WO2012176715A1 - 1-アミノ-2-ビニルシクロプロパンカルボン酸アミドおよびその塩、ならびにその製造方法 - Google Patents

1-アミノ-2-ビニルシクロプロパンカルボン酸アミドおよびその塩、ならびにその製造方法 Download PDF

Info

Publication number
WO2012176715A1
WO2012176715A1 PCT/JP2012/065452 JP2012065452W WO2012176715A1 WO 2012176715 A1 WO2012176715 A1 WO 2012176715A1 JP 2012065452 W JP2012065452 W JP 2012065452W WO 2012176715 A1 WO2012176715 A1 WO 2012176715A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
amino
salt
vinylcyclopropanecarboxylic
formula
Prior art date
Application number
PCT/JP2012/065452
Other languages
English (en)
French (fr)
Inventor
正裕 松本
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to US14/128,385 priority Critical patent/US20140142337A1/en
Priority to EP12802722.4A priority patent/EP2725012A1/en
Publication of WO2012176715A1 publication Critical patent/WO2012176715A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/57Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of rings other than six-membered aromatic rings
    • C07C233/58Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of rings other than six-membered aromatic rings having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/45Carboxylic acid nitriles having cyano groups bound to carbon atoms of rings other than six-membered aromatic rings
    • C07C255/46Carboxylic acid nitriles having cyano groups bound to carbon atoms of rings other than six-membered aromatic rings to carbon atoms of non-condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/46Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino or carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • C07C229/48Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino or carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with amino groups and carboxyl groups bound to carbon atoms of the same non-condensed ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/06Preparation of carboxylic acid amides from nitriles by transformation of cyano groups into carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/24Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a ring other than a six-membered aromatic ring of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/06Preparation of carboxylic acids or their salts, halides or anhydrides from carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/02Systems containing only non-condensed rings with a three-membered ring

Definitions

  • the present invention relates to 1-amino-2-vinylcyclopropanecarboxylic acid amide and salts thereof which are very useful as pharmaceuticals and agricultural chemical intermediates.
  • 1-Amino-2-vinylcyclopropanecarboxylic acid is widely used as a raw material for pharmaceuticals and agricultural chemicals, and in particular, optically active 1-amino-2-vinylcyclopropanecarboxylic acid is an intermediate for pharmaceuticals, particularly hepatitis C therapeutic agents. As important.
  • 1-Aminocyclopropanecarboxylic acid derivatives are known to function as inhibitors of pyridoxal phosphate-dependent enzymes, and as lead compounds for antibiotics, antiviral agents, antitumor agents, etc., especially as drug development candidate compounds Attention has been paid.
  • NS3 / 4A protease possessed by hepatitis C virus has been developed from a compound having 1-amino-2-vinylcyclopropanecarboxylic acid having a vinyl group at the 2-position of 1-aminocyclopropanecarboxylic acid as a part of the basic skeleton. Since it has been found that it can be inhibited and has high antiviral activity against hepatitis C virus, it has been developed as a therapeutic agent for hepatitis C (Drugs of the Future, 2009, 34 (7), 545).
  • These key intermediates, optically active 1-amino-2-vinylcyclopropanecarboxylic acid are important compounds as pharmaceutical intermediates, and therefore, industrially simple production methods are required.
  • optically active 1-amino-2-vinylcyclopropane carboxylic acid includes (1) production method using asymmetric organic synthesis technology (Organic Research & Development, 2010, 14, 692), (2) optical resolution A production method by diastereomeric salt separation using an agent and (3) a production method using a biocatalyst are known.
  • the production method using the optical resolution technique of (2) above can obtain optically active 1-amino-2-vinylcyclopropanecarboxylic acid with high stereoselectivity, and separation of a small amount of enantiomer by-produced. It is currently most widely used because it has the advantage of not requiring special purification equipment for
  • the production method using the biocatalyst (3) has a high stereoselectivity and it is often possible to obtain an optically active compound having a high optical purity.
