WO2010005003A1 - (1s,2r)-2-クロロ-2-フルオロシクロプロパンカルボン酸の製造方法 - Google Patents
(1s,2r)-2-クロロ-2-フルオロシクロプロパンカルボン酸の製造方法 Download PDFInfo
- Publication number
- WO2010005003A1 WO2010005003A1 PCT/JP2009/062388 JP2009062388W WO2010005003A1 WO 2010005003 A1 WO2010005003 A1 WO 2010005003A1 JP 2009062388 W JP2009062388 W JP 2009062388W WO 2010005003 A1 WO2010005003 A1 WO 2010005003A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- chloro
- fluorocyclopropanecarboxylic acid
- content
- acid
- fluorocyclopropanecarboxylic
- Prior art date
Links
- 0 C[C@]1N=C(C(*)(*)C2=NCCO2)OC1 Chemical compound C[C@]1N=C(C(*)(*)C2=NCCO2)OC1 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/347—Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
- C07C51/377—Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/09—Preparation of carboxylic acids or their salts, halides or anhydrides from carboxylic acid esters or lactones
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/30—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
- C07C67/333—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
- C07C67/343—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
- C07C67/347—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by addition to unsaturated carbon-to-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P41/00—Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
- C12P41/003—Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by ester formation, lactone formation or the inverse reactions
- C12P41/005—Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by ester formation, lactone formation or the inverse reactions by esterification of carboxylic acid groups in the enantiomers or the inverse reaction
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B2200/00—Indexing scheme relating to specific properties of organic compounds
- C07B2200/07—Optical isomers
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/02—Systems containing only non-condensed rings with a three-membered ring
Definitions
- the present invention relates to a method for producing (1S, 2R) -2-chloro-2-fluorocyclopropanecarboxylic acid and a method for producing (1S, 2S) -2-fluorocyclopropanecarboxylic acid.
- (1S, 2R) -2-chloro-2-fluorocyclopropane carboxylic acid (1S) -2-chloro-2-fluorocyclopropanecarboxylic acid using an enzyme having the ability to selectively hydrolyze the described (1R, 2S) -2-chloro-2-fluorocyclopropanecarboxylic acid ester
- (1S, 2R) -2-chloro-2-fluorocyclopropanecarboxylic acid ester can be selectively hydrolyzed with good yield and selectivity (1S, 2R).
- Item 1 Hydrolysis of (1S) -2-chloro-2-fluorocyclopropanecarboxylic acid ester using esterase derived from Burkholderia cepacia (1S, 2R) -2-chloro-2-fluorocyclopropane A method for producing carboxylic acid.
- Item 2. In the presence of an asymmetric complex, 1-chloro-1-fluoroethylene and diazoacetate are reacted to obtain (1S) -2-chloro-2-fluorocyclopropanecarboxylic acid ester, and then Burkholderia cepacia Item 2.
- R 1 represents an alkyl group, an optionally substituted phenyl group, an optionally substituted aralkyl group, a 1-naphthyl group or a 2-naphthyl group having 1 to 4 carbon atoms
- R 2 and R 3 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
- Item 4 The production method according to Item 3, which is an optically active bisoxazoline compound represented by the formula: Item 5.
- Item 4. The production method according to Item 3, wherein the optically active ligand is 2,2-bis [2-[(4S) -tert-butyloxazoline]] propane.
- Item 6. Item 6.
- Item 9. The production method according to Item 8, wherein the reduction is carried out by reacting a nickel-aluminum alloy with a base in the presence of (1S, 2R) -2-chloro-2-fluorocyclopropanecarboxylic acid.
- (1S, 2R) -2-chloro-2-fluorocyclopropanecarboxylic acid can be produced with good yield and selectivity. Further, by reducing this, (1S, 2S) -2-fluorocyclopropanecarboxylic acid can be obtained in good yield, and the present invention is industrially advantageous.
- (1S) -2-chloro-2-fluorocyclopropanecarboxylic acid ester can be produced, for example, by the method described in JP-A No. 2004-217608, JP-A No. 9-124556, or the like.
- it can be obtained by the method described in JP-A-9-124556, that is, by reacting 1-chloro-1-fluoroethylene with diazoacetate in the presence of an asymmetric complex.
- the asymmetric complex it is preferable to use an asymmetric copper complex obtained by bringing a copper compound into contact with an optically active ligand.
- copper compound a monovalent or divalent copper compound is used.
- copper acetate (I), copper acetate (II), copper trifluoroacetate (I), copper trifluoroacetate (II), copper naphthenate (I), copper (II) naphthenate, copper (I) octylate, copper (II) octylate and other C2-C15 carboxylates copper (I) chloride, copper (II) chloride, bromide Copper halides such as copper (I) and copper (II) bromide; copper nitrate (I), copper nitrate (II); copper methanesulfonate (I), copper methanesulfonate (II), copper trifluoromethanesulfonate (I), copper sulfonates such as copper (II) trifluoromethanesulfonate, and the like.
- Such copper compounds may be used alone or in combination. These copper compounds may be anhydrides or hydrates. More preferred are copper (II) trifluoromethanesulfonate and copper (I) trifluoromethanesulfonate. Copper (I) trifluoromethanesulfonate may be prepared in a reaction system from, for example, copper (II) acetate monohydrate, trifluoromethanesulfonic acid, and phenylhydrazine.
- R 1 represents an alkyl group, an optionally substituted phenyl group, an optionally substituted aralkyl group, a 1-naphthyl group or a 2-naphthyl group having 1 to 4 carbon atoms
- R 2 and R 3 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
- optically active bisoxazoline (1) optically active bisoxazoline (1)
- optically active bisoxazoline (2) optically active bisoxazoline (1)
- optically active saldoimine (2) (Wherein R 4 represents a hydrogen atom or a nitro group, and R 5 represents a methyl group or a benzyl group) (Hereinafter abbreviated as optically active saldoimine (2)) and the like, among which optically active bisoxazoline (1) is preferable.
- Examples of the alkyl group having 1 to 4 carbon atoms represented by R 1 in the general formula (1) include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, A tert-butyl group may be mentioned.
- Examples of the group which may be substituted on the phenyl group represented by R 1 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert- Alkyl groups having 1 to 6 carbon atoms such as butyl, n-pentyl, n-hexyl and cyclohexyl; methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec Examples thereof include alkoxy groups having 1 to 6 carbon atoms such as -butoxy group, tert-butoxy group, n-pentyloxy group, n-hexyloxy group and cyclohexyloxy group.
- Examples of the phenyl group substituted with such a group include 3-methylphenyl group, 4-methylphenyl group, 2-methoxyphenyl group, 3-methoxyphen
- Examples of the optionally substituted aralkyl group represented by R 1 include the optionally substituted phenyl group, 1-naphthyl group or 2-naphthyl group, and the alkyl group having 1 to 6 carbon atoms. Constituents such as benzyl group, 2-methylbenzyl group, 3-methylbenzyl group, 4-methylbenzyl group, 2-methoxybenzyl group, 3-methoxybenzyl group, 4-methoxybenzyl group, 1-naphthylmethyl Group, 2-naphthylmethyl group and the like.
- R 1 is preferably a methyl group, an isopropyl group, a tert-butyl group, a phenyl group or a benzyl group, more preferably a tert-butyl group.
- Examples of the alkyl group having 1 to 3 carbon atoms represented by R 2 and R 3 include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
- R 2 and R 3 are preferably both hydrogen atoms, both methyl groups, or both ethyl groups, and more preferably both methyl groups.
- optically active bisoxazoline (1) examples include bis [2-[(4S) -isopropyloxazoline]] methane, bis [2-[(4S) -tert-butyloxazoline]] methane, and bis [2- [ (4S) -phenyloxazoline]] methane, bis [2-[(4S) -benzyloxazoline]] methane, bis [2-[(4S)-(2-methoxyphenyl) oxazoline]] methane, bis [2- [ (4S)-(4-methoxyphenyl) oxazoline]] methane, bis [2-[(4S)-(4-trifluoromethylphenyl) oxazoline]] methane, bis [2-[(4S)-(naphthalene-1 -Yl) oxazoline]] methane, bis [2-[(4S)-(naphthalen-2-yl) oxazoline]] methane, 2,
- the optically active bisoxazoline compound (1) may be a commercially available product or one produced by any known method (for example, see JP-A-2006-45194).
- R 4 represents a hydrogen atom or a nitro group, preferably a nitro group.
- optically active saldoimine (2) examples include [(S) -N-salicylidene-2-amino-1,1-di (5-tert-butyl-2-n-butoxyphenyl) -1-propanol], [( S) -N-salicylidene-2-amino-1,1-di (5-tert-butyl-2-n-butoxyphenyl) -3-phenyl-1-propanol], [(S) -N- (5- Nitrosalicylidene) -2-amino-1,1-di (5-tert-butyl-2-n-butoxyphenyl) -1-propanol], [(S) -N- (5-nitrosalicylidene) -2-amino-1,1-di (5-tert-butyl-2-n-butoxyphenyl) -3-phenyl-1-propanol].
- the optically active saldoimine (2) can be produced by any known method (for example, see JP-A No. 2001-278953).
- 1-chloro-1-fluoroethylene may be a commercially available product, or may be produced by any known method.
- diazoacetate examples include methyl diazoacetate, ethyl diazoacetate, n-propyl diazoacetate, isopropyl diazoacetate, n-butyl diazoacetate, isobutyl diazoacetate, sec-butyl diazoacetate, tert-butyl diazoacetate, and representativesodiazoacetate.
- -Alkyl esters having 1 to 6 carbon atoms such as pentyl, n-hexyl diazoacetate, cyclohexyl diazoacetate and the like.
- methyl diazoacetate, ethyl diazoacetate or n-propyl diazoacetate is preferable, and ethyl diazoacetate is more preferable.
- the production method of diazoacetate is not particularly limited.
- OrganicOSynthesis Collective Volume 3 P. What was manufactured by well-known methods, such as 392, can be used.
- the amount of 1-chloro-1-fluoroethylene used is usually in the range of 0.5 to 50 mol times, preferably 1 to 10 mol times, more preferably 1.5 to 5 mol times with respect to the diazoacetate. is there.
- the amount of the copper compound used is usually in the range of 0.0001 to 1 mol times, preferably 0.0005 to 0.1 mol times, more preferably 0.001 to 0.02 mol times with respect to the diazoacetate. is there.
- the amount of the optically active ligand used is usually in the range of 0.5 to 5 mol times, preferably 0.5 to 3 mol times, more preferably 0.7 to 1.5 mol times with respect to the copper compound. It is.
- reaction between 1-chloro-1-fluoroethylene and diazoacetate is usually carried out in the presence of a reaction solvent.
- a reaction solvent include halogenated hydrocarbon solvents such as dichloromethane, dichloroethane, chloroform, n-butyl chloride, carbon tetrachloride, ortho-dichlorobenzene, trifluorotoluene; n-hexane, n-heptane, cyclohexane and the like.
- Aliphatic hydrocarbon solvents such as benzene, toluene, xylene; ester solvents such as methyl acetate, ethyl acetate, n-propyl acetate, n-butyl acetate, n-pentyl acetate; tert-butyl methyl ether;
- Examples include ether solvents such as tetrahydrofuran.
- halogenated hydrocarbon solvents and aliphatic hydrocarbon solvents are preferable, and ortho-dichlorobenzene, trifluorotoluene, and n-heptane are more preferable.
- a reaction solvent may be used independently and may use 2 or more types simultaneously.
- the amount of reaction solvent used is not particularly limited, but is usually 100 times or less, preferably 0.1 to 10 times, more preferably 0.5 to 3 times the weight of diazoacetate. It is a range.
- the reaction temperature is usually in the range of ⁇ 78 to 50 ° C., preferably ⁇ 30 to 30 ° C., more preferably ⁇ 10 to 20 ° C.
- a copper compound and an optically active ligand are mixed, 1-chloro-1-fluoroethylene is added and mixed therewith, and diazoacetate is added to the resulting mixture. Is implemented. At this time, the diazoacetate is usually added over 1 to 50 hours, preferably over 2 to 30 hours.
- the reaction may be performed under atmospheric pressure, but is preferably performed under pressure using a pressure-resistant vessel such as an autoclave.
- a pressure-resistant vessel such as an autoclave.
- the progress of the reaction can be confirmed by ordinary analytical means such as thin layer chromatography, gas chromatography, high performance liquid chromatography and the like.
- the reaction mixture after completion of the reaction contains (1S) -2-chloro-2-fluorocyclopropanecarboxylic acid ester, and such a reaction mixture can be directly used for the enzymatic hydrolysis of the present invention.
- the (1S) -2-chloro-2-fluorocyclopropanecarboxylic acid ester is isolated by subjecting it to ordinary post-treatment such as washing treatment and concentration treatment, and then subjected to the enzymatic hydrolysis of the present invention. Further, the isolated (1S) -2-chloro-2-fluorocyclopropanecarboxylic acid ester is further purified, for example, by a usual purification treatment such as distillation treatment or column chromatography treatment, and then the enzyme of the present invention. You may use for a hydrolysis.
- Examples of the (1S) -2-chloro-2-fluorocyclopropanecarboxylic acid ester thus obtained include, for example, methyl (1S) -2-chloro-2-fluorocyclopropanecarboxylate, (1S) -2-chloro-2 -Ethyl fluorocyclopropanecarboxylate, n-propyl (1S) -2-chloro-2-fluorocyclopropanecarboxylate, isopropyl (1S) -2-chloro-2-fluorocyclopropanecarboxylate, (1S) -2- N-butyl chloro-2-fluorocyclopropanecarboxylate, isobutyl (1S) -2-chloro-2-fluorocyclopropanecarboxylate, sec-butyl (1S) -2-chloro-2-fluorocyclopropanecarboxylate, ( 1S) -2-Chloro-2-fluorocycloprop
- methyl (1S) -2-chloro-2-fluorocyclopropanecarboxylate, ethyl (1S) -2-chloro-2-fluorocyclopropanecarboxylate or (1S) -2-chloro-2-fluorocyclocarboxy N-propyl propanecarboxylate is preferred, and ethyl (1S) -2-chloro-2-fluorocyclopropanecarboxylate is more preferred.
