WO2010007787A1 - 裸眼立体映像表示システム、裸眼立体映像表示装置、遊技ゲーム機、パララックスバリアシート - Google Patents

裸眼立体映像表示システム、裸眼立体映像表示装置、遊技ゲーム機、パララックスバリアシート Download PDF

Info

Publication number
WO2010007787A1
WO2010007787A1 PCT/JP2009/003350 JP2009003350W WO2010007787A1 WO 2010007787 A1 WO2010007787 A1 WO 2010007787A1 JP 2009003350 W JP2009003350 W JP 2009003350W WO 2010007787 A1 WO2010007787 A1 WO 2010007787A1
Authority
WO
WIPO (PCT)
Prior art keywords
parallax barrier
image
display
video
autostereoscopic
Prior art date
Application number
PCT/JP2009/003350
Other languages
English (en)
French (fr)
Inventor
吉田健治
Original Assignee
Yoshida Kenji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshida Kenji filed Critical Yoshida Kenji
Priority to US13/054,191 priority Critical patent/US20110187832A1/en
Priority to KR1020117003369A priority patent/KR20110046470A/ko
Priority to EP09797715A priority patent/EP2312375A4/en
Priority to JP2010520779A priority patent/JPWO2010007787A1/ja
Priority to CN2009801275371A priority patent/CN102099728A/zh
Publication of WO2010007787A1 publication Critical patent/WO2010007787A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/349Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/21Input arrangements for video game devices characterised by their sensors, purposes or types
    • A63F13/213Input arrangements for video game devices characterised by their sensors, purposes or types comprising photodetecting means, e.g. cameras, photodiodes or infrared cells
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/21Input arrangements for video game devices characterised by their sensors, purposes or types
    • A63F13/214Input arrangements for video game devices characterised by their sensors, purposes or types for locating contacts on a surface, e.g. floor mats or touch pads
    • A63F13/2145Input arrangements for video game devices characterised by their sensors, purposes or types for locating contacts on a surface, e.g. floor mats or touch pads the surface being also a display device, e.g. touch screens
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/25Output arrangements for video game devices
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/50Controlling the output signals based on the game progress
    • A63F13/52Controlling the output signals based on the game progress involving aspects of the displayed game scene
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/50Controlling the output signals based on the game progress
    • A63F13/53Controlling the output signals based on the game progress involving additional visual information provided to the game scene, e.g. by overlay to simulate a head-up display [HUD] or displaying a laser sight in a shooting game
    • A63F13/533Controlling the output signals based on the game progress involving additional visual information provided to the game scene, e.g. by overlay to simulate a head-up display [HUD] or displaying a laser sight in a shooting game for prompting the player, e.g. by displaying a game menu
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/31Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers involving active parallax barriers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1601Constructional details related to the housing of computer displays, e.g. of CRT monitors, of flat displays
    • G06F1/1607Arrangements to support accessories mechanically attached to the display housing
    • G06F1/1609Arrangements to support accessories mechanically attached to the display housing to support filters or lenses
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/0304Detection arrangements using opto-electronic means
    • G06F3/0317Detection arrangements using opto-electronic means in co-operation with a patterned surface, e.g. absolute position or relative movement detection for an optical mouse or pen positioned with respect to a coded surface
    • G06F3/0321Detection arrangements using opto-electronic means in co-operation with a patterned surface, e.g. absolute position or relative movement detection for an optical mouse or pen positioned with respect to a coded surface by optically sensing the absolute position with respect to a regularly patterned surface forming a passive digitiser, e.g. pen optically detecting position indicative tags printed on a paper sheet
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0425Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means using a single imaging device like a video camera for tracking the absolute position of a single or a plurality of objects with respect to an imaged reference surface, e.g. video camera imaging a display or a projection screen, a table or a wall surface, on which a computer generated image is displayed or projected
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0428Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by sensing at the edges of the touch surface the interruption of optical paths, e.g. an illumination plane, parallel to the touch surface which may be virtual
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/317Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using slanted parallax optics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/324Colour aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/327Calibration thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/356Image reproducers having separate monoscopic and stereoscopic modes
    • H04N13/359Switching between monoscopic and stereoscopic modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/361Reproducing mixed stereoscopic images; Reproducing mixed monoscopic and stereoscopic images, e.g. a stereoscopic image overlay window on a monoscopic image background
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/10Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals
    • A63F2300/1068Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals being specially adapted to detect the point of contact of the player on a surface, e.g. floor mat, touch pad
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/10Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals
    • A63F2300/1068Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals being specially adapted to detect the point of contact of the player on a surface, e.g. floor mat, touch pad
    • A63F2300/1075Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals being specially adapted to detect the point of contact of the player on a surface, e.g. floor mat, touch pad using a touch screen
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/10Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals
    • A63F2300/1087Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals comprising photodetecting means, e.g. a camera
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/30Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by output arrangements for receiving control signals generated by the game device
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/30Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by output arrangements for receiving control signals generated by the game device
    • A63F2300/308Details of the user interface
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/60Methods for processing data by generating or executing the game program
    • A63F2300/66Methods for processing data by generating or executing the game program for rendering three dimensional images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2213/00Details of stereoscopic systems
    • H04N2213/001Constructional or mechanical details