  • this method has little impact on the environment because water can be used as a reaction solvent, and by establishing a culture method for microorganisms that produce enzymes, biocatalysts compatible with industrial scale can be obtained stably and easily. Become. For this reason, the manufacturing method using a biocatalyst is often an advantageous process from the economical viewpoint as compared with the above-described other methods.
  • Examples of production of optically active 1-amino-2-vinylcyclopropanecarboxylic acid using biocatalysts reported so far include, for example, Method of synthesizing racemic vinylcyclopropanemalonic acid diester by reaction of malonic acid diester with 1,4-dibromo-2-butene, then splitting this with lipase and using the Crutius rearrangement (International Publication WO2007 / 088571 And N-phenylmethyleneglycine alkyl ester and trans-1,4-dibromo-2-butene are reacted to synthesize racemic 1-amino-2-vinylcyclopropanecarboxylic acid alkyl ester.
  • the present inventors have now proposed 1-amino-2-vinylcyclopropanecarboxylic acid amides having asymmetric carbons at the 1-position and 2-position as novel precursor compounds of 1-amino-2-vinylcyclopropanecarboxylic acids or We succeeded in obtaining the salt. With this compound, it was possible to produce optically active 1-amino-2-vinylcyclopropanecarboxylic acids, which are widely used as raw materials for pharmaceuticals and agricultural chemicals, at low cost and in high purity and high yield. The present invention is based on these findings.
  • the present invention is widely used as a raw material for pharmaceuticals and agricultural chemicals, and optically active 1-amino-2-vinylcyclopropanecarboxylic acids, which are particularly important as hepatitis C drug intermediates, can be obtained at high cost and high purity. It is an object of the present invention to provide a substrate for optical resolution that can be produced in a yield.
  • the molecular weight should be as low as possible from the viewpoint of atomic efficiency, and derivatization required by a method such as functional group conversion can be easily performed. It is an object of the present invention to provide a precursor compound of 1-amino-2-vinylcyclopropanecarboxylic acid that satisfies the following conditions.
  • the present invention relates to the following compounds and methods.
  • a process for producing 1-amino-2-vinylcyclopropanecarboxylic acid amide or a salt thereof The following formula (3): (In the formula, * 1 and * 2 represent asymmetric carbon) 1-amino-2-vinylcyclopropanecarbonitrile or a salt thereof represented by formula (1) is hydrolyzed to give 1-amino-2-vinylcyclopropanecarboxylic acid amide or a salt thereof represented by the formula (1) of the above [1] Including a method.
  • a process for producing 1-amino-2-vinylcyclopropanecarboxylic acid or a salt thereof The following formula (1): (Wherein, * 1 and * 2 represents an asymmetric carbon) 1-amino-2-vinylcyclopropanecarboxylic acid amide or a salt thereof represented by the following formula (4): (In the formula, * 1 and * 2 represent asymmetric carbon) And obtaining a 1-amino-2-vinylcyclopropanecarboxylic acid represented by the formula (I) or a salt thereof.
  • a microbial cell having a stereoselective hydrolytic activity or a treated product thereof is added to a racemic mixture of 1-amino-2-vinylcyclopropanecarboxylic acid amide represented by the formula (1) or a salt thereof.
  • the present invention can also be restated as the following compounds and methods.
  • [4 ′] The 1-amino-2-vinylcyclopropanecarboxylic acid amide salt of [2 ′], which is the (1R, 2S) isomer or the (1S, 2R) isomer.
  • [5 ′] 1-amino-2-vinylcyclopropanecarbonitrile represented by formula (3) or a salt thereof is hydrolyzed to produce 1-amino-2-vinylcyclopropanecarboxylic acid amide represented by formula (1) or A process for producing 1-amino-2-vinylcyclopropanecarboxylic acid amide or a salt thereof to obtain a salt thereof.