- the esterase derived from Burkholderia cepacia (hereinafter abbreviated as the present enzyme) a commercially available product may be used, or it may be produced and used by any known method.
- this enzyme an esterase having the amino acid sequence represented by SEQ ID NO: 1 or 2 is preferable, and an esterase having the amino acid sequence represented by SEQ ID NO: 1 is more preferable.
- An esterase having the amino acid sequence represented by SEQ ID NO: 1 can be obtained by the method described in Japanese Patent No. 3410128, and Pseudomonas cepacia A-0727 (FERM-P No. 13272 described in the publication. ) -Derived lipase corresponds to this.
- the esterase having the amino acid sequence represented by SEQ ID NO: 2 can be obtained by the method described in Japanese Patent No. 3079276.
- the lipase derived from Pseudomonas cepacia M-12-33 (FERM-P No. 9871) described in the publication corresponds to this.
- Pseudomonas cepacia described in these publications is the former name of Burkholderia cepacia.
- the esterase having the amino acid sequence represented by SEQ ID NO: 1 is trade name “Lipase AH”, and the esterase having the amino acid sequence represented by SEQ ID NO: 2 is trade name “Lipase PS”, both of which are Amano Enzyme Inc. Commercially available.
- the enzyme is known to have the ability to selectively hydrolyze (1R, 2S) -2-chloro-2-fluorocyclopropanecarboxylic acid ester.
- 1S, 2S -2-chloro-2-fluorocyclopropanecarboxylic acid ester
- (1S, 2R) -2-chloro-2-fluorocyclopropanecarboxylic acid ester can be selectively hydrolyzed, (1S, 2R) -2-chloro-2-fluorocyclopropanecarboxylic acid is obtained with good yield and selectivity.
- the present enzyme can be used in various forms such as purified enzyme, crude enzyme, microbial culture, microbial cell, and processed product thereof.
- the treated product is, for example, freeze-dried microbial cells, acetone-dried microbial cells, pulverized microbial cells, self-digested microbial cells, sonicated microbial cells, microbial cell extracts, or alkaline treatment of microbial cells. It refers to things.
- the enzyme having various purity or forms as described above can be adsorbed onto an inorganic carrier such as silica gel or ceramics, cellulose, ion exchange resin, polyacrylamide method, sulfur-containing polysaccharide gel method (for example, carrageenan gel method). ), An alginate gel method, an agar gel method, or the like may be used by immobilization.
- the amount of the enzyme used is appropriately selected so that the reaction time is not delayed and the selectivity is not lowered.
- the amount used is usually 0.001 to 2 times by weight, preferably 0.002 to 2 times the amount of (1S) -2-chloro-2-fluorocyclopropanecarboxylic acid ester.
- the amount thereof is usually 0.01 to 200 times by weight, preferably 0.1 to 50 times by weight, relative to (1S) -2-chloro-2-fluorocyclopropanecarboxylic acid ester. It is preferable to use this enzyme within the above-mentioned range because (1S, 2R) -2-chloro-2-fluorocyclopropanecarboxylic acid can be obtained without delaying the reaction time and with high selectivity.
- the reaction is carried out in the presence of water.
- Water is used, for example, as a buffer solution of inorganic salts such as an aqueous solution of sodium phosphate, an aqueous solution of potassium phosphate, and an aqueous solution of sodium bicarbonate, or as a buffer solution of organic acid salts such as an aqueous solution of sodium acetate and an aqueous solution of sodium citrate. It is preferably used as a buffer solution of inorganic salts, and more preferably used as a sodium phosphate aqueous solution or a sodium hydrogen carbonate aqueous solution.
- the concentration of the buffer solution is not particularly limited, but is usually 5 mol / L or less, preferably 0.01 to 2 mol / L.
- the amount of water used is not particularly limited, but is usually 1 to 100 times by weight, preferably 1 to 50 times by weight, relative to (1S) -2-chloro-2-fluorocyclopropanecarboxylic acid ester. More preferably, it is in the range of 3 to 30 times by weight.
- the enzymatic hydrolysis of the present invention may be performed in the presence of an organic solvent such as a hydrophobic organic solvent or a hydrophilic organic solvent.
- organic solvent such as a hydrophobic organic solvent or a hydrophilic organic solvent.
- hydrophobic organic solvent include ether solvents such as tert-butyl methyl ether and isopropyl ether; hydrocarbon solvents such as toluene, hexane, cyclohexane and heptane.
- hydrophilic organic solvent examples include alcohol solvents such as tert-butanol, methanol, ethanol, isopropanol, isobutanol and n-butanol; ether solvents such as tetrahydrofuran; sulfoxide solvents such as dimethyl sulfoxide; acetone and the like Ketone solvents; nitrile solvents such as acetonitrile; amide solvents such as N, N-dimethylformamide, and the like.
- alcohol solvents such as tert-butanol, methanol, ethanol, isopropanol, isobutanol and n-butanol
- ether solvents such as tetrahydrofuran
- sulfoxide solvents such as dimethyl sulfoxide
- acetone and the like Ketone solvents
- nitrile solvents such as acetonitrile
- amide solvents such as N, N-dimethylformamide, and the
- the amount used is usually 100 times by weight or less, preferably 0.1 to 50 times by weight the amount of (1S) -2-chloro-2-fluorocyclopropanecarboxylic acid ester.
- the enzyme hydrolysis of the present invention is usually carried out by mixing water or a buffer solution, (1S) -2-chloro-2-fluorocyclopropane carboxylic acid ester and the present enzyme, and the mixing order is particularly It is not limited.
- the reaction temperature is usually in the range of 0 to 100 ° C., preferably 10 to 60 ° C., more preferably 30 to 50 ° C. While the reaction time varies depending on the reaction temperature and the like, it is generally in the range of 1 hour to 7 days, preferably 2 hours to 72 hours. The progress of the reaction can be confirmed by ordinary analytical means such as thin layer chromatography, gas chromatography, high performance liquid chromatography and the like.
- the pH of the mixture during the reaction is usually in the range of 4 to 10, preferably 5 to 9, more preferably 6 to 8.
- the pH may be adjusted within a suitably selected range by adding a base.
- the base include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; alkaline earth metal carbonates such as calcium carbonate; sodium bicarbonate and carbonate Alkali metal bicarbonates such as potassium hydrogen; alkali metal phosphates such as sodium dihydrogen phosphate, disodium hydrogen phosphate, potassium dihydrogen phosphate and dipotassium hydrogen phosphate; organic bases such as triethylamine and pyridine; ammonia Etc. are used.
- Such bases may be used alone or in combination of two or more.
- Such a base is usually used as an aqueous solution, but may be used in a solid state or suspended in a solution.
- the reaction mixture after completion of the reaction contains (1S, 2R) -2-chloro-2-fluorocyclopropanecarboxylic acid, and usually the enzyme or buffer used in the reaction or unreacted (1S) -2
- a further post-treatment operation is performed in order to separate it from chloro-2-fluorocyclopropanecarboxylic acid ester and the like.
- Examples of such post-treatment include, for example, a method of concentrating the reaction mixture as necessary, followed by separation and purification using silica gel chromatography, a method of concentrating and then separating and purifying by distillation, and separation by a liquid separation operation. Examples include a purification method.
- the liquid separation operation When separating and purifying by a liquid separation operation, when an organic solvent that is soluble in both water and a hydrophobic organic solvent is used during the reaction, the liquid separation operation may be performed after the organic solvent is distilled off. Moreover, when insoluble enzyme, an immobilization support
- hydrophobic organic solvent examples include ether solvents such as tert-butyl methyl ether and isopropyl ether; aromatic hydrocarbon solvents such as toluene; aliphatic hydrocarbon solvents such as hexane, cyclohexane and heptane; dichloromethane, dichloroethane, chloroform, Halogenated hydrocarbon solvents such as chlorobenzene and orthodichlorobenzene; ester solvents such as ethyl acetate, methyl acetate and butyl acetate; ketone solvents such as methyl isobutyl ketone and the like.
- ether solvents such as tert-butyl methyl ether and isopropyl ether
- aromatic hydrocarbon solvents such as toluene
- aliphatic hydrocarbon solvents such as hexane, cyclohexane and heptane
- the pH of the aqueous layer at the time of extraction performed for this purpose is usually 8 or more, preferably in the range of 10-14.
- a base can be used to adjust the pH.
- the same base as that used for pH adjustment during the reaction can be used.
- the pH of the aqueous layer at the time of extraction performed for this purpose is usually 7 or less, preferably in the range of 0.1 to 3.
- An acid can be used to adjust the pH.
- the acid include inorganic acids such as hydrogen chloride, hydrogen bromide, sulfuric acid, and phosphoric acid, organic acids such as acetic acid, citric acid, and methanesulfonic acid, and salts thereof.
- (1S, 2R) -2-chloro-2-fluorocyclopropanecarboxylic acid is subjected to concentration treatment or crystallization treatment, (1S, 2R) -2-chloro -2-Fluorocyclopropanecarboxylic acid can be isolated.
- the isolated (1S, 2R) -2-chloro-2-fluorocyclopropanecarboxylic acid may be further purified by a usual purification process such as a recrystallization process, a distillation process, or a column chromatography process.
- Examples of the solvent used when (1S, 2R) -2-chloro-2-fluorocyclopropanecarboxylic acid is subjected to crystallization treatment or recrystallization treatment include aliphatic carbonization such as n-hexane and n-pentane.
- Hydrogen solvent aromatic hydrocarbon solvent such as benzene, toluene, xylene
- alcohol solvent such as methanol, ethanol, propanol, isopropanol, n-butanol
- ether solvent such as diethyl ether, tetrahydrofuran, dimethoxyethane; chloroform, dichloromethane, dichloroethane, etc.
- a halogenated hydrocarbon solvent such as dimethylformamide and dimethylacetamide; nitrile solvents such as acetonitrile; ester solvents such as ethyl acetate; water and the like. These solvents may be used alone or in combination of two or more.
- the amount of the solvent used is usually in the range of 2 to 100 times the total solid content of the (1S, 2R) -2-chloro-2-fluorocyclopropanecarboxylic acid used.
- (1S, 2R) -2-chloro-2-fluorocyclopropanecarboxylic acid when subjected to the reduction described later, it may be subjected to the reduction as a reaction mixture before the above-mentioned post-treatment. After post-treatment, it is subjected to reduction.
- the post-treatment After the post-treatment, it may be subjected to reduction as an aqueous solution or organic solvent solution containing (1S, 2R) -2-chloro-2-fluorocyclopropanecarboxylic acid, or isolated (1S, 2R) -2- It may be subjected to reduction as chloro-2-fluorocyclopropanecarboxylic acid, or may be subjected to reduction as purified (1S, 2R) -2-chloro-2-fluorocyclopropanecarboxylic acid.
- Examples of such reduction include reduction using zinc, reduction using a trialkyltin hydride compound, reduction using a metal borohydride compound and a Lewis acid in the presence of an aprotic polar solvent, nickel- Examples include reduction performed using an aluminum alloy, hydrogenation performed using palladium / carbon, and hydrogenation performed using sponge nickel. Reduction using a nickel-aluminum alloy or hydrogenation using sponge nickel is preferable, and reduction using a nickel-aluminum alloy is more preferable.
- a solvent As the solvent, water is usually used. In addition to water, for example, an alcohol solvent such as methanol, ethanol, propanol, isopropanol, n-butyl alcohol, and tert-butanol; a ketone solvent such as acetone; and an organic solvent such as an ether solvent such as tert-butyl methyl ether are used. You can also. It is preferable to use water alone.
- the amount of the solvent to be used is not particularly limited, but is usually 100 times or less, preferably 1 to 50 times by weight based on (1S, 2R) -2-chloro-2-fluorocyclopropanecarboxylic acid. The range is more preferably 1 to 5 times by weight.
- a commercially available nickel-aluminum alloy can be used.
- the nickel content is usually 30 to 60% by weight, preferably 40 to 50% by weight.
- the amount used is usually 5 times or less, preferably 0.1 to 1 times, more preferably 0.2 to 0 times the amount of (1S, 2R) -2-chloro-2-fluorocyclopropanecarboxylic acid. .5 weight times range.
- an organic base may be used, but an inorganic base is usually used.
- the inorganic base examples include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide.
- the inorganic base is usually used as an aqueous solution.
- the concentration of the aqueous solution may be appropriately selected, but is usually 10 to 50% by weight, preferably 15 to 35% by weight, and more preferably 20 to 30% by weight.
- the amount of the inorganic base used is usually 15 mol times or less, preferably 0.1 to 5 mol times, more preferably 1 to 3 times the amount of (1S, 2R) -2-chloro-2-fluorocyclopropanecarboxylic acid. It is the range of mole times.
- At least one base selected from the group consisting of ammonia, hydrazine and organic base may be used simultaneously with the inorganic base.
- the organic base include alkylamines such as methylamine, ethylamine, dimethylamine, and diethylamine; aminoalcohols such as ethanolamine and isopropanolamine; alkylenediamines such as ethylenediamine.
- ammonia, methylamine, ethanolamine and ethylenediamine are preferable, and ammonia and ethylenediamine are more preferable.
- the amount of at least one base selected from the group consisting of ammonia, hydrazine and an organic base is usually 15 moles or less, preferably not more than 15 moles relative to (1S, 2R) -2-chloro-2-fluorocyclopropanecarboxylic acid. Is 0.5 to 5 mol times, more preferably 1 to 2 mol times.
- the reaction temperature for the development reduction is usually in the range of 0 to 100 ° C., preferably 20 to 80 ° C., more preferably 30 to 60 ° C.
- the reaction time varies depending on the reaction temperature and the like, but is usually in the range of 1 minute to 48 hours.
- the progress of the reaction can be confirmed by ordinary analytical means such as thin layer chromatography, gas chromatography, high performance liquid chromatography and the like.
- the order of mixing (1S, 2R) -2-chloro-2-fluorocyclopropanecarboxylic acid, nickel-aluminum alloy and base is not particularly limited, but (1S, 2R) -2-chloro-2-fluorocyclopropanecarboxylic acid
- An embodiment in which a nickel-aluminum alloy is mixed and a base is added to the resulting mixture is preferred. At this time, it is more preferable to gradually add a base.