Definitions

  • the present invention relates to a parallax barrier type autostereoscopic display technology.
  • FIG. 46 As a type of conventional typical stereoscopic video display device, as shown in FIG. 46, a stereoscopic original image (f) in which images (h) and (m) for two left and right eyes are drawn or imaged on a transparent film (52a).
  • the parallax barrier (53a) By viewing through the parallax barrier (53a), the stereoscopic original image (f) can be viewed as a three-dimensional video at the viewpoint (p), and a parallax barrier type stereoscopic video display device (51) ) Has been known for a long time.
  • the touch panel portion also performs 3D display.
  • the technology for displaying the 3D video by providing a parallax barrier-type naked-eye stereoscopic video display means in a game machine is common.
  • RTP-1 Conventionally, in an autostereoscopic display, an ordinary high-resolution display and a parallax barrier are integrally formed.
  • the mainstream was a business model in which hardware and software for autostereoscopic displays were produced in-house and sold as an integrated system.
  • FIG. 95 shows a structure involved in manufacturing a parallax barrier autostereoscopic display.
  • an autostereoscopic display is manufactured by providing a spacer on the front surface of a normal display for displaying an image, and further providing a tempered glass on which a parallax barrier is formed behind the spacer.
  • an appropriate stereoscopic effect can be obtained in a preset stereoscopic view possible area.
  • the autostereoscopic display can be manufactured by fixing the display, the spacer, and the tempered glass.
  • RTP-2 parallax barrier
  • a parallax barrier is printed on a transparent thin film sheet, and the sheet is attached to a glass plate while adjusting its position. It was.
  • JP-A-11-296124 released on October 29, 1999
  • JP 2004-294861 A released October 21, 2004
  • Patent No. 4023626 announced on June 8, 2006
  • Japanese Patent Laid-Open No. 11-290520 released on October 26, 1999
  • JP 2004-313562 A published November 11, 2004
  • JP 2007-240559 published September 20, 2007
  • each stepped edge has a vertically long rectangular subpixel, that is, the long side is vertical, whereas the edge is also vertical.
  • the subpixels are concealed at one time, and the movement of the viewpoint and the jump point are perceived remarkably.
  • the subpixel is concealed by using an oblique line with a constant inclination angle for each subpixel that is a vertically long rectangle, so that the movement of the viewpoint and Fine control of jump point relaxation was not possible.
  • the movement of the viewpoint is, for example, a transition from a state in which the right eye visually recognizes the first viewpoint pixel to a state in which the second viewpoint pixel is visually recognized.
  • the jump point refers to a place where the person who presents the video visually recognizes the right-eye video for the sixth viewpoint with the right eye and the left-eye video with the left eye and obtains an appropriate stereoscopic effect. Further, for example, a place where the right-eye video for the sixth viewpoint is viewed with the left eye and the left-eye video for the first viewpoint is viewed with the right eye, and an inappropriate stereoscopic effect is obtained. That is. That is, the phenomenon of reversal of viewpoint.
  • the gaming machine equipped with the parallax barrier type stereoscopic image display device has the following problems.
  • the luminance is reduced when a 2D image is displayed on the autostereoscopic image display means.
  • Patent Document 4 discloses that 3D video has less visual irritation to the player's eyes than 2D video, (1) less image motion, and (2) saturation.
  • a configuration is disclosed in which the burden on the eyes of the player is reduced by selecting one of low, (3) low brightness, and (4) low sharpness.
  • Patent Document 5 and Patent Document 6 a liquid crystal element is used as a parallax barrier, and the liquid crystal element is controlled so that a parallax barrier is displayed at the time of 2D video display.
  • transmits the whole surface of is disclosed.
  • the present invention solves the above problems all at once. That is, firstly, there is provided a gaming machine equipped with autostereoscopic image display means that does not impose the burden on the eyes of the player without sacrificing the image quality and force of the 3D image.
  • a gaming machine equipped with autostereoscopic image display means that can be easily manufactured with a reduced number of steps while preventing a decrease in luminance during 2D image display.
  • the present invention aims to solve the above problems.
  • Another object of the present invention is to contribute to the popularization of gaming machines using autostereoscopic image display means by solving the above problems.
  • the plasma display needs to be provided with an electromagnetic wave shield made of a conductive member on the front surface of the plasma panel in order to prevent damage to human health due to electromagnetic waves.
  • RTP-1 In-house production of all autostereoscopic display systems is the same as, for example, a state in which a computer system is monopolized by a business model provided entirely by a major computer vendor. .
  • the present invention has been made in view of the above problems, and its purpose is to realize an autostereoscopic display at low cost by simply adding a parallax barrier sheet as hardware to an existing notebook PC or TV monitor. By doing so, it is intended to increase the number of market participants who perform hardware manufacturing, software manufacturing, content production, etc., and to realize a parallax barrier sheet that can expand and develop the autostereoscopic display market.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to make it possible to customize the autostereoscopic effect by allowing the user to select various parallax barrier sheets sold in the market. It is to realize a Lux barrier sheet (RTP-2).
  • RTP-2 Lux barrier sheet
  • the present invention has been made in view of the above-mentioned problems, and its object is to produce a parallax that can be manufactured in only one step without forming bubbles by directly printing a parallax barrier on a transparent plate. It is to realize a barrier sheet.
  • the present invention has been made in view of the above-described problems.
  • the purpose of the present invention is to provide a work PC having a low resolution and low processing capacity at home by a content creator working at home at low cost while using an existing PC.
  • the stereoscopic effect of the naked-eye stereoscopic content can be easily confirmed, the number of workers involved in the production of the naked-eye stereoscopic content can be increased.
  • the present invention has been made in view of the above-described problems, and its purpose is to carry one parallax barrier that is suitable for the screen size, resolution, and processing capability of the mobile PC in addition to a normal mobile PC. Therefore, it is to realize a parallax barrier sheet that can easily present the naked-eye stereoscopic effect of the naked-eye stereoscopic content at the customer site.
  • the autostereoscopic video display system of the present invention is a video display means for displaying 2D video and / or 3D video, a autostereoscopic video display device comprising a parallax barrier, and a touch panel operation on the autostereoscopic video display device.
  • An autostereoscopic image display system including a touch panel for receiving, wherein the touch panel includes a touch surface on which a menu image is displayed and / or a menu image is formed on a glass surface, and the autostereoscopic image display device includes the glass A predetermined distance from the inside of the glass surface (distance to the appropriate stereoscopic viewing area ⁇ the distance required for the touch panel operating so that a position separated by a predetermined distance required for the touch panel operating from the outside of the surface enters the appropriate stereoscopic viewing area. It is characterized by being installed inside the glass surface with a predetermined distance).
  • the touch panel is provided with a thin display having a touch surface that is detachable to display a menu image on a glass surface.
  • the touch panel is preferably provided with a touch sheet on a glass surface, which is detachable as a menu image and printed with icons, characters, etc. formed by photographs or graphics.
  • the touch panel includes a medium on which an icon or a character formed by a photograph or graphic that can be attached and detached as a menu image is printed, a paper controller, or a paper keyboard on a glass surface, the medium, the paper controller, or It is preferable that a touch panel operation on the autostereoscopic image display device is received by an operator touching and reading a dot pattern formed on the paper keyboard with an optical reading means (scanner).
  • an optical reading means scanner
  • the parallax barrier is an electrically controlled parallax barrier that can be electrically controlled to turn on or off the parallax barrier function.
  • the parallax barrier function When displaying a 3D image, the parallax barrier function is turned on and when displaying a 2D image. It is preferable to turn off the parallax barrier function.
  • the electric control parallax barrier is preferably a liquid crystal parallax barrier that can control ON / OFF of the parallax barrier function by electrically controlling the orientation of liquid crystal molecules.
  • the ON / OFF of the electric control parallax barrier is preferably switched by being electrically controlled based on a 2D / 3D switching instruction acquired by the video display means.
  • the ON / OFF of the electric control parallax barrier is preferably switched by being electrically controlled based on a 2D / 3D switching instruction by the touch panel operation.
  • the autostereoscopic image display apparatus further includes an image pickup unit that picks up an object in the vicinity, and when the display state of the 2D acquired initial image / or 3D image is controlled by the image display unit, the control unit The image is analyzed together with the video photographed by the means, and a control for displaying a stereoscopic video according to the analysis result is performed.
  • the autostereoscopic image display device of the present invention is an autostereoscopic image display device using a parallax barrier, and the edge shape of the slit of the parallax barrier is arranged on the display, and the person who is to present an image through the slit Are formed by continuously connecting elliptic arcs of a fixed shape corresponding to one or a plurality of viewpoint pixels that form a visible region, and each of the elliptical arcs divides each pixel in the horizontal direction. They are connected on a horizontal line.
  • the autostereoscopic image display device of the present invention is an autostereoscopic image display device using a parallax barrier, and each of the slit portions among the plurality of slit portions and the plurality of barrier portions constituting the parallax barrier is Instead of one slit part, it is configured by a plurality of holes that are visible light transmission regions corresponding to each pixel for autostereoscopic display, and is a position where the subject of image presentation can obtain the autostereoscopic effect most.
  • the maximum area on the pixel array surface to be visually recognized by the image presentation target person through the hole at the best viewpoint is a rectangular area on the pixel array surface having a predetermined width and a predetermined height, and the hole Are arranged independently on the parallax barrier surface, and the shape of the hole is an elliptic arc shape or a convex even polygonal shape of hexagon or more, and The shape is similar to the rectangular area formed by the intersection of the line segment connecting to the rectangular area and the parallax barrier surface with the left or right eye of the image presentation target person at the best view point as a base point.
  • the region is an effective visible region having a similar shape to the hole.
  • the parallax barrier is an electrically controlled parallax barrier that can be electrically controlled to turn on or off the parallax barrier function.
  • the parallax barrier function When displaying a 3D image, the parallax barrier function is turned on and when displaying a 2D image. It is preferable to turn off the parallax barrier function.
  • the electric control parallax barrier is preferably a liquid crystal parallax barrier that can control ON / OFF of the parallax barrier function by electrically controlling the orientation of liquid crystal molecules.
  • the electric control parallax barrier is preferably turned on or off by being electrically controlled based on a 2D / 3D switching instruction obtained by the video display means.
  • the ON / OFF of the electric control parallax barrier is preferably switched by being electrically controlled based on a 2D / 3D switching instruction by the touch panel operation.
  • the parallax barrier also serves as an electromagnetic wave shield.
  • the parallax barrier also serves as the electromagnetic wave shield by being formed of a conductive member.
  • the parallax barrier also serves as the electromagnetic wave shield by being formed by overlapping the electromagnetic wave shield.
  • the parallax barrier moves the slit or the visible light transmission region to the electromagnetic wave. It is preferable to divide into two or more regions by a shield.
  • the parallax barrier sheet of the present invention is a parallax barrier sheet that is used together with the display so that the parallax barrier functions as an autostereoscopic display, and is detachable from the display. And a parallax barrier portion formed on the transparent medium.
  • the transparent medium is preferably made of glass or a resin having a hardness capable of maintaining flatness when used.
  • the formation of the parallax barrier is preferably performed by gravure printing directly on the transparent medium.
  • the formation of the parallax barrier portion is preferably performed by forming the parallax barrier portion on a thin film transparent sheet and then attaching the thin film transparent sheet to the transparent medium.
  • a graphic such as an advertisement is added at least on the image presentation target side.
  • the parallax barrier section is preferably black that blocks visible light.
  • the gap distance (Z value) from the image display surface of the display to the mask surface of the parallax barrier which is calculated to set the stereoscopic viewing range and / or the best viewpoint for the autostereoscopic display, It is preferable to further include a spacer for holding between the display surface and the display surface.
  • the spacer is preferably transparent.
  • the spacer is preferably integrally formed with the transparent medium using the same material as the transparent medium.
  • the spacer has a structure capable of easily changing the gap distance.
  • the thickness of the spacer is adjusted to the first thickness, and when the display is used as an autostereoscopic display, the thickness of the spacer is thinner than the first thickness. It is preferable to adjust to the second thickness.
  • the spacer is substituted by the thickness of the transparent medium.
  • the spacer is preferably replaced by a frame of the display surface.
  • the parallax barrier part is formed by adjusting the width of the slit of the parallax barrier part instead of adjusting the thickness of the frame when setting the stereoscopic suitability range and / or the best viewpoint. It is preferable.
  • the angle of the slit with respect to the horizontal line is always held at a predetermined angle ⁇ when the parallax barrier portion is attached to the display. It is preferable.
  • a protective means for preventing scratches, peeling, and deposits on the parallax barrier portion is provided.
  • a predetermined one or two viewpoint images are set to white, and other viewpoint images are set to black, thereby forming a calibration index. It is preferable to perform calibration by adjusting so that it can be visually recognized as a continuous line through the slit of the parallax barrier portion.
  • a first indicator for calibration is formed on the transparent medium
  • a second indicator for calibration is formed on a frame of the display or an image display surface of the display, and the parallax barrier sheet is attached to the transparent medium.
  • calibration is preferably performed by combining the first index and the second index.
  • the first index is provided with a calibration line-shaped slit having a predetermined width horizontally and / or vertically at a predetermined position of the transparent medium, and the calibration is performed on the image display surface.
  • the calibration is preferably performed to adjust the position of the transparent medium so that the second index, which is a line displayed at the corresponding position, can be viewed without omission.
  • the gaming machine includes a parallax barrier type autostereoscopic video display means comprising display means, a parallax barrier according to claim 6, game control means for controlling game contents, and operation by a player Receiving means, time measuring means for measuring elapsed time and / or continuous play time, and the number of appearances of 3D video displayed by the autostereoscopic image display means based on the elapsed time and / or continuous play time, And a video control means for controlling the display time and / or the degree of three-dimensional pop-up.
  • the video control means controls the number of appearances of the 3D video, the display time, and / or the degree of stereoscopic pop-up, and is created by pre-blending a predetermined plurality of viewpoint videos using a predetermined algorithm. It is preferable to carry out by preparing a predetermined number of video images.
  • the video control means controls the appearance time, display time, and / or stereoscopic projection degree of the 3D video from a plurality of viewpoint videos prepared in advance for the number of viewpoints corresponding to the parallax barrier. It is preferable that a plurality of the viewpoint videos are selected so that the parallax between the adjacent viewpoints is the same, and blended in real time.
  • the video control unit controls the number of appearances of the 3D video, the display time, and / or the degree of stereoscopic pop-up so that a multi-camera serving as a viewpoint for drawing 3DCG approaches or separates from a drawing target. And / or by moving the drawing object closer to or away from the multi-camera, or by changing the direction of the plurality of multi-cameras corresponding to the parallax barrier, the position of the gazing point of the multi-camera It is preferable to carry out by moving back and forth.
  • the video control means controls the pop-out degree based on an input signal sent from the input means.
  • the apparatus further includes a driving unit that moves the parallax barrier, and the parallax barrier is a movable parallax barrier that covers at least a part of the monitor surface of the display unit.
  • a gaming game machine of the present invention controls parallax barrier-type naked-eye stereoscopic image display means comprising display means and a movable parallax barrier using the parallax barrier according to claim 6 or 7, and controls game contents.
  • Game control means input means for accepting an operation by a player, drive means for moving the movable parallax barrier, and movable parallax barrier covering at least part of the monitor surface of the display means.
  • the driving means can move the movable parallax barrier from the movable parallax barrier to the monitor surface by means of an appropriate distance maintaining means arranged around the monitor surface, which enables the movable parallax barrier to move up and down and / or left and right. It is preferable to maintain a predetermined distance.
  • the movable parallax barrier further includes an appropriate distance maintaining unit for maintaining a predetermined distance from the movable parallax barrier to the monitor surface, and the movable parallax barrier is configured to display the 2D video when the display unit displays a 2D image.
  • the drive means winds up the rollable sheet in the vertical direction or the horizontal direction.
  • the appropriate distance maintaining means is disposed around the monitor surface and a transparent flat plate disposed between the rollable sheet and the monitor surface, and causes the rollable sheet to adhere to the transparent flat plate. And fixing means.
  • the transparent flat plate is provided with a plurality of fine holes, and the fixing means sucks the rollable sheet from the fine holes and fixes the rollable sheet in close contact with the transparent flat plate.
  • a suction means is preferred.
  • the appropriate distance maintaining means is a spacer and / or a rail arranged around the monitor surface.
  • the driving means is disposed around the monitor surface, and moves the movable parallax barrier forward and backward based on whether the image displayed by the autostereoscopic image display means is a 3D image or a 2D image. It is preferable to move the movable parallax barrier closer to the monitor surface by moving to display the 3D image properly, and move the movable parallax barrier away from the monitor surface to display the 2D image without omission. .
  • brightness control means for controlling the brightness when displaying the 3D video.
  • brightness control means for controlling the brightness when displaying the 3D video.
  • the brightness control means performs brightness control to increase the brightness when the image displayed by the autostereoscopic video display means is a 3D video, and to decrease the brightness when the video displayed by the autostereoscopic video display means is a 2D video. Preferably it is done.
  • the brightness control is preferably performed by controlling the current and / or voltage supplied to the light source of the display means.
  • the brightness of the video is increased in the 3D video area covered by the parallax barrier in the video displayed on the monitor surface, and the 2D video area is not covered by the parallax barrier.
  • image brightness correction be performed to correct a luminance difference between the 3D image area and the 2D image area due to the presence or absence of the parallax barrier by lowering the brightness of the image.
  • the video brightness correction is preferably correction for performing image processing in real time on video data temporarily stored in a frame buffer for playing back video.
  • a 2D video display device for displaying 2D video is further provided, and the autostereoscopic video display means displays only 3D video.
  • the autostereoscopic video display means displays an image or video that prompts an operation
  • the game control means is sent from the input means and an algorithm defined corresponding to the operation time and / or the operation method. It is preferable that the game is controlled based on the input signal, and the video control means controls the number of appearances of 3D video, the display time and / or the degree of three-dimensional pop-up in response to the game control by the game control means. .
  • the input means is preferably one or a combination of buttons, levers, sliders, joysticks, mice, keyboards, jog dials, touch panels.
  • the apparatus further comprises detection means for detecting the position of the game ball and / or the trajectory of the game ball, the game control means controls the game based on a detection signal acquired from the detection means, and the video control means is the game Corresponding to the control of the game by the control means, it is preferable to control the number of appearances of 3D video, the display time, and / or the degree of stereoscopic pop-up.
  • the autostereoscopic video display means displays an image or video of an accessory and / or ornament
  • the game control means forms the image or video of the accessory and / or ornament acquired from the video control means. It is preferable to control the game based on pixel position information of the display unit and a detection signal acquired from the detection unit.
  • the autostereoscopic image display means is normally hidden from the player, and preferably appears only when a predetermined appearance condition is satisfied.
  • the parallax barrier is not limited to the shape of the monitor surface, and preferably has an arbitrary shape.
  • a 2D image is formed on at least a part of the surface of the parallax barrier on the player side.
  • the autostereoscopic video display device includes video display means for displaying 2D / 3D video and a touch panel that receives input from the user, as described above.
  • the 2D / 3D video to be displayed can be changed according to the user's instruction.
  • the naked-eye stereoscopic image display device has a slit shape as long as the slit arrangement shape, that is, the shape of the slit center line is a zigzag shape or a sinusoidal curve shape.
  • the shape of the slit center line is a zigzag shape or a sinusoidal curve shape.
  • the deviation between the arrangement and the pixel arrangement is constant, even if there is a part where the deviation is large, the deviation is small in other parts.
  • the zigzag shape or the sinusoidal curve shape there is an effect that the shift can be controlled during a half cycle of passing through the zigzag corner or the maximum amplitude point of the sine wave at the quarter period point.
  • the slit edge shape an elliptical arc, it is possible to generate a gentle and appropriate view mix, and to move the viewpoint and relax the jump point.
  • the shape of the edge is composed of an elliptical arc and a line segment that is a part of a horizontal line that divides the pixels of each row, when an image presentation target person views a stereoscopic video in front of the apparatus, There is an effect that the clearest stereoscopic video can be provided.
  • the horizontal view mix can be suppressed and the stereoscopic effect can be enhanced.
  • each of the slit regions replaces one slit
  • Consists of a plurality of visible light transmissive regions corresponding to each pixel for autostereoscopic display, and the visible light transmissive regions are independently arranged on the parallax barrier, and are image display targets at the best viewpoint.
  • the effective visible region that is viewed through the visible light transmission region by one of the left and right eyes of a person is a rectangular region that is determined by a predetermined width and a predetermined height, and the periphery of the effective visible region is above and below the rectangular region. And it is a shape that fits in a shape inscribed in the left and right sides.
  • the region of the sub-pixel that should be viewed with one eye at a time is first determined, and then the back-light is calculated from the sub-pixel region. Therefore, it is possible to easily design the most appropriate shape of the visible light transmission region.
  • a gaming game machine provided with autostereoscopic image display means that does not impose the burden on the eyes of the player without sacrificing the image quality and force of the 3D image. Can be provided.
  • the parallax barrier according to the present invention also serves as an electromagnetic wave shield and can be manufactured in a single process as described above, it is possible to more easily manufacture an autostereoscopic display using a plasma display. Has a remarkable effect.
  • the parallax barrier sheet according to the present invention is a parallax barrier sheet that is used together with the display to allow the display to function as an autostereoscopic display, and is detachable from the display. Since it is characterized by comprising a transparent medium and a parallax barrier formed on the transparent medium, the parallax barrier can be manufactured separately from the autostereoscopic display and supplied to the market. Because it is possible to view autostereoscopic images using an inexpensive display, it is possible to realize autostereoscopic displays at low cost simply by adding a parallax barrier sheet as hardware to an existing notebook PC or TV monitor.
  • FIG. 4 shows a display mode of the stereoscopic video display device of the present invention, where (a) is an example of “multi-view stereoscopic display mode”, (b) is an example of “drawing / printing browsing mode”, (c ) Is an example of “mixed mode”.
  • the other example of a structure of the display part of this invention is shown, (a) is an example comprised by the backlight and the three-dimensional printing part, (b) uses liquid crystal, plasma, or LED for the image light emission part 5d. (C) is an example in which the gap in the configuration example shown in (b) is replaced with a transparent material.
  • the further modification of the display part of this invention is shown, (a) is a figure which shows the structure which can be attached or detached and can be rolled, (b) is a figure which shows the structure where a three-dimensional printing part etc. are roll shape. is there.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows embodiment of this invention, and is a figure which shows the example which overlaps and forms a dot pattern on the image drawn on the front surface of the parallax barrier, (a) is an example where a slit is dumpling shape, (b ) Is an example of a hole-shaped slit.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows embodiment of this invention, and shows the example by which the parallax barrier and the touch panel were provided only in a part of display part, (a) is a three-dimensional display area
  • FIG. 1 It is a figure which shows the example in which the barrier is provided, (b) is a figure which shows the example comprised from a touchscreen, a normal monitor area
  • FIG. 1 It is a figure which shows the structure of the edge shape of the slit of a parallax barrier of embodiment of this invention, (a) is a figure which shows the arrangement
  • (C) is another example in which an edge is composed only of an elliptic arc
  • (d) is an example in which an edge is composed only of a spline curve. It is a figure which shows the other example of the elliptical arc-shaped slit of embodiment of this invention, (a) shows the arrangement
  • (A) stores only a 3D part image in each viewpoint area, and a background (2D) part is This is an example in which a mask is also used in the lower right area, and (b) holds only 2D and 3D image areas for 5 viewpoints and mask information for 5 lower viewpoints (5 bits).
  • (C) is an example in which a 2D image is used as a separate file, and a 3D image and a black region serving as a mask are provided in each region obtained by dividing a frame in the 3D image file. It is an example of division
  • the arrangement of the pixels is shown, and (c) is a diagram showing the arrangement of the compressed image for the k-th viewpoint. It is a figure which shows the blend method of the pixel for each viewpoint of embodiment of this invention. It is a figure which shows the blending and compression method of the pixel for each viewpoint of embodiment of this invention, (a) shows arrangement
  • each parameter related to a three-dimensional effect of an embodiment of the present invention (a) is a figure showing a visible region visually recognizable with both eyes, and (b) is a figure showing distance between gazing points. . It is a figure explaining each parameter related to the three-dimensional effect of the slit of the edge shape of an elliptical arc of the embodiment of the present invention. It is a figure explaining each parameter related to the three-dimensional effect of the edge-shaped slit of an elliptical arc of an embodiment of the present invention, (a) is an example in which the right and left visible regions touch, and (b) overlaps This is an example.
  • FIG. 4 is a diagram illustrating an embodiment of the present invention, and is a diagram illustrating a relationship between an effective visible region, a visible light transmission region, and a position of one eye of an image presentation target person at a best viewpoint.
  • FIG. 4 is a diagram illustrating an embodiment of the present invention, and is a diagram illustrating a relationship between an effective visible region, a visible light transmission region, and a position of one eye of an image presentation target person at a best viewpoint.
  • FIG. 4 is a diagram illustrating an embodiment of the present invention, and is a diagram illustrating an arrangement of subpixels in various blending methods when obtaining a pixel average width, and (a) illustrates an arrangement of two pixels of two rows and three subpixels; (B) shows the arrangement of three pixels in three rows and four subpixels, (c) shows the arrangement of one pixel in one row and three subpixels, and (d) shows the arrangement of one pixel in two rows and four subpixels. (E) shows the arrangement of one pixel of 3 rows and 3 sub-pixels.
  • FIG. 4 is a diagram illustrating an embodiment of the present invention and a size when an effective visible region is designed. FIG.
  • FIG. 4 is a diagram illustrating an embodiment of the present invention, and is a diagram illustrating a specific shape of a visible light transmission region, where (a) is a quadrangle, (b) is a quadrangle (diamond), (c) and (d) are six.
  • FIG. 1 shows an embodiment of the present invention, (a) is a diagram showing deformation of a rectangular region into a parallelogram, (b) is a diagram showing a center point when deforming, and (c) is a diagram.
  • FIG. 4 is a diagram illustrating an embodiment of the present invention and illustrating a deviation between a design viewpoint and an actual viewpoint in a vertical direction. It is a block diagram which shows the structure of the game game machine concerning this invention. It is a figure which shows the 1st control method which controls the appearance frequency of 3D image
  • FIG. It is a figure which shows the structure of the edge shape of the slit of a parallax barrier of embodiment of this invention, (a) It is an example which inclines an elliptical arc and comprises an edge, (b) to (d) is an edge from a triangle. It is an example that is configured. It is a figure which shows the blend method of embodiment of this invention, (a) is a figure which shows arrangement
  • FIG. 1 shows an outline of a stereoscopic video display device 1 according to the present invention.
  • illumination light is irradiated on the front surface of the Barralux barrier 2, and even when the external light is weak, an image 3 drawn on the front surface of the Ballarax barrier 2 is displayed to the image presentation target person.
  • FIG. 1 shows an outline of a stereoscopic video display device 1 according to the present invention.
  • the light projecting units 4 and 4b are used when there is little external light and the image 3 drawn on the front surface of the ballarax barrier 2 is turned on so as to be visually recognized by an image presentation target person.
  • the light projecting unit 4 is a horizontally long light source disposed on the upper part of the display unit 5.
  • a light source arranged in the form of a point light source may be used, a linear light such as a fluorescent lamp may be used, or a planar light such as an organic EL may be used. Also good.
  • the light projecting unit 4b is a line of point light sources.
  • the shape, number, and arrangement of the light projecting units 4 and 4b may be any shape, number, and arrangement as long as the image presentation subject can effectively visually recognize the image 3 in accordance with changes in external light. Well, it is not limited to these examples.
  • the light projecting unit 4 simply covers the point light source light type light projecting unit 4b and blinds the light projecting unit 4b. In the case of a large outdoor signboard, the light projecting unit 4b is often used from the viewpoint of cost.
  • the light projecting units 4 and 4b may be installed on either the upper, lower, left or right side of the display unit 5. You may install only in one side and may install in both sides.
  • the shape of the light projecting unit 4 is preferably used for the purpose of blinding the light in the small and medium-sized stereoscopic image display device 1 regardless of whether it is indoor or outdoor.
  • FIG. 1C shows an outline of the configuration of the stereoscopic image display apparatus 1 according to the present invention.
  • the stereoscopic image display apparatus 1 includes a light projecting unit 4, a display unit 5, a control unit (control unit) 6, and an illuminance sensor (external light detection unit) 7.
  • the display unit 5 has a function similar to that functioning as a normal autostereoscopic display, and includes an image light emitting unit 5d that displays an image and a parallax barrier 2 disposed in front of the image light emitting unit 5d.
  • An image 3 such as an advertisement is drawn on the front surface of the parallax barrier 2.
  • an image light emitting unit 5 d such as a liquid crystal display, a plasma display, an organic EL display, or an LED display behind the parallax barrier 2 is based on a video signal transmitted from the control unit 6.
  • 2D / 3D display video is displayed.
  • the light emitted by the display and passed through the slit of the parallax barrier 2 is perceived by the image presentation target person in the 3D video appropriate viewing position. Then, the autostereoscopic video is presented to the image presentation target person.
  • the displayed video may not be a 3D display video, and may be a 2D video for complementing the image 3 drawn on the parallax barrier 2, for example.
  • the image 3 may be complemented by 3D video.
  • the color of the image 3 may be displayed while suppressing the luminance of the image and not damaging the texture of the image 3.
  • the light projecting unit 4 is a light source having a structure capable of irradiating light to the front surface of the parallax barrier 2 when turned on. Based on the control signal from the control unit 6, the intensity of light irradiated on the front surface of the parallax barrier 2 is adjusted. Of course, the irradiation direction and the irradiation method may be adjusted based on the control signal from the control unit 6.
  • the light source may be blinked at a predetermined interval or the color tone of the irradiated light may be changed depending on the illumination environment around the stereoscopic image display device 1 and / or the position of the image presentation target person.
  • the illuminance sensor 7 measures the intensity of external light that strikes the front surface of the parallax barrier 2 and sends the measurement result to the control unit 6.
  • the illuminance sensor 7 may be composed of one or more omnidirectional sensors, or may be composed of one or more directional sensors so that the direction in which external light is incident can be detected. However, these sensors may be combined appropriately.
  • the control unit 6 controls the video signal sent to the display unit 5 and the light projecting unit 4 based on the measurement result received from the illuminance sensor 7. Details of what control is performed will be described later.
  • the video that the control unit 6 sends to the display unit 5 may be stored in the control unit 6 in advance or may be input from the outside.
  • the video input from the outside may be provided with an independent storage unit (not shown) and stored therein, or may be received by wireless communication such as communication via a network or broadcasting.
  • FIG. 2 is a diagram showing that the stereoscopic video display apparatus 1 has two modes, “multi-view stereoscopic display mode” and “drawing / print browsing mode”.
  • the stereoscopic video display device 1 operates as a parallax barrier type autostereoscopic display.
  • the drawing / printing browsing mode shown in FIG. 2B the stereoscopic video display device 1 operates as a display board that displays the image 3 drawn on the front surface of the ballax barrier 2.
  • an advertisement for a mobile phone is displayed on the display unit 5.
  • a mobile phone floating in the air and the characters “Keitai No. 1” are displayed as a 3D image approaching from the back of the room, with a deep room created by a 3D image as the background. ing.
  • the display mode may be a configuration in which the “multi-view stereoscopic display mode” and the “drawing / printing viewing mode” are completely switched, and as described later, a “mixed mode” in which both display modes are mixed is used.
  • a configuration in which an effective advertisement combining 2D images / 3D video is performed on the image presentation target person may also be used.
  • mountains and flowers are drawn as an image 3 on the front surface of the parallax barrier 2 on the display unit 5. Only the butterfly is displayed as a three-dimensional image, and the butterfly flies through the three-dimensional space starting from the flower.
  • the front surface of the parallax barrier 2 may be a mirror surface shape.
  • the position sensor 8 (not shown) is provided in the same manner as the prior art, it is possible to give a surprise to the image presentation target person by converting his / her appearance into another image.
  • an image presentation target approaching the stereoscopic video display device 1 first recognizes his / her appearance on the front surface of the Barrax barrier 2 and recognizes the front surface of the Barrax barrier 2 as a normal mirror.
  • the image light emitting unit 5d emits light
  • the image is darkened by the amount transmitted through the magic mirror.
  • the entire surface including the slit portion may be a magic mirror.
  • a magic mirror may be installed in front of the parallax barrier 2. Therefore, rather than performing a work in which only the front surface of the parallax barrier 2 is mirrored while avoiding the slit portion. The entire surface can be made a uniform mirror more easily.
  • control unit 6 that has detected that the image presentation target person has entered the appropriate viewing position of the 3D video by the position sensor 8 presents the 3D video (for example, a skeleton) to the image presentation target person.
  • the subject recognizes the 3D image instead of his / her appearance in the mirror.
  • the intensity of light from the display unit 5 is such that the appearance of the person to be presented on the front of the parallax barrier 2 substantially disappears and only 3D video is recognized. May be.
  • the shape of the slit of the parallax barrier 2 is a dumpling shape as shown in FIG. 3 (a), an oblique linear shape as shown in FIG. 3 (b), and a hole-type lantern shape as shown in FIG. 3 (c).
  • Control method of display unit and light projecting unit Details of the control method of the display unit 5 and the light projecting unit 4 performed by the control unit 6 are as follows.
  • the control unit 6 considers the position of the external light and the amount of light, and so on, so that it can perform an effective advertisement combining 2D images / 3D video to the image presentation target person, and the light projecting unit 4 and the display unit Control 5 is performed. Specifically, it is as follows.
  • the position of the sun changes from the sunrise from the east to the sunset from the west, so the position and the intensity of the incident light are measured by the illuminance sensor 7, and the position
  • the 2D / 3D video displayed on the display unit 5 and the illumination method of the light projecting unit 4 may be controlled in accordance with the intensity.
  • the pixels that are exposed to direct sunlight entering from the slits of the parallax barrier 2 are turned off and become a shadow of the parallax barrier 2 for direct irradiation. It is possible to reduce power consumption by turning on pixels in places where sunlight is not applied.
  • the intensity of sunlight is weak in the morning and evening and strong in the daytime.
  • a configuration in which the display unit 5 is not turned on in the daytime and the outdoor advertisement only shows the image 3 on the parallax barrier 2 may be used.
  • the power consumed by the stereoscopic video display device 1 during the daytime can be reduced.
  • an image may be displayed on the display unit 5 and the image 3 may be supplemented so that the slit portion of the parallax barrier 2 does not appear black.
  • the front of the parallax barrier 2 may be controlled by illumination from the light projecting unit 4. Based on the measurement result of the external light by the illuminance sensor 7, the brightness of the image displayed on the display unit 5 is also controlled, and it is determined whether or not the autostereoscopic image is displayed according to the ambient brightness of the stereoscopic image display device 1. Control may be performed.
  • a 3D image is displayed only when both the conditions of the time zone and external light that can present an autostereoscopic image to the image presentation target and the condition that the image is to be displayed in three dimensions are met. In other cases, automatic control may be performed to display the image 3.
  • ⁇ It may be configured to perform fine control such as performing intermediate lighting even for slight changes in the surroundings such as external light.
  • the point of the stereoscopic image display device 1 according to the present invention is to give light, reflected light to the light, and a light emitting body such as a liquid crystal display to be controlled, and switch between them.
  • the image 3 can be emphasized and shown to the image presentation target person even when the sunlight is low.
  • the illuminance sensor 7 may measure the intensity for each frequency band of light when measuring the intensity of external light. For example, by adopting this configuration, when the red component in the sunlight increases in the morning and evening, the control method in which the display unit 5 displays the 2D / 3D video image using the most effective color tone may be used. .
  • the position sensor 8 is provided, and the video displayed on the display unit 5 and the illumination of the light projecting unit 4 are controlled according to the position of the image presentation target person, so that an effective advertisement is provided to the image presentation target person. Can also be done.
  • an object in the vicinity of the stereoscopic image display device 1 is photographed using a camera (imaging means), and the photographed image is analyzed in the control unit 6, and the analysis result together with the photographed image.
  • Control for displaying a stereoscopic image (other person, animal, character, skeleton, etc.) on the display unit 5 may be performed.
  • a butterfly in spring and a dragonfly in the vicinity are perceived as a stereoscopic image.
  • the structure which performs control to be performed may be sufficient.
  • the stereoscopic effect is most effectively seen when the front surface of the parallax barrier 2 is black and only the light from the slit of the parallax barrier 2 is perceived by the image presentation target person. Therefore, it is desirable to make the color tone of the image 3 as dark as possible.
  • the stereoscopic video display device 1 is suitable for a showroom in which the autostereoscopic display is performed indoors or outdoors for an image presentation target person.
  • the stereoscopic lighting can be effectively displayed by controlling the indoor lighting as the light projecting unit 4.
  • the autostereoscopic image can be raised by displaying the autostereoscopic image on the display unit 5 while lighting the image 3 printed using the light projecting unit 4.
  • the person who presents the image can clearly perceive that the stereoscopic of the autostereoscopic image is in front of the printed image 3.
  • the reason is that the human eye can distinguish between a rendered real image perceived by reflected light and a stereoscopic effect by an image perceived by light emission of the element.
  • a stereoscopic display target can be displayed in a pop-up manner using a stereoscopic effect before a real picture or photograph. And impression can be given.
  • a bright foreground can be seen in front of the image presentation target person, and a sketch or a signboard as the image 3 can be shown on the black background portion.
  • the combination of the picture of the signboard, which is the rendered image 3, and the video image displayed as a naked-eye three-dimensional effect provides an effect of floating the three-dimensional object in front of the signboard, or the reflected light from the signboard by intensifying the video light It is possible to produce various effects such as preventing the perception of the sign and obtaining the effect that the sign disappears.
  • the image presentation target person can perceive that the position of the solid connecting the images is in front of the 2D image, or that it is behind the 2D image. You can make it. ⁇ Details of the structure of the display unit 5>
  • FIG. 4 the detail of the structure of the display part 5 is shown as sectional drawing.
  • the display unit 5 includes a tempered glass, a graphic print, a mask print layer, a gap, and an image light emitting unit 5d from the side close to the image presentation target person. Is done.
  • the display unit 5 includes a protective sheet, graphic printing, a mask printing layer, a transparent material, and an image light emitting unit 5d from the side close to the image presentation target person. Is done.
  • the tempered glass when a combination of tempered glass and voids is used, the tempered glass needs to have an appropriate thickness in order to have strength. Moreover, when using the combination of a protection sheet and a transparent material, since the intensity
  • the structure of the display unit 5 may be a combination of a thin tempered glass and a transparent material.
  • Image 3 is drawn as graphic printing.
  • the graphic print portion may be a mirror surface.
  • the mask printing layer is composed of a non-transmissive portion that blocks light emitted from the image light emitting portion 5d and restricts the traveling direction of the light, and a transmissive portion (slit) through which light is transmitted.
  • the image light emitting unit 5d is an array of pixels that displays 2D video and / or 3D video, that is, a display.
  • FIG. 5 the structural example of the other display part 5 is shown as sectional drawing.
  • FIG. 5A shows an example in which the image light emitting portion 5d is constituted by a backlight and a three-dimensional printing portion, and a space between the mask printing layer and the three-dimensional printing portion is filled with a transparent material.
  • a transparent material constituted by a backlight and a three-dimensional printing portion
  • a space between the mask printing layer and the three-dimensional printing portion is filled with a transparent material.
  • it may replace with the combination of a transparent material and a protective sheet, and the combination of a space
  • FIG. 5B shows an example in which a gap is provided between the image light emitting portion 5d and the mask print layer in the image light emitting portion 5d using liquid crystal, plasma, or LED.
  • FIG. 5 (c) is an example in which the voids in the configuration example shown in FIG. 5 (b) are replaced with a transparent material.
  • the strength can be increased, so that the thick tempered glass can be replaced with a thin protective sheet.
  • FIG. 6 shows a further modification of the display unit 5.
  • FIG. 6A is a diagram illustrating a configuration in which a three-dimensional printing unit, a transparent material, a mask printing layer, graphic printing, a protective sheet, and the like are detachable or rollable.
  • FIG. 6A The structure in FIG. 6A is similar to the example shown in FIG. 5A at first glance, but only the three-dimensional printing part or in addition to the three-dimensional printing part, a transparent material, a mask printing layer, graphic printing, a protective sheet, etc. Is configured to be detachable or rollable.
  • the three-dimensional printing part or the like When making it possible to attach and detach, the three-dimensional printing part or the like does not need to have flexibility, but when making it possible to roll, the three-dimensional printing part or the like needs to be flexible so that it can be wound by a roller.
  • gap part may be sufficient.
  • FIG. 6B is a diagram illustrating a configuration in which only the three-dimensional printing unit, or the three-dimensional printing unit, the transparent material, the mask printing layer, the graphic printing, and the protective sheet are in a roll shape.
  • the three-dimensional printing unit, the mask printing layer, the graphic printing layer, and the protection / strengthening sheet shown in FIG. 6A at least the three-dimensional printing unit is disposed between the rollers provided at the end of the casing of the display unit 5. It is a figure which shows the structure which moves by rotation of.
  • the structure which can visually recognize an image only from the front surface of the three-dimensional image display apparatus 1 may be sufficient, and as shown in FIG.6 (b), the structure which can visually recognize an image from the back surface. But you can.
  • the position sensor 8 detects that an image presentation target person has entered a predetermined 3D video appropriate viewing position and performs effective video display. Furthermore, by using various sensors, when an image presentation target person performs an operation such as getting on, touching, or approaching, it is possible to perform display control such as an attraction in which a three-dimensional object pops up using the operation as a trigger.
  • the display content may be controlled by measuring time by means of a time measuring means.
  • the stereoscopic video display device 1 may be configured as a part of the floor.
  • the floor usually looks like a marble or tile of tempered glass, but when a person approaches, it can be controlled so that a solid pops out, becomes a pond, or a pond appears. I can do it.
  • the configuration may be such that a pressure-sensitive sensor is provided in front of the stereoscopic image display device 1.
  • the stereoscopic display device 1 in front of the image presentation target person in the traveling direction shows a three-dimensional view such as a river in the direction in which the image presentation target person walks. You can also
  • three-dimensional guidance display can be performed in front of the customer in order to guide the customer (the subject of image presentation) to the seat.
  • the stereoscopic display cannot be seen from the lateral direction, other customers are not confused. It may be used in a passage having a plurality of branch paths, or may be used for guiding in a large room.
  • the stereoscopic video display device 1 may be configured as a part of the door. According to this configuration, it is possible to perform control such that a solid is popped out at the moment when a person holds the door knob.
  • a configuration in which the stereoscopic image display device 1 is used as a mirror may be used. According to this configuration, you can usually see yourself, but if you look into the mirror or touch the mirror, you can control the skeleton to pop out.
  • a configuration using a microphone as the sensor may be used. According to this configuration, it is possible to perform control such that a wall approaches in response to a sound produced by a person.
  • a configuration in which the stereoscopic image display device 1 is part of a vending machine may be used. According to this configuration, it is possible to control so that a solid pops out when a person comes by.
  • a configuration in which the stereoscopic image display device 1 is a part of a mechanism clock may be used. According to this configuration, it is possible to perform control such that a solid body pops out at a predetermined time.
  • the stereoscopic video display device 1 may be configured as a part of the game machine. According to this configuration, it is possible to perform control so that the front screen suddenly becomes three-dimensional depending on the game scenario.
  • a configuration in which the stereoscopic video display device 1 is part of an elevator may be used. According to this configuration, when a person gets on the elevator, control can be performed such that a solid is displayed in the elevator.
  • the stereoscopic image display device 1 may be incorporated in a train. As with elevators, it may be possible to control the image by detecting that a person has got on the train, and since the incident direction of external light changes as the vehicle moves on a train, autostereoscopic images to be displayed according to the change are displayed. You may control.
  • ⁇ Dot pattern formation on the parallax barrier> As disclosed in Japanese Patent No. 3706385 and Japanese Patent No. 3771252, a dot pattern with information is formed on the medium surface by overlapping with text or photo, and when the user touches the text or photo using a scanner, A structure in which information is extracted from overlapping dot patterns may be combined with the stereoscopic image display device 1.
  • a dot pattern is formed on the image 3 drawn on the front surface of the parallax barrier 2 in an overlapping manner.
  • an XY coordinate value representing a position on the surface of the parallax barrier 2 of the stereoscopic video display device 1.
  • FIG. 7 (a) shows a case where the slit is a dumpling
  • FIG. 7 (b) shows a case where the slit is a hole shape.
  • the entire surface of the parallax barrier 2, that is, the opaque part for drawing the image 3 and the transparent slit part for transmitting the light from the image light emitting part 5d behind, are not distinguished. It may be configured to form a pattern.
  • This configuration is effective when using the process of forming the opaque portion of the parallax barrier 2 on a transparent member by drawing, printing, or the like when the parallax barrier 2 is formed. That is, when forming the dot pattern, the dot pattern can be formed using a normal dot pattern forming method without distinguishing between the transparent slit portion and the opaque portion where the image 3 is formed. The process can be simplified.
  • the opaque portion of the parallax barrier 2 is formed on the front surface of the transparent sheet, that is, the surface opposite to the image light emitting portion 5d, and the dot pattern layer including the slit portion is formed thereon, This is effective in a manufacturing method in which the sheet is further adhered to the rear surface of the tempered glass or protective sheet disposed on the front surface, that is, the surface on the image light emitting unit 5d side.
  • the dot pattern is also formed on the slit portion.
  • the dot pattern can be read reliably.
  • the transparent member that forms the dot pattern is an infrared reflecting sheet, and the non-carbon (non-infrared absorbing) material is used to form the opaque portion of the parallax barrier 2, and each dot of the dot pattern is carbon black (infrared absorbing).
  • the material may be formed of a material.
  • the opaque portion may be painted white before the dot pattern is formed, and the image 3 may be drawn thereon.
  • the opaque part (mask part) of the parallax barrier 2 is formed with non-carbon black, the white base is applied on it, and the dot pattern is formed on the entire surface with carbon black on it.
  • the image 3 may be drawn using non-carbon ink thereon.
  • the optimum dot pattern can be read by the scanner.
  • the information represented by the dot pattern may be a configuration representing XY coordinates, a configuration representing information corresponding to the content of the image 3 (for example, each drawn character), or both.
  • the structure to represent may be sufficient.
  • the bear is drawn as the image 3 when the user touches the dog with a scanner pen such as Bluetooth
  • the content (dog) of the image 3 is interpreted and an image related to the dog is displayed.
  • the XY coordinates located behind the dog are acquired, and display control may be performed so that the displayed dog moves backward.
  • the image presentation target person touches a desired position on the parallax barrier using a scanner
  • the image presentation target person is determined from the XY coordinate value of the touch position and the video displayed at the time of the touch. You can see what you touched in the video. Thereby, it is possible to perform image control such as changing a video to be displayed next.
  • the image presentation target person controls the display content, the light projecting method by the light projecting unit 4 and the like by touching the image drawn on the stereoscopic video display device 1 and the displayed video with a finger or the like. But you can.
  • an optical touch panel (not shown) is attached to the entire front surface of the display unit 5, that is, the entire region facing the image presentation target person.
  • a parallax barrier (stereoscopic mask) 2 for autostereoscopic display is attached to a partial region of the optical touch panel.
  • the touch panel area is larger than the parallax barrier 2 area, and is an image related to the image 3 drawn on the front surface of the parallax barrier 2 and drawn outside the parallax barrier 2 area.
  • the image outside the area of the parallax barrier 2 may be an image drawn by printing or the like, or may be a video displayed by another video display device.
  • the image 3 may be drawn on the front surface of the parallax barrier 2 or may not be drawn.
  • the image presentation target person perceives only the displayed 2D / 3D video and touches the optical touch panel to perform a desired input operation.
  • the touch panel may be optical or pressure type.
  • a touch panel is provided only on a part of the display unit.
  • the touch panel is provided on the entire surface of the display unit 5 and the touch panel covers the entire surface of the parallax barrier 2.
  • a configuration in which the touch panel is provided only in part of the display unit 5 may be used.
  • FIG. 8 shows an example in which the parallax barrier 2 and the touch panel 9 are provided only on a part of the display unit 5.
  • the right side of the display unit 5 is a three-dimensional display area, and a parallax barrier 2 is provided.
  • the left side of the display unit 5 is a menu area, the parallax barrier 2 is not provided, and an optical or pressure touch panel 9 is provided.
  • the touch panel 9 may be provided also in the three-dimensional display area.
  • the multi-viewpoint parallax barrier type display unit 5 it is necessary to arrange pixels for a plurality of viewpoints in the horizontal direction, and the number of pixels for one viewpoint is reduced, and a stereoscopic effect is obtained, but the resolution is lowered. . It is preferable to display pictures that look beautiful even when the resolution is reduced, such as photographs, but they are displayed as a 3D object. However, those that are difficult to read due to a decrease in resolution, such as fine text, should be displayed separately from the 3D display area. Is desirable.
  • the parallax barrier 2 is not provided in the menu area that is often expressed using fine characters, and the image display is also 2D video or printing.
  • the touch panel 9 that covers the display unit 5, the normal monitor area on the left side of the display unit 5 that displays a menu, and the stereoscopic image display on the upper right side of the display unit 5.
  • You may comprise from an area
  • the touch panel 9 may be a print type in addition to the monitor type.
  • an optical touch panel or a pressure touch panel (used for a printing type) is used.
  • the monitor-type touch panel 9 is transparent and is used on the menu displayed by the display unit 5.
  • the print-type touch panel 9 is used by printing a menu photo on the front or back of the transparent touch panel 9 or by drawing a menu photo on the touch panel 9 itself.
  • a grid sheet disclosed in Japanese Patent Application No. 2007-230776 may be used. This grid sheet realizes a function as a touch panel by touching a minute dot pattern, which is formed on a transparent sheet that is used to overlap the monitor screen, with an invisible eye using a scanner. .
  • the touch panel 9 may be configured to be fixed to the display unit 5, or may be configured to be removable.
  • the removable touch panel 9 may be configured by using a paper keyboard or a paper controller disclosed in Japanese Patent No. 4019114 and Japanese Patent No. 4042065.
  • buttons and keys on the paper keyboard and paper controllers are printed on a medium such as paper with keyboard keys and remote controller buttons superimposed on a dot pattern.
  • a pen-type scanner By touching buttons and keys on the paper keyboard and paper controller with a pen-type scanner, the information assigned to the buttons and keys is read, and functions such as image switching corresponding to the read information are executed. .
  • a product photograph or the like may be printed or drawn side by side.
  • the paper keyboard and the paper controller may be a medium on which an icon or the like is drawn or printed by a photograph or a graphic.
  • the stereoscopic image display device 1 may have a configuration in which a parallax barrier and a conventional grid sheet are combined.
  • FIG. 9 shows a structure involved in manufacturing a parallax barrier type autostereoscopic display.
  • the autostereoscopic display is provided with a tempered glass in which a spacer is provided on the front surface of a normal display (image light emitting unit) 5d for displaying an image, and a parallax barrier 2 is formed on the back side. Provided and manufactured.
  • an appropriate stereoscopic effect can be obtained in a preset stereoscopic view possible area.
  • An autostereoscopic display can be manufactured by fixing the slit arrangement of the parallax barrier 2 and the arrangement of pixels for one viewpoint on the display 5d, and then fixing the display 5d, the spacer, and the tempered glass. .
  • FIG. 10A is a front view of this configuration.
  • the whole is a window of a show window, and a touch panel is installed in a part of it. From the inside of the show window, images such as menus are projected onto the touch panel.
  • images such as menus are projected onto the touch panel.
  • a 3D autostereoscopic display In the back of the right side of the show window is a 3D autostereoscopic display.
  • FIG. 10B is a top view of this configuration, and shows a positional relationship among the image presentation target person, the touch panel, and the autostereoscopic display.
  • This figure is an example in which the 3D image appropriate viewing position of the autostereoscopic display is 2 m away from the front of the autostereoscopic display.
  • the display unit 5 In the above-described embodiment in which the area of one display unit 5 is divided into a stereoscopic video display area and a menu area, and a touch panel is provided in the menu area, the display unit 5 must be placed within the reach of the person to be presented with the image. Instead, it is necessary to use an autostereoscopic display whose appropriate viewing position for 3D video is about 50 cm away from the front of the autostereoscopic display.
  • a large-screen autostereoscopic display is necessary in order to show a stereoscopic image to an image presentation target person other than the touch panel operator. Therefore, the installation position of the autostereoscopic display needs a certain distance from the crowd.
  • the autostereoscopic display can be installed at the appropriate viewing position of the 3D image.
  • a touch panel of a type that is used by being put on a liquid crystal display or the like can be used, but there is a problem that the aesthetic appearance of the show window is impaired because the sensor and the wiring must be installed on the glass surface.
  • an image (such as a menu) is projected from the projector onto a predetermined area (touch panel area) of the show window using visible light. Further, infrared rays (IR) are irradiated from the IR-LED to the touch panel region. Since the irradiated infrared rays pass through the touch panel, a black image is taken with the IR-camera.
  • IR infrared rays
  • the projector and the IR-LED may be combined.
  • infrared rays are emitted from a projector to a predetermined area of the show window.
  • FIG. 11B shows an example of an image taken by the IR camera when the touch panel operator touches the touch panel.
  • the whole image is black, but only the touched position is white.
  • infrared rays that are diffusely reflected by other fingers in the vicinity of the touch panel are also included in the image, but misrecognition can be prevented by adjusting the focal length. I can do it.
  • the touch position on the touch panel can be detected by analyzing the image taken by the IR-camera.
  • image output and touch operation detection can be performed without providing a sensor, wiring, or the like on or around the surface of the touch panel (or a transparent material on which the touch panel is installed).
  • the touch panel may be realized by a normal image recognition method using the principle of triangulation as shown in FIG.
  • this method for example, the position of the finger is photographed by cameras installed at the upper left and upper right corners, but a reflector or the like is placed around the show window so that the finger and the background of the finger can be easily distinguished.
  • the structure which provides is preferable.
  • the touch panel with this configuration may be a grid sheet.
  • an exhibit such as a museum, art gallery, aquarium, or zoo
  • a detailed explanation of the exhibit can be observed by touching the grid sheet stretched on the glass surface with a scanner. You can go to the school and show the 3D video to the visitors.
  • the scanner may be a Bluetooth pen capable of outputting sound.
  • FIG. 13 to FIG. 14 are diagrams for describing an embodiment in which an autostereoscopic display and a touch panel are combined.
  • FIG. 13 is a perspective view of this configuration, showing the positional relationship among the image presentation target, the touch panel, and the autostereoscopic display.
  • the whole is a window (glass surface) of a show window, and a touch panel is installed in a part thereof.
  • a 3D autostereoscopic display In the back of the right side of the show window is a 3D autostereoscopic display.
  • the 3D viewing position of the autostereoscopic display is L + K.
  • the display unit 5 In the above-described embodiment in which the area of one display unit 5 is divided into a stereoscopic video display area and a menu area, and a touch panel is provided in the menu area, the display unit 5 must be placed within the reach of the person to be presented with the image. Instead, it is necessary to use an autostereoscopic display whose appropriate viewing position for 3D video is about 50 cm away from the front of the autostereoscopic display.
  • a large-screen autostereoscopic display is necessary in order to show a stereoscopic image to an image presentation target person other than the touch panel operator. Therefore, the installation position of the autostereoscopic display needs a certain distance from the crowd.
  • the autostereoscopic display can be installed at the appropriate viewing position of the 3D image.
  • FIG. 14 is a diagram illustrating details of the touch panel.
  • (A) is an example using a liquid crystal or organic EL type thin touch panel.
  • a projector is provided inside the show window, and an image is projected from the projector onto the touch panel using visible light. The details are as described in FIG.
  • (B) is an example using a pressure type touch sheet.
  • the pressure-type touch panel is a sheet-like touch panel and can print photographs and illustrations.
  • (B) is obtained by printing four types of mobile phone photographs on such a pressure-type touch panel.
  • (C) is an example using a dot sheet as a touch panel.
  • the dot sheet is a product photograph or the like printed on a medium such as paper or sheet so as to overlap the dot pattern.
  • a photograph of a mobile phone is printed on a medium so as to overlap with a dot pattern.
  • the touch panel is not limited to the touch panel described with reference to FIGS. 14A to 14C, and any other touch panel or grid sheet may be used as long as it has a function as a touch panel.
  • An example is an electrostatic touch panel.
  • FIG. 15A shows the arrangement of R, G, and B subpixels in one pixel.
  • pixels, pixels, and picture elements are usually used in the same meaning, and one pixel is composed of a plurality of sub-pixels.
  • a monochrome unit area is called a sub-pixel.
  • R, G, and B sub-pixels are collectively referred to as a pixel or a pixel. That is, one pixel is assumed to be composed of three RGB sub-pixels.
  • one pixel is configured by arranging three subpixels R, G, and B in the horizontal direction.
  • subpixels are arranged in the order of R, G, B from the left
  • the example in the center is in the order of G, B, R from the left
  • the example in the right is in the order of B, R, G from the left.
  • the size of one pixel is a height h and a width W.
  • the vertical position of the center point of each circle in each row is on the center line of each row, and the distance in the height direction from the boundary of each row is half the height h, that is, 0.5 h.
  • the position of the center point of each circle in the horizontal direction cannot be specified unconditionally because the arrangement with respect to one pixel differs depending on what three-dimensional effect is expressed.
  • the center point of the circle in each row is shifted using the inclination ⁇ .
  • the distance between the center points of the horizontal circles is Wxn in a setting where there are n viewpoints with respect to the width W of one pixel.
  • the radius r of each circle is a parameter and needs to be determined after calculating the steric effect to be obtained, and cannot be specified in general. If the view mix is increased, the radius r is increased, and if the view mix is decreased, the radius r is decreased. Of course, it also depends on the size of the pixel. The size of the pixel and the degree of view mix (the degree of stereoscopic effect) are related.
  • each row is connected by a straight line that is the boundary between each row. It is desirable to separate the pixels of each row on a horizontal straight line that becomes the boundary of each row, that is, a dividing line of each row. With this configuration, it is possible to appropriately control the view mix and relieve the sense of discomfort due to the movement of the viewpoint and the jump point, and to present an image with a high stereoscopic effect to the image presentation target person.
  • the pixels for other viewpoints used for the view mix in the visible region that is visible to the left and right are unbalanced and the stereoscopic image is twisted. Looks.
  • FIG. 16 (a) shows another example of the slit in which the edge of the slit is arcuate.
  • the edge of the slit has a shape in which arcs are directly connected on a horizontal dividing line that is a boundary between rows. It differs from the example of connecting the arcs in FIG. 15B by straight lines whether or not a part of the dividing line is included as a line segment constituting the edge.
  • the center point of the right-side arc is shifted upward on the center line of the slit from the intersection of the center line of each row and the center line of the slit, and the center point of the left-side arc is shifted downward on the center line of the slit.
  • FIG. 16 (b) shows another example of the slit having an elliptical arc edge.
  • the edge of the slit has a shape in which elliptical arcs are directly connected to each other on a horizontal dividing line serving as a boundary between rows.
  • the intersection of the center line of each row and the long axis of the ellipse is shown as the center of the ellipse.
  • the eccentricity of the ellipse is calculated based on the steric effect to be obtained, and is not generally determined.
  • the two focal points defining the elliptical arc are shifted upward on the center line of the slit in the right elliptical arc, and shifted downward in the left elliptical arc.
  • the elliptical arcs are directly connected on the dividing line of the rows, but the elliptical arcs are connected to each other via the dividing line of each row as in the example shown in FIG.
  • the structure to do may be sufficient.
  • a feature of the present invention is that a smoother horizontal movement of the viewpoint can be obtained by using a slit in which the center line of each row is expanded most in the horizontal direction in each row of the pixel array constituting the display.
  • FIG. 16C and FIG. 16D are diagrams showing a configuration example of another slit having this feature.
  • FIG. 16 (c) shows another example of the slit having an elliptical arc edge.
  • the edge shape of the slit is a shape in which elliptical arcs inscribed in a parallelogram formed by four predetermined points are directly connected to each other on a horizontal dividing line that becomes a boundary between rows. .
  • the four points mean that, in a certain row, a point shifted on the dividing line to the right by a predetermined distance A from the intersection of the dividing line on the upper side of the row and the center line of the slit, and to the left A point shifted and a point shifted rightward and a point shifted leftward by a predetermined distance A from the intersection of the lower dividing line of the row and the center line of the slit is there.
  • the major axis of the ellipse has an inclination different from the center line of the slit, and the positions of the two focal points of the ellipse are shown.
  • the elliptical arcs are directly connected on the dividing line of the rows, but the elliptical arcs are connected to each other via the dividing line of each row as in the example shown in FIG. 15 (b).
  • the structure to do may be sufficient.
  • the edge shape of the slit is a spline curve connected on the dividing line of each row.
  • This spline curve is obtained as a spline curve passing through three predetermined points.
  • the three points are, in other words, a point in a row shifted rightward on the dividing line by a predetermined distance A from the intersection of the dividing line on the upper side of the row and the center line of the slit, A point shifted rightward on the center line by a predetermined distance B (B> A) from the intersection of the center line and the center line of the slit, and the dividing line on the lower side of the row and the center line of the slit Is a point that is shifted rightward on the dividing line by a predetermined distance A from the intersection with
  • the left spline curve is composed of the right spline curve as a point-symmetrical spline curve centered on the intersection of the slit center line and the center line of the row.
  • a feature of the present invention is that, in a slit using an elliptic arc or a spline curve, the connecting point of the connection is always located on the dividing line of the row. As a result, the twist of the stereoscopic image is eliminated in the same manner as described above, and even when the viewpoint is moved in the vertical direction, it is possible to smoothly stereoscopically view the next row of pixels by continuous view mixing.
  • FIG. 17 shows another example of an elliptic arc slit.
  • the arrangement position of each sub-pixel which comprises a pixel differs from the said example. That is, in the above example, the sub-pixels are arranged in the horizontal direction, but in this example, as shown in FIG. 17A, the sub-pixels constituting one pixel are arranged in the oblique direction.
  • the height h of one row is the height h of one subpixel, and three times the width m of one subpixel is the width of one pixel. In this configuration, the horizontal resolution can be tripled.
  • a shape connecting ellipses surrounding each sub-pixel constituting one pixel may be used.
  • FIG. 17 (b) and FIG. 17 (c) for the purpose of understanding the invention, description is also made on the portion that is originally hidden by the opaque portion of the parallax barrier 2 and is not visually recognized by the image presentation target person. ing. The same applies to other drawings in this specification.
  • FIG. 18A shows another example of the arrangement of each subpixel.
  • the R subpixel is in the lower left, and the G and B subpixels are in the upper right of R side by side. You may employ
  • FIG. 18B shows an arrangement that covers two pixels using one ellipse among elliptical arc slits used when two pixels are combined.
  • FIG. 18C shows an arrangement that covers two pixels using three ellipses among the elliptical slits used when two pixels are combined.
  • FIGS. 18B and 18C are connected between the arcs to be connected via a straight line that is the boundary between the horizontal rows, as in FIG. 15B. It may be configured.
  • the first point is that the number of sub-pixels constituting the pixel for each row is made different.
  • the second point is that when arranging the sub-pixels constituting one pixel over a plurality of rows, even if the number of sub-pixels constituting one pixel is the same in the row direction, The point is that the sub-pixels are shifted by one sub-pixel or by two sub-pixels, and the shifting method is different.
  • the third point is the slit shape (the arrangement shape of the entire slit and the edge shape of the slit).
  • pixels for different viewpoints up and down along the slit are simultaneously observed and averaged to eliminate the reverse phenomenon (strictly speaking, along the slit)
  • the pixels for the same viewpoint that can be seen are shifted depending on whether the person viewing the image is viewed from above or from the bottom, or the pixels that are viewed along the slit are different for different viewpoints depending on the arrangement shape of the entire slit.
  • the jump point is not eliminated, but the horizontal view mix is generated.
  • the triangular area the area of the triangular portion of the subpixel (hereinafter, the triangular area).
  • the point of sight is the intersection of the straight line drawn from the left eye and the image display surface when the straight line that passes through the center of the slit and reaches the image display surface is drawn from the left and right eyes of the image presentation target person.
  • the intersection of the straight line drawn from the right eye and the image display surface is the right eye point of interest.
  • the step-like slit causes a view mix uniformly over the width of the sub-pixel.
  • the viewpoint is moved in the horizontal direction, the area of newly visible subpixels increases linearly, and a view mix is generated at a certain ratio.
  • the edge shape of the slit is an elliptical arc shape
  • the area of the region where the view mix is generated which is located on the left and right of the gazing point, is small compared to the case where the edge shape is a staircase shape, so that the three-dimensional effect is high.
  • the viewpoint is moved in the horizontal direction, the view mix is generated from the most swollen portion, so that the area of the sub-pixel that is newly visually recognized gradually increases in a curve, and the view mix is generated.
  • the difference between the configuration in which the elliptical arcs are connected on the dividing line and the configuration in which the elliptical arcs are connected including a part of the dividing line is as follows when the viewpoint moves in the vertical direction.
  • the former configuration in which the elliptical arc is continuous is that the view mix can be generated cleanly and smoothly.
  • the view area can be easily adjusted by setting the width of the pixels equal to or larger than the width of one viewpoint and adjusting the slit width. It is conceivable that the horizontal viewpoint can be moved smoothly by raising the angle.
  • One method is a method of setting different numbers in the horizontal direction in order to express one pixel. Specifically, the number of subpixels is two or one in the horizontal direction. In one place, sub-pixels for different viewpoints can be seen, so view mixing occurs and jump points are relaxed.
  • the other method is the same as the above, but is a method in which one subpixel is gradually seen by devising the edge shape of the slit.
  • the zigzag shape has been described as an example.
  • the arrangement of the pixels for each viewpoint is almost the same as the arrangement of the pixels for each viewpoint so that the center line of the slit is on the sine wave curve.
  • a curved shape arranged on a sine wave curve may be used.
  • the second compression method includes the following method.
  • blending is a method in which image data for all viewpoints are mixed and arranged in one frame buffer so that it can be seen as a three-dimensional image when viewed from the slit of the parallax barrier. Also called RGB mapping.
  • the blended image may be compressed appropriately. That way you don't have to blend in real time.
  • the invention according to the present application is an invention of a method used when reproducing a compressed file.
  • a 2D live image is displayed on the monitor surface, and a 3D computer graphics (CG) image is displayed in front of the monitor surface. That is, it is not necessary to consider parallax for a 2D live-action image perceived at a position on the monitor surface. Therefore, since there is no parallax with respect to the video to be 2D video, the same display content may be arranged as the display content of all the viewpoint pixels when compressed and decompressed normally. Therefore, the image can be compressed.
  • CG computer graphics
  • an image for a certain viewpoint is used as a reference, and an image for another viewpoint is taken from the reference image.
  • the difference between the first viewpoint image and the second viewpoint image is taken, and the difference between the second viewpoint image and the third viewpoint image is taken.
  • the method of taking the difference is good. This is because, if the difference from the first viewpoint is always taken, for example, the difference between the first and sixth viewpoint images becomes too large.
  • the reference image may be used for the first viewpoint.
  • the sixth viewpoint may be used, or the intermediate third viewpoint may be used.
  • a difference between adjacent viewpoints may be taken in one viewpoint direction and a sixth viewpoint direction.
  • the number of pixels in the 3D portion is small. That is, the area to be a 3D portion is small.
  • the total is 90,000 pixels. Since colors are expressed in 24 bits, there are 17 million colors. With 90,000 pixels, there is no need to use 24 bits.
  • the number of pixels is 200 ⁇ 200, the total number is 40,000 pixels.
  • the number 40000 is smaller than the number 65000.
  • the number 65000 is 16 bits.
  • color information is expressed using only 8 bits, and a color lookup table is used. In each entry of this table, the correspondence between the color number and the R, G, B value to be used is registered.
  • color number 1 has an R value of 20, a G value of 36, and a B value of 120. Colors having similar RGB values are approximated using this color number 1.
  • compression in the time axis direction of the 3D portion can be considered as a fourth compression method.
  • the data can be compressed in the time direction even if the parallax of the image for each viewpoint is large.
  • a compression method for example, a method similar to MPEG can be used.
  • the 2D and 3D image data compressed by using the compression methods described above are decompressed at the time of reproduction, and then synthesized and reproduced.
  • the configuration of the stereoscopic video is configured such that a part of the 3D video is superimposed on the majority of the 2D video.
  • information for determining which part is 2D and which part is 3D is necessary.
  • a mask can be used.
  • the mask may be 1 bit. Hereinafter, it is referred to as a mask bit.
  • the mask bit of each pixel is set to 1 for a portion to be a 3D stereoscopic image in one image to be displayed, and the mask bit of each pixel is set to a 2D image portion. Is set to 0.
  • the center mobile phone portion and the upper right logo portion are 3D images.
  • the same pixel information may be provided from the first viewpoint to the fifth viewpoint, for example, so that the blending process is simplified. If the mask bit is 1, the image data for each viewpoint from the first viewpoint to the fifth viewpoint needs to be blended with the corresponding area.
  • the frame for one screen of the AVI file used for recording is divided into 3 ⁇ 3 areas, the first line from the top, the left for the first viewpoint, the second The images for the third viewpoint and the third viewpoint are stored, and the images for the fourth viewpoint and the fifth viewpoint are stored in the second row from the top and from the left.
  • the image will pop out to the front, if it is in the center, there will be no stereoscopic effect, and if it is placed on the side far from the camera, it will be an image that will be pulled back.
  • the shooting data is, for example, an AVI file, and by assigning the AVI data for each viewpoint to each divided area in FIG. 19B, it is possible to create AVI data for stereoscopic video that does not interfere with each other.
  • Image format (2) In the above image format, the image area for each viewpoint in one frame has a 2D image, a 3D image, and a mask bit. However, in each divided image area in one frame, an image for 3D is used. And the 2D image may be held separately.
  • the region is divided into 2 rows and 3 columns, and only the 3D image is stored in each viewpoint region, and the background (2D) portion is in the lower right.
  • a single image and a mask image in which only mask information is stored are prepared separately. The structure to do may be sufficient.
  • the portion other than 3D is, for example, black whose RGB values are all 0, and the 3D portion. May be distinguished by using other black RGB values.
  • FIG. 20C shows an example of a format in which the 2D image file is a separate file and each frame area of the 3D image file has a 3D image and a black area that also serves as a mask.
  • the mask information may be used also as the 2D image portion serving as the background, or may be included in the 3D image for each viewpoint.
  • only the greatest common divisor mask information common to each viewpoint may be recorded, and the mask information that is different for each viewpoint may be in a format provided in the image area for each viewpoint.
  • mask information for five viewpoints is held, so 5 bits per pixel are used for mask information.
  • 3D part to be moved may be created by CG and blended in real time.
  • 3D real-time a picture is calculated and displayed in 1/30 seconds or 1/60 seconds.
  • a 3D CG is created in real time using a normal CG engine, it may be poured into the divided area of the 3D image portion of the 6-divided format.
  • each frame can be divided into 9 and 8 viewpoints can be inserted. At this time, the remaining divided areas are wasted, so that the third row is not divided equally. For example, if the height of the first row and the second row is 1, the height of the third row is 2/3. By doing so, images for eight viewpoints can be stored in all areas. If there are nine viewpoints, it may be divided equally.
  • an image area can be used effectively by putting a 2D image or mask information in an empty divided area.
  • ⁇ Image format (3)> When using a mask, it is preferable to have a live-action image. When a 2D image is included in each of the divided areas, the difference between the 3D portion is different in each viewpoint image. Therefore, different shift parts must refer to the image for each viewpoint.
  • Fig. 21 is a format example of four viewpoints. Divided into 6 parts, 3D image for 4 viewpoints, 2D image perceived as an image displayed at the position of the screen surface, and mask information for 4 viewpoints (may include mask information for 2D images) Is done.
  • FIG. 22 shows a format example of five viewpoints. If the height of the first row is “1”, the heights of the second and third rows are “2/3”. The central region of the second and third rows is divided into upper and lower parts and has a height of “1/3”. By adding these “1/3” height parts to the areas on both sides, respectively, the area for five viewpoints, the 2D image located on the screen surface, and the mask information for five viewpoints (the mask of the 2D image) Information may be included).
  • Each format is an integrated AVI file in which an AVI file of an image for each viewpoint is stored in each divided area. Since the AVI file is subjected to data compression, the mask position is shifted by the compression process and the decompression process.
  • Part 2 A method for compressing an image in the time direction using a mask will be described.
  • this mask is referred to as a time direction compression mask.
  • a 3D image portion may not change regardless of the passage of time as long as it is a background. For example, when a fish (a moving 3D image) swims in a coral reef sea (a 3D image that has depth but does not move).