  • an optically active 1 which can be converted into an optically active 1-amino-2-vinylcyclopropanecarboxylic acid, which is important as an intermediate for pharmaceutical / pesticidal intermediates, particularly as an intermediate for therapeutic agents for hepatitis C -Amino-2-vinylcyclopropanecarboxylic acid amide and salts thereof can be easily and efficiently produced.
  • the compound according to the present invention is a compound represented by the formula (1) or a salt thereof, which is useful as an intermediate for pharmaceuticals and agricultural chemicals.
  • both the (1R, 2S) isomer and (1S, 2R) isomer of this compound are important as intermediates for therapeutic agents for hepatitis C.
  • the precursor compound that can be used as a starting material is not particularly limited.
  • Org. Chem. (E) -1- (diphenylmethylene) amino-2-ethenylcyclopropanecarbonitrile which can be synthesized by the method described in U.S.A., 1999, 64 (13), 4712, or by treating it with an acid such as hydrochloric acid. Examples thereof include a compound or a mixture of two or more thereof.
  • the method for synthesizing 1-amino-2-vinylcyclopropanecarboxylic acid amide from the raw material is not particularly limited, but the starting material is
  • 1-amino-2-vinylcyclopropanecarbonitrile 1-amino-2-vinylcyclopropanecarboxylic acid amide can be obtained by hydrolysis using an acid or hydrolysis using a base. .
  • 1-amino-2-vinylcyclopropanecarboxylic acid amide and a salt thereof are formed.
  • the acid used is not particularly limited, and hydrochloric acid, sulfuric acid, hydrofluoric acid, hydrobromic acid, hydroiodic acid, nitric acid, acetic acid, formic acid, phosphoric acid, trifluoroacetic acid, chloroacetic acid, trichloroacetic acid, p -Toluenesulfonic acid, methanesulfonic acid, strong acid ion exchange resin, weak acid ion exchange resin and the like.
  • hydrolysis with hydrochloric acid, sulfuric acid, acetic acid, formic acid, phosphoric acid, p-toluenesulfonic acid, methanesulfonic acid, strongly acidic ion exchange resin or the like is preferable from the viewpoint of operability and economy.
  • hydrolysis with a base 1-amino-2-vinylcyclopropanecarboxylic acid amide is produced.
  • bases such as lithium hydroxide, sodium hydroxide, potassium hydroxide, are mentioned.
  • an acid is used for formation.
  • the type of acid is not particularly limited, and usable acids include, for example, hydrochloric acid, sulfuric acid, hydrofluoric acid, hydrobromic acid, hydroiodic acid, nitric acid, acetic acid, formic acid, phosphoric acid, triacid, and the like.
  • achiral acids such as hydrofluoric acid, hydrobromic acid, hydroiodic acid, formic acid, phosphoric acid, trifluoroacetic acid, chloroacetic acid, trichloroacetic acid, benzoic acid, citric acid, malonic acid, maleic acid , Fumaric acid, butyric acid, isobutyric acid, p-toluenesulfonic acid, methanesulfonic acid, hydrochloric acid, sulfuric acid, nitric acid, and acetic acid are easy to use from the viewpoints of availability and handling.
  • hydrochloric acid, sulfuric acid, nitric acid, and acetic acid are inexpensive and easy to use.
  • the salt of 1-amino-2-vinylcyclopropanecarboxylic acid amide includes salts with the acids exemplified above, preferably hydrofluoric acid, hydrobromic acid, hydrogen iodide Acid, formic acid, phosphoric acid, trifluoroacetic acid, chloroacetic acid, trichloroacetic acid, benzoic acid, citric acid, malonic acid, maleic acid, fumaric acid, butyric acid, isobutyric acid, p-toluenesulfonic acid, methanesulfonic acid, hydrochloric acid, sulfuric acid , Nitric acid, and acetic acid. Particularly preferred are hydrochloric acid, sulfuric acid, nitric acid, and acetic acid salts.