- the reaction may be carried out under atmospheric pressure or under pressurized conditions.
- Hydrogenation is usually performed by mixing (1S, 2R) -2-chloro-2-fluorocyclopropanecarboxylic acid and sponge nickel in the presence of a solvent, and mixing the resulting mixture under a hydrogen atmosphere. This is done by stirring. Moreover, a base can also be used suitably.
- water is usually used.
- alcohol solvents such as methanol, ethanol, propanol, isopropanol, n-butyl alcohol, tert-butanol; diethyl ether, diisopropyl ether, 1,4-dioxane, tetrahydrofuran, tert-butyl methyl ether
- An organic solvent such as an ether solvent such as toluene; an aromatic hydrocarbon solvent such as toluene; an aliphatic hydrocarbon solvent such as hexane or cyclohexane can also be used. It is preferable to use water alone.
- the amount of the solvent to be used is not particularly limited, but is usually 100 times or less, preferably 1 to 50 times by weight based on (1S, 2R) -2-chloro-2-fluorocyclopropanecarboxylic acid. The range is more preferably 1 to 5 times by weight.
- the amount of the solvent to be used is not particularly limited, but is usually 100 times or less, preferably 1 to 50 times by weight based on (1S, 2R) -2-chloro-2-fluorocyclopropanecarboxylic acid. The range is more preferably 1 to 10 times by weight.
- Sponge nickel can usually be a commercially available one, but it may be produced and used by any known method.
- the amount used is usually 10 weight times or less, preferably 0.1 to 5 weight times, more preferably as nickel pure with respect to (1S, 2R) -2-chloro-2-fluorocyclopropanecarboxylic acid.
- the range is 0.2 to 2 times by weight.
- the base usually at least one base selected from the group consisting of alkali metal hydrides and alkali metal carbonates is used, but at the same time, at least one base selected from the group consisting of ammonia and organic bases is used in combination. May be.
- alkali metal hydroxide examples include sodium hydroxide, potassium hydroxide and lithium hydroxide
- examples of the alkali metal carbonate include potassium carbonate.
- These bases are usually used as an aqueous solution.
- the concentration of the aqueous solution may be appropriately selected, but is usually 10 to 50% by weight, preferably 15 to 35% by weight, and more preferably 20 to 30% by weight.
- organic base examples include alkylamines such as methylamine, ethylamine, dimethylamine, and diethylamine; amino alcohols such as ethanolamine and isopropanolamine; alkylenediamines such as ethylenediamine; saturated or aromatic heterocyclic amines such as pyridine and piperidine. Etc. Methylamine, ethanolamine or ethylenediamine is preferred, and ethylenediamine is more preferred.
- the amount of the base used is usually 20 moles or less, preferably 0.1 to 5 moles, more preferably 0.5 to 5 moles relative to (1S, 2R) -2-chloro-2-fluorocyclopropanecarboxylic acid. 2 mole times.
- the reaction temperature for hydrogenation is usually in the range of 0 to 100 ° C., preferably 20 to 80 ° C., more preferably 30 to 60 ° C.
- the reaction time varies depending on the reaction temperature and the like, but is usually in the range of 1 minute to 48 hours.
- the progress of the reaction can be confirmed by ordinary analytical means such as thin layer chromatography, gas chromatography, high performance liquid chromatography and the like.
- the hydrogen pressure is usually in the range of 0.1 to 10 MPa, preferably 0.1 to 1 MPa.
- the reaction mixture after completion of the reduction contains (1S, 2S) -2-fluorocyclopropanecarboxylic acid, and the reaction mixture is usually post-treated in order to remove the catalyst and base used for the reduction. To do.
- post-processing examples include solid-liquid separation processing such as filtration processing and liquid separation processing.
- the liquid separation treatment may be performed according to the post-treatment of the enzyme hydrolysis of the present invention described above.
- (1S, 2S) -2-fluorocyclopropanecarboxylic acid can be isolated by subjecting the mixture obtained by subjecting the reaction mixture to a normal isolation treatment such as concentration treatment or crystallization treatment. Can do.
- the isolated (1S, 2S) -2-fluorocyclopropanecarboxylic acid may be further purified by a usual purification process such as a recrystallization process, a distillation process, or a column chromatography process.
- the crystallization treatment and the recrystallization treatment may be performed according to the crystallization treatment and the recrystallization treatment of (1S, 2R) -2-chloro-2-fluorocyclopropanecarboxylic acid described above.
- the yield of each product, the anti isomer / syn isomer ratio, the cis isomer / trans isomer ratio, the optical purity, and the chemical purity were determined by the following methods. .
- gas chromatographic analysis column InertCap (registered trademark) CHIRAMIX 0.25 mm x 30 m, film thickness 0.25 ⁇ m (Manufactured by GL Sciences Inc.) Or CP-Cyclodextrin- ⁇ -2,3,6-M-19 0.25 mm x 50 m, film thickness 0.25 ⁇ m (Manufactured by GL Sciences Inc.)
- Optical purity gas chromatographic analysis column: InertCap (registered trademark) CHIRAMIX 0.25 mm x 30 m, film thickness 0.25 ⁇ m (Manufactured by GL Sciences Inc.) Method: Analysis after derivatizing (1S, 2R) -2-chloro-2-fluorocyclopropane carboxylic acid to methyl ester with trimethylsilyldiazomethane.
- Optical purity gas chromatographic analysis column: InertCap (registered trademark) CHIRAMIX 0.25 mm x 30 m, film thickness 0.25 ⁇ m (Manufactured by GL Sciences Inc.) Method: Analysis after derivatizing (1S, 2S) -2-fluorocyclopropanecarboxylic acid to methyl ester with trimethylsilyldiazomethane.
- (1S) -2-chloro-2-fluorocyclopropanecarboxylic acid or an ester thereof is an anti isomer when a chlorine atom and a carboxyl group or an alkoxycarbonyl group are mutually in the cyclopropane plane.
- the term “syn” indicates that the chlorine atom and the carboxyl group or the alkoxycarbonyl group are on the same side with respect to the cyclopropane plane.
- (1S, 2R) -2-chloro-2-fluorocyclopropanecarboxylic acid is an anti isomer.
- (1S) -2-fluorocyclopropanecarboxylic acid is in cis form means that the fluorine atom and the carboxyl group are on the same side with respect to the cyclopropane plane, and is in trans form. It shows that the fluorine atom and the carboxyl group are opposite to each other with respect to the cyclopropane plane.
- (1S, 2S) -2-fluorocyclopropanecarboxylic acid is a cis isomer.
- the obtained mixture was separated while keeping the internal temperature at 10 ⁇ 5 ° C., and the obtained organic layer was dried with 6.2 g of molecular sieves 4A and then filtered to obtain 341 g of n-heptane solution of ethyl diazoacetate ( Content: 38.0% by weight, pure content: 129 g, yield: 84.1%).
- the obtained mixture was separated while maintaining the internal temperature at 10 ⁇ 5 ° C., and 213 g of ethyl diazoacetate in n-hexane (content: 41.0 wt%, pure content: 87.2 g, yield: 84.9%) )
- Production Example 3 Distillation of ethyl diazoacetate 213 g (content: 41.0 wt%, pure content: 87.2 g) of ethyl diazoacetate obtained in Production Example 2 was used at a temperature of 38 to 42 ° C. and a reduced pressure of 200 The residue was distilled at a temperature of 52-60 ° C. and a reduced pressure of 12.0-31 hPa to obtain 70.1 g of ethyl diazoacetate (content: 96.5% by weight) as a yellow oil. Pure content: 67.7 g).
- the obtained mixture was separated while keeping the internal temperature at 10 ⁇ 5 ° C., and the obtained organic layer was dried with 12.4 g of molecular sieves 4A and then filtered to obtain 672 g of an n-heptane solution of ethyl diazoacetate ( Content: 38.0% by weight, pure content: 255 g, yield: 82.9%).
- Example 1 Ethyl (1S) -2-chloro-2-fluorocyclopropanecarboxylate 2,2-bis [2-[(4S) -tert-butyloxazoline]] propane in a 1300 mL autoclave at room temperature under nitrogen atmosphere 1.79 g (6.06 mmol), 1.98 g (5.50 mmol) of copper (II) trifluoromethanesulfonate and 35.5 g of n-heptane were charged, and the reaction vessel was brought to 0 ° C. while stirring the resulting mixture. Cooled down.
- the reaction vessel was sealed, and 177 g (2.19 mol) of 1-chloro-1-fluoroethylene was press-fitted therein, and the internal temperature was adjusted to 5 ⁇ 2 ° C. While maintaining the internal temperature at 5 ⁇ 2 ° C., 327 g of an n-heptane solution of ethyl diazoacetate obtained in Production Example 1 (content: 38.0 wt%, pure content: 124 g, 1.09 mol) was added for 5 hours. After dropwise addition, the resulting mixture was stirred at the same temperature for 1 hour. During dropping and keeping the temperature, when the internal pressure exceeded 1 MPa, a purge operation was performed to keep the pressure in the range of 0.9 to 1 MPa.
- Example 2 Ethyl (1S) -2-chloro-2-fluorocyclopropanecarboxylate 2,2-bis [2-[(4S) -tert-butyloxazoline]] propane in a 1300 mL autoclave at room temperature under nitrogen atmosphere 811 mg (2.75 mmol), 903 mg (2.50 mmol) of copper (II) trifluoromethanesulfonate and 16.3 g of n-heptane were charged, and the reaction vessel was cooled to 0 ° C. while stirring the resulting mixture.
- the reaction vessel was sealed, and 203 g (2.52 mol) of 1-chloro-1-fluoroethylene was injected therein, and the internal temperature was adjusted to 5 ⁇ 2 ° C. While maintaining the internal temperature at 5 ⁇ 2 ° C., 149 g of an n-heptane solution of ethyl diazoacetate obtained according to Production Example 1 (content: 38.3 wt%, pure content: 57.0 g, 0.500 mol) ) was added dropwise over 5 hours, and the resulting mixture was stirred at the same temperature for 1 hour. The internal pressure increased with the dropping, and finally reached 1.3 MPa. After returning to pressure, the temperature was raised and nitrogen substitution was performed.
- Example 3 Ethyl (1S) -2-chloro-2-fluorocyclopropanecarboxylate 2,2-bis [2-[(4S) -tert-butyloxazoline]] propane in a 1300 mL autoclave at room temperature under nitrogen atmosphere 1.03 g (3.48 mmol), 1.14 g (3.16 mmol) of copper (II) trifluoromethanesulfonate and 20.5 g of n-heptane were charged, and the reaction vessel was brought to 0 ° C. while stirring the resulting mixture. Cooled down.
- the reaction vessel was sealed, and 154 g (1.91 mol) of 1-chloro-1-fluoroethylene was press-fitted therein, and the internal temperature was adjusted to 5 ⁇ 2 ° C. While maintaining the internal temperature at 5 ⁇ 2 ° C., 189 g of an n-heptane solution of ethyl diazoacetate obtained according to Production Example 1 (content: 38.1 wt%, pure content: 71.9 g, 0.630 mol) ) was added dropwise over 5 hours, and the resulting mixture was stirred at the same temperature for 1 hour. The internal pressure increased with the dropping and finally reached 1.5 MPa. After returning to pressure, the temperature was raised and nitrogen substitution was performed.
- Example 4 Ethyl (1S) -2-chloro-2-fluorocyclopropanecarboxylate 2,2-bis [2-[(4S) -tert-butyloxazoline]] propane in a 1300 mL autoclave at room temperature under nitrogen atmosphere 0.809 g (2.75 mmol), 0.93 g (2.50 mmol) of copper (II) trifluoromethanesulfonate and 16.3 g of n-heptane were charged, and the reaction vessel was brought to 0 ° C. while stirring the resulting mixture. Cooled down.
- the reaction vessel was sealed, and 202 g (2.51 mol) of 1-chloro-1-fluoroethylene was injected therein, and the internal temperature was adjusted to 5 ⁇ 2 ° C. While maintaining the internal temperature at 5 ⁇ 2 ° C., 146 g of an n-heptane solution of ethyl diazoacetate obtained according to Production Example 1 (content: 39.2% by weight, pure content: 57.0 g, 0.500 mol) ) was added dropwise over 5 hours, and the resulting mixture was stirred at the same temperature for 1 hour. The internal pressure increased with the dropping and finally reached 1.2 MPa. After returning to pressure, the temperature was raised and nitrogen substitution was performed.
- Example 5 Ethyl (1S) -2-chloro-2-fluorocyclopropanecarboxylate 2,2-bis [2-[(4S) -tert-butyloxazoline]] propane in a 260 mL autoclave at room temperature under nitrogen atmosphere 0.520 g (1.77 mmol), 0.579 g (1.61 mmol) of copper (II) trifluoromethanesulfonate and 42.0 g of trifluorotoluene were charged, and the reaction vessel was brought to 0 ° C. while stirring the resulting mixture. Cooled down.
- the reaction vessel was sealed, and 13.0 g (0.162 mol) of 1-chloro-1-fluoroethylene was injected therein, and the internal temperature was adjusted to 5 ⁇ 2 ° C. While maintaining the internal temperature at 5 ⁇ 2 ° C., 9.49 g (content: 96.5 wt%, pure content: 9.16 g, 0.0802 mol) of ethyl diazoacetate obtained in Production Example 3 and trifluorotoluene After dropping a solution consisting of 42.0 g over 5 hours, the resulting mixture was stirred at the same temperature for 1 hour. The internal pressure increased with the dropping and finally reached 1.0 MPa. After returning to pressure, the temperature was raised and nitrogen substitution was performed.
- Example 6 Ethyl (1S) -2-chloro-2-fluorocyclopropanecarboxylate 2,2-bis [2-[(4S) -tert-butyloxazoline]] propane in a 50 mL autoclave at room temperature under nitrogen atmosphere 0.025 g (0.085 mmol), 0.027 g (0.075 mmol) of copper (II) trifluoromethanesulfonate and 7.9 g of trifluorotoluene were charged, and the reaction vessel was brought to 0 ° C. while stirring the resulting mixture. Cooled down.