  • the number of mask pixels is defined at the head of the mask area in a predetermined scan line.
  • the time direction compression mask is 1 for the fish portion and 0 for all other portions. Since only the fish part moves, only the fish part pixel needs to be updated.
  • the arrangement of the R, G, and B sub-pixels that constitute each viewpoint pixel is such that the R, G, and B sub-pixels that constitute one pixel in one row are as shown in the example of FIG. It is an arranged configuration.
  • the pixels for each viewpoint are drawn separately in the horizontal direction so that the sub-pixel arrangement for six viewpoints is easy to understand, but in actuality, they are continuous in the horizontal direction.
  • the arrangement of the sub-pixels constituting the first viewpoint pixel is in the order of G, B, R from the left in the first line from the top, but in the second line, From the left, the order is R, G, B.
  • the order is B, R, G from the left.
  • FIG. 27B shows the pixel arrangement in the k-th viewpoint image before compression.
  • the display “11” represents a pixel located in the first row and the first column in the compressed image.
  • Fig. 27 (c) shows a compressed image by omitting a portion (shown by hatching in the figure) for viewpoints other than the k-th viewpoint from the image shown in Fig. 27 (b).
  • the resolution of the compressed video before blending can be obtained by the following calculation.
  • the horizontal resolution of the display is 1920, the number of viewpoints is 6, and in order to represent one pixel per row, this blending method uses 3 sub-pixels, so the following calculation formula holds.
  • the vertical resolution of the display is 1080, the number of viewpoints is 1 in the vertical direction, and one row is used to represent one pixel per column, so the vertical resolution remains 1080. It is.
  • the pixel for the kth viewpoint is represented as k P mn with respect to the pixel of m rows and n columns of the compressed image.
  • FIG. 28 shows a specific arrangement of subpixel units.
  • the pixel for the kth viewpoint in FIG. 27B is arranged in order to eliminate the shift.
  • the pixels “11”, “21”, and “31” are arranged in the same column, and the pixels “41”, “51”, and “61” are arranged in the left column by one column.
  • the R, G, and B sub-pixels constituting each viewpoint pixel may be arranged across two rows, and may be pixels for the first viewpoint.
  • an R subpixel is arranged in the second row
  • a G subpixel is arranged in the first upper right row
  • a B subpixel is arranged on the right.
  • the pixels for each viewpoint are drawn apart in the horizontal direction so that the arrangement of sub-pixels for six viewpoints is easy to understand, but in reality they are continuous in the horizontal direction.
  • FIG. 29B shows the pixel arrangement in the k-th viewpoint image before compression.
  • FIG. 29 (c) shows a compressed image by omitting a portion (shown by hatching in the figure) for viewpoints other than the kth viewpoint from the image shown in FIG. 29 (b).
  • the resolution of the compressed video before blending can be obtained by the following calculation.
  • the horizontal resolution of the display is 1920, the number of viewpoints is 6, and since 9 subpixels are used in this blending method to represent 6 pixels per row, the following calculation formula is established.
  • 640 can be used as the horizontal resolution of the compressed image.
  • the vertical resolution of the display is 1080, the number of viewpoints is 1 in the vertical direction, and 2 rows are used to represent one pixel per column, so the vertical resolution is 1/2. Therefore, the following formula is established.
  • FIG. 34 shows a specific arrangement of subpixel units.
  • FIG. 30 also shows correspondence between one pixel of the compressed image and a sub-pixel group corresponding to the one pixel after blending on the high-definition display.
  • the subpixel group in the second row has three subpixel groups on the left with respect to the position of the subpixel group in the first row.
  • the sub-pixel group in the third row is shifted by 6 pixels to the right of the sub-pixel group in the second row.
  • the subpixel group in the third row is shifted by 3 subpixels in the right direction with respect to the subpixel group in the first row.
  • the pixel for the kth viewpoint in FIG. 29B is arranged.
  • the pixel “21” is arranged two rows below and one column left of the pixel “11”, and the pixel “31” is arranged two columns below and two columns right.
  • the arrangement of R, G, and B sub-pixels that constitute each viewpoint pixel is an arrangement that extends over three rows and is a pixel for the first viewpoint.
  • the arrangement is such that the R subpixel is in the third row from the top, the G subpixel is in the second upper right row, and the B subpixel is in the upper right row.
  • the order is G, B, R from the bottom.
  • the pixels for each viewpoint are drawn separately in the horizontal direction so that the sub-pixel arrangement for six viewpoints is easy to understand, but in actuality, they are continuous in the horizontal direction.
  • FIG. 31B shows the pixel arrangement in the k-th viewpoint image before compression.
  • the display “11” represents a pixel located in the first row and the first column in the compressed image.
  • Fig. 31 (c) shows a compressed image by omitting a portion (shown by hatching in the figure) for viewpoints other than the k-th viewpoint from the image shown in Fig. 31 (b).
  • the resolution of the compressed video before blending can be obtained by the following calculation.
  • the horizontal resolution of the display is 1920, the number of viewpoints is 6, and 3 subpixels were previously used to represent one pixel per row, but this blending method uses only 1 subpixel. So it is 3 times.
  • the following formula is established.
  • 1920 ⁇ 3/6 960 That is, 960 can be used as the horizontal resolution of the compressed image.
  • the vertical resolution of the display is 1080, and the number of viewpoints is 1 in the vertical direction. In order to represent one pixel per column, it was previously represented by one line. Since 3 rows are used, the vertical resolution is 1/3. The following formula is established.
  • the pixel for the kth viewpoint is represented as kP mn with respect to the pixel of m rows and n columns of the compressed image.
  • FIG. 32 shows a specific arrangement in units of subpixels.
  • FIG. 32 also shows correspondence between one pixel of the compressed image and a sub-pixel group corresponding to the one pixel after blending processing on the high-definition display.
  • the subpixel group in the second row is shifted by 3 subpixels to the left with respect to the position of the subpixel group in the first row
  • the subpixel group in the third row Is shifted by 3 subpixels to the right with respect to the subpixel group in the second row.
  • the pixel for the kth viewpoint in FIG. 31B is arranged.
  • a pixel “21” is arranged three rows below and one column left of the pixel “11”, and a pixel “31” is arranged three columns below and one column right.
  • the best view point is assumed assuming that the image presentation target person gathers roughly, and the distance from the monitor surface (parallax barrier surface) of the autostereoscopic display device to the best view point is determined as the best view point.
  • the distance from the monitor surface (parallax barrier surface) of the autostereoscopic display device to the best view point is determined as the best view point.
  • the slit width S which is the width in the horizontal direction of the slit of the parallax barrier, may be determined by the method described later.
  • the horizontal region of the display image on the image display surface that is visually recognized through the slit by the left and right eyes of the image presentation target person is set as the horizontal visible region length V.
  • the parallax W may be set to 65 mm for Westerners, 70 mm for Asians, and 50 to 60 mm for children.
  • FIG. 33A shows the positional relationship among the air gap distance Z, the BVP distance L, the slit width S, the horizontal visible region length V, and the parallax W, which are parameters.
  • the gazing point and the gazing point distance V / 2 are determined by the following method.
  • the positions of both eyes of the image presentation target person are set so as to be in the state shown in FIG.
  • the state shown in FIG. 33A is a state where the horizontal visible region visually recognized by the right eye and the horizontal visible region visually recognized by the left eye are continuous without overlapping.
  • both the horizontal visible regions are not continuous and are separated.
  • both the horizontal visible areas overlap.
  • straight lines that reach the image display surface through the center of the slit are drawn from the left and right eyes of the image presentation target person.
  • the intersection of the straight line drawn from the left eye and the image display surface becomes the left eye's point of sight
  • the intersection of the straight line drawn from the right eye and the image display surface becomes the right eye's point of sight.
  • the gazing point is located at the center of the horizontal visible region of each eye.
  • the distance between the gazing points of the left and right eyes is V / 2.
  • the gap distance Z and the slit width S are obtained by calculation.
  • the gap distance Z is expressed by the following formula (1).
  • the slit width S is expressed by the following formula (2).
  • the slit width S is expressed by the following mathematical formula (3).
  • the elliptic arc formula is represented by the following formula (4).
  • Equation (8) is obtained.
  • the horizontal visible region length V is obtained by the following formula (10).
  • the feature of the configuration example shown in FIG. 35 (a) is that the three-dimensional effect is great because the pixels for different viewpoints can be visually recognized by the left and right eyes, respectively. This is a point that may be slightly difficult to see.
  • the feature of the configuration example shown in FIG. 35B is that the pixels for different viewpoints are completely visually recognized by the left and right eyes, but are partially overlapped so that the stereoscopic effect is slightly reduced. It is a point to do.
  • the projected image is also visually recognized as a smooth image.
  • the range of the horizontal visible region length V is as follows: This is the range of the region length V.
  • V ⁇ 1.3 ⁇ 2D which is the average value of the two values, as the most recommended value.
  • the closer to the autostereoscopic display device than the best view point the higher the stereoscopic effect and the harder it is to see. If it gets closer and exceeds the limit of parallax, it cannot be recognized as a solid.
  • the stereoscopic effect is reduced when moving away from the autostereoscopic display device beyond the best viewpoint, and the stereoscopic effect is completely lost when moving further away.
  • the feature of the slit having an elliptical arc-shaped edge is that the next viewpoint image is gradually seen when the image presentation target moves horizontally toward the autostereoscopic display device, and the viewpoint is very smooth. It is possible to move.
  • the calculation method of the horizontal visible region length V is a method using the feature of the elliptical arc slit.
  • the calculation method of the horizontal visible region length V can also be used in the conventional oblique band-like slit and oblique step-like slit. In the same manner, the appropriate three-dimensional effect described above can be obtained.
  • FIG. 37 shows the case of V ⁇ 3D.
  • FIG. 38 shows the case of V> 3D.
  • L is
  • the minimum horizontal visible region length V in which at least pixels with different viewpoints can be seen by the left and right eyes is 2 ⁇ (pixel width D).
  • the left and right gazing points are Cr and Cl
  • the following expression is established, where ⁇ is from Cr and Cl to the left and right ends of the visible region and ⁇ is the distance between the left and right gazing points. .
  • the effective parallax is reduced, and similarly, the stereoscopic effect can be obtained only to the near side.
  • the production of the subject and camera work is impaired for that reason.
  • the distance between the cameras is about 65 mm, similar to the parallax of a person.
  • the distance between adjacent cameras is set within 2 to 3 cm.
  • This calculation result is almost the same as the result when the distance between adjacent cameras at the time of shooting / rendering is 2 to 3 cm, and it is sufficiently practical as a calculation formula for the stereoscopic viewing distance under this production condition.
  • the stereoscopic vision suitability range is a range from the stereoscopic vision suitability distance Ln to the stereoscopic vision suitability distance Lf as shown in FIG.
  • Example 1 using each parameter> A full high-definition 40-inch display with a resolution of 1920 ⁇ 1080 is targeted. Since 1 inch is 25.4 mm, the width of the display surface of this display is calculated as follows.
  • the widths of the R, G, and B sub-pixels are calculated as follows.
  • the BVP distance L is 2.5 m from the monitor surface, the parallax W is 65 mm, and the number of viewpoints is 6.
  • the optimal range of the horizontal visible region length V is as follows: Become.
  • the gap distance Z is in the following range.
  • the slit width S is in the following range.
  • the mask width is the width of the opaque part between the slits.
  • the mask width is in the following range.
  • V is obtained by the following calculation.
  • Lf is obtained by the following calculation.
  • Ln is about 2.0 m and Lf is about 4.6 m.
  • the appropriate range for stereoscopic vision is about 2.0 to 4.6 m from the monitor surface (mask surface).
  • V 2 ⁇ (1.205 to 1.41) ⁇ (0.1537 ⁇ 2) ⁇ 0.7408 ⁇ 0.8669mm Therefore, the gap distance Z is in the following range.
  • the slit width S is in the following range.
  • the mask width is in the following range.
  • V is obtained by the following calculation.
  • Lf is obtained by the following calculation.
  • Ln is about 2.0 m and Lf is about 4.6 m.
  • the appropriate range for stereoscopic vision is about 2.0 to 4.6 m from the monitor surface (mask surface).
  • the average number of sub-pixels used in the horizontal direction is 1.5.
  • the gap distance Z is in the following range.
  • the slit width S is in the following range.
  • the mask width is in the following range.
  • V is obtained by the following calculation.
  • Lf is obtained by the following calculation.
  • Ln is about 2.0 m and Lf is about 4.6 m.
  • the appropriate range for stereoscopic vision is about 2.0 to 4.6 m from the monitor surface (mask surface).
  • edge shape of a slit you may use not only an elliptical arc but various slits of diagonal strip
  • the person who presents the image can visually recognize a solid, and when the distance from the monitor surface is longer than the distance Lf, the stereoscopic effect disappears, but two-dimensional Since the image was visually recognized, the image could not be visually recognized. However, when the image presentation target person approaches the monitor surface from the distance Ln, the image becomes invisible.
  • the slit having an elliptical arc shape according to the present invention is an effective technique when an image presentation target person views an image from a place very close to the monitor.
  • ⁇ About hole-type parallax barrier> A configuration in which the slits of the parallax barrier, which is a region that transmits visible light for autostereoscopic viewing, is continuous and has an edge shape that is a straight line, an elliptical arc, a spline curve, or the like.
  • other configurations described below can also be used to cause a naked-eye stereoscopic effect using a parallax barrier.
  • the configuration is independent of the slit of the parallax barrier, which is literally a continuous visible light transmission region, and is independent of one or several of the blended sub-pixels.
  • a plurality of corresponding visible light transmission regions are arranged.
  • the visible light transmission region of the present invention is a plurality of holes provided as a region that transmits visible light to a surface that does not transmit visible light.
  • ⁇ Outline of hole-type parallax barrier design> As shown in FIG. 49, first, it is assumed that the image presentation target person is located at the best viewpoint.
  • an effective visible region for each eye is determined on the pixel array surface.
  • the effective visible region can be obtained from the average pixel width (described later) and the height of subpixels constituting one pixel.
  • a rectangular area on the parallax barrier corresponding to the effective visible area determined on the pixel array surface is determined. Since this rectangular area corresponds to a cross section of the quadrangular prism connecting the one eye of the image presentation target person and the effective visible area on the parallax barrier surface, it is similar to the effective visible area.
  • a visible light transmission region inscribed in the upper and lower and / or left and right sides of the rectangular region is defined.
  • a plurality of defined visible light transmission regions are arranged on the pixel arrangement surface in accordance with the arrangement of subpixels blended for autostereoscopic display.
  • the visible light transmission region may be deformed in accordance with the deformation to form a parallelogram by tilting the left and right sides of the rectangular region while maintaining the height of the rectangular region. Since the rectangular area can be easily transformed into a parallelogram, it can be easily deformed regardless of the shape of the visible light transmitting area in the rectangular area, and it can be increased by changing the visible light transmitting area diagonally. It is possible to design a hole-type parallax barrier that can more appropriately cope with the blend arrangement of sub-pixels.
  • the visible light transmission region is designed using a local coordinate system, and when placing each visible light transmission region on the parallax barrier, the center point of the visible light transmission region is set to the absolute value of the entire parallax barrier. Place using the coordinate system.
  • the vertical size of the visible light transmission area is the same as the effective visible area instead of a similar shape. It is good. With this configuration, the continuity in the vertical direction of the image can be ensured in the stereoscopic image visually recognized by the image presentation target person.
  • the average pixel width D is the average number of subpixels constituting one pixel for one viewpoint in the horizontal direction in the arrangement of the blended stereoscopic image subpixels on the pixel arrangement surface of the display.
  • the calculation is performed using the minimum number of pixels combining different arrangements.
  • two of the three sub-pixels constituting one pixel are in one row, and the remaining one is arranged in a row adjacent to the top and bottom.
  • the pixel average width D is clearly 3 (pieces).
  • the pixel average width D is clearly 2 (pieces).
  • the pixel average width D is obviously 1 (piece).
  • the multiplier of the pixel average width D differs depending on the shape of the visible light transmission region, the subpixel blending method, and the upper and lower pixel connection method (relationship between the positions of adjacent pixels).
  • the multiplier of D is small.
  • the multiplier of D increases as the inclination of the arrangement of the plurality of visible light transmission regions falls more greatly than the inclination of the arrangement of the plurality of subpixels within one pixel due to the pixel connection method. Become.
  • the area of the visible pixel is smaller in the region where the left and right pixels are separated from the point of interest of the pixel corresponding to one viewpoint by one eye, and the jump point Since the view mix is generated so as to reduce the influence, the jump point can be appropriately reduced.
  • the rectangular area (Square Area) SA has a horizontal visible area length of 1 ⁇ 2 V and a single uni-eye effective visible area whose height is within H (Single eye's Effective Viewable rea Area). ) It is formed to contain SEVA. A part of the effective visible area SEVA of one eye is an area visually recognized by one eye through one visible light transmission area instead of the slit.
  • FIG. 51 the size at the time of designing an effective visible region is shown.
  • the height of SA is the height H.
  • the shape of the visible light transmission region that fits in the rectangular region SA is symmetrical and / or vertically symmetric. This is because the pixels located on both the left and right sides can be visually recognized uniformly, so that a stable view mix can be generated and the eye fatigue peculiar to stereoscopic vision can be reduced.
  • the continuity of the image can be maintained by making the plurality of visible light transmission regions arranged in the vertical direction have the same shape.
  • the effective visible region SEVA for one eye is effectively visible for one eye as it moves to the left or right from the center of the gazing point of one eye as the viewpoint of the image presentation subject moves. It is desirable that the rate of change in which the area of the region SEVA is reduced is large.
  • the visible light transmission region In order to reduce the jump point and ensure the brightness of the display, it is desirable that the area of the visible light transmission region is larger. Therefore, at the same time, in order to express a solid sharply, reduce jump points, and ensure the brightness of the display, it is desirable that the visible light transmission region has a shape satisfying the above two conditions.
  • each visible light transmission region ⁇ Specific shape of each visible light transmission region> From the above description, the conditions to be satisfied by each visible light transmission region are defined in a plurality of visible light transmission regions which are formed on the parallax barrier and serve as slits.
  • each visible light transmission region that satisfies these conditions will be described. As long as the three-dimensional effect is not impaired, all the visible light transmission regions may have the same shape, or the individual visible light transmission regions may have different shapes.
  • the effective visible area SEVA for one eye is moved to the left and right from the center of the gazing point for one eye.
  • the rate of change in which the area of the effective visible area SEVA of one eye is reduced is increased, the area of the visible light transmitting area is as large as possible, and the edge shape of the visible light transmitting area is symmetrical or vertically symmetrical. It is desirable to be.
  • each visible light transmission region an ellipse may be used, a triangle, a rhombus, etc. may be used, or a polygon having an even angle such as a hexagon, an octagon, etc. may be used, A shape such as confetti may be used.
  • it may be a polygon whose corner is drawn using an arc having a predetermined circumference.
  • FIG. 52 shows a specific shape of the visible light transmission region.
  • (a) is a rectangle
  • (b) is a rectangle (diamond)
  • (c) and (d) are hexagons
  • (e) is an octagon
  • (f) to (j) are from (a) to ( This is an example of a polygon drawn by deforming the figure up to e) and further using an arc whose corners at the four corners of the rectangular area SA have a predetermined circumference.
  • the visible light transmission region is not vertically symmetric or left-right symmetric, but even in that case, when setting the visible light transmission region in the rectangular region before deformation, It is desirable to set the visible light transmission region so as to be vertically symmetric and / or symmetric.
  • the angle to be tilted obliquely is the angle ⁇
  • the inclination of the arrangement of the pixels for each viewpoint that is, the inclination of the arrangement of the visible light transmission region on the parallax barrier is the angle ⁇ 1
  • the arrangement of the sub-pixels in one pixel Is the angle ⁇ 2 (when a plurality of sub-pixels constituting one pixel are arranged over two or more rows)
  • the range that the angle ⁇ can take is vertical, that is, from the angle 0, the angle ⁇ 1 and the angle ⁇ 2 Of these, the range up to the larger one is desirable.
  • the angle ⁇ is a value between the angle ⁇ 1 and the angle ⁇ 2.
  • the actual deformation is performed by shifting the upper side and the lower side by the same amount in the opposite direction so as not to change the position of the center point of the rectangular area.
  • the deformation of the rectangular area is rotated around the center point to adjust the lengths of the long side and the short side. It may be a deformation.
  • the width is set to 1 ⁇ 2 V cos ⁇ and the height is set to h / cos ⁇ , thereby making the visible area as the horizontal width. It is desirable to extend and contract so that the rectangular regions arranged above and below are connected while maintaining the length 1 / 2V.
  • the plurality of visible light transmission regions may be arranged on a straight line in the vertical direction, may be arranged on a straight line in an oblique direction, or may be arranged in a zigzag shape as described above.
  • a specific example of a hole-type parallax barrier is shown in a three-case blend arrangement. Further, two types of rectangular regions (rectangle and parallelogram) are shown per blending method in one case. In the following example, the shape of the visible light transmission region is an elliptical arc.
  • the feature when the rectangular area is a parallelogram is that the three-dimensional appearance is clear, so even if the visible light transmission area is narrow, even if the view mix is realized and the viewpoint is moved horizontally, the jump point 3D effects can be maintained up to and the jump points can be relaxed somewhat.
  • the visible light transmission region is asymmetrical, it is considered that the eyes may be fatigued.
  • the effective visual region is similar to the effective visible region based on either eye of the subject of image presentation at the best viewpoint. A visible light transmission region is obtained.
  • a large ellipse represented by a solid line on the left side of the figure represents two effective visible areas on the pixel arrangement surface at the time of design.
  • a small ellipse represented by a solid line on the right side represents two visible light transmission regions formed on the parallax barrier.
  • the upper and lower viewpoints are viewpoints used when designing each visible light transmission region.
  • the central viewpoint is a viewpoint when the image is actually viewed.
  • the rectangular area that contains the effective visible area has been deformed into a parallelogram or is deformed by rotational expansion / contraction, it is extended in the long axis direction (long side direction) and the vertical direction of the effective visible area It is desirable to maintain the height.
  • the player When selecting a blending method, the player (blending processing program) describes the types of installed parallax barrier sheets, for example, a combination of a parallax barrier sheet created and distributed in advance and a blending method. To select a blending method.
  • the parallax barrier sheet is manufactured using the display resolution, the pixel width, and the number of multi-view viewpoints as parameters.
  • the parallax barrier is generally composed of a mask surface that does not transmit visible light and a slit surface that transmits visible light.
  • a parallax barrier is formed by forming only the mask surface while leaving the slit surface.
  • the mask surface of the parallax barrier may be formed directly on a transparent medium by printing or the like. (Direct printing by laser printer or offset printing) In this method, the number of steps can be reduced compared to a method in which a parallax barrier is first printed on a transparent thin film sheet and then the transparent thin film sheet is attached to a transparent medium. Moreover, it is not necessary to consider the expansion and contraction of the transparent thin film sheet. However, when the parallax barrier is directly formed on the transparent medium, it is necessary to appropriately control the inclination of the slit of the parallax barrier to a desired value with respect to the transparent medium.
  • the parallax barrier sheet may be produced by a method in which a parallax barrier is first formed on a transparent thin film sheet and then the transparent thin film sheet is attached to a transparent medium, as in the conventional case.
  • a hole-type parallax barrier is particularly effective because it is the same as punching metal.
  • the gaming machine according to the present invention includes an input unit, a detection unit, a timing unit, a game control unit, a video control unit, a luminance control unit, and an autostereoscopic video display unit. Is done.
  • the input unit accepts an operation by the player of the game machine and sends an input signal to the game control unit and the video control unit.
  • the detection unit detects the position and / or trajectory of the game ball on the board of the game machine. Moreover, you may detect the presence or absence of the player of a game machine.
  • the detection unit sends the detected result as a detection signal to the game control unit and the video control unit.
  • the time measuring unit measures the play time of the game machine and sends a time measuring signal to the game control unit and the video control unit.
  • the game control unit controls the game content of the game machine and sends a control signal to the video control unit.
  • the video control unit controls the 3D video or the 2D video in accordance with the operation of the input unit by the player, the elapse of a predetermined play time measured by the time measuring unit, or the game control result by the game control unit, and displays an autostereoscopic video. Send a video signal to the device. In addition, a switching signal between 3D video display and 2D video display is sent to the luminance control unit.
  • the luminance control unit controls the luminance according to switching between 3D video display and 2D video display, or other conditions, and sends a luminance control signal to the autostereoscopic video display unit.
  • the autostereoscopic video display unit displays video based on the video signal. Further, the luminance is changed based on the luminance control signal.
  • ⁇ Control of the number of appearances of 3D video, display time, and pop-up degree> If you watch 3D images for a long time, your eyes become very tired. In order to prevent the eyes from getting tired, the number of appearances of 3D video, the display time, and the degree of three-dimensional pop-up may be reduced. In other words, at the start of viewing 3D video and at the start of game play, the original powerful 3D video is displayed, and the number of appearances of 3D video, the display time, and the degree of three-dimensional pop-up are automatically displayed as the continuous play time elapses. After a predetermined time when the player's eyes are tired, the video is controlled so that the 3D video is stopped and the 2D video is displayed.
  • FIG. 56 is a diagram illustrating a blended video created according to each pop-out degree.
  • FIG. 56 (a) shows an image in which the pop-out degree is zero (0 cm), that is, a 2D image.
  • FIG. 56B shows a 3D video image with a pop-out degree of 1 (1 cm).
  • FIG. 56 (c) shows a 3D image with a pop-out degree of 2 (2 cm).
  • FIG. 59 (d) shows a 3D image with a pop-out degree of 3 (3 cm).
  • the first control method for reducing the number of appearances of 3D video, the display time, and the degree of three-dimensional pop-up it was created with the predetermined number of appearances, display time, and three-dimensional degree of pop-out as shown in FIGS.
  • FIG. 57 is a diagram for explaining a plurality of videos for each viewpoint.
  • FIG. 57A shows an image of each viewpoint obtained by capturing an object using a plurality of cameras for each viewpoint. As can be seen from the figure, the position of the object is slightly shifted in each viewpoint video.
  • FIG. 57B shows the positional relationship between the object and a plurality of cameras for each viewpoint. As can be seen from the drawing, a plurality of cameras for each viewpoint are arranged at equal intervals.
  • a second control method for reducing the number of appearances of 3D video, the display time, and the degree of three-dimensional pop-up there is a method of controlling by preparing video for a plurality of predetermined viewpoints in advance and blending them in real time.
  • the second control means selects and blends necessary viewpoint images from a plurality of viewpoint images so that the parallaxes of the adjacent viewpoints are the same. If the number of views of the parallax barrier is five and the number of videos for each viewpoint prepared in advance is nine, the pop-out degree can be set in three stages. In FIG. 57, when viewpoints 1, 3, 5, 7, and 9 are selected, since the parallax of each viewpoint is the largest, the pop-out degree is the largest. When viewpoints 3, 4, 5, 6, and 7 are selected, the parallax of each viewpoint is small, and the pop-out degree is also small.
  • FIG. 58 is a diagram for explaining the control of the pop-out degree by approaching / separating from the object by the camera (multi-camera).
  • FIG. 58A shows a state in which the camera is brought close to the object. In this state, the object appears forward from the monitor surface because it is located in front of the gazing point of the camera.
  • FIG. 58 (b) shows a state in which the object is aligned with the camera's gazing point by moving the camera close to or away from the object. In this state, the object appears on the monitor surface, that is, as a 2D image. .
  • FIG. 58 (c) shows a state in which the camera is separated from the object. In this state, the object is located behind the gazing point of the camera, and thus appears behind the monitor surface.
  • FIG. 59 is a diagram for explaining the control of the pop-out degree by approaching / separating the object from the camera.
  • the object is moved toward and away from the camera, and is arranged in three stages: (1) ahead of the gazing point, (2) gazing point, and (3) behind the gazing point. Represents the state.
  • FIG. 59B shows the degree of popping out of the object according to each arrangement state of the object. (1) When the object is moved closer to the camera and arranged in front of the gazing point, the object is monitored. (2) When the object is placed at the gazing point, the object appears on the monitor surface, that is, as a 2D image. (3) The object is separated from the camera and arranged behind the gazing point. In some cases, the object appears behind the monitor surface.
  • FIG. 60 is a view for explaining control of the pop-out degree by changing the camera direction.
  • FIG. 60A shows a state in which the camera is changed in direction so that the gazing point is behind the object. In this state, the object appears to jump out from the monitor surface.
  • FIG. 60B shows a state where the direction of the camera is changed so that the gazing point is aligned with the object. In this state, the object appears on the monitor surface, that is, as a 2D image.
  • FIG. 60 (c) shows a state in which the direction of the camera is changed so that the gazing point is in front of the object. In this state, the object appears behind the monitor surface.
  • control method for reducing the number of appearances of 3D video, the display time, and the degree of three-dimensional pop-up there is a control method of controlling by rendering video for a plurality of viewpoints in real time.
  • the control method of the third embodiment is further divided into three control methods.
  • the object when the camera is approached or separated from the object, the object appears to pop out from the monitor surface when the camera is approached, and when the camera is separated, the object appears behind the monitor surface. .
  • the number of appearances of 3D video, the display time, and the degree of three-dimensional pop-up can be reduced as well as increased as the play time elapses.
  • information that is advantageous to the player such as fluctuations in the probability of pachinko, is controlled by controlling to display a 3D video with a high degree of pop-up when a predetermined time elapses, which is measured from the start of play and the player thinks that the game will end. Announcing the game will arouse the player's eagerness and greatly aspire to play.
  • the player may arbitrarily manipulate the degree of solid projection.
  • the operation is performed by an input unit (input means) provided in the game machine.
  • the input means may be a pop-up degree control button, knob, slide, or a game config mode.
  • the player may decrease the degree of popping out himself, or the player may increase the degree of popping out when he / she wants to see a more powerful image.
  • the non-transparent area and the visible light transmission area of the parallax barrier are configured as described above. It is preferable that a plurality of hole portions be continuously arranged (but not limited to these configurations).
  • the first structure shown in FIG. 61 is a roll-type parallax barrier sheet in which a parallax barrier portion in which a parallax barrier is formed and a transparent portion that transmits 2D video display light are continuously arranged.
  • winding portions of the parallax barrier sheet are arranged vertically and horizontally, and the winding portion winds the parallax barrier sheet so that either the parallax barrier portion or the transparent portion is monitored. Move forward.
  • the parallax barrier sheet needs to correct unevenness and maintain an appropriate gap distance Z between the monitor surface and the parallax barrier sheet.
  • the gap distance Z is obtained from the distance L between the player's eyes and the parallax barrier.
  • the parallax barrier sheet having the first structure corrects unevenness by being sandwiched between spacers as shown in FIG. 61 (c) or rails as shown in FIG. 61 (a).
  • a transparent plate made of glass or the like that transmits light is disposed between the monitor surface and the parallax barrier sheet.
  • the transparent plate is provided with a plurality of fine holes, and the parallax barrier sheet is brought into close contact with the transparent plate by sucking the parallax barrier sheet by a suction portion (suction means) arranged around the monitor. Correct.
  • the second structure shown in FIG. 64 is a plate-like parallax barrier that is moved by rails.
  • a rail is arranged around the monitor, and the parallax barrier can display a 3D image by moving to the front of the monitor surface through the gap between the rails.
  • the rail also serves as a spacer for maintaining an appropriate distance Z between the parallax barrier and the monitor surface.
  • the third structure shown in FIG. 65 is a plate-like parallax barrier that is arranged around the monitor and moves in the front-rear direction by a spacer having a telescopic mechanism.
  • the parallax barrier moves to the first position shown in FIG. 65B and the second position shown in FIG. In the first position, the distance between the parallax barrier and the monitor surface is an appropriate distance Z for displaying a 3D image. In the second position, the distance between the parallax barrier and the monitor surface is an optimum distance for displaying a 2D image.
  • a 2D image may be formed on the surface of the parallax barrier.
  • a 2D image simulating an operator seat of an airplane is formed on the surface of the parallax barrier, and a parallax barrier is formed on the window portion, so that only the window portion displays a 3D image.
  • the 2D image is formed of ink that transmits light and does not interfere when displaying a 3D image
  • the degree of freedom of design of the game machine increases.
  • the player can appear as if the display device does not exist on the board of the gaming machine. Displaying the 3D video in such a state surprises the player and greatly arouses play motivation.
  • the shape of the parallax barrier is not limited to the shape of the monitor, and can be any shape, so that the degree of freedom in designing the game machine is increased. It also arouses players' willingness to play.
  • the outer shape of the parallax barrier is a magnifying glass, and since the parallax barrier is formed in a portion corresponding to the lens portion, only the lens portion displays a 3D image.
  • the outer shape of the parallax barrier is in the shape of a periscope, and since the parallax barrier is formed in a portion corresponding to the viewing window, only the viewing window portion displays a 3D image.
  • 2D images can be formed on the surface of the parallax barrier, and the shape is also free. This greatly improves the freedom of game game machine design and other content creation, and encourages designers to create creative ideas. Arouse. As a result, it contributes to the spread of gaming machines equipped with autostereoscopic image display means.
  • the structure of the parallax barrier of the present invention is not limited to the above structure, and various modifications are allowed based on the required embodiment.
  • the luminance control unit (luminance control means) of the present invention will be described.
  • FIG. 70 shows a backlight in the display device used in the game machine of the present invention.
  • the backlight is configured by arranging a plurality of fluorescent lamps as shown in FIG. 70 (a) or a plurality of LEDs as shown in FIG. 70 (b) on the substrate.
  • a parallax barrier type autostereoscopic image display unit autostereoscopic image display means
  • the luminance is reduced by the parallax barrier, so it is effective to compensate for the decrease in luminance by increasing the voltage or current supplied to the backlight. is there. Note that in a display device that does not have a backlight and the other part is a light source, the voltage or current supplied to the light source may be increased.
  • a double monitor system in which a monitor for 3D video display and a monitor for 2D video display are separately provided may be employed. Since the monitor for 2D video display is not provided with a parallax barrier, the luminance is not naturally lowered.
  • a luminance difference is generated between 3D video display and 2D video display.
  • Such a luminance difference is corrected by lighting only some of the fluorescent lamps or LEDs during 2D video display and lighting all of the fluorescent lamps or LEDs during 3D video display.
  • the luminance difference can be corrected by increasing the voltage or current supplied to the light source during 3D video display than when displaying 2D video.
  • a stereoscopic image displayed on a part of a monitor covered with a mask part of a parallax barrier shaped like a magnifying glass has a high brightness
  • a 2D video displayed on other parts of the monitor has a brightness. If the image is low, the stereoscopic image appears bright to the player due to the action of the pupil, and as a result, the luminance difference is corrected.
  • FIG. 73 shows a pachinko machine equipped with an autostereoscopic image display unit, which is one embodiment of the present invention.
  • a pachinko machine (1) when a game is started by inserting a coin or a prepaid card into the pachinko machine, (2) when fluctuation starts when a game ball enters an object on the board, (3) When a reach is reached as a result of the change, (4) when the result of the change is a win, (5) when a change in the probability occurs, a 3D image is displayed by the autostereoscopic image display unit at the timing. This will provoke the player's euphoria and motivate them to play.
  • a 3D video in which the number of appearances, the display time, and / or the three-dimensional pop-out degree are changed according to the result of the mini game by the player.
  • An image or video that prompts the player to perform an operation is displayed on the autostereoscopic video display unit.
  • the displayed image or video means an instruction to the player such as the type of input unit to be operated by the player, the timing to perform the operation, the number of operations. If the player can operate the input unit and input correctly according to such instructions, the game control unit (game control means) will hit the player and perform control that is advantageous to the player, such as changing the probability.
  • a 3D image is displayed. In this way, the mini-game creates sharpness in the game play, and a powerful 3D video can be displayed depending on the result of the game, so the player's willingness to play is aroused.
  • buttons buttons, levers, sliders, joysticks, mice, keyboards, jog dials, touch panels, and the like.
  • the autostereoscopic image display unit may be hidden with a decoration.
  • a naked-eye 3D image display unit appears when conditions such as a game ball enters an accessory or a predetermined continuous play time elapses, the player is surprised and motivated to play.
  • a pachinko machine can also handle 3D video as a kind of accessory.
  • the pachinko machine is equipped with a detection unit (detection means) that can detect the entire board surface, and the detection unit detects the position of the game ball moving on the board surface at regular time intervals, and the game control unit A detection signal is sent to each. Based on the detection signal and the position information of the pixel that displays the accessory acquired from the video control unit, the game control unit obtains the position of the accessory displayed by the stereoscopic video at a predetermined timing and the position of the game ball. It is determined whether or not they match.
  • the game control unit performs control such as variation when the position of the accessory displayed by the stereoscopic video and the position of the game ball match, and does not perform control such as variation when the position does not match.
  • the stereoscopic video not only displays the result of the control by the game control unit, but also the stereoscopic video itself can be an element of game control, and the added value is increased.
  • the game control unit can predefine the position and timing at which the stereoscopic image displays the feature, instead of acquiring the position information of the pixel displaying the feature from the video control unit. According to this, the determination is simplified.
  • gaming machine of the present invention is not limited to the pachinko machine as described above, and can be variously changed according to the required embodiment.
  • the point of the present invention is that the parallax barrier sheet according to the present invention is applied to a PC having an inexpensive display with a low resolution of SVGA (800 ⁇ 600) class and a screen size of about 14 inches, and an inexpensive CPU.
  • SVGA 800 ⁇ 600
  • a screen size of about 14 inches and an inexpensive CPU.
  • the thickness of the actually created spacer must be the gap distance Z minus the thickness of the protective layer on the display surface.
  • ⁇ Substitute according to the thickness of the transparent medium> you may utilize the thickness of the transparent medium which comprises a parallax barrier sheet for at least one part of the thickness of a spacer. This is because it is relatively easy to adjust the thickness of the transparent medium in the process of manufacturing the transparent medium.
  • the parallax barrier sheet when the parallax barrier sheet is installed on the display, the parallax barrier needs to be formed on the image presentation target side of the thick transparent medium.
  • the remaining part of the gap distance is carried by the thickness of the transparent medium.
  • the part which deducted the thickness of the transparent medium can also be provided as the thickness of the following various spacers.
  • FIG. 75 shows a specific example in the case of using an L-shaped spacer.
  • the monitor surface of the display is surrounded by a frame as the frame and is configured as a lower surface.
  • the filter also called parallax barrier sheet
  • the filter may be attached to a spacer fixed to the corner of the frame by a predetermined method capable of detaching.
  • FIG. 76 shows an example of a method for sandwiching a filter.
  • the spacer is attached to the corner of the frame so as not to shift.
  • the sandwiching type attaching hook may be attached to any side of the filter and the display, up, down, left, and right.
  • FIG. 77 shows an example of a method for placing a film on a rail (also referred to as a guide rail or a crosspiece).
  • the rail is attached to the frame, and the filter is placed on the rail. Since the filter can be kept horizontal by placing the filter on the rail, it is not always necessary to align the corners of the spacer and the frame.
  • the spacer may have any shape as long as a predetermined thickness can be ensured, and may be L-shaped, cylindrical, or prismatic.
  • a pinch-type attachment hook for holding the upper part of the parallax barrier sheet together with the upper part of the display surface may be used so that the parallax barrier sheet does not fall to the image presentation target person side.
  • FIG. 78 shows an example in which rails are provided above and below the monitor surface of the display.
  • the rails are attached to the top and bottom of the monitor surface, so that the filter can be firmly fixed. Slide the filter from the side along the rail groove and insert it.
  • a spacer is used.
  • the spacer may be omitted and the function of the spacer may be substituted depending on the position of the rail groove.
  • the rail has the same length as the width of the monitor surface, but may be provided only in the vicinity of the monitor surface as long as the filter can be fixed.
  • FIG. 80 shows a method of installing the filter by sliding it from above into the rail groove.
  • the rails are arranged in a U-shape that is open at the top.
  • the spacer may be omitted, or the rails may be provided only near the four corners of the monitor surface.
  • guide rail-shaped holding means are provided on both the left and right sides of the display, and the parallax barrier sheet is inserted along the guide rail from the top of the display surface.
  • a stopper may be provided on the lower side of the display surface so that the parallax barrier sheet stops once it is inserted.
  • the stopper has the same shape as the guide rails on the left and right of the display screen, and a U-shaped guide rail can be used as a whole.
  • 81 shows a method of suspending a filter by providing two hooks on the upper part of the display. Open two holes in the filter that fit the hooks, insert them into the hooks, and hang them.
  • FIG. 82 shows a method of screwing the filter to the display. Holes are made in the four corners of the filter and screws are fixed to fix the filter to the frame.
  • a structure may be used in which a ring is attached to a pin and also serves as a spacer.
  • FIG. 84 shows a method of attaching a filter to a display using an adhesive cushion.
  • a stretchable removable material is used for the adhesive cushion.
  • the spacer is pressed and bonded so that the distance between the monitor surface and the parallax barrier surface can be secured by the spacer.
  • the spacer, the monitor surface, and the parallax barrier surface are brought into close contact with each other by the tensile force of the adhesive cushion, and the gap distance Z is appropriately maintained.
  • suction cup-like mechanism that can be removed may be used instead of the adhesive cushion.
  • FIG. 85 shows a method of attaching a filter to a display using a cured adhesive material.
  • the cured adhesive material also serves as a spacer.
  • FIG. 86 shows a method of providing an adhesive material on the monitor surface side of the L-shaped spacer attached to the filter so that the filter can be detached.
  • a spacer can be fixed to the corner of the frame, and an adhesive can be provided on the filter surface side of the spacer to make the filter removable.
  • the L-shaped fixture has a structure that fits into the upper and lower frame frames, and has a structure in which a groove for holding the filter is formed or the filter is bonded.
  • the L-shaped attachments are attached to the upper and lower sides of the filter, and the L-shaped attachments are fitted into the frame of the display in that state.
  • FIG. 88 shows a method of attaching a filter by a sandwiching type attachment hook that also serves as a spacer.
  • the sandwich-type mounting hook starts from the portion that comes into contact with the monitor surface, and is provided with a groove for holding the filter in an appropriate position or a structure to which the filter is bonded. Extending to the back side, the display is sandwiched.
  • ⁇ It is recommended to attach this sandwich type attachment hook to at least two places such as the upper and lower sides of the monitor surface. It may be attached anywhere, but it is more stable to attach it to the opposite part of the monitor surface.
  • FIG. 89 shows a method of attaching a filter by combining an L-shaped attachment and a columnar spacer.
  • the upper L-shaped attachment also serves as a spacer, and the lower part is attached with a cylindrical spacer to the filter, and the filter is fitted into the frame so that it can be detached.
  • the structure which attaches an L-shaped attachment to a lower part, and attaches a cylindrical spacer to an upper part may be sufficient.
  • a sandwiching attachment hook shown in FIG. 88 may be used instead of the L-shaped attachment.
  • the horizontal visible region length V the thickness of the protective layer from the pixel display surface to the monitor surface, the step between the monitor surface and the frame surface which is the frame of the display, and the parallax barrier surface from the frame surface
  • the gap distance Z and the parallax W which is the sum of the distances up to (if the parallax barrier is formed on the monitor side of the filter, 0)
  • the best view point distance (BVP distance) L is obtained. .
  • the horizontal direction visible region length V is obtained by the following equation (20) based on the equation (1).
  • the step of the existing display frame is used as a spacer, An appropriate autostereoscopic video can be reproduced using a predetermined best viewpoint.
  • a predetermined BVP distance L can be set by controlling the gap distance Z using a spacer.
  • the predetermined best view point is set without properly setting the blending method, the horizontal visible region length V changes, and the three-dimensional effect (protruding degree) and the three-dimensional sharpness are slightly different. . However, depending on the application, it can be used practically as it is.
  • a parallax barrier based on the slit width S obtained by the above calculation method, a sharp best view point and stereoscopic suitability range can be obtained, and at the same time, a step between the monitor surface of the display and the frame is a spacer.
  • the autostereoscopic display used as can be configured.
  • FIG. 90 shows a method in which a filter somewhat larger than the monitor surface is used, adhesive materials are provided at the four corners of the filter, and affixed to the frame.
  • the positions where the adhesive material is provided need not be at the four corners, and may be provided at one or more locations as long as they overlap with the frame. However, when there are few places to provide the adhesive material, it is desirable to be above the filter because of gravity.
  • FIG. 91 shows an example in which a pinching type attachment hook is used instead of the adhesive material.
  • FIG. 92 shows a method of attaching a parallax barrier sheet to a table-type display, that is, a display having a screen surface facing upward, which is installed like a table.
  • This table type display is used for placing a game card on it, recognizing the card from the display side, and controlling images and video displayed on the display.
  • This display includes a screen panel for a rear projector and a projector that projects from below.
  • the spacer has a hollow shape coaxial with the pin or bolt, as in the case of fastening a normal screw or bolt, and this spacer is placed under the filter and penetrates through the pin or bolt. Screw in the frame and fix the filter.
  • FIG. 93 shows a method of placing spacers so as to come to the four corners of the monitor surface and placing the filter from above.
  • the display facing upward may be a normal monitor.
  • parallax barrier sheet can be used on the monitor surface of the tablet PC.
  • the image display target person adjusts the screw or the pin, and expands the gap distance to a position optimal for the 2D display.
  • the gap distance is reduced to an appropriate distance.
  • the thickness of the spacer is adjusted to the first thickness (for normal display), and when the display is used as an autostereoscopic display, the thickness of the spacer is set to the first thickness. It adjusts to 2nd thickness (for autostereoscopic display) thinner than thickness.
  • the adjuster When adjusting the thickness, for example, when the spacer is composed of screws or pins, if the adjuster manually moves the filter, the click feeling is transmitted to the hand at an appropriate thickness, so that the accurate thickness can be obtained. It is desirable to be able to adjust to the position.
  • the calibration of the parallax barrier sheet installed on the display means that the horizontal and vertical lines (second index) and the diagonal lines (second index) on the display are displayed on the display and the horizontal and vertical lines of the filter are displayed.
  • the vertical line (first index) and the diagonal line visible through the slit of the parallax barrier (first index) are adjusted so as not to be shifted.
  • ⁇ Horizontal line display and vertical line display may be performed on the monitor surface, or instead of performing these displays, the frame frame and the horizontal and vertical lines of the filter may be combined for calibration.
  • calibration is performed by displaying points (second indices) at the four corners of the monitor surface and overlaying the points (first indices) formed on the filter. You may go.
  • a configuration may be adopted in which a calibration stereoscopic image is displayed and the image presentation target person adjusts while determining whether or not a stereoscopic effect can be appropriately obtained.
  • ⁇ About calibration (for multi-viewpoint)> In an autostereoscopic display for multiple viewpoints (multi-viewpoint), calibration may be performed by the following methods.
  • Method A 1. Prepare images for multiple viewpoints. In the image, for calibration, the pixels for the central two viewpoints or one of the viewpoints are white at the even viewpoints. In the odd viewpoint, only the central one viewpoint or only the central one viewpoint and the left and right one viewpoint pixels are white. The other pixels are black. 2. The image prepared in the step is captured, and the displayed image is aligned with the slit of the parallax barrier.
  • This method forms an indicator for calibration on the image display surface of the display by setting a pixel for a certain viewpoint (preferably one or two) to white and an image for the other viewpoint to black. Then, when the index is viewed through the slit of the parallax barrier, calibration is performed by adjusting so that the parallax barrier sheet is installed at a position where it can be visually recognized as a continuous line. It is important that the line is continuous.
  • FIG. 95 is a diagram for explaining this calibration work.
  • the third viewpoint image is white
  • the first, second, fourth, and The image for the fifth viewpoint is black.
  • the third viewpoint pixel portion appears as a white line, so that the position of the slit of the parallax barrier sheet is adjusted according to the white line.
  • Method B 1. For a predetermined slit, a line that matches the slit width is displayed at a corresponding position using a predetermined color, and is adjusted.
  • This method corresponds to the slit on the image display surface in which a line (first index) is provided as a calibration slit having a predetermined width horizontally and / or vertically at a predetermined position of the transparent medium.
  • This is a method of adjusting the position of the transparent medium so that the line (second index) displayed at the position can be visually recognized without omission. It is important that there are no omissions.
  • a calibration slit is formed on at least a predetermined vertical line on either side of the filter and / or on at least a predetermined horizontal line of either upper or lower side.
  • a vertical line and / or a horizontal line is displayed using a predetermined color at a position corresponding to the formed calibration slit on the monitor surface, and is aligned with the calibration slit formed on the filter.
  • a slit-like through groove may be formed in a transparent medium.
  • it is desirable to form the calibration slit by not forming a mask surface that does not transmit visible light, that is, by transmitting visible light. .
  • FIG. 96 shows a state in which a horizontal slit and a vertical slit are formed as calibration slits on the filter. Note that. In this figure, the slit for the parallax barrier is slanted. (Method D) In this method C, a translucent calibration line is used on the calibration slit. 1. A calibration line is drawn on the filter using a semi-transparent inconspicuous color. 2. When superimposed on a line of a predetermined color displayed on the monitor surface, the color changes to perform accurate alignment.
  • the color of the calibration line is not a color that absorbs red from the monitor surface, but is a color that changes when the colors overlap.
  • the color of the calibration line is light yellow and the color of the line displayed on the monitor is red, the light yellow changes to red when they overlap, so it can be visually recognized that they overlap.
  • the parallax barrier is generally composed of a mask surface that does not transmit visible light and a slit surface that transmits visible light.
  • a parallax barrier is formed by forming only the mask surface while leaving the slit surface.
  • the mask surface of the parallax barrier may be formed directly on a transparent medium by printing or the like.
  • the number of steps can be reduced compared to a method in which a parallax barrier is first printed on a transparent thin film sheet and then the transparent thin film sheet is attached to a transparent medium.
  • a parallax barrier is directly formed on the transparent medium, it is necessary to appropriately control the inclination of the slit of the parallax barrier to a desired value with respect to the transparent medium.
  • the parallax barrier sheet may be produced by a method in which a parallax barrier is first formed on a transparent thin film sheet and then the transparent thin film sheet is attached to a transparent medium, as in the conventional case.
  • the color of the mask surface of the parallax barrier> When forming a parallax barrier mask surface on a transparent medium, it is desirable that the mask surface be black in order to maximize the naked eye stereoscopic effect.
  • the graphic may be printed directly on at least the mask surface facing the image presentation target side, the graphic may be printed on the mask surface printed with black ink, or the black ink Alternatively, the mask surface may be printed with the white ink on the mask surface, and the graphic may be printed thereon. If visible light can be completely blocked by white printing, black printing can be omitted.
  • a graphic is printed from the back, printed in white, and printed in black.
  • black printing can be omitted if visible light can be completely blocked by white printing.
  • the parallax barrier was printed on a large transparent thin film sheet that fits the size of a 47-inch display, etc., and the sheet was carefully bonded to a glass plate so that the slit angle ⁇ was correctly formed. .
  • the angle is directly printed on the glass, the slit angle ⁇ is maintained appropriately. Since the glass plate is hard, as long as the glass plate is appropriately held with respect to the display surface, the angle ⁇ can be reliably held with respect to the pixel arrangement on the display surface.
  • the transparent medium for forming the parallax barrier can be used instead of glass as long as it is not a material that deforms due to its own weight or wind pressure.
  • a transparent resin such as an acrylic plate may be used.
  • the thickness of the parallax barrier sheet need only be strong and hard enough to maintain flatness when attached to the display. Depending on the method of attachment to the display, it can be rolled up during transportation or storage. It may be.
  • the spacer material is transparent, there is no sense of incompatibility when combined with a transparent medium, and even when the spacer is arranged on the monitor surface, an image of the arrangement position of the spacer can be seen.
  • the spacer may be integrally formed with the transparent medium using the same material as the transparent medium.
  • the integral molding can save the labor of bonding the spacer to the transparent medium and increase the strength of the parallax barrier sheet.
  • parallax barrier sheet Since the parallax barrier is formed on one side of a thick transparent medium such as a glass plate, depending on whether the parallax barrier forming surface is installed on the display side or on the image presentation subject side, The gap distance (Z value) can be changed by the thickness of the transparent medium.
  • the slit in the case of an oblique slit, if the slit is placed from the lower left to the upper right when the parallax barrier forming surface is close to the display, the slit will change from the lower right to the upper left when the transparent medium is turned over. It is because it is arranged in.
  • a protective film may be formed on the surface of the parallax barrier sheet or stored in a protective case (protective means).
  • a parallax barrier sheet is manufactured by a method in which a parallax barrier is formed on a transparent thin film sheet and the side on which the parallax barrier is formed is attached to a transparent medium, the transparent thin film sheet itself becomes a protective film. Thus, it is possible to save the trouble of forming a separate protective film.
  • a grid sheet is a transparent sheet in which a dot pattern is formed on the surface of the sheet. By touching this sheet with a pen-type scanner, the coordinate value of the touch position is converted into a dot pattern formed on the sheet. It is a mechanism to recognize by reading.
  • a normal display can function as an autostereoscopic display as well as a touch panel using a pen-type scanner.
  • FIG. 98 (a) an ellipse whose major axis is vertical is first formed, and then the major axis is tilted by an inclination ⁇ to form a slit whose overall shape is an oblique slit and whose edge shape is an elliptical arc. How to do.
  • the width of the thickest part of the slit is the slit width S, and the width of the thinnest part is the slit width D '.
  • the ellipse formula is expressed by the above formula (4).
  • the elliptical arc slits can be formed by connecting the elliptical arcs of each row at the connecting points at both ends of D ′ on the dividing line.
  • 98 (b) to 98 (d) show examples of slits whose edge shape is a triangle.
  • the triangle edge shown in FIG. 98 (b) has a slit width S on the center line of each row, and isosceles triangles having two equal isosceles triangles so that the slit width D ′ is from the vertex toward the upper and lower dividing lines. Sides are formed.
  • the triangular edge shown in FIG. 98 (c) is obtained by inclining the triangular edge by the inclination ⁇ .
  • the slit widths S and D ' are maintained, but the lengths of the two sides of the triangle are different.
  • the triangle edge shown in FIG. 98 (d) tilts the slit using the inclination ⁇ as the entire slit arrangement shape, but the edge of each row is horizontally moved on the dividing line without being deformed, thereby dividing the triangle edges. It is the structure connected by the straight line on a line.
  • each row it is important for displaying a beautiful stereoscopic image that the edges are symmetrical on both the left and right sides of the slit.
  • the configuration shown in FIG. 98 (b) or (d) is most desirable.
  • this configuration is used, a stereoscopic effect without distortion can be obtained. Since you can see a beautiful solid, you can also expect the effect of reducing eye fatigue.
  • FIG.98 (c) is the structure of FIG.98 (c) and it is substantially symmetrical, and can perform an autostereoscopic display appropriately.
  • a plurality of holes which are a plurality of visible light transmitting regions may be continuously arranged in the parallax barrier that transmits visible light instead of the slits as described above.
  • FIG. 114 (a) shows an example of subpixel arrangement for autostereoscopic display after blending.
  • the resolution is m ⁇ n
  • the coordinates of the subpixel located at the upper right of the pixel in one viewpoint pixel at an arbitrary position are (rx, ry). Then, in order to obtain the RGB value of the pixel from the original image shown in FIG. 99 (b), the subpixel coordinates are converted into percentage coordinates.
  • Percentage coordinates (r′x, r′y) are expressed by the following formula.
  • RGB values are obtained from the same pixel coordinates (Rx, Ry) of each viewpoint image, and the subpixels for the first viewpoint to the predetermined viewpoint are arranged in the right direction in order, for autostereoscopic viewing. Blend images.
  • the parallax barrier sheet and the electromagnetic wave shield can be used in combination.
  • the parallax barrier sheet and the electromagnetic wave shield can be used in combination.
  • the parallax barrier sheet and the electromagnetic wave shield are formed by printing, it is effective to combine the functions because the parallax barrier and the electromagnetic wave shield can be formed as one step of the printing process.
  • a parallax barrier sheet and an electromagnetic wave shield by printing it may be performed directly on a transparent medium such as a glass plate or an acrylic plate, or after printing on a thin film transparent sheet, the thin film transparent sheet is transparent medium It may be pasted on.
  • an ink for example, carbon black
  • an electromagnetic wave shield as shown in FIG. 100B by using an ink (for example, a shielding metal-containing ink) having a characteristic that does not transmit electromagnetic waves. When completed, it appears as shown in FIG.
  • the visible light transmission region may be printed with ink having a characteristic of not transmitting electromagnetic waves. However, it is necessary to consider so that the effect of transmitting visible light is not affected or is less affected.
  • (B) Visible light transmission region is printed as thin vertical and horizontal lines with ink having a characteristic that does not transmit electromagnetic waves, as in a normal electromagnetic wave shield, and the region that does not transmit visible light is visible using the same ink.
  • the visible light transmission region is printed as a thin vertical and horizontal line with ink having a characteristic that does not transmit electromagnetic waves, as in a normal electromagnetic wave shield, and the region that does not transmit visible light has a characteristic that does not transmit electromagnetic waves.
  • ink having a characteristic that does not transmit electromagnetic waves, as in a normal electromagnetic wave shield
  • the region that does not transmit visible light has a characteristic that does not transmit electromagnetic waves.
  • the visible light transmission region of the parallax barrier is small, the visible light transmission region, like punching metal, is shielded from electromagnetic waves using an ink having a characteristic that does not transmit electromagnetic waves. It is also possible to use a printing method that omits printing. In this case, the parallax barrier and the electromagnetic wave shield can be formed by a single printing process using one kind of ink having the characteristic of not transmitting visible light and the characteristic of not transmitting electromagnetic waves.
  • a hole-type parallax barrier is particularly effective because it is the same as punching metal.
  • the configuration that combines the parallax barrier and the electromagnetic wave shield reduces the number of parts and the manufacturing process. It is effective from the viewpoint that
  • the standard of the electromagnetic wave shield mesh formed on the parallax barrier sheet is an existing electromagnetic wave shield standard.
  • the mesh opening width (pitch) is about 200 ⁇ m and the line width is about 10 ⁇ m.
  • the mesh opening width is preferably 120 ⁇ m or more from the viewpoint of transparency of display light emission.
  • the line width of the mesh is preferably secured to at least 5 ⁇ m or more.
  • the mesh opening width is most preferably set to 250 ⁇ m or more and 350 ⁇ m or less in the use of the light-transmitting electromagnetic wave shielding film.
  • the opening width of the mesh that is the electromagnetic wave shield according to the present invention is set to about 200 ⁇ m to about 250 ⁇ m as a design standard, and the shape of the mesh is a rectangle that is almost a square.
  • opening width and shape of the mesh described above are merely examples for the convenience of explanation of the present invention, and can be variously changed according to the required embodiments.
  • the mesh electromagnetic wave shield is not necessarily actually printed on the transparent member, but if a parallax barrier slit or hole partitioned with a width equal to the opening width of the mesh is formed.
  • the electromagnetic wave shield can also be used.
  • the mask portion of the parallax barrier is formed of ink having a characteristic that does not transmit electromagnetic waves, but it goes without saying that mesh-shaped electromagnetic wave shields may be superimposed and printed.
  • 101A is a hole-type parallax barrier of a small monitor
  • FIG. 101B is a mesh of an electromagnetic wave shield.
  • (A) is an example of a plate that is printed using an ink that does not transmit visible light
  • (b) is an ink that has an electromagnetic wave shielding property
  • the dotted line portion is an imaginary line for indicating the opening and is not formed on the plate.
  • (C) is an example of a plate printed with ink having electromagnetic wave shielding characteristics.
  • FIG. 102 (a) is a hole-type parallax barrier of a medium-sized monitor, and (b) is a mesh of an electromagnetic wave shield.
  • A is an example of a plate that is printed using an ink that does not transmit visible light
  • (b) is an ink that has an electromagnetic wave shielding property, and is an example of a plate that is printed over (a).
  • the dotted line portion is an imaginary line for indicating the opening and is not formed on the plate.
  • C is an example of a plate printed with ink having electromagnetic wave shielding characteristics.
  • the line at the center of the holes in (b) and (c) is divided into two because the hole width exceeds the pitch for blocking a predetermined electromagnetic wave.
  • FIG. 103 (a) shows a hole-type parallax barrier
  • FIG. 103 (b) shows a glass or transparent sheet provided with a metal thin film that transmits a visible term.
  • (A) is an example in which printing is performed using ink that does not transmit visible light, and (b) is overlaid and pasted thereon, and the parallax barrier forming (c) is also used as an electromagnetic wave shield.
  • 104 and 105 are examples in which the slits of the parallax barrier are partitioned in the horizontal direction and / or the vertical direction so as to have a predetermined width necessary for blocking electromagnetic waves.
  • FIG. 106 is an example in which when the original hole height exceeds the predetermined width, the hole is formed to have a predetermined width by either forming with a plurality of holes or partitioning. .
  • FIG. 107 is a diagram for explaining the structure of a plasma 3D monitor, which is one embodiment of the present invention.
  • FIG. 107 (a) is a diagram for explaining the structure of a plasma 3D monitor in which a transparent member having a predetermined strength, on which a parallax barrier is printed, is newly attached to an existing plasma display.
  • the transparent member is fixed by a cover that covers the entire plasma 3D monitor.
  • a spacer is provided on a frame on the side of the plasma display panel so that an appropriate gap distance Z is maintained between the panel-side surface of the plasma panel and the parallax barrier when performing stereoscopic display.
  • the spacer need not be provided.
  • the electromagnetic wave shielding layer and the near-infrared shielding layer of the monitor side glass attached to the monitor may be formed in the reverse order. Moreover, you may form the layer which the reflection prevention layer, the electromagnetic wave shield layer, or the near-infrared shielding layer combined.
  • FIG. 107 (b) is a diagram for explaining the structure of a plasma 3D monitor in which a transparent member having a predetermined strength on which a parallax barrier is printed is incorporated in the manufacturing process.
  • the transparent member is fixed so that the panel-side surface of the plasma panel and the parallax barrier maintain an appropriate gap distance Z when performing stereoscopic display.
  • the electromagnetic wave shield printed by the above method is printed on the transparent member.
  • the parallax barrier may be used also as the electromagnetic wave shield by the above-described method, or the electromagnetic wave shield may be newly superimposed and printed separately from the parallax barrier.
  • the reflection preventing layer may be formed in combination with the near infrared ray blocking layer.
  • the parallax barrier used in the present invention may be an electrically controllable parallax barrier (switch parallax barrier) capable of turning on or off the function as a parallax barrier by electrical control (switch control).
  • switch parallax barrier electrically controllable parallax barrier
  • the parallax barrier when displaying 3D video, the parallax barrier functions as a parallax for the person who presents the image, but when displaying 2D video, the parallax barrier is not necessary and the visible light is totally transmitted. It is preferable to transmit.
  • the parallax barrier is turned on when displaying 3D video, and the parallax barrier is turned off when displaying 2D video, thereby preventing a decrease in luminance during 2D video display. it can.
  • the parallax barrier As a specific embodiment of the electrically controlled parallax barrier, it is preferable to turn the parallax barrier on or off by controlling the orientation of the liquid crystal. That is, a liquid crystal display is used as a parallax barrier.
  • the autostereoscopic image display device is an autostereoscopic image display device that displays a stereoscopic image by a parallax barrier method, and a 2D image is drawn or printed on the front surface in order to solve the above-described problem.
  • the display means since the 2D image drawn on the front surface of the wide parallax barrier can be presented to the image presentation target even when the display means does not display the image, the display means is activated to operate. In addition to the case where it is used, there is an effect that it can be used as a display device.
  • the external light detection means for detecting the state of the external light incident on the parallax barrier, and at least the state of the external light detected by the external light detection means
  • the apparatus further includes a control unit that controls the display state of the 2D and / or 3D video by the display unit.
  • the control unit detects the state of the external light, that is, the state of the surrounding light when the image presentation target person visually recognizes the drawn or printed 2D image and the displayed 2D and / or 3D video.
  • the control unit detects the state of external light, that is, the state of surrounding light when the image presentation target person visually recognizes the drawn or printed 2D image and the displayed 2D and / or 3D video.
  • At least a light projecting unit that projects light on the front surface of the parallax barrier, an external light detection unit that detects a state of external light incident on the parallax barrier, and at least Based on the state of the external light detected by the external light detection unit, the display unit controls the display state of the 2D and / or 3D video, and the light projection unit controls the display state of the 2D image. It is preferable to further include a control unit that performs the above.
  • the control unit detects the state of the external light, that is, the state of the surrounding light when the image presentation target person visually recognizes the drawn or printed 2D image and the displayed 2D and / or 3D video.
  • Optimum for visual recognition for the image presentation target person by displaying the optimal video according to the condition through the display means and performing the optimal illumination according to the situation via the light projecting means It is possible to display an image and present an image.
  • control of the display state of the 2D and / or 3D image based on the state of the external light includes control of displaying a color that complements the 2D image. It is preferable.
  • control unit Since the control unit displays a color that complements the image drawn or printed on the front surface of the parallax barrier when controlling the display state, the 2D image is more appropriately expressed.
  • the control unit controls time of the display state, the approach of the image presentation target person, the contact of the image presentation target person to the door knob, and / or the like.
  • the corresponding detection means detects the display state, and when the image presenter gets on the floor surface of the floor, the floor surface is It is preferably installed immediately before and / or immediately after the autostereoscopic video display device, or installed so as to be a display surface of the autostereoscopic video display device.
  • the control unit is a watch, a human sensor that detects the approach of the image presentation target person, a contact sensor that detects contact of the image presentation target person with a door knob, and / or the image presentation target person gets on the floor.
  • a human sensor that detects the approach of the image presentation target person
  • a contact sensor that detects contact of the image presentation target person with a door knob
  • / or the image presentation target person gets on the floor.
  • more appropriate display can be performed for the image presentation target person by changing the video display according to the input signals from these sensors. .
  • the autostereoscopic image display device further includes an imaging unit that images a nearby object, and the control unit displays the image together with the video imaged by the imaging unit when controlling the display state. It is preferable to perform control to analyze and display a stereoscopic image according to the analysis result.
  • the objects in the vicinity include a still life, a moving object, a living thing, particularly an image presentation target person.
  • the control unit has an effect that various displays can be performed by presenting an image of an image presentation target person or the like captured by the imaging unit to the image presentation target person as a part of a stereoscopic video.
  • the front surface of the parallax barrier is a mirror surface instead of drawing or printing a 2D image, or the entire surface of the parallax barrier is a magic mirror. It is preferable that
  • the display by the display means can be visually recognized at the same time when the person to be imaged shows his / her appearance.
  • the entire surface of the parallax barrier is a magic mirror, the same effects as in the case of using a mirror surface can be obtained, and the manufacturing can be facilitated.
  • a dot pattern capable of reproducing information recorded by reading with a scanner is formed on the entire surface of the parallax barrier including the slit portion. Preferably it is.
  • the slit portion must have a structure that transmits light emitted from the display means, but the dot pattern is sufficiently fine, and there is no hindrance to visual recognition of the image, and a scanner for reading the dot pattern is used. Since the touch position can be determined by touching the image display surface of the autostereoscopic image display device, the display image can be changed according to the touch position.
  • the autostereoscopic video display device is a autostereoscopic video display device that displays a stereoscopic video by a parallax barrier method, and displays a 2D / 3D video. It is characterized by comprising display means and a touch panel that accepts input from the user.
  • the position of the best viewpoint at which an effective stereoscopic effect can be obtained is usually limited in an autostereoscopic image display device.
  • an image presentation target person operates a touch panel that is, an image presentation target person Since the best view point is determined on the assumption that the position where the image is viewed is within the reach of the touch panel, it is possible to present an image presentation target person with the most stereoscopic video.
  • the image display means is divided into a first region that displays 2D / 3D images and a second region that displays only 2D images, It is preferable that the parallax barrier covers at least the first region, and the touch panel covers at least the second region.
  • the touch panel portion performs only 2D video display, there is no need to display a 3D multi-viewpoint image, and it is sufficient to display a high-resolution video dedicated to 2D. There is an effect that can be.
  • the 2D image By drawing or printing a 2D image on the front surface of the parallax barrier, the 2D image can be presented to the image presentation target person even when the autostereoscopic image display device is not displaying an image. There is an effect.
  • the touch panel is preferably a grid sheet.
  • the grid sheet realizes a function as a touch panel by touching a minute dot pattern, which is formed on a transparent sheet used to overlap a monitor screen, with an invisible eye using a scanner. .
  • the touch panel is configured by a grid sheet
  • the touch position on the touch panel can be detected by touching the sheet using a dedicated scanner.
  • the grid sheet also serves as the parallax barrier.
  • the grid sheet has a structure in which a dot pattern is formed on a transparent sheet by printing, and the parallax barrier also has a structure in which a barrier is formed on a transparent sheet by printing or the like. Therefore, by using both of them, the number of parts can be reduced and the manufacturing cost can be reduced.
  • the touch panel is a medium, a paper controller, or a paper keyboard on which an icon or the like formed by a photograph or graphic is detachable from the image display means. It is preferable that
  • the paper keyboard and the paper controller are obtained by printing a keyboard key or a remote controller button on a medium such as paper so as to overlap with a dot pattern.
  • a keyboard key or a remote controller button on a medium such as paper so as to overlap with a dot pattern.
  • buttons and keys on the paper keyboard and paper controller By touching buttons and keys on the paper keyboard and paper controller with a pen-type scanner, the information assigned to the buttons and keys is read, and functions such as image switching corresponding to the read information are executed. .
  • the touch panel By configuring the touch panel with a paper keyboard, a paper controller, etc., there is an effect that a medium on which a fine photograph is printed can be used as the touch panel.
  • the touch panel is transparent or formed on a glass surface of a show window or the like in order to display an image such as a menu instead of the second region.
  • a translucent video projection screen, a projector that projects visible light onto the video projection screen, a light source that irradiates invisible light from the back of the video projection screen to the area of the video projection screen, and a user An imaging means for imaging the invisible light reflected by the touch to the touch panel from the back surface of the touch panel, and an analysis means for calculating a contact position on the touch panel by the user by analyzing the captured image. It is preferable.
  • the touch panel is divided into a part that functions by visible light and a part that functions by invisible light.
  • the portion that functions by visible light is a projector that projects an image such as a menu to an image presentation target person, that is, an operator of a touch panel, and a video projection screen that projects an image projected from the projector.
  • This video projection screen is formed on the glass surface of the show window and has the same function as the second region.
  • An image presentation target person visually recognizes a menu or the like projected on a screen using visible light by a projector, and touches a video projection screen surface that is a touch panel based on the visually recognized content.
  • the part that functions by invisible light includes the light source, the video projection screen that is a screen that is touched by an image presentation target person, and an imaging unit that captures the light of the invisible light reflected by touching the touch panel by the user, Analysis means.
  • the invisible light irradiated from the light source to the image projection screen surface is transmitted.
  • an image presentation target person that is, a touch panel operator touches the image projection screen surface
  • invisible light does not pass through the portion at the touch position, and diffuse reflection occurs.
  • the imaging means captures the image projection screen surface from behind the image projection screen surface, the diffuse reflection portion can be imaged.
  • the analysis unit analyzes the captured image, thereby recognizing which of the regions on the video projection screen surface is touched.
  • the image projection screen surface provided in place of the second region only has an area for displaying an image such as a menu, and other components can be installed behind the image projection screen surface.
  • the touch panel can be installed flexibly.
  • the autostereoscopic image display device is installed so that the subject of image presentation located in front of the show window is within the proper stereoscopic viewing range and behind the show window. It is preferable.
  • the autostereoscopic image display device is the distance at which the most stereoscopic effect can be obtained at the position of the image presentation target person in front of the show window, and is installed inside the show window or behind the show window.
  • the effect is that it is possible to present the most effective stereoscopic video to image presentation subjects who gather before the show window.
  • the touch panel accepts an input used for drawing control in the first region and / or drawing control in the second region. .
  • the input to the touch panel by an image presentation target person is used for 2D / 3D drawing control. That is, when the touch panel is touched, display control is performed so that the image displayed on the touch panel surface is changed, and when the touch panel is touched, display control is performed so that the video displayed in the 3D image display area is changed. is there.
  • the input to the touch panel can be used for both the display control of the 2D menu and the like on the touch panel surface and the display control on the 3D display surface.
  • a naked-eye stereoscopic video display device is a naked-eye stereoscopic video display device that displays a stereoscopic video by a parallax barrier method for a plurality of viewpoints in order to solve the above-described problem.
  • the slit arrangement shape is a zigzag shape formed by a plurality of line segments or a sinusoidal curve shape, and the pixels for each viewpoint are also zigzag shapes or curves corresponding to the slit arrangement shape. It is arranged in a shape.
  • the slit arrangement shape that is, the shape of the slit center line is a zigzag or sinusoidal curve shape, unlike the linear slit in which the deviation between the slit shape arrangement and the pixel arrangement is constant, Even if there is a part where the deviation becomes large, the deviation becomes small in other parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Position Input By Displaying (AREA)
  • Stereoscopic And Panoramic Photography (AREA)

