequency f2 of N times the frequency of the first frequency f1.
- the high precision circuit 14 receives the output data DOUT output from the clock transfer circuit 20, and operates in synchronization with the second clock CK2.
- the above is the overall configuration of the timing generator 4. Next, the configuration of the clock transfer circuit 20 will be described.
- the clock transfer circuit 20 includes a first latch 22, a second latch 24, a third latch 26, a multiplier circuit 28, and a frequency divider circuit 30.
- the first latch 22 latches the input data DIN with the first clock CK1 L.
- the second latch 24 latches the output data (first intermediate data Dm1) of the first latch 22 with a third clock CK3 having the same frequency as the first clock CK1 L.
- the third latch 26 latches the output data (second intermediate data Dm2) of the second latch 24 with the second clock CK2 having a frequency f2 N times (N is a natural number) of the first clock CK1 and the third clock CK3. To do.
- the second clock CK2 and the third clock CK3 are in a frequency division / multiplication relationship.
- the second clock CK2 may be generated by multiplying the third clock CK3 by N.
- the third clock CK3 may be generated by dividing the second clock CK2 by 1 / N. In this embodiment, the latter method is adopted.
- the frequency dividing circuit 30 divides the second clock CK2 having the second frequency f2 N times the first clock CK1 by 1 / N to generate the third clock CK3.
- the multiplier circuit 28 multiplies the first clock CK1 H by N to generate a second clock CK2.
- FIG. 4 is a time chart showing the operation of the clock transfer circuit 20 of FIG.
- the second clock CK2 is divided to generate the third clock CK3, whereby the phase of the third clock CK3 is changed to that of the second clock CK2.
- FIG. 5 is a circuit diagram showing the configuration of the phase adjustment circuit 40 that controls the phase ⁇ of the third clock CK3.
- the phase adjustment circuit 40 includes a counter 42, an AND gate 44, and an AND gate 46.
- the counter 42 counts the time difference between the timing of the edge of the third clock CK3 and the timing of the edge of the first intermediate data Dm1 from the first latch 22 using the second clock CK2.
- the counter 42 may measure the time difference between the positive edge of the first intermediate data Dm1 and the edge of the third clock CK3, or measure the time difference between the negative edge of the first intermediate data Dm1 and the edge of the third clock CK3. Also good.
- the phase adjustment circuit 40 of FIG. 5 is configured to optimize the phase of the third clock CK3 based on the latter.
- the AND gate 44 masks the second clock CK2 using the first intermediate data Dm1.
- the masked clock CK4 is supplied to the counter 42, and the counter 42 counts this clock CK4.
- AND gate 46 generates a second intermediate data Dm2 from the second latch 24, inverted and output data D OUT, the logical product of.
- the count value COUNT held in the counter 42 is initialized by the clear signal CLR output from the AND gate 46.
- FIG. 6 is a time chart showing the operation of the phase adjustment circuit 40 of FIG. When adjusting the phase, a predetermined pattern is input as input data DIN .
- the input data DIN is a pattern that transitions in the order of low level, high level, and low level.
- the first intermediate data Dm1 output from the first latch 22, to follow the input data D IN, a low level, high level, the transition to the low level.
- the i-th phase (0 ⁇ i ⁇ N) is selected as the third clock CK3
- the first intermediate data Dm1 is latched at the positive edge, and the second intermediate data Dm2 is generated.
- the second intermediate data Dm2 becomes high level at time t2
- the clear signal CLR output from the AND gate 46 is asserted, and the count value of the counter 42 is reset to zero. Thereafter, the count value of the counter 42 is incremented by one for each pulse of the clock CK4.
- the counter 42 has a period (dead band DB) in which the count does not function immediately after clearing, and therefore some pulses immediately after clearing are not counted.
- the dead band ⁇ d extends over a period of 2 clocks.
- first intermediate data Dm1 changes to the low level at time t3.