- the reaction vessel was sealed, and 2.43 g (0.0302 mol) of 1-chloro-1-fluoroethylene was injected therein, and the internal temperature was adjusted to 5 ⁇ 2 ° C. While maintaining the internal temperature at 5 ⁇ 2 ° C., 1.77 g of ethyl diazoacetate obtained in Production Example 3 (content: 96.5 wt%, pure content: 1.71 g, 0.0150 mol) and trifluorotoluene After a solution consisting of 7.9 g was added dropwise over 5 hours, the resulting mixture was stirred at the same temperature for 1 hour. The internal pressure increased with the dropping and finally reached 1.0 MPa. After returning to pressure, the temperature was raised and nitrogen substitution was performed.
- Example 7 Ethyl (1S) -2-chloro-2-fluorocyclopropanecarboxylate 2,2-bis [2-[(4S) -tert-butyloxazoline]] propane in a 50 mL autoclave at room temperature under nitrogen atmosphere 0.025 g (0.085 mmol), 0.027 g (0.075 mmol) of copper (II) trifluoromethanesulfonate and 7.9 g of trifluorotoluene were charged, and the resulting mixture was stirred.
- the reaction vessel was sealed and comprised of 1.77 g (content: 96.5% by weight, pure content: 1.71 g, 0.0150 mol) obtained in Production Example 3 and 7.9 g of trifluorotoluene. 10% of the solution was added dropwise over 30 minutes and stirred for 5 minutes, and then the reaction vessel was cooled to 0 ° C. Thereto, 2.46 g (0.0306 mol) of 1-chloro-1-fluoroethylene was injected and the internal temperature was adjusted to 5 ⁇ 2 ° C. While maintaining the internal temperature at 5 ⁇ 2 ° C., the remaining 90% of the previously prepared ethyl diazoacetate solution was added dropwise over 4.5 hours, and the resulting mixture was stirred at the same temperature for 1 hour.
- Example 7-1 Ethyl (1S) -2-chloro-2-fluorocyclopropanecarboxylate 2,2-bis [2-[(4S) -tert-butyloxazoline] in a 1300 mL autoclave at room temperature under a nitrogen atmosphere ] 1.40 g (4.75 mmol) of propane, 1.56 g (4.32 mmol) of copper (II) trifluoromethanesulfonate and 35.7 g of n-heptane were charged, and the reaction vessel was stirred while stirring the resulting mixture. Cooled to ° C.
- the reaction vessel was sealed, and 173 g (2.15 mol) of 1-chloro-1-fluoroethylene was press-fitted therein so that the internal temperature was 7 ⁇ 2 ° C. While maintaining the internal temperature at 7 ⁇ 2 ° C., 315 g of an n-heptane solution of ethyl diazoacetate obtained according to Production Example 4 (content: 39.1 wt%, pure content 123 g, 1.08 mol) After dropwise addition over time, the resulting mixture was stirred at the same temperature for 1 hour. During dropping and keeping the temperature, when the internal pressure exceeded 1 MPa, a purge operation was performed to keep the pressure in the range of 0.9 to 1 MPa.
- Example 8 Distillation of ethyl (1S) -2-chloro-2-fluorocyclopropanecarboxylate (1S) -2-Chloro-2-fluoro obtained by repeating the reaction under substantially the same conditions as in Example 1
- the solution was concentrated at a temperature of 40 to 42 ° C.
- Example 13 (1S, 2R) -2-chloro-2-fluorocyclopropanecarboxylic acid
- 0.2 mol / L composed of 52.3 g of sodium dihydrogen phosphate and 1760 g of water 1812 g of a phosphate buffer solution was added, and 10 wt% aqueous sodium hydroxide was added thereto to adjust the pH to 6.5.
- the pH of the mixture was adjusted to 6.5 using 10 wt% aqueous sodium hydroxide.
- 1100 g of tert-butyl methyl ether and 35 wt% hydrochloric acid were added to the reaction mixture to adjust its pH to 2.0, and then the organic layer and the aqueous layer were separated.
- the aqueous layer was extracted with 440 g of tert-butyl methyl ether, and the obtained organic layer was combined with the previously obtained organic layer.
- 11 g of Radiolite registered trademark, manufactured by Showa Chemical Industry Co., Ltd.
- Example 14 (1S, 2R) -2-Chloro-2-fluorocyclopropanecarboxylic acid
- 0.2 mol / L consisting of 14.3 g of sodium dihydrogen phosphate and 600 g of water 614.3 g of a phosphate buffer solution was added, and 10% by weight aqueous sodium hydroxide was added thereto to adjust the pH to 6.5.
- SEQ ID NO: 1 trade name: Lipase AH (Amano Enzyme Inc.) Product, Lot.LAHG0150707R)
- the pH of the mixture was adjusted to 6.5 using 10 wt% aqueous sodium hydroxide.
- 300 g of tert-butyl methyl ether and 35 wt% hydrochloric acid were added to the reaction mixture to adjust its pH to 2.3, and then the organic layer and the aqueous layer were separated. Subsequently, the aqueous layer was extracted using 120 g of tert-butyl methyl ether twice, and the obtained organic layer was combined with the previously obtained organic layer. 6 g of Radiolite (registered trademark, manufactured by Showa Chemical Industry Co., Ltd.) was added to the obtained organic layer and stirred at room temperature.
- Radiolite registered trademark, manufactured by Showa Chemical Industry Co., Ltd.
- Radiolite registered trademark, manufactured by Showa Chemical Industry Co., Ltd.
- Radiolite registered trademark, manufactured by Showa Chemical Industry Co., Ltd.
- a glass filter The solid was filtered off using.
- 539 g of (1S, 2R) -2-chloro-2-fluorocyclopropanecarboxylic acid-containing organic layer ((1S, 2R) -2-chloro-2- As fluorocyclopropane carboxylic acid, content: 9.20% by weight, pure content: 29.9 g, yield: 61.2%
- anti isomer / syn isomer ratio 98.6 / 1.4
- anti isomer optical purity 98.1% ee
- Example 15 (1S, 2R) -2-Chloro-2-fluorocyclopropanecarboxylic acid
- 0.2 mol consisting of 9.6 g of sodium dihydrogen phosphate and 390.4 g of water / L Phosphate buffer solution (300 g) was added, and 28 wt% aqueous sodium hydroxide was added thereto to adjust the pH to 6.9.
- the pH of the mixture was adjusted to 6.9 using 4 wt% aqueous sodium hydroxide.
- 150 g of tert-butyl methyl ether and 10 wt% hydrochloric acid were added to the reaction mixture to adjust its pH to 2.0, and then the organic layer and the aqueous layer were separated.
- the aqueous layer was subjected to extraction treatment using 150 g of tert-butyl methyl ether twice, and the obtained organic layer was combined with the previously obtained organic layer.
- Radiolite registered trademark, manufactured by Showa Chemical Industry Co., Ltd.
- Radiolite registered trademark, manufactured by Showa Chemical Industry Co., Ltd.
- a glass filter The solid was filtered off using.
- An aqueous layer slightly formed in the filtrate was separated, and 480 g ((1S, 2R) -2-chloro-2-fluoro organic layer containing (1S, 2R) -2-chloro-2-fluorocyclopropanecarboxylic acid was separated.
- Example 16 (1S, 2R) -2-Chloro-2-fluorocyclopropanecarboxylic acid 0.2 mol / L phosphate buffer consisting of 2.4 g sodium dihydrogen phosphate and 100 g water in a 100 mL reaction vessel at room temperature 30 g of the solution was charged, and 28 wt% aqueous sodium hydroxide was added thereto to adjust the pH of the mixture to 6.5.
- the pH of the mixture was adjusted to 6.5-7.0 using 4% by weight aqueous sodium hydroxide.
- 20 g of tert-butyl methyl ether and 5 wt% hydrochloric acid were added to the reaction mixture to adjust its pH to 2.0, and then the organic layer and the aqueous layer were separated.
- the aqueous layer was extracted with 20 g of tert-butyl methyl ether, and the obtained organic layer was combined with the previously obtained organic layer.
- a small amount of Radiolite (registered trademark, manufactured by Showa Chemical Industry Co., Ltd.) was added to the obtained organic layer, and the mixture was stirred at room temperature. The solid was filtered off using.
- Example 17 (1S, 2R) -2-chloro-2-fluorocyclopropanecarboxylic acid 0.75 mol / L hydrogen carbonate consisting of 7.60 g of sodium hydrogen carbonate and 120 g of water in a 300 mL round bottom separable flask at room temperature 127.6 g of sodium buffer solution was charged, and 15.2 g of ethyl (1S) -2-chloro-2-fluorocyclopropanecarboxylate obtained in Example 9 (content: 98.4% by weight, pure content of 15.
- the pH was adjusted to 7 by adding 35% hydrochloric acid, and 185 g of (1S, 2R) -2-chloro-2-fluorocyclofluorocarbon aqueous solution containing sodium (1S, 2R) -2-chloro-2-fluorocyclopropanecarboxylate
- a hydrolase trade name:
- the catalyst derived from the nickel-aluminum alloy was filtered from the mixture using a filter kept at 65 ⁇ 5 ° C.
- the cis / trans isomer ratio was determined by high performance liquid chromatographic analysis.
- the cis / trans ratio was determined by gas chromatographic analysis.
- the obtained mixture was stirred at an internal temperature of 40 ° C. for 1 hour, and then 17 g of water was added thereto, the temperature was raised to 65 ° C., and the resulting mixture was stirred at the same temperature for 15 minutes.
- the catalyst derived from the nickel-aluminum alloy was filtered from the mixture using a filter kept at 65 ⁇ 5 ° C. The catalyst remaining on the filter was washed three times with 8.7 g of hot water at 70 ° C. to obtain 137 g of a solution containing (1S, 2S) -2-fluorocyclopropanecarboxylate (content: 14.8 wt.
- the obtained mixture was subjected to extraction treatment using 102 g of tert-butyl methyl ether three times, and the obtained organic layers were combined.
- the inside of the 50 mL autoclave was brought to 0 to 10 ° C., and 1.2 mL of a developed sponge nickel (made by Kawaken Fine Chemical Co., Ltd., NDHT-90) precipitate (corresponding to a pure nickel content of 1.0 g), ethylenediamine 1.30 g ( 0.0216 mol) and 2.20 g of water were charged with stirring. While maintaining the internal temperature of the obtained mixture at 10 to 30 ° C., the whole amount of the previously prepared aqueous solution of (1S, 2R) -2-chloro-2-fluorocyclopropanecarboxylate sodium salt was added dropwise thereto. The autoclave was sealed and filled with hydrogen to 0.8 MPa.
- a developed sponge nickel made by Kawaken Fine Chemical Co., Ltd., NDHT-90
- the resulting mixture was heated to 35 ° C. and stirred for 6 hours.
- the developed sponge nickel-derived catalyst was filtered off from the reaction mixture using Radiolite (registered trademark, manufactured by Showa Chemical Industry Co., Ltd.).
- Radiolite registered trademark, manufactured by Showa Chemical Industry Co., Ltd.
- 10 g of water and 10 g of ethanol were used in this order, the obtained filtration residue was washed, and the obtained washing solution and the previously obtained filtrate were combined.
- the resulting solution was concentrated under reduced pressure to a total amount of 18 g, and the pH was adjusted to 2.0 using 35 wt% hydrochloric acid.
- the cis / trans isomer ratio was determined by high performance liquid chromatographic analysis. When the aqueous layer was analyzed, (1S, 2S) -2-fluorocyclopropanecarboxylic acid contained in the aqueous layer was 4.1% in terms of yield. Therefore, the reaction yield was 64.6%.
- the reaction vessel was sealed, and 6.4 g (0.080 mol) of 1-chloro-1-fluoroethylene was press-fitted therein, and the internal temperature was adjusted to 5 ⁇ 2 ° C. While maintaining the internal temperature at 5 ⁇ 2 ° C., 9.60 g (content: 95.3% by weight, pure content: 9.13 g, 0.080 mol) of ethyl diazoacetate obtained according to Production Example 3 was added to dichloromethane 45 After the solution dissolved in .6 g was dropped over 5 hours, the resulting mixture was stirred at the same temperature for 1 hour. After returning to pressure, the temperature was raised and nitrogen substitution was performed.
- the obtained reaction mixture was washed with 2 g of 0.5 mol / L ethylenediaminetetraacetic acid aqueous solution and separated to obtain a mixture containing ethyl (1R) -2-chloro-2-fluorocyclopropanecarboxylate.
- protease S “Amano” manufactured by Amano Enzyme, Inc., Bacillus stearothermophilus genus
- papain W-40 manufactured by Amano Enzyme Co., Ltd., Carica papaya
- Anti-body / syn-body ratio gas chromatographic analysis column: DB-WAX 0.53mm ⁇ 30m, film thickness 1.0 ⁇ m (Manufactured by Agilent Technologies) Method: Analysis after derivatizing (1S, 2R) -2-chloro-2-fluorocyclopropane carboxylic acid to methyl ester with trimethylsilyldiazomethane.
- Optical purity gas chromatographic analysis column: InertCap (registered trademark) CHIRAMIX 0.25 mm x 30 m, film thickness 0.25 ⁇ m (Manufactured by GL Sciences Inc.) Method: Analysis after derivatizing (1S, 2R) -2-chloro-2-fluorocyclopropane carboxylic acid to methyl ester with trimethylsilyldiazomethane.