Abstract

本発明は、ジャンプポイントが緩和される裸眼立体映像表示装置を実現する。本発明の裸眼立体映像表示装置は、パララックスバリアのスリットの配置形状が、ジグザグまたは曲線であり、スリットのエッジ形状が楕円弧なので、穏やかなビューミックスの発生によりジャンプポイントを緩和出来る。また、本発明の穴型パララックスバリアは、画素配列面上の視認される領域を決めてから設計するので、ビューミックスの効果を適切に持たせることが出来る。

Description

裸眼立体映像表示システム、裸眼立体映像表示装置、遊技ゲーム機、パララックスバリアシート
 本発明は、パララックスバリア方式の裸眼立体表示技術に関するものである。
 (A)
 従来の典型的な立体映像表示装置の一種として、図46に示すように左右2眼分の画像(h)(m)を、透明性フィルム(52a)に描画ないし撮像した立体用原画(f)を設けた原画像表示板(52)を、その手前側に一定の間隔(d)を置いて配置した透明板(53)に、透明部(t)と不透明部(s)が交互に整列配置された視差バリア(53a)を通して視ることにより、前記立体用原画(f)を3次元映像として、視点(p)において視覚することができるようにした、視差バリア方式の立体映像表示装置(51)が古くから知られている。
 (B)
 従来の技術では、タッチパネル部分も3D表示を行うものであった。
 (C)、(E)
 また、従来の技術では、裸眼立体映像表示装置の1視点分の画素を、R、G、Bのサブピクセルを水平方向に3個並べて配置し、対応するパララックスバリアのスリットのエッジが階段状のものがあった。
 また、水平方向に3個並べる代わりに、R、G、Bのサブピクセルを斜め方向に3個または4個並べて配置する技術もある。(例えば、特許文献3参照)
 また、パララックスバリアの斜めスリットのエッジを直線状にしたものもあった。
 (F)
 パチンコ・パチスロといった遊技機や、アーケードゲーム機、コンシューマゲーム機、あるいはPCゲームにおいて、モニタ面上に通常表示される2D映像の他にプレイ内容に応じて迫力ある3D映像が表示されると、プレイヤーのプレイ意欲の喚起に大きく寄与する。
 特に、遊技機においては射幸心をそそり、プレイの継続を促すことに寄与する。
 該3D映像は、パララックスバリア方式の裸眼立体映像表示手段を遊技ゲーム機に備えることにより、これを表示する技術が一般的である。
 (RTP-1)従来、裸眼立体ディスプレイは、通常の高解像度ディスプレイとパララックスバリアとが一体に形成されていた。そして、裸眼立体ディスプレイ用のハードウェアおよびソフトウェアを内製し、一体のシステムとして販売するビジネスモデルが主流であった。
 <裸眼立体ディスプレイの製造方法について>
 図95において、パララックスバリア方式の裸眼立体ディスプレイの製造に関わる構造を示す。図に示すように、裸眼立体ディスプレイは、画像を表示する通常のディスプレイの前面に、スペーサを設け、そのさらに前面に、背後にパララックスバリアが形成された強化ガラスを設けて製造される。
 スペーサを用いてディスプレイの画像表示面とパララックスバリアとの間に適切な間隔を設定することにより、予め設定された立体視可能エリアにおいて、適切な立体効果を得ることが出来る。
 パララックスバリアのスリット配置とディスプレイ上の一視点用の画素の配置とを適切に調整した後、ディスプレイとスペーサと強化ガラスとを固定することにより、裸眼立体ディスプレイを製造することが出来る。
 (RTP-2)従来、パララックスバリアを作成する際、まず透明な薄膜シートにパララックスバリアを印刷し、そのシートをガラス板の上に、位置を調整しながら、貼り付けるという2工程を用いていた。
 (RTP-3)また、裸眼立体ディスプレイ自体もフルハイビジョン等の高解像度大型ディスプレイを用いたものが多く、コンテンツ作成者が作成途中でコンテンツの立体効果を確認するためには、複数のコンテンツ作成者が一台の裸眼立体ディスプレイを共用していた。
 (RTP-4)また、裸眼立体ディスプレイを客先にプレゼンテーションしに行く際も、必ず大型の裸眼立体ディスプレイを運ぶ必要があった。
特開平11-296124(1999年10月29日公開) 特開2004-294861(2004年10月21日公開) 特許第4023626号(2006年6月8日公表) 特開平11-290520号(1999年10月26日公開) 特開2004-313562号(2004年11月11日公開) 特開2007-240559号(2007年9月20日公開)
 (B)しかしながら、タッチパネル部分も3D表示とする場合、多視点分の映像を表示するため、解像度が落ち、タッチパネル用のメニューなどを表示する場合、綺麗に表示できないという問題点があった。
 (C)、(E)しかしながら、前記従来技術では、階段状のエッジは、縦長の長方形である各サブピクセル、すなわち長辺が垂直である事に対し、エッジも垂直になるので、パララックスバリアによりサブピクセルが一度に隠蔽され、視点の移動およびジャンプポイントが顕著に知覚されてしまうという欠点があった。
 また、パララックスバリアの斜めスリットを用いた場合でも、縦長の長方形である各サブピクセルに対し、傾斜角が一定の斜めのラインを用いて、サブピクセルを隠蔽していくので、視点の移動およびジャンプポイントの緩和の細かい制御が出来なかった。
 なお、視点の移動とは、例えば、右目が第1の視点用の画素を視認している状態から、第2の視点用の画素を視認する状態に移行することである。
 なお、ジャンプポイントとは、映像提示対象者が、例えば、第6の視点用の右目用映像を右目により、また左目用映像を左目により、視認し、適切な立体効果が得られている場所から、さらに例えば右方向に移動し、第6の視点用の右目用映像を左目により、また第1の視点用の左目用映像を右目により、視認し、不適切な立体効果が得られてしまう場所のことである。すなわち、視点の逆転現象である。
 (F)しかしながら、パララックスバリア方式の立体映像表示装置を備えた遊技ゲーム機には以下の複数の問題点がある。
 第一に、3D映像はプレイヤーの眼に負担がかかるため、裸眼立体映像表示手段を備えた遊技ゲーム機は長時間のプレイに適さない。
 第二に、パララックスバリアにより光の透過率が下がるため、裸眼立体映像表示手段において2Dの映像を表示しようとすると、輝度が低下する。
 上記第一の問題点を解決するために、特許文献4には3D映像を2D映像よりもプレイヤーの眼に対する視覚的な刺激の少ない、(1)画像の動作が少ない、(2)彩度が低い、(3)明度が低い、(4)先鋭度が低い、もののいずれかにすることでプレイヤーの眼にかかる負担を軽減しようとする構成が開示されている。
 かかる構成によれば、プレイヤーの眼にかかる負担は解消できても、3D映像の画質・迫力が犠牲となる、という問題点が新たに生じる。
 上記第二の問題点を解決するために、特許文献5および特許文献6にはパララックスバリアに液晶素子を用いることで、該液晶素子を制御することで、2D映像表示時においてはパララックスバリアの全面を光が透過する状態にする構成が開示されている。
 かかる構成によれば、2D映像表示時の輝度の低下は防げるが、製造に必要な工程数が増え、歩留まりが悪くなり、総じて、製造コストが増大するという問題点が新たに生じる。
 上記の種々の問題点は、裸眼立体映像表示手段を用いた遊技ゲーム機の普及の障害となっている。
 本発明は上記の問題を一挙に解決する。すなわち、第一に、3D映像の画質・迫力を犠牲とすることなく、それでいてプレイヤーの眼に負担をかけることのない裸眼立体映像表示手段を備えた遊技ゲーム機を提供する。
 第二に、2D映像表示時の輝度の低下を防いだ上で、かつ工程数を抑えて簡易に製造することができる裸眼立体映像表示手段を備えた遊技ゲーム機を提供する。
 第三に、裸眼立体映像表示手段を遊技ゲーム機に用いることで、プレイヤーの射幸心をあおり、プレイ意欲を喚起する新たな付加価値をもった遊技ゲーム機を提供する。
 本発明は上記の課題を解決することを目的とする。また、上記課題の解決をもって、裸眼立体映像表示手段を用いた遊技ゲーム機の普及に寄与することを目的とする。
 プラズマディスプレイは電磁波による人体への健康被害を防止するために、導電性の部材による電磁波シールドを、プラズマパネルの前面に設けることが必要とされる。
 ここで、プラズマディスプレイを用いてパララックスバリア方式の裸眼立体映像表示装置を製造しようとすると、パララックスバリアをさらにプラズマパネルの前面に設ける必要があるため、装置全体が大型化する。
 また、パララックスバリアを製造して組み込む工程が新たに必要となるため、高価な部材を多数使用しなければならないプラズマディスプレイの歩留まりが極めて悪くなる。
 そこで、電磁波シールドとパララックスバリアを一つの部材が兼用することができるようにすれば工程数が減り、歩留まりもよくなって便利である。
 (RTP-1)しかしながら、裸眼立体ディスプレイのシステム全てを内製することは、例えば、コンピュータシステムが、大手のコンピュータベンダによって全てが提供されるビジネスモデルにより市場が独占されていた状態と同様である。
 コンピュータシステムでは、その後、ハードウェアとソフトウェアの制作が分離され、市場が解放された事により、多数の市場参加者を得て一大産業に発展した。
 同様に、裸眼立体コンテンツ関連の市場も、ハードウェア製造、ソフトウェア製造、コンテンツ制作などに特化した参加者を得ることにより、市場が拡大し発展することが望ましい。
 また、パララックスバリアが一体として形成された裸眼立体ディスプレイに対し、ユーザが、異なった裸眼立体効果を求めて、改造を行うことは困難であった。
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、既存のノートPCやTVモニタなどにハードウェアとしてはパララックスバリアシートを追加するのみで安価に裸眼立体ディスプレイを実現することにより、ハードウェア製造、ソフトウェア製造、コンテンツ制作などを行う市場参加者の増加を計り、裸眼立体ディスプレイ市場の拡大および発展を図ることの出来るパララックスバリアシートを実現することにある。
 また、本発明は、上記の問題点に鑑みてなされたものであり、その目的は、ユーザが市場で販売されている各種のパララックスバリアシートを選択することにより、裸眼立体効果をカスタマイズ出来るパララックスバリアシートを実現することにある
 (RTP-2)しかしながら、パララックスバリアを印刷した薄膜シートをガラス板に貼付する工程では、位置の調整が困難であったり、シートとガラス板との間に気泡が出来てしまったりという問題点があった。
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、パララックスバリアを直接、透明板に印刷することにより、気泡が形成されず、1工程のみで製造可能なパララックスバリアシートを実現することにある。
 (RTP-3)しかしながら、コンテンツの制作時に、立体効果を確かめるために、高価格の裸眼立体ディスプレイを用いる必要があったので、制作者が在宅勤務を行う場合、裸眼立体ディスプレイを自宅に設置することは、金銭的および空間的な制限があった。
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、既存のPCを用いながら、安価に在宅勤務のコンテンツ制作者が、自宅の低解像度・低処理能力の作業用PCにおいて、容易に裸眼立体コンテンツの立体効果を確認できるようになれば、裸眼立体コンテンツの制作に携わる就業者の数を増やすことが出来る。
 (RTP-4)しかしながら、高価格の裸眼立体ディスプレイを持ち運び、誰でもが自由に利用するのは容易ではなかった。
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、通常のモバイルPCに加えて、そのモバイルPCの画面サイズ、解像度、処理能力に適合したパララックスバリア1枚を持ち運ぶだけで、客先等で容易に裸眼立体コンテンツの裸眼立体効果をプレゼンテーション出来る、パララックスバリアシートを実現することにある。
 これにより、ディスプレイの解像度が向上した携帯電話機においても裸眼立体表示が可能となり、何時でも何処でも裸眼立体コンテンツを表示することが可能となる。
 本発明の裸眼立体映像表示システムは2D映像および/または3D映像の表示を行う映像表示手段、および、パララックスバリアからなる裸眼立体映像表示装置と、該裸眼立体映像表示装置に対してタッチパネル操作を受け付けるタッチパネルとを備えた裸眼立体映像表示システムであって、該タッチパネルは、メニュー映像を表示、および/またはメニュー画像を形成したタッチ面をガラス面に備え、該裸眼立体映像表示装置は、該ガラス面の外側からタッチパネル操作に必要な所定距離だけ離れた位置が立体視適正領域に入るように、該ガラス面の内側から所定の距離(前記立体視適正領域までの距離-前記タッチパネル操作に必要な所定距離)をあけてガラス面の内側に設置されることを特徴とする。
 前記タッチパネルは、メニュー映像を表示するために着脱可能な、タッチ面を形成した薄型ディスプレイをガラス面に備えることが好ましい。
 前記タッチパネルは、メニュー画像として着脱可能な、写真またはグラフィック等により形成されたアイコンや文字等が印刷されたタッチシートをガラス面に備えることが好ましい。
 前記タッチパネルは、メニュー画像として着脱可能な、写真またはグラフィック等により形成されたアイコンや文字等が印刷された媒体、ペーパーコントローラ、または、ペーパーキーボードをガラス面に備え、該媒体、該ペーパーコントローラ、または、該ペーパーキーボードに重畳して形成されたドットパターンを操作者が光学読み取り手段(スキャナ)でタッチして読み取ることによって、前記裸眼立体映像表示装置に対するタッチパネル操作を受け付けることが好ましい。
 前記パララックスバリアは、パララックスバリア機能のONまたはOFFを電気的に制御可能な電気制御パララックスバリアであって、3D映像表示時においてはパララックスバリア機能をONにし、2D映像表示時においてはパララックスバリア機能をOFFにすることが好ましい。
 前記電気制御パララックスバリアは、液晶分子の配向を電気的に制御することにより、パララックスバリア機能のONまたはOFFを制御可能とした液晶パララックスバリアであることが好ましい。
 前記電気制御パララックスバリアのONまたはOFFは、前記映像表示手段が取得する2D/3D切り替え指示に基づき、電気的に制御して切り替えることが好ましい。
 前記電気制御パララックスバリアのONまたはOFFは、前記タッチパネル操作による2D/3D切り替え指示に基づき、電気的に制御して切り替えることが好ましい。
 本発明の裸眼立体映像表示装置は、近傍の物体を撮像する撮像手段をさらに備え、前記映像表示手段による前記2D得初像/または3D映像の表示状態の制御に際し、前記制御部は、該撮像手段により撮影した映像と共に、該画像を解析し、解析結果に応じた立体映像を表示する制御を行うことを特徴とする。
 本発明の裸眼立体映像表示装置は、パララックスバリアを用いた裸眼立体映像表示装置であって、前記パララックスバリアのスリットのエッジ形状は、ディスプレイ上に配置された、該スリットを通して画像提示対象者により視認される可視領域を形成する、1つまたは複数の視点用の画素に対応した一定形状の楕円弧を、連続して接続した形状であり、前記楕円弧は、各画素を水平方向に分割する各水平線上において接続されることを特徴とする。
 本発明の裸眼立体映像表示装置は、パララックスバリアを用いた裸眼立体映像表示装置であって、該パララックスバリアを構成する複数のスリット部および複数のバリア部のうち、該スリット部のそれぞれは、1個のスリット部に代わり、裸眼立体表示用の各画素に対応した、複数個の可視光透過領域である穴部により構成され、画像提示対象者が裸眼立体効果を最も得られる位置であるベストビューポイントにおいて該穴部を通して画像提示対象者に視認させようとする画素配列面上の最大領域を、所定の幅と所定の高さとを有する該画素配列面上の矩形領域とし、該穴部は、該パララックスバリア面上にそれぞれ独立して配置され、該穴部の形状は、楕円弧形の形状、または六角形以上の凸偶数多角形の形状であって、かつ、該穴部の形状は、該ベストビューポイントにおける前記画像提示対象者の左右いずれかの眼を基点として、該矩形領域と結ぶ線分と、該パララックスバリア面との交点からなる該矩形領域の相似形をなす領域の上下および左右の辺に内接する形状とし、該ベストビューポイントにおける前記画像提示対象者の左右いずれかの眼を基点として、該穴部を通して画像提示対象者に視認される画素配列面上の領域が、該穴部の相似形をなす有効可視領域であることを特徴とする。
 前記パララックスバリアは、パララックスバリア機能のONまたはOFFを電気的に制御可能な電気制御パララックスバリアであって、3D映像表示時においてはパララックスバリア機能をONにし、2D映像表示時においてはパララックスバリア機能をOFFにすることが好ましい。
 前記電気制御パララックスバリアは、液晶分子の配向を電気的に制御することにより、パララックスバリア機能のONまたはOFFを制御可能とした液晶パララックスバリアであることが好ましい。
 前記電気制御パララックスバリアのONまたはOFFは、前記映像表示手段が取得する2D/3D切り替え指示に基づき、電気的に制御して切り替える
ことが好ましい。
 前記電気制御パララックスバリアのONまたはOFFは、前記タッチパネル操作による2D/3D切り替え指示に基づき、電気的に制御して切り替えることが好ましい。
 前記パララックスバリアは、電磁波シールドを兼用することが好ましい。
 前記パララックスバリアは、導電性の部材により形成されることにより、前記電磁波シールドを兼用することが好ましい。
 前記パララックスバリアは、電磁波シールドが重畳して形成されることにより、前記電磁波シールドを兼用することが好ましい。
 前記パララックスバリアは、前記スリットまたは前記可視光透過領域の長軸方向の長さが、電磁波を遮断するために必要な所定の幅を超える場合には、該スリットまたは該可視光透過領域を電磁波シールドにより二以上の領域に分割することが好ましい。
 本発明のパララックスバリアシートは、前記パララックスバリアが、ディスプレイを裸眼立体ディスプレイとして機能させるために、該ディスプレイと共に用いられ、該ディスプレイに対し脱着可能なパララックスバリアシートであって、透明媒体と、該透明媒体に形成されたパララックスバリア部とからなることを特徴とする。
 前記透明媒体は、ガラス製、または、使用時に平面性を保持できる硬度の樹脂製である
ことが好ましい。
 前記パララックスバリア部の形成は、前記透明媒体へ、直接、グラビア印刷することにより行われることが好ましい。
 前記パララックスバリア部の形成は、該パララックスバリア部を薄膜透明シートに形成した後、該薄膜透明シートを前記透明媒体に貼付することにより行われることが好ましい。
 前記パララックスバリア部のうち、少なくとも画像提示対象者側には、広告等のグラフィックが付加されていることが好ましい。
 前記パララックスバリア部は、可視光を遮断する黒色であることが好ましい。
 前記裸眼立体ディスプレイに対する、立体視適性範囲および/またはベストビューポイントを設定する為に計算された、前記ディスプレイの画像表示面からパララックスバリアのマスク面までの空隙距離(Z値)を、該画像表示面との間に保持するためのスペーサを
さらに備えたことが好ましい。
 前記スペーサは、透明であることが好ましい。
 前記スペーサは、前記透明媒体と同じ材質により、該透明媒体と一体成形されることが好ましい。
 前記スペーサは、前記空隙距離を簡易に変更可能な構造であることが好ましい。
 前記ディスプレイを通常の2D表示ディスプレイとして使用する場合は、前記スペーサの厚みを第1の厚みに調整し、該ディスプレイを裸眼立体ディスプレイとして使用する場合は、該スペーサの厚みを第1の厚みより薄い第2の厚みに調整することが好ましい。
 前記スペーサの少なくとも一部は、前記透明媒体の厚みにより代用されることが好ましい。
 前記スペーサは、前記ディスプレイ面の枠により代用されることが好ましい。
 前記パララックスバリア部は、前記立体視適性範囲および/または前記ベストビューポイントを設定する際に、前記枠の厚みを調整する代わりに、前記パララックスバリア部のスリットの幅を調整して形成されることが好ましい。
 前記パララックスバリア部のスリットが水平線に対し斜めに形成される場合、該スリットの水平線に対する角度は、該パララックスバリア部を前記ディスプレイに取り付ける際に、必ず所定の角度θになるように保持されることが好ましい。
 前記パララックスバリア部の傷、はがれ、付着物を防止するための保護手段を備えたことが好ましい。
 前記ディスプレイの画像表示面に、所定の1個または2個の視点用の画像を白色とし、それ以外の視点用の画像を黒色とすることにより、キャリブレーション用の指標を形成し、該指標が前記パララックスバリア部のスリットを通して連続した線として視認できるように調整してキャリブレーションを行うことが好ましい。
 前記透明媒体には、キャリブレーション用の第1の指標が形成され、前記ディスプレイの枠または該ディスプレイの画像表示面には、キャリブレーション用の第2の指標が形成され、前記パララックスバリアシートを該ディスプレイに設置する際には、第1の指標と第2の指標とを合わせることにより、キャリブレーションを行うことが好ましい。
 前記第1の指標は、前記透明媒体の所定の位置に、水平および/または垂直に所定の幅のキャリブレーション用ライン状スリットを設けたものであり、前記キャリブレーションは、前記画像表示面上の、対応する位置に表示されたラインである第2の指標を欠落無く視認できるように、該透明媒体の位置を調整するキャリブレーションであることが好ましい。
 本発明の遊技ゲーム機は、表示手段と、請求項6または7記載のパララックスバリアとからなるパララックスバリア方式の裸眼立体映像表示手段と、ゲーム内容を制御するゲーム制御手段と、プレイヤーによる操作を受け付ける入力手段と、経過時間および/または連続プレイ時間を計測する計時手段と、該経過時間および/または該連続プレイ時間に基づき、該裸眼立体映像表示手段により表示される3D映像の出現回数、表示時間、および/または、立体飛び出し度を制御する映像制御手段とを備えたことを特徴とする。
 前記映像制御手段は、前記3D映像の出現回数、表示時間、および/または、立体飛び出し度の制御を、所定の複数の視点用映像を所定のアルゴリズムにより予めブレンドして作成された、裸眼立体表示用映像を所定数用意することにより行うことが好ましい。
 前記映像制御手段は、前記3D映像の出現回、表示時間、および/または、立体飛び出し度の制御を、予め用意された複数の各視点用映像から、前記パララックスバリアに対応した視点数分の該各視点用映像を、隣り合う各視点同士の視差が同一となるように複数選択し、リアルタイムにブレンドすることにより行うことが好ましい。
 前記映像制御手段は、前記3D映像の出現回数、表示時間、および/または、立体飛び出し度の制御を、3DCGを描画するための視点となるマルチカメラを描画対象物に対して接近・離隔させることにより、および/または、描画対象物を該マルチカメラに対して接近・離隔させることにより、または前記パララックスバリアに対応する複数の該マルチカメラの向きを変えて、該マルチカメラの注視点の位置を前後させることにより行うことが好ましい。
 前記映像制御手段は、前記入力手段から送られた入力信号に基づいて、前記飛び出し度を制御することが好ましい。
 前記パララックスバリアを動かす駆動手段をさらに備え、該パララックスバリアは前記表示手段のモニタ面の少なくとも一部を覆う、可動式パララックスバリアであることが好ましい。
 本発明の遊技ゲーム機は、表示手段と、請求項6または7記載のパララックスバリアを用いた可動式パララックスバリアとからなるパララックスバリア方式の裸眼立体映像表示手段と、ゲーム内容を制御するゲーム制御手段と、プレイヤーによる操作を受け付ける入力手段と、該可動式パララックスバリアを動かす駆動手段と、該表示手段のモニタ面の少なくとも一部を覆う、可動式パララックスバリアとを備えたことを特徴とする。
 前記駆動手段は、前記可動式パララックスバリアを上下または/および左右に移動可能とする、前記モニタ面の周辺に配置された適正距離維持手段により、該可動式パララックスバリアから該モニタ面までの所定の距離を維持することが好ましい。
 前記可動式パララックスバリアから前記モニタ面までの所定の距離を維持するための適正距離維持手段をさらに備え、前記可動式パララックスバリアは、前記表示手段が2D映像を表示する際に該モニタ面に重ねられる透明部分を含んだロール可能シートの一部であり、前記駆動手段は、該ロール可能シートを上下方向または左右方向に巻き取ることが好ましい。
 前記適正距離維持手段は、前記ロール可能シートと前記モニタ面との間に配置された透明な平面板と、該モニタ面の周辺に配置され、該透明な平面板に該ロール可能シートを密着させて固定する固定手段とからなることが好ましい。
 前記透明な平面板は、複数の微細孔が設けられ、前記固定手段は、該微細孔から前記ロール可能シートを吸引して、該該ロール可能シートを該透明な平面版に密着させて固定する吸引手段であることが好ましい。
 前記適正距離維持手段は、前記モニタ面の周辺に配置されたスペーサおよび/またはレールであることが好ましい。
 前記駆動手段は、前記モニタ面の周辺に配置され、前記裸眼立体映像表示手段が表示する映像が3D映像であるか、または、2D映像であるかに基づき、前記可動式パララックスバリアを前後に移動することにより、該可動式パララックスバリアを該モニタ面に接近させて3D映像を適正に表示し、該可動式パララックスバリアを該モニタ面から離して2D映像を欠落なく表示することが好ましい。
 3D映像を表示する際に輝度を制御する輝度制御手段をさらに備えたことが好ましい。
 3D映像を表示する際に輝度を制御する輝度制御手段をさらに備えたことが好ましい。
 前記輝度制御手段は、前記裸眼立体映像表示手段が表示する映像が3D映像である場合は輝度を上げ、前記裸眼立体映像表示手段が表示する映像が2D映像である場合は輝度を下げる輝度制御を行うことが好ましい。
 前記輝度制御は、前記表示手段の光源へ供給する電流および/または電圧を制御することにより行うことが好ましい。
 前記輝度制御は、前記モニタ面に表示される映像のうち、前記パララックスバリアにより覆われている、3D映像領域において、映像の明度を上げ、該パララックスバリアにより覆われていない、2D映像領域において、映像の明度を下げることにより、該パララックスバリアの有無による、該3D映像領域と該2D映像領域との輝度差を補正する映像明度補正であることが好ましい。
 前記映像明度補正は、映像を再生するためのフレームバッファに一時的に蓄えられる映像データに対して、リアルタイムに画像処理を行う補正であることが好ましい。
 2D映像を表示するための2D映像表示装置をさらに備え、前記裸眼立体映像表示手段は、3D映像のみを表示することが好ましい。
 前記裸眼立体映像表示手段は、操作をうながす画像または映像を表示し、前記ゲーム制御手段は、該操作時間および/または該操作方法に対応させて定義されたアルゴリズムと、前記入力手段から送られた入力信号とに基づいてゲームを制御し、前記映像制御手段は、該ゲーム制御手段によるゲームの制御に対応して、3D映像の出現回数、表示時間および/または立体飛び出し度を制御することが好ましい。
 前記入力手段は、ボタン、レバー、スライダー、ジョイスティック、マウス、キーボード、ジョグダイヤル、タッチパネルのいずれか1つ、または、複数の組み合わせであることが好ましい。
 遊技球の位置および/または遊技球の軌道を検知する検知手段をさらに備え、前記ゲーム制御手段は、該検知手段から取得した検知信号に基づいてゲームを制御し、前記映像制御手段は、該ゲーム制御手段によるゲームの制御に対応して、3D映像の出現回数、表示時間および/または立体飛び出し度を制御することが好ましい。
 前記裸眼立体映像表示手段は、役物および/または飾物の画像または映像を表示し、前記ゲーム制御手段は、前記映像制御手段から取得した該役物および/または該飾物の画像または映像を形成する前記表示手段の画素の位置情報と、前記検知手段から取得した検知信号と、に基づいてゲームを制御することが好ましい。
 前記裸眼立体映像表示手段は、通常はプレイヤーに対して隠されており、所定の出現条件が満たされた場合のみ出現することが好ましい。
 前記パララックスバリアは、前記モニタ面の形状に限定されることなく、任意の形状であることが好ましい。
 前記パララックスバリアの、プレイヤー側の面の少なくとも一部には、2D画像が形成されていることが好ましい。
 (B)本発明に係る裸眼立体映像表示装置は、以上のように、2D/3D映像の表示を行う映像表示手段と、ユーザからの入力を受け付けるタッチパネルとを備えているので、タッチパネルから入力されたユーザの指示に応じて、表示する2D/3D映像を変化させることが出来るという効果を奏する。
 (C)本発明に係る裸眼立体映像表示装置は、以上のように、スリットの配置形状、すなわち、スリットの中心線の形状が、ジグザグ形状または正弦波状の曲線形状であれば、スリットの形状の配置と画素の配置とのずれが一定となる直線形状のスリットと異なり、ずれが大きくなる部分があっても、他の部分ではずれが小さくなる。すなわち、ジグザグ形状または正弦波曲線形状において、1/4周期点でジグザグ形状の角または正弦波の最大振幅点を通過する半周期分の間に、ずれを制御することが出来るという効果を奏する。
 また、スリットのエッジ形状を楕円弧とすることにより、穏やかで適度なビューミックスを発生させ、視点の移動およびジャンプポイントの緩和を行うことが出来るという効果を奏する。
 また、前記エッジの形状は、楕円弧と、各行の画素を分割する水平線の一部である線分とで構成されるので、画像提示対象者が該装置の正面において立体映像を見た際に、最もクリアな立体映像を提供できるという効果を奏する。
 また、注視点の左右に位置するビューミックスの面積は、階段状のエッジに較べて小さいので、水平方向のビューミックスを抑え、立体効果を高めることが出来るという効果を奏する。
 (E)本発明に係るパララックスバリアは、以上のように、該パララックスバリアを構成する複数のスリット領域および複数のバリア領域のうち、該スリット領域のそれぞれは、1個のスリットに代わり、裸眼立体表示用の各画素に対応した、複数個の可視光透過領域により構成され、該可視光透過領域は、該パララックスバリア上にそれぞれ独立して配置され、ベストビューポイントにおいて、画像提示対象者の左右いずれかの眼により該可視光透過領域を通して視認される有効可視領域は、所定の幅および所定の高さにより定まる矩形領域の中に、該有効可視領域の周囲が該矩形領域の上下および左右の辺に内接する形で収まる形状であることを特徴とする。
 それ故、ビューミックスを発生させ、かつジャンプポイントを緩和するために一度に片方の眼で視認すべきサブピクセルの領域を最初に定め、そこから逆算して、パララックスバリア上の可視光透過領域を定めるので、最も適切な可視光透過領域の形状を、容易に設計することが出来るという効果を奏する。
 (F)本発明は以上の通り、第一に、3D映像の画質・迫力を犠牲とすることなく、それでいてプレイヤーの眼に負担をかけることのない裸眼立体映像表示手段を備えた遊技ゲーム機を提供することができる。
 第二に、2D映像表示時の輝度の低下を防いだ上に、かつ工程数を抑えて簡易に製造することができる裸眼立体映像表示手段を備えた遊技ゲーム機を提供することができる。
 第三に、裸眼立体映像表示手段を遊技ゲーム機に用いることにより実現する、プレイヤーの射幸心をあおり、プレイ意欲を喚起する新たな付加価値をもった遊技ゲーム機を提供することができる。
 (H)本発明にかかるパララックスバリアは、以上のように、電磁波シールドを兼用し、しかも一度の工程で製造できるため、プラズマディスプレイを用いた裸眼立体ディスプレイをより簡易に製造することができるという顕著な効果を奏する。
 (RTP)本発明に係るパララックスバリアシートは、以上のように、ディスプレイを裸眼立体ディスプレイとして機能させるために、該ディスプレイと共に用いられ、該ディスプレイに対し脱着可能なパララックスバリアシートであって、透明媒体と、該透明媒体に形成されたパララックスバリアとからなることを特徴としているので、パララックスバリアを、裸眼立体ディスプレイとは切り離して製造し、市場に供給することが出来、ユーザは自身の安価なディスプレイを用いて裸眼立体映像を見ることが出来るので、既存のノートPCやTVモニタなどにハードウェアとしてはパララックスバリアシートを追加するのみで安価に裸眼立体ディスプレイを実現することが出来、ユーザが市場で販売されている各種のパララックスバリアシートを選択することが出来、通常のモバイルPCに加えて、そのモバイルPCの画面サイズ、解像度、処理能力に適合したパララックスバリア1枚を持ち運ぶだけで、客先等で容易に裸眼立体コンテンツの裸眼立体効果をプレゼンテーション出来、ディスプレイの解像度が向上した携帯電話機においても裸眼立体表示が可能となり、何時でも何処でも裸眼立体コンテンツを表示することが出来るという効果を奏する。
本発明の実施形態の概要を示すものであり、(a)は横長の投光部の例であり、(b)は点光源状の投光部の例であり、(c)は立体映像表示装置の要部構成を示すブロック図である。 本発明の立体映像表示装置の表示モードを示すものであり、(a)は「マルチビュー立体表示モード」の例であり、(b)は「描画・印刷閲覧モード」の例であり、(c)は「混合モード」の例である。 本発明の実施形態の概要を示すものであり、(a)は団子スリットの例であり、(b)は円形スリットの例であり、(c)は穴型スリットの例であり、(d)は平行四辺形状スリットの例であり、(e)は六角形状スリットの例である。 本発明の表示部の構造例を示すものであり、(a)は主に強化ガラスと空隙部とを備えた構造例であり、(b)は主に保護シートと透明材とを備えた構造例である。 本発明の表示部の他の構造例を示すものであり、(a)はバックライトおよび立体印刷部により構成した例であり、(b)は画像発光部5dに液晶、プラズマ、またはLEDを用いた例であり、(c)は(b)に示す構成例の空隙部を透明材に置換した例である。 本発明の表示部のさらなる変形例を示すものであり、(a)は脱着可能またはローリング可能な構成を示す図であり、(b)は立体印刷部などがロール状である構成を示す図である。 本発明の実施形態を示すものであり、パララックスバリアの前面に描画された画像上にドットパターンを重ねて形成する例を示す図であり、(a)はスリットが団子状の例、(b)はスリットが穴型の例である。 本発明の実施形態を示すものであり、パララックスバリアおよびタッチパネルが表示部の一部のみに設けられた例を示す図であり、(a)は表示部の右側が立体表示領域でありパララックスバリアが設けられている例を示す図であり、(b)はタッチパネルと、通常モニタ領域と、立体映像表示領域と、印刷領域とから構成される例を示す図である。 本発明のパララックスバリア方式の裸眼立体ディスプレイの製造に関わる構造を示す図である。 本発明の裸眼立体ディスプレイとタッチパネルを組み合わせた実施形態を示す図であり、(a)は正面図であり、(b)は上面図である。 本発明のタッチパネルの概要を示す図であり、(a)はIR-LEDおよびIRカメラを用いたタッチパネルを使用した構成を示す図であり、(b)はIRカメラにより撮影される画像の例を示す 三角測量の原理を用いた、通常の画像認識方式によるタッチパネルを示す図である。 本発明の裸眼立体ディスプレイとタッチパネルを組み合わせたシステムの使用状態を示す図である。 本発明のタッチパネルの具体例を示す図であり、(a)は液晶・有機EL系の薄型タッチパネル、(b)は加圧式タッチシート、(c)はドットシートである。 本発明の実施形態の、パララックスバリアのスリットのエッジ形状の構成を示す図であり、(a)はサブピクセルの並びを示す図であり、(b)はエッジが円弧と直線から構成される例を示す図である。 本発明の実施形態の、パララックスバリアのスリットのエッジ形状の構成を示す図であり、(a)はエッジが円弧のみから構成される例であり、(b)はエッジが楕円弧のみから構成される例であり、(c)はエッジが楕円弧のみから構成される他の例であり、(d)はエッジがスプライン曲線のみから構成される例である。 本発明の実施形態の、楕円弧状スリットの他の例を示す図であり、(a)はサブピクセルの並びを示し、(b)は楕円をつないだスリットを示し、(c)は楕円を別のつなぎ方としたスリットの形状を示す。 本発明の実施形態の、画素を構成するサブピクセルの配置と楕円弧状スリットとの他の例を示す図であり、(a)は、各サブピクセルの配置の別の例であり、(b)は1個の楕円を用いて2個の画素をカバーする配置を示し、(c)は3個の楕円を用いて2個の画素をカバーする配置を示している。 本発明の実施形態の、立体映像データを2D部分と3D部分とで分離し圧縮する例を示す図であり、(a)はフラグの立て方を示し、(b)は1フレームの分割方法を示し、(c)は5視点分のカメラの配置を示す図である。 本発明の実施形態の、画像を格納するファイルの1フレームの分割例であり、(a)は各視点用の領域には、3D部分の画像のみを格納し、背景(2D)となる部分は、右下の領域にマスクを兼用させて格納する例であり、(b)は5視点分の2Dおよび3D画像の領域と、右下の5視点分(5ビット)のマスク情報のみを保持する例であり、(c)は2D画像用を別ファイルとし、3D画像ファイルの、フレームを分割した各領域に、3D画像とマスクを兼ねた黒色領域とを持たせる例である。 本発明の実施形態の、画像を格納するファイルの1フレームの分割例であり、4視点のフォーマット例である。 本発明の実施形態の、画像を格納するファイルの1フレームの分割例であり、5視点のフォーマット例である。 本発明の実施形態の、画像を格納するファイルの1フレームの分割例であり、6視点のフォーマット例である。 本発明の実施形態の、画像を格納するファイルの1フレームの分割例であり、7視点のフォーマット例である。 本発明の実施形態の、画像を格納するファイルの1フレームの分割例であり、8視点のフォーマット例である。 本発明の実施形態の、時間方向圧縮マスクの例である。 本発明の実施形態の、各視点用の画素のブレンドおよび圧縮の方法を示す図であり、(a)は各画素のサブピクセルの配置を示し、(b)は圧縮前の第k視点用の画素の配置を示し、(c)は第k視点用の圧縮画像の配置を示す図である。 本発明の実施形態の、各視点用の画素のブレンド方法を示す図である。 本発明の実施形態の、各視点用の画素のブレンドおよび圧縮の方法を示す図であり、(a)は各画素のサブピクセルの配置を示し、(b)は圧縮前の第k視点用の画素の配置を示し、(c)は第k視点用の圧縮画像の配置を示す図である。 本発明の実施形態の、各視点用の画素のブレンド方法を示す図である。 本発明の実施形態の、各視点用の画素のブレンドおよび圧縮の方法を示す図であり、(a)は各画素のサブピクセルの配置を示し、(b)は圧縮前の第k視点用の画素の配置を示し、(c)は第k視点用の圧縮画像の配置を示す図である。 本発明の実施形態の、各視点用の画素のブレンド方法を示す図である。 本発明の実施形態の、立体効果に関係する各パラメータを説明する図であり、(a)は両目により視認できる可視領域を示す図であり、(b)は注視点間距離を示す図である。 本発明の実施形態の、楕円弧のエッジ形状のスリットの立体効果に関係する各パラメータを説明する図である。 本発明の実施形態の、楕円弧のエッジ形状のスリットの立体効果に関係する各パラメータを説明する図であり、(a)は左右の可視領域が接している例であり、(b)は重なっている例である。 本発明の実施形態の、楕円弧のエッジ形状のスリットの立体効果に関係する各パラメータを説明する図であり、(a)は上面図であり、(b)は画素の配置を示す図である。 本発明の実施形態の、楕円弧のエッジ形状のスリットの立体効果に関係する各パラメータを説明する図であり、(a)は上面図であり、(b)は画素の配置を示す図である。 本発明の実施形態の、楕円弧のエッジ形状のスリットの立体効果に関係する各パラメータを説明する図であり、(a)は上面図であり、(b)は画素の配置を示す図である。 本発明の実施形態の、可視領域を説明する図である。 本発明の実施形態の、可視領域を説明する図である。 本発明の実施形態の、可視領域を説明する図である。 本発明の実施形態の、立体視適性距離の範囲を示す図である。 本発明の実施形態の、1画素を構成するサブピクセルの配置を説明する図である。 本発明の実施形態の、1画素を構成するサブピクセルの配置を説明する図である。 本発明の実施形態の、1画素を構成するサブピクセルの配置を説明する図である。 従来技術を示すものであり、視差バリア方式の立体映像表示装置の概要を示す図である。 従来技術を示すものであり、板状スクリーンの視差バリア領域の少なくとも一部に平面画像を描画する例を示す図である。 従来技術を示すものであり、液晶パララックスバリアを備えたパララックス方式による立体映像表示装置を示す図である。 本発明の実施形態を示すものであり、有効可視領域と、可視光透過領域と、ベストビューポイントにおける画像提示対象者の片眼の位置との関係を示す図である。 本発明の実施形態を示すものであり、画素平均幅を求める際の各種ブレンド方法におけるサブピクセルの配置を示した図であり、(a)は2行3サブピクセルの2画素の配置を示し、(b)は3行4サブピクセルの3画素の配置を示し、(c)は1行3サブピクセルの1画素の配置を示し、(d)は2行4サブピクセルの1画素の配置を示し、(e)は3行3サブピクセルの1画素の配置を示す。 本発明の実施形態を示すものであり、有効可視領域を設計する際のサイズを示す図である。 本発明の実施形態を示すものであり、可視光透過領域の具体的な形状を示す図であり、(a)が四角形、(b)が四角形(菱形)、(c)および(d)が六角形、(e)が八角形、(f)から(j)までが、(a)から(e)までの図形を変形し、四隅の角部を円弧により描いた多角形の例を示す図である。 本発明の実施形態を示すものであり、(a)は矩形領域の平行四辺形への変形を示す図であり、(b)は変形する際の中心点を示す図であり、(c)は矩形領域の回転と辺の伸縮とによる変形を示す図である。 本発明の実施形態を示すものであり、垂直方向における、設計時の視点と実際の視点とのずれを示す図である。 本発明にかかる遊技ゲーム機の構成を示すブロック図である。 本発明における3D映像の出現回数、表示時間、立体飛び出し度を制御する第一の制御方法を示す図である。 本発明における3D映像の出現回数、表示時間、立体飛び出し度を制御する第二の制御方法を示す図である。 本発明における3D映像の出現回数、表示時間、立体飛び出し度を制御する第三の制御方法の一形態を示す図である。 本発明における3D映像の出現回数、表示時間、立体飛び出し度を制御する第三の制御方法の一形態を示す図である。 本発明における3D映像の出現回数、表示時間、立体飛び出し度を制御する第三の制御方法の一形態を示す図である。 本発明における可動式パララックスバリアの一形態を示す図である。 パララックスバリア方式の裸眼立体映像表示技術における、モニタとパララックスバリア間の適正な空隙距離と、パララックスバリアと画像提供対象者(プレイヤー)の眼の間の距離との関係を示す図である。 本発明における可動式パララックスバリアの一形態を示す図である。 本発明における可動式パララックスバリアの一形態を示す図である。 本発明における可動式パララックスバリアの一形態を示す図である。 本発明におけるパララックスバリアの一形態を示す図である。 本発明におけるパララックスバリアの一形態を示す図である。 本発明における可動式パララックスバリアの一形態を示す図である。 本発明における可動式パララックスバリアの一形態を示す図である。 本発明における輝度制御手段の一形態を示す図である。 本発明における遊技ゲーム機の一形態を示す図である。 本発明における輝度制御手段の一形態を示す図である。 本発明における遊技ゲーム機の一形態を示す図である。 本発明における裸眼立体映像表示手段の一形態を示す図である。 本発明の実施形態のパララックスバリアシートのうち、L字型スペーサを用いる例の斜視図および断面図である。 本発明の実施形態のパララックスバリアシートのうち、L字型スペーサおよび挟み込み型取り付けフックを用いる例の斜視図および断面図である。 本発明の実施形態のパララックスバリアシートのうち、円柱型スペーサおよびレール(桟)を用いる例の斜視図および断面図である。 本発明の実施形態のパララックスバリアシートのうち、円柱型スペーサおよび上下のレール(桟)を用いる例の斜視図および断面図である。 本発明の実施形態のパララックスバリアシートのうち、上下のレールでスペーサを兼用する例の断面図である。 本発明の実施形態のパララックスバリアシートのうち、円柱型スペーサおよびコの字型レールを用いる例の斜視図である。 本発明の実施形態のパララックスバリアシートのうち、角柱型スペーサおよびフックを用いる例の斜視図および断面図である。 本発明の実施形態のパララックスバリアシートのうち、円柱型スペーサおよびネジ止め型ピンを用いる例の斜視図および断面図である。 本発明の実施形態のパララックスバリアシートのうち、ネジ止め型ピンを用い、スペーサをリングにより兼用した例の断面図である。 本発明の実施形態のパララックスバリアシートのうち、円柱型スペーサおよび粘着クッション材を用いる例の斜視図および断面図である。 本発明の実施形態のパララックスバリアシートのうち、スペーサを兼ねた硬化粘着材を用いる例の斜視図および断面図である。 本発明の実施形態のパララックスバリアシートのうち、スペーサのモニタ面側に粘着材を用いる例の斜視図である。 本発明の実施形態のパララックスバリアシートのうち、スペーサを兼ねたL字型取り付け具を用いた例の斜視図および断面図である。 本発明の実施形態のパララックスバリアシートのうち、スペーサを兼ねた挟み込み型取り付けフックを用いた例の斜視図および断面図である。 本発明の実施形態のパララックスバリアシートのうち、スペーサを兼ねたL字型取り付け具と円柱状スペーサとを組み合わせて用いた例の斜視図および断面図である。 本発明の実施形態のパララックスバリアシート(フィルタ)のうち、モニタ面より幾分大きいフィルタを用い、そのフィルタの四隅に粘着材を設け、フレームに貼り付ける方法を示す例の斜視図および断面図である。 本発明の実施形態のパララックスバリアシート(フィルタ)のうち、モニタ面より幾分大きいフィルタを用い、粘着材の代わりに、挟み込み型取り付けフックを用いる例の斜視図および断面図である。 本発明の実施形態のパララックスバリアシート(フィルタ)のうち、テーブル型ディスプレイに対して、フィルタを取り付ける方法を示す斜視図である。 本発明の実施形態のパララックスバリアシート(フィルタ)のうち、テーブル型ディスプレイに対して、モニタ面の四隅に来るようにスペーサを設置し、フィルタを上から置く方法を示す斜視図である。 本発明の実施形態のパララックスバリアシートを用いる際に、3D表示を視る(立体視)場合と2D表示を視る(通常)場合とを切り替える様子を示す図である。 本発明の実施形態の、キャリブレーション方法を示す図である。 本発明の実施形態の、キャリブレーション用スリットをパララックスバリアシートに形成した例を示す図である。 本発明の実施形態の、モニタ面に表示された黄色ラインが、フィルタ面に形成されたキャリブレーション用ラインと重なることにより、赤色に変色する様子を示す図である。 本発明の実施形態の、パララックスバリアのスリットのエッジ形状の構成を示す図であり、(a)楕円弧を傾けてエッジを構成する例であり、(b)から(d)はエッジが三角形から構成される例である。 本発明の実施形態の、ブレンド方法を示す図であり、(a)はブレンド後の各視点用画素の配置を示す図であり、(b)はブレンド前の各視点用画像において、対応する画素の位置を示す図である。 本発明におけるパララックスバリアの形成方法の三形態を示す図である。 本発明におけるパララックスバリアの形成方法の一形態を示す図である。 本発明におけるパララックスバリアの形成方法の一形態を示す図である。 本発明におけるパララックスバリアの形成方法の一形態を示す図である。 本発明におけるパララックスバリアの形成方法の四形態を示す図である。 本発明におけるパララックスバリアの形成方法の四形態を示す図である。 本発明におけるパララックスバリアの形成方法の六形態を示す図である。 本発明におけるパララックスバリアの数値の算出方法を示す図である。 本発明におけるプラズマ3Dモニタの構造を示す図である。
 1  立体映像表示装置
 2  パララックスバリア
 3  描画された画像
 4  投光部(投光手段)
 4b 投光部(投光手段)
 5  表示部(表示手段)
 5d 画像発光部
 6  制御部(制御手段)
 7  照度センサ(外部光検知手段)
 8  位置センサ(各検知手段)
 9  タッチパネル
 本発明の実施形態について説明すると以下の通りである。
 <概要>
 図1において、本発明にかかる立体映像表示装置1の概要を示す。図1(a)および(b)は、バララックスバリア2の前面に照明用の光を照射し、外部光が弱い場合でもバララックスバリア2の前面に描画された画像3が画像提示対象者に対し視認可能にする投光部(投光手段)4および4bと、表示部(表示手段)5との位置関係を示す図である。
 投光部4および4bは、外部光が少ない場合であり、かつ、バララックスバリア2の前面に描画された画像3を画像提示対象者が視認可能なように点灯させて用いる。
 図1(a)に示す例では、投光部4は、表示部5の上部に配置された横長の光源である。横長の光源としては、点光源状のライトを並べたものを用いてもよいし、蛍光灯のような線状のライトを用いてもよいし、有機ELのような面状のライトを用いてもよい。
 図1(b)に示す例では、投光部4bは、点光源状のライトを並べたものである。投光部4および4bの形状、個数、および配置は、外部光の変化に応じて画像提示対象者が効果的に画像3を視認できるものであれば、どのような形状、個数、および配置でもよく、これらの例に限られるものではない。
 なお、投光部4と投光部4bとの違いを説明すると以下のとおりである。すなわち、投光部4は、単に点光源ライト型の投光部4bを覆う形として、投光部4bの目隠しをしているに過ぎない。大きな屋外看板の場合、コスト面から投光部4bを用いることが多い。
 投光部4および4bは、表示部5の上下左右どちらの側に設置してもよい。片側のみに設置してもよいし、両側に設置してもよい。
 投光部4の形状は、屋内用か屋外用かを問わず、中小規模の立体映像表示装置1において、見てくれにこだわる場合にライトの目隠しを行う目的で用いることが好ましい。
 図1(c)において、本発明にかかる立体映像表示装置1の構成の概要を示す。立体映像表示装置1は、投光部4と、表示部5と、制御部(制御手段)6と、照度センサ(外部光検知手段)7とを含んで構成される。
 表示部5は、通常の裸眼立体ディスプレイとして機能するものと同様の機能を有し、映像の表示を行う画像発光部5dとその前面に配置されるパララックスバリア2とを含んで構成される。パララックスバリア2の前面には、広告などの画像3が描画されている。
 なお、パララックスバリア2の前面に画像3を描画する場合、通常は黒色であるバリア面に白色の塗装を行ってから、描画のための彩色を行うとよい。
 表示部5の基本的な動作としては、制御部6から送出される映像信号に基づき、パララックスバリア2の背後にある液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ、LEDディスプレイなどの画像発光部5dが2D/3D表示用映像を表示する。表示により発光し、パララックスバリア2のスリットを通過した光が、3D映像適視位置内の画像提示対象者により知覚される。そして、裸眼立体映像が画像提示対象者に対して提示される。
 なお、表示される映像は、3D表示用映像ではなくてもよく、例えば、パララックスバリア2に描画された画像3を補完するための2D映像でもよい。もちろん、3D映像により画像3を補完してもよい。補完を目的として映像を表示する場合、映像の輝度を抑え、画像3の質感を損傷しない様にしつつ、画像3を補完する色を表示してもよい。
 表示部5の詳細な構造については後述する。
 投光部4は、点灯時にパララックスバリア2の前面に対して光を照射出来る構造の光源である。制御部6からの制御信号に基づき、パララックスバリア2の前面に照射する光の強度を調整する。もちろん、制御部6からの制御信号に基づき、照射方向および照射方法などを調整してもよい。
 照射方法としては、立体映像表示装置1の周りの照明環境および/または画像提示対象者の位置により、光源を所定の間隔をもって点滅させたり、照射する光の色調を変更したりしてもよい。
 照度センサ7は、パララックスバリア2の前面に当たる外部光の強度を測定し、測定結果を制御部6に送る。照度センサ7は、無指向性のセンサ1個または複数個により構成されてもよいし、外部光の入射する方向を検知出来るように、指向性のセンサ1個または複数個により構成されてもよいし、これらセンサを適宜組み合わせて構成されてもよい。
 制御部6は、照度センサ7から受け取った測定結果に基づき、表示部5に送出する映像信号および投光部4を制御する。どのような制御を行うかについての詳細は、後述する。
 なお、制御部6が表示部5に送出する映像は、予め制御部6内に蓄積されているものでもよいし、外部から入力されたものでもよい。外部から入力する映像は、独立した記憶部(図示せず)を設け、そこに映像を蓄積しておいてもよいし、ネットワーク経由の通信または放送などの無線通信により、受信してもよい。
 <立体映像表示装置1の表示モードについて>
 図2は、立体映像表示装置1が、大きく分けて「マルチビュー立体表示モード」および「描画・印刷閲覧モード」の2つのモードを有することを示す図である。図2(a)に示すマルチビュー立体表示モードでは、立体映像表示装置1は、パララックスバリア方式の裸眼立体ディスプレイとして動作する。図2(b)に示す描画・印刷閲覧モードでは、立体映像表示装置1は、バララックスバリア2の前面に描画された画像3を表示する表示板として動作する。
 図2(a)に示す「マルチビュー立体表示モード」の例では、表示部5には、携帯電話機の広告が表示されている。この例では、立体画像により制作された奥行きのある部屋を背景として、宙に浮いた携帯電話機と、「ケイタイNo.1」の文字とが部屋の奥から手前に迫ってくる立体映像として表示されている。
 図2(b)に示す「描画・印刷閲覧モード」の例では、パララックスバリア2の前面には、画像3として樹木と人物とが描かれている。
 もちろん、表示モードは、「マルチビュー立体表示モード」および「描画・印刷閲覧モード」が完全に切り替わる構成でもよいし、後述するように、両方の表示モードを混在させた「混合モード」を用いて、画像提示対象者に対し2D画像/3D映像を組み合わせた効果的な広告を行う構成でもよい。
 図2(c)に示す「混合モード」の例では、表示部5には、パララックスバリア2の前面に画像3として山と花とが描かれている。そして、蝶のみが立体画像として表示され、蝶は、花を起点として3次元空間を飛んでいる。
 なお、図3(a)に示すとおり、パララックスバリア2の前面は、鏡面状になっていてもよい。この構成では、従来技術と同じように位置センサ8(図示せず)を設けると、自分の姿が別の画像に変換されることによる驚きを画像提示対象者に与えることが出来る。
 すなわち、立体映像表示装置1に接近する画像提示対象者は、最初、バララックスバリア2の前面に自分の姿が映るので、バララックスバリア2の前面を通常の鏡であると認識する。
 また、パララックスバリア2の前面を簡易に鏡面状にするために、画像発光部5dが発光する際には、マジックミラーを透過する分だけ、画像が暗くなってしまうが、パララックスバリア2の、スリット部を含んだ全面を、マジックミラーとする構成としてもよい。
 この構成では、表示部5の製造時に、パララックスバリア2の前に、マジックミラーを設置すればよいので、スリット部を避けてパララックスバリア2の前面のみを鏡面とする工作を行うよりも、より簡単に全面を均一な鏡とすることが出来る。
 次いで、位置センサ8により、画像提示対象者が3D映像適視位置に入ったことを検知した制御部6は、画像提示対象者に対し3D映像(例えば、骸骨など)を提示するので、画像提示対象者は、鏡に映った自分の姿に代わり、3D映像を認識する。
 この構成を採る場合、表示部5からの光の強度は、パララックスバリア2の前面に写った画像提示対象者の姿が実質的に消え、3D映像のみが認識される程度以上の強度であってもよい。
 なお、パララックスバリア2のスリットの形状は、図3(a)に示すような団子形状、図3(b)に示すような斜め直線状、図3(c)に示すような穴型提灯形状、図3(d)に示すような穴型平行四辺形、図3(e)に示すような穴型六角形、図3(f)に示すような斜め階段状でもよい。スリット形状の詳細については、後述する。
 <表示部および投光部の制御方法>
 制御部6が行う、表示部5および投光部4の制御方法の詳細は、以下のとおりである。
 制御部6は、外部光の位置および光量などを考慮して、画像提示対象者に対し2D画像/3D映像を組み合わせた効果的な広告を行うことが出来るように、投光部4および表示部5の制御を行う。具体的には、以下のとおりである。
 例えば、外部光として太陽光を想定する場合、太陽は、東からの日の出から西への日没まで位置が変化するので、その位置と入射光の強度を照度センサ7により測定し、その位置と強度に合わせて、表示部5に表示する2D/3D映像と投光部4の照明方法とを制御してもよい。
 太陽の位置に関しては、画素毎に点灯/消灯が制御できるLEDディスプレイなどの場合、パララックスバリア2のスリットから進入した直射日光が当たる箇所の画素は消灯し、パララックスバリア2の影になり直射日光が当たらない箇所の画素は点灯することにより、消費電力を削減することも出来る。
 また、太陽光の強度も、朝および夕方は弱く、昼間は強い。
 そこで、昼間は表示部5の点灯を行わず、パララックスバリア2上の画像3を見せるだけの屋外広告とする構成でもよい。この構成を採ることにより、立体映像表示装置1が昼間に消費する電力を削減することが出来る。
 昼間であっても、パララックスバリア2のスリット部を黒く見せないために、表示部5に映像を表示させ、画像3を補完する構成でもよい。
 朝および夕方は、投光部4からの照明により、パララックスバリア2の前面を照らす制御を行ってもよい。照度センサ7による外部光の測定結果に基づき、表示部5が表示する映像の輝度も制御を行い、立体映像表示装置1の周囲の明るさに応じて裸眼立体映像を表示するか否か判断する制御を行ってもよい。
 画像提示対象者に対し裸眼立体映像を提示可能な時間帯および外部光の条件である事と、立体に見せたい映像であるという事との両方の条件が揃った場合のみ、3D映像を表示し、それ以外の場合は、画像3を表示するように自動制御を行ってもよい。
 外部光など周囲のわずかな変化に対しても、中間的なライティングを行うなど、細かい制御を行う構成でもよい。
 すなわち、本発明にかかる立体映像表示装置1のポイントは、光を与えることと、それに対する反射光、そして液晶ディスプレイなどの発光体を制御対象とし、これらを切り替えることである。
 もちろん、天気により太陽光の強度は変動するので、昼間であっても曇りであれば、表示部5の発光強度に関し、朝および夕方と同じ制御を行えばよい。
 描画または印刷された画像3と同じ画像を表示部5により表示することにより、太陽光が少ない時でも画像3を強調して画像提示対象者に見せることが出来る。
 なお、照度センサ7は、外部光の強度を測定する際に、光の周波数帯域ごとに強度を測定してもよい。例えば、この構成を採ることにより、朝および夕方に、太陽光に占める赤色成分が多くなった時に、最も効果的な色調を用いて、表示部5が2D/3D映像を表示する制御方法でもよい。
 また、従来技術と同じように位置センサ8を設け、画像提示対象者の位置により表示部5に映し出す映像および投光部4の照明を制御することにより、画像提示対象者に対し効果的な広告を行うことも出来る。
 また、カメラ(撮像手段)を用いて、立体映像表示装置1近傍の物体(人物、動物、自動車など)を撮影し、制御部6において、撮影した画像を解析し、撮影した画像と共に、解析結果に応じた立体映像(他の人物、動物、キャラクター、骸骨など)を表示部5に表示する制御を行ってもよい。
 例えば、立体映像表示装置1の前を歩いている画像提示対象者が、表示部5を見ると、自分の姿に加えて、その周りに、春は蝶、秋はトンボが、立体映像として知覚される制御を行う構成でもよい。
 <適した利用方法について>
 裸眼立体ディスプレイにおいて、最も立体が効果的に見えるのは、パララックスバリア2の前面が黒く、パララックスバリア2のスリットからの光のみが、画像提示対象者に知覚される場合である。それ故、画像3の色調をなるべく暗い色とすることが望ましい。
 また、立体表示用に、パララックスバリア2のスリットから視認される画素の輝度は非常に低いので、昼間の屋外において裸眼立体表示を行うことは困難である。それ故、昼間に裸眼立体を表示させる場合には、立体映像表示装置1を屋内に置き、屋内または屋外に居る画像提示対象者に対して裸眼立体表示を行うようなショールームに向いている。
 また、立体映像表示装置1を屋内に置き、画像提示対象者も屋内に居る場合、室内照明を投光部4として制御することにより、立体映像を効果的に表示することも出来る。なお、この場合も、立体映像を鮮明に見せるために、少なくとも表示内容が立体映像となる時点に合わせて、室内照明を弱める制御を行うことが望ましい。
 <2D画像と3D映像との組み合わせについて>
 パララックスバリア2の前面に描かれた2Dの画像3と、裸眼立体として表示される3D映像とに関し、画像提示対象者が知覚する2D画像/3D映像の前後関係について説明すると、以下のとおりである。
 例えば、夕方、投光部4を用いて印刷した画像3をライティングしながら、表示部5により裸眼立体映像を表示することにより、裸眼立体映像を浮き出させることが出来る。画像提示対象者は、印刷画像3よりも裸眼立体映像の立体が手前にあることを明確に知覚できる。その理由は、人間の目は、反射光により知覚される描画されたリアルな画像と、素子の発光により知覚される映像による立体効果とを区別できるからである。
 このように、描画されたリアルな2D画像とその画像の描画面より前に出して浮かべられた立体との組み合わせでは、映像による2D画像とその画像の表示面より前に出して浮かべられた立体との組み合わせに較べ、画像提示対象者に対し、立体をよりリアルに提示することが出来る。
 すなわち、3D映像に慣れてしまっている画像提示対象者に対しても、本物の絵や写真の前に、裸眼立体効果により立体表示対象物を飛び出させて提示できるので、画像提示対象者に驚きと感動とを与えることが出来る。
 また、黒い背景と明るい前景を有する3D映像を用いれば、画像提示対象者に対し、明るい前景を手前に見せると共に、黒い背景部分に、画像3である下絵や看板を見せることが出来る。
 このように、描画された画像3である看板の絵と裸眼立体として表示する映像との組み合わせにより、立体を看板より手前に浮き上がらせる効果を得たり、映像の光を強めて看板からの反射光の知覚を防ぎ看板が消えてしまう効果を得たりと、様々な効果を演出させることが出来る。
 さらに、2D画像および3D映像の明暗を調整することにより、画像提示対象者に対し、像を結ぶ立体の位置が2D画像より手前にあるように知覚させたり、2D画像より後ろにあるように知覚させたりすることが出来る。

<表示部5の構造の詳細につて>
 図4において、表示部5の構造の詳細を断面図として示す。
 図4(a)に示す例では、表示部5は、画像提示対象者に近い側から、強化ガラスと、グラフィック印刷と、マスク印刷層と、空隙部と、画像発光部5dとを含んで構成される。
 図4(b)に示す例では、表示部5は、画像提示対象者に近い側から、保護シートと、グラフィック印刷と、マスク印刷層と、透明材と、画像発光部5dとを含んで構成される。
 これらの図から分かるように、強化ガラスと空隙部との組み合わせを用いる場合、強化ガラスには強度を持たせるために適度な厚みを持たせる必要がある。また、保護シートと透明材との組み合わせを用いる場合、表示部5の強度は、透明材により保たれるので、保護シートを薄くすることが出来る。もちろん、表示部5の構成は、薄い強化ガラスと透明材との組み合わせでもよい。
 グラフィック印刷として、画像3が描画される。グラフィック印刷部分は、鏡面でもよい。
 マスク印刷層は、画像発光部5dから発光された光を遮断し光の進行方向を制限する不透過部と光が透過する透過部(スリット)とから構成される。
 画像発光部5dは、2D映像および/または3D映像を表示する画素の配列、すなわちディスプレイである。
 図5において、他の表示部5の構成例を断面図として示す。
 図5(a)に示すものは、画像発光部5dを、バックライトおよび立体印刷部により構成し、マスク印刷層と立体印刷部との間を透明材により充填した例である。もちろん、透明材と保護シートとの組み合わせに代えて、空隙部と強化ガラスの組み合わせでもよい。
 図5(b)は、画像発光部5dに、液晶、プラズマ、またはLEDを用いて、画像発光部5dとマスク印刷層との間に、空隙部を設けた例である。
 図5(c)は、図5(b)に示す構成例の空隙部を透明材に置換した例である。空隙部を透明材に置換することにより、強度を持たせることが出来るので、厚い強化ガラスを薄い保護シートに置換することが出来る。
 図6において、表示部5のさらなる変形例を示す。
 図6(a)は、立体印刷部、透明材、マスク印刷層、グラフィック印刷、保護シートなどが、脱着可能またはローリング可能な構成を示す図である。
 図6(a)における構成は、一見すると図5(a)に示す例と同様であるが、立体印刷部のみ、または立体印刷部に加えて透明材、マスク印刷層、グラフィック印刷、保護シートなどが、脱着可能またはローリング可能なように構成されている。
 脱着可能とする場合、立体印刷部などは柔軟性を有する必要は無いが、ローリング可能とする場合、立体印刷部などはローラーによる巻き取りが可能なように、柔軟性を持たせる必要がある。
 なお、透明材の部分を空隙部とする構成でもよい。
 図6(b)は、立体印刷部のみ、または立体印刷部と透明材とマスク印刷層とグラフィック印刷と保護シートとがロール状である構成を示す図である。図6(a)に示す立体印刷部、マスク印刷層、グラフィック印刷層、保護/強化シートのうち、少なくとも立体印刷部が、表示部5の筐体の端に設けられたローラーの間を、ローラーの回転により移動する構成を示す図である。
 なお、ローリング可能な構成とする場合、前記のとおり、立体映像表示装置1の前面からのみ画像が視認できる構成でもよいし、図6(b)に示すように、背面からも画像が視認できる構成でもよい。
 <モーションをトリガーとした実施形態について>
 画像提示対象者の動きをトリガーとして、表示制御を行う点について説明すると、以下のとおりである。
 前記の構成では、画像提示対象者が所定の3D映像適視位置に入ったことを位置センサ8により検知し、効果的な映像表示を行う点について説明した。さらに、各種センサを用いることにより、画像提示対象者が、乗る、触る、近づくなどの動作を行うと、その動作をトリガーとして、立体が飛び出すアトラクションなどの表示制御を行うことが出来る。計時手段により時間を計測し、表示内容を制御してもよい。
 例えば、立体映像表示装置1を床の一部とする構成としてもよい。この構成によると、通常は強化ガラスの、大理石またはタイルの様に見える床だが、人が近づくと立体が飛び出したり、池になったり、池の鯉が出てきたりするような制御をすることが出来る。
 立体映像表示装置1の手前に感圧式センサを備える構成でもよい。この構成では、画像提示対象者が感圧式センサに乗ると、画像提示対象者の進行方向前方にある立体映像表示装置1に、画像提示対象者が歩いていく方向に、川など、立体を見せることも出来る。
 また、レストランなどにおいて、客(画像提示対象者)を席まで案内するために、客の前方に、立体的に案内表示を行うことも出来る。この場合、横方向からは、立体表示が見えないので、他の客を混乱させることがない。複数の分岐路がある通路において用いてもよいし、広い部屋の中を案内するために用いてもよい。
 例えば、立体映像表示装置1を扉の一部とする構成としてもよい。この構成によると、人が扉のノブを握った瞬間に立体を飛び出させるような制御をすることが出来る。
 例えば、立体映像表示装置1を鏡として用いる構成でもよい。この構成によると、通常は自分の姿が映るが、人が鏡を覗き込んだり、鏡を触ったりすると、骸骨が飛び出すような制御をすることが出来る。
 例えば、センサとしてマイクを用いる構成としてもよい。この構成によると、人が出す音に反応して、壁が迫ってくるような制御をすることが出来る。
 例えば、立体映像表示装置1を自動販売機の一部とする構成でもよい。この構成によると、人がそばに来ると立体が飛び出るような制御をすることが出来る。
 例えば、立体映像表示装置1をからくり時計の一部とする構成でもよい。この構成によると、予め定められた時刻になると、立体が飛び出すような制御をすることが出来る。
 例えば、立体映像表示装置1をゲーム機の一部とする構成でもよい。この構成によると、ゲームのシナリオによって、手前の画面がいきなり立体になるような制御をすることが出来る。
 例えば、立体映像表示装置1をエレベータの一部とする構成でもよい。この構成によると、エレベータに人が乗ると、エレベータ内に立体が表示されるような制御をすることが出来る。
 例えば、立体映像表示装置1を電車の中に組み込んでもよい。エレベータと同様に人が乗ったことを検知して映像の制御を行ってもよいし、電車では車両の移動に伴い外部光の入射方向が変わるので、その変化に応じて表示する裸眼立体映像を制御してもよい。
 <パララックスバリアへのドットパターン形成>
 特許3706385号および特許3771252号に開示されているような、情報を持たせたドットパターンをテキストや写真と重ねて媒体面上に形成し、ユーザがスキャナを用いてそのテキストや写真をタッチすると、重なったドットパターンから情報が取り出される仕組みを、立体映像表示装置1と組み合わせる構成でもよい。
 具体的には、図7に示すように、パララックスバリア2の前面に描画された画像3上にドットパターンを重ねて形成する。ドットパターンに保持させる情報としては、立体映像表示装置1のパララックスバリア2の表面上の位置を表すXY座標値を用いることが好ましい。
 なお、図7(a)はスリットが団子状の場合、図7(b)はスリットが穴型である場合を示したものである。
 また、他の具体例として、パララックスバリア2の全面、すなわち、画像3を描画する不透明部と、背後の画像発光部5dからの光を透過させる透明なスリット部とを区別せずに、ドットパターンを形成する構成でもよい。
 この構成は、パララックスバリア2を形成する際に、透明な部材の上に、パララックスバリア2の不透明部を、描画、印刷等により形成する工程を用いる場合に有効である。つまり、ドットパターンを形成する際に、透明なスリット部と、画像3が形成される不透明部とを区別する事なく、通常のドットパターン形成方法を用いて、ドットパターンの形成が出来るので、製造工程を簡略化することが出来る。
 例えば、透明なシートの前面、すなわち画像発光部5dとは反対側の面に対し、パララックスバリア2の不透明部を形成し、その上から、スリット部も含めてドットパターン層を形成し、そのシートを、さらに前面に配置される強化ガラスまたは保護シートの背面、すなわち、画像発光部5d側の面に貼り付けるような製造方法では有効である。
 さらに、画像3上のみにドットパターンを形成する構成に較べ、ユーザがスキャナを用いてタッチする場所が、スリット部の上であったとしても、スリット部にもドットパターンが形成されているため、確実に、ドットパターンを読み取ることが出来る。
 なお、ドットパターンを形成する透明な部材を赤外線反射シートとし、ノンカーボン(赤外線を吸収しない)材料を用いてパララックスバリア2の不透明部を形成し、ドットパターンの各ドットをカーボンブラック(赤外線吸収材料)により形成すること構成でもよい。不透明部には、ドットパターン形成前に、白色を塗装し、その上に画像3を描画してもよい。
 また、塗装が厚くなりすぎる場合は、ノンカーボンのブラックによりパララックスバリア2の不透明部(マスク部)を形成し、その上に白い下地を塗り、その上にカーボンブラックによりドットパターンを全面に形成し、その上にノンカーボンのインクを用いて画像3を描画する構成でもよい。
 これらの構成では、スキャナにより最適なドットパターンの読み取り行うことが出来る。
 なお、ドットパターンが表す情報としては、上述したように、XY座標を表す構成でもよいし、画像3の内容(例えば、描いたそれぞれのキャラクタ)に対応した情報を表す構成でもよいし、両方を表す構成でもよい。
 例えば、画像3として、熊さんとわんことが描かれている場合、ユーザが、ブルートゥース等のスキャナペンによりわんこをタッチすると、画像3の内容(犬)が指示されたと解釈し、犬に関する映像が表示されてもよいし、ユーザが、わんこの後方をタッチすると、犬の後方に位置するXY座標が取得され、表示された犬が後方に移動するように表示制御を行ってもよい。
 この構成を用いると、例えば、画像提示対象者がスキャナを用いてパララックスバリア上の所望の位置をタッチすると、タッチ位置のXY座標値およびタッチ時に表示されていた映像から、画像提示対象者が映像中の何をタッチしたかが分かる。それにより、次に表示する映像を変更するなどの画像制御を行うことが出来る。
 <タッチパネルと組み合わせた実施形態について>
 前記の説明では、パララックスバリア2の前面にドットパターンを形成し、画像提示対象者がスキャナを用いて画像/映像をタッチすることにより、立体映像表示装置1をインタラクティブなインタフェースとして用いる構成を示した。
 これ以外に、画像提示対象者が指などで、立体映像表示装置1に描画された画像および表示された映像をタッチすることにより、表示内容、投光部4による投光方法などを制御する構成でもよい。
 この構成では、表示部5の前面、すなわち画像提示対象者に向けられた側の全領域に光学式タッチパネル(図示せず)を取り付ける。この光学式タッチパネルの一部領域に裸眼立体表示用のパララックスバリア(立体マスク)2が取り付けられている。
 このように、タッチパネルの領域を、パララックスバリア2の領域よりも大きく取り、パララックスバリア2の前面に描画された画像3と関連する画像であって、パララックスバリア2の領域外に描かれた画像を覆う領域とすることにより、画像3および裸眼立体映像に加えて、パララックスバリア2の領域外の画像も用いたインタラクティブなインタフェースを実現することが出来る。
 なお、パララックスバリア2の領域外の画像は、印刷等により描画された画像でもよいし、他の映像表示装置により表示された映像でもよい。
 もちろん、パララックスバリア2の前面には、画像3が描かれていてもよいし、描かれていなくてもよい。画像3が描かれていない場合、画像提示対象者は、表示された2D/3D映像のみを知覚して光学式タッチパネルをタッチし、所望の入力操作を行う。
 なお、タッチパネルは、光学式でも圧力式でもよい。
 <表示部の一部のみにタッチパネルを設けた実施形態について>
 前記の説明では、表示部5の全面にタッチパネルが設けられ、タッチパネルがパララックスバリア2の全面を覆う構成について説明した。この構成以外に、タッチパネルを表示部5の一部のみに設ける構成でもよい。
 図8において、パララックスバリア2およびタッチパネル9が表示部5の一部のみに設けられた例を示す。
 図8(a)に示す例では、表示部5の右側は、立体表示領域であり、パララックスバリア2が設けられている。表示部5の左側は、メニュー領域であり、パララックスバリア2は設けられておらず、光学式または圧力式のタッチパネル9が設けられている。なお、タッチパネル9は、立体表示領域にも設けられていてもよい。
 このように、表示部5の領域を立体表示領域とメニュー領域とに分割することにより、立体を表示することが可能になると同時に、細かい文字などをメニューとして表示することが可能になる。
 多視点のパララックスバリア方式の表示部5では、水平方向に複数視点用の画素を並べる必要があり、1個の視点用の画素は少なくなり、立体効果は得られるものの解像度が低下してしまう。写真など、解像度が低下しても違和感無く綺麗に見えるものは立体として表示することが好ましいが、細かい文字など、解像度の低下により判読が困難になるものは立体表示領域とは分けて表示することが望ましい。
 そこで、細かい文字を用いて表されることが多いメニュー領域には、パララックスバリア2を設けず、画像表示も2D映像または印刷とする。
 なお、図8(b)に示す例のように、表示部5を覆うタッチパネル9と、メニューなどを表示させる、表示部5の左側の通常モニタ領域と、表示部5の右上側の立体映像表示領域と、「立体映画」などの文字が印刷されている、表示部5の右下側の印刷領域とから構成してもよい。
 このように、表示部5の前面を、機能領域毎に分割することにより、各機能に最適化された表示方法を採用することが出来る。また、大きい表示部5であっても、分割することにより、廉価な小さい部品を組み合わせることが可能になり、表示部5の製造コストを低減させることが出来る。
 <着脱可能なタッチパネルと共に用いる実施形態について>
 なお、タッチパネル9は、モニタータイプの他、印刷タイプでもよい。タッチパネル9としては、光学式タッチパネル、または加圧式タッチパネル(印刷タイプに使用)を用いる。
 モニタータイプのタッチパネル9は、透明であり、表示部5により表示されるメニューの上に重ねて用いられる。印刷タイプのタッチパネル9は、透明なタッチパネル9の前面または背後にメニューの写真を印刷して用いられるか、タッチパネル9自体にメニューの写真を描画して用いられる。
 モニタータイプのタッチパネル9を用いる場合、特願2007ー230776に開示されているグリッドシートを用いてもよい。このグリッドシートは、モニタ画面に重ねて用いられる透明なシート上に形成された、目に見えない微少なドットパターンを、スキャナを用いてタッチすることにより、タッチパネルとしての機能を実現するものである。
 印刷タイプのタッチパネル9を用いる場合、タッチパネル9は、表示部5に固定されている構成でもよいし、取り外しが出来る構成でもよい。
 例えば、特許4019114号、特許4042065号などに開示されている、ペーパーキーボード、ペーパーコントローラを用いることにより、取り外し可能なタッチパネル9を構成してもよい。
 これらのペーパーキーボードおよびペーパーコントローラは、紙などの媒体上に、キーボードのキーやリモートコントローラのボタンを、ドットパターンと重ねて印刷したものである。ペーパーキーボードおよびペーパーコントローラ上のボタンやキーをペン型のスキャナによりタッチすることにより、ボタンやキーに割り当てられた情報が読み取られ、読み取られた情報に対応した、画像切り替えなどの機能が実行される。
 なお、本発明にかかるペーパーキーボードおよびペーパーコントローラでは、前記に加え、商品写真などを並べて印刷または描画したものでもよい。ペーパーキーボードおよびペーパーコントローラは、写真やグラフィックにより、アイコン等が描画または印刷された媒体でもよい。
 この構成では、画像提示対象者が、詳細を知りたい商品を選択すると、その詳細が立体として表示される。
 <グリッドシートとパララックスバリアの兼用>
 立体映像表示装置1は、パララックスバリアと従来のグリッドシートとを兼用させた構成でもよい。
 なお、パララックスバリアと兼用させるグリッドシートの構成部材として、どのように、赤外線反射層、赤外線拡散層、赤外線拡散反射層を用いるかは、従来のグリッドシートにおける構成方法と同じである。
 前記の構成では、グリッドシートとパララックスバリアを兼用するので、別々の部材として製造する構成に較べ、製造コストを低減させることが出来る。
 <裸眼立体ディスプレイの製造方法について>
 まず、図9において、パララックスバリア方式の裸眼立体ディスプレイの製造に関わる構造を示す。図に示すように、裸眼立体ディスプレイは、画像を表示する通常のディスプレイ(画像発光部)5dの前面に、スペーサを設け、そのさらに前面に、背後にパララックスバリア2が形成された強化ガラスを設けて製造される。
 スペーサを用いてディスプレイ5dの画像表示面とパララックスバリア2との間に適切な間隔を設定することにより、予め設定された立体視可能エリアにおいて、適切な立体効果を得ることが出来る。
 パララックスバリア2のスリット配置とディスプレイ5d上の一視点用の画素の配置とを適切に調整した後、ディスプレイ5dとスペーサと強化ガラスとを固定することにより、裸眼立体ディスプレイを製造することが出来る。
 <タッチパネルと組み合わせた別の実施形態について>
 図10において、裸眼立体ディスプレイとタッチパネルを組み合わせた、他の実施形態について説明する。
 図10(a)は、この構成の正面図である。全体がショーウィンドウの窓であり、その一部に、タッチパネルが設置されている。ショーウィンドウの内側から、タッチパネルに対してメニューなどの映像が投影される。ショーウィンドウの右側奥には、裸眼立体ディスプレイが設置されている。
 図10(b)は、この構成の上面図であり、画像提示対象者と、タッチパネルと、裸眼立体ディスプレイとの位置関係を示した図である。この図は、裸眼立体ディスプレイの3D映像適視位置が裸眼立体ディスプレイの前面から2m先にある例である。
 前述の、一つの表示部5の領域を、立体映像表示領域とメニュー領域とに分け、メニュー領域にタッチパネルを設ける実施形態では、画像提示対象者の手が届く範囲に表示部5を置かなければならず、3D映像適視位置が裸眼立体ディスプレイの前面から50cm程度先になる裸眼立体ディスプレイを用いる必要がある。
 裸眼立体ディスプレイから、3D映像適視位置が近ければ近いほど、立体の飛び出し量が少なくなり、立体による効果が半減する。タッチパネル操作者以外の画像提示対象者に立体映像を見せるためには、大画面の裸眼立体ディスプレイが必要である。そのため、裸眼立体ディスプレイの設置位置は、人だまりから一定の距離が必要である。
 しかし、タッチパネルと裸眼立体ディスプレイとの配置を完全に分離する構成であれば、3D映像適視位置に、裸眼立体ディスプレイを設置することが出来る。
 <タッチパネルの詳細について>
 ショーウィンドウ等において用いられるタッチパネルの詳細を以下に説明する。
 タッチパネルとして、液晶ディスプレイなどに被せて用いるタイプのタッチパネルを用いることも出来るが、センサおよび配線をガラス表面に設置しなければならず、ショーウィンドウの美観を損ねてしまうという問題がある。
 そこで、図11(a)に示すような、IRーLEDおよびIRカメラを用いたタッチパネルを使用した構成が望ましい。
 この構成では、プロジェクタからショーウィンドウの所定領域(タッチパネル領域)に対して、可視光を用いて映像(メニューなど)が投影される。さらに、IR-LEDからタッチパネル領域に対して、赤外線(IR)が照射される。照射された赤外線は、タッチパネルを透過するので、IR-カメラでは、黒い画像が撮影される。
 なお、プロジェクタとIR-LEDとを兼用させる構成でもよい。兼用する構成では、プロジェクタから赤外線をショーウィンドウの所定領域に照射する。
 タッチパネル操作者がタッチパネル上をタッチすると、タッチ位置のみ赤外線が拡散反射する。この拡散反射をIR-カメラにより撮影する。
 図11(b)において、タッチパネル操作者がタッチパネル上をタッチした際にIRカメラにより撮影される画像の例を示す。全体は黒い画像だが、タッチした位置のみが白くなっている。もちろん、タッチパネル面に接している指以外にも、タッチパネルの近傍にある他の指などにより拡散反射する赤外線も画像には含まれるが、焦点距離を調整するなどの方法により、誤認識を防ぐことが出来る。
 IR-カメラが撮影した画像を解析することにより、タッチパネル上における、タッチ位置を検出することが出来る。
 このようにして、画像の出力とタッチ操作の検出とを、タッチパネル(またはタッチパネルを設置した透明材料)の表面または周囲にセンサおよび配線などを設けること無しに行うことが出来る。
 なお、タッチパネルは、図12に示すように、三角測量の原理を用いた、通常の画像認識方式により実現してもよい。この方式を用いる場合、例えば左上方および右上方の角に設置したカメラにより指の位置を撮影するが、指と、指の背景とが判別し易いように、ショーウィンドウの周りに、反射板等を設ける構成が好ましい。
 なお、本構成のタッチパネルは、グリッドシートであってもよい。この構成とすると、博物館、美術館、水族館、動物園など、展示物の前面にガラスがある場合、ガラス面に張られたグリッドシートにスキャナを用いてタッチすることにより、展示物の詳細な説明を見学者に行ったり、立体映像を見学者に見せたりすることが出来る。スキャナは、音声出力可能なブルートゥースのペンであってもよい。
 例えば、動物園において、暑さのためにシロクマが動かない時でも、代わりに、活発に動くシロクマの立体映像を見学者に見せることにより、見学者の満足度を向上させ、確実にリピータとなる入園者を増やすことが出来る。
 図13~図14は、裸眼立体ディスプレイとタッチパネルとを組み合わせた、実施形態について説明する図である。
 図13は、この構成の斜視図であり、画像提示対象者と、タッチパネルと、裸眼立体ディスプレイとの位置関係を示した図である。全体がショーウィンドウの窓(ガラス面)であり、その一部にタッチパネルが設置されている。ショーウィンドウの右側奥には、裸眼立体ディスプレイが設置されている。裸眼立体ディスプレイの3D適視位置はL+Kである。
 前述の、一つの表示部5の領域を、立体映像表示領域とメニュー領域とに分け、メニュー領域にタッチパネルを設ける実施形態では、画像提示対象者の手が届く範囲に表示部5を置かなければならず、3D映像適視位置が裸眼立体ディスプレイの前面から50cm程度先になる裸眼立体ディスプレイを用いる必要がある。
 裸眼立体ディスプレイから、3D映像適視位置が近ければ近いほど、立体の飛び出し量が少なくなり、立体による効果が半減する。タッチパネル操作者以外の画像提示対象者に立体映像を見せるためには、大画面の裸眼立体ディスプレイが必要である。そのため、裸眼立体ディスプレイの設置位置は、人だまりから一定の距離が必要である。
 しかし、タッチパネルと裸眼立体ディスプレイとの配置を完全に分離する構成であれば、3D映像適視位置に、裸眼立体ディスプレイを設置することが出来る。
 図14は、タッチパネルの詳細について説明した図である。
 (a)は、液晶または有機EL系の薄型タッチパネルを用いた例である。この場合は、ショーウィンドウの内側にプロジェクタを設け、プロジェクタからタッチパネルに対して、可視光を用いて映像を投影する。詳細は、図11に記載した通りである。
 (b)は、加圧式タッチシートを用いた例である。加圧式タッチパネルは、シート状のタッチパネルであり、写真やイラストを印刷することが可能である。
(b)は、そのような加圧式タッチパネルに4種類の携帯電話の写真を印刷したものである。
 (c)は、タッチパネルとしてドットシートを用いた例である。ドットシートは、商品写真等を、紙やシート等の媒体上にドットパターンと重ねて印刷したものである。本実施例では、携帯電話の写真を、媒体上にドットパターンと重ねて印刷してある。画像提示対象者が写真をスキャナでタッチすることにより、写真に割り当てられた情報が読み取られ、読み取られた情報に対応した映像が、裸眼立体ディスプレイに表示される。
 なお、本実施例では、図14(a)~(c)で説明したタッチパネルに限らず、他のタッチパネルやグリッドシート等、タッチパネルとしての機能を有するものであれば、何を用いてもよい。例として、静電式のタッチパネルが挙げられる。