- the second clock CK2 is blocked by the AND gate 44, the clock CK4 is not supplied to the counter 42, and the counting operation of the counter 42 is stopped.
- the counter 42 holds the count value COUNT unless new input data DIN is applied and the clear signal CLR is asserted. That is, according to this configuration, the value of the count value COUNT is independent of the states of the first clocks CK1 L and CK1 H , and therefore, there is an advantage that it is not necessary to stop each clock during the phase optimization. is there.
- the final count value COUNT of the counter 42 is a value corresponding to the time ⁇ from the edge timing (t2) of the third clock CK3 to the negative edge timing (t3) of the first intermediate data Dm1.
- the count value COUNT increases as the phase of the third clock CK3 advances, and decreases as it delays. Therefore, by selecting the phase of the third clock CK3 so that the count value COUNT falls within a predetermined range, the edge timing of the third clock CK3 is set so as to satisfy the setup condition and hold condition of the second latch 24. Specifically, the optimization can be performed so as to be near the center of the unit interval of the first intermediate data Dm1. In the time chart of FIG. 6, it is optimal when the count value COUNT is 2-4.
- the optimization of the phase of the third clock CK3 can be executed according to the following procedure.
- FIG. 7 is a flowchart showing a first procedure for phase optimization in the phase adjustment circuit 40.
- the optimization process executes the following process while incrementing the value of the variable PHSEL by 1 from 0 to 7 (S100).
- the variable PHSEL is set to i (0 ⁇ i ⁇ N), and the phase of the third clock CK3 is set to ⁇ i (S102).
- the variable PHSEL is set to i (0 ⁇ i ⁇ N), and the phase of the third clock CK3 is set to ⁇ i (S102).
- the count value COUNT is included in the optimum range (Y in S106)
- the current value of the variable PHSEL is determined (S108), and the optimization process is terminated.
- the phase of the third clock CK3 can be optimized by repeating N times at the maximum. Since the counter value COUNT is held unless a new pattern is input, control of stopping and restarting the reference clock CK1 is unnecessary, so that a wait time for waiting for a stable state of the circuit is unnecessary and high speed is achieved. Initialization is possible.
- FIG. 8 is a flowchart showing a second procedure for phase optimization in the phase adjustment circuit 40.
- the initial value INIT may not be 0.
- the first value is set to a value larger by a predetermined value (for example, 2) than the initial value. As a result, the timing of the third clock CK3 is shifted backward by two cycles, and the timing of the third clock CK3 is optimized.