- (1S, 2R) -2-Chloro-2-fluorocyclopropanecarboxylic acid and (1S, 2S) -2-fluorocyclopropanecarboxylic acid are useful as intermediates for medicines and agricultural chemicals (for example, JP-A-2-231475, JP, 2005-15468, A), and the present invention can be used as a method for industrially producing such a compound.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- Health & Medical Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Analytical Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
項1.バークホルデリア・セパシア(Burkholderia cepacia)由来のエステラーゼを用いて(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エステルを加水分解する(1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸の製造方法。
項2.不斉錯体の存在下、1-クロロ-1-フルオロエチレンとジアゾ酢酸エステルとを反応させて(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エステルを得、次いで、バークホルデリア・セパシア(Burkholderia cepacia)由来のエステラーゼを用いて該(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エステルを加水分解する上記項1に記載の製造方法。
項3.不斉錯体が、銅化合物と光学活性な配位子とを接触させてなる不斉銅錯体である上記項2に記載の製造方法。
項4.光学活性な配位子が、一般式(1):
で示される光学活性なビスオキサゾリン化合物である上記項3に記載の製造方法。
項5.光学活性な配位子が、2,2-ビス[2-[(4S)-tert-ブチルオキサゾリン]]プロパンである上記項3に記載の製造方法。
項6.バークホルデリア・セパシア(Burkholderia cepacia)由来のエステラーゼが、配列番号1または2で示されるアミノ酸配列を有するエステラーゼである上記項1~5のいずれかに記載の製造方法。
項7.バークホルデリア・セパシア(Burkholderia cepacia)由来のエステラーゼが、配列番号1で示されるアミノ酸配列を有するエステラーゼである上記項1~5のいずれかに記載の製造方法。
項8.上記項1~7のいずれかに記載の製造方法により(1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸を得、次いで、該(1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸を還元する(1S,2S)-2-フルオロシクロプロパンカルボン酸の製造方法。
項9.還元が、(1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸存在下、ニッケル-アルミニウム合金に塩基を作用させて行われる上記項8に記載の製造方法。
1. (1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸の製造方法1.1 (1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エステル
まず、本発明に用いる(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エステルの製造方法について説明する。
で示される光学活性なビスオキサゾリン化合物(以下、光学活性ビスオキサゾリン(1)と略記する)や下記一般式(2):
で示されるサルドイミン化合物(以下、光学活性サルドイミン(2)と略記する)等が挙げられ、これらの中でも光学活性ビスオキサゾリン(1)が好ましい。
次に、バークホルデリア・セパシア(Burkholderia cepacia)由来のエステラーゼを用いて(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エステルを加水分解する(1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸の製造方法(本明細書において、「本発明の酵素加水分解」と記載することもある)について説明する。
最後に、(1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸を還元する、(1S,2S)-2-フルオロシクロプロパンカルボン酸の製造方法について説明する。
展開還元は、(1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸の存在下、ニッケル-アルミニウム合金に塩基を作用させて行われる。
水素添加は、通常、溶媒の存在下、(1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸とスポンジニッケルとを混合し、得られた混合物を水素雰囲気下で攪拌することにより行われる。また、塩基を適宜使用することもできる。
収率:ガスクロマトグラフ分析
カラム:DB-WAX
0.53mm×30m、膜厚1.0μm
(アジレント・テクノロジー株式会社製)
収率およびanti体/syn体比:ガスクロマトグラフ分析
カラム:DB-WAX
0.25mm×30m、膜厚0.25μm
(アジレント・テクノロジー株式会社製)
カラム:InertCap(登録商標) CHIRAMIX
0.25mm×30m、膜厚0.25μm
(ジーエルサイエンス株式会社製)
または、
CP-Cyclodextrin-β-2,3,6-M-19
0.25mm×50m、膜厚0.25μm
(ジーエルサイエンス株式会社製)
収率およびanti体/syn体比:高速液体クロマトグラフ分析
カラム:L-column2(登録商標)
4.6mm×250mm、5μm
(財団法人化学物質評価研究機構製)
展開液:KH2PO4水溶液(5mmol/L)にリン酸を加えて
pH2.5に調整した水溶液およびアセトニトリル
カラム:InertCap(登録商標) CHIRAMIX
0.25mm×30m、膜厚0.25μm
(ジーエルサイエンス株式会社製)
方法:(1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸をトリメチルシリルジアゾメタンでメチルエステルに誘導体化してから分析。
収率およびシス体/トランス体比:高速液体クロマトグラフ分析
カラム:L-column2(登録商標)
4.6mm×250mm、5μm
(財団法人化学物質評価研究機構製)
展開液:KH2PO4水溶液(5mmol/L)にリン酸を加えて
pH2.5に調整した水溶液およびアセトニトリル
カラム:InertCap(登録商標) CHIRAMIX
0.25mm×30m、膜厚0.25μm
(ジーエルサイエンス株式会社製)
方法:(1S,2S)-2-フルオロシクロプロパンカルボン酸を
トリメチルシリルジアゾメタンでメチルエステルに誘導体化してから分析。
カラム:HR-20M
0.53mm×30m、膜厚1.0μm
(信和化工株式会社製)
窒素雰囲気下、水318g、グリシンエチルエステル塩酸塩188g(1.35mol)、n-ヘプタン188gを順次仕込んだ後、得られた混合物を10℃に冷却した。そこに、28重量%水酸化ナトリウム水溶液1.74gを加えてpHを4.7に調整し、内温10±2℃に保ちながら、40重量%亜硝酸ナトリウム水溶液279g(純分112g、1.62mol)とクエン酸・1水和物4.54g(0.0216mol)および水65.8gからなるクエン酸水溶液とを同時並行的に3時間かけて滴下した。得られた混合物を10℃で6時間保温した後、そこに、炭酸ナトリウム6.58g(0.0621mol)および水87.5gからなる炭酸ナトリウム水溶液を滴下した。得られた混合物を内温10±5℃に保ちながら分液し、得られた有機層をモレキュラーシーブス4A6.2gで乾燥させた後、ろ過することにより、ジアゾ酢酸エチルのn-ヘプタン溶液341g(含量:38.0重量%、純分:129g、収率:84.1%)を得た。
窒素雰囲気下、水212g、グリシンエチルエステル塩酸塩126g(0.900mol)、n-ヘキサン126gを順次仕込んだ後、得られた混合物を10℃に冷却した。そこに、28重量%水酸化ナトリウム水溶液1.99gを加えてpHを4.9に調整し、内温10±2℃に保ちながら、40重量%亜硝酸ナトリウム水溶液186g(純分74.5g、1.08mol)とクエン酸・1水和物3.03g(0.0144mol)および水43.9gからなるクエン酸水溶液とを同時並行的に2時間かけて滴下した。得られた混合物を10℃で7時間保温した後、そこに、炭酸ナトリウム4.39g(0.0414mol)および水58.3gからなる炭酸ナトリウム水溶液を滴下した。得られた混合物を内温10±5℃に保ちながら分液し、ジアゾ酢酸エチルのn-ヘキサン溶液213g(含量:41.0重量%、純分:87.2g、収率:84.9%)を得た。
製造例2で得たジアゾ酢酸エチルのn-ヘキサン溶液213g(含量:41.0重量%、純分:87.2g)を温度38~42℃、減圧度200~370hPaで濃縮し、得られた残渣を温度52~60℃、減圧度12.0~31hPaで蒸留することにより、黄色の油状物として、ジアゾ酢酸エチル70.1g(含量:96.5重量%、純分:67.7g)を得た。
窒素雰囲気下、水637g、グリシンエチルエステル塩酸塩377g(2.70mol)、n-ヘプタン377gを順次仕込んだ後、得られた混合物を10℃に冷却した。そこに、26重量%水酸化ナトリウム水溶液3.14gを加えてpHを4.7に調整し、内温10±2℃に保ちながら、40重量%亜硝酸ナトリウム水溶液559g(純分224g、3.24mol)とクエン酸・1水和物17.0g(0.0810mol)および水247gからなるクエン酸水溶液とを同時並行的に15時間かけて滴下した。得られた混合物を10℃で4時間保温した後、そこに、炭酸ナトリウム24.0g(0.227mol)および水277gからなる炭酸ナトリウム水溶液を滴下した。得られた混合物を内温10±5℃に保ちながら分液し、得られた有機層をモレキュラーシーブス4A12.4gで乾燥させた後、ろ過することにより、ジアゾ酢酸エチルのn-ヘプタン溶液672g(含量:38.0重量%、純分:255g、収率:82.9%)を得た。
窒素雰囲気下、常温で、1300mLオートクレーブに2,2-ビス[2-[(4S)-tert-ブチルオキサゾリン]]プロパン1.79g(6.06mmol)、トリフルオロメタンスルホン酸銅(II)1.98g(5.50mmol)およびn-ヘプタン35.5gを仕込み、得られた混合物を攪拌しながら、反応容器を0℃に冷却した。反応容器を密閉し、そこに、1-クロロ-1-フルオロエチレン177g(2.19mol)を圧入し、内温を5±2℃とした。内温を5±2℃に保ちながら、そこに、製造例1で得たジアゾ酢酸エチルのn-ヘプタン溶液327g(含量:38.0重量%、純分:124g、1.09mol)を5時間かけて滴下した後、得られた混合物を同温度で1時間攪拌した。なお、滴下および保温中、内圧が1MPaを越えた際、パージ操作を行い、圧力を0.9~1MPaの範囲に保持した。復圧後、昇温し、窒素置換を行った。得られた反応混合物を0.5モル/Lエチレンジアミン四酢酸水27gで洗浄、分液することにより、(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エチルを含む混合物453g(含量:27.5重量%、純分:125g、収率:68.6%(対 ジアゾ酢酸エチル)、anti体/syn体比=62.5/37.5、anti体光学純度=98.2%ee、syn体光学純度=97.4%ee)を得た。反応に用いたオートクレーブなど使用器具の付着分をアセトニトリルに溶解し含量分析を行ったところ、(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エチルの合計量は、収率換算で1.3%であった。したがって、反応収率は69.9%であった。
窒素雰囲気下、常温で、1300mLオートクレーブに2,2-ビス[2-[(4S)-tert-ブチルオキサゾリン]]プロパン811mg(2.75mmol)、トリフルオロメタンスルホン酸銅(II)903mg(2.50mmol)およびn-ヘプタン16.3gを仕込み、得られた混合物を攪拌しながら、反応容器を0℃に冷却した。反応容器を密閉し、そこに、1-クロロ-1-フルオロエチレン203g(2.52mol)を圧入し、内温を5±2℃とした。内温を5±2℃に保ちながら、そこに、製造例1に準じて得たジアゾ酢酸エチルのn-ヘプタン溶液149g(含量:38.3重量%、純分:57.0g、0.500mol)を5時間かけて滴下した後、得られた混合物を同温度で1時間攪拌した。滴下に従い内圧が上昇し、最終的に1.3MPaに達した。復圧後、昇温し、窒素置換を行った。得られた反応混合物を0.5モル/Lエチレンジアミン四酢酸水13gで洗浄、分液することにより、(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エチルを含む混合物206g(含量:32.5重量%、純分:66.9g、収率:80.2%(対 ジアゾ酢酸エチル)、anti体/syn体比=62.4/37.6、anti体光学純度=98.3%ee、syn体光学純度=97.5%ee)を得た。反応に用いたオートクレーブなど使用器具の付着分をアセトニトリルに溶解し含量分析を行ったところ、(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エチルの合計量は、収率換算で1.5%であった。したがって、反応収率は81.7%であった。
窒素雰囲気下、常温で、1300mLオートクレーブに2,2-ビス[2-[(4S)-tert-ブチルオキサゾリン]]プロパン1.03g(3.48mmol)、トリフルオロメタンスルホン酸銅(II)1.14g(3.16mmol)およびn-ヘプタン20.5gを仕込み、得られた混合物を攪拌しながら、反応容器を0℃に冷却した。反応容器を密閉し、そこに、1-クロロ-1-フルオロエチレン154g(1.91mol)を圧入し、内温を5±2℃とした。内温を5±2℃に保ちながら、そこに、製造例1に準じて得たジアゾ酢酸エチルのn-ヘプタン溶液189g(含量:38.1重量%、純分:71.9g、0.630mol)を5時間かけて滴下した後、得られた混合物を同温度で1時間攪拌した。滴下に従い内圧が上昇し、最終的に1.5MPaに達した。復圧後、昇温し、窒素置換を行った。得られた反応混合物を0.5モル/Lエチレンジアミン四酢酸水15.8gで洗浄、分液することにより、(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エチルを含む混合物269g(含量:27.1重量%、純分:73.0g、収率:69.5%(対 ジアゾ酢酸エチル)、anti体/syn体比=62.6/37.4、anti体光学純度=98.2%ee、syn体光学純度=97.5%ee)を得た。反応に用いたオートクレーブなど使用器具の付着分をアセトニトリルに溶解し含量分析を行ったところ、(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エチルの合計量は、収率換算で0.9%であった。したがって、反応収率は70.4%であった。
窒素雰囲気下、常温で、1300mLオートクレーブに2,2-ビス[2-[(4S)-tert-ブチルオキサゾリン]]プロパン0.809g(2.75mmol)、トリフルオロメタンスルホン酸銅(II)0.903g(2.50mmol)およびn-ヘプタン16.3gを仕込み、得られた混合物を攪拌しながら、反応容器を0℃に冷却した。反応容器を密閉し、そこに、1-クロロ-1-フルオロエチレン202g(2.51mol)を圧入し、内温を5±2℃とした。内温を5±2℃に保ちながら、そこに、製造例1に準じて得たジアゾ酢酸エチルのn-ヘプタン溶液146g(含量:39.2重量%、純分:57.0g、0.500mol)を5時間かけて滴下した後、得られた混合物を同温度で1時間攪拌した。滴下に従い内圧が上昇し、最終的に1.2MPaに達した。復圧後、昇温し、窒素置換を行った。得られた反応混合物を0.5モル/Lエチレンジアミン四酢酸水12.5gで洗浄、分液することにより、(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エチルを含む混合物201g(含量:30.8重量%、純分:62.0g、収率:74.4%(対 ジアゾ酢酸エチル)、anti体/syn体比=62.2/37.8、anti体光学純度=98.2%ee、syn体光学純度=97.5%ee)を得た。反応に用いたオートクレーブなど使用器具の付着分をアセトニトリルに溶解し含量分析を行ったところ、(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エチルの合計量は、収率換算で6.5%であった。したがって、反応収率は80.9%であった。