 <円弧状スリットの詳細(その1)について>
 図15において、上述した、パララックスバリア2のスリットのエッジ形状が円弧状である構成について、また、図16において、エッジ形状が楕円弧状である構成について、詳細に説明する。
 図15(a)は、一つの画素における、R、G、Bの各サブピクセルの並びを示したものである。
 なお、ピクセル、画素、絵素は、通常、同じ意味において用いられ、1個のピクセルは、複数個のサブピクセルから構成されるが、以下の説明においては、単色の単位領域をサブピクセルと呼び、R、G、およびBの各サブピクセルをまとめた単位領域を、ピクセルまたは画素と呼ぶこととする。すなわち、1画素は、RGBの3サブピクセルから構成されるとする。
 すなわち、図15(a)に示す例は、1画素を、R、G、Bの3つのサブピクセルを水平方向に並べて構成するものである。左の例は、左からR、G、Bの順にサブピクセルが並び、中心の例は、左からG、B、Rの順であり、右の例は、左からB、R、Gの順に並んでいる。1画素の大きさは、高さhおよび幅Wとする。
 図15(b)において、スリットを形成する各円の位置を説明すると、以下のとおりである。
 まず、各円の中心点の、各行内における垂直方向の位置は、各行の中心線上となり、各行の境目からの高さ方向の距離は、高さhの半分、すなわち、0.5hとなる。
 なお、各円の中心点の、水平方向の位置は、どのような立体効果を得るように表現するかにより、1画素に対する配置が異なるので、一概には特定できない。図の例では、各行の円の中心点は、傾きθを用いてずらしてある。ただし、水平方向の円同士の中心点間の距離は、1画素の幅Wに対して、ビューポイントがn個ある設定では、Wxnとなる。
 また、各円の半径rも、パラメータであり、得ようとする立体効果を計算した上で、決定される必要があり、一概には特定できない。ビューミックスを多くするのであれば、半径rも大きくなり、ビューミックスを少なくするのであれば、半径rも小さくなる。もちろん、画素の大きさにも依存する。画素の大きさとビューミックスの度合い(立体効果の度合い)が関係する。
 各行の円弧は、各行の境目となる直線により接続されている。各行の境目となる水平方向の直線、すなわち各行の分割線において、各行の画素を分離することが望ましい。この構成により、ビューミックスを適切に制御し、視点の移動およびジャンプポイントによる違和感を緩和しつつ、立体効果の高い画像を、画像提示対象者に提示することが出来る。
 なお、ある行の片側の円弧だけが他の行に延びた構成では、左右の目に見える可視領域においてビューミックスの為に用いる他視点用の画素が、左右不釣り合いになり、立体画像が捻れて見える。
 図16(a)において、スリットのエッジが円弧状である、別のスリットの例を示す。この例では、スリットのエッジは、円弧同士を、行の境目となる水平方向の分割線上において、直接接続した形である。図15(b)の、円弧の間を、直線により接続する例とは、分割線の一部を、エッジを構成する線分として、含んでいるか否かが異なる。
 円弧同士を分割線上において接続するためには、各行において、スリットの右側のエッジを構成する円弧の中心点と、スリットの左側のエッジを構成する円弧の中心点とをずらす必要がある。
 そのため、右側の円弧の中心点は、各行の中心線とスリットの中心線との交点よりも、スリットの中心線上において上にずれ、左側の円弧の中心点は、スリットの中心線上において下にずれる。
 図16(b)において、スリットのエッジが楕円弧状である、別のスリットの例を示す。この例では、スリットのエッジは、楕円弧同士を、行の境目となる水平方向の分割線上において、直接接続した形である。
 この例では、各行の中心線と楕円の長軸との交点を、楕円の中心として示している。立体効果の度合いを定めるパラメータには、前記の円の場合のパラメータに加えて、楕円の離心率(0<離心率<1、離心率=焦点間の距離/長径)も考慮する。楕円の離心率は、求める立体効果に基づき計算されるものであり、一概には定められない。
 円弧を接続する場合と同様に、楕円弧を定める2個の焦点は、右側の楕円弧ではスリットの中心線上を、上方にずれ、左側の楕円弧では、下側にずれる。
 なお、図16(b)では、楕円弧同士を、行の分割線上において直接接続しているが、図15(b)に示した例と同様に、各行の分割線を介して、楕円弧同士を接続する構成でもよい。
 本発明の特徴は、ディスプレイを構成する画素の配列の各行において、各行の中心線上が水平方向に最もふくらんでいるスリットを用いると、さらに滑らかな水平方向の視点移動が得られることである。
 図16(c)および図16(d)は、この特徴を有する他のスリットの構成例を示した図である。
 図16(c)において、スリットのエッジが楕円弧状である、別のスリットの例を示す。この例では、スリットのエッジ形状は、予め定められた4点により形成される平行四辺形に内接する楕円の楕円弧同士を、行の境目となる水平方向の分割線上において、直接接続した形である。
 その4点とは、すなわち、ある行において、該行の上側の分割線とスリットの中心線との交点から所定の距離Aだけ、該分割線上を、右方向にずらした点と、左方向にずらした点と、該行の下側の分割線と該スリットの中心線との交点から所定の距離Aだけ、該分割線上を、右方向にずらした点と、左方向にずらした点とである。
 なお、図においては、楕円の長軸がスリットの中心線とは異なる傾きを有する事と、楕円の2個の焦点の位置とを示している。
 なお、図16(c)では、楕円弧同士を、行の分割線上において直接接続しているが、図15(b)に示した例と同様に、各行の分割線を介して、楕円弧同士を接続する構成でもよい。
 図16(d)に示す構成では、スリットのエッジ形状は、各行の分割線上において接続されたスプライン曲線である。このスプライン曲線は、予め定められた3点を通るスプライン曲線として求められる。
 その3点とは、すなわち、ある行において、該行の上側の分割線とスリットの中心線との交点から所定の距離Aだけ、該分割線上を、右方向にずらした点と、該行の中心線と該スリットの中心線との交点から所定の距離B(B>A)だけ、該中心線上を、右方向にずらした点と、該行の下側の分割線と該スリットの中心線との交点から所定の距離Aだけ、該分割線上を、右方向にずらした点である。
 この3点により、右側のスプライン曲線が構成され、左側のスプライン曲線は、右側のスプライン曲線を、スリットの中心線と該行の中心線との交点を中心として、点対称なスプライン曲線として構成される。
 本発明の特徴は、楕円孤またはスプライン曲線を用いたスリットにおいて、その連結の接続点は、必ず行の分割線上に位置することである。これにより、前記と同様に立体画像の捻れを解消し、また、垂直方向の視点移動においても、連続的なビューミックスにより、次の行の画素まで滑らかに立体視することが可能となる。
 <楕円弧状スリットの詳細(その2)について>
 図17において、楕円弧状スリットの他の例を示す。前記の例とは、画素を構成する各サブピクセルの配置位置が異なる。すなわち、前記の例では、各サブピクセルが水平方向に並んでいたが、この例では、図17(a)に示すように、一画素を構成する各サブピクセルが、斜め方向に並んでいる。
 なお、1行の高さhは、1サブピクセルの高さhとなり、1サブピクセルの幅mの3倍が1画素の幅となる。この構成では、水平方向の解像度は、3倍にすることが出来る。
 この構成では、1画素が斜め方向に長いので、円をつないだスリットを用いることは出来ず、図17(b)に示すように、3サブピクセルで構成される1画素全体を囲む楕円をつないだスリットを用いる事になる。
 また、図17(c)に示すような、1画素を構成する各サブピクセルをそれぞれ囲む楕円をつなぐ形状でもよい。
 なお、図17(b)および図17(c)においては、発明の理解のために、本来パララックスバリア2の不透明部により隠され、画像提示対象者には視認されない部分についても、記載を行っている。本明細書の他の図面についても同様である。
 また、いずれの図においても、パララックスバリア2のスリットを通して視認されるサブピクセルを、視認される状態を正確に再現するように、全て図示することも考えられるが、特徴点を強調するため、本来視認されるサブピクセルの一部を図示していなかったり、サブピクセルの配置を、説明に支障のない範囲において、ずらしていたり、どのサブピクセル同士が組になり画素を構成しているかを示したりしている点に注意が必要である。
 <円弧状スリットの詳細(その3)について>
 図18(a)において、各サブピクセルの配置の別の例を示す。この例では、Rのサブピクセルが左下にあり、GおよびBのサブピクセルが並んでRの右上にある。このようなサブピクセル配置に対して、複数の水滴状の曲線を接続した形状のスリットを採用してもよい。
 図18(b)において、2個の画素を組み合わせた場合に用いる楕円弧スリットのうち、1個の楕円を用いて2個の画素をカバーする配置を示す。
 また、図18(c)において、2個の画素を組み合わせた場合に用いる楕円スリットのうち、3個の楕円を用いて2個の画素をカバーする配置を示す。
 なお、図18(b)および図18(c)に示すスリットのエッジは、図15(b)と同様に、接続する弧の間を、水平方向の行の境目となる直線を介して接続する構成でもよい。
 <ジャンプポイントの緩和(スリットと画素並びとのずれ)について>
 ジャンプポイントとは、少なくとも第1視点用の画像と、少なくとも第n視点用(n=視点の数)の画像とを、左右別の目により見る際に生じる逆転現象(手前の物が奥に見え、奥の物が手前に見える現象)である。
 この逆転現象を緩和するには、スリットを通して、正常に見える画素の並びと逆転現象を生じさせる画素の並びとが混在して見えるようにすればよい。これによりビューミックスが生じ、見える画像が平均化されるので、多少見づらくなるものの、完全な逆転現象が回避できる。なお、ジャンプポイントの数を減らすには、視点の数を増やせばよい。
 <ジャンプポイントを緩和する条件について>
 ジャンプポイントを緩和するために必要な点は、以下の3点である。
 第1の点は、行毎の画素を構成するサブピクセルの数を異ならせる点である。
 第2の点は、1画素を構成するサブピクセルの数が、行方向に同じ数である場合でも、複数の行に渡り1画素を構成するサブピクセルを配置する際に、階段状にして、1サブピクセル分ずらしたり、2サブピクセル分ずらしたりして、ずらし方を異ならせて配置する点である。
 第3の点は、スリット形状(スリット全体の配置形状およびスリットのエッジ形状)である。
 <各種エッジ形状におけるビューミックス発生率について>
 まとめると、ビューミックス発生時には、以下の2つの事が同時に行われている。
 すなわち、(1)ジャンプポイントを解消する為に、スリットに沿って上下に異なる視点用の画素を、同時に目視し、平均化して見ることにより逆転現象をなくす事(厳密に言うと、スリットに沿って見える同一視点用の画素を、画像提示対象者が上から見る場合と下から見る場合とでずらすか、または、スリット全体の配置形状により、スリットに沿って見える画素を、別の視点用の画素として異ならせる)により、上下方向のビューミックスを行っている事と、(2)ジャンプポイントが解消するわけではないが、水平方向のビューミックスを発生させている事である。
 水平方向に移動するときは、当然ながら、画像提示対象者の位置に対応する視点用の画素だけを見ている訳ではないので、隣り合っている画素もビューミックスにより平均化して見えているので、画像が滑らかに変化していく。
 斜めのスリット形状の不利な点は、次のとおりである。
 すなわち、斜めスリットの配置方向が右上から左下の場合、左下および右上(スリットの方向が左上から右下の場合は、左上および右下)の、サブピクセルの三角形の部分の領域(以下、三角領域という)が見える。
 水平方向の視点移動では、三角領域がビューミックスに現れ、または、消えていく。
 特に、目の位置によって、上下の行にまたがって画素が視認される場合、注視点の左右に位置する、異なる行の三角領域に起因するビューミックスにより、少し大きめの視差が生じ、画像が二重に見えることがある。
 なお、注視点とは、画像提示対象者の左右それぞれの目から、スリットの中心を通り、画像表示面に達する直線を引いた場合、左目から引いた直線と画像表示面との交点が、左目の注視点となり、右目から引いた直線と画像表示面との交点が、右目の注視点となる。
 ところが、階段状のスリットでは、サブピクセルの幅に渡り均一にビューミックスが生じる。水平方向の視点移動では、新たに視認できるサブピクセルの面積が線形に増加し、一定の比率において、ビューミックスが発生していく。
 スリットのエッジ形状が楕円弧状の場合、注視点の左右に位置する、ビューミックスを発生させる領域の面積は、エッジ形状が階段状である場合に較べて小さいので、立体効果が高い。水平方向の視点移動では、最もふくらんだ部分からビューミックスが生じるので、新たに視認されるサブピクセルの面積は、カーブを描いて徐々に増加し、ビューミックスが発生していくという利点がある。
 エッジ形状が楕円弧のスリットにおいて、楕円弧同士を分割線上において接続した構成と、楕円弧同士を分割線の一部を含んで接続した構成との違いは、上下方向に視点が移動して見た時に、楕円弧が連続的である前者の構成のほうが、綺麗に、滑らかにビューミックスを発生させられる点である。
 <ビューミックスの詳細について>
 まず、斜めにずらして並べた画素の並びに対して、斜めの階段状のスリットを用いることにより、1視点分の画素の幅以上を可視領域とし、スリットの幅を調整することにより容易にビューミックスを起こさせ水平方向の視点移動を滑らかにできる構成が考えられる。
 次に、斜めにずらして並べた画素の並びに対して、斜めの直線状のスリットを用いることにより、スリットの左右のどちらかの上部および下部(スリットの方向により異なる)からビューミックスが起こるようにした構成が考えられる。
 さらに、斜めにずらして並べた画素の並びに対して、楕円弧を斜めに繋げた形状のスリットを用いることにより、楕円の左右の腹部からビューミックスが起こるようにした構成が考えられる。この構成では、水平方向1行に一個の楕円弧が対応する配置とすると、ビューミックスの量を制御しやすい。
 <斜めスリットについて>
 斜めスリットの使用時には2つの方法がある。
 一つの方法は、一つの画素を表現するために、水平方向に、異なる数とする方法である。具体的には、サブピクセルが、水平方向に、2個であったり、1個であったりする。1個のところは、別の視点用のサブピクセルが見えるので、ビューミックスが起こり、ジャンプポイントが緩和される。
 もう一つの方法は、前記と同じことを行っているが、スリットのエッジ形状を工夫することにより、一つのサブピクセルが徐々に見える様にする方法である。
 なお、前記では、ジグザグ形状を例に挙げて説明したが、スリットの中心線が正弦波曲線上に乗るようなスリットに対応させて、各視点用の画素の配置も、各画素の配置がほぼ正弦波曲線上に乗るように配置された、曲線形状でもよい。
 <裸眼立体用の画像圧縮の方法について(その1)>
 一つの圧縮方法として、以下のものがある。
 まず着目すべき点として、2D画像と3D画像とでは、違いがあり、異なる圧縮方法を用いることが出来る点が挙げられる。
 第1の圧縮方法として、次の方法がある。
 モニタ面上に配置されているとして知覚される2Dの画像(3Dでは無いので、必然的に、モニタ面にある画像として知覚される。多くは実写画像。)は、視差がないので、通常の圧縮方法を用いて、完全に圧縮して構わない。第1の視点用から、例えば第6の視点用まで同じものを表示すればよい。
 第2の圧縮方法として、次の方法がある。
 飛び出して知覚される3D部分の画像に関しては、従来は、非圧縮ファイルしか扱えなかったので、別々に作成された画像を、リアルタイムでブレンドしていた。しかし、この方法では、計算用のリソースを多く必要とする欠点があった。特にハイビジョン映像の扱いが大変であった。
 なお、ブレンドとは、1つのフレームバッファの中に、全ての視点用の画像データを混ぜて配置し、パララックスバリアのスリットから見ると、立体に見えるように配置する方法のことである。RGBマッピングともいう。
 そこで、ブレンドした画像を適切に圧縮すればよい。そうすれば、リアルタイムでブレンドする必要は無くなる。本願にかかる発明は、圧縮済みのファイルを再生する際に用いる方法の発明である。
 通常、2D実写映像をモニタ面に表示し、3Dのコンピュータグラフィックス(CG)映像をモニタ面より前に表示する。すなわち、モニタ面上の位置に知覚される2D実写映像は、視差を考える必要が無い。そこで、2D映像とする映像に関しては、視差がないので、普通に圧縮して、解凍した時に、全ての視点用の画素の表示内容として同じ表示内容を並べればよい。それ故、画像の圧縮が出来る。
 3D部分については、ある視点用の画像を基準として、他の視点用の画像は、基準とした画像との差分を取っていく。
 差分の取り方としては、第1の視点用画像と第2の視点用画像との差分をとり、第2の視点用画像と第3の視点用画像との差分をとる、隣の画像同士の差分をとる方法がよい。常に第1の視点用との差分を取ると、例えば、第1と第6の視点用画像の差分は大きくなり過ぎるからである。
 基準とする画像は、第1の視点用を用いてもよいし、例えば全部で6視点ある場合は、第6の視点用を用いてもよいし、中間の第3の視点用を用いて第1の視点方向および第6の視点方向に、隣り合う視点用同士の差分を取っていってもよい。
 次に着目すべき点として、3D部分の画素数が少ないことが挙げられる。すなわち、3D部分とする領域が小さい。
 そこで、以下に説明する第3の圧縮方法を用いることが出来る。
 例えば、画素数が300X300であるとすると、全部で9万画素になる。また、カラーを24ビットで表現しているので、1700万色ある。9万画素であれば、24ビット使う必要は無い。
 例えば、画素数が200×200であるとすると、全部で4万画素になる。40000という数字は65000という数字よりも小さい。65000という数字は、16ビットである。
 すなわち、どれだけ色数が多くても、16ビット分である。各画素が表す色が異なっていたとしても、16ビットしか使用しない。
 通常、200×200の画素が全て異なることはあり得ない。また、近い色は同じ色を用いて近似することが出来る。
 そこで、色情報は8ビットのみを用いて表現し、カラールックアップテーブルを用いる。このテーブルの各エントリに、色番号と用いるR、G、B値との対応を登録しておく。
 例えば、カラー番号1は、R値が20、G値が36、B値が120となる。そして、RGB値が近い色は、このカラー番号1を用いて近似する。
 このようにして、3D部分のデータを圧縮することが出来る。
 さらに、第4の圧縮方法として、3D部分の時間軸方向における圧縮が考えられる。
 表示されている3D画像が、時間と共に変化するものでなければ、たとえ各視点用の画像の視差が大きくても、時間方向にデータを圧縮することが出来る。圧縮方法は、例えば、MPEGと同様の方法を用いることが出来る。
 前記の各圧縮方法を用いて圧縮した2Dおよび3Dの画像データは、再生時に解凍され、次いで合成され、再生される。
 <画像フォーマットについて(その1)>
 立体映像の構成は、大部分の2D映像の上に、一部、3D映像を重ねて構成されている。2Dの画像と3Dの画像とを区別して処理するためには、どの部分が2Dであり、どの部分が3Dであるかを判断するための情報が必要である。その為に、マスクを用いることが出来る。
 マスクは、1ビットでよい。以下、マスクビットと呼ぶ。
 例えば、図19(a)に示すように、表示する1枚の画像のうち、3Dの立体画像となる部分は、各画素のマスクビットを1とし、2Dの画像部分では、各画素のマスクビットを0とする。この例では、中央の携帯電話機の部分および右上のロゴの部分が3D画像となっている。
 すなわち、マスクビットが0であれば、第1視点用から、例えば第5視点用まで、同じ画素情報を持たせればよいので、ブレンド処理が簡単になる。マスクビットが1であれば、該当する領域に対し、第1視点から第5視点までの各視点用の画像データをブレンドする必要がある。
 例えば、図19(b)に示すように、記録に用いるAVIファイルの1画面分のフレームを、3×3の領域に分け、上から1行目、左から、第1の視点用、第2の視点用、第3の視点用の画像を格納し、上から2行目、左から、第4の視点用、第5の視点用の画像を格納する。
 そして、これら5個の画像のうち、マスクビットが1である部分のみ、ブレンドを行えばよい。
 なお、図19(c)において示すように、例えば、第1の視点から、第5の視点まで有る場合、各視点用のカメラを水平方向に5個配置し、撮影することにより、各視点用の画像を得ることが出来る。
 携帯電話がカメラ側に置いてあれば、手前に飛び出す画像となり、中央であれば、立体感は無く、カメラから遠い側に置いてあれば、奥に引っ込む画像となる。
 撮影データは、例えばAVIファイルとし、各視点用のAVIデータを図19(b)の分割された各領域に割り当てることにより、お互いに干渉しない、立体映像用のAVIデータを作成することが出来る。
 前記のマスクビットがあれば、各視点用の画像内の、どの部分が3Dであるかを、画素あたり1ビットの情報量のみで判断出来る。
 <画像フォーマットについて(その2)>
 前記の画像フォーマットでは、1フレーム内の各視点用の画像領域に、2D画像と3D画像とマスクビットとを有していたが、1フレーム内の、分割された各画像領域に、3D用画像と、2D画像とを分けて保持してもよい。
 例えば、図20(a)に示すように、2行3列に領域分割して、各視点用の領域には、3D部分の画像のみを格納し、背景(2D)となる部分は、右下の領域にマスクを兼用させて格納するフォーマットがある。なお、マスク情報を保持する領域を背景部分の画像領域と兼用させ、全てを1枚の画像に格納する以外に、1枚の画像とマスク情報のみが格納されたマスク用画像とを、別に用意する構成でもよい。
 なお、3D部分と2D部分とを区別するために、マスク情報を用いる以外に、3D部分のみの画像領域においては、3D以外の箇所は、例えば、RGB値が全て0である黒とし、3D部分の黒は、RGB値がそれ以外の黒を用いるようにして、区別してもよい。
 図20(c)は、2D画像用を別ファイルとし、3D画像ファイルの、フレームを分割した各領域に、3D画像とマスクを兼ねた黒色領域とを持たせるフォーマットの例である。
 また、マスク情報は、前記のように、背景となる2D画像部分と兼用させてもよいし、各視点用の3D画像に持たせてもよい。
 2Dと兼用する部分には、各視点用に共通する、最大公約数的なマスク情報のみを記録し、視点毎に異なるマスク情報は、それぞれの視点用の画像領域に持たせるフォーマットでもよい。
 各視点用の3D画像にマスク情報も持たせることにより、より正確な画像合成、ブレンドを行うことが出来る。
 背景画像部分では、例えば5視点分のマスク情報を保持するので、1画素あたり5ビットがマスク情報用に用いられる。
 もし、5ビット分のマスク情報と、本来の背景画像の情報とを同じ画像領域に保持することが難しい場合は、「画像フォーマットについて(その1)」において説明したフォーマットを応用し、図20(b)に示すように、5視点分の2Dおよび3D画像の領域と、右下の5視点分(5ビット)のマスク情報のみを保持する領域とからなるフォーマットを用いてもよい。
 なお、動かす3D部分のみ、CGにより作成し、リアルタイムでブレンドする構成でもよい。3Dのリアルタイムとは、1/30秒あるいは1/60秒で絵を計算し、表示するものである。この場合、通常のCGエンジンを用いて3DのCGをリアルタイムで作成した後、前記の6分割のフォーマットの3D画像部分の分割領域に流し込めばよい。
 1フレームを9分割し、8視点分の画像を入れることも出来る。その際、残りの分割領域が無駄になるので、3行を等分割するのではなく、例えば、1行目および2行目の高さを1とすると、3行目の高さを2/3とすることにより、全ての領域に8視点分の画像を格納することが出来る。9視点であれば、等分割すればよい。
 このように、視点の数が分割の数より少ない場合でも、空いた分割領域に、2D画像を入れたり、マスク情報を入れたりすると、画像領域を有効に使うことが出来る。
 <画像フォーマットについて(その3)>
 マスクを使う場合、実写の画像が有るほうが好ましい。前記の分割された各領域のそれぞれに2D画像が入っていた場合、3D部分とのすれがそれぞれの視点用画像において異なる。それ故、異なったずれの部分は、各視点用の画像を参照しなければならない。
 例えば、第1の視点用画像において、本来ならば見える箇所が見えなくなっている事が考えられる。最大公約数的なマスクをかける場合、本来は必要である「ずれ」の部分を考慮する必要がある。
 そこで、2D画像を分割した領域の中に置いておいたほうがよい。しかもマスクもあったほうがよい。
 図21は、4視点のフォーマット例である。6分割し、4視点用の3D画像と、スクリーン面の位置に表示される画像として知覚される2D画像と、4視点分のマスク情報(2D画像用のマスク情報を含んでもよい)とが格納される。
 図22は、5視点のフォーマット例である。1行目の高さを「1」とすると、2行目および3行目の高さは、「2/3」となっている。そして、2行目および3行目の中央の領域は、上下に分割され、「1/3」の高さとなる。これら「1/3」の高さの部分を、それぞれ、両側の領域に足すことにより、5視点分の領域と、スクリーン面に位置する2D画像と、5視点分のマスク情報(2D画像のマスク情報を含んでもよい)とが揃う。
 図23に示す6視点用フォーマット例、図24に示す7視点用フォーマット例、図25に示す8視点用フォーマット例も同様である。なお、全てが3D画像である場合は、スクリーン面に位置する2D画像は不要である。
 このようなフォーマットを用いることにより、手間をかけずにブレンドを行うことが出来る。
 <マスク情報の圧縮時の注意点について>
 前記各フォーマットは、各分割された領域に、各視点用の画像のAVIファイルを納めた、統合AVIファイルである。AVIファイルは、データ圧縮を行っているため、圧縮処理および解凍処理により、マスク位置がずれてしまう。
 そこで、解凍処理後に、正常なマスク情報となるように、元の画像を作成する事が重要である。そして、解凍した時に、各ビットがマスクになるように、処理前の情報を作成しておけばよい。
 なお、前記の説明は、不可逆圧縮に適用されるものであり、可逆圧縮の場合は、正常なマスク情報をそのまま圧縮および解凍すればよい。
 <マスク内のフラグについて>
 映像によっては、3D画像が無い部分がある。その場合、例えば5視点のフォーマットであれば、第1から第5の視点用の3D画像部分と、5視点分のマスク情報が不要である。
 そこで、マスク内に、3Dの画像が無い事を示すフラグを設け、そのフラグを立てる事により、3D画像部分に関する、解凍処理、ブレンド処理などを省略することが出来る。そして、2D画像部分のみを映像として表示すればよい。
 <裸眼立体用の画像圧縮の方法について(その2)>
 マスクを用いて、映像を時間方向に圧縮する方法について説明する。このマスクを以下では、時間方向圧縮マスクと呼ぶ。
 画像内において、各画素につき、時間方向に比較し、1フレーム前と同じ画素値(R、G、B)である事を示す、各視点用の時間方向圧縮マスクを用いる圧縮方法である。
 前記では、2D画像についてマスクを用いることを述べた。さらに、3D画像部分であっても、背景であれば、時間の経過にかかわらず変化しない場合がある。例えば、珊瑚礁の海(奥行きがあるが動かない3D映像)の中を、魚(動く3D映像)が泳ぐ場合などである。
 この圧縮方法により、時間方向圧縮マスクに、時間方向に変化がないという情報を示すフラグを入れておけば、前のフレームの画素情報をそのまま流用出来るので、新たに画素情報を持たせる必要がない。
 例えば、ある画素につき、時間方向圧縮フラグとして1が立っていれば、画素情報は変化していることを表し、0であれば、その部分については、フレームバッファを更新する必要は無い。
 <時間方向圧縮マスクの圧縮について(その1)>
 以下において、時間方向圧縮マスク自体を圧縮する方法について説明する。スキャンライン方向の圧縮である。
 所定のスキャンラインにおいて、マスク領域の先頭に、マスク画素数を定義するものである。
 図26に示すように、時間方向圧縮マスクは、魚の部分は1であり、それ以外の部分は全て0である。魚の部分のみが動くので、魚の部分の画素のみを更新すればよい。
 <ビューミックス、飛び出し度、および鮮明度の関係について>
 円弧(楕円弧)を形成する際には、以下の指針で行う。
 まず第1に、円弧の直径を大きくすると、ビューミックスの領域が増え、ジャンプポイントにおける画像のずれが低下し、見えづらい位置が減少する。但し、飛び出し度が小さくなり、多少、全体的にボケた画像となる。
 次に、直径を小さくすると、ビューミックスの領域が少なくなり、ジャンプポイントにおける画像のずれが大きくなり、見えづらい位置がはっきりする。但し、飛び出し度が大きくなり、鮮明な画像となる。
 <ブレンドと圧縮について(その1)>
 裸眼立体表示に、ハイビジョン(1920×1080)の解像度を持つディスプレイを用いる場合、各視点用の画素のブレンド方法として、以下のものを用いることが出来る。
 なお、以下の説明では、例として、6個の視点を持つ場合を考えている。
 まず、第1の、画素構成およびブレンド方法の例を説明する。
 各視点用の画素を構成するR、G、Bの各サブピクセルの配置は、図27(a)に示す例のように、1行内に1画素を構成するR、G、Bのサブピクセルが配置された構成である。この例では、6視点分のサブピクセル配置が分かり易いように、各視点用の画素を水平方向に離して描いているが、実際には、水平方向に連続したものである。
 なお、この図では、例えば、第1の視点用の画素を構成するサブピクセルの並びは、上から1行目では、左から、G、B、Rの順であるが、2行目では、左から、R、G、Bの順であり、3行目では、左から、B、R、Gの順である。
 図27(b)において、圧縮前の第k視点用画像における画素の配置を示す。例えば、「11」という表示は、圧縮後の画像における第1行第1列に位置する画素を表す。
 図27(c)において、図27(b)に示す画像から、第k視点以外の視点用である部分(図において斜線で示している)を省いて、圧縮した画像を示す。
 このブレンド方法では、ブレンド前の圧縮映像の解像度は、以下の計算により求めることが出来る。
 ディスプレイの水平方向の解像度は1920であり、視点数は6であり、1行あたり1つの画素を表すために、このブレンド方法では、3サブピクセルを用いるので、以下の計算式が成り立つ。
 (1920×3)/(3×6) = 320
 すなわち、圧縮画像の水平方向の解像度として、320を用いることが出来る。
 また、ディスプレイの垂直方向の解像度は1080であり、垂直方向には視点数は1であり、1列あたり1つの画素を表すために、1行を用いるので、垂直方向の解像度は、1080のままである。
 図27(c)に示すように、圧縮画像のm行n列の画素に対し、k番目の視点用の画素を、mnと表すとする。
 図28において、具体的なサブピクセル単位の配置を示す。
 第1の、画素構成およびブレンド方法の例と同様に、ずれを解消するために、図27(b)における第k視点用の画素の配置がなされている。例えば、「11」、「21」、「31」の画素が同じ列に配置され、「41」、「51」、「61」の画素が1列左側の列に配置されている。
 <ブレンドと圧縮について(その2)>
 次に、第2の、画素構成およびブレンド方法の例を説明する。
 各視点用の画素を構成するR、G、Bの各サブピクセルの配置は、図29(a)に示す例のように、2行にまたがる配置をとり、第1の視点用の画素であれば、2行目にRのサブピクセル、その右上1行目にGのサブピクセル、その右のBのサブピクセルという配置を取る。右隣の第2の視点用は、左から、G、B、右上に行き、Rの順となる。
 この例では、6視点分のサブピクセル配置が分かり易いように、各視点用の画素を水平方向に離して描いているが、実際には、水平方向に連続したものである。
 図29(b)において、圧縮前の第k視点用画像における画素の配置を示す。
 図29(c)において、図29(b)に示す画像から、第k視点以外の視点用である部分(図において斜線で示している)を省いて、圧縮した画像を示す。
 このブレンド方法では、ブレンド前の圧縮映像の解像度は、以下の計算により求めることが出来る。
 ディスプレイの水平方向の解像度は1920であり、視点数は6であり、1行あたり6つの画素を表すために、このブレンド方法では、9サブピクセルを用いるので、以下の計算式が成り立つ。
 (1920×3)/9 = 640
 すなわち、圧縮画像の水平方向の解像度として、640を用いることが出来る。
 また、ディスプレイの垂直方向の解像度は1080であり、垂直方向には視点数は1であり、1列あたり1つの画素を表すために、2行を用いるので、垂直方向の解像度は、1/2になるので、以下の計算式が成り立つ。
 1080/2 = 540
 図29(c)に示すように、圧縮画像のm行n列の画素に対し、k番目の視点用の画素を、mnと表すとする。
 図34において、具体的なサブピクセル単位の配置を示す。
 また、図30は、圧縮画像の1つの画素と、ハイビジョンディスプレイ上においてブレンド処理された後の、その1つの画素に対応するサブピクセルグループとの対応も示している。
 この図に示すように、圧縮画像の、ある列の画素の並びに対して、このブレンド方法では、1行目のサブピクセルグループの位置に対し、2行目のサブピクセルグループは、左に3サブピクセル分だけずれており、3行目のサブピクセルグループは、2行目のサブピクセルグループに対し、右に6サブピクセルだけすれている。
 3行目のサブピクセルグループは、1行目のサブピクセルグループに対し、右方向に、3サブピクセルだけずれている。
 このずれを解消するために、図29(b)における第k視点用の画素の配置がなされている。例えば、「11」の画素の2行下、1列左に「21」の画素が配置され、その2行下、2列右に「31」の画素が配置されている。
 <ブレンドと圧縮について(その3)>
 次に、第3の、画素構成およびブレンド方法の例を説明する。
 図31(a)に示すように、各視点用の画素を構成するR、G、Bの各サブピクセルの配置は、3行にまたがる配置をとり、第1の視点用の画素であれば、上から3行目にRのサブピクセル、その右上2行目にGのサブピクセル、その右上にBのサブピクセルという配置を取る。隣の第2の視点用は、下から、G、B、Rの順となる。この例では、6視点分のサブピクセル配置が分かり易いように、各視点用の画素を水平方向に離して描いているが、実際には、水平方向に連続したものである。
 図31(b)において、圧縮前の第k視点用画像における画素の配置を示す。例えば、「11」という表示は、圧縮後の画像における第1行第1列に位置する画素を表す。
 図31(c)において、図31(b)に示す画像から、第k視点以外の視点用である部分(図において斜線で示している)を省いて、圧縮した画像を示す。
 このブレンド方法では、ブレンド前の圧縮映像の解像度は、以下の計算により求めることが出来る。
 ディスプレイの水平方向の解像度は1920であり、視点数は6であり、1行あたり1つの画素を表すために、以前は3サブピクセルを用いたが、このブレンド方法では、1サブピクセルのみを用いるので3倍である。以下の計算式が成り立つ。
 1920×3/6 = 960
 すなわち、圧縮画像の水平方向の解像度として、960を用いることが出来る。
 また、ディスプレイの垂直方向の解像度は1080であり、垂直方向には視点数は1であり、1列あたり1つの画素を表すために、以前は1行で表現していたが、このブレンド方法では、3行を用いるので、垂直方向の解像度は、1/3になる。以下の計算式が成り立つ。
 1080/3 = 360
 すなわち、圧縮画像の垂直方向の解像度として、360を用いることが出来る。
 図31(c)に示すように、圧縮画像のm行n列の画素に対し、k番目の視点用の画素を、mnと表すとする。
 図32において、具体的なサブピクセル単位の配置を示す。
 また、図32は、圧縮画像の1つの画素と、ハイビジョンディスプレイ上においてブレンド処理された後の、その1つの画素に対応するサブピクセルグループとの対応も示している。
 この図に示すように、このブレンド方法では、1行目のサブピクセルグループの位置に対し、2行目のサブピクセルグループは、左に3サブピクセルだけずれており、3行目のサブピクセルグループは、2行目のサブピクセルグループに対し、右に3サブピクセルだけずれている。1行目および3行目のサブピクセルグループ同士は、水平方向のずれは無い。
 このずれを解消するために、図31(b)における第k視点用の画素の配置がなされている。例えば、「11」の画素の3行下、1列左に「21」の画素が配置され、その3行下、一列右に「31」の画素が配置されている。


 <関連パラメータ間の関係について>
 裸眼立体表示装置における、視覚的な立体効果の度合いに関係する各パラメータ間の関係を以下において、図33を参照しながら、説明する。
 画像表示面(画像発光部5d表面)からパララックスバリア面までの空隙距離Zを決定するには、後述する方法により行うとよい。
 空隙距離Zを決定するために、画像提示対象者が概ね集まる位置を想定してベストビューポイントとし、裸眼立体表示装置のモニタ面(パララックスバリア面)からベストビューポイントまでの距離を、ベストビューポイント距離(BVP距離)Lとして設定する。
 また、パララックスバリアのスリットの水平方向の幅である、スリット幅Sを決定するには、後述する方法により行うとよい。
 空隙距離Zを決定するために、画像提示対象者の左右それぞれの目により、スリットを通して視認される、画像表示面上の表示画像の水平方向の領域を、水平方向可視領域長Vとして設定する。
 左右の目の間隔を視差Wとする。視差Wは、欧米人であれば65mm、アジア人であれば70mm、また、子供であれば50から60mmとして設定すればよい。
 図33(a)において、各パラメータである、空隙距離Z、BVP距離L、スリット幅S、水平方向可視領域長V、および視差Wの位置関係を示す。
 さらに、注視点および注視点間距離V/2を、以下の方法により、決定する。
 まず、画像提示対象者の両目の位置を、図33(a)に示す状態になるように、設定する。図33(a)に示す状態とは、右目により視認される水平方向可視領域と、左目により視認される水平方向可視領域とが、重ならずに連続している状態である。
 例えば、画像提示対象者が、図33(a)に示す状態より、裸眼立体表示装置に接近すると、前記両方の水平方向可視領域は、連続せず、離れてしまう。また、画像提示対象者が、図33(a)に示す状態より、裸眼立体表示装置から離れると、前記両方の水平方向可視領域は、重なってしまう。
 次に、図33(b)に示すように、画像提示対象者の左右それぞれの目から、スリットの中心を通り、画像表示面に達する直線を引く。左目から引いた直線と画像表示面との交点が、左目の注視点となり、右目から引いた直線と画像表示面との交点が、右目の注視点となる。注視点は、それぞれの目の水平方向可視領域の中央に位置する。
 従って、左右の目の注視点間距離は、V/2となる。
 以上により、各パラメータを定義したので、計算により、空隙距離Zおよびスリット幅Sを求める。
 図33(b)から分かるように、Z:Lと(V/2):Wとの間には、以下の数式により表される関係がある。
Figure JPOXMLDOC01-appb-M000001
 従って、空隙距離Zは、以下の数式(1)により表される。
Figure JPOXMLDOC01-appb-M000002

 また、図33(a)から分かるように、S:WとZ:(L+Z)との間には、以下の数式により表される関係がある。
Figure JPOXMLDOC01-appb-M000003
 従って、スリット幅Sは、以下の数式(2)により表される。
Figure JPOXMLDOC01-appb-M000004
 数式(1)を数式(2)に代入すると、以下の式になる。
Figure JPOXMLDOC01-appb-M000005

 従って、スリット幅Sは、以下の数式(3)により表される。
Figure JPOXMLDOC01-appb-M000006
 水平方向可視領域長Vを設定するには、楕円弧スリットを用いる場合、左右それぞれの目により視認される、水平方向の可視領域において、1つまたは複数の走査線(行)上の1つまたは複数の視点を表現する、1つまたは複数のサブピクセルにより構成される、幅D、高さHの画素が、楕円弧にピッタリ収まる楕円弧式を求める。(図34参照)
 なお、ピッタリ収まるとは、画素の最外周部が楕円弧からはみ出さないように、楕円弧と接している状態である。
 楕円弧式は、以下の数式(4)により表される。
Figure JPOXMLDOC01-appb-M000007
 ここで、b、aの比として、画素の縦横比を用いると、b=(H/D)aとなり、数式(4)に代入すると、以下の数式(5)が得られる。
Figure JPOXMLDOC01-appb-M000008
 従って、以下の数式(6)が得られる。
Figure JPOXMLDOC01-appb-M000009
 P(D/2,H/2)を数式(6)に代入すると、以下のようになる。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 従って、以下の数式(7)が得られる。
Figure JPOXMLDOC01-appb-M000012
 これを、数式(5)に代入すると、以下の数式(8)が得られる。
Figure JPOXMLDOC01-appb-M000013
 ここで、水平方向の楕円弧の最大幅を示すK(x,y)は、y=0であるから、数式(8)より、以下のようになる。
Figure JPOXMLDOC01-appb-M000014
 従って、以下の数式(9)が得られる。
Figure JPOXMLDOC01-appb-M000015
 図35(a)に示すように、可視領域の中央において、左右の目により視認される可視領域の楕円弧の最大幅が、画素に接するように設定する場合、数式(9)の結果より、以下の数式が得られる。
Figure JPOXMLDOC01-appb-M000016
 従って、水平方向可視領域長Vは、以下の数式(10)により求められる。
Figure JPOXMLDOC01-appb-M000017
 また、図35(b)に示すように、可視領域の中央において、左右の目により視認される可視領域の画素同士が接する場合、数式(9)の結果より、水平方向可視領域長Vは、以下の数式(11)により求められる。
Figure JPOXMLDOC01-appb-M000018
 図35(a)に示す構成例の特徴は、異なる視点用の画素を左右の目によりそれぞれしっかり視認することが出来るため、立体効果が大きいが、その結果、特に前に飛び出している画像については、わずかに見づらい場合がある点である。
 一方、図35(b)に示す構成例の特徴は、異なる視点用の画素が、完全にそれぞれ左右の目により視認されるものの、一部が重なって視認されるため、立体効果がわずかに低減する点である。しかし、その分、飛び出ている画像も滑らかな画像として視認される。
 いずれの構成例においても、ベストビューポイントに位置する画像提示対象者に対し、適切な立体効果を提供できることから、水平方向可視領域長Vの範囲は、以下の範囲が、最も適切な水平方向可視領域長Vの範囲である。
 すなわち、
Figure JPOXMLDOC01-appb-M000019
から
Figure JPOXMLDOC01-appb-M000020
の範囲である。
 しかし、多少見づらくなるが、さらに立体効果を高めたい場合は、V≒1.41×2Dを上回る水平方向可視領域長Vを設定すればよい。
 また、立体効果は多少低減するが、さらに見やすくしたい場合は、V≒1.205×2Dを下回る水平方向可視領域長Vを設定すればよい。
 斜め直線状のスリットを用いた場合には、最も推奨される値として、前記2つの値の平均値となる、V≒1.3×2Dを用いることが好ましい。
 当然であるが、いずれの場合でも、ベストビューポイントよりも裸眼立体表示装置に近づけば、立体効果は高くなり、見えづらくなる。さらに近づき、視差の限界点を超えれば、立体として認識できなくなる。また、ベストビューポイントよりも裸眼立体表示装置から遠ざかると、立体効果は低減し、さらに遠ざかると、完全に立体効果は無くなる。
 楕円弧形状のエッジを有するスリット(楕円弧スリット)の特徴は、画像提示対象者が裸眼立体表示装置に向かって水平移動した時に、徐々に次の視点の画像が見えるようにして、極めて滑らかに、視点移動を行うことが出来る事である。
 前記の水平方向可視領域長Vの算定方法は、楕円弧スリットの特徴を利用した方法であるが、従来の斜め帯状スリットや斜め階段状スリットにおいても、この水平方向可視領域長Vの算定方法を用いれば、同様に、前述した適切な立体効果を得ることが出来る。
 なお、図36に示す例では、
Figure JPOXMLDOC01-appb-M000021
となる。
 隣り合う画素を左右の目により見る場合は、M=2Dであり、
Figure JPOXMLDOC01-appb-M000022
となる。
 次に、V≦3Dの場合を、図37に示す。
 可視領域の両端に位置した画素を左右の目により見る場合は、M=V-Dであり、
Figure JPOXMLDOC01-appb-M000023
となる。
 次に、V>3Dの場合を、図38に示す。Lは、
Figure JPOXMLDOC01-appb-M000024
となる。
 <立体視可能な最大距離の算定>
 次に、モニタ面(マスク面)からどの距離Lfまでであれば、適正な立体効果が得られるかを算定する。
 図29に示すように、少なくとも視点の異なる画素が左右の目により見ることが出来る最小の水平方向可視領域長Vは、2×(画素の幅D)である。ここで左右の注視点を、Cr、Clとすると、Cr、Clから可視領域の左、右の近い方の端部までをα、左右の注視点間距離をβとすると、以下の式が成り立つ。
Figure JPOXMLDOC01-appb-M000025
 ここで、
Figure JPOXMLDOC01-appb-M000026
 また、
Figure JPOXMLDOC01-appb-M000027
より、
Figure JPOXMLDOC01-appb-M000028
 数式(14)を数式(13)に代入すると、
Figure JPOXMLDOC01-appb-M000029
となる。
 次に、数式(15)を数式(12)に代入すると、
Figure JPOXMLDOC01-appb-M000030
 従って、
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000032
となる。
 この立体視適性距離Lfだけ離れた位置までが、左右の目が異なる視点の画素を見ることが出来る限界である。そして、この距離を超えると立体の効果が著しく低減し、2D画像に見えてくる。
 ここで、設計視差Wより視差が大きい人では、モニタ面よりさらに離れても立体効果が得られるし、子供のように視差が小さいと、もっと手前までしか立体効果が得られないことは言うまでもない。
 また、モニタ面に対して、顔が正面を向いていない場合、実効視差が小さくなり、同様に、もっと手前までしか立体効果が得られない。
 以上の事から、パララックスバリアを設計する際に、この位置まで立体で見せたいという、立体視適正距離を基に、前述の式を逆算して設計することが出来る。
 <立体視可能な最小距離の算定>
 次に、モニタ面(マスク面)に対し、どの距離Lnまで近づいても適正な立体効果が得られるかを算定する。
 本算定は、コンテンツの作成方法により、大きく異なる為、光学的に数式化することは難しい。画像提示対象者がモニタ面に対して水平に移動する際に、複数の視点の画素および/またはその一部を見て、1つの視点の画素として平均化して見えるビューミックスを生じながら視点移動するには、隣り合う異なる視点の画像に大きな視差があると、二重に見えてしまい、ビューミックスが生じない。
 そのため、コンテンツを制作する際に、2眼の立体のように目前まで飛び出るように対象物を配置しないで、カメラの注視点より、少しだけ手前に配置して立体感を抑えて、実写撮影またはCGによりレンダリングする。
 ところが、そのために被写体やカメラワークの演出が損なわれてしまう。2眼の立体撮影・レンダリングではカメラ間距離を人の視差と同様に65mm程度取るが、裸眼立体では、自然な演出に対応するため、隣り合うカメラ間距離を2~3cm内外にして撮影する。
 前述したように、撮影・レンダリング時の隣り合うカメラ間距離を2~3cm内外にした場合、図40に示すように、可視領域の左右端部に幅Dの画素が配置された状態において、その画素の中心間の距離をβとすると、図41に示すように、モニタ面(マスク面)から画像提示対象者までの距離Lnは、
Figure JPOXMLDOC01-appb-M000033
 ここで、β=VーDなので、
Figure JPOXMLDOC01-appb-M000034
となる。
 この算定結果は、撮影・レンダリング時の隣り合うカメラ間距離を2~3cm内外にした場合の結果と概ね同一であり、本制作条件での立体視適性距離の算定式として、充分実用になる。
 この距離より、さらにモニタ面に近づくと視差が強くなり、像を結ぶことができず、二重、三重に見えて、見づらい画像となる。
 ここで、視差の小さい子供やモニタ面に対して少し左右どちらかに顔を振って見ると、さらにモニタ面に近づいても立体効果が得られる。
 なお、この位置から立体として見せたいという条件でパララックスバリアを設計するには、当該距離を基にして、本算定式から逆算して設計することが出来る。
 以上のことから、立体視適性範囲は、図42に示すように、立体視適性距離Lnから立体視適性距離Lfまでの範囲である。
 <各パラメータを用いた実施例1>
 解像度1920×1080のフルハイビジョン40インチディスプレイを対象とする。1インチは25.4mmなので、このディスプレイの表示面の幅は、以下のように計算される。
Figure JPOXMLDOC01-appb-M000035
 従って、R、G、Bの各サブピクセルの幅は、以下のように計算される。
Figure JPOXMLDOC01-appb-M000036
 BVP距離Lを、モニタ面から2.5mとし、視差Wを65mmとし、視点数を6とする。
 図43に示すように、1行内に位置し、水平方向に連続したサブピクセル3個により、1つの視点用の画素を表現する場合、水平方向可視領域長Vの最適範囲は、以下の範囲となる。
 V = 2×(1.205~1.41)×(0.1537×3)
   ≒ 1.1113~1.3003mm
 従って、空隙距離Zは、以下の範囲となる。
 Z = (1.1113~1.3003)×2500/(2×65)
   ≒ 21.3712~25.0058mm
 スリット幅Sは、以下の範囲となる。
 S = (1.1113~1.3003)×65/
     (2×65+(1.1113~1.3003))
   ≒ 0.5509~0.6437mm
 視点数6であるから、単位当たりの、水平方向のマスク幅と水平スリット幅との合計は、以下の値になる。なお、マスク幅とは、スリット間の不透明部分の幅の事である。
 6×0.1537×3 = 2.7666mm
 従って、マスク幅は、以下の範囲となる。
 2.7666 ー (0.5509~0.6437)
 = 2.2157~2.1229mm