- the phase of the third clock CK3 can be optimized only by applying the pattern once.
- data synchronized with the first clock can be accurately transferred to the second clock having a multiplication relationship therewith.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Manipulation Of Pulses (AREA)
- Synchronisation In Digital Transmission Systems (AREA)
- Electronic Switches (AREA)
- Tests Of Electronic Circuits (AREA)
Abstract
Description
この態様によると、入力データは、第1クロックから第3クロック、第3クロックから第2クロックと2段階の受け渡しを経ることになる。第2クロックの位相と第3クロックの位相は、本質的に同期関係が保たれるため、第1クロックと第3クロックそれぞれの位相が所定の関係を満たしさえすれば、確実にクロックを乗せ換えることができる。
この態様においても、第1クロックと第3クロックが所定の関係を満たしさえすれば、確実なクロック乗せ換えが実現できる。
この場合、カウンタのカウント値は、入力データに対する第3クロックのタイミングを示す指標となるため、カウント値にもとづいてセットアップ条件、ホールド条件を満たすように第3クロックの位相を最適化できる。
1. 各位相において、入力データとして所定のパターンを印加する。
2. パターン印加後のカウンタのカウント値を読み出す。
3. 読み出されたカウント値が所定の範囲に含まれるかを判定する。
1. 第3クロックの位相を所定の初期値に設定する。
2. 設定された位相において、入力データとして所定のパターンを印加する。
3. パターン印加後のカウンタのカウント値を読み出す。
4. 読み出されたカウント値が、所定の範囲の上限値より大きいとき、第3クロックの位相を、所定の第1の値に設定する。カウント値が所定の範囲の下限値より小さいとき、第3クロックの位相を、所定の第2の値に設定する。
クロック乗せ換え回路20は、第1ラッチ22、第2ラッチ24、第3ラッチ26、逓倍回路28、分周回路30を備える。
分周回路30は、第1クロックCK1のN倍の第2周波数f2を有する第2クロックCK2を1/N分周し、第3クロックCK3を生成する。逓倍回路28は、第1クロックCK1HをN逓倍し、第2クロックCK2を生成する。
第3クロックCK3として第1クロックCK1Hをそのまま利用するのではなく、第2クロックCK2を分周して第3クロックCK3を生成することにより、第3クロックCK3の位相を、第2クロックCK2の周期(1/f2)を単位として、調節することが可能となる。なぜなら、第2クロックCK2を1/N分周する場合、N相φ0~φ7のうちのいずれかを選択可能だからである。図4の第2クロックCK2を1/8分周して得られる8相の第3クロックCK3(φ0~φ7)のうち、位相選択信号PHSEL(=0~7)に応じたひとつが選択され、第2ラッチ24に供給される。
ANDゲート46は、第2ラッチ24からの第2中間データDm2と、出力データDOUTの反転と、の論理積を生成する。カウンタ42に保持されるカウント値COUNTは、ANDゲート46から出力されるクリア信号CLRによって初期化される。
τ=τd+COUNT×T2
で与えられる。デッドバンドが無視しうる程度に短いカウンタ42を用いた場合、カウント値COUNTは、τ=COUNT×T2となる。
図7は、位相調節回路40における位相最適化の第1の手順を示すフローチャートである。
図8は、位相調節回路40における位相最適化の第2の手順を示すフローチャートである。
Claims (9)
- 入力データを第1クロックでラッチする第1ラッチと、
前記第1ラッチの出力データを、前記第1クロックと同一の周波数を有する第3クロックでラッチする第2ラッチと、
前記第2ラッチの出力データを、前記第1、第3クロックのN倍(Nは自然数)の周波数を有する第2クロックでラッチする第3ラッチと、
を備え、
前記第2クロックと前記第3クロックは、分周逓倍関係にあることを特徴とするクロック乗せ換え回路。 - 入力データを第1クロックでラッチする第1ラッチと、
前記第1クロックのN倍の周波数を有する第2クロックを1/N分周し、第3クロックを生成する分周回路と、
前記第1ラッチの出力データを、前記第3クロックでラッチする第2ラッチと、
前記第2ラッチの出力データを、前記第2クロックでラッチする第3ラッチと、
を備えることを特徴とするクロック乗せ換え回路。 - 前記第1クロックをN逓倍(Nは自然数)し、前記第2クロックを生成する逓倍回路をさらに備えることを特徴とする請求項2に記載のクロック乗せ換え回路。
- 前記第2クロックを分周して得られる前記第3クロックの位相は、前記第2クロックの周期を単位として調節可能であることを特徴とする請求項2または3に記載のクロック乗せ換え回路。
- 前記第3クロックのエッジのタイミングと前記第1ラッチの出力データのエッジのタイミングの時間差を、前記第2クロックを利用してカウントするカウンタをさらに備えることを特徴とする請求項4に記載のクロック乗せ換え回路。
- 前記第3クロックの位相は、前記カウンタのカウント値が所定の範囲に含まれるように調整されることを特徴とする請求項5に記載のクロック乗せ換え回路。
- 前記第3クロックの位相は、
前記第3クロックの位相をスイープさせながら、
各位相において、前記入力データとして所定のパターンを印加するステップと、
パターン印加後の前記カウンタのカウント値を読み出すステップと、
読み出された前記カウント値が前記所定の範囲に含まれるかを判定するステップと、
を繰り返し実行することにより初期化されることを特徴とする請求項6に記載のクロック乗せ換え回路。 - 前記第3クロックの位相は、
前記第3クロックの位相を所定の初期値に設定するステップと、
設定された位相において、前記入力データとして所定のパターンを印加するステップと、