窒素雰囲気下、常温で、260mLオートクレーブに2,2-ビス[2-[(4S)-tert-ブチルオキサゾリン]]プロパン0.520g(1.77mmol)、トリフルオロメタンスルホン酸銅(II)0.579g(1.61mmol)およびトリフルオロトルエン42.0gを仕込み、得られた混合物を攪拌しながら、反応容器を0℃に冷却した。反応容器を密閉し、そこに、1-クロロ-1-フルオロエチレン13.0g(0.162mol)を圧入し、内温を5±2℃とした。内温を5±2℃に保ちながら、そこに、製造例3で得たジアゾ酢酸エチル9.49g(含量:96.5重量%、純分:9.16g、0.0802mol)およびトリフルオロトルエン42.0gからなる溶液を5時間かけて滴下した後、得られた混合物を同温度で1時間攪拌した。滴下に従い内圧が上昇し、最終的に1.0MPaに達した。復圧後、昇温し、窒素置換を行った。得られた反応混合物を0.5モル/Lエチレンジアミン四酢酸水8.0gで洗浄、分液することにより、(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エチルを含む混合物107g(含量:3.96重量%、純分:4.22g、収率:31.6%(対 ジアゾ酢酸エチル)、anti体/syn体比=60.0/40.0、anti体光学純度=97.9%ee、syn体光学純度=97.1%ee)を得た。
窒素雰囲気下、常温で、50mLオートクレーブに2,2-ビス[2-[(4S)-tert-ブチルオキサゾリン]]プロパン0.025g(0.085mmol)、トリフルオロメタンスルホン酸銅(II)0.027g(0.075mmol)およびトリフルオロトルエン7.9gを仕込み、得られた混合物を攪拌しながら、反応容器を0℃に冷却した。反応容器を密閉し、そこに、1-クロロ-1-フルオロエチレン2.43g(0.0302mol)を圧入し、内温を5±2℃とした。内温を5±2℃に保ちながら、そこに、製造例3で得たジアゾ酢酸エチル1.77g(含量:96.5重量%、純分:1.71g、0.0150mol)およびトリフルオロトルエン7.9gからなる溶液を5時間かけて滴下した後、得られた混合物を同温度で1時間攪拌した。滴下に従い内圧が上昇し、最終的に1.0MPaに達した。復圧後、昇温し、窒素置換を行った。得られた反応混合物を0.5モル/Lエチレンジアミン四酢酸水0.38gで洗浄、分液することにより、(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エチルを含む混合物19.7g(含量:5.14重量%、純分:1.01g、収率:40.5%(対 ジアゾ酢酸エチル)、anti体/syn体比=60.4/39.6、anti体光学純度=96.5%ee、syn体光学純度=95.8%ee)を得た。
窒素雰囲気下、常温で、50mLオートクレーブに2,2-ビス[2-[(4S)-tert-ブチルオキサゾリン]]プロパン0.025g(0.085mmol)、トリフルオロメタンスルホン酸銅(II)0.027g(0.075mmol)およびトリフルオロトルエン7.9gを仕込み、得られた混合物を攪拌した。反応容器を密閉し、そこに、製造例3で得たジアゾ酢酸エチル1.77g(含量:96.5重量%、純分:1.71g、0.0150mol)およびトリフルオロトルエン7.9gからなる溶液のうち、10%相当を30分間かけて滴下し、5分間攪拌した後、反応容器を0℃に冷却した。そこに、1-クロロ-1-フルオロエチレン2.46g(0.0306mol)を圧入し、内温を5±2℃とした。内温を5±2℃に保ちながら、そこに、先に調整したジアゾ酢酸エチル溶液の残りの90%を4.5時間かけて滴下した後、得られた混合物を同温度で1時間攪拌した。滴下に従い内圧が上昇し、最終的に0.9MPaに達した。復圧後、昇温し、窒素置換を行った。得られた反応混合物を0.5モル/Lエチレンジアミン四酢酸水0.38gで洗浄、分液することにより、(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エチルを含む混合物19.7g(含量:4.47重量%、純分:0.88g、収率:35.4%(対 ジアゾ酢酸エチル)、anti体/syn体比=60.3/39.7、anti体光学純度=94.6%ee、syn体光学純度=93.6%ee)を得た。
窒素雰囲気下、常温で、1300mLオートクレーブに2,2-ビス[2-[(4S)-tert-ブチルオキサゾリン]]プロパン1.40g(4.75mmol)、トリフルオロメタンスルホン酸銅(II)1.56g(4.32mmol)およびn-ヘプタン35.7gを仕込み、得られた混合物を攪拌しながら、反応容器を0℃に冷却した。反応容器を密閉し、そこに、1-クロロ-1-フルオロエチレン173g(2.15mol)を圧入し、内温を7±2℃とした。内温を7±2℃に保ちながら、そこに、製造例4に準じて得たジアゾ酢酸エチルのn-ヘプタン溶液315g(含量:39.1重量%、純分123g、1.08mol)を24時間かけて滴下した後、得られた混合物を同温度で1時間撹拌した。なお、滴下および保温中、内圧が1MPaを越えた際、パージ操作を行い、圧力を0.9~1MPaの範囲に保持した。復圧後、昇温し、窒素置換を行い、(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エチルを含む混合物396g(含量:26.7重量%、純分:106g、収率:58.8%(対 ジアゾ酢酸エチル)、anti体/syn体比=61.5/38.5、anti体光学純度=97.8%ee、syn体光学純度=96.9%ee)を得た。反応に用いたオートクレーブなど使用器具の付着分をtert-ブチルメチルエーテルに溶解し含量分析を行ったところ、(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エチルの合計量は、収率換算で10.6%であった。したがって、反応収率は69.4%であった。
実施例1とほぼ同様の条件で繰り返し反応を行い、得られた(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エチルを含む混合物を合一し、(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エチル混合物1278g(含量:25.4重量%、純分:325g、anti体/syn体比=62.6/37.4、anti体光学純度=98.2%ee)を得た。この溶液を温度40~42℃、減圧度19~106hPaで濃縮し、得られた残渣を温度70~88℃、減圧度5.3~14hPaで蒸留することにより、無色の油状物として、(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エチル294g(含量:98.1重量%、純分:289g、anti体/syn体比=61.1/38.9、anti体光学純度=98.2%ee)を得た。
実施例2で得た(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エチルを含む混合物206g(含量:32.5重量%、純分:66.9g、anti体/syn体比=62.4/37.6、anti体光学純度=98.3%ee)を温度40~42℃、減圧度40~133hPaで濃縮し、得られた残渣を温度67~88℃、減圧度6.7~13hPaで蒸留することにより、無色の油状物として、(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エチル59.4g(含量:98.4重量%、純分:58.4g、anti体/syn体比=62.5/37.5、anti体光学純度=98.3%ee)を得た。
実施例3で得た(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エチルを含む混合物269g(含量:27.1重量%、純分:72.8g、anti体/syn体比=62.6/37.4、anti体光学純度=98.2%ee)を温度40~42℃、減圧度40~133hPaで濃縮し、得られた残渣を温度67~88℃、減圧度6.7~13hPaで蒸留することにより、無色の油状物として、(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エチル66.6g(含量:97.4重量%、純分:64.9g、anti体/syn体比=62.4/37.6、anti体光学純度=98.2%ee)を得た。
実施例4で得た(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エチルを含む混合物201g(含量:30.8重量%、純分:62.0g、anti体/syn体比=62.2/37.8、anti体光学純度=98.2%ee)を温度40~41℃、減圧度27~101hPaで濃縮し、得られた残渣を温度70~85℃、減圧度8.0~27hPaで蒸留することにより、無色の油状物として、(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エチル57.7g(含量:100重量%、純分:57.7g、anti体/syn体比=61.7/38.3、anti体光学純度=98.2%ee)を得た。
実施例5~7で得た(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エチルを含む混合物を合一し、(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エチル混合物121g(含量:4.1重量%、純分:5.0g、anti体/syn体比=60.4/39.6、anti体光学純度=96.5%ee)を得た。この溶液を温度35~40℃、減圧度20~133hPaで濃縮し、得られた残渣を温度82~91℃、減圧度8.0~20hPaで蒸留することにより、無色の油状物として、(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エチル3.8g(含量:86.2重量%、純分:3.3g、anti体/syn体比=58.4/41.6、anti体光学純度=96.3%ee)を得た。
実施例7-1とほぼ同様の条件で繰り返し反応を行い、得られた(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エチルを含む混合物を合一し、(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エチル混合物2331g(含量:22.7重量%、純分:528g、anti体/syn体比=62.8/37.2、anti体光学純度=98.2%ee)を得た。この混合物に、モレキュラーシーブス4A30.9gを加え、温度39~42℃、減圧度47~373hPaで775g(含量:64.2%、純分:498g)まで濃縮した。このうち、385gを温度73~107℃、減圧度5.3~13hPaで蒸留することにより、無色の油状物として、(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エチル247g(含量:97.4重量%、純分:241g、anti体/syn体比=62.0/38.0、anti体光学純度=98.2%ee)を得た。
室温下、3000mL丸底セパラブルフラスコに、リン酸2水素ナトリウム52.3gおよび水1760gからなる0.2mol/Lリン酸緩衝液1812gを仕込み、そこに、10重量%水酸化ナトリウム水を加えてpHを6.5に調整した。そこに、実施例8で得た(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エチル224g(含量:98.1重量%、純分:220g、1.32mol、anti体/syn体比=61.1/38.9、anti体光学純度=98.2%ee)、さらに、配列番号1で示されるアミノ酸配列からなる加水分解酵素(商品名:リパーゼAH(天野エンザイム株式会社製、Lot.LAHG0150707R))11.0gを順に仕込んだ後、得られた混合物を35℃で50時間攪拌した。攪拌中、10重量%水酸化ナトリウム水を用いて、混合物のpHを6.5に調整した。反応終了後、反応混合物にtert-ブチルメチルエーテル1100gおよび35重量%塩酸を加えて、そのpHを2.0とした後、有機層と水層を分離した。次いで、tert-ブチルメチルエーテル440gを用いて該水層を抽出処理し、得られた有機層を先に得られた有機層と合一した。得られた有機層にラヂオライト(登録商標、昭和化学工業株式会社製)を11g添加し、室温で攪拌した後、ガラスフィルターを用いて固形物をろ別した。ろ液中のわずかに生じた水層を分離した後、(1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸を含む有機層1806g(含量:5.79重量%、純分:104.5g、収率:57.1%、anti体/syn体比=98.6/1.4、anti体光学純度=98.1%ee)を得た。この有機層を5℃に冷却した。温度を5~15℃に保ちながら、そこに、27重量%水酸化ナトリウム水溶液を117g(0.787mol)滴下することによりpHを13に調整した後、内温を20℃にし、(1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸をナトリウム塩として水層側に抽出することにより、(1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸ナトリウムを含む水層285g((1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸ナトリウムとして、含量:41.4重量%、純分:118g、収率:55.7%、anti体/syn体比=98.1/1.9、anti体光学純度=98.1%ee)を得た。
室温下、2000mL丸底セパラブルフラスコに、リン酸2水素ナトリウム14.3gおよび水600gからなる0.2mol/Lリン酸緩衝液614.3gを仕込み、そこに、10重量%水酸化ナトリウム水を加えてpHを6.5に調整した。そこに、実施例10で得た(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エチル61.2g(含量:97.4重量%、純分60.0g、0.360mol、anti体/syn体比=62.4/37.6、anti体光学純度=98.2%ee)、さらに、配列番号1で示されるアミノ酸配列からなる加水分解酵素(商品名:リパーゼAH(天野エンザイム株式会社製、Lot.LAHG0150707R))3.0gを順に仕込んだ後、得られた混合物を35℃で47時間攪拌した。攪拌中、10重量%水酸化ナトリウム水を用いて、混合物のpHを6.5に調整した。反応終了後、反応混合物にtert-ブチルメチルエーテル300gおよび35重量%塩酸を加えて、そのpHを2.3とした後、有機層と水層を分離した。次いで、tert-ブチルメチルエーテル120gを2回用いて該水層を抽出処理し、得られた有機層を先に得られた有機層と合一した。得られた有機層にラヂオライト(登録商標、昭和化学工業株式会社製)を6g添加し、室温で攪拌した後、ラヂオライト(登録商標、昭和化学工業株式会社製)をろ過剤とし、グラスフィルターを用いて固形物をろ別した。ろ液中にわずかに生じた水層を分離した後、(1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸を含む有機層539g((1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸として、含量:9.20重量%、純分:29.9g、収率:61.2%、anti体/syn体比=98.6/1.4、anti体光学純度=98.1%ee)を得た。
室温下、500mL丸底セパラブルフラスコに、リン酸2水素ナトリウム9.6gおよび水390.4gからなる0.2mol/Lリン酸緩衝液300gを仕込み、そこに、28重量%水酸化ナトリウム水を加えてpHを6.9に調整した。そこに、実施例11で得た(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エチル30.0g(含量:100重量%、純分30.0g、0.180mol、anti体/syn体比=61.7/38.3、anti体光学純度=98.2%ee)、配列番号2で示されるアミノ酸配列からなる加水分解酵素(商品名:リパーゼPS(天野エンザイム株式会社製、Lot.LPSAP11522))6.0gを仕込んだ後、得られた混合物を35℃で48時間攪拌した。攪拌中、4重量%水酸化ナトリウム水を用いて、混合物のpHを6.9に調整した。反応終了後、反応混合物にtert-ブチルメチルエーテル150gおよび10重量%塩酸を加えて、そのpHを2.0とした後、有機層と水層を分離した。次いで、tert-ブチルメチルエーテル150gを2回用いて該水層を抽出処理し、得られた有機層を先に得られた有機層と合一した。得られた有機層にラヂオライト(登録商標、昭和化学工業株式会社製)を9g添加し、室温で攪拌した後、ラヂオライト(登録商標、昭和化学工業株式会社製)をろ過剤とし、グラスフィルターを用いて固形物をろ別した。ろ液中にわずかに生じた水層を分離し、(1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸を含む有機層480g((1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸として、含量:3.13重量%、純分:15.0g、収率:60.1%、anti体/syn体比=95.5/4.5、anti体光学純度=98.0%ee)を得た。