  • the hydrolysis reaction of 1-amino-2-vinylcyclopropanecarbonitrile of the present invention can be carried out by stirring and reacting at ⁇ 20 to 150 ° C., preferably at ⁇ 5 ° C. to 50 ° C. for 0.1 to 24 hours. . At this time, it is desirable that the produced 1-amino-2-vinylcyclopropanecarboxylic acid amide is further hydrolyzed and 1-amino-2-vinylcyclopropanecarboxylic acid is not produced.
  • the hydrolysis reaction of 1-amino-2-vinylcyclopropanecarbonitrile of the present invention can be carried out by using water, an organic solvent (for example, alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, etc.
  • an organic solvent for example, alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, etc.
  • Ethers such as tetrahydrofuran, diethyl ether, 1,4-dioxane, tert-butyl methyl ether, tert-butyl ethyl ether, diisopropyl ethyl ether, cyclopentyl methyl ether, etc., esters such as methyl acetate, ethyl acetate, propyl acetate, acetic acid Isopropyl, halogenated hydrocarbons such as dichloromethane, chloroform, 1,4-dichloroethane, etc.), additives that promote hydrolysis (for example, ketones such as acetone, methyl ethyl ketone, diethyl keto It can methyl isobutyl ketone, diethyl ketone, isopropyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, also to carry out the reaction in the presence of
  • 1-amino-2-vinylcyclopropanecarboxylic acid amide or a salt thereof of the present invention By hydrolyzing 1-amino-2-vinylcyclopropanecarboxylic acid amide or a salt thereof of the present invention, 1-amino-2-vinylcyclopropanecarboxylic acid or a salt thereof can be obtained.
  • limiting in particular in the method to hydrolyze For example, the method using a biocatalyst, the method using an acid or a base, etc. are mentioned.
  • 1-amino-2-vinylcyclopropanecarboxylic acid and its salt are produced.
  • the acid used is not particularly limited, and sulfuric acid, hydrochloric acid, hydrofluoric acid, hydrobromic acid, hydroiodic acid, nitric acid, acetic acid, formic acid, phosphoric acid, trifluoroacetic acid, chloroacetic acid, trichloroacetic acid, p-toluenesulfone
  • An acid, methanesulfonic acid, a strongly acidic ion exchange resin, or the like can be used, and these can be used in combination of two or more.
  • 1-amino-2-vinylcyclopropanecarboxylic acid is produced.
  • bases such as lithium hydroxide, sodium hydroxide, potassium hydroxide
  • 1-amino-2-vinylcyclopropanecarboxylic acid amide is converted to an acid by sulfuric acid, hydrochloric acid, acetic acid, formic acid, phosphoric acid, p-toluenesulfonic acid, methanesulfonic acid, etc., or lithium hydroxide, sodium hydroxide, water.
  • 1-amino-2-vinylcyclopropanecarboxylic acid can be obtained easily and inexpensively, which is preferable from the viewpoint of operability and economy.
  • an acid is used to form the salt.
  • an acid is used to form the salt.
  • acid there is no particular limitation on the type of acid, hydrochloric acid, sulfuric acid, hydrofluoric acid, hydrobromic acid, hydroiodic acid, nitric acid, acetic acid, formic acid, phosphoric acid, trifluoroacetic acid, chloroacetic acid, trichloroacetic acid, benzoic acid, Citric acid, malonic acid, maleic acid, fumaric acid, butyric acid, isobutyric acid, p-toluenesulfonic acid, methanesulfonic acid, L- or D-tartaric acid, L- or D-lactic acid, L- or D-leucine acid, L -Or D-malic acid, L- or D-mandelic acid, o-acetyl-L- or D-mandelic acid, L- or D-aspartic acid, (+)-or
  • achiral acids such as hydrofluoric acid, hydrobromic acid, hydroiodic acid, formic acid, phosphoric acid, trifluoroacetic acid, chloroacetic acid, trichloroacetic acid, benzoic acid, citric acid, malonic acid, maleic acid , Fumaric acid, butyric acid, isobutyric acid, p-toluenesulfonic acid, methanesulfonic acid, hydrochloric acid, sulfuric acid, nitric acid, and acetic acid are easy to use from the viewpoints of availability and handling.