パターン印加後の前記カウンタのカウント値を読み出すステップと、
読み出された前記カウント値が、前記所定の範囲の上限値より大きいとき、前記第3クロックの位相を、前記初期値と異なる第1の値に設定し、前記カウント値が前記所定の範囲の下限値より小さいとき、前記第3クロックの位相を、前記初期値と異なる第2の値に設定するステップと、
を実行して初期化されることを特徴とする請求項6に記載のクロック乗せ換え回路。 - 第1クロックを生成する発振器と、
前記第1クロックと同期した入力データを受け、前記第2クロックに乗せ換える請求項1から8のいずれかに記載のクロック乗せ換え回路と、
を備えることを特徴とする試験装置。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020117004154A KR101184137B1 (ko) | 2008-07-25 | 2008-07-25 | 클럭 변환 회로 및 이를 이용한 시험 장치 |
JP2010521546A JP4995325B2 (ja) | 2008-07-25 | 2008-07-25 | クロック乗せ換え回路およびそれを用いた試験装置 |
US13/055,203 US8451034B2 (en) | 2008-07-25 | 2008-07-25 | Clock hand-off circuit |
PCT/JP2008/001995 WO2010010603A1 (ja) | 2008-07-25 | 2008-07-25 | クロック乗せ換え回路およびそれを用いた試験装置 |
CN200880130172.3A CN102077505B (zh) | 2008-07-25 | 2008-07-25 | 时钟转换电路以及使用其的试验装置 |
TW098124884A TWI398751B (zh) | 2008-07-25 | 2009-07-23 | 時脈變換電路以及使用該電路的測試裝置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/001995 WO2010010603A1 (ja) | 2008-07-25 | 2008-07-25 | クロック乗せ換え回路およびそれを用いた試験装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010010603A1 true WO2010010603A1 (ja) | 2010-01-28 |
Family
ID=41570081
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/001995 WO2010010603A1 (ja) | 2008-07-25 | 2008-07-25 | クロック乗せ換え回路およびそれを用いた試験装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8451034B2 (ja) |
JP (1) | JP4995325B2 (ja) |
KR (1) | KR101184137B1 (ja) |
CN (1) | CN102077505B (ja) |
TW (1) | TWI398751B (ja) |
WO (1) | WO2010010603A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015056372A1 (ja) * | 2013-10-18 | 2015-04-23 | 三菱電機株式会社 | データ転送装置及びデータ転送方法 |
JP2023520723A (ja) * | 2020-04-09 | 2023-05-18 | 株式会社アドバンテスト | 1つのクロックドメインから別のクロックドメインにデータを伝達するための回路 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7497827B2 (en) | 2004-07-13 | 2009-03-03 | Dexcom, Inc. | Transcutaneous analyte sensor |
US7920906B2 (en) | 2005-03-10 | 2011-04-05 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US9247900B2 (en) | 2004-07-13 | 2016-02-02 | Dexcom, Inc. | Analyte sensor |
US8886272B2 (en) | 2004-07-13 | 2014-11-11 | Dexcom, Inc. | Analyte sensor |
US8133178B2 (en) | 2006-02-22 | 2012-03-13 | Dexcom, Inc. | Analyte sensor |
US8423851B2 (en) * | 2010-09-16 | 2013-04-16 | Nanya Technology Corporation | Measured device and test system utilizing the same |
US10025343B2 (en) * | 2011-12-28 | 2018-07-17 | Intel Corporation | Data transfer between asynchronous clock domains |
US9628059B2 (en) | 2015-06-18 | 2017-04-18 | International Business Machines Corporation | Fine delay structure with programmable delay ranges |
EP3203461A3 (en) * | 2016-02-03 | 2017-08-23 | Rohm Co., Ltd. | Timing controller |
KR102413192B1 (ko) * | 2017-11-03 | 2022-06-24 | 삼성전자주식회사 | Nbti 또는 pbit를 모니터링하는 테스트 회로 |