室温下、100mL反応容器に、リン酸2水素ナトリウム2.4gおよび水100gからなる0.2mol/Lリン酸緩衝液30gを仕込み、そこに、28重量%水酸化ナトリウム水を加えて、混合物のpHを6.5に調整した。そこに、実施例9で得た(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エチル1.02g(含量:98.4重量%、純分1.00g、6.00mmol、anti体/syn体比=62.5/37.5、anti体光学純度=98.3%ee)、さらに、配列番号1で示されるアミノ酸配列からなる加水分解酵素(商品名:リパーゼAH(天野エンザイム株式会社製、Lot.LAHG0150707R))50mgを順に仕込んだ後、得られた混合物を30℃で48時間攪拌した。攪拌中、4重量%水酸化ナトリウム水を用いて、混合物のpHを6.5~7.0に調整した。反応終了後、反応混合物にtert-ブチルメチルエーテル20gおよび5重量%塩酸を加えて、そのpHを2.0とした後、有機層と水層を分離した。次いで、tert-ブチルメチルエーテル20gを用いて該水層を抽出処理し、得られた有機層を先に得られた有機層と合一した。得られた有機層にラヂオライト(登録商標、昭和化学工業株式会社製)を少量添加し、室温で攪拌した後、ラヂオライト(登録商標、昭和化学工業株式会社製)をろ過剤とし、グラスフィルターを用いて固形物をろ別した。ろ液中のわずかに生じた水層を分離し、(1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸を含む有機層49.2g((1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸として、含量:0.87重量%、純分:0.428g、収率:51.5%、anti体/syn体比=99.7/0.3、anti体光学純度=98.0%ee)を得た。
室温下、300mL丸底セパラブルフラスコに、炭酸水素ナトリウム7.60gおよび水120gからなる0.75mol/L炭酸水素ナトリウム緩衝液127.6gを仕込み、そこに、実施例9で得た(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エチル15.2g(含量:98.4重量%、純分15.0g、90.0mmol、anti体/syn体比=62.5/37.5、anti体光学純度=98.3%ee)、さらに、配列番号1で示されるアミノ酸配列からなる加水分解酵素(商品名:リパーゼAH(天野エンザイム株式会社製、Lot.LAHG0150707R))750mgを順に仕込んだ後、得られた混合物を35℃で48時間攪拌した。反応終了後、反応混合物にtert-ブチルメチルエーテル30gおよび35重量%塩酸を加えて、そのpHを2.0とした後、有機層と水層を分離した。次いで、tert-ブチルメチルエーテル30gを用いて該水層を抽出処理し、得られた有機層を先に得られた有機層と合一した。得られた有機層にラヂオライト(登録商標、昭和化学工業株式会社製)を0.8g添加し、室温で攪拌した後、ガラスフィルターを用いて固形物をろ別した。ろ液中のわずかに生じた水層を分離した後、(1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸を含む有機層59.4g((1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸として、含量:12.7重量%、純分:7.56g、収率:60.6%、anti体/syn体比=98.2/1.8、anti体光学純度=98.2%ee)を得た。
室温下、1000mL丸底セパラブルフラスコに、炭酸水素ナトリウム42.4gおよび水480gからなる0.97mol/L炭酸水素ナトリウム緩衝液522.4gを仕込み、そこに、実施例12-1に準じて得た(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エチル123g(含量:97.3重量%、純分120g、0.720mol、anti体/syn体比=62.2/37.8、anti体光学純度=98.2%ee)、さらに、配列番号1で示されるアミノ酸配列からなる加水分解酵素(商品名:リパーゼAH(天野エンザイム株式会社製、Lot.LAHG0951102R))8.40gを順に仕込んだ後、得られた混合物を35℃で62時間攪拌した。反応終了後、反応混合物にtert-ブチルメチルエーテル240gおよび35重量%塩酸を加えて、そのpHを2.0とした後、有機層と水層を分離した。次いで、tert-ブチルメチルエーテル60gを用いて該水層を抽出処理し、得られた有機層を先に得られた有機層と合一した。得られた有機層にラヂオライト(登録商標、昭和化学工業株式会社製)を6.0g添加し、室温で攪拌した後、ガラスフィルターを用いて固形物をろ別した。ろ液中のわずかに生じた水層を分離した後、(1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸を含む有機層400g((1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸として、含量:15.1重量%、純分:60.4g、収率:60.4%、anti体/syn体比=98.8/1.2、anti体光学純度=98.1%ee)を得た。この有機層を5℃に冷却した。温度を5~15℃に保ちながら、そこに、26重量%水酸化ナトリウム水溶液55.4g(0.360mol)、続けて10重量%水酸化ナトリウム水溶液35.4gを滴下してpHを13に調整した後、内温を20℃とし、(1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸をナトリウム塩として水層側に抽出した。35%塩酸を加えてpHを7に調整し、(1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸ナトリウムを含む水溶液185g((1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸ナトリウムとして、含量:36.0重量%、純分:66.6g、収率:57.4%、anti体/syn体比=98.8/1.2、anti体光学純度=98.1%ee)を得た。
室温下、200mL丸底セパラブルフラスコに、炭酸水素ナトリウム8.83gおよび水100gからなる0.97mol/L炭酸水素ナトリウム緩衝液108.8gを仕込み、そこに、実施例12-1に準じて得た(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エチル25.7g(含量:97.3重量%、純分25.0g、0.150mol、anti体/syn体比=62.2/37.8、anti体光学純度=98.2%ee)、さらに、配列番号1で示されるアミノ酸配列からなる加水分解酵素(商品名:リパーゼAH(天野エンザイム株式会社製、Lot.LAHH0250804R))1.75gを順に仕込んだ後、得られた混合物を35℃で40時間攪拌した。反応終了後、反応混合物にtert-ブチルメチルエーテル50.0gおよび35重量%塩酸を加えて、そのpHを2.0とした後、有機層と水層を分離した。次いで、tert-ブチルメチルエーテル12.5gを用いて該水層を抽出処理し、得られた有機層を先に得られた有機層と合一した。得られた有機層にラヂオライト(登録商標、昭和化学工業株式会社製)を1.3g添加し、室温で攪拌した後、ガラスフィルターを用いて固形物をろ別した。ろ液中のわずかに生じた水層を分離した後、(1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸を含む有機層82.6g((1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸として、含量:14.6重量%、純分:12.1g、収率:57.9%、anti体/syn体比=98.9/1.1、anti体光学純度=98.1%ee)を得た。
実施例13で得た(1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸ナトリウム水溶液282g(含量:41.4重量%、純分:117g、0.728mol、anti体/syn体比=98.1/1.9、anti体光学純度=98.1%ee)を常温で撹拌しながら、そこに、ニッケル-アルミニウム合金30.7g(ニッケル含量:49.7重量%、アルミ含量:50.2重量%、アルミニウム純分:15.4g、0.571mol)を加え、混合物の内温を25~30℃に保ちながら、そこに、エチレンジアミン2.19g(0.036mol)と27重量%水酸化ナトリウム水溶液5.40g(0.036mol)を30分かけて加えた。得られた混合物の内温を29~42℃に保ちながら、そこに、エチレンジアミン43.8g(0.729mol)と27重量%水酸化ナトリウム水溶液113g(0.765mol)を3.5時間かけて加えた。次いで、得られた混合物の内温を1時間かけて50℃まで昇温し、同温度で3時間攪拌した後、そこに水73gを加え、得られた混合物を同温度で15分間攪拌した。攪拌後、65±5℃で保温されたろ過器を用いて、該混合物からニッケル-アルミニウム合金由来の触媒をろ別した。ろ過器上に残存した触媒を70℃の温水36gを用いて3回洗浄することにより、(1S,2S)-2-フルオロシクロプロパンカルボン酸ナトリウムを含む溶液550g(含量:15.9重量%、純分:87.6g、収率:95.4%、シス体/トランス体比=98.1/1.9、シス体光学純度=98.0%ee)を得た。かかるシス体/トランス体比は高速液体クロマトグラフ分析にて求めた。
実施例17-1で得た(1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸ナトリウム水溶液77.9g(含量:36.0重量%、純分:28.0g、0.174mol、anti体/syn体比=98.8/1.2、anti体光学純度=98.1%ee)を常温で撹拌しながら、そこに、ニッケル-アルミニウム合金7.35g(ニッケル含量:49.7重量%、アルミ含量:50.2重量%、アルミニウム純分:3.67g、0.136mol)を加え、混合物の内温を10~20℃に保ちながら、そこに、エチレンジアミン1.05g(0.017mol)と26重量%水酸化ナトリウム水溶液2.68g(0.017mol)を2時間かけて加えた。同温度で1時間撹拌した後、得られた混合物の内温を35~45℃に保ちながら、そこに、エチレンジアミン10.0g(0.166mol)と26重量%水酸化ナトリウム水溶液26.8g(0.174mol)を16時間かけて加えた。次いで、得られた混合物を、内温40℃で1時間撹拌した後、そこに水17gを加え65℃まで昇温し、得られた混合物を同温度で15分間撹拌した。攪拌後、65±5℃で保温されたろ過器を用いて、該混合物からニッケル-アルミニウム合金由来の触媒をろ別した。ろ過器上に残存した触媒を70℃の温水8.7gを用いて3回洗浄することにより、(1S,2S)-2-フルオロシクロプロパンカルボン酸ナトリウムを含む溶液137g(含量:14.8重量%、純分:20.3g、収率:92.2%、シス体/トランス体比=97.2/2.8、シス体光学純度=97.8%ee)を得た。かかるシス体/トランス体比は高速液体クロマトグラフ分析にて求めた。
実施例18-1に準じて得た(1S,2S)-2-フルオロシクロプロパンカルボン酸ナトリウムを含む溶液283g(含量:12.1重量%、純分:34.2g、シス体/トランス体比=97.3/2.7、シス体光学純度=98.0%ee)に、35重量%塩酸97gを加え、そのpHを1以下に調整した。tert-ブチルメチルエーテル102gを3回用いて、得られた混合物を抽出処理し、得られた各有機層を合一した。得られた有機層の全量304gを減圧濃縮し、(1S,2S)-2-フルオロシクロプロパンカルボン酸を含む混合物67.2g(含量:42.1重量%、純分:28.3g、シス体/トランス体比=96.9/3.1)を得た。該混合物にトルエンを44g加えた後、得られた混合物を減圧濃縮した。さらに、トルエン44gを加えて、再度、減圧濃縮し(1S,2S)-2-フルオロシクロプロパンカルボン酸を含む混合物45.4g(含量:58.6重量%、純分:26.6g)を得た。
(1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸1.11g(含量:93.7重量%、純分:1.04g、7.5mmol、anti体/syn体比=96.1/3.9、anti体光学純度=97.7%ee)を0~15℃で撹拌しながら、そこに、10重量%水酸化ナトリウム水溶液2.88g(7.2mmol)を加え、(1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸ナトリウム水溶液を調製した。50mLオートクレーブの内部を0~10℃にし、そこに、展開済スポンジニッケル(川研ファインケミカル株式会社製、NDHT-90)沈殿物1.2mL(ニッケル純分1.0g相当)、エチレンジアミン1.30g(0.0216mol)と水2.20gを攪拌しながら仕込んだ。得られた混合物の内温を10~30℃に保ちながら、そこに、先に調製した(1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸ナトリウム水溶液の全量を滴下した。オートクレーブを密閉し、水素を封入して0.8MPaとした。得られた混合物を35℃まで昇温し、6時間攪拌した。反応終了後、ラヂオライト(登録商標、昭和化学工業株式会社製)を用いて、反応混合物から展開済スポンジニッケル由来の触媒をろ別した。水10g、エタノール10gを順に用い、得られた濾過残渣を洗浄し、得られた洗液と先に得たろ液とを合一した。得られた溶液を減圧濃縮し、その全量を18gとした後、35重量%塩酸を用いて、そのpHを2.0に調整した。tert-ブチルメチルエーテル10gを2回用いて、該溶液を抽出処理し、(1S,2S)-2-フルオロシクロプロパンカルボン酸を含む有機層20.7g(含量:2.29重量%、純分:0.47g、収率:60.5%、シス体/トランス体比=98.3/1.7、シス体光学純度=97.9%ee)を得た。かかるシス体/トランス体比は高速液体クロマトグラフ分析にて求めた。また、水層を分析したところ、水層中に含まれていた(1S,2S)-2-フルオロシクロプロパンカルボン酸は、収率に換算して4.1%であった。よって、反応収率は64.6%であった。
窒素雰囲気下、常温で、260mLオートクレーブに[(R)-N-(5-ニトロサリチリデン)-2-アミノ-1,1-ジ(5-tert-ブチル-2-ブトキシフェニル)-1-プロパノール]銅錯体278mg(0.40mmol)およびジクロロメタン45.6gを仕込み、得られた混合物を攪拌しながら、反応容器を0℃に冷却した。反応容器を密閉し、そこに、1-クロロ-1-フルオロエチレン6.4g(0.080mol)を圧入し、内温を5±2℃とした。内温を5±2℃に保ちながら、そこに製造例3に準じて得たジアゾ酢酸エチル9.60g(含量:95.3重量%、純分:9.13g、0.080mol)をジクロロメタン45.6gに溶解した溶液を5時間かけて滴下した後、得られた混合物を同温度で1時間攪拌した。復圧後、昇温し、窒素置換をおこなった。得られた反応混合物を0.5モル/Lエチレンジアミン四酢酸水2gで洗浄、分液することにより、(1R)-2-クロロ-2-フルオロシクロプロパンカルボン酸エチルを含む混合物を得た。収率は8.5%(対 ジアゾ酢酸エチル)、anti体/syn体比=47/53、anti体光学純度=92.7%ee、syn体光学純度=94.7%eeであった。
リン酸2水素ナトリウム9.6gを水390.4gに溶解した後、28重量%水酸化ナトリウム水を加えてpHを7.0とし、0.2mol/Lリン酸緩衝液400gを調製した。室温下、20mLサンプル管にこのリン酸緩衝液2.5mL、実施例12で得た(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エチル25mg(含量:86.2重量%、純分21.6mg、0.129mmol、anti体/syn体比=58.4/41.6、anti体光学純度=96.3%ee)、加水分解酵素(商品名:プロテアーゼA「アマノ」(天野エンザイム株式会社製、Aspergillus oryzae属))5mgを仕込んだ後、得られた混合物を35℃で21時間攪拌した。反応終了後、反応混合物にtert-ブチルメチルエーテル3gおよび5重量%炭酸水素ナトリウム1.0mLを加え、攪拌後、GLクロマトディスク(ジーエルサイエンス株式会社製)を用いて固形物をろ別した。得られた有機層と水層を分離し、(1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸エチルを含む有機層Aを得た。また、該水層をtert-ブチルメチルエーテル2gおよび5重量%塩酸0.8mLを用いて抽出処理した。得られた有機層と水層を分離し、(1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸(収率53.6%、anti体/syn体比=56.5/43.5、anti体光学純度=85.8%ee)を含む有機層Bを得た。
加水分解酵素として、プロテアーゼP「アマノ」3(天野エンザイム株式会社製、Aspergillus melleus属))を用いた以外は比較例1と同様に実施し、(1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸(収率12.8%、anti体/syn体比=50.9/49.1、anti体光学純度=81.0%ee)を含む有機層Bを得た。
加水分解酵素として、プロテアーゼS「アマノ」(天野エンザイム株式会社製、Bacillus stearothermophilus属))を用いた以外は比較例1と同様に実施し、(1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸(収率58.8%、anti体/syn体比=56.3/43.7、anti体光学純度=56.8%ee以上(検出限界))を含む有機層Bを得た。
加水分解酵素として、パパインW-40(天野エンザイム株式会社製、Carica papaya属)を用いた以外は比較例1と同様に実施し、(1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸(収率77.9%、anti体/syn体比=57.8/42.2、anti体光学純度=58.5%ee以上(検出限界))を含む有機層Bを得た。
anti体/syn体比:ガスクロマトグラフ分析
カラム:DB-WAX
0.53mm×30m、膜厚1.0μm
(アジレント・テクノロジー株式会社製)