 ここで、V=1.3×2Dとした場合のモニタ面(マスク面)からの立体視適性範囲Ln~Lfを求めると、以下のとおりである。
 Vは、以下の計算により求まる。
Figure JPOXMLDOC01-appb-M000037
 Zは、以下の計算により求まる。
Figure JPOXMLDOC01-appb-M000038
 Sは、以下の計算により求まる。
Figure JPOXMLDOC01-appb-M000039
 それ故、Lnは以下の計算により求まる。
Figure JPOXMLDOC01-appb-M000040
 また、Lfは以下の計算により求まる。
Figure JPOXMLDOC01-appb-M000041
 すなわち、Lnは約2.0mであり、Lfは約4.6mである。
 以上から、モニタ面(マスク面)から約2.0~4.6mまでが、立体視適正範囲である。
 <各パラメータを用いた実施例2>
 図44に示すように、1行当たり水平方向に連続した2サブピクセルを2行分用いて、合計4個のサブピクセルにより、1つの視点用の画素を表現する場合、水平方向可視領域長Vの最適範囲は、以下の範囲となる。
 V = 2×(1.205~1.41)×(0.1537×2)
   ≒ 0.7408~0.8669mm
 従って、空隙距離Zは、以下の範囲となる。
 Z = (0.7408~0.8669)×2500/(2×65)
   ≒ 14.2462~16.6712mm
 スリット幅Sは、以下の範囲となる。
 S = (0.7408~0.8669)×65/
     (2×65+(0.7408~0.8669))
   ≒ 0.3683~0.4306mm
 視点数6であるから、水平方向のマスク幅と水平スリット幅との合計は、以下の値になる。
 6×0.1537×2 = 1.8444mm
 従って、マスク幅は、以下の範囲となる。
 1.8444 - (0.3683~0.4306)
 = 1.4761~1.4138mm
 ここで、V=1.3×2Dとした場合のモニタ面(マスク面)からの立体視適性範囲Ln~Lfを求めると、以下のとおりである。
 Vは、以下の計算により求まる。
Figure JPOXMLDOC01-appb-M000042
 Zは、以下の計算により求まる。
Figure JPOXMLDOC01-appb-M000043
 Sは、以下の計算により求まる。
Figure JPOXMLDOC01-appb-M000044
 それ故、Lnは以下の計算により求まる。
Figure JPOXMLDOC01-appb-M000045
 また、Lfは以下の計算により求まる。
Figure JPOXMLDOC01-appb-M000046
 すなわち、Lnは約2.0mであり、Lfは約4.6mである。
 以上から、モニタ面(マスク面)から約2.0~4.6mまでが、立体視適正範囲である。
 <各パラメータを用いた実施例3>
 図45に示すように、第1の行の、1行当たり水平方向に連続した2サブピクセルと、第2の行の、1行当たり1サブピクセルと、合計2行、合計3個のサブピクセルにより、1つの視点用の画素を表現する場合、水平方向可視領域長Vの最適範囲は、以下の範囲となる。
 なお、この場合、水平方向に用いられるサブピクセルの個数は、平均1.5個である。
 V = 2×(1.205~1.41)×(0.1537×1.5)
   ≒ 0.5556~0.6502mm
 従って、空隙距離Zは、以下の範囲となる。
 Z = (0.5556~0.6502)×2500/(2×65)
   ≒ 10.6846~12.5038mm
 スリット幅Sは、以下の範囲となる。
 S = (0.5556~0.6502)×65/
     (2×65+(0.5556~0.6502))
   ≒ 0.2766~0.3235mm
 視点数6であるから、水平方向のマスク幅と水平スリット幅との合計は、以下の値になる。
 6×0.1537×1.5 = 1.3833mm
 従って、マスク幅は、以下の範囲となる。
 1.3833 ー (0.2766~0.3235)
 = 1.1067~1.0598mm
 ここで、V=1.3×2Dとした場合のモニタ面(マスク面)からの立体視適性範囲Ln~Lfを求めると、以下のとおりである。
 Vは、以下の計算により求まる。
Figure JPOXMLDOC01-appb-M000047
 Zは、以下の計算により求まる。
Figure JPOXMLDOC01-appb-M000048
 Sは、以下の計算により求まる。
Figure JPOXMLDOC01-appb-M000049
 それ故、Lnは以下の計算により求まる。
Figure JPOXMLDOC01-appb-M000050
 また、Lfは以下の計算により求まる。
Figure JPOXMLDOC01-appb-M000051
 すなわち、Lnは約2.0mであり、Lfは約4.6mである。
 以上から、モニタ面(マスク面)から約2.0~4.6mまでが、立体視適正範囲である。
 <各パラメータを用いた実施例の補足事項>
 以上、楕円弧スリットの特徴を利用した、水平方向可視領域長Vの算定に基づき、パララックスバリアの設計計算を行った。
 なお、スリットのエッジ形状としては、楕円弧だけではなく、斜め帯状または斜め階段状の各種スリットのいずれかを用いてもよい。
 <楕円弧のエッジ形状の特徴点について>
 パララックスバリアのエッジ形状に楕円弧を用いることにより、画像提示対象者が視点を移動させない場合、本来の視点用の画素が視認されると共に、ビューミックスを発生させる為に、本来の視点用の画素の両側にある、他の視点用の画素も、一部視認される。
 遠くなり、視差が出る画像ほど、面積が小さくなるように、楕円弧を形成している点である。
 階段状であれば、視差が遠くなる場合でも、影響が出てしまう。
注視点から離れた、他の視点用の画素によるビューミックスは楕円弧の形状により、少なくなるので、極端な場合であれば、視差を生じさせないようにしつつ、ビューミックスを発生させる点がポイントである。
 前記において説明したように、モニタ面の近くから、画像提示対象者が画像を見る場合、本来見える画素より外側の画素が、多く見えてしまう。
 すなわち、特に近くから見た場合に、注視点の左右の、他の視点用の画素が視認されてしまうので、像が結像しなくなってしまう場合がある。それ故、そのような場合に、スリットのエッジ形状が楕円弧であれば、注視点から遠い他の視点用の画素に関しては、ビューミックスへの影響が少なくなる。
 従来、ある一定の距離Lnから一定の距離Lfまでの範囲であれば、画像提示対象者は、立体を視認することが出来、距離Lfよりモニタ面から離れると、立体感は無くなるが、2次元画像が視認されるので、画像が視認できないということは無かった。しかし、画像提示対象者が、距離Lnよりモニタ面に近づくと、画像は見えなくなってしまう。
 以上のことより、本発明の、エッジ形状が楕円弧形状であるスリットは、モニタに極めて近い場所から画像提示対象者が画像を見る場合に、有効な技術である。
 <穴型パララックスバリアについて>
 裸眼立体視のための可視光を透過する領域である、パララックスバリアのスリットは、連続しており、そのエッジ形状が直線状、楕円弧状、スプライン曲線状などである構成がまず考えられる。しかし、パララックスバリアを用いて裸眼立体効果を起こすには、以下に述べる、他の構成を用いることも出来る。
 その構成とは、パララックスバリアのスリットの役割を、文字通りの連続した可視光透過領域であるスリットに担わせる代わりに、独立しており、かつ、ブレンドされたサブピクセルの1個または数個に対応した可視光透過領域を、複数個配置することにより、担わせる構成である。要するに、本発明の可視光透過領域とは、可視光を透過しない面に可視光を透過する領域として、複数設けられた穴である。
 <穴型パララックスバリア設計の概略について>
 図49において示すように、まず、画像提示対象者は、ベストビューポイントに位置していると仮定する。片眼の有効可視領域の幅をD(上記の説明に基づけば、片眼分の水平方向可視領域長として1/2Vとなる)とし、可視光透過領域の幅をSとし、画素配列面からパララックスバリアまでの距離をZとし、パララックスバリアからベストビューポイントまでの距離をLとすると、S/D=L/(L+Z)なので、S=LD/(L+Z)となる。
 なお、ベストビューポイントに位置するとは、以下の3条件が満たされているということである。すなわち、(1)画像提示対象者の右目は、パララックスバリアのスリットを通して、画素配列面の有効可視領域Drを視認し、画像提示対象者の左目は、パララックスバリアのスリットを通して、画素配列面の有効可視領域Dlを視認する。そして、(2)有効可視領域Drと有効可視領域Dlとは、互いに接している。(3)有効可視領域Drと有効可視領域Dlとは、重なっていない。
 次に、片眼ずつの有効可視領域を、画素配列面において、定める。有効可視領域は、画素平均幅(後述)と1画素を構成するサブピクセルの高さとから求めることが出来る。
 次に、画素配列面において定まった有効可視領域に対応する、パララックスバリア上の矩形領域を定める。この矩形領域は、画像提示対象者の片眼と有効可視領域とを結んだ四角柱の、パララックスバリア面での断面に相当するので、有効可視領域と相似形となる。
 次に、矩形領域の上下および/または左右の辺に内接する可視光透過領域を定める。
 次に、定めた可視光透過領域を、画素配列面において、裸眼立体表示用にブレンドされたサブピクセルの配列に合わせて、複数配置する。
 なお、オプションとして、可視光透過領域を、矩形領域の高さを保ったまま、矩形領域の左右の辺を斜めに倒して平行四辺形とする変形に合わせて、変形させてもよい。矩形領域を平行四辺形とする変形は簡単なので、矩形領域内の可視光透過領域がどのような形状であっても容易に変形出来ると共に、可視光透過領域を斜めに変形させる事により、より多くのサブピクセルのブレンド配置に対しても、より適切に対応可能な穴型パララックスバリアを設計することが出来る。
 すなわち、可視光透過領域の設計は、ローカル座標系を用いて行い、パララックスバリア上に、各可視光透過領域を配置する際は、可視光透過領域の中心点を、パララックスバリア全体の絶対座標系を用いて配置する。
 なお、画素配列面上の有効可視領域に基づき、パララックスバリア上の可視光透過領域を定める際、可視光透過領域の鉛直方向の大きさは、相似形とする代わりに、有効可視領域と同一としてもよい。この構成により、画像提示対象者が視認する立体画像において、画像の上下方向の連続性を確保することが出来る。
 <画素平均幅の計算方法について>
 以下の、可視光透過領域の設計方法の説明において用いる画素平均幅Dの計算方法について述べる。画素平均幅Dは、ディスプレイの画素配列面において、ブレンドされた立体画像用のサブピクセルの配置のうち、1視点用の1画素を構成するサブピクセルの水平方向の平均個数のことである。
 なお、各視点用の画素を構成するサブピクセルの配置が、視点ごとに異なる場合は、異なる配置を組み合わせた最小単位の画素数を用いて算定する。
 例えば、図50(a)に示す例では、1画素を構成する3個のサブピクセルのうち、2個が1つの行にあり、残りの1個が上下隣り合う行に配置されている。
 2画素分のサブピクセル数が6であり、行数が2であり、画素数が2であるので、画素平均幅Dは、(2画素分のサブピクセル数)/(行数×画素数)=6/(2×2)=3/2(個)となる。
 また、図50(b)に示す例では、3画素分のサブピクセル数が12であり、行数が3であり、画素数が3であるので、画素平均幅Dは、12/(3×3)=4/3(個)となる。
 また、図50(c)に示す例では、明らかに、画素平均幅Dは、3(個)である。
 また、図50(d)に示す例では、明らかに、画素平均幅Dは、2(個)である。
 また、図50(e)に示す例では、明らかに、画素平均幅Dは、1(個)である。
 <可視光透過領域の設計方法について>
 以下において、穴型パララックスバリアにおける、個々の可視光透過領域の設計方法の詳細を説明する。
 (1)まず、1個の画素を構成するサブピクセルの水平方向の平均個数と大きさとから、画素平均幅Dを求める。幅Pおよび高さHのサブピクセルを考え、1個の画素における水平方向の平均サブピクセル数をαとすると、画素平均幅Dは、D=αPにより求められる。
 (2)次に、画素の水平方向可視領域長をVとすると、片眼の水平方向可視領域長は、1/2Vとなる。
 ここで、立体視を行う為には、画素平均幅を含む、画素の少なくとも一部が、片眼により視認できる事が必要である。何故なら、左右の目を用いて、相異なる2つの視点用相当の画素を、別々に視認できないと立体効果が得られないからである。
 また、画素2個の幅の全部が、片眼により視認できない事も必要である。何故なら、片眼により2つの視点用相当の画素が見えてしまうと、画像が二重に見えてしまうからである。
 それ故、片眼の水平方向可視領域長1/2V(=0.5V)が取り得る値の範囲は、D≦1/2V<2Dとなる。
 (3)次に、片眼の水平方向可視領域長1/2Vは、取り得る値の範囲がD≦1/2V<2Dであることから、両端の値の中間値である1.5Dを用いて、1/2V=1.5Dとすることが望ましい。
 なお、画素平均幅Dの乗数は、可視光透過領域の形状と、サブピクセルのブレンド方法と、上下の画素の連結方法(隣り合う画素同士の配置位置の関係)とにより異なる。
 具体的には、画素平均幅が小さければ、Dの乗数は小さい。画素の連結方法により、1個の画素内での複数のサブピクセルの配置の傾きに較べて、複数の可視光透過領域同士の配置の傾きの方が大きく倒れているほど、Dの乗数は大きくなる。
 なお、両端がすぼんでいる様な形状では、片眼による1つの視点用相当の画素の注視点を中心に、左右の画素が離れた領域ほど、視認できる画素の面積が小さくなり、ジャンプポイントの影響が少なくなるようにビューミックスが生じるので、ジャンプポイントを適度に低減することが出来る。
 (4)次に、矩形領域(Square Area)SAは、幅が水平方向可視領域長1/2Vであり、高さがH以内である1個の片眼の有効可視領域(Single eye's Effective Viewable Area)SEVAを収めるように形成される。片眼の有効可視領域SEVAの一部が、スリットの代わりとなる1個の可視光透過領域を通して片眼により視認される領域となる。
 なお、図51において、有効可視領域を設計する際のサイズを示す。
 片眼の有効可視領域SEVAが大きいほど、パララックスバリアの難点である輝度の低下が改善されるので、裸眼立体ディスプレイの輝度を確保する為には、片眼の有効可視領域SEVAを納める矩形領域SAの高さを、高さHとすることが望ましい。
 (5)次に、矩形領域SAに収まる可視光透過領域の形状は、左右対称および/または上下対称であることが望ましい。何故なら、左右両側に位置する画素が均一に視認されるので、安定したビューミックスを生じさせ、立体視特有の目の疲れを低減させることが出来るからである。
 また、上下方向に配置される複数の可視光透過領域を同形状とする事により、画像の連続性を維持する事が出来る。
 なお、立体をシャープに表現するには、片眼の有効可視領域SEVAが、画像提示対象者の視点の移動に伴って、片眼の注視点の中心から左右に離れるに従い、片眼の有効可視領域SEVAの面積が縮小する変化率が大きいことが望ましい。
 ジャンプポイントを低減し、ディスプレイの輝度を確保するには、可視光透過領域の面積が大きいほど望ましい。従って、同時に、立体をシャープに表現し、ジャンプポイントを低減し、かつ、ディスプレイの輝度を確保するには、上記の2つの条件を備える形状の可視光透過領域であることが望ましい。
 <個々の可視光透過領域の具体的な形状について>
 上記の説明により、パララックスバリア上に形成される、スリットの代わりとなる複数の可視光透過領域において、個々の可視光透過領域が満たすべき条件を定めた。
 次に、これらの条件を満たす、個々の可視光透過領域の形状の具体例を説明する。なお、立体効果を損なわない範囲であれば、全ての可視光透過領域の形状を同一の形状としてもよいし、個々の可視光透過領域の形状を互いに異ならせたものとしてもよい。
 よりシャープな立体画像を得て、眼が疲れないビューミックスによりジャンプポイントを低減し、ディスプレイの輝度を確保するには、片眼の有効可視領域SEVAが片眼の注視点の中心から左右に離れても、片眼の有効可視領域SEVAの面積が縮小する変化率を大きくし、可視光透過領域の面積が出来るだけ大きく、可視光透過領域のエッジ形状が、左右対称であったり、上下対称であったりすることが望ましい。
 個々の可視光透過領域の形状としては、楕円を用いてもよいし、三角形、菱形などを用いてもよいし、六角形、八角形などの偶数角を持つ多角形を用いてもよいし、金平糖のような形状を用いてもよい。
 また、隅角部が所定の円周率の円弧を用いて描かれる多角形でもよい。
 もちろん、楕円、菱形、偶数角を持つ多角形、金平糖のような形状を配置する際には、上下対称および/または左右対称として配置することが望ましい。
 図52において、可視光透過領域の具体的な形状を示す。図52(a)が四角形、(b)が四角形(菱形)、(c)および(d)が六角形、(e)が八角形、(f)から(j)までが、(a)から(e)までの図形を変形し、さらに矩形領域SAの四隅の角部が所定の円周率となる円弧を用いて描いた多角形の例である。
 なお、矩形領域を平行四辺形に変形する場合、可視光透過領域は、上下対称または左右対称とはならないが、その場合でも、変形前の矩形領域内に可視光透過領域を設定する際に、上下対称および/または左右対称となるように、可視光透過領域を設定することが望ましい。
 <矩形領域の変形の詳細について>
 矩形領域を平行四辺形に変形する際、矩形領域の高さを保ったまま、矩形領域の左右の辺を斜めに倒して平行四辺形に変形する。
 この時、斜めに倒す角度を角度θとし、各視点用の画素の配置の傾き、すなわちパララックスバリア上における可視光透過領域の配置の傾きを角度θ1とし、一画素内の各サブピクセルの配置の傾きを角度θ2とする(1画素を構成する複数のサブピクセルが2行以上に渡って配置される場合)と、角度θが取り得る範囲は、垂直すなわち角度0から、角度θ1および角度θ2のうち、いずれか大きい方までの範囲であることが望ましい。
 また、裸眼立体効果を最も得る為には、角度θは、角度θ1と角度θ2との間の値であることが、特に望ましい。
 図53(a)に示すように、変形前の矩形領域のある点の座標を(x,y)とすると、変形後の座標は、(x+ytanθ,y)となる。
 なお、図53(b)に示すように、実際の変形は、矩形領域の中心点の位置を変えないように、上辺および下辺を等量だけ、反対方向にずらして行う。
 なお、図53(c)に示すように、矩形領域の変形は、平行四辺形への変形以外に、矩形領域をその中心点を中心として回転し、長辺および短辺の長さを調整する変形でもよい。
 この変形では、矩形領域を角度θだけ回転させた状態において、矩形領域の大きさの変形に関し、幅を1/2Vcosθとし、高さをh/cosθとすることにより、水平方向の幅として可視領域長1/2Vを維持しつつ、上下に配置される矩形領域同士が連結されるように伸縮することが望ましい。
 <複数の可視光透過領域の配置について>
 複数の可視光透過領域は、垂直方向に直線上に配置してもよいし、斜め方向の直線上に配置してもよいし、上記において説明したようなジグザグ形状に配置してもよい。
 但し、複数の可視光透過領域の配置状態に応じて、各視点用のサブピクセルのブレンド方法を調整する必要がある。なお、具体的なブレンド方法については、後述する。
 <穴型パララックスバリアの具体例について>
 穴型パララックスバリアの具体的な実施例を3ケースのブレンド配列を示す。さらに1ケースのブレンド方法当たり、2通りの矩形領域(四角形および平行四辺形)について示す。以下の例では、可視光透過領域の形状は、楕円弧とする。
 なお、矩形領域を平行四辺形とした場合の特徴は、立体を鮮明に見せるため、可視光透過領域が狭い場合でも、ビューミックスを実現して、水平方向に視点を移動しても、ジャンプポイントに至るまで立体効果を維持でき、ジャンプポイントも多少緩和することが出来る。
 但し、可視光透過領域が左右非対称になるため、目に疲労を生じさせる場合があると考えられる。
 ケース1では、3行3サブピクセルにより構成されるブレンド配置に対応した可視光透過領域の配置の傾きが、画素を構成するサブピクセルの配置の傾きと同一となるように、上下方向に連結されている。
 それ故、立体の飛び出し度も大きく、鮮明に見えるものの、水平方向に視点を少し移動すると、立体が見えづらくなる。
 <可視光透過領域の求め方について>
 画素配列面上の有効可視領域から、パララックスバリア上の可視光透過領域を求める際には、ベストビューポイントにおける画像提示対象者のいずれか一方の眼を基点として、有効可視領域と相似形となる可視光透過領域を求める。
 この際、水平方向には、相似形とすることに問題は無いが、垂直方向には、相似形とすると、図54(a)に示す状態となる。
 図54(a)においては、図の左側にある、実線により表された大きな楕円は、設計時の画素配列面上の2個の有効可視領域を表す。その右側にある実線により表された小さな楕円は、パララックスバリア上に形成される2個の可視光透過領域を表す。
 図の右側の3個の視点のうち、上側および下側の視点は、各可視光透過領域を設計する際に用いる視点である。中央の視点は、実際に画像を見る際の視点である。
 なお、有効可視領域を収める矩形領域が、平行四辺形への変形または回転伸縮による変形を施されている場合には、長軸方向(長辺方向)に延長して、有効可視領域の垂直方向の高さを維持することが望ましい。
 <選択等に関与するパラメータ>
 なお、ブレンド方法を選択するに際し、プレーヤ(ブレンド処理プログラム)は、設置されたパララックスバリアシートの種類を、例えば予め作成し配布されているパララックスバリアシートとブレンド方法との組み合わせを記述したテーブルを参照し、ブレンド方法を選択する。
 パララックスバリアシートを特定のディスプレイ用に製造する場合、ディスプレイの解像度、ピクセル幅、およびマルチビューの視点数をパラメータとして、パララックスバリアシートを製造する。
 <パララックスバリアシートの製造方法>
 パララックスバリアは、通常、可視光を透過しないマスク面と、可視光を透過するスリット面から構成される。スリット面を残してマスク面のみを形成することにより、パララックスバリアが形成される。
 本発明にかかるパララックスバリアシートでは、パララックスバリアのマスク面を透明媒体に直接、印刷等により、形成してもよい。(レーザプリンタまたはオフセット印刷によるダイレクトプリント)
 この方法では、最初に透明薄膜シートにパララックスバリアを印刷し、その後、透明薄膜シートを透明媒体に貼り付ける方法に較べ、工程を一つ削減することが出来る。また透明薄膜シートの伸縮を考慮しなくて済む。但し、透明媒体にパララックスバリアを直接形成する際には、透明媒体に対し、パララックスバリアのスリットの傾きが所望の値となるように、適切に制御する必要がある。
 なお、パララックスバリアを透明媒体に直接形成する際に、グラビア印刷を用いることが望ましい。
 もちろん、従来と同様に、最初に、透明薄膜シートにパララックスバリアを形成し、その後、透明薄膜シートを透明媒体に貼付する方法により、パララックスバリアシートを製造してもよい。
 なお、写真フィルム(ネガ)に直接焼き付ける、露光印刷による方法でもよい。この方法では、直接光により露光してパララックスバリアを形成するので、極めて高精度のパララックスバリアを、直接、ネガフィルムである透明シート上に形成することが出来る。
 穴型パララックスバリアであれば、パンチングメタルと同様なので、特に有効である。
 もちろん、本発明に係るパララックスバリアシートの形成に限らず、通常のパララックスバリアを形成する際にも、パララックスバリアと電磁波シールドとを兼用させる構成は、部品点数の削減および製作工程の削減が出来るという観点から有効である。

<遊技ゲーム機の構成>
 本発明の遊技ゲーム機は、図55に示す通り、入力部と、検知部と、計時部と、ゲーム制御部と、映像制御部と、輝度制御部と、裸眼立体映像表示部と、で構成される。
 入力部は、遊技ゲーム機のプレイヤーによる操作を受け付け、ゲーム制御部および映像制御部に入力信号を送る。
 検知部は、遊技ゲーム機の盤面上の遊技球の位置および/または軌道を検知する。また、遊技ゲーム機のプレイヤーの有無を検知してもよい。検知部は、検知した結果を検知信号としてゲーム制御部および映像制御部に送る。
 計時部は、遊技ゲーム機のプレイ時間を計測して、ゲーム制御部および映像制御部に計時信号を送る。
 ゲーム制御部は、遊技ゲーム機のゲーム内容を制御して、映像制御部に制御信号を送る。
 映像制御部は、プレイヤーによる入力部の操作、計時部が計測する所定のプレイ時間の経過、またはゲーム制御部によるゲームの制御結果に対応して3D映像または2D映像を制御し、裸眼立体映像表示装置に映像信号を送る。また、3D映像表示と2D映像表示の切り替え信号を輝度制御部に送る。
 輝度制御部は、3D映像表示と2D映像表示の切り替え、またはその他の条件により輝度を制御して、裸眼立体映像表示部に輝度制御信号を送る。
 裸眼立体映像表示部は、映像信号に基づき、映像を表示する。また、輝度制御信号に基づき、輝度を変更する。

<3D映像の出現回数、表示時間、飛び出し度の制御>
 3D映像を長時間視聴すると、眼が大変疲れる。眼が疲れないようにするためには、3D映像の出現回数、表示時間、立体飛び出し度を減らせばよい。つまり、3D映像の視聴開始時、ゲームのプレイ開始時においては本来の迫力ある3D映像を表示し、連続プレイ時間が経過するにしたがって自動的に、3D映像の出現回数、表示時間、立体飛び出し度を減らし、プレイヤーの眼が疲れてくるであろう所定時間を過ぎた後は3D映像を表示するのをやめて2D映像を表示するように映像を制御すればよい。
 以下に、本発明における代表的な、3D映像の出現回数、表示時間、立体飛び出し度の制御方法を説明する。
 図56は各飛び出し度に応じて作成したブレンド済みの映像を説明する図である。図56(a)は飛び出し度をゼロ(0cm)にした映像、つまり2D映像を表している。図56(b)は飛び出し度を1(1cm)とした3D映像を表している。図56(c)は飛び出し度を2(2cm)とした3D映像を表している。図59(d)は飛び出し度を3(3cm)とした3D映像を表している。3D映像の出現回数、表示時間、立体飛び出し度を減らす第一の制御方法として、図56(a)~(d)のような予め所定の出現回数、表示時間、立体飛びだし度のものとして作成したブレンド済みの映像を複数用意して、これを選択的に再生する制御方法がある。かかる制御方法に用いるブレンド済みの映像は通常、可逆性圧縮をしなければならないが、圧縮率が低いため膨大なデータとなる。
 図57は複数の各視点用の映像を説明する図である。図57(a)は対象物を複数の各視点用のカメラを用いて撮影した各視点の映像を表している。同図からわかるように、各視点用の映像において対象物の位置はそれぞれ少しずつずれている。図57(b)は対象物と複数の各視点用のカメラとの位置関係を表している。同図からわかるように、複数の各視点用のカメラは等間隔で配置されている。3D映像の出現回数、表示時間、立体飛び出し度を減らす第二の制御方法として、予め所定の複数の視点用の映像を用意して、これらをリアルタイムにブレンドすることにより制御する方法がある。かかる方法によれば各視点用の映像ファイルは非可逆性圧縮でも構わないため、好適である。第二の制御手段では、隣り合う各視点の視差が同一となるように複数の視点用の映像の中から必要な視点の映像を選択してブレンドする。仮にパララックスバリアのビュー数が5であり、予め用意した各視点用の映像の数が9個の場合、飛び出し度は三段階に設定できる。図57においては、視点1、3、5、7、9を選択した場合、各視点の視差は最も大きくなるため、飛び出し度は最も大きくなる。視点3、4、5、6、7を選択した場合、各視点の視差は小さくなるため、飛び出し度も小さくなる。視点を全て同じ、例えば視点を全て5とした場合、各視点の視差はゼロとなるため映像は飛び出さない、つまり2D映像となる。3D映像の出現回数、表示時間を減らしたい場合は、視点を全て同じにしてブレンドした、つまり2D映像となるシーンの時間を長くすればよい。
 図58はカメラ(マルチカメラ)による、対象物に対する接近・離隔による飛び出し度の制御を説明する図である。図58(a)はカメラを対象物に対して接近させた状態を表しており、この状態では対象物はカメラの注視点より前方に位置するため、モニタ面より手前に飛び出して見える。図58(b)はカメラを対象物に対して接近・離隔させることで対象物をカメラの注視点に合わせた状態を表しており、この状態では対象物はモニタ面に、つまり2D映像として見える。図58(c)はカメラを対象物に対して離隔させた状態を表しており、この状態では対象物はカメラの注視点より後方に位置するため、モニタ面より奥に見える。
 図59は対象物のカメラに対する接近・離隔による飛び出し度の制御を説明する図である。図59(a)は対象物をカメラに対して接近・離隔させて、(1)注視点よりも前方、(2)注視点、(3)注視点よりも後方、の三段階の位置に配置した状態を表している。図59(b)は対象物の各配置状態による対象物の飛び出し度を表しており、(1)対象物をカメラに対して接近させて注視点よりも前方に配置した場合に対象物はモニタ面から飛び出して見え、(2)注視点に配置した場合に対象物はモニタ面に、つまり2D映像として見え、(3)対象物をカメラに対して離隔させて注視点よりも後方に配置した場合に対象物はモニタ面よりも後方に見える。
 図60はカメラ向きの変更による飛び出し度の制御を説明する図である。図60(a)はカメラの向きを変えて、注視点が対象物の後方にくるようにした状態を表しており、この状態では対象物はモニタ面より手前に飛び出して見える。図60(b)はカメラの向きを変えて、注視点が対象物と合わさるようにした状態を表しており、この状態では対象物はモニタ面に、つまり2D映像として見える。図60(c)はカメラの向きを変えて、注視点が対象物の前方にくるようにした状態を表しており、この状態では対象物はモニタ面よりも奥に見える。
3D映像の出現回数、表示時間、立体飛び出し度を減らす第三の制御方法として、複数の視点用の映像をリアルタイムにレンダリングすることにより制御する制御方法がある。第三の実施形態の制御方法はさらに三通りの制御方法に分かれる。
 第一にカメラを対象物に対して接近・離隔させ、カメラを接近させたときに対象物はモニタ面よりも手前に飛び出して見え、カメラを離隔させると対象物はモニタ面よりも奥に見える。
 第二に対象物をカメラに対して接近・離隔させ、対象物を接近させたときには対象物は飛び出して見え、対象物を離隔させたときはモニタ面よりも奥に見える。
 第三にカメラの向きを変えることで注視点の位置を変える。注視点を対象物の後方にすると対象物はモニタ面から飛び出して見え、対象物の前方にするとモニタ面より奥に見える。注視点と対象物が重なると対象物はモニタ面に見える、つまり2D映像となる。3D映像の出現回数、表示時間を減らしたい場合は、上記の制御により2D映像をレンダリングする回数、時間を増やせばよい。
 3D映像の出現回数、表示時間、立体飛び出し度はプレイ時間の経過により減らすだけでなく、逆に増やすことも当然できる。例えばプレイ開始から計測して、プレイヤーがゲームを終了すると思わしき所定の時間が経過すると、飛び出し度の大きい3D映像を表示するように制御することにより、パチンコにおける確率の変動等のプレイヤーに有利な情報を告知することは、プレイヤーの射幸心をあおり、プレイ意欲を大きく喚起する。
 上記三種類の実施形態の制御部による制御の他に、立体の飛び出し度はプレイヤーが任意に操作してもよい。操作は遊技ゲーム機に設けた入力部(入力手段)により行う。入力手段は飛び出し度制御用のボタン、つまみ、スライドでもよいし、あるいはゲーム上のコンフィグモードでもよい。プレイヤーは眼の疲れを感じたら自ら飛び出し度を小さくしてもよいし、より迫力のある映像を見たいと感じたら飛び出し度を大きくしてもよい。
 なお、本発明における3D映像の出現回数、表示時間、立体飛び出し度の制御方法は上記の各実施形態に限定されるものではなく、求められる実施態様に基づいて種々の変更を許容するものである。

<可動式パララックスバリア>
 本発明の可動式パララックスバリアの代表的な構造を説明する。
 なお、パララックスバリアの不透過領域と、可視光透過領域とがどのように構成されるかについては、先に述べたように、スリットを複数の楕円弧により構成するか、可視光透過領域である穴部を複数連続して配置して構成することが好ましい(ただし、これらの構成に限らない)。
 図61に示す第一の構造はパララックスバリアを形成したパララックスバリア部と2D映像表示用の光を透過する透明部とが連続的に配置されるロール式のパララックスバリアシートである。
 モニタ面の周囲には上下または左右にパララックスバリアシートの巻き取り部が配置され、該巻き取り部がパララックスバリアシートを巻き取ることで、パララックスバリア部または透明部のいずれかがモニタ面の前方に移動する。
 また、図62に示すようにパララックスバリアシートは凹凸を補正して、モニタ面との間に適正な空隙距離Zを維持する必要がある。該空隙距離Zはプレイヤーの眼とパララックスバリアとの間の距離Lにより求められる。第一の構造のパララックスバリアシートは図61(c)のようなスペーサまたは図61(a)のようなレールによって挟み込むことにより凹凸を補正する。
 図63に示す第一の構造の他形態においてはモニタ面とパララックスバリアシートの中間部に光を透過するガラス製などの透明板が配置される。
 該透明板には複数の微細孔が設けられており、モニタ周囲に配置する吸引部(吸引手段)によりパララックスバリアシートを吸引することにより該パララックスバリアシートは該透明板に密着して凹凸を補正する。
 図64に示す第二の構造はレールにより移動する板状のパララックスバリアである。
 モニタの周囲にはレールが配置され、パララックスバリアはレールの隙間を通ってモニタ面の前方に移動することで3D映像を表示することができるようになる。レールはパララックスバリアとモニタ面との間の適正距離Zを維持するスペーサの役割も兼ねている。
 図65に示す第三の構造はモニタ周囲に配置した、伸縮機構を持つスペーサによって前後方向に移動する板状のパララックスバリアである。
パララックスバリアはスペーサの伸縮により図65(b)に示す第一の位置と図65(c)に示す第二の位置に移動する。第一の位置においてはパララックスバリアとモニタ面との間の距離が3D映像を表示するために適正な距離Zである。第二の位置はパララックスバリアとモニタ面との間の距離が2D映像を表示する上で最適な距離である。
 以下に、パララックスバリアのその他の特徴について説明する。
 パララックスバリアの表面には2D画像を形成してもよい。
 図66によればパララックスバリアの表面には飛行機の操作席を模した2D画像が形成されており、窓部分にパララックスバリアが形成されているため、かかる窓部分のみが3D映像を表示する。2D画像は光を透過するインクにより形成され、3D映像を表示する際にも干渉しないため、遊技ゲーム機のデザインの自由度が高まる。特に、図67のようにパララックスバリアの全面に2D画像を形成すると、プレイヤーには遊技ゲーム機の盤面上に表示装置があたかも存在しないかのように見せることができる。かかる状態において3D映像を表示すると、プレイヤーを驚かせ、プレイ意欲を大きく喚起する。
 また、パララックスバリアの形状はモニタの形状に限定されることなく、任意の形状とすることができるため、遊技ゲーム機のデザインの自由度が高まる。また、プレイヤーのプレイ意欲を喚起する。図68によればパララックスバリアの外形は虫眼鏡の形状をしており、レンズ部分に相当する部分にパララックスバリアが形成されているため、レンズ部分のみが3D映像を表示する。図69によればパララックスバリアの外形は潜望鏡の形状をしており、のぞき窓に相当する部分にパララックスバリアが形成されているため、のぞき窓部分のみが3D映像を表示する。
 上記のように、パララックスバリアの表面に2D画像を形成でき、形状も自由であるということは、遊技ゲーム機のデザインその他のコンテンツ制作の自由度が飛躍的に向上し、デザイナーの創作意欲を喚起する。ひいては、裸眼立体映像表示手段を備えた遊技ゲーム機の普及に寄与する。
 なお、本発明のパララックスバリアの構造は上記の構造に限定されるものではなく、求められる実施形態に基づいて種々の変更を許容するものである。

<輝度の制御>
 本発明の輝度制御部(輝度制御手段)について説明する。
 図70は本発明の遊技ゲーム機に用いる表示装置内のバックライトを示す。該バックライトは基板上に図70(a)のように複数の蛍光灯または図70(b)のように複数のLEDを配置して構成されている。パララックスバリア方式の裸眼立体映像表示部(裸眼立体映像表示手段)においてはパララックスバリアによって輝度が低下するため、バックライトに供給する電圧または電流を上げることで輝度の低下を補うことが有効である。なお、バックライトを有さず、その他の部分が光源となっている表示装置においては該光源に供給する電圧または電流を上げればよい。
 図71のように3D映像表示用のモニタと2D映像表示用のモニタを別々に設けたダブルモニタ方式としてもよい。2D映像表示用のモニタにはパララックスバリアが備えられていないため、当然輝度は低下しない。
 ここで、可動式パララックスバリアおよびダブルモニタ方式を採用した場合、3D映像表示時と2D映像表示時とでは輝度差が生じる。かかる輝度差は、2D映像表示時においては一部の蛍光灯またはLEDのみを点灯し、3D映像表示時においては全部の蛍光灯またはLEDを点灯することで補正する。
 また、3D映像表示時において2D映像表示時よりも光源に供給する電圧または電流を上げることでも輝度差の補正は可能である。
 さらに、図72のように虫眼鏡の形状をしたパララックスバリアのマスク部分に覆われたモニタの一部分が表示する立体映像は明度を高い映像にし、モニタのその他の部分が表示する2D映像は明度を低い映像にすると、プレイヤーには瞳孔の働きによって立体映像が明るく見えるため、結果的に輝度差は補正される。
 3D映像および2D映像の明度はもとから輝度差が補正されるように映像を作成してもよいが、映像を再生するためのフレームバッファに一時的に蓄えられる映像データに対して、リアルタイムに画像処理を行うとより好適である。

<裸眼立体映像表示手段を設けたパチンコ機>
 図73は本発明の実施形態の一つである裸眼立体映像表示部を備えたパチンコ機を表したものである。
 かかるパチンコ機によれば、(1)パチンコ機にコインまたはプリペイドカードを入れてゲームを開始するとき、(2)遊技球が盤面上の役物に入ることで変動が開始するとき、(3)変動の結果、リーチ状態となったとき、(4)変動の結果、当たりが出たとき、(5)確率の変動が起こったとき、等のタイミングで裸眼立体映像表示部により3D映像を表示することでプレイヤーの射幸心をあおり、プレイ意欲を喚起する。
 また、プレイヤーによるミニゲームの結果に応じて出現回数、表示時間および/または立体飛び出し度の変化した3D映像を表示することもできる。裸眼立体映像表示部には、プレイヤーに対して操作をうながす画像または映像が表示される。表示される画像または映像はプレイヤーが操作すべき入力部の種類、操作をするタイミング、操作をする回数等のプレイヤーに対する指示を意味する。プレイヤーが入力部を操作して、かかる指示通りに正しく入力をすることができるとゲーム制御部(ゲーム制御手段)においては当たり、確率の変動といったプレイヤーに有利となる制御を行い、それと対応して3D映像が表示される。このようにミニゲームによってゲームのプレイにメリハリが生まれ、ゲームの結果によって迫力ある3D映像を表示することができるため、プレイヤーのプレイ意欲を喚起する。
 本発明の遊技ゲーム機に用いる入力部は、具体的にはボタン、レバー、スライダー、ジョイスティック、マウス、キーボード、ジョグダイヤル、タッチパネル等が挙げられるがこれ以外のものでもよい。
 図74のように、パチンコ機の演出の一つとして、裸眼立体映像表示部を飾物で隠してもよい。この場合、役物に遊技球が入る、所定の連続プレイ時間が経過する、などの条件を満たすときに裸眼立体映像表示部が出現すると、プレイヤーを驚かせ、プレイ意欲を喚起する。
 さらに、かかるパチンコ機では3D映像を一種の役物として扱うことも可能である。パチンコ機には盤面全体を検知することができる検知部(検知手段)が備えられており、検知部は一定の時間間隔毎に盤面上を移動する遊技球の位置を検知して、ゲーム制御部に検知信号を逐一送信する。ゲーム制御部は該検知信号と、映像制御部から取得する役物を表示する画素の位置情報と、に基づき、所定のタイミングにおいて立体映像により表示する役物の位置と、遊技球の位置とが一致するか否かの判定を行う。ゲーム制御部は該判定処理において立体映像により表示された役物の位置と遊技球の位置とが、一致するときには変動などの制御を行い、一致しないときには変動などの制御を行わない。これによれば、立体映像はゲーム制御部による制御の結果を表示するだけでなく、立体映像自体をゲームの制御の一要素とすることができ、付加価値が高まる。
さらに、ゲーム制御部は映像制御部から役物を表示する画素の位置情報を取得するのに代えて、立体映像が役物を表示する位置、タイミングを予め定義しておくこともできる。これによれば、判定は簡略化する。
 なお、本発明の遊技ゲーム機は上記のようなパチンコ機に限定されず、求められる実施態様に応じて種々変更可能なものである。
 以上のように本発明によれば、眼が疲れにくく、2D映像表示時に輝度が低下せず、かつプレイヤーの射幸心をあおってプレイ意欲を喚起する、付加価値のある裸眼立体映像表示手段を備えた遊技ゲーム機を提供することができる。

<脱着式>
 本発明の実施形態について図75から図99に基づいて説明すると以下の通りである。
 なお、本発明のポイントは、SVGA(800×600)クラスの低解像度および14インチ程度の画面サイズの廉価なディスプレイと、廉価版CPUとを備えたPCにおいても、本発明にかかるパララックスバリアシートを容易に脱着可能に付加し、画素数を抑えた裸眼立体表示用の画素ブレンド方法を用いることにより、通常の廉価なPCにおいても、裸眼立体コンテンツを楽しむことが出来る点である。
 本出願は、ハードウェアの説明に重点を置くので、画素数を抑えた裸眼立体表示用の画素ブレンド方法については、説明を省略する。