  • hydrochloric acid, sulfuric acid, nitric acid, and acetic acid are inexpensive and easy to use.
  • the salt of 1-amino-2-vinylcyclopropanecarboxylic acid amide includes salts with the acids exemplified above, preferably hydrofluoric acid, hydrobromic acid, hydrogen iodide Acid, formic acid, phosphoric acid, trifluoroacetic acid, chloroacetic acid, trichloroacetic acid, benzoic acid, citric acid, malonic acid, maleic acid, fumaric acid, butyric acid, isobutyric acid, p-toluenesulfonic acid, methanesulfonic acid, hydrochloric acid, sulfuric acid , Nitric acid, and acetic acid. Particularly preferred are hydrochloric acid, sulfuric acid, nitric acid, and acetic acid salts.
  • 1-amino-2-vinylcyclopropanecarboxylic acid amide of the present invention 0.001 to 50 mol per 1 mol of 1-amino-2-vinylcyclopropanecarboxylic acid amide, Preferably 0.01 to 10 molar acids or bases are used.
  • the hydrolysis reaction of 1-amino-2-vinylcyclopropanecarboxylic acid amide of the present invention is carried out chemically, the mixture is stirred at 0 to 180 ° C., preferably 55 to 100 ° C. for 0.1 to 72 hours, It can be carried out by reacting.
  • the reaction is performed under the same reagent conditions as when 1-amino-2-vinylcyclopropanecarbonitrile is chemically hydrolyzed, the temperature is higher than the temperature at which 1-amino-2-vinylcyclopropanecarbonitrile is hydrolyzed.
  • the reaction can be carried out at a high temperature or by increasing the reaction time.
  • 1-amino-2-vinylcyclopropanecarboxylic acid amide obtained by the present invention and salts thereof can be derivatized and used as raw materials for pharmaceuticals and agricultural chemicals.
  • Examples of compounds that can be derived from 1-amino-2-vinylcyclopropanecarboxylic acid amide and salts thereof include 1-amino-2-vinylcyclopropanecarboxylic acid, 1-amino-2-ethylcyclopropanecarboxylic acid amide, 1-amino-2-vinylcyclopropanecarboxylic acid amide, Amino-N- (cyclopropylsulfonyl) -2-vinylcyclopropanecarboxylic acid amide, 1-methylamino-2-vinylcyclopropanecarboxylic acid amide, 1-ethylamino-2-vinylcyclopropanecarboxylic acid amide, 1-propyl Amino-2-vinylcyclopropanecarboxylic acid amide, 1-isopropylamino-2-vinylcyclopropanecarboxylic acid amide, 1-amino-2-vinylcyclopropanecarbo
  • biocatalysts include, but are not limited to, cells such as microorganisms belonging to the genus Xanthobacter, Serratia, Chromobacterium, Protaminobacter, Pseudomonas or Micobacterium, or processed products thereof is not. More specifically, Protaminobacter alboflavus ATCC 8458, Xantobacter autotrophicus DSM597, Chromobacterium iodium 35, etc. In addition, any strains such as mutant strains derived from these microorganisms by artificial mutation means, or recombinant strains induced by genetic techniques such as cell fusion or gene recombination methods have the above-mentioned ability.
  • microorganisms are usually cultured using a medium containing an assimilating carbon source, a nitrogen source, an inorganic salt essential for each microorganism, nutrition, and the like.
  • the pH during the culture is preferably in the range of 4 to 10, and the temperature is preferably 20 to 50 ° C.
  • the culture is performed aerobically for about 1 day to 1 week.
  • the microorganisms cultured in this manner are used in the reaction as microbial cells or processed microbial products such as culture broth, separated microbial cells, crushed microbial cells, and further purified enzymes.
  • cells or enzymes can be immobilized and used according to conventional methods.