方法:(1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸をトリメチルシリルジアゾメタンでメチルエステルに誘導体化してから分析。
カラム:InertCap(登録商標) CHIRAMIX
0.25mm×30m、膜厚0.25μm
(ジーエルサイエンス株式会社製)
方法:(1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸をトリメチルシリルジアゾメタンでメチルエステルに誘導体化してから分析。
Claims (9)
- バークホルデリア・セパシア(Burkholderia cepacia)由来のエステラーゼを用いて(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エステルを加水分解する(1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸の製造方法。
- 不斉錯体の存在下、1-クロロ-1-フルオロエチレンとジアゾ酢酸エステルとを反応させて(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エステルを得、次いで、バークホルデリア・セパシア(Burkholderia cepacia)由来のエステラーゼを用いて該(1S)-2-クロロ-2-フルオロシクロプロパンカルボン酸エステルを加水分解する請求項1に記載の製造方法。
- 不斉錯体が、銅化合物と光学活性な配位子とを接触させてなる不斉銅錯体である請求項2に記載の製造方法。
- 光学活性な配位子が、2,2-ビス[2-[(4S)-tert-ブチルオキサゾリン]]プロパンである請求項3に記載の製造方法。
- バークホルデリア・セパシア(Burkholderia cepacia)由来のエステラーゼが、配列番号1または2で示されるアミノ酸配列を有するエステラーゼである請求項1~5のいずれかに記載の製造方法。
- バークホルデリア・セパシア(Burkholderia cepacia)由来のエステラーゼが、配列番号1で示されるアミノ酸配列を有するエステラーゼである請求項1~5のいずれかに記載の製造方法。
- 請求項1~7のいずれかに記載の製造方法により(1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸を得、次いで、該(1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸を還元する(1S,2S)-2-フルオロシクロプロパンカルボン酸の製造方法。
- 還元が、(1S,2R)-2-クロロ-2-フルオロシクロプロパンカルボン酸の存在下、ニッケル-アルミニウム合金に塩基を作用させて行われる請求項8に記載の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009801271084A CN102089439B (zh) | 2008-07-11 | 2009-07-07 | (1s,2r)-2-氯-2-氟环丙烷羧酸的制造方法 |
ES09794447T ES2401415T3 (es) | 2008-07-11 | 2009-07-07 | Procedimiento para producir el ácido (1S, 2R)-2-cloro-2-fluorociclopropanocarboxílico |
US13/003,499 US8409831B2 (en) | 2008-07-11 | 2009-07-07 | Method for producing (1S,2R)-2-chloro-2-fluorocyclopropanecarboxylic acid |
EP09794447A EP2311974B1 (en) | 2008-07-11 | 2009-07-07 | Process for producing (1s,2r)-2-chloro-2-fluorocyclopropanecarboxylic acid |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008182066 | 2008-07-11 | ||
JP2008-182066 | 2008-07-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010005003A1 true WO2010005003A1 (ja) | 2010-01-14 |
Family
ID=41507116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/062388 WO2010005003A1 (ja) | 2008-07-11 | 2009-07-07 | (1s,2r)-2-クロロ-2-フルオロシクロプロパンカルボン酸の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8409831B2 (ja) |
EP (1) | EP2311974B1 (ja) |
JP (1) | JP5414395B2 (ja) |
CN (1) | CN102089439B (ja) |
ES (1) | ES2401415T3 (ja) |
WO (1) | WO2010005003A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021020458A1 (ja) * | 2019-08-01 | 2021-02-04 | 天野エンザイム株式会社 | 新規リパーゼ及びその用途 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02231475A (ja) | 1988-04-27 | 1990-09-13 | Dai Ichi Seiyaku Co Ltd | 光学活性ピリドンカルボン酸誘導体 |
JPH09124556A (ja) | 1995-08-30 | 1997-05-13 | Dai Ichi Seiyaku Co Ltd | ハロゲン化シクロプロパン誘導体の製造方法 |
JPH1080298A (ja) | 1996-09-09 | 1998-03-31 | Sumitomo Chem Co Ltd | 2−ハロ−2−フルオロシクロプロパンカルボン酸の光学活性体の製造方法 |
JP3079276B2 (ja) | 1988-02-28 | 2000-08-21 | 天野製薬株式会社 | 組換え体dna、それを含むシュードモナス属菌及びそれを用いたリパーゼの製造法 |
JP2001278853A (ja) | 2000-01-25 | 2001-10-10 | Sumitomo Chem Co Ltd | 光学活性な銅錯体ならびに光学活性なサリチリデンアミノアルコール化合物およびそれを用いる光学活性なシクロプロパンカルボン酸誘導体の製造方法 |
JP3410128B2 (ja) | 1992-11-27 | 2003-05-26 | 天野エンザイム株式会社 | 組換えdnaを有するシュードモナス属菌及びそれを用いるリパーゼの製造法 |
JP2004217608A (ja) | 2002-02-13 | 2004-08-05 | Dai Ichi Seiyaku Co Ltd | (1s,2s)−2−フルオロシクロプロパンカルボン酸誘導体の製造方法 |
JP2005015468A (ja) | 2003-06-04 | 2005-01-20 | Sumitomo Chemical Co Ltd | シクロプロパン化合物の有害節足動物防除用途 |
JP2006045194A (ja) | 2004-07-01 | 2006-02-16 | Sumitomo Chemical Co Ltd | 不斉銅錯体およびそれを用いた光学活性なシクロプロパンカルボン酸エステル化合物の製造方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001000176A (ja) * | 1999-06-18 | 2001-01-09 | Dai Ichi Seiyaku Co Ltd | バチルス属微生物 |
-
2009
- 2009-07-07 JP JP2009161114A patent/JP5414395B2/ja active Active
- 2009-07-07 EP EP09794447A patent/EP2311974B1/en active Active
- 2009-07-07 ES ES09794447T patent/ES2401415T3/es active Active
- 2009-07-07 US US13/003,499 patent/US8409831B2/en active Active
- 2009-07-07 WO PCT/JP2009/062388 patent/WO2010005003A1/ja active Application Filing
- 2009-07-07 CN CN2009801271084A patent/CN102089439B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3079276B2 (ja) | 1988-02-28 | 2000-08-21 | 天野製薬株式会社 | 組換え体dna、それを含むシュードモナス属菌及びそれを用いたリパーゼの製造法 |
JPH02231475A (ja) | 1988-04-27 | 1990-09-13 | Dai Ichi Seiyaku Co Ltd | 光学活性ピリドンカルボン酸誘導体 |
JP3410128B2 (ja) | 1992-11-27 | 2003-05-26 | 天野エンザイム株式会社 | 組換えdnaを有するシュードモナス属菌及びそれを用いるリパーゼの製造法 |
JPH09124556A (ja) | 1995-08-30 | 1997-05-13 | Dai Ichi Seiyaku Co Ltd | ハロゲン化シクロプロパン誘導体の製造方法 |
JPH1080298A (ja) | 1996-09-09 | 1998-03-31 | Sumitomo Chem Co Ltd | 2−ハロ−2−フルオロシクロプロパンカルボン酸の光学活性体の製造方法 |
JP2001278853A (ja) | 2000-01-25 | 2001-10-10 | Sumitomo Chem Co Ltd | 光学活性な銅錯体ならびに光学活性なサリチリデンアミノアルコール化合物およびそれを用いる光学活性なシクロプロパンカルボン酸誘導体の製造方法 |
JP2004217608A (ja) | 2002-02-13 | 2004-08-05 | Dai Ichi Seiyaku Co Ltd | (1s,2s)−2−フルオロシクロプロパンカルボン酸誘導体の製造方法 |
JP2005015468A (ja) | 2003-06-04 | 2005-01-20 | Sumitomo Chemical Co Ltd | シクロプロパン化合物の有害節足動物防除用途 |
JP2006045194A (ja) | 2004-07-01 | 2006-02-16 | Sumitomo Chemical Co Ltd | 不斉銅錯体およびそれを用いた光学活性なシクロプロパンカルボン酸エステル化合物の製造方法 |
Non-Patent Citations (2)
Title |
---|
ORGANIC SYNTHESIS COLLECTIVE, vol. 3, pages 392 |
See also references of EP2311974A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021020458A1 (ja) * | 2019-08-01 | 2021-02-04 | 天野エンザイム株式会社 | 新規リパーゼ及びその用途 |
JP6846577B1 (ja) * | 2019-08-01 | 2021-03-24 | 天野エンザイム株式会社 | 新規リパーゼ及びその用途 |
US11718837B2 (en) | 2019-08-01 | 2023-08-08 | Amano Enzyme Inc. | Lipase and uses of the same |
Also Published As
Publication number | Publication date |
---|---|
JP5414395B2 (ja) | 2014-02-12 |
JP2010035554A (ja) | 2010-02-18 |
CN102089439A (zh) | 2011-06-08 |
EP2311974B1 (en) | 2012-12-19 |
US20110117616A1 (en) | 2011-05-19 |
CN102089439B (zh) | 2013-11-13 |
EP2311974A4 (en) | 2012-02-08 |
ES2401415T3 (es) | 2013-04-19 |
EP2311974A1 (en) | 2011-04-20 |
US8409831B2 (en) | 2013-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9139513B2 (en) | Process for preparing lacosamide | |
EP2294207B1 (en) | Process for the stereoselective enzymatic hydrolysis of 5-methyl-3-nitromethyl-hexanoic acid ester | |
US9061991B2 (en) | Method for producing 1-amino-1-alkoxycarbonyl-2-vinylcyclopropane | |
TW200846306A (en) | Preparation of pregabalin and related compounds | |
KR20080086463A (ko) | 라미프릴의 제조를 위한 개선된 방법 | |
WO2011078172A1 (ja) | 光学活性3-置換グルタル酸モノアミドの製造法 | |
JP5414395B2 (ja) | (1s,2r)−2−クロロ−2−フルオロシクロプロパンカルボン酸の製造方法 | |
US9394235B2 (en) | Optical resolution methods for bicyclic compounds using enzymes | |
JP7280984B2 (ja) | (2s)-2-[(4r)-2-オキソ-4-プロピル-ピロリジン-1-イル]酪酸の調製のための酵素的プロセスおよびそのブリバラセタムへの変換 | |
JP4319847B2 (ja) | (1s,2s)−2−フルオロシクロプロパンカルボン酸誘導体の製造方法 | |
JP2009005682A (ja) | 光学活性2−アルキル−1,1,3−トリアルコキシカルボニルプロパンの製造方法 | |
NZ521087A (en) | Method for the enzymatic resolution of the racemates of aminomethy-aryl-cyclohexanol derivatives | |
WO2012176715A1 (ja) | 1-アミノ-2-ビニルシクロプロパンカルボン酸アミドおよびその塩、ならびにその製造方法 | |
JP2003325197A (ja) | エナンチオマー豊富化したN−保護されていないβ−アミノ酸の酵素的製造方法 | |
JP4720132B2 (ja) | 光学活性なn−保護−オクタヒドロ−1h−インドール−2−カルボン酸の製造方法 | |
TWI388667B (zh) | Enzyme dynamic segmentation method | |
WO2009099140A1 (ja) | 光学活性インドリン-2-カルボン酸類またはその誘導体の製造方法 | |
EP1705252A1 (en) | Method for producing optically active N-protected-propargylglycine | |
JP2674076B2 (ja) | D−α−アミノ酸の製造方法 | |
KR101649733B1 (ko) | 효소를 이용한 실라스타틴 나트륨염의 신규한 제조 방법 | |
JP4775925B2 (ja) | 光学活性α−トリフルオロメチル乳酸の製造方法 | |
JP4544385B2 (ja) | 光学活性2,6−ジアミノヘプタン酸の製造法 | |
JPH10248592A (ja) | 光学活性2−ベンジルコハク酸およびその誘導体の製法 | |
US20090118534A1 (en) | Method of producing optically active (s)-7-hydroxy-6-methylheptan-2-one and precursor thereof | |
JP2007166908A (ja) | 光学活性な3−(3−ヒドロキシフェニル)−2−アルコキシプロパン酸又は3−(3−ヒドロキシフェニル)−2−アルコキシプロパン酸エステルの製法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980127108.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09794447 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 8877/DELNP/2010 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13003499 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009794447 Country of ref document: EP |