 <スペーサの厚みについて>
 スペーサの厚み、すなわち、ディスプレイ面とパララックスバリア面との空隙距離Zを計算し、計算結果に応じて、スペーサを形成する際に注意する点としては、厳密には、ディスプレイ面は、画素が配列されている面の上に、さらに保護層が存在する点が挙げられる。
 計算では、画素面からの距離を求めるので、実際に作成するスペーサにおいては、その厚みは、空隙距離Zからディスプレイ面の保護層の厚みを引いたものとしなければならない。
 <透明媒体の厚みによる代用>
 なお、スペーサの厚みの、少なくとも一部は、パララックスバリアシートを構成する透明媒体の厚みを利用してもよい。透明媒体の厚みを、透明媒体の製造過程において調整することは、比較的容易だからである。
 但し、この場合は、パララックスバリアシートをディスプレイに設置する際には、厚みを持った透明媒体の、画像提示対象者側に、パララックスバリアが形成されている必要がある。
 後述するが、例えば、モニタ面とその枠との段差をスペーサの一部に利用する場合、空隙距離の残りの部分を、透明媒体の厚みにより担わせる。また、透明媒体の厚みを差し引いた分だけを、以下の各種スペーサの厚みとして設けることも出来る。
 <スペーサの代表例>
 図75において、L字型のスペーサを用いる場合の、具体例を示す。この例では、ディスプレイのモニタ面が、その枠であるフレームに囲まれ、かつ、一段低い面として構成されている場合を想定している。
 ディスプレイのフレームのコーナーにフィルタ(パララックスバリアシートとも言う)に取り付けられたスペーサを、フィルタが回転しないように合わせて、フィルタを脱着可能な所定の方法により取り付ける。
 また、フレームのコーナーに固定したスペーサに、フィルタを脱着可能な所定の方法により取り付けてもよい。
 <<段差より空隙距離が大きい場合>>
 次に、図76から図88において、フレームの段差の厚み(枠の面とディスプレイのモニタ面との段差)より、スペーサの方が厚い場合の取り付け方について、説明する。
 図76においてフィルタを挟む方法の例を示す。この例では、スペーサは、フレームのコーナーに合わせて、ずれないように取り付ける。挟み込み型取り付けフックは、フィルタおよびディスプレイの、上下左右、どの側に取り付けてもよい。
 図77において、フィルムをレール(ガイドレール、桟とも言う)上に載せる方法の例を示す。この例では、レールをフレームに取り付け、レールの上にフィルタを載せる。レールにフィルタを載せることにより、フィルタの水平を保てるため、必ずしもスペーサとフレームのコーナーを合わせる必要はない。
 なお、スペーサの形状は、所定の厚みを確保できるものであればよく、L字形状でも、円柱状でも、角柱状でもよい。
 ノートPCであれば、最も単純な構成として、パララックスバリアシートの上下方向の長さを延長し、桟の役目をディスプレイ面下部のキーボード面に担わせることも可能である。
 なお、パララックスバリアシートが画像提示対象者側に倒れないように、パララックスバリアシートの上部を、ディスプレイ面の上部と共に挟んで止めるための、挟み込み型取り付けフックを用いてもよい。
 図78において、ディスプレイのモニタ面の上下にレールを設けた例を示す。この例では、レールをモニタ面の上下に取り付けるので、フィルタをしっかり固定できる。フィルタは、横から、レールの溝に合わせてスライドさせ、挿入する。
 なお、図78に示す例では、スペーサが用いられているが、図79に示すように、スペーサを省略し、レールの溝の位置により、スペーサの機能を代用させてもよい。
 なお、図78に示す例では、レールは、モニタ面の幅と同じ長さとしているが、フィルタが固定できればよいので、モニタ面の近傍のみに設けてもよい。
 図80において、フィルタを上からレールの溝にスライドさせて設置する方法を示す。この例では、レールを、上方が空いたコの字状に配置する。
 なお、上記の例と同様にスペーサを省略してもよいし、レールをモニタ面の四隅近傍のみに設けてもよい。
 パララックスバリアシートをディスプレイ面に設置する方法としては、ディスプレイの左右両側に、ガイドレール状の保持手段を設け、パララックスバリアシートをディスプレイ面の上から、ガイドレールに沿って挿入し、適切な箇所まで挿入されたら、パララックスバリアシートが止まるように、ディスプレイ面の下側にストッパーを設けてもよい。
 ストッパーもディスプレイ画面左右のガイドレールと同様の形状とし、全体としてコの字形状のガイドレールを用いることも出来る。
 図81において、ディスプレイ上部にフックを2箇所設け、フィルタを吊す方法を示す。フィルタに、フックに合う孔を2箇所開け、フックに差し込み、吊り下げる。
 フックを正確に取り付ければ、キャリブレーションを行う必要は無い。
 図82において、フィルタをディスプレイにネジ止めする方法を示す。フィルタの四隅に孔を開け、ピン等をねじ込んで、フィルタをフレームに固定する。
 なお、図83に示すように、スペーサを別途設ける代わりに、ピンにリングを取り付けてスペーサを兼ねる構成でもよい。
 図84において、フィルタをディスプレイに、粘着クッションを用いて貼る方法を示す。粘着クッションには、伸縮性のある脱着可能な材料を用いる。スペーサによりモニタ面とパララックスバリア面との距離が確保できるように、押し付けて接着する。粘着クッションの引張力により、スペーサとモニタ面およびパララックスバリア面とが密着し、空隙距離Zが適正に維持される。
 なお、粘着クッションの代わりに、吸盤状の、取り外しができる機構としてもよい。
 図85において、硬化粘着材を用いて、フィルタをディスプレイに貼る方法を示す。この例では、硬化粘着材が、スペーサを兼ねている。
 <<段差より空隙距離が小さい場合>>
 次に、空隙距離Zより、モニタ面とフレーム面との段差の方が大きい場合の取り付け方について説明する。なお、透明媒体のパララックスバリア面は、フレーム内のモニタ面に収まるように製作する必要がある。
 図86において、フィルタに取り付けられたL字型のスペーサのモニタ面側に粘着材を設け、フィルタを脱着可能とする方法を示す。スペーサをフレームのコーナーに合うように正確に設ける事により、フィルタのキャリブレーションを省略することが出来る。
 また、フレームのコーナーにスペーサを固定し、スペーサのフィルタ面側に粘着剤を設け、フィルタを脱着可能とすることも出来る。
 図87において、L字型取り付け具を用いたフィルタの脱着可能な取り付け方法を示す。この例では、L字型取り付け具は、上下のフレーム枠にはめ込まれる構造であると共に、フィルタを保持する溝が形成されているか、フィルタが接着された構造である。フィルタの上下にこのL字型取り付け具を取り付け、その状態のまま、L字型取り付け具をディスプレイのフレーム枠にはめ込む。
 なお、L字型取り付け具は、フィルタの左右に取り付けてもよい。
 図88において、スペーサを兼ねた挟み込み型取り付けフックによりフィルタを取り付ける方法を示す。この例では、挟み込み型取り付けフックは、モニタ面に接触する部分から始まり、フィルタを適正な位置に保持するための溝が設けられるかまたはフィルタが接着された構造であり、ディスプレイの外側を回って裏側まで延びており、ディスプレイを挟み込み構造である。
 この挟み込み型取り付けフックは、モニタ面の上下など、少なくとも2箇所以上に取り付けるとよい。何処に取り付けてもよいが、モニタ面の相対する箇所に取り付ける方が安定がよい。
 図89において、L字型取り付け具と円柱状スペーサとを組み合わせてフィルタを取り付ける方法を示す。この例では、上部のL字型取り付け具はスペーサを兼用しており、下部はフィルタに円柱状スペーサを取り付け、フレーム内にフィルタをはめ込み、脱着可能としている。
 なお、L字型取り付け具を下部に取り付け、円柱状スペーサを上部に取り付ける構成でもよい。
 また、L字型取り付け具に代わり、図88に示す挟み込み型取り付けフックを用いてもよい。
 <<段差に合わせてスリット幅を調整する場合>>
 これまでに、適切なベストビューポイントおよび立体視適性範囲を得るために、空隙距離Zを計算により求め、求めた空隙距離を実現するために、パララックスバリア面の位置を調整する方法を述べた。
 これに対し、以下では、発想を転換し、モニタ面と、ディスプレイの枠であるフレームとの段差を所与の条件として積極的に活用し、この段差をスペーサの代わりに用いる方法について述べる。
 なお、所与の空隙距離Zに対し、最適なベストビューポイントおよび立体視適性範囲を得る為には、まず、水平方向可視領域長Vと視差Wとを、下記の数式(3)に代入することにより、最適なスリット幅Sを求める。
Figure JPOXMLDOC01-appb-M000052
 また、数式(1)から下記の数式(19)が求まる。
Figure JPOXMLDOC01-appb-M000053
 次に、上式に水平方向可視領域長Vと、画素表示面からのモニタ面までの保護層の厚みとモニタ面とディスプレイの枠であるフレーム面との段差および、フレーム面からパララックスバリア面までの距離(フィルタのモニタ側にパララックスバリアが形成されている場合は、0となる)の和である空隙距離Zと視差Wとを代入すると、ベストビューポイント距離(BVP距離)Lが求まる。
 ここで、所定のBVP距離Lを設定したい場合には、数式(1)に基づく下記の数式(20)により、水平方向可視領域長Vを求める。
Figure JPOXMLDOC01-appb-M000054
 次に、この水平方向可視領域長Vに相当する水平方向可視領域長V’を有するRGBブレンド方式を選択し、裸眼立体映像を再生することにより、既存のディスプレイ枠の段差をスペーサとして代用し、所定のベストビューポイントを用いて適正な裸眼立体映像を再生できる。
 なお、当然であるが、スペーサを用いて空隙距離Zを制御することにより、所定のBVP距離Lを設定することも出来る。
 もし、ブレンド方法を適切に設定しないで、所定のベストビューポイントを設定した場合は、水平方向可視領域長Vが変長し、立体効果(飛び出し度)および立体の鮮明度が多少異なることになる。しかし、用途によっては、このままでも十分実用に供することが出来る。
 上述の計算方法により求めたスリット幅Sを元にパララックスバリアを形成することにより、切なベストビューポイントおよび立体視適性範囲を得ることが出来ると同時に、ディスプレイのモニタ面と枠との段差をスペーサとして利用した裸眼立体ディスプレイを構成することが出来る。
 <段差を用いたフィルタの取り付け方法>
 図90において、モニタ面より幾分大きいフィルタを用い、そのフィルタの四隅に粘着材を設け、フレームに貼り付ける方法を示す。
 なお、粘着材を設ける位置は、四隅である必要は無く、フレームと重なる位置であれば、一箇所以上に設ければよい。但し、粘着材を設ける場所が少ない場合は、重力の関係から、フィルタの上方とすることが望ましい。
 図91においては、粘着材の代わりに、挟み込み型取り付けフックを用いる例を示している。
 <テーブル型ディスプレイに対する取り付け>
 図92において、テーブル型ディスプレイ、すなわち、スクリーン面が上方を向いており、テーブルのように設置されたディスプレイに対して、パララックスバリアシートを取り付ける方法を示す。
 このテーブル型ディスプレイは、その上にゲーム用カードを置いて、ディスプレイ側からそのカードを認識して、ディスプレイに表示する画像および映像を制御する用途などに用いるものである。このディスプレイは、リアプロジェクタ用のスクリーンパネルと、下方から投影するプロジェクタとにより構成されている。
 この例では、スペーサは、通常のネジやボルトを留める場合と同じく、ピンまたはボルトと同軸の中空状であり、フィルタの下にこのスペーサを設置して、その中を貫いて、ピンまたはボルトをフレームにねじ込み、フィルタを固定する。
 図93において、モニタ面の四隅に来るようにスペーサを設置し、フィルタを上から置く方法を示す。
 なお、上方を向いたディスプレイは、通常のモニタでもよい。
 もちろん、パララックスバリアシートは、タブレットPCのモニタ面に重ねて用いることも出来る。
 <3D表示を視る場合と2D表示を視る場合の切り替え>
 図94において、空隙距離を調整して、通常の2D表示を視る場合と、裸眼立体効果により3D表示を見る場合とを切り替える様子を説明する。
 上記の例では、2D表示を画像提示対象者が視たい場合、画像提示対象者は、ネジまたはピンを調整し、空隙距離を、2D表示に最適な位置まで拡大する。3D表示を視たい場合は、空隙距離を適切な距離まで狭める。
 上記の構成は、ネジまたはピンを用いる場合に最も適用しやすい構成であるが、他の取り付け方法においても利用可能である。
 空隙距離を拡大し、スリットからモニタ面までの距離を拡大することにより、一つのスリットから視認できる画素数が増大するので、パララックスバリアのマスクにより隠される画素が減少するので、2D表示においても殆ど支障なく、小さい文字などの情報も綺麗に視認することが出来る。
 すなわち、ディスプレイを通常の2D表示ディスプレイとして使用する場合は、スペーサの厚みを第1の厚み(通常表示用)に調整し、ディスプレイを裸眼立体ディスプレイとして使用する場合は、スペーサの厚みを第1の厚みより薄い第2の厚み(裸眼立体表示用)に調整する。
 なお、厚み調整時に、例えば、スペーサがネジまたはピンにより構成されている場合、調整者が手動によりフィルタを動かすと、適正な厚みとなる位置で、クリック感が手に伝わることにより、正確な厚みの位置に調整できることが望ましい。
 <キャリブレーションについて(一般用)>
 ディスプレイ上に設置したパララックスバリアシートのキャリブレーションとは、ディスプレイに、上下左右の水平および垂直ライン(第2の指標)と、斜線ライン(第2の指標)とを表示させ、フィルタの水平および垂直ライン(第1の指標)、そしてパララックスバリアのスリット(第1の指標)を通して見える斜線ラインとがずれないように合わせる作業である。
 これらの方法によりキャリブレーションを行うと、簡易に、かつ正確に、キャリブレーションを行うことが出来る。
 モニタ面に水平ライン表示および垂直ライン表示を行ってもよいし、これらの表示を行う代わりに、フレーム枠とフィルタの水平ラインおよび垂直ラインを合わせてキャリブレーションを行う構成でもよい。
 なお、水平および垂直ラインの代わりに、モニタ面の4個のコーナーに点(第2の指標)を表示し、フィルタ上に形成された点(第1の指標)と重ねる事により、キャリブレーションを行ってもよい。
 なお、斜線ラインのみのキャリブレーションを行ってもよい。
 これらの方法によりキャリブレーションを行うと、簡易に、かつ正確に、キャリブレーションを行うことが出来る。
 また、キャリブレーション用立体画像を表示させ、画像提示対象者が、適正に立体効果が得られるか判断しながら調整する構成でもよい。
 <キャリブレーションについて(マルチビューポイント用)>
 複数視点(マルチビューポイント)用の裸眼立体ディスプレイにおいては、以下の各方法によりキャリブレーションを行ってもよい。
(方法A)
1.複数視点用の画像を用意する。画像は、キャリブレーション用に、偶数視点では、中央2視点用またはそのどちらかの1視点用の画素が白色である。奇数視点では、中央1視点、または、中央1視点および左右どちらかの1視点の画素のみが白色である。他の画素は黒色である。
2.前記ステップにおいて用意した画像を取り込み、表示された画像とパララックスバリアのスリットとを合わせる。
 この方法は、ディスプレイの画像表示面に、ある視点(1個か2個が望ましい)用の画素を白色とし、それ以外の視点用の画像を黒色とすることにより、キャリブレーション用の指標を形成し、その指標が、パララックスバリアのスリットを通して視た時に、連続した線として視認できる位置に、パララックスバリアシートを設置するように調整してキャリブレーションを行うものである。連続している線であることが重要である。
 図95は、このキャリブレーション作業を説明する図であり、5視点型マルチビュー裸眼立体ディスプレイ用にブレンドするに際し、第3の視点用の画像を白色とし、第1、第2、第4、および第5の視点用の画像を黒色としている。3Dブレンド後は、第3の視点用画素の部分のみが白色の線となって現れるので、パララックスバリアシートのスリットをその白色の線に合わせて、位置調整する。
(方法B)
1.所定のスリットに対して、対応する位置にスリット幅に合わせたラインを所定の色を用いて表示し、合わせる。
(方法C)
 この方法は、ライン(第1の指標)を、透明媒体の所定の位置に、水平および/または垂直に所定の幅のキャリブレーション用スリットとして設けた、画像表示面上の、このスリットに対応する位置に表示されたライン(第2の指標)を欠落無く視認できるように、透明媒体の位置を調整する方法である。欠落が無いことが重要である。
1.フィルタの、少なくとも左右どちらかの所定の垂直ライン上、および/または、少なくとも上下どちらかの所定の水平ライン上に、キャリブレーション用スリットを形成する。
2.モニタ面上の、形成したキャリブレーション用スリットに対応する位置に、垂直ライン、および/または、水平ラインを、所定の色を用いて表示し、フィルタ上に形成されたキャリブレーション用スリットと合わせる。
 なお、上記キャリブレーション用スリットとしては、透明媒体にスリット状の貫通した溝を形成してもよい。しかし、パララックスバリアのスリットと同様に、キャリブレーション用スリットを形成する位置には、可視光不透過のマスク面を形成しない、すなわち可視光を透過する状態としておくことにより、形成することが望ましい。
 なお、図96において、フィルタ上にキャリブレーション用のスリットとして、水平スリットおよび垂直スリットを形成した様子を示す。なお。この図では、パララックスバリア用のスリットは斜めになっている。
(方法D)
 上記の方法Cのキャリブレーション用スリット上に、半透明のキャリブレーション用ラインを用いる方法である。
1.フィルタ上に、キャリブレーション用ラインを、半透明の目立たない色を用いて引く。
2.モニタ面に表示される所定の色のラインと重ね合わせると、色が変化することにより、正確に位置合わせを行う。
 なお、この方法では、キャリブレーション用ラインの色は、モニタ面からの赤色を吸収する色ではなく、かつ、色が重なることにより変化する色であることが望ましい。
 例えば、キャリブレーション用ラインの色を薄い黄色とし、モニタに表示するラインの色を赤とすれば、両者が重なると、薄い黄色が、赤に変化するので、重なったことが視認できる。
 図33において、モニタ面に表示された黄色ラインが、フィルタ面に形成されたキャリブレーション用ラインと重なることにより、赤色に変色する様子を示す。
 なお、キャリブレーション用スリットを形成しない場合、重なると、キャリブレーション用ライン部分を拡大視して、キャリブレーション用ラインの色が破線状に赤く変化するので、重なったことが視認できる。破線状に見えるのは、例えば、水平なキャリブレーション用ライン部分のうち、パララックスバリアの斜めスリットとの組み合わせでは、マスク面で遮断される部分と、斜めスリットを通して入ってくる部分とがあるからである。
(方法E)
1.精度を高めるため、モニタ面に、垂直ラインを、R、G、Bのいずれかの色のみを用いて表示し、合わせる。いずれかの色のみを利用すると、水平方向では、RGBのサブピクセルを合わせた1ピクセル分の幅ではなく、1サブピクセル分だけの幅、すなわち、1ピクセル分の幅の1/3の幅の精度を用いて位置合わせを行うことが出来る。
 <パララックスバリアシートの製造方法>
 パララックスバリアは、通常、可視光を透過しないマスク面と、可視光を透過するスリット面から構成される。スリット面を残してマスク面のみを形成することにより、パララックスバリアが形成される。
 本発明にかかるパララックスバリアシートでは、パララックスバリアのマスク面を透明媒体に直接、印刷等により、形成してもよい。
 この方法では、最初に透明薄膜シートにパララックスバリアを印刷し、その後、透明薄膜シートを透明媒体に貼り付ける方法に較べ、工程を一つ削減することが出来る。但し、透明媒体にパララックスバリアを直接形成する際には、透明媒体に対し、パララックスバリアのスリットの傾きが所望の値となるように、適切に制御する必要がある。
 なお、パララックスバリアを透明媒体に直接形成する際に、グラビア印刷を用いることが望ましい。
 もちろん、従来と同様に、最初に、透明薄膜シートにパララックスバリアを形成し、その後、透明薄膜シートを透明媒体に貼付する方法により、パララックスバリアシートを製造してもよい。
 <パララックスバリアのマスク面の色>
 透明媒体上にパララックスバリアのマスク面を形成する際、裸眼立体効果を最大限発揮させる為には、マスク面を黒色とすることが望ましい。
 <マスク面へのグラフィックの付加>
 しかし、多少、裸眼立体効果を犠牲にしても、パララックスバリアシートに、広告、イラスト、またはパララックスバリア識別情報などのグラフィックを付加したい場合がある。
 このような場合には、少なくとも画像提示対象者側を向くマスク面に、直接グラフィックを印刷してもよいし、黒色インクによりマスク面を印刷した上にグラフィックを印刷してもよいし、黒色インクによりマスク面を印刷した上に白色インクによりマスク面を印刷して重ね、その上にグラフィックを印刷してもよい。なお、白色印刷により可視光を完全に遮断することが出来れば、黒色印刷は省略できる。
 なお、グラフィックは、画像提示対象者が視認できるように形成する必要があるので、透明媒体の、画像提示対象者とは反対側に、パララックスバリアを形成する場合には、例えば、上記の最も工程が多い方法では、グラフィックを背面から印刷し、白色印刷し、黒色印刷する方法を行うことになる。この場合も同様に、白色印刷により可視光を完全に遮断することが出来れば、黒色印刷は省略できる。
 <斜めスリットにおける角度θの保持方法>
 以下は、パララックスバリアの各スリットが、ディスプレイの水平方向に対し、所定の角度θを有している斜めスリットを対象にした説明である。
 従来は、パララックスバリアを47インチディスプレイ等の大きさに合わせた広大な透明薄膜シートに印刷し、スリットの角度θが正しく形成されるように、そのシートを慎重にガラス板に貼り合わせていた。
 しかし、透明薄膜シートを用いずに、適切な位置に保持されたガラス板に、直接パララックスバリアを印刷すれば、角度θを調整しながら、透明薄膜シートをガラス板に貼り付ける工程は省略することが出来る。
 ガラスに直接印刷するので、スリットの角度θは適切に保持される。ガラス板は固いので、ガラス板をディスプレイ面に対して適切に保持しさえすれば、ディスプレイ面の画素配置に対し、角度θを確実に保持することが出来る。
 <透明媒体およびスペーサの材質>
 なお、パララックスバリアを形成する透明媒体としては、パララックスバリアシートの自重または風圧により変形する材料でなければ、ガラスの代わりに用いることが出来る。例えば、アクリル板などの透明樹脂でもよい。
 また、パララックスバリアシートの厚みは、ディスプレイに取り付けた状態において、平面性を保持できるだけの強度および硬度があればよく、ディスプレイへの取り付け方法によるが、運搬時または保管時は丸めることが出来る素材であってもよい。
 スペーサの材質は、透明であると、透明媒体と組み合わせた場合に、違和感がなく、スペーサがモニタ面上に配置される場合でも、スペーサの配置箇所の画像も見ることが出来る。
 また、スペーサは、透明媒体と同じ材料により、透明媒体と一体成形してもよい。一体成形すると、スペーサを透明媒体に接着する手間を省くと共に、パララックスバリアシートの強度を高めることが出来る。
 <パララックスバリアシートの認識と対応するブレンド方法の選択>
 なお、裸眼立体コンテンツを再生するノートPC側では、設置されたパララックスバリアシートの種類を識別し、設置されたパララックスバリアシートの特性に合わせて、複数用意してあるブレンド方法のうち、最も適切なブレンド方法を選択してもよい。ブレンド方法の選択については、後述する。
 <パララックスバリアシートの両面活用>
 パララックスバリアは、ガラス板等、厚みのある透明媒体の片側に形成されるので、パララックスバリアの形成面を、ディスプレイ側にして設置するか、画像提示対象者側にして設置するかにより、空隙距離(Z値)を透明媒体の厚み分だけ変更することが出来る。
 それ故、一枚のパララックスバリアシートのみにより、2種類の裸眼立体効果、具体的には、2種類のベストビューポイントおよび立体視適性範囲の組み合わせを、選択することが出来る。
 なお、パララックスバリアのスリットの、配置形状およびエッジ形状によっては、設置方法を適切に認識し、表示する3Dコンテンツのブレンド方法を調整する必要がある。
 例えば、斜めスリットの場合、パララックスバリアの形成面がディスプレイに近くなるように設置された時に、スリットが左下から右上に配置されるとすると、透明媒体を裏返すと、スリットは、右下から左上に配置されるからである。
 <パララックスバリアシートの保護>
 パララックスバリアシートは、従来の組み込み型ではないため、使用時、運搬時、保管時などに、表面に傷が付いたり、はがれたり、汚れが不着したりする可能性が高い。それ故、パララックスバリアシートの表面に保護膜(保護手段)を形成したり、保護ケース(保護手段)に格納できるようにしたりしてもよい。
 なお、透明薄膜シートにパララックスバリアを形成し、パララックスバリアが形成された側を透明媒体に貼り付ける方法によりパララックスバリアシートを製造した場合は、透明薄膜シート自体が、保護膜となるので、別途保護膜を形成する手間を省くことが出来る。
 <ノートPCの空間的制限への対応>
 既存のノートPCに、本発明にかかるパララックスバリアシートを設置する場合、考慮すべき点は、ディスプレイ面を閉じた時の、キーボード面との隙間の大きさである。
 ノートPCの機種によっては、ディスプレイ面を閉じた時に、キーボード面との隙間が少なく、パララックスバリアシートまたはそのシートをディスプレイ面に保持するための器具をディスプレイ面に設置した状態では、ノートPCを物理的に閉じることが出来ない場合がある。
 そのような場合でも、立体効果を得る為には、ノートPCを開いた時に、パララックスバリアシートをディスプレイ面に立てかけるだけの手間で済むので、手軽に立体効果を得ることが出来る。
 <グリッドシートとの兼用>
 グリッドシートとは、シートの表面にドットパターンが形成された透明なシートであり、このシート上を、ペン型スキャナによりタッチすることにより、タッチ位置の座標値をシート上に形成されたドットパターンを読み込むことで認識する仕組みである。
 本発明にかかるパララックスバリアシートに、このドットパターンを形成し、グリッドシートとしての役割を持たせることも可能である。
 ドットは、光を発するディスプレイ上に重なると、全く視認されないことから、ドットパターンの形成箇所がマスク面であろうがスリット面であろうが気にせず、ドットパターンを形成することが出来る。また、このように形成されたドットパターンは、ペン型スキャナにより読み取りやすいので、好都合である。
 こうすると、適切なソフトウェアさえ用意すれば、通常のディスプレイを、裸眼立体ディスプレイとして機能させると共に、ペン型スキャナを用いるタッチパネルとしても機能させることが出来る。
 <他のスリット形状について>
 図98において、さらに、他のスリット形状について説明する。
 図98(a)において、最初に長軸が垂直である楕円を形成した後、その長軸を傾きθだけ傾けて、スリットの全体形状が斜めスリットであり、エッジ形状が楕円弧であるスリットを形成する方法を示す。スリットの最も太い部分の幅が、スリット幅Sであり、最も細い部分の幅が、スリット幅D’である。
 楕円の式は、上記の数式(4)により表される。ここで、楕円の縦軸を楕円式の中心において傾きθだけ傾けた際、楕円弧を構成するx、yのうち、yが変化しないものとすると、xは、x=ytanθだけ水平移動する。
 そこで、水平移動後の楕円弧式は、
Figure JPOXMLDOC01-appb-M000055
となる。
 ここで、各行の楕円弧を、分割線上のD’の両端の接続点において連結することにより、楕円弧のスリットが形成出来る。
 図98(b)から図98(d)において、エッジ形状が三角であるスリットの例を示す。
 図98(b)に示す三角形エッジは、各行の中心線上においてスリット幅Sとなっており、その頂点から、上下の分割線へ向けてスリット幅D’となるように、二等辺三角形の等しい二辺が形成されている。
 図98(c)に示す三角形エッジは、上記の三角形エッジを傾きθだけ傾けたものである。スリット幅SおよびD’は維持されているが、三角形の二辺の長さは異なっている。
 図98(d)に示す三角形エッジは、全体のスリット配置形状としては、傾きθを用いてスリットを傾けるが、各行のエッジは変形せずに、分割線上を水平移動させ、三角形エッジ同士を分割線上の直線により連結する構成である。
 各行においては、エッジがスリットの左右両側において対称であることが、美しい立体画像を表示する上で重要である。例えば、三角形エッジであれば、上記図98(b)または(d)の構成が最も望ましい。この構成を用いると、歪みの無い立体効果が得られる。綺麗な立体を視認できるので、目の疲れを軽減する効果も期待出来る。
 もちろん、図98(c)の構成であって、ほぼ対称であると言え、適切に裸眼立体表示を行うことが出来る。
 また、パララックスバリアの可視光を透過する領域は、既に述べたように、スリットに代えて、述べたように複数の可視光透過領域である穴部を連続して配置してもよい。
 <元画像からのRGBピックアップ方法について>
 図114において、元画像からのRGBピックアップ方法を示す。
 図114(a)において、ブレンド後の裸眼立体表示用のサブピクセル配置例を示す。このディスプレイでは、解像度がm×nであり、1ピクセルを構成するサブピクセルが、3行に渡って配置され、水平方向にも3サブピクセル分となるので、サブピクセル解像度は、m’(=3m)×n’(=3n)である。
 ここで、rxをx方向のサブピクセル座標とし、ryをy方向のサブピクセル座標とすると、任意位置の1視点用画素において、その画素の右上に位置するサブピクセルの座標を(rx,ry)とすると、その画素のRGB値を、図99(b)に示す元画像から取得するには、サブピクセル座標を百分率座標に変換する。
 百分率座標(r’x,r’y)は、以下の式により表される。
 r’x=rx/m’
 r’y=ry/n’
 この座標と同じ位置の1視点用の画素のピクセル座標(Rx,Ry)は、以下の式により表される。
 Rx=int(Lr’x)
 Ry=int(Kr’y)
 ここで、LおよびKは、図99(b)に示す各視点用の元画像の解像度LxKである。
 これにより、各視点用画像の同一のピクセル座標(Rx,Ry)から、RGB値を求め、第1の視点用から所定の視点用までのサブピクセルを、順に右方向に並べて、裸眼立体視用画像をブレンドする。
 また、プラズマディスプレイパネルのように、電磁波シールドを必要とするディスプレイの場合は、パララックスバリアシートと電磁波シールドとを兼用させることも出来る。
 また、プラズマディスプレイパネルのように、電磁波シールドを必要とするディスプレイの場合は、パララックスバリアシートと電磁波シールドとを兼用させることも出来る。
 パララックスバリアシートに電磁波シールドの機能を兼用させることにより、電磁波シールドを別途用意したり、別工程により形成したりする必要が無くなる。
 特に、パララックスバリアシートおよび電磁波シールドを、印刷により形成する場合には、印刷工程の1段階として、パララックスバリアも電磁波シールドも形成出来るので、機能を兼用させることは有効である。
 なお、印刷によりパララックスバリアシートおよび電磁波シールドを形成する場合は、ガラス板またはアクリル板などの透明媒体に直接行ってもよいし、薄膜透明シートに印刷してから、その薄膜透明シートを透明媒体に貼り付けてもよい。
 印刷およびインクに関しては、以下の3通りの方法を用いることが出来る。
 (A)可視光を透過する領域と分けるために、可視光を透過しない特性を有するインク(例えばカーボンブラック)を用いて、図100(a)に示すように、パララックスバリアのバリア領域を印刷し、電磁波を透過しない特性を有するインク(例えばシールド用金属含有インク)を用いて、図100(b)に示すように、電磁波シールドを印刷する方法がある。完成すると、図100(c)に示すように見える。
 この場合、可視光透過領域には、電磁波を透過しない特性を有するインクによる印刷が行われてもよい。但し、可視光を透過する効果に影響が及ばないかまたは影響が少なくなるように、考慮する必要がある。
 (B)可視光透過領域は、通常の電磁波シールドと同様に、細い縦横の線として、電磁波を透過しない特性を有するインクにより印刷し、可視光を透過しない領域は、同じインクを用いて、可視光を透過しないように、面として印刷する方法がある。この方法では1個の版下と1種類のインクとを用いるだけで、印刷することが出来る。完成すると、図100(c)に示すように見える。
 (C)可視光透過領域は、通常の電磁波シールドと同様に、細い縦横の線として、電磁波を透過しない特性を有するインクにより印刷し、可視光を透過しない領域は、電磁波を透過しない特性を有する高価なインクに代わり、電磁波遮断特性を有するカーボンブラック等により印刷する方法がある。面として印刷する部分には、大量のインクが必要であるが、安価なカーボンブラックとすることにより、コストを低減させることが出来る。完成すると、図100(c)に示すように見える。
 (D)さらに、パララックスバリアの可視光透過領域の個々の面積が少ないことを利用し、パンチングメタルのように、可視光透過領域には、電磁波を透過しない特性を有するインクを用いて電磁波シールドを印刷することを省く印刷方法でもよい。この場合、可視光を透過しない特性と電磁波を透過しない特性とを兼ね備えた1種類のインクを用いて、一度の印刷工程により、パララックスバリアと電磁波シールドとを形成することが出来る。
 穴型パララックスバリアであれば、パンチングメタルと同様なので、特に有効である。
 もちろん、本発明に係るパララックスバリアシートの形成に限らず、通常のパララックスバリアを形成する際にも、パララックスバリアと電磁波シールドとを兼用させる構成は、部品点数の削減および製作工程の削減が出来るという観点から有効である。
 <穴型パララックスバリアでの電磁波シールド実施例>
 本発明においてパララックスバリアシートに形成する電磁波シールドのメッシュの規格は、既存の電磁波シールドの規格を使用するものとする。
 たとえば、大日本印刷株式会社製の電磁波シールドフィルムの規格においてはメッシュの開口幅(ピッチ)は約200μmであり、線幅は約10μmとされている。
 また、従来技術としては大日本印刷株式会社の特願2006-234683号にかかる特開2008-60280号公報に記載されているメッシュ状の電磁波シールドに関する技術が使用できる。
 かかる公報においては、メッシュの開口幅は、120μm以上とするのが、表示発光の透過性の点から好ましいとされている。メッシュの線幅は少なくとも5μm以上確保することが好ましいとされている。
 さらに、富士フイルム株式会社の特願2006-140559号にかかる特開2007-311646号公報に記載されているメッシュ状の電磁波シールドに関する技術が使用できる。
 かかる公報においては、メッシュの開口幅は、250μm以上350μm以下とするのが、透光性電磁波シールド膜の用途において最も好ましいとされている。
 前述の各公報を考慮し、本発明にかかる電磁波シールドであるメッシュの開口幅は約200μm~約250μmとして設計基準とし、また、メッシュの形状は概ね正方形に近い矩形であるものとする。
 ただし、上記のメッシュの開口幅および形状は、本発明の説明の便宜を図るための一例にすぎず、当然ながら求められる実施形態に応じて種々変更して実施可能である。
 ここで、本発明においては必ずしも実際に透明部材上にメッシュ状の電磁波シールドを印刷するわけではなく、メッシュの開口幅と同等の幅で区画されたパララックスバリアのスリットもしくは穴が形成されれば、電磁波シールドを兼用することができる。パララックスバリアのマスク部分は、電磁波を透過しない特性を有するインクで形成されるが、メッシュ状の電磁波シールドを重ねて印刷してもよいことは言うまでもない。
<各種パララックスバリアシートへの適用>
 図101(a)は、小型モニタの穴型パララックスバリアであり、(b)は、電磁波シールドのメッシュである。(a)は、可視光を透過しないインクを用いて印刷し、(b)は、電磁波遮断特性を有するインクで、(a)に重ねて印刷する版の例である。なお、点線部分は、開口部を示すための仮想の線であり、版には形成しない。(c)は、電磁波遮断特性を有するインクで印刷する版の例である。
 図102(a)は、中型モニタの穴型パララックスバリアであり、(b)は、電磁波シールドのメッシュである。(a)は、可視光を透過しないインクを用いて印刷し、(b)は、電磁波遮断特性を有するインクで、(a)に重ねて印刷する版の例である。なお、点線部分は、開口部を示すための仮想の線であり、版には形成しない。(c)は、電磁波遮断特性を有するインクで印刷する版の例である。
 なお、(b)、(c)の穴中央の線は、穴の幅が所定の電磁波を遮断するためのピッチを超えたため2分割するものである。
 図103(a)は穴型パララックスバリアであり、(b)は、可視項を透過する金属薄膜を設けたガラスもしくは透明シートである。(a)は可視光を透過しないインクを用いて印刷し、その上もしくは下に(b)を重ねて貼り付けて、(c)を形成するパララックスバリアと電磁波シールドを兼用する例である。
 図104および図105は、パララックスバリアのスリットを電磁波を遮断するために必要な所定の幅となるよう、スリットを横方向および/または縦方向に区画した例である。
 図106は、本来の穴の高さが上記所定の幅を超える場合は、複数の穴で形成するか、区画するかのどちらかの方法で所定の幅となるよう穴を形成した例である。
<プラズマ3Dモニタ>
 図107は、本発明の実施形態の一つである、プラズマ3Dモニタの構造を説明する図である。
 図107(a)はパララックスバリアを印刷した、所定の強度を有する透明部材を、既製のプラズマディスプレイに新たに取り付けたプラズマ3Dモニタの構造を説明する図である。
 同図(a)のプラズマ3Dモニタにおいては、透明部材がプラズマ3Dモニタ全体を覆うカバーによって固定されている。
 また、プラズマパネルのパネル側の面とパララックスバリアとが、立体表示を行うにおいて適正な空隙距離Zを維持するように、プラズマディスプレイのパネル脇の枠にスペーサが設けられている。
 ただし、プラズマディスプレイのパネル脇の枠が、適正な空隙距離Zを維持する上で十分な厚みを持っている場合は、スペーサを設けずともよい。
 モニタ装着のモニタ面側ガラスの電磁波シールド層と近赤外線遮断層は逆の順序で形成されてもよい。また、写り込み防止層と、電磁波シールド層または近赤外線遮断層が複合した層を形成してもよい。
 図107(b)はパララックスバリアを印刷した、所定の強度を有する透明部材を、製造行程において組み込んだプラズマ3Dモニタの構造を説明する図である。
 同図(b)のプラズマ3Dモニタにおいては、プラズマパネルのパネル側の面とパララックスバリアとが、立体表示を行うにおいて適正な空隙距離Zを維持するように、透明部材が固定されている。
 また、透明部材にはパララックスバリアの他に、前述の方法で印刷した電磁波シールドが印刷されている。電磁波シールドは前述の方法により、パララックスバリアが電磁波シールドを兼用するものとしてもよいし、パララックスバリアとは別に電磁波シールドを新たに重畳して印刷するものとしてもよい。
 写り込み防止層は、近赤外線遮断層と複合して形成されてもよい。
 <電気制御パララックスバリア>
 本発明に用いるパララックスバリアは、電気的な制御(スイッチ制御)により、パララックスバリアとしての機能をONまたはOFFにできる電気制御可パララックスバリア(スイッチパララックスバリア)としてもよい。
 すなわち、3D映像表示時においては、パララックスバリアは画像提示対象者に視差を起こさせるものとして機能するが、2D映像表示時においては、パララックスバリアは不要であって、可視光を全面的に透過させることが好ましい。
 そこで、パララックスバリアを電気的に制御して、3D映像表示時にはパララックスバリアをONにし、2D映像表示時にはパララックスバリアをOFFにすることにより、2D映像表示時の輝度の低下を防ぐことができる。
 電気制御パララックスバリアの具体的な実施形態としては、液晶の配向の制御によりパララックスバリアをONまたはOFFにすることが好ましい。つまり、液晶ディスプレイをパララックスバリアとして使用することになる。
 (A1) 本発明に係る裸眼立体映像表示装置は、前記課題を解決するために、パララックスバリア方式により立体映像を表示する裸眼立体映像表示装置であって、前面に2D画像が描画または印刷されたパララックスバリアと、2Dおよび/または3Dの映像を表示する表示手段とを備えたことを特徴とする。
 前記の構成によれば、表示手段が映像の表示を行わない時でも、画像提示対象者に対し、広いパララックスバリアの前面に描かれた2D画像を提示できるので、表示手段を発光させて稼働させている場合以外も、表示装置として利用することが出来るという効果を奏する。
 (A2) 本発明に係る裸眼立体映像表示装置では、前記パララックスバリアに入射する外部光の状態を検知する外部光検知手段と、少なくとも該外部光検知手段により検知された該外部光の状態に基づき、前記表示手段による前記2Dおよび/または3Dの映像の表示状態の制御を行う制御部とをさらに備えたことが好ましい。
 前記制御部が外部光の状態、すなわち、画像提示対象者が描画または印刷された2D画像および表示された2Dおよび/または3Dの映像を視認する際の、周りの光の状態を検知し、状況に応じた最適な映像の表示を、表示手段を介して行うことにより、画像提示対象者に対し、視認に最適な映像表示を行うことが出来るという効果を奏する。
 それ故、消費電力を削減することが出来るという効果も奏する。
 (A3) 本発明に係る裸眼立体映像表示装置では、前記パララックスバリアの前面に投光する投光手段と、該パララックスバリアに入射する外部光の状態を検知する外部光検知手段と、少なくとも該外部光検知手段により検知された該外部光の状態に基づき、該投光手段による前記2D画像の表示状態の制御を行う制御部とをさらに備えることが好ましい。
 前記制御部が外部光の状態、すなわち、画像提示対象者が描画または印刷された2D画像および表示された2Dおよび/または3Dの映像を視認する際の、周りの光の状態を検知し、パララックスバリアの前面に対する、状況に応じた最適な照明を、投光手段を介して行うことにより、画像提示対象者に対し、視認に最適な画像提示を行うことが出来るという効果を奏する。
 (A4) 本発明に係る裸眼立体映像表示装置では、前記パララックスバリアの前面に投光する投光手段と、該パララックスバリアに入射する外部光の状態を検知する外部光検知手段と、少なくとも該外部光検知手段により検知された該外部光の状態に基づき、前記表示手段による前記2Dおよび/または3Dの映像の表示状態の制御、および、該投光手段による前記2D画像の表示状態の制御を行う制御部とをさらに備えることが好ましい。
 前記制御部が外部光の状態、すなわち、画像提示対象者が描画または印刷された2D画像および表示された2Dおよび/または3Dの映像を視認する際の、周りの光の状態を検知し、状況に応じた最適な映像の表示を、表示手段を介して行うことにより、そして、状況に応じた最適な照明を、投光手段を介して行うことにより、画像提示対象者に対し、視認に最適な映像表示および画像提示を行うことが出来るという効果を奏する。
 (A5) 本発明に係る裸眼立体映像表示装置では、前記外部光の状態に基づく、前記2Dおよび/または3Dの映像の表示状態の制御は、前記2D画像を補完する色を表示する制御も含むことが好ましい。
 前記制御部は、表示状態の制御に際し、パララックスバリアの前面に描画または印刷された画像を補完する色を表示するので、前記2D画像がより適切に表現されるという効果を奏する。
 (A6) 本発明に係る裸眼立体映像表示装置では、前記制御部は、前記表示状態の制御に際し、時刻、画像提示対象者の接近、画像提示対象者のドアノブ等への接触、および/または、画像提示対象者が床の上に乗ったことを、対応する各検知手段により検知し、該表示状態の制御を行い、該画像提示者が該床の床面上に乗る場合、該床面は、前記裸眼立体映像表示装置の直前および/または直後に設置されるか、または、前記裸眼立体映像表示装置の表示面となるように設置されることが好ましい。
 前記制御部が、時計、画像提示対象者の接近を検知する人感センサ、画像提示対象者のドアノブ等への接触を検知する接触センサ、および/または、画像提示対象者が床の上に乗ったことを検知する感圧センサなどを備え、それらセンサからの入力信号に応じて、映像表示を変化させることにより、画像提示対象者に対し、より適切な表示を行うことが出来るという効果を奏する。
 (A7) 本発明に係る裸眼立体映像表示装置では、近傍の物体を撮像する撮像手段をさらに備え、前記制御部は、前記表示状態の制御に際し、該撮像手段により撮影した映像と共に、該画像を解析し、解析結果に応じた立体映像を表示する制御を行うことが好ましい。
 前記近傍の物体には、静物、動く物体、生物、特に、画像提示対象者を含む。
 前記制御部は、撮像手段により撮像された画像提示対象者などの画像を、立体映像の一部として、画像提示対象者に提示することにより、様々な表示を行うことが出来るという効果を奏する。
 (A8) 本発明に係る裸眼立体映像表示装置では、前記パララックスバリアの前面は、2D画像の描画または印刷に代わり、鏡面となっているか、または、該パララックスバリアの全面に渡り、マジックミラーとなっていることが好ましい。
 前記パララックスバリアの前面が鏡であれば、画像提示対象者が自分の姿を写した時に、表示手段による表示も同時に視認させることが出来るという効果を奏する。
 また、前記パララックスバリアの全面をマジックミラーとすると、鏡面にする場合と同様の効果が得られる上に、製造が容易になるという効果を奏する。
 (A9) 本発明に係る裸眼立体映像表示装置では、前記パララックスバリアの、スリット部を含んだ全面には、スキャナを用いて読み取ることにより記録された情報を再生可能なドットパターンが形成されていることが好ましい。
 前記スリット部は、表示手段による発光を透過する構造でなければならないが、ドットパターンは、充分に微細であり、映像の視認には支障は無いうえ、ドットパターンを読み取る為のスキャナを用いて、裸眼立体映像表示装置の映像表示面をタッチすることにより、タッチ位置を判断できるので、タッチ位置に応じた表示映像等の変更を行うことが出来るという効果を奏する。
 (B10) 本発明に係る裸眼立体映像表示装置は、前記課題を解決するために、パララックスバリア方式により立体映像を表示する裸眼立体映像表示装置であって、2D/3D映像の表示を行う映像表示手段と、ユーザからの入力を受け付けるタッチパネルとを備えたことを特徴とする。
 前記の構成によれば、タッチパネルから入力されたユーザの指示に応じて、表示する2D/3D映像を変化させることが出来るという効果を奏する。
 さらなる効果として、通常、裸眼立体映像表示装置では、効果的な立体効果が得られるベストビューポイントの位置が限られるが、画像提示対象者がタッチパネルを操作する事前提として、すなわち、画像提示対象者が画像を見る位置はタッチパネルに手が届く範囲である事を前提として、ベストビューポイントを定められるので、画像提示対象者に最も立体感のある映像を提示出来るという効果を奏する。
 (B11) 本発明に係る裸眼立体映像表示装置では、前記映像表示手段は、2D/3D映像の表示を行う第1の領域と、2D映像表示のみを行う第2の領域とに分割され、前記パララックスバリアは、少なくとも該第1の領域を覆い、前記タッチパネルは、少なくとも該第2の領域を覆うことが好ましい。
 前記タッチパネル部分は、2D映像表示のみを行うので、3Dの多視点用の画像を表示する必要が無く、2D専用の高解像度の映像を表示すればよいので、タッチパネルのメニューなどを精細に表示することが出来るという効果を奏する。
 (B12) 本発明に係る裸眼立体映像表示装置では、前記パララックスバリアの前面には、2D画像が描画または印刷されていることが好ましい。
 前記パララックスバリアの前面に2D画像を描画または印刷しておくことにより、裸眼立体映像表示装置が映像を表示していないときでも、2D画像を画像提示対象者に対し、提示することが出来るという効果を奏する。
 (B13) 本発明に係る裸眼立体映像表示装置では、前記タッチパネルは、グリッドシートであることが好ましい。
 前記グリッドシートは、モニタ画面に重ねて用いられる透明なシート上に形成された、目に見えない微少なドットパターンを、スキャナを用いてタッチすることにより、タッチパネルとしての機能を実現するものである。
 前記タッチパネルをグリッドシートにより構成すると、専用スキャナを用いてシート上をタッチすることにより、タッチパネル上のタッチ位置を検知することが出来るという効果を奏する。
 (B14) 本発明に係る裸眼立体映像表示装置では、前記グリッドシートは、前記パララックスバリアを兼用することが好ましい。
 前記グリッドシートは、透明なシート上に、ドットパターンを、印刷等により形成した構造であり、前記パララックスバリアも、透明なシート上に、バリアを、印刷等により形成した構造である。そこで、両者を兼用させる事により、部品点数を削減し、製造コストを低下させることが出来るという効果を奏する。
 (B15) 本発明に係る裸眼立体映像表示装置では、前記タッチパネルは、前記映像表示手段から着脱可能な、写真またはグラフィック等により形成されたアイコン等が印刷された媒体、ペーパーコントローラ、または、ペーパーキーボードであることが好ましい。
 前記ペーパーキーボードおよび前記ペーパーコントローラは、紙などの媒体上に、キーボードのキーやリモートコントローラのボタンを、ドットパターンと重ねて印刷したものである。ペーパーキーボードおよびペーパーコントローラ上のボタンやキーをペン型のスキャナによりタッチすることにより、ボタンやキーに割り当てられた情報が読み取られ、読み取られた情報に対応した、画像切り替えなどの機能が実行される。
 前記タッチパネルを、ペーパーキーボード、ペーパーコントローラなどより構成することにより、精細な写真等を印刷した媒体を、タッチパネルとして用いることが出来るという効果を奏する。
 (B16) 本発明に係る裸眼立体映像表示装置では、前記タッチパネルは、前記第2の領域に代えて、メニュー等の映像を表示するために、ショーウィンドウのガラス面等に形成された、透明または半透明の映像投影スクリーンと、該映像投影スクリーンに、可視光の光を投影するプロジェクタと、該映像投影スクリーンの領域に、該映像投影スクリーンの背面から不可視光の光を照射する光源と、ユーザによるタッチパネルへの接触により反射した、該不可視光の光を該タッチパネルの背面から撮像する撮像手段と、該撮像された画像の解析により、ユーザによるタッチパネルへの接触位置を計算する解析手段とを備えたことが好ましい。
 前記タッチパネルは、可視光により機能する部分と、不可視光により機能する部分とに分けられる。
 可視光により機能する部分は、画像提示対象者、すなわち、タッチパネルの操作者に対し、メニュー等の映像を投影するプロジェクタと、そのプロジェクタから投影された映像を映し出す映像投影スクリーンである。この映像投影スクリーンは、ショーウィンドウのガラス面等に形成され、前記第2の領域と同様の機能を持つ。画像提示対象者は、プロジェクタにより可視光を用いてスクリーンに投影されたメニュー等を視認し、視認した内容に基づき、タッチパネルである映像投影スクリーン面をタッチする。
 不可視光により機能する部分は、前記光源と、画像提示対象者がタッチするスクリーンである前記映像投影スクリーンと、ユーザによるタッチパネルへの接触により反射した、該不可視光の光を撮像する撮像手段と、解析手段とである。
 光源から映像投影スクリーン面に背後から照射された不可視光は、通常、殆どが透過する。しかし、画像提示対象者、すなわち、タッチパネルの操作者が映像投影スクリーン面をタッチすると、タッチ位置の部分は、不可視光が透過せず、拡散反射が起こる。撮像手段は、映像投影スクリーン面を、映像投影スクリーン面の背後から撮影するので、拡散反射部分を撮影することが出来る。そして、撮像された画像を、解析手段が画像解析することにより、映像投影スクリーン面の領域のうち、いずれの領域がタッチされたかを認識する。
 タッチ時に映像投影スクリーン面に投影されていた画像と、入力されたタッチ位置の座標とに基づき、いずれのメニュー等を、画像提示対象者が選択したかを認識することが出来るという効果を奏する。
 また、前記第2の領域に代えて備えられた映像投影スクリーン面には、メニュー等の映像が映る領域を設けるのみで、他の構成要素を映像投影スクリーン面から離れた背後に設置することが出来るので、タッチパネルの設置を、柔軟に行うことが出来るという効果も奏する。
 (B17) 本発明に係る裸眼立体映像表示装置は、前記ショーウィンドウの前に位置する画像提示対象者が立体視適正範囲に入るように、かつ、該ショーウィンドウの背後に位置するように設置されることが好ましい。
 裸眼立体映像表示装置は、ショーウィンドウ前の画像提示対象者の位置において、最も立体効果が得られる距離であり、かつ、ショーウィンドウの内側またはショーウィンドウの背後に設置されるので、タッチパネル操作者や、ショーウィンドウ前に群がる画像提示対象者に対し、最も効果的な立体映像を提示することが出来るという効果を奏する。
(B18) 本発明に係る裸眼立体映像表示装置では、前記タッチパネルは、前記第1の領域への描画制御、および/または、前記第2の領域への描画制御に用いられる入力を受け付けることが好ましい。
 前記タッチパネルへの、画像提示対象者による入力は、2D/3D描画制御に用いられる。すなわち、タッチパネルをタッチすると、タッチパネル面に表示される画像が変わるように表示制御を行う場合と、タッチパネルをタッチすると、3D画像表示領域に表示される映像が変わるように表示制御を行う場合とがある。
 このように、タッチパネルへの入力を、タッチパネル面への2Dのメニュー等の表示制御と3D表示面への表示制御との両者に用いることが出来るという効果を奏する。
 (C19) 本発明に係る裸眼立体映像表示装置は、前記課題を解決するために、複数視点用のパララックスバリア方式により立体映像を表示する裸眼立体映像表示装置であって、該パララックスバリアのスリットの配置形状が、複数の線分により形成されたジグザグ形状、または、正弦波状の曲線形状であり、各視点用の画素も、該スリットの配置形状に対応させて、ジグザグ形状、または、曲線形状に配置されたことを特徴とする。
 従来の斜めスリットの場合、斜めの線の傾きは一定なので、各視点用の画素の配置を微妙に変化させないと適切なビューミックスは実現できない。しかし、画素が適切な方法により配置されていれば、スリットを変化させることにより、同等の効果を得られる。
 スリットの配置形状、すなわち、スリットの中心線の形状が、ジグザグ形状または正弦波状の曲線形状であれば、スリットの形状の配置と画素の配置とのずれが一定となる直線形状のスリットと異なり、ずれが大きくなる部分があっても、他の部分ではずれが小さくなる。
 すなわち、ジグザグ形状または正弦波曲線形状において、1/4周期点でジグザグ形状の角または正弦波の最大振幅点を通過する半周期分の間に、ずれを制御することが出来るという効果を奏する。
 (C20) 本発明に係る裸眼立体映像表示装置は、前記課題を解決するために、ディスプレイ上に配置された、該スリットを通して画像提示対象者により視認される可視領域を形成する、1つまたは複数の視点用の画素に対応した一定形状の楕円弧を、連続して接続した形状であることが好ましい。
 スリットのエッジ形状を楕円弧とすることにより、穏やかで適度なビューミックスを発生させ、視点の移動およびジャンプポイントの緩和を行うことが出来るという効果を奏する。
 (C21) 本発明に係る裸眼立体映像表示装置では、前記パララックスバリアのスリットの配置形状は、垂直に配置された直線、斜め方向に配置された直線、複数の線分の繰り返しにより形成されたジグザグ形状、または、正弦波状の曲線形状であることが好ましい。
 スリットの配置形状を、垂直に配置された直線、斜め方向に配置された直線、複数の線分の繰り返しにより形成されたジグザグ形状、または、正弦波状の曲線形状とすることにより、様々なビューミックスが実現されるので、画像提示対象者の視点が移動しても、穏やかで適切なビューミックスを発生させるための制御がし易いという効果を奏する。
 (C22) 本発明に係る裸眼立体映像表示装置では、前記楕円弧は、各画素を水平方向に分割する各水平線上において接続されることが好ましい。
 スリットのエッジを構成する楕円弧同士は、各画素を水平方向に分割する各水平線上において接続されることにより、垂直方向の視点移動により知覚される立体感を滑らかに出来るという効果を奏する。
 また、注視点の左右に位置するビューミックスの面積は、階段状のエッジに較べて小さいので、水平方向のビューミックスを抑え、立体効果を高めることが出来るという効果を奏する。
 なお、注視点とは、画像提示対象者の左右それぞれの目から、スリットの中心を通り、画像表示面に達する直線を引いた場合、左目から引いた直線と画像表示面との交点が、左目の注視点となり、右目から引いた直線と画像表示面との交点が、右目の注視点となる。
 (C23) 本発明に係る裸眼立体映像表示装置は、前記課題を解決するために、複数視点用のパララックスバリア方式により立体映像を表示する裸眼立体映像表示装置であって、前記パララックスバリアのスリットの配置形状は、斜め方向に配置された直線であり、該スリットのエッジ形状は、ディスプレイ上に配置された、該スリットを通して画像提示対象者により視認される可視領域を形成する、1つまたは複数の視点用の画素に対応した所定の形状の楕円弧と、各画素を水平方向に分割する各水平線の一部である線分とを、連続して接続した形状であることを特徴とする。
 前記エッジの形状は、楕円弧と、各行の画素を分割する水平線の一部である線分とで構成されるので、画像提示対象者が該装置の正面において立体映像を見た際に、最もクリアな立体映像を提供できるという効果を奏する。
 また、注視点の左右に位置するビューミックスの面積は、階段状のエッジに較べて小さいので、水平方向のビューミックスを抑え、立体効果を高めることが出来るという効果を奏する。
 (C24) 本発明に係る裸眼立体映像表示装置では、前記パララックスバリアのスリットの配置形状は、斜め方向に配置された直線に代わり、複数の線分の繰り返しにより形成されたジグザグ形状、または、正弦波状の曲線形状であることが好ましい。
 スリットの配置形状を、複数の線分の繰り返しにより形成されたジグザグ形状、または、正弦波状の曲線形状とすることにより、様々なビューミックスが実現されるので、画像提示対象者の視点が移動しても、ビューミックスの発生を穏やかで適切なものに制御できるという効果を奏する。
 (E26) 本発明に係るパララックスバリアは、前記課題を解決するために、裸眼立体ディスプレイ用のパララックスバリアであって、該パララックスバリアを構成する複数のスリット領域および複数のバリア領域のうち、該スリット領域のそれぞれは、1個のスリットに代わり、裸眼立体表示用の各画素に対応した、複数個の可視光透過領域により構成され、該可視光透過領域は、該パララックスバリア上にそれぞれ独立して配置され、ベストビューポイントにおいて、画像提示対象者の左右いずれかの眼により該可視光透過領域を通して視認される有効可視領域は、所定の幅および所定の高さにより定まる矩形領域の中に、該有効可視領域の周囲が該矩形領域の上下および左右の辺に内接する形で収まる形状であることを特徴とする。
 通常、パララックスバリア方式の裸眼立体ディスプレイでは、パララックスバリアには、連続した可視光透過領域であるスリットが、各視点用の画素の配置に対応させて、形成されている。本発明では、連続した細長いスリットに代わり、各視点用の画素の配置に対応させて、独立した可視光透過領域である穴が、形成されている。
 そして、穴である可視光透過領域を設計する際には、画素配列面において所定の大きさの矩形領域を求め、矩形領域に収まる有効可視領域を求め、画像提示対象者の目がベストビューポイントに位置しているとして、ベストビューポイントから見た有効可視領域の相似形をパララックスバリア上にプロットして形成する。
 なお、ベストビューポイントとは、画像提示対象者が裸眼立体効果を最も得られる位置であり、この位置では、画像提示対象者の右目に対応した矩形領域と左目に対応した矩形領域とが、接しているが重なっていない状態となる位置である。
 前記の構成によれば、ビューミックスを発生させ、かつジャンプポイントを緩和するために一度に片方の眼で視認すべきサブピクセルの領域を最初に定め、そこから逆算して、パララックスバリア上の可視光透過領域を定めるので、最も適切な可視光透過領域の形状を、容易に設計することが出来るという効果を奏する。
 (E27) 本発明に係るパララックスバリアでは、前記矩形領域の形状は、水平方向に変形させた平行四辺形であり、前記有効可視領域の形状も、該変形に従属して変形されることが好ましい。
 矩形領域を平行四辺形に変形する事により、各視点用の画素の配置の傾き、および/または、一画素内でのサブピクセルの配置の傾きにより適合した有効可視領域とすることが出来る。
 また、有効可視領域が複雑な形状であっても、矩形領域を縦長の長方形から平行四辺形に変形する際の座標変換を有効可視領域の変形にも用いるので、容易に複雑な形状の有効可視領域を変形することが出来るという効果を奏する。
 (E28) 本発明に係るパララックスバリアでは、前記平行四辺形の傾きの範囲は、垂直から、前記可視光透過領域の配列の傾きθ1まで、または、1画素を構成する複数のサブピクセルが2行以上に渡って配置される場合、1画素内でのサブピクセルの配列の傾きをθ2として、垂直から、該傾きθ1または該傾きθ2のうちいずれか大きい方までであることが好ましい。
 (E29) 本発明に係るパララックスバリアでは、前記平行四辺形の傾きの範囲は、前記可視光透過領域の配列の傾きをθ1とし、1画素を構成する複数のサブピクセルが2行以上に渡って配置される場合、1画素内でのサブピクセルの配列の傾きをθ2として、該傾きθ1と該傾きθ2との間であることが好ましい。
 (E30) 本発明に係るパララックスバリアでは、前記有効可視領域のそれぞれの形状は、上下対称および/または左右対称であることが好ましい。
 (E31) 本発明に係るパララックスバリアでは、前記有効可視領域のそれぞれの形状は、楕円弧形、または、四角形、六角形、八角形等の、偶数角形であることが好ましい。
 (E32) 本発明に係るパララックスバリアでは、前記偶数角形の隅角部は、所定の円周率の円弧により描かれた曲線であることが好ましい。
 (E33) 本発明に係るパララックスバリアでは、前記矩形領域の、前記所定の幅の範囲は、前記裸眼立体ディスプレイの表示画素配置面において、立体画像の1画素を構成するサブピクセルの配置から求まる画素平均幅Dを用いると、該画素平均幅Dの1倍以上、かつ、該画素平均幅Dの2倍未満の範囲であることが好ましい。
 (E34) 本発明に係るパララックスバリアでは、前記矩形領域の、前記所定の高さの最大値は、前記裸眼立体ディスプレイの表示画素配置面において、立体画像の1画素を構成するサブピクセルの高さであることが好ましい。
 (E35) 本発明に係るパララックスバリアでは、前記可視光透過領域は、ベストビューポイントにおける画像提示対象者の左右いずれかの眼を基点として、前記有効可視領域と、水平方向に相似であり、垂直方向に同形であることが好ましい。
 通常、ある点を基点として、相似変形を行うと、水平方向および垂直方向に、拡大または縮小する変形が行われる。しかし、画素配列面上の有効可視領域を、ベストビューポイントにおける画像提示対象者の左右いずれかの眼を基点として、相似形である可視光透過領域を求めると、可視光透過領域の上下方向の間隔が開きすぎてしまうので、相似変形は、可視光透過領域のローカル座標のx座標に対してのみ行い、y座標に対しては変形を行わないことで、垂直方向の可視光透過領域同士の間隔を適切に保ち、視点が上下方向に移動する際にも、違和感なく適切な裸眼立体効果を得ることが出来る。
 (E36) 本発明に係る裸眼立体映像表示装置は、前記課題を解決するために、前記のパララックスバリアを備えたことを特徴とする。
 (F1) 本発明の遊技ゲーム機は、表示手段とパララックスバリアとからなるパララックスバリア方式の裸眼立体映像表示手段と、ゲーム内容を制御するゲーム制御手段と、プレイヤーによる操作を受け付ける入力手段と、経過時間および/または連続プレイ時間を計測する計時手段と、該経過時間および/または該連続プレイ時間に基づき、該裸眼立体映像表示手段により表示される3D映像の出現回数、表示時間、および/または、立体飛び出し度を制御する映像制御手段とを備えたことを特徴とする。
 上記構成によれば、前記映像制御手段が、前記遊技ゲーム機のプレイ開始時から一定時間においては迫力ある3D映像を表示し、一定時間の経過後においてはプレイ開始時と比較して出現回数、表示時間、および/または、立体飛び出し度を減らした3D映像を表示するように制御を行うことにより、プレイヤーの眼にかかる負担を軽減する、という効果を奏する。
 また、前記映像制御手段は経過時間および/または連続プレイ時間に応じて3D映像の出現回数、表示時間、および/または、立体飛び出し度を減らすだけでなく、増やすことも可能である。
 すなわち、経過時間および/または連続プレイ時間が所定の時間に達すると3D映像の出現回数、表示時間、および/または、立体飛び出し度が増える制御を行うことにより、プレイヤーの射幸心をあおり、プレイの継続を促す、という効果を奏する。
 ここで、遊技ゲーム機とはパチンコ、パチスロといった遊技機、アーケードゲーム機、コンシューマゲーム機、PC用ゲーム、PC用オンラインゲーム等の、表示手段を用いてプレイするあらゆるゲーム機またはゲームを意味する。
 (F2) 本発明の映像制御手段は、前記3D映像の出現回数、表示時間、および/または、立体飛び出し度の制御を、所定の複数の視点用映像を所定のアルゴリズムにより予めブレンドして作成された、裸眼立体表示用映像を所定数用意することにより行うことが好ましい。
 上記構成によれば、所定の出現回数、表示時間、および/または、立体飛び出し度の3D映像を予め複数作成して、3D映像の表示時にはこれらを選択的に表示することにより、経過時間および/または連続プレイ時間に応じて最適な3D表示を行うことができる。
 (F3) 本発明の映像制御手段は、前記3D映像の出現回数、表示時間、および/または、立体飛び出し度の制御を、予め用意された複数の各視点用映像から、前記パララックスバリアに対応した視点数分の該各視点用映像を、隣り合う各視点同士の視差が同一となるように複数選択し、リアルタイムにブレンドすることにより行うことが好ましい。
 上記構成によれば、予め用意された複数の各視点用の映像を、求める出現回数、表示時間、および/または、立体飛び出し度に応じてリアルタイムにブレンドすることにより、経過時間および/または連続プレイ時間に応じて最適な3D表示を行うことができる。
 (F4) 本発明の映像制御手段は、前記3D映像の出現回数、表示時間、および/または、立体飛び出し度の制御を、3DCGを描画するための視点となるマルチカメラを描画対象物に対して接近・離隔させることにより、および/または、描画対象物を該マルチカメラに対して接近・離隔させることにより、または前記パララックスバリアに対応する複数の該マルチカメラの向きを変えて、該マルチカメラの注視点の位置を前後させることにより行うことが好ましい。
 上記構成によれば、複数の各視点用の映像を、求める出現回数、表示時間、および/または、立体飛び出し度に応じてリアルタイムに描画することにより、経過時間および/または連続プレイ時間に応じて最適な3D表示を行うことができる。
 (F5) 本発明の映像制御手段は、前記入力手段から送られた入力信号に基づいて、前記飛び出し度を制御することが好ましい。
 上記構成によれば、プレイヤーが任意に3D映像の飛び出し度を変えることができることにより、プレイ中に眼の負担を感じた際に直ちに3D映像の飛び出し度を減らすことができる、という効果を奏する。また、より迫力ある3D映像を楽しみたい場合には3Dの飛び出し度を増やすこともでき、プレイ意欲を喚起する、という効果を奏する。
 (F6) 本発明の遊技ゲーム機は、前記パララックスバリアを動かす駆動手段をさらに備え、該パララックスバリアは前記表示手段のモニタ面の少なくとも一部を覆う、可動式パララックスバリアであることが好ましい。
 (F7) 本発明の遊技ゲーム機は、表示手段と可動式パララックスバリアとからなるパララックスバリア方式の裸眼立体映像表示手段と、ゲーム内容を制御するゲーム制御手段と、プレイヤーによる操作を受け付ける入力手段と、該可動式パララックスバリアを動かす駆動手段と、該表示手段のモニタ面の少なくとも一部を覆う、可動式パララックスバリアとを備えたことを特徴とする。
 上記構成によれば、パララックスバリアを移動させることにより、前記裸眼立体映像表示手段において2D映像表示時の輝度の低下を防ぐ、という効果を奏する。
また、パララックスバリア自体は可動式であること以外には特別な構造でなくてもよいため、工程数を抑えた簡易な構成により上記の効果を奏する裸眼立体映像表示を備えた遊技ゲーム機の提供が可能となる。
 (F8) 本発明の駆動手段は、前記可動式パララックスバリアを上下または/および左右に移動可能とする、前記モニタ面の周辺に配置された適正距離維持手段により、該可動式パララックスバリアから該モニタ面までの所定の距離を維持することが好ましい。
 上記構成によれば、前記可動式パララックスバリアが上下および/または左右に移動することにより、モニタ面からの光が遮られなくなるため2D映像表示時の輝度の低下を防ぐ、という効果を奏する。
 (F9) 本発明の遊技ゲーム機は、前記可動式パララックスバリアから前記モニタ面までの所定の距離を維持するための適正距離維持手段をさらに備え、前記可動式パララックスバリアは、前記表示手段が2D映像を表示する際に該モニタ面に重ねられる透明部分を含んだロール可能シートの一部であり、前記駆動手段は、該ロール可能シートを上下方向または左右方向に巻き取ることが好ましい。
 上記構成によれば、ロール可能シートを巻き取ることによりモニタ面に透明部分を重ねたときは、モニタ面からの光が遮られなくなるため2D映像表示時の輝度の低下を防ぐ、という効果を奏する。
 また、パララックスバリアをロール可能なシート状とすることにより、パララックスバリアの移動を省スペースで実現する、という効果を奏する。
 (F10) 本発明の適正距離維持手段は、前記ロール可能シートと前記モニタ面との間に配置された透明な平面板と、該モニタ面の周辺に配置され、該透明な平面板に該ロール可能シートを密着させて固定する固定手段とからなることが好ましい。
 上記構成によれば、ロール可能シートを平面板に密着させることでロール可能シートの凹凸を補正し、該ロール可能シートの可動式パララックスバリア部とモニタ面との適正距離を維持できる、という効果を奏する。
 (F11) 本発明の遊技ゲーム機は、本発明の前記透明な平面板は、複数の微細孔が設けられ、前記固定手段は、該微細孔から前記ロール可能シートを吸引して、該該ロール可能シートを該透明な平面版に密着させて固定する吸引手段であることが好ましい。
 上記構成によれば、平面板に設けた複数の微細孔からロール可能シートを吸引手段により吸引することで、平面板とロール可能シートがより確実に密着し、該ロール可能シートの可動式パララックスバリア部とモニタ面との適正距離をより確実に維持できる、という効果を奏する。
 (F12) 本発明の前記適正距離維持手段は、前記モニタ面の周辺に配置されたスペーサおよび/またはレールであることが好ましい。
 上記構成によれば、スペーサおよび/またはレールによりロール可能シートの凹凸が補正されるため、該ロール可能シートの可動式パララックスバリア部とモニタ面との適正距離を維持できる、という効果を奏する。
 (F13) 本発明の遊技ゲーム機は、本発明の前記駆動手段は、前記モニタ面の周辺に配置され、前記裸眼立体映像表示手段が表示する映像が3D映像であるか、または、2D映像であるかに基づき、前記可動式パララックスバリアを前後に移動することにより、該可動式パララックスバリアを該モニタ面に接近させて3D映像を適正に表示し、該可動式パララックスバリアを該モニタ面から離して2D映像を欠落なく表示することが好ましい。
 上記構成によれば、2D映像表示時にはプレイヤーに到達する光の量そのものが増加するため、2D映像表示時の輝度の低下を防ぐ、という効果を奏する。
 (F14) 本発明の遊技ゲーム機は、3D映像を表示する際に輝度を制御する輝度制御手段をさらに備えたことが好ましい。
 (F15) 本発明の遊技ゲーム機は、3D映像を表示する際に輝度を制御する輝度制御手段をさらに備えたことが好ましい。
 上記構成によれば、輝度自体を制御することでパララックスバリアによる輝度の低下を防ぐ、という効果を奏する。
 (F16) 本発明の輝度制御手段は、前記裸眼立体映像表示手段が表示する映像が3D映像である場合は輝度を上げ、前記裸眼立体映像表示手段が表示する映像が2D映像である場合は輝度を下げる輝度制御を行うことが好ましい。
 上記構成によれば、3D映像表示時においては輝度を上げ、2D映像表示時においては輝度を下げることにより、可動式パララックスバリアを動かすことで生じる3D映像表示時と2D映像表示時との輝度差を補正する、という効果を奏する。
 (F17) 本発明の輝度制御は、前記表示手段の光源へ供給する電流および/または電圧を制御することにより行うことが好ましい。
 上記構成によれば、表示手段の光源に供給する電流および/または電圧を制御することにより、パララックスバリアによる輝度の低下を防ぐ、という効果および、可動式パララックスバリアを動かすことで生じる3D映像表示時と2D映像表示時との輝度差を補正する、という効果を奏する。
 (F18) 本発明の輝度制御は、前記モニタ面に表示される映像のうち、前記パララックスバリアにより覆われている、3D映像領域において、映像の明度を上げ、該パララックスバリアにより覆われていない、2D映像領域において、映像の明度を下げることにより、該パララックスバリアの有無による、該3D映像領域と該2D映像領域との輝度差を補正する映像明度補正であることが好ましい。
 上記構成によれば、3D映像の明度を上げ、2D映像の明度を下げることにより、3D映像表示時と2D映像表示時との輝度差を補正する、という効果を奏する。
 (F19) 本発明の映像明度補正は、映像を再生するためのフレームバッファに一時的に蓄えられる映像データに対して、リアルタイムに画像処理を行う補正であることが好ましい。
 上記構成によれば、映像を再生するためのフレームバッファに一時的に蓄えられる映像データに対して、リアルタイムに画像処理を行うことにより、予め明度を上げて作成した3D映像および明度を下げて作成した2D映像を用意せずとも、リアルタイムに明度を補正して3D映像表示時と2D映像表示時との輝度差を補正する、という効果を奏する。
 (F20) 本発明の遊技ゲーム機は、2D映像を表示するための2D映像表示装置をさらに備え、前記裸眼立体映像表示手段は、3D映像のみを表示することが好ましい。
 上記構成によれば、2D映像を表示するための2D映像表示装置をさらに備えることにより、2D映像表示時のパララックスバリアによる輝度の低下を防ぐ、という効果を奏する。
 (F21) 本発明の遊技ゲーム機は、本発明の前記裸眼立体映像表示手段は、操作をうながす画像または映像を表示し、前記ゲーム制御手段は、該操作時間および/または該操作方法に対応させて定義されたアルゴリズムと、前記入力手段から送られた入力信号とに基づいてゲームを制御し、前記映像制御手段は、該ゲーム制御手段によるゲームの制御に対応して、3D映像の出現回数、表示時間および/または立体飛び出し度を制御することが好ましい。
 上記構成によれば、ゲームのプレイ内容に応じて3D映像の出現回数、表示時間および/または立体飛び出し度が変化することにより、プレイヤーの射幸心をあおり、プレイ意欲を喚起する、という効果を奏する。
 (F22) 本発明の入力手段は、ボタン、レバー、スライダー、ジョイスティック、マウス、キーボード、ジョグダイヤル、タッチパネルのいずれか1つ、または、複数の組み合わせであることが好ましい。
 (F23) 本発明の遊技ゲーム機は、遊技球の位置および/または遊技球の軌道を検知する検知手段をさらに備え、前記ゲーム制御手段は、該検知手段から取得した検知信号に基づいてゲームを制御し、前記映像制御手段は、該ゲーム制御手段によるゲームの制御に対応して、3D映像の出現回数、表示時間および/または立体飛び出し度を制御することが好ましい。
 上記構成によれば、検知手段により遊技球の位置および/または遊技球の軌道を検知することにより、該検知手段による検知の結果をゲーム内容および3D映像に反映させることができる、という効果を奏する。
 (F24) 本発明の遊技ゲーム機は、前記裸眼立体映像表示手段は、役物および/または飾物の画像または映像を表示し、前記ゲーム制御手段は、前記映像制御手段から取得した該役物および/または該飾物の画像または映像を形成する前記表示手段の画素の位置情報と、前記検知手段から取得した検知信号と、に基づいてゲームを制御することが好ましい。
 上記構成によれば、裸眼立体映像表示手段はゲーム制御手段によるゲームの制御結果を3D映像で表示するだけでなく、該3D映像自体が、あたかもゲーム制御手段によるゲーム内容の制御の一要素であるかのように体感することができる、という効果を奏する。
 (F25) 本発明の裸眼立体映像表示手段は、通常はプレイヤーに対して隠されており、所定の出現条件が満たされた場合のみ出現することが好ましい。
 (F26) 本発明のパララックスバリアは、前記モニタ面の形状に限定されることなく、任意の形状であることが好ましい。
 上記構成によれば、パララックスバリアを任意の形状とすることで、遊技ゲーム機のデザインの自由度が高まる。
 (F27) 本発明の遊技ゲーム機は、前記パララックスバリアの、プレイヤー側の面の少なくとも一部には、2D画像が形成されていることが好ましい。
 上記構成によれば、パララックスバリアのプレイヤー側の面の少なくとも一部に2D画像が形成されていることにより、裸眼立体映像表示手段を備えた遊技ゲーム機のデザインをする際に、該裸眼立体映像表示手段の存在によってデザインが制約されない、という効果を奏する。
 また、パララックスバリアのほぼ全面に2D画像を形成する場合、ゲームのプレイ開始前には遊技ゲーム機にはあたかも表示装置が備えられていないかのような印象をプレイヤーに与え、ゲームのプレイ開始後に3D映像を表示することでプレイヤーのプレイ意欲を喚起する、という効果を奏する。
 (H1) 本発明に係るパララックスバリアは、電磁波シールドを兼ねていることが好ましい。
 パララックスバリアに電磁波シールドの機能を兼用させることにより、プラズマディスプレイパネルなど電磁波シールドを必要とするディスプレイでも、電磁波シールドを別途用意する必要が無くなるという効果を奏する。
 特に、パララックスバリアおよび電磁波シールドを、印刷により形成する場合に有効である。なお、印刷による形成は、ガラス板またはアクリル板などの透明媒体に直接行ってもよいし、薄膜透明シートに印刷してから、その薄膜透明シートを透明媒体に貼り付けてもよい。
 (I1) 本発明に係るパララックスバリアは、導電性の部材により形成されることが好ましい。
 パララックスバリアに導電性の部材を用いることで、パララックスバリアは電磁波シールドを兼用する。
 この場合、パララックスバリアと電磁波シールドを一つの工程で形成することができるという効果を奏する。
 特に、印刷の精度によらずにパララックスバリアと電磁波シールドの配置のズレをなくすことができることは、極めて顕著な効果である。
 パララックスバリアを印刷により形成する際に、パララックスバリア本来の部材に導電性の部材を混合することが好ましい。
 (I2) 本発明に係るパララックスバリアは、電磁波シールドが重畳して形成されることが好ましい。
 パララックスバリアに電磁波シールドを重畳して形成することにより、パララックスバリアは電磁波シールドを兼用する。
 この場合、高価な導電性の部材を使用する量が少なくて済む。
 (I3) 本発明に係るパララックスバリアは、電磁波シールドが重畳して形成されることが好ましい。
 (I4) 本発明に係るパララックスバリアは、前記スリットまたは前記可視光透過領域の長軸方向の長さが、電磁波を遮断するために必要な所定の幅を超える場合には、該スリットまたは該可視光透過領域を電磁波シールドにより二以上の領域に分割することが好ましい。
 この場合、パララックスバリアの可視光透過領域であるスリットまたは穴の高さおよび幅が、パララックスバリアが電磁波シールドを兼用する上で必要な設計基準の幅を超える場合であっても、スリットまたは穴を分割または区画することによりスリットまたは穴の高さおよび幅を設計基準内におさめることができる。
 (1)本発明に係るパララックスバリアシートは、上記課題を解決するために、ディスプレイを裸眼立体ディスプレイとして機能させるために、該ディスプレイと共に用いられ、該ディスプレイに対し脱着可能なパララックスバリアシートであって、透明媒体と、該透明媒体に形成されたパララックスバリアとからなることを特徴としている。
 上記の構成によれば、パララックスバリアを、ディスプレイとは切り離して製造し、市場に供給することが出来、ユーザは自身の安価なディスプレイを用いて裸眼立体映像を見ることが出来るので、既存のノートPCやTVモニタなどにハードウェアとしてはパララックスバリアシートを追加するのみで安価に裸眼立体ディスプレイを実現することが出来、ユーザが市場で販売されている各種のパララックスバリアシートを選択することが出来、通常のモバイルPCに加えて、そのモバイルPCの画面サイズ、解像度、処理能力に適合したパララックスバリア1枚を持ち運ぶだけで、客先等で容易に裸眼立体コンテンツの裸眼立体効果をプレゼンテーション出来、ディスプレイの解像度が向上した携帯電話機においても裸眼立体表示が可能となり、何時でも何処でも裸眼立体コンテンツを表示することが出来るという効果を奏する。
 (2)本発明に係るパララックスバリアシートでは、前記透明媒体は、ガラス製、または、使用時に平面性を保持できる硬度の樹脂製であることが好ましい。
 前記透明媒体がガラス製、または、使用時に平面性を保持できる硬度の樹脂製であることにより、使用時におけるパララックスバリアシートの変形を防止し、適切な立体効果を得られるという更なる効果を奏する。
 (3)本発明に係るパララックスバリアシートでは、前記パララックスバリアの形成は、前記透明媒体へ、直接、グラビア印刷することにより行われることが好ましい。
 直接、グラビア印刷することにより、薄膜透明シートにパララックスバリアを形成してから、その薄膜透明シートを透明媒体に貼り付ける工程において気泡が形成される現象を無くし、1工程少なく、パララックスバリアシートを製造出来るという更なる効果を奏する。
 (4)本発明に係るパララックスバリアシートでは、前記パララックスバリアの形成は、該パララックスバリアを薄膜透明シートに形成した後、該薄膜透明シートを前記透明媒体に貼付することにより行われることが好ましい。
 薄膜透明シートにパララックスバリアを形成してから、その薄膜透明シートを透明媒体に貼り付ける方法では、形成されたパララックスバリアは、薄膜透明シートと透明媒体との間に挟まれるので、透明媒体および薄膜透明シートを、脱着式パララックスバリアの保護膜として利用することが出来るという更なる効果を奏する。
 (5)本発明に係るパララックスバリアシートでは、前記パララックスバリアのマスク面のうち、少なくとも画像提示対象者側には、広告等のグラフィックが付加されていることが好ましい。
 ユーザは、パララックスバリアを裸眼立体ディスプレイに設置して裸眼立体コンテンツを視聴する場合以外にも、パララックスバリアのグラフィックを見ることが出来るので、パララックスバリアシートをインテリアや広告媒体として利用することが出来るという更なる効果を奏する。
 (6)本発明に係るパララックスバリアシートでは、前記パララックスバリアのマスク部分は、可視光を遮断する黒色であることが好ましい。
 マスク部分が黒色であることにより、ディスプレイからの光が強調されるので、よりクリアな裸眼立体映像を視聴することが出来るという更なる効果を奏する。
 (7)本発明に係るパララックスバリアシートでは、前記裸眼立体ディスプレイに対する、立体視適性範囲および/またはベストビューポイントを設定する為に計算された、前記ディスプレイの画像表示面からパララックスバリアのマスク面までの空隙距離(Z値)を、該画像表示面との間に保持するためのスペーサをさらに備えたことが好ましい。
 適切に計算された空隙距離に対応したスペーサを備える事により、確実に立体効果を得ることが出来るという更なる効果を奏する。
 なお、空隙距離(Z値)とは、裸眼立体ディスプレイにおいて、所望の立体視適性範囲および/またはベストビューポイントを得るために、設計時に考慮されるパラメータであり、ディスプレイの画像表示面からパララックスバリアのマスク面までの距離を表すものである。
 (8)本発明に係るパララックスバリアシートでは、前記スペーサは、透明であることが好ましい。
 スペーサが透明なので、スペーサがディスプレイの画像表示面に設置される場合でも、画像表示面に表示される情報のうち、スペーサにより隠される量を削減することが出来るという更なる効果を奏する。
 (9)本発明に係るパララックスバリアシートでは、前記スペーサは、前記透明媒体と同じ材質により、該透明媒体と一体成形されることが好ましい。
 透明媒体と同じ材料により、透明媒体と一体成形することにより、スペーサを透明媒体に接着する手間を省くと共に、パララックスバリアシートの強度を高めることが出来るという更なる効果を奏する。
 (10)本発明に係るパララックスバリアシートでは、前記スペーサは、前記空隙距離を簡易に変更可能な構造であることが好ましい。
 空隙距離を簡易に変更可能な構造なので、ユーザが所望の立体効果を得るために、スペーサの厚みを容易に調整することが出来るという更なる効果を奏する。
 (11)本発明に係るパララックスバリアシートでは、前記ディスプレイを通常の2D表示ディスプレイとして使用する場合は、前記スペーサの厚みを第1の厚みに調整し、該ディスプレイを裸眼立体ディスプレイとして使用する場合は、該スペーサの厚みを第1の厚みより薄い第2の厚みに調整することが好ましい。
 この構成では、パララックスバリアシートをディスプレイから外すことなく、通常の2D表示による視聴と裸眼立体表示による視聴とを切り替えることが出来るという更なる効果を奏する。
 第2の厚みは、パララックスバリアを適切な空隙距離に位置付けるものであり、第1の厚みは、パララックスバリアのスリットから、違和感なく通常の2D表示が視認できる距離まで空隙距離を伸ばした場所にパララックスバリアを位置付けるものである。
 (12)本発明に係るパララックスバリアシートでは、前記スペーサの少なくとも一部は、前記透明媒体の厚みにより代用されることが好ましい。
 透明媒体の厚みは、製造時に容易に調整できるので、スペーサとして必要な厚みを透明媒体の厚みとして取れるのであれば、スペーサを省くことが出来るという更なる効果を奏する。
 もし、必要な厚みの全てを、透明媒体の厚みにより取ることが出来ない場合でも、スペーサの厚みを削減することが出来るという更なる効果を奏する。
 (13)本発明に係るパララックスバリアシートでは、前記スペーサは、前記ディスプレイ面の枠により代用されることが好ましい。
 画像表示面と枠の表面との段差をスペーサ代わりに用いるので、スペーサを省くことが出来るという更なる効果を奏する。
 なお、スペーサの役割をディスプレイ面の枠により代用させるのは、ディスプレイの画像表示面に較べて、画像表示面の周囲の枠が手前に出ており、段差がある場合であって、かつ、その段差の厚み、またはその段差および透明媒体の合計の厚みが、必要な空隙距離と等しい場合が、最も望ましい。
 (14)本発明に係るパララックスバリアシートでは、前記パララックスバリアは、前記立体視適性範囲および/または前記ベストビューポイントを設定する際に、前記枠の厚みを調整する代わりに、前記パララックスバリアのスリットの幅を調整して形成されることが好ましい。
 空隙距離をスペーサにより調整しなくても、所与の空隙距離に対し、パララックスバリアのスリット幅というパラメータの方を調整する事によっても、立体視可能範囲および/またはベストビューポイントを設定することが可能なので、ディスプレイの画像表示面と枠との段差の利用を優先する場合でも、適切な裸眼立体効果が得られるように、パララックスバリアを設計することが出来るという更なる効果を奏する。
 (15)本発明に係るパララックスバリアシートでは、前記パララックスバリアのスリットが水平線に対し斜めに形成される場合、該スリットの水平線に対する角度は、該パララックスバリアを前記ディスプレイに取り付ける際に、必ず所定の角度θになるように保持されることが好ましい。
 パララックスバリアのスリットの傾きは一定であるという前提において、パララックスバリアは設計されるので、脱着式のパララックスバリアであっても、その傾きθが必ず所定の角度になれば、設計どおりの裸眼立体効果が得られるという更なる効果を奏する。
 (16)本発明に係るパララックスバリアシートでは、前記パララックスバリアの傷、はがれ、付着物を防止するための保護手段を備えたことが好ましい。
 保護手段を備えているので、脱着式であっても、パララックスバリアを傷、はがれ、汚れから保護することが出来るという更なる効果を奏する。
 (17)本発明に係るパララックスバリアシートでは、前記ディスプレイの画像表示面に、所定の1個または2個の視点用の画像を白色とし、それ以外の視点用の画像を黒色とすることにより、キャリブレーション用の指標を形成し、該指標が前記パララックスバリアのスリットを通して連続した線として視認できるように調整してキャリブレーションを行うことが好ましい。
 パララックスバリアシートをディスプレイに設置する際のキャリブレーションを行うにあたり、例えば、5視点の裸眼立体ディスプレイとする場合、第3の視点用の画素を白色とし、それ以外の第1、第2、第4、第5視点用の画素を黒くすると、画像表示面上には、第3の視点用の画素の所だけが、白い線となって視認される。
 その白い線を、パララックスバリアのスリットを通して視て、線が連続して見えるように、パララックスバリアシートの位置合わせを行うことが出来るので、容易にキャリブレーションを行うことが出来るという更なる効果を奏する。
 (18)本発明に係るパララックスバリアシートでは、前記透明媒体には、キャリブレーション用の第1の指標が形成され、前記ディスプレイの枠または該ディスプレイの画像表示面には、キャリブレーション用の第2の指標が形成され、前記パララックスバリアシートを該ディスプレイに設置する際には、第1の指標と第2の指標とを合わせることにより、キャリブレーションを行うことが好ましい。
 パララックスバリアシートをディスプレイに設置する際のキャリブレーションを行うにあたり、パララックスバリアシートの位置とディスプレイの位置とを合わせるために、指標を用いるので、容易にキャリブレーションを行うことが出来るという更なる効果を奏する。
 (19)本発明に係るパララックスバリアシートでは、前記第1の指標は、前記透明媒体の所定の位置に、水平および/または垂直に所定の幅のキャリブレーション用ライン状スリットを設けたものであり、前記キャリブレーションは、前記画像表示面上の、対応する位置に表示されたラインである第2の指標を欠落無く視認できるように、該透明媒体の位置を調整するキャリブレーションであることが好ましい。
 パララックスバリアシートをディスプレイに設置する際のキャリブレーションを行うにあたり、重ね合わせる指標が、ライン同士であるため、わずかなズレでも第2の指標が欠落してしまうので、正確にキャリブレーションを行うことが出来るという更なる効果を奏する。
 <補足事項>
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 (A)本発明にかかる裸眼立体映像表示装置は、外部光の状態に応じて、表示する画像/映像の制御を行うことが出来るので、屋外広告や屋内であっても屋内照明が変化する場所での広告としての用途に適用できる。
 (B)本発明にかかる裸眼立体映像表示装置は、タッチパネルを備えているので、画像提示対象者による入力に応じ、表示内容を変更する広告としての用途に適用できる。
 (C)本発明にかかる裸眼立体映像表示装置は、ビューミックスの度合いを細かく制御出来るので、ジャンプポイントを緩和したい立体映像を表示する用途に適用できる。
 本発明にかかるパララックスバリアシートを、通常の、例えばSVGAクラスの解像度および廉価版CPUの処理能力を有するデスクトップPC、ノートPCに付加することにより、安価な裸眼立体ディスプレイとする事ができるので、ウィンドウ等の擬似的な3次元表示を行っているOSにおいて、本格的な裸眼立体視を行う用途にも適用できる。
 ユーザが各種のパララックスバリアシートを入手し、パーソナルに使用出来る環境を整えるようになれば、該各種のパララックスバリアシートの特性に合わせて、様々なソフトウェアやコンテンツを提供する可能性を増加させる用途にも適用できる。
 本発明にかかるパララックスバリアシートを用いれば、さらに将来、裸眼立体コンテンツのTV放送やコンシューマ用立体映像プレーヤが実現した際、専用のTVモニタを使用することなく、既存のTVモニタを用いて、簡単かつ低価格で立体映像を楽しむ用途にも適用できる。