  • optically active 1-amino-2-vinylcyclopropanecarboxylic acid amide and salts thereof of the present invention can be converted into derivatives useful as pharmaceutical and agrochemical intermediates by chemical modification of the carboxylic acid amide moiety.
  • chemical modification include N-alkylation reaction, acid hydrazine reaction, ozonolysis reaction, imidation reaction, thioamidation reaction, oxidation reaction, catalytic hydrogenation reaction, etc. It is also possible to obtain.
  • optical purity of 1-amino-2-vinylcyclopropanecarboxylic acid amide and 1-amino-2-vinylcyclopropanecarboxylic acid was determined by HPLC analysis. In these analyses, the following conditions were used.
  • Reference example 1 280 mg (0.5 mmol) of bis (dibenzylideneacetone) palladium (0) and 263 mg (1 mmol) of triphenylphosphine were dissolved in 40 mL of tetrahydrofuran under a nitrogen atmosphere and stirred at room temperature for 10 minutes. To this was added 20 mL of a tetrahydrofuran solution of 1.25 g (10 mmol) of 1,4-dichlorobutadiene, and after the color of the solution changed to orange, 20 mL of a tetrahydrofuran solution of 2.52 g (12 mmol) of N- (diphenylmethylene) aminoacetonitrile was added.
  • Example 1 1.39 g (5.1 mmol) of (E) -1- (diphenylmethylene) amino-2-ethenylcyclopropanecarbonitrile obtained in the same manner as in Reference Example 1 was dissolved in 5 mL of toluene and 12N at 0 ° C. 4.25 mL (51 mmol) of an aqueous hydrochloric acid solution was added dropwise. After stirring at that temperature (0 ° C.) for 30 minutes, the organic layer was removed by liquid separation. After stirring the aqueous layer at 40 ° C.
  • Example 2 1.85 g (6.8 mmol) of (E) -1- (diphenylmethylene) amino-2-ethenylcyclopropanecarbonitrile obtained in the same manner as in Reference Example 1 was dissolved in 7 mL of toluene, and 6N at 0 ° C. 5.65 mL (33.9 mmol) of aqueous hydrochloric acid solution was added dropwise. After stirring at that temperature (0 ° C.) for 30 minutes, the organic layer was removed by liquid separation.
  • the obtained aqueous layer was concentrated in vacuo to a residue that was dissolved in a mixed solution of 1.5N aqueous sodium hydroxide (13.7 mL, 20.5 mmol) and acetone (5.7 mL) and stirred at room temperature for 1 hour.
  • the mixture was neutralized with 10% NH 4 Cl aqueous solution and concentrated under reduced pressure.
  • the residue was suspended in 10 mL of methanol, and the insoluble material was separated by filtration.
  • the filtrate was distilled off under reduced pressure to obtain a mixture of (1R, 2S) isomer and (1S, 2R) isomer of 1-amino-2-vinylcyclopropanecarboxylic amide as ocher crystals (0.70 g, Yield 82%).
  • Example 3 A medium having the composition shown in the table below was prepared, 200 mL of this medium was placed in a 1 L Erlenmeyer flask, sterilized, and inoculated with Xantobacter autotrophicus DSM597 (obtained from Riken BioResource Center) at 30 ° C. Cultured with shaking for 72 hours.
  • 2S) isomer area area value corresponds to the pre-hydrolysis reaction value of“ amide (1S, 2R) isomer ”, and therefore the conversion rate was calculated as in the above formula. ).