KR102278648B1 (ko) * | 2020-02-13 | 2021-07-16 | 포스필 주식회사 | 피시험 디바이스를 테스트하기 위한 방법 및 장치 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0276332A (ja) * | 1988-09-13 | 1990-03-15 | Nippon Telegr & Teleph Corp <Ntt> | ビット位相同期回路 |
JPH0865173A (ja) * | 1994-08-16 | 1996-03-08 | Nec Eng Ltd | パラレルシリアル変換回路 |
JPH0993232A (ja) * | 1995-09-25 | 1997-04-04 | Fujitsu Ltd | クロック乗換回路 |
JP2002009629A (ja) * | 2000-06-23 | 2002-01-11 | Nec Miyagi Ltd | パラレルシリアル変換回路 |
JP2004297703A (ja) * | 2003-03-28 | 2004-10-21 | Fujitsu General Ltd | クロック乗換回路 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0683448B1 (en) * | 1994-05-10 | 2002-01-09 | Intel Corporation | Method and apparatus for synchronous data transmission between digital devices operating at frequencies having a P/Q integer ratio |
JP2914267B2 (ja) * | 1996-01-30 | 1999-06-28 | 日本電気株式会社 | 集積回路のデータ転送方法およびその装置 |
JP3442228B2 (ja) * | 1996-08-29 | 2003-09-02 | 松下電器産業株式会社 | 同期保持装置 |
US5923193A (en) * | 1996-12-11 | 1999-07-13 | Intel Corporation | Method and apparatus for transferring signals between multiple clock timing domains |
US5987081A (en) * | 1997-06-27 | 1999-11-16 | Sun Microsystems, Inc. | Method and apparatus for a testable high frequency synchronizer |
US5905391A (en) * | 1997-07-14 | 1999-05-18 | Intel Corporation | Master-slave delay locked loop for accurate delay or non-periodic signals |
US6664827B2 (en) * | 2001-03-02 | 2003-12-16 | Adc Telecommunications, Inc. | Direct digital synthesizer phase locked loop |
JP2003007056A (ja) * | 2001-06-18 | 2003-01-10 | Mitsubishi Electric Corp | 半導体記憶装置 |
US6987404B2 (en) * | 2003-10-10 | 2006-01-17 | Via Technologies, Inc. | Synchronizer apparatus for synchronizing data from one clock domain to another clock domain |
JP3933647B2 (ja) * | 2004-05-10 | 2007-06-20 | シャープ株式会社 | 消費電力解析防止機能つき半導体装置 |
JP2008059193A (ja) * | 2006-08-30 | 2008-03-13 | Oki Electric Ind Co Ltd | クロック切替回路 |
US8212594B2 (en) * | 2010-08-11 | 2012-07-03 | Integrated Device Technology, Inc. | Methods and apparatuses for clock domain crossing |
-
2008
- 2008-07-25 US US13/055,203 patent/US8451034B2/en active Active
- 2008-07-25 JP JP2010521546A patent/JP4995325B2/ja not_active Expired - Fee Related
- 2008-07-25 KR KR1020117004154A patent/KR101184137B1/ko active IP Right Grant
- 2008-07-25 CN CN200880130172.3A patent/CN102077505B/zh active Active
- 2008-07-25 WO PCT/JP2008/001995 patent/WO2010010603A1/ja active Application Filing
-
2009
- 2009-07-23 TW TW098124884A patent/TWI398751B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0276332A (ja) * | 1988-09-13 | 1990-03-15 | Nippon Telegr & Teleph Corp <Ntt> | ビット位相同期回路 |
JPH0865173A (ja) * | 1994-08-16 | 1996-03-08 | Nec Eng Ltd | パラレルシリアル変換回路 |
JPH0993232A (ja) * | 1995-09-25 | 1997-04-04 | Fujitsu Ltd | クロック乗換回路 |
JP2002009629A (ja) * | 2000-06-23 | 2002-01-11 | Nec Miyagi Ltd | パラレルシリアル変換回路 |