Claims (65)

  1.  2D映像および/または3D映像の表示を行う映像表示手段、および、パララックスバリアからなる裸眼立体映像表示装置と、
     該裸眼立体映像表示装置に対してタッチパネル操作を受け付けるタッチパネルと
    を備えた裸眼立体映像表示システムであって、
     該タッチパネルは、
     メニュー映像を表示、および/またはメニュー画像を形成したタッチ面をガラス面に備え、
     該裸眼立体映像表示装置は、
     該ガラス面の外側からタッチパネル操作に必要な所定距離だけ離れた位置が立体視適正領域に入るように、該ガラス面の内側から所定の距離(前記立体視適正領域までの距離-前記タッチパネル操作に必要な所定距離)をあけてガラス面の内側に設置される
    ことを特徴とする裸眼立体映像表示システム。
  2.  前記タッチパネルは、
     メニュー映像を表示するために着脱可能な、タッチ面を形成した薄型ディスプレイをガラス面に備える
    ことを特徴とする
    請求項1記載の裸眼立体映像表示システム。
  3.  前記タッチパネルは、
     メニュー画像として着脱可能な、写真またはグラフィック等により形成されたアイコンや文字等が印刷されたタッチシートをガラス面に備える
    ことを特徴とする
    請求項1記載の裸眼立体映像表示システム。
  4.  前記タッチパネルは、
     メニュー画像として着脱可能な、写真またはグラフィック等により形成されたアイコンや文字等が印刷された媒体、ペーパーコントローラ、または、ペーパーキーボードをガラス面に備え、
     該媒体、該ペーパーコントローラ、または、該ペーパーキーボードに重畳して形成されたドットパターンを操作者が光学読み取り手段(スキャナ)でタッチして読み取ることによって、前記裸眼立体映像表示装置に対するタッチパネル操作を受け付ける
    ことを特徴とする
    請求項1記載の裸眼立体映像表示システム。
  5.  前記裸眼立体映像表示装置は、
     近傍の物体を撮像する撮像手段をさらに備え、
     前記映像表示手段による
    前記2D得初像/または3D映像の表示状態の制御に際し、
     前記制御部は、
     該撮像手段により撮影した映像と共に、
     該画像を解析し、解析結果に応じた立体映像を表示する制御を行う
    ことを特徴とする請求項1記載の裸眼立体映像表示システム。
  6.  パララックスバリアを用いた裸眼立体映像表示装置であって、
     前記パララックスバリアのスリットのエッジ形状は、
     ディスプレイ上に配置された、該スリットを通して画像提示対象者により視認される可視領域を形成する、1つまたは複数の視点用の画素に対応した一定形状の楕円弧を、連続して接続した形状であり、
     前記楕円弧は、
     各画素を水平方向に分割する各水平線上において接続される
    ことを特徴とする裸眼立体映像表示装置。
  7.  パララックスバリアを用いた裸眼立体映像表示装置であって、
     該パララックスバリアを構成する複数のスリット部および複数のバリア部のうち、
     該スリット部のそれぞれは、1個のスリット部に代わり、裸眼立体表示用の各画素に対応した、複数個の可視光透過領域である穴部により構成され、
     画像提示対象者が裸眼立体効果を最も得られる位置であるベストビューポイントにおいて該穴部を通して画像提示対象者に視認させようとする画素配列面上の最大領域を、所定の幅と所定の高さとを有する該画素配列面上の矩形領域とし、
     該穴部は、該パララックスバリア面上にそれぞれ独立して配置され、
     該穴部の形状は、楕円弧形の形状、または六角形以上の凸偶数多角形の形状であって、
     かつ、
     該穴部の形状は、
     該ベストビューポイントにおける前記画像提示対象者の左右いずれかの眼を基点として、該矩形領域と結ぶ線分と、該パララックスバリア面との交点からなる該矩形領域の相似形をなす領域の上下および左右の辺に内接する形状とし、
     該ベストビューポイントにおける前記画像提示対象者の左右いずれかの眼を基点として、該穴部を通して画像提示対象者に視認される画素配列面上の領域が、該穴部の相似形をなす有効可視領域である
    ことを特徴とする裸眼立体映像表示装置。
  8.  前記パララックスバリアは、パララックスバリア機能のONまたはOFFを電気的に制御可能な電気制御パララックスバリアであって、
     3D映像表示時においてはパララックスバリア機能をONにし、
     2D映像表示時においてはパララックスバリア機能をOFFにする
    ことを特徴とする請求項6または7記載の裸眼立体映像表示装置。
  9.  前記電気制御パララックスバリアは、液晶分子の配向を電気的に制御することにより、パララックスバリア機能のONまたはOFFを制御可能とした液晶パララックスバリアである
    ことを特徴とする請求項8記載の裸眼立体映像表示装置。
  10.  前記電気制御パララックスバリアのONまたはOFFは、前記映像表示手段が取得する2D/3D切り替え指示に基づき、電気的に制御して切り替える
    ことを特徴とする請求項8記載の裸眼立体映像表示装置。
  11.  前記電気制御パララックスバリアのONまたはOFFは、前記タッチパネル操作による2D/3D切り替え指示に基づき、電気的に制御して切り替えることを特徴とする請求項8に記載の裸眼立体映像表示装置。
  12.  前記パララックスバリアは、
     電磁波シールドを兼用する
    ことを特徴とする請求項6または7のいずれかに記載の裸眼立体映像表示装置。
  13.  前記パララックスバリアは、
     導電性の部材により形成されることにより、
     前記電磁波シールドを兼用する
    ことを特徴とする請求項6または7のいずれかに記載の裸眼立体映像表示装置。
  14.  前記パララックスバリアは、
     電磁波シールドが重畳して形成されることにより、
     前記電磁波シールドを兼用する
    ことを特徴とした請求項6または7のいずれかに記載の裸眼立体映像表示装置。
  15.  前記パララックスバリアは、
     前記スリットまたは前記可視光透過領域の長軸方向の長さが、電磁波を遮断するために必要な所定の幅を超える場合には、
     該スリットまたは該可視光透過領域を電磁波シールドにより二以上の領域に分割する
    ことを特徴とした請求項6または7のいずれかに記載の裸眼立体映像表示装置。
  16.  請求項10または11記載の前記パララックスバリアは、
     ディスプレイを裸眼立体ディスプレイとして機能させるために、該ディスプレイと共に用いられ、該ディスプレイに対し脱着可能なパララックスバリアシートであって、
     透明媒体と、
     該透明媒体に形成されたパララックスバリア部と
    からなることを特徴とするパララックスバリアシート。
  17.  前記透明媒体は、
     ガラス製、または、使用時に平面性を保持できる硬度の樹脂製である
    ことを特徴とする請求項16記載のパララックスバリアシート。
  18.  前記パララックスバリア部の形成は、
     前記透明媒体へ、直接、グラビア印刷することにより行われる
    ことを特徴とする請求項16記載のパララックスバリアシート。
  19.  前記パララックスバリア部の形成は、
     該パララックスバリア部を薄膜透明シートに形成した後、
     該薄膜透明シートを前記透明媒体に貼付することにより行われる
    ことを特徴とする請求項16記載のパララックスバリアシート。
  20.  前記パララックスバリア部のうち、
     少なくとも画像提示対象者側には、
     広告等のグラフィックが付加されている
    ことを特徴とする請求項16記載のパララックスバリアシート。
  21.  前記パララックスバリア部は、
     可視光を遮断する黒色である
    ことを特徴とする請求項16記載のパララックスバリアシート。
  22.  前記裸眼立体ディスプレイに対する、立体視適性範囲および/またはベストビューポイントを設定する為に計算された、
     前記ディスプレイの画像表示面からパララックスバリアのマスク面までの空隙距離(Z値)を、
     該画像表示面との間に保持するためのスペーサを
    さらに備えた請求項16記載のパララックスバリアシート。
  23.  前記スペーサは、透明であることを特徴とする請求項22記載のパララックスバリアシート。
  24.  前記スペーサは、前記透明媒体と同じ材質により、該透明媒体と一体成形されることを特徴とする請求項22記載のパララックスバリアシート。
  25.  前記スペーサは、
     前記空隙距離を簡易に変更可能な構造である
    ことを特徴とする請求項22記載のパララックスバリアシート。
  26.  前記ディスプレイを通常の2D表示ディスプレイとして使用する場合は、
     前記スペーサの厚みを第1の厚みに調整し、
     該ディスプレイを裸眼立体ディスプレイとして使用する場合は、
     該スペーサの厚みを第1の厚みより薄い第2の厚みに調整する
    ことを特徴とする請求項22記載のパララックスバリアシート。
  27.  前記スペーサの少なくとも一部は、
     前記透明媒体の厚みにより代用される
    ことを特徴とする請求項22記載のパララックスバリアシート。
  28.  前記スペーサは、
     前記ディスプレイ面の枠により代用される
    ことを特徴とする、請求項22記載のパララックスバリアシート。
  29.  前記パララックスバリア部は、
     前記立体視適性範囲および/または前記ベストビューポイントを設定する際に、
     前記枠の厚みを調整する代わりに、
     前記パララックスバリア部のスリットの幅を調整して形成される
    ことを特徴とする請求項28記載のパララックスバリアシート。
  30.  前記パララックスバリア部のスリットが水平線に対し斜めに形成される場合、
     該スリットの水平線に対する角度は、
     該パララックスバリア部を前記ディスプレイに取り付ける際に、
     必ず所定の角度θになるように保持される
    ことを特徴とする請求項28記載のパララックスバリアシート。
  31.  前記パララックスバリア部の傷、はがれ、付着物を防止するための保護手段を備えた
    ことを特徴とする請求項28記載のパララックスバリアシート。
  32.  前記ディスプレイの画像表示面に、
     所定の1個または2個の視点用の画像を白色とし、それ以外の視点用の画像を黒色とすることにより、キャリブレーション用の指標を形成し、
     該指標が前記パララックスバリア部のスリットを通して連続した線として視認できるように調整してキャリブレーションを行う
    ことを特徴とする請求項28記載のパララックスバリアシート。
  33.  前記透明媒体には、キャリブレーション用の第1の指標が形成され、
     前記ディスプレイの枠または該ディスプレイの画像表示面には、キャリブレーション用の第2の指標が形成され、
     前記パララックスバリアシートを該ディスプレイに設置する際には、
     第1の指標と第2の指標とを合わせることにより、キャリブレーションを行う
    ことを特徴とする請求項28記載のパララックスバリアシート。
  34.  前記第1の指標は、
     前記透明媒体の所定の位置に、水平および/または垂直に所定の幅のキャリブレーション用ライン状スリットを設けたものであり、
     前記キャリブレーションは、
     前記画像表示面上の、対応する位置に表示されたラインである第2の指標を欠落無く視認できるように、該透明媒体の位置を調整するキャリブレーションである
    ことを特徴とする請求項33記載のパララックスバリアシート。
  35.  表示手段と、請求項6または7記載のパララックスバリアとからなるパララックスバリア方式の裸眼立体映像表示手段と、
     ゲーム内容を制御するゲーム制御手段と、
     プレイヤーによる操作を受け付ける入力手段と、
     経過時間および/または連続プレイ時間を計測する計時手段と、
     該経過時間および/または該連続プレイ時間に基づき、
     該裸眼立体映像表示手段により表示される3D映像の出現回数、表示時間、および/または、立体飛び出し度を制御する映像制御手段と
    を備えたことを特徴とする遊技ゲーム機。
  36.  前記映像制御手段は、
     前記3D映像の出現回数、表示時間、および/または、立体飛び出し度の制御を、
     所定の複数の視点用映像を所定のアルゴリズムにより予めブレンドして作成された、裸眼立体表示用映像を所定数用意することにより行う
    ことを特徴とする請求項35に記載の遊技ゲーム機。
  37.  前記映像制御手段は、
     前記3D映像の出現回数、表示時間、および/または、立体飛び出し度の制御を、
     予め用意された複数の各視点用映像から、前記パララックスバリアに対応した視点数分の該各視点用映像を、隣り合う各視点同士の視差が同一となるように複数選択し、リアルタイムにブレンドすることにより行う
    ことを特徴とする請求項35に記載の遊技ゲーム機。
  38.  前記映像制御手段は、
     前記3D映像の出現回数、表示時間、および/または、立体飛び出し度の制御を、
     3DCGを描画するための視点となるマルチカメラを描画対象物に対して接近・離隔させることにより、および/または、描画対象物を該マルチカメラに対して接近・離隔させることにより、
     または
     前記パララックスバリアに対応する複数の該マルチカメラの向きを変えて、該マルチカメラの注視点の位置を前後させることにより
    行うことを特徴とする請求項35に記載の遊技ゲーム機。
  39.  前記映像制御手段は、
     前記入力手段から送られた入力信号に基づいて、
     前記飛び出し度を制御する
    ことを特徴とする請求項35から38のいずれか一項に記載の遊技ゲーム機。
  40.  前記パララックスバリアを動かす駆動手段をさらに備え、
     該パララックスバリアは
     前記表示手段のモニタ面の少なくとも一部を覆う、
     可動式パララックスバリアである
    ことを特徴とする請求項35から39のいずれか一項に記載の遊技ゲーム機。
  41.  表示手段と、請求項6または7記載のパララックスバリアを用いた可動式パララックスバリアとからなるパララックスバリア方式の裸眼立体映像表示手段と、
     ゲーム内容を制御するゲーム制御手段と、
     プレイヤーによる操作を受け付ける入力手段と、
     該可動式パララックスバリアを動かす駆動手段と、
     該表示手段のモニタ面の少なくとも一部を覆う、可動式パララックスバリアと
    を備えたことを特徴とする遊技ゲーム機。
  42.  前記駆動手段は、
     前記可動式パララックスバリアを上下または/および左右に移動可能とする、前記モニタ面の周辺に配置された適正距離維持手段により、
     該可動式パララックスバリアから該モニタ面までの所定の距離を維持する
    ことを特徴とする請求項40または41に記載の遊技ゲーム機。
  43.  前記可動式パララックスバリアから前記モニタ面までの所定の距離を維持するための適正距離維持手段をさらに備え、
     前記可動式パララックスバリアは、
     前記表示手段が2D映像を表示する際に該モニタ面に重ねられる透明部分を含んだロール可能シートの一部であり、
     前記駆動手段は、
     該ロール可能シートを上下方向または左右方向に巻き取る
    ことを特徴とする請求項40または41に記載の遊技ゲーム機。
  44.  前記適正距離維持手段は、
     前記ロール可能シートと前記モニタ面との間に配置された透明な平面板と、
     該モニタ面の周辺に配置され、該透明な平面板に該ロール可能シートを密着させて固定する固定手段と
    からなることを特徴とする請求項43に記載の遊技ゲーム機。
  45.  前記透明な平面板は、
     複数の微細孔が設けられ、
     前記固定手段は、
     該微細孔から前記ロール可能シートを吸引して、
     該該ロール可能シートを該透明な平面版に密着させて固定する吸引手段である
     ことを特徴とする請求項44に記載の遊技ゲーム機。
  46.  前記適正距離維持手段は、
     前記モニタ面の周辺に配置されたスペーサおよび/またはレールである
    ことを特徴とする請求項43に記載の遊技ゲーム機。
  47.  前記駆動手段は、
     前記モニタ面の周辺に配置され、
     前記裸眼立体映像表示手段が表示する映像が3D映像であるか、または、2D映像であるかに基づき、前記可動式パララックスバリアを前後に移動することにより、
     該可動式パララックスバリアを該モニタ面に接近させて3D映像を適正に表示し、
     該可動式パララックスバリアを該モニタ面から離して2D映像を欠落なく表示する
    ことを特徴とする請求項40または41に記載の遊技ゲーム機。
  48.  3D映像を表示する際に輝度を制御する輝度制御手段をさらに備えた
    ことを特徴とする請求項35から39のいずれか一項に記載の遊技ゲーム機。
  49.  3D映像を表示する際に輝度を制御する輝度制御手段をさらに備えた
    ことを特徴とする請求項40から47のいずれか一項に記載の遊技ゲーム機。
  50.  前記輝度制御手段は、
     前記裸眼立体映像表示手段が表示する映像が3D映像である場合は輝度を上げ、
     前記裸眼立体映像表示手段が表示する映像が2D映像である場合は輝度を下げる輝度制御を行う
    ことを特徴とする請求項49に記載の遊技ゲーム機。
  51.  前記輝度制御は、
     前記表示手段の光源へ供給する電流および/または電圧を制御することにより行う
    ことを特徴とする請求項49または50に記載の遊技ゲーム機。
  52.  前記輝度制御は、
     前記モニタ面に表示される映像のうち、
     前記パララックスバリアにより覆われている、3D映像領域において、映像の明度を上げ、
     該パララックスバリアにより覆われていない、2D映像領域において、映像の明度を下げることにより、
     該パララックスバリアの有無による、該3D映像領域と該2D映像領域との輝度差を補正する映像明度補正である
    ことを特徴とする請求項50に記載の遊技ゲーム機。
  53.  前記映像明度補正は、
     映像を再生するためのフレームバッファに一時的に蓄えられる映像データに対して、リアルタイムに画像処理を行う補正である
    ことを特徴とする請求項52に記載の遊技ゲーム機。
  54.  2D映像を表示するための2D映像表示装置をさらに備え、
     前記裸眼立体映像表示手段は、3D映像のみを表示する
    ことを特徴とする請求項35から53のいずれか一項に記載の遊技ゲーム機。
  55.  前記裸眼立体映像表示手段は、
     操作をうながす画像または映像を表示し、
     前記ゲーム制御手段は、
     該操作時間および/または該操作方法に対応させて定義されたアルゴリズムと、
     前記入力手段から送られた入力信号と
    に基づいてゲームを制御し、
     前記映像制御手段は、
     該ゲーム制御手段によるゲームの制御に対応して、3D映像の出現回数、表示時間および/または立体飛び出し度を制御する
    ことを特徴とする請求項35から40のいずれか一項に記載の遊技ゲーム機。
  56.  前記入力手段は、
     ボタン、レバー、スライダー、ジョイスティック、マウス、キーボード、ジョグダイヤル、タッチパネルのいずれか1つ、または、複数の組み合わせである
    ことを特徴とする請求項55に記載の遊技ゲーム機。
  57.  遊技球の位置および/または遊技球の軌道を検知する検知手段をさらに備え、
     前記ゲーム制御手段は、
     該検知手段から取得した検知信号に基づいてゲームを制御し、
     前記映像制御手段は、
     該ゲーム制御手段によるゲームの制御に対応して、3D映像の出現回数、表示時間および/または立体飛び出し度を制御する
    ことを特徴とする請求項35から40のいずれか一項に記載の遊技ゲーム機。
  58.  前記裸眼立体映像表示手段は、
     役物および/または飾物の画像または映像を表示し、
     前記ゲーム制御手段は、
     前記映像制御手段から取得した該役物および/または該飾物の画像または映像を形成する前記表示手段の画素の位置情報と、
     前記検知手段から取得した検知信号と、
     に基づいてゲームを制御する
     ことを特徴とする請求項57に記載の遊技ゲーム機。
  59.  前記裸眼立体映像表示手段は、
     通常はプレイヤーに対して隠されており、
     所定の出現条件が満たされた場合のみ出現する
    ことを特徴とする請求項35から58のいずれか一項に記載の遊技ゲーム機。
  60.  前記パララックスバリアは、
     前記モニタ面の形状に限定されることなく、任意の形状である
    ことを特徴とする請求項35から59のいずれか一項に記載の遊技ゲーム機。
  61.  前記パララックスバリアの、プレイヤー側の面の少なくとも一部には、
     2D画像が形成されている
    ことを特徴とする請求項35から60のいずれか一項に記載の遊技ゲーム機。
  62.  前記パララックスバリアは、パララックスバリア機能のONまたはOFFを電気的に制御可能な電気制御パララックスバリアであって、
     3D映像表示時においてはパララックスバリア機能をONにし、
     2D映像表示時においてはパララックスバリア機能をOFFにする
    ことを特徴とする請求項1記載の裸眼立体映像表示システム。
  63.  前記電気制御パララックスバリアは、液晶分子の配向を電気的に制御することにより、パララックスバリア機能のONまたはOFFを制御可能とした液晶パララックスバリアである
    ことを特徴とする請求項62記載の裸眼立体映像表示システム。
  64.  前記電気制御パララックスバリアのONまたはOFFは、前記映像表示手段が取得する2D/3D切り替え指示に基づき、電気的に制御して切り替える
    ことを特徴とする請求項62記載の裸眼立体映像表示システム。
  65.  前記電気制御パララックスバリアのONまたはOFFは、前記タッチパネル操作による2D/3D切り替え指示に基づき、電気的に制御して切り替えることを特徴とする請求項62に記載の裸眼立体映像表示システム。
PCT/JP2009/003350 2008-07-15 2009-07-15 裸眼立体映像表示システム、裸眼立体映像表示装置、遊技ゲーム機、パララックスバリアシート WO2010007787A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/054,191 US20110187832A1 (en) 2008-07-15 2009-07-15 Naked eye three-dimensional video image display system, naked eye three-dimensional video image display device, amusement game machine and parallax barrier sheet
KR1020117003369A KR20110046470A (ko) 2008-07-15 2009-07-15 나안 입체 영상 표시 시스템, 나안 입체 영상 표시 장치, 유기 게임기, 패럴랙스 배리어 시트
EP09797715A EP2312375A4 (en) 2008-07-15 2009-07-15 BLOSSEM EYE VISIBLE THREE-DIMENSIONAL VIDEO IMAGE SYSTEM, THREE-DIMENSIONAL VIDEO IMAGE DEVICE, UNDERSTANDING GAMBLING MACHINE AND PARALLAX LOCKING LIGHT
JP2010520779A JPWO2010007787A1 (ja) 2008-07-15 2009-07-15 裸眼立体映像表示システム、裸眼立体映像表示装置、遊技ゲーム機、パララックスバリアシート
CN2009801275371A CN102099728A (zh) 2008-07-15 2009-07-15 裸眼立体画面显示系统、裸眼立体画面显示装置、游戏机、视差屏障薄片

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2008-184339 2008-07-15
JP2008184339 2008-07-15
JP2008-243659 2008-09-24
JP2008243659 2008-09-24
JP2008263286 2008-10-09
JP2008-263286 2008-10-09
JP2008269068 2008-10-17
JP2008-269068 2008-10-17
JP2008-298766 2008-10-25
JP2008298766 2008-10-25

Publications (1)

Publication Number Publication Date
WO2010007787A1 true WO2010007787A1 (ja) 2010-01-21

Family

ID=41550197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003350 WO2010007787A1 (ja) 2008-07-15 2009-07-15 裸眼立体映像表示システム、裸眼立体映像表示装置、遊技ゲーム機、パララックスバリアシート

Country Status (6)

Country Link
US (1) US20110187832A1 (ja)
EP (1) EP2312375A4 (ja)
JP (1) JPWO2010007787A1 (ja)
KR (1) KR20110046470A (ja)
CN (2) CN103501431A (ja)
WO (1) WO2010007787A1 (ja)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010066511A (ja) * 2008-09-10 2010-03-25 Pavonine Korea Inc 無メガネ方式の3dディスプレイ装置
CN102162929A (zh) * 2011-04-19 2011-08-24 湖南森科电子科技有限公司 一种立体影像显示设备
WO2011108747A1 (ja) * 2010-03-05 2011-09-09 Yoshida Kenji 中間画像生成方法、中間画像ファイル、中間画像生成装置、立体画像生成方法、立体画像生成装置、裸眼立体画像表示装置、立体画像生成システム
WO2011111774A1 (ja) * 2010-03-10 2011-09-15 西日本3D株式会社 視差バリアスクリーンおよび視差バリアスクリーンの製造方法
US20110292033A1 (en) * 2010-05-27 2011-12-01 Nintendo Co., Ltd. Handheld electronic device
KR20110136324A (ko) * 2010-06-14 2011-12-21 엘지전자 주식회사 입체영상표시장치
JP2012083696A (ja) * 2010-10-08 2012-04-26 J Touch Corp 2d/3d表示装置の切換えモジュール
US20120120063A1 (en) * 2010-11-11 2012-05-17 Sony Corporation Image processing device, image processing method, and program
CN102622126A (zh) * 2011-01-31 2012-08-01 Lg伊诺特有限公司 三维滤光器集成的触控面板、包含触控面板的立体图像显示设备及其制造方法
US20120218236A1 (en) * 2011-02-24 2012-08-30 Nintendo Co., Ltd. Computer-readable storage medium having information processing program stored therein, information processing apparatus, information processing method, and information processing system
WO2012147140A1 (ja) * 2011-04-28 2012-11-01 パナソニック株式会社 映像表示装置
JP2012530284A (ja) * 2010-10-07 2012-11-29 株式会社ソニー・コンピュータエンタテインメント 3−dメガネと、カメラベースの頭部トラッキング
US20120314024A1 (en) * 2011-06-08 2012-12-13 City University Of Hong Kong Automatic switching of a multi-mode display for displaying three-dimensional and two-dimensional images
WO2013051585A1 (ja) * 2011-10-05 2013-04-11 シャープ株式会社 表示装置及び表示システム
CN103050096A (zh) * 2013-01-21 2013-04-17 深圳市华星光电技术有限公司 背光驱动电路过压保护方法
WO2013161498A1 (ja) * 2012-04-27 2013-10-31 日東電工株式会社 表示入力装置
WO2014136140A1 (ja) * 2013-03-05 2014-09-12 パナソニック株式会社 映像処理装置および映像処理方法
US9022564B2 (en) 2011-12-21 2015-05-05 Panasonic Intellectual Property Corporation Of America Display apparatus
US9128293B2 (en) 2010-01-14 2015-09-08 Nintendo Co., Ltd. Computer-readable storage medium having stored therein display control program, display control apparatus, display control system, and display control method
CN105230012A (zh) * 2013-05-17 2016-01-06 弗劳恩霍弗应用技术研究院 用于再生图像信息的方法和自动立体屏幕
JP2016500955A (ja) * 2012-10-10 2016-01-14 ブロードキャスト 3ディーティーブイ インコーポレイテッド 自動立体視画像を配信するシステム
US9482872B2 (en) * 2011-05-09 2016-11-01 Celvision Technologies Limited Auto stereo display system for subway tunnel
US9749615B2 (en) 2012-05-24 2017-08-29 Panasonic Intellectual Property Corporation Of America Image display device having diffusing means or image separating means allowing image to be observed
JP2018010223A (ja) * 2016-07-15 2018-01-18 オムロン株式会社 光デバイス及び立体表示方法
JPWO2019146032A1 (ja) * 2018-01-25 2020-07-02 三菱電機株式会社 ジェスチャー操作装置およびジェスチャー操作方法
WO2021060012A1 (ja) * 2019-09-26 2021-04-01 京セラ株式会社 パララックスバリア、3次元表示装置、3次元表示システム、ヘッドアップディスプレイ、および移動体
EP4158417A4 (en) * 2020-07-22 2023-12-06 Samsung Electronics Co., Ltd. LATERALLY OFFSET PARALLAX BARRIERS IN A MULTI-VIEW DISPLAY DEVICE
CN117518519A (zh) * 2023-12-29 2024-02-06 成都工业学院 一种弧形视点排布的立体显示装置

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4019114B1 (ja) 2006-09-04 2007-12-12 株式会社I・Pソリューションズ 情報出力装置
JP4740990B2 (ja) * 2008-10-10 2011-08-03 東芝テック株式会社 飲食店用テーブル及びこのテーブルを用いた電子メニュー装置
US9398289B2 (en) * 2010-02-09 2016-07-19 Samsung Electronics Co., Ltd. Method and apparatus for converting an overlay area into a 3D image
TWI459239B (zh) * 2010-07-15 2014-11-01 Tpk Touch Solutions Inc 一種鍵盤
US9569003B2 (en) * 2010-09-30 2017-02-14 Broadcom Corporation Portable computing device including a three-dimensional touch screen
US9291829B2 (en) * 2010-10-28 2016-03-22 GRilli3D LLC Geometrically and optically corrected parallax barrier providing autostereoscopic viewing of a display
US20120169614A1 (en) * 2011-01-03 2012-07-05 Ems Technologies, Inc. Computer Terminal with User Replaceable Front Panel
US8531829B2 (en) 2011-01-03 2013-09-10 Ems Technologies, Inc. Quick mount system for computer terminal
JP2012156680A (ja) * 2011-01-25 2012-08-16 Jvc Kenwood Corp 3d画像処理装置
JPWO2012108187A1 (ja) * 2011-02-08 2014-07-03 富士フイルム株式会社 立体視用画像生成装置および方法、並びにプログラム
TWI456467B (zh) * 2011-05-20 2014-10-11 Au Optronics Corp 電容式觸控面板的操作方法及觸控式裸眼立體顯示器
CN103210341A (zh) * 2011-09-20 2013-07-17 松下电器产业株式会社 影像显示的方法、影像显示面板以及影像显示装置
TWI427326B (zh) * 2011-10-05 2014-02-21 Jtk Technology Corp 曲線型柱面透鏡光柵
TWI422866B (zh) * 2011-10-07 2014-01-11 Univ Minghsin Sci & Tech 裸眼式且具有三維空間投射影像之矩陣螢幕
KR20130045109A (ko) * 2011-10-25 2013-05-03 엘지전자 주식회사 디스플레이 모듈 및 이를 구비한 이동 단말기
TWI470997B (zh) * 2011-10-31 2015-01-21 Au Optronics Corp 立體顯示器
US8611642B2 (en) * 2011-11-17 2013-12-17 Apple Inc. Forming a steroscopic image using range map
US9041819B2 (en) 2011-11-17 2015-05-26 Apple Inc. Method for stabilizing a digital video
CN103135889B (zh) * 2011-12-05 2017-06-23 Lg电子株式会社 移动终端及其3d图像控制方法
KR101878327B1 (ko) * 2011-12-08 2018-08-07 엘지디스플레이 주식회사 영상표시장치 및 그 제조방법
JP6053278B2 (ja) * 2011-12-14 2016-12-27 三菱電機株式会社 2画面表示装置
CN102591522B (zh) * 2011-12-29 2015-01-21 华为终端有限公司 裸眼三维触摸显示装置的触控方法及触控设备
KR20130096050A (ko) 2012-02-21 2013-08-29 삼성디스플레이 주식회사 표시장치
US9280042B2 (en) * 2012-03-16 2016-03-08 City University Of Hong Kong Automatic switching of a multi-mode projector display screen for displaying three-dimensional and two-dimensional images
JP5962229B2 (ja) * 2012-06-05 2016-08-03 三菱電機株式会社 表示装置
CN102722044B (zh) * 2012-06-07 2015-05-20 深圳市华星光电技术有限公司 立体显示系统
JP6099892B2 (ja) * 2012-07-09 2017-03-22 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 映像表示装置
CN104411503A (zh) * 2012-08-01 2015-03-11 凸版印刷株式会社 凹版胶印印刷用凹版和印刷线路板
CN104411502B (zh) * 2012-08-01 2017-06-09 凸版印刷株式会社 凹版胶印印刷用凹版和印刷线路板
US10008007B2 (en) * 2012-09-20 2018-06-26 Brown University Method for generating an array of 3-D points
US20140198101A1 (en) * 2013-01-11 2014-07-17 Samsung Electronics Co., Ltd. 3d-animation effect generation method and system
CN103079084B (zh) * 2013-02-21 2015-10-21 厦门市羽星智能科技有限责任公司 一种有利于实时融合播放的多视点裸眼立体片源存储方式
US9406253B2 (en) * 2013-03-14 2016-08-02 Broadcom Corporation Vision corrective display
CN104252044A (zh) * 2013-06-27 2014-12-31 鸿富锦精密工业(深圳)有限公司 裸眼立体显示装置
US20150102993A1 (en) * 2013-10-10 2015-04-16 Omnivision Technologies, Inc Projector-camera system with an interactive screen
JP6410167B2 (ja) * 2014-05-12 2018-10-24 パナソニックIpマネジメント株式会社 表示装置及びその表示方法
JP2016021227A (ja) * 2014-06-20 2016-02-04 船井電機株式会社 検出装置及び入力装置
GB2527549A (en) * 2014-06-25 2015-12-30 Sharp Kk Image data redundancy for high quality 3D
CN104320651A (zh) * 2014-11-14 2015-01-28 深圳市华星光电技术有限公司 3d快门眼镜以及3d显示系统
CN104363441B (zh) * 2014-11-18 2016-08-17 深圳市华星光电技术有限公司 光栅与显示面板对位贴合方法及装置
CN104536578B (zh) * 2015-01-13 2018-02-16 京东方科技集团股份有限公司 裸眼3d显示装置的控制方法及装置、裸眼3d显示装置
TWI581225B (zh) * 2015-01-28 2017-05-01 友達光電股份有限公司 顯示裝置
CN106303493B (zh) * 2015-05-27 2018-06-29 深圳超多维光电子有限公司 图像处理方法及装置
IN2015CH02869A (ja) * 2015-06-09 2015-07-17 Wipro Ltd
CN106817580B (zh) * 2015-11-30 2019-05-21 深圳超多维科技有限公司 一种设备控制方法、装置及系统
WO2017149943A1 (ja) * 2016-03-02 2017-09-08 ソニー株式会社 画像表示制御装置、および画像表示制御方法、並びにプログラム
CN108114468A (zh) * 2016-11-29 2018-06-05 三维视觉科技有限公司 自动立体3d摄像机实现方法和装置
EP3575854A4 (en) * 2017-01-27 2021-01-27 Osaka City University 3D DISPLAY DEVICE, 3D DISPLAY SYSTEM, HEAD-UP DISPLAY, HEAD-UP DISPLAY SYSTEM, 3D DISPLAY DEVICE DESIGN PROCESS, AND MOBILE BODY
WO2018147329A1 (ja) * 2017-02-10 2018-08-16 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 自由視点映像生成方法及び自由視点映像生成システム
USD852220S1 (en) * 2017-03-28 2019-06-25 Alexander Dunaevsky Display screen or portion thereof with animated graphical user interface
CN107340602A (zh) * 2017-06-09 2017-11-10 利亚德光电股份有限公司 3d显示装置和方法
CN108628026B (zh) * 2017-10-27 2019-10-01 山西国创科技有限责任公司 一种黑白多形孔眼直线形狭缝式裸视3d显像膜
CN109922327A (zh) * 2017-12-13 2019-06-21 珠海景秀光电科技有限公司 一种裸眼浮影光场led立体显示屏和立体成像播放系统
KR102489596B1 (ko) * 2017-12-26 2023-01-17 엘지디스플레이 주식회사 배리어 필름을 포함하는 투명 디스플레이 장치
CN112929638B (zh) * 2019-12-05 2023-12-15 北京芯海视界三维科技有限公司 眼部定位方法、装置及多视点裸眼3d显示方法、设备
DE102020128278A1 (de) * 2020-10-28 2022-04-28 Guido Genzmer Vorrichtung zur Vermeidung oder Minderung einer Parallaxe
CN113763473B (zh) * 2021-09-08 2024-03-29 未来科技(襄阳)有限公司 一种视点宽度的确定方法、装置及存储介质
CN114420009B (zh) * 2022-02-24 2024-05-14 深圳市超越显示科技有限公司 一种基于oled-led的高亮度裸眼3d显示屏
CN114546125B (zh) * 2022-04-27 2022-08-09 北京影创信息科技有限公司 键盘跟踪方法及跟踪系统

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08211359A (ja) * 1995-02-07 1996-08-20 Gunze Ltd 液晶表示入力装置
JPH10224825A (ja) * 1997-02-10 1998-08-21 Canon Inc 画像表示システム及び該システムにおける画像表示装置及び情報処理装置及びそれらの制御方法及び記憶媒体
JPH1184131A (ja) * 1997-06-28 1999-03-26 Sharp Corp 受動的偏光変調光学素子およびその製造方法
JPH11290520A (ja) 1998-04-14 1999-10-26 Sophia Co Ltd 遊技機
JPH11296124A (ja) 1998-04-07 1999-10-29 Uf Sangyo Kk 立体映像表示装置
JP2001092595A (ja) * 1999-09-20 2001-04-06 Fujitsu General Ltd 光走査型タッチパネル
JP2003158752A (ja) * 2001-09-04 2003-05-30 Sanyo Electric Co Ltd 多眼式立体映像表示装置及び二眼式立体映像表示装置
WO2004029871A1 (ja) * 2002-09-26 2004-04-08 Kenji Yoshida ドットパターンを用いた情報再生・入出力方法、情報再生装置、携帯情報入出力装置および電子玩具
JP2004294861A (ja) 2003-03-27 2004-10-21 Sanyo Electric Co Ltd 立体映像表示装置
JP2004313562A (ja) 2003-04-18 2004-11-11 Shinichi Hirabayashi 遊技機表示装置
JP2005115364A (ja) * 2003-09-18 2005-04-28 Toshiba Corp 三次元画像表示装置
JP3706385B2 (ja) 2003-03-17 2005-10-12 健治 吉田 ドットパターンを用いた情報入出力方法
JP3771252B1 (ja) 2005-07-01 2006-04-26 健治 吉田 ドットパターン
JP2006140559A (ja) 2004-11-10 2006-06-01 Matsushita Electric Ind Co Ltd 画像再生装置及び画像再生方法
JP2006234683A (ja) 2005-02-25 2006-09-07 National Univ Corp Shizuoka Univ 測位システム
JP2007230776A (ja) 2006-02-06 2007-09-13 Murata Mach Ltd 画像形成装置
JP2007240559A (ja) 2006-03-03 2007-09-20 Seiko Epson Corp 裸眼視立体画像表示装置
JP2007311646A (ja) 2006-05-19 2007-11-29 Fujifilm Corp 透光性電磁波シールドフィルム、該シールドフィルムを用いた光学フィルタ及びプラズマディスプレーパネル
JP4019114B1 (ja) 2006-09-04 2007-12-12 株式会社I・Pソリューションズ 情報出力装置
JP4023626B2 (ja) 2003-02-26 2007-12-19 ニューサイト ゲーエムベーハー 空間的表示の方法及び装置
JP4042065B1 (ja) 2006-03-10 2008-02-06 健治 吉田 情報処理装置への入力処理システム
JP2008060280A (ja) 2006-08-30 2008-03-13 Dainippon Printing Co Ltd 電磁波遮蔽フィルタ、複合フィルタ、ディスプレイ、及び電磁波遮蔽フィルタの製造方法
JP2008134617A (ja) * 2006-10-23 2008-06-12 Nec Lcd Technologies Ltd 表示装置、端末装置、表示パネル及び光学部材

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004157411A (ja) * 2002-11-07 2004-06-03 Sanyo Electric Co Ltd 映像表示装置
GB0318892D0 (en) * 2003-08-12 2003-09-17 Dawe Christopher M Stereoscopic imaging device and machine for fabrication thereof
JP2005274905A (ja) * 2004-03-24 2005-10-06 Sanyo Electric Co Ltd 立体映像表示装置
KR100684402B1 (ko) * 2004-12-02 2007-02-22 엘지마이크론 주식회사 입체영상 디스플레이 장치
JP2007054092A (ja) * 2005-08-22 2007-03-08 Seiko Epson Corp 表示装置及びその制御方法、並びに遊技機
CN101479643B (zh) * 2006-06-27 2013-08-28 Nlt科技股份有限公司 显示面板,显示装置和终端装置
JP4259579B2 (ja) * 2007-01-16 2009-04-30 セイコーエプソン株式会社 電気光学装置、電子機器、電気光学装置の駆動方法

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08211359A (ja) * 1995-02-07 1996-08-20 Gunze Ltd 液晶表示入力装置
JPH10224825A (ja) * 1997-02-10 1998-08-21 Canon Inc 画像表示システム及び該システムにおける画像表示装置及び情報処理装置及びそれらの制御方法及び記憶媒体
JPH1184131A (ja) * 1997-06-28 1999-03-26 Sharp Corp 受動的偏光変調光学素子およびその製造方法
JPH11296124A (ja) 1998-04-07 1999-10-29 Uf Sangyo Kk 立体映像表示装置
JPH11290520A (ja) 1998-04-14 1999-10-26 Sophia Co Ltd 遊技機
JP2001092595A (ja) * 1999-09-20 2001-04-06 Fujitsu General Ltd 光走査型タッチパネル
JP2003158752A (ja) * 2001-09-04 2003-05-30 Sanyo Electric Co Ltd 多眼式立体映像表示装置及び二眼式立体映像表示装置
WO2004029871A1 (ja) * 2002-09-26 2004-04-08 Kenji Yoshida ドットパターンを用いた情報再生・入出力方法、情報再生装置、携帯情報入出力装置および電子玩具
JP4023626B2 (ja) 2003-02-26 2007-12-19 ニューサイト ゲーエムベーハー 空間的表示の方法及び装置
JP3706385B2 (ja) 2003-03-17 2005-10-12 健治 吉田 ドットパターンを用いた情報入出力方法
JP2004294861A (ja) 2003-03-27 2004-10-21 Sanyo Electric Co Ltd 立体映像表示装置
JP2004313562A (ja) 2003-04-18 2004-11-11 Shinichi Hirabayashi 遊技機表示装置
JP2005115364A (ja) * 2003-09-18 2005-04-28 Toshiba Corp 三次元画像表示装置
JP2006140559A (ja) 2004-11-10 2006-06-01 Matsushita Electric Ind Co Ltd 画像再生装置及び画像再生方法
JP2006234683A (ja) 2005-02-25 2006-09-07 National Univ Corp Shizuoka Univ 測位システム
JP3771252B1 (ja) 2005-07-01 2006-04-26 健治 吉田 ドットパターン
JP2007230776A (ja) 2006-02-06 2007-09-13 Murata Mach Ltd 画像形成装置
JP2007240559A (ja) 2006-03-03 2007-09-20 Seiko Epson Corp 裸眼視立体画像表示装置
JP4042065B1 (ja) 2006-03-10 2008-02-06 健治 吉田 情報処理装置への入力処理システム
JP2007311646A (ja) 2006-05-19 2007-11-29 Fujifilm Corp 透光性電磁波シールドフィルム、該シールドフィルムを用いた光学フィルタ及びプラズマディスプレーパネル
JP2008060280A (ja) 2006-08-30 2008-03-13 Dainippon Printing Co Ltd 電磁波遮蔽フィルタ、複合フィルタ、ディスプレイ、及び電磁波遮蔽フィルタの製造方法
JP4019114B1 (ja) 2006-09-04 2007-12-12 株式会社I・Pソリューションズ 情報出力装置
JP2008086744A (ja) * 2006-09-04 2008-04-17 Ip Solutions Inc 情報出力装置
JP2008134617A (ja) * 2006-10-23 2008-06-12 Nec Lcd Technologies Ltd 表示装置、端末装置、表示パネル及び光学部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2312375A4

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010066511A (ja) * 2008-09-10 2010-03-25 Pavonine Korea Inc 無メガネ方式の3dディスプレイ装置
US9128293B2 (en) 2010-01-14 2015-09-08 Nintendo Co., Ltd. Computer-readable storage medium having stored therein display control program, display control apparatus, display control system, and display control method
WO2011108747A1 (ja) * 2010-03-05 2011-09-09 Yoshida Kenji 中間画像生成方法、中間画像ファイル、中間画像生成装置、立体画像生成方法、立体画像生成装置、裸眼立体画像表示装置、立体画像生成システム
JP2011188142A (ja) * 2010-03-05 2011-09-22 Kenji Yoshida 中間画像生成方法、中間画像ファイル、中間画像生成装置、立体画像生成方法、立体画像生成装置、裸眼立体画像表示装置、立体画像生成システム
WO2011111774A1 (ja) * 2010-03-10 2011-09-15 西日本3D株式会社 視差バリアスクリーンおよび視差バリアスクリーンの製造方法
JP2011186336A (ja) * 2010-03-10 2011-09-22 Nishi Nihon 3D Inc 視差バリアスクリーンおよび視差バリアスクリーンの製造方法
US9693039B2 (en) * 2010-05-27 2017-06-27 Nintendo Co., Ltd. Hand-held electronic device
US20110292033A1 (en) * 2010-05-27 2011-12-01 Nintendo Co., Ltd. Handheld electronic device
KR20110136324A (ko) * 2010-06-14 2011-12-21 엘지전자 주식회사 입체영상표시장치
KR101667718B1 (ko) 2010-06-14 2016-10-19 엘지전자 주식회사 입체영상표시장치
JP2012530284A (ja) * 2010-10-07 2012-11-29 株式会社ソニー・コンピュータエンタテインメント 3−dメガネと、カメラベースの頭部トラッキング
JP2012083696A (ja) * 2010-10-08 2012-04-26 J Touch Corp 2d/3d表示装置の切換えモジュール
US20120120063A1 (en) * 2010-11-11 2012-05-17 Sony Corporation Image processing device, image processing method, and program
CN102622126A (zh) * 2011-01-31 2012-08-01 Lg伊诺特有限公司 三维滤光器集成的触控面板、包含触控面板的立体图像显示设备及其制造方法
US20120218236A1 (en) * 2011-02-24 2012-08-30 Nintendo Co., Ltd. Computer-readable storage medium having information processing program stored therein, information processing apparatus, information processing method, and information processing system
CN102162929A (zh) * 2011-04-19 2011-08-24 湖南森科电子科技有限公司 一种立体影像显示设备
CN103492929A (zh) * 2011-04-28 2014-01-01 松下电器产业株式会社 影像显示装置
US9794546B2 (en) 2011-04-28 2017-10-17 Panasonic Intellectual Property Corporation Of America Video display device
WO2012147140A1 (ja) * 2011-04-28 2012-11-01 パナソニック株式会社 映像表示装置
CN103492929B (zh) * 2011-04-28 2017-04-19 松下电器(美国)知识产权公司 影像显示装置
US9482872B2 (en) * 2011-05-09 2016-11-01 Celvision Technologies Limited Auto stereo display system for subway tunnel
US20120314024A1 (en) * 2011-06-08 2012-12-13 City University Of Hong Kong Automatic switching of a multi-mode display for displaying three-dimensional and two-dimensional images
US9041771B2 (en) * 2011-06-08 2015-05-26 City University Of Hong Kong Automatic switching of a multi-mode display for displaying three-dimensional and two-dimensional images
WO2013051585A1 (ja) * 2011-10-05 2013-04-11 シャープ株式会社 表示装置及び表示システム
US9022564B2 (en) 2011-12-21 2015-05-05 Panasonic Intellectual Property Corporation Of America Display apparatus
WO2013161498A1 (ja) * 2012-04-27 2013-10-31 日東電工株式会社 表示入力装置
US9749615B2 (en) 2012-05-24 2017-08-29 Panasonic Intellectual Property Corporation Of America Image display device having diffusing means or image separating means allowing image to be observed
JP2016500955A (ja) * 2012-10-10 2016-01-14 ブロードキャスト 3ディーティーブイ インコーポレイテッド 自動立体視画像を配信するシステム
CN103050096A (zh) * 2013-01-21 2013-04-17 深圳市华星光电技术有限公司 背光驱动电路过压保护方法
WO2014136140A1 (ja) * 2013-03-05 2014-09-12 パナソニック株式会社 映像処理装置および映像処理方法
CN105230012A (zh) * 2013-05-17 2016-01-06 弗劳恩霍弗应用技术研究院 用于再生图像信息的方法和自动立体屏幕
US9992484B2 (en) 2013-05-17 2018-06-05 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Method for reproducing image information, and autostereoscopic screen
JP2018010223A (ja) * 2016-07-15 2018-01-18 オムロン株式会社 光デバイス及び立体表示方法
JPWO2019146032A1 (ja) * 2018-01-25 2020-07-02 三菱電機株式会社 ジェスチャー操作装置およびジェスチャー操作方法
WO2021060012A1 (ja) * 2019-09-26 2021-04-01 京セラ株式会社 パララックスバリア、3次元表示装置、3次元表示システム、ヘッドアップディスプレイ、および移動体
EP4158417A4 (en) * 2020-07-22 2023-12-06 Samsung Electronics Co., Ltd. LATERALLY OFFSET PARALLAX BARRIERS IN A MULTI-VIEW DISPLAY DEVICE
CN117518519A (zh) * 2023-12-29 2024-02-06 成都工业学院 一种弧形视点排布的立体显示装置
CN117518519B (zh) * 2023-12-29 2024-03-05 成都工业学院 一种弧形视点排布的立体显示装置

Also Published As

Publication number Publication date
EP2312375A4 (en) 2012-10-10
KR20110046470A (ko) 2011-05-04
EP2312375A1 (en) 2011-04-20
CN103501431A (zh) 2014-01-08
JPWO2010007787A1 (ja) 2012-01-05
US20110187832A1 (en) 2011-08-04
CN102099728A (zh) 2011-06-15

Similar Documents

Publication Publication Date Title
WO2010007787A1 (ja) 裸眼立体映像表示システム、裸眼立体映像表示装置、遊技ゲーム機、パララックスバリアシート
JP4457323B2 (ja) 遊技ゲーム機
US11119718B2 (en) Forming a larger display using multiple smaller displays
US9804405B2 (en) Display device and display device frame
US9013515B2 (en) Emissive display blended with diffuse reflection
US20160360167A1 (en) Output light monitoring for benchmarking and enhanced control of a display system
KR101102610B1 (ko) 입체 영상 디스플레이 장치
JP4386299B1 (ja) パララックスバリア、裸眼立体映像表示装置
JP4386298B1 (ja) 裸眼立体映像表示装置
WO2013161498A1 (ja) 表示入力装置
KR101080040B1 (ko) 공간 증강 현실 기반 인터랙티브 디스플레이 방법
KR20200083226A (ko) 다중 사용자 디스플레이 및 그 방법
JP4392520B1 (ja) 裸眼立体映像表示装置
JP4348487B1 (ja) 裸眼立体映像表示装置
US20160203744A1 (en) Low profile simulated 3d display device
JP2019144572A (ja) 表示装置
JP2011228759A (ja) 画像用フレーム
CN109246264A (zh) 电子装置
WO2018110496A1 (ja) 表示装置
Sano et al. Mid-air imaging technique for architecture in public space
WO2021261231A1 (ja) 表示装置及び表示方法
CN211506059U (zh) 立体显示装置
CN211524212U (zh) 一种多维空间技术展示装置
WO2016086286A1 (en) Simulated 3d projection apparatus
JP2020108169A (ja) 映像表示方法及び映像表示システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980127537.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09797715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010520779

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 172/MUMNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117003369

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009797715

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13054191

Country of ref document: US