  • Example 4 50 mg (0.31 mmol) of the hydrochloride of the mixture of (1R, 2S) isomer and (1S, 2R) isomer of 1-amino-2-vinylcyclopropanecarboxylic acid amide obtained in Example 1 It melt
  • the 1-amino-2-vinylcyclopropanecarboxylic acid amide obtained by the present invention and a salt thereof are very useful as an intermediate for producing pharmaceuticals and agricultural chemicals.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 本発明は、1-アミノ-2-ビニルシクロプロパンカルボン酸アミドまたはその塩に関する。本発明の製造方法により、光学活性1-アミノ-2-ビニルシクロプロパンカルボニトリルまたはその塩を加水分解して光学活性1-アミノ-2-ビニルシクロプロパンカルボン酸アミドまたはその塩を得ることにより、医薬・農薬中間体として有効な1-アミノ-2-ビニルシクロプロパンカルボン酸アミドまたはその塩を容易に得ることができる。本発明によれば、医薬、農薬の原料として幅広く利用されており、特にC型肝炎治療薬中間体として重要である光学活性1-アミノ-2-ビニルシクロプロパンカルボン酸を、より安価に高純度かつ高収率で製造することを可能とする光学分割に供する基質を提供することができる。

Description

1-アミノ-2-ビニルシクロプロパンカルボン酸アミドおよびその塩、ならびにその製造方法 関連出願の参照
 本願は、先行する日本国特許出願である特願2011-137246号(出願日:2011年6月21日)に基づくものであって、その優先権の利益を主張するものであり、その開示内容全体は参照することによりここに組み込まれる。
 本発明は、医薬、農薬中間体として大変有用である1-アミノ-2-ビニルシクロプロパンカルボン酸アミドおよびその塩に関する。
 1-アミノ-2-ビニルシクロプロパンカルボン酸は、医薬、農薬の原料として幅広く利用されており、特に光学活性1-アミノ-2-ビニルシクロプロパンカルボン酸は医薬品、特にC型肝炎治療薬中間体として重要である。
 1-アミノシクロプロパンカルボン酸誘導体はピリドキサールリン酸依存性酵素の阻害剤として機能することが知られており、抗生物質、抗ウィルス剤、抗腫瘍剤等のリード化合物として特に医薬品の開発候補化合物として注目されている。
 近年、1-アミノシクロプロパンカルボン酸の2位にビニル基を持つ1-アミノ-2-ビニルシクロプロパンカルボン酸を基本骨格の一部とした化合物からC型肝炎ウィルスの保有するNS3/4Aプロテアーゼが阻害できることが見出され、C型肝炎ウィルスに対して高い抗ウィルス活性を持つことからC型肝炎治療薬としての開発が進んでいる(Drugs of the Future, 2009, 34(7), 545)。これらの鍵中間体である光学活性1-アミノ-2-ビニルシクロプロパンカルボン酸は、医薬中間体として重要な化合物であることから、工業的に簡便な製造法が求められている。
 光学活性1-アミノ-2-ビニルシクロプロパンカルボン酸の製造方法としては、(1)不斉有機合成技術を利用した製造方法(Organic Research & Development, 2010, 14, 692)、(2)光学分割剤を用いたジアステレオマー塩分離による製造方法、および(3)生体触媒を利用した製造方法が知られている。このうち、前記(2)の光学分割技術を利用した製造法は、高い立体選択性で光学活性1-アミノ-2-ビニルシクロプロパンカルボン酸が得られること、および副生する微量のエナンチオマーの分離のための特別な精製装置が必要ないことといった利点があることから、現在最も広く利用されている。
 光学分割剤を用いたジアステレオマー塩分離による製造方法としては、例えば、
 ・ ラセミ体のビニルシクロプロパンカルボン酸を光学活性アミンと反応させ、ジアステレオマー塩とすることで光学分割を行った後にCrutius転位を用いる方法(Synthetic Communications, 1994, 24, 2873)、および、