JP2004297703A (ja) * | 2003-03-28 | 2004-10-21 | Fujitsu General Ltd | クロック乗換回路 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015056372A1 (ja) * | 2013-10-18 | 2015-04-23 | 三菱電機株式会社 | データ転送装置及びデータ転送方法 |
JP6026001B2 (ja) * | 2013-10-18 | 2016-11-16 | 三菱電機株式会社 | データ転送装置及びデータ転送方法 |
JP2023520723A (ja) * | 2020-04-09 | 2023-05-18 | 株式会社アドバンテスト | 1つのクロックドメインから別のクロックドメインにデータを伝達するための回路 |
Also Published As
Publication number | Publication date |
---|---|
CN102077505B (zh) | 2014-01-15 |
KR20110056492A (ko) | 2011-05-30 |
US8451034B2 (en) | 2013-05-28 |
CN102077505A (zh) | 2011-05-25 |
US20110128052A1 (en) | 2011-06-02 |
JP4995325B2 (ja) | 2012-08-08 |
TW201007425A (en) | 2010-02-16 |
TWI398751B (zh) | 2013-06-11 |
KR101184137B1 (ko) | 2012-09-18 |
JPWO2010010603A1 (ja) | 2012-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4995325B2 (ja) | クロック乗せ換え回路およびそれを用いた試験装置 | |
US6535986B1 (en) | Optimizing performance of a clocked system by adjusting clock control settings and clock frequency | |
TWI723006B (zh) | 使用經校準、單一時脈來源同步串列器-解串列器協定之高速資料傳輸 | |
CN107222189B (zh) | 一种数字脉冲宽度调制器 | |
JP4943729B2 (ja) | 半導体集積回路装置とac特性測定システム | |
JP2022529513A (ja) | 並列経路遅延線 | |
US7659786B2 (en) | Ring oscillator | |
US20140070854A1 (en) | Integrated circuit comprising frequency change detection circuitry | |
TWI768384B (zh) | 用於產生脈衝輸出的電路及方法 | |
US7209852B2 (en) | Circuit for producing a variable frequency clock signal having a high frequency low jitter pulse component | |
CN216595393U (zh) | 时间延迟测试装置 | |
US12055989B2 (en) | Clock delay circuit for chip reset architecture | |
US8461884B2 (en) | Programmable delay circuit providing for a wide span of delays | |
KR101349587B1 (ko) | 단일 클럭 경로를 사용하는 1분주이상의 클럭 분주 회로 | |
CN109828632B (zh) | 一种基于fpga的可调超窄多路同步脉冲发生装置及方法 | |
JP2000249747A (ja) | 半導体試験装置のタイミング信号発生回路 | |
JP3847150B2 (ja) | 半導体集積回路とそのジッタ測定方法 | |
RU2752685C1 (ru) | Форматер | |
US20230129868A1 (en) | Systems and methods for asynchronous finite machines | |
EP4160231A1 (en) | Timing unit establishing time measuring method and measuring circuit | |
US6400188B1 (en) | Test mode clock multiplication | |
TW202437051A (zh) | 用於生成電路時脈信號的裝置和方法 | |
Quirós-Olozábal et al. | Accurate time-to-digital converter based on xilinx's digital clock managers | |
JP2009079913A (ja) | 半導体集積回路装置およびその試験方法 | |
CN112816858A (zh) | 数字电路延时测试方法、测试电路和集成电路芯片 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880130172.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08776892 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010521546 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13055203 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20117004154 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08776892 Country of ref document: EP Kind code of ref document: A1 |