 ・ ラセミ体の2-ビニル-1-カルバモイルシクロプロパンカルボン酸を光学活性アミンと反応させ、ジアステレオマー塩とした後に塩基存在下でハロゲン化剤を反応させる方法(国際公開WO2010/041739号(対応公報、EP 2345633A))が報告されている。
 しかしながら、これらの方法は、Crutius転位反応が工業的に適さないこと、光学活性アミン類の製造には多段階を要し入手困難なこと、さらに高価な光学活性アミン類を目的の立体構造を有する光学異性体に対して化学量論量必要とすること等の問題から、工業的に実施することは困難である。
 一方、前記(3)の生体触媒を利用した製造方法は、立体選択性が高く、高い光学純度の光学活性化合物が取得可能な場合が多い。またこの方法は、反応溶媒に水を使用できることから環境への影響が少なく、酵素を生産する微生物の培養法を確立することにより工業的スケールに対応した生体触媒を安定的に容易に取得可能となる。このため、生体触媒を利用した製造方法は、経済的な観点からも上記した他の方法と比較して、有利なプロセスとなる場合が多い。
 これまでに報告されている生体触媒を利用した光学活性1-アミノ-2-ビニルシクロプロパンカルボン酸の製造例としては、例えば、
 ・ マロン酸ジエステルと1,4-ジブロモ-2-ブテンとの反応によりラセミ体のビニルシクロプロパンマロン酸ジエステルを合成した後、これをリパーゼにより分割し、Crutius転位を用いる方法(国際公開WO2007/088571号)、および
 ・ N-フェニルメチレングリシンアルキルエステルとtrans-1,4-ジブロモ-2-ブテンを反応させ、ラセミ体の1-アミノ-2-ビニルシクロプロパンカルボン酸アルキルエステルを合成し、さらに二炭酸ジ-tert-ブチルによりアミノ基を保護した後に、アルカリプロテアーゼにより分割を行う方法(特開2010-43124号公報(対応公報、国際公開WO00/09543号))
がある。
 しかしながら、前者の国際公開WO2007/088571号に記載の方法、すなわち、マロン酸ジエステルと1,4-ジブロモ-2-ブテンとの反応によりラセミ体のビニルシクロプロパンマロン酸ジエステルを合成した後、これをリパーゼにより分割する方法においては、酵素分割の際の立体選択性が低く、反応活性も低いため、大量の酵素を使用しなければならない。さらには、豚由来の酵素を必要とすること、およびCrutius転位反応を用いること等、工業的な製法として好ましくない点がある。
 また、後者の特開2010-43124号公報(対応公報、国際公開WO00/09543号)に記載の方法、すなわち、N-フェニルメチレングリシンアルキルエステルとtrans-1,4-ジブロモ-2-ブテンを反応させ、ラセミ体の1-アミノ-2-ビニルシクロプロパンカルボン酸アルキルエステルを合成し、さらに二炭酸ジ-tert-ブチルによりアミノ基を保護した後に、アルカリプロテアーゼにより光学分割を行う方法では、立体選択性は高いものの酵素反応前にアミノ基にtert-ブトキシカルボニル基を導入する必要がある。このため、目的の光学異性体に対して最低2当量以上の二炭酸ジ-tert-ブチルが必要となり、さらに使用酵素量も大量に必要であった。
 本発明者らは今般、1-アミノ-2-ビニルシクロプロパンカルボン酸類の新規の前駆体化合物として、1位と2位に不斉炭素を有する1-アミノ-2-ビニルシクロプロパンカルボン酸アミドまたはその塩を得ることに成功した。この化合物によって、医薬、農薬の原料として幅広く利用されている光学活性1-アミノ-2-ビニルシクロプロパンカルボン酸類を、より安価に高純度かつ高収率で製造することが可能なった。本発明はこれら知見に基づくものである。
 よって、本発明は、医薬、農薬の原料として幅広く利用されており、特にC型肝炎薬中間体として重要である光学活性1-アミノ-2-ビニルシクロプロパンカルボン酸類をより安価に高純度かつ高収率で製造することが可能な光学分割に供する基質を提供することをその目的とする。
 より具体的には、光学分割が可能であること、原子効率の観点から可能な限り低分子量であること、さらに、容易に官能基変換等の手法により必要とされる誘導体化が容易に行えることといった条件を満たす、1-アミノ-2-ビニルシクロプロパンカルボン酸類の前駆体化合物を提供することをその目的とする。
 すなわち、本発明は下記の通りの化合物および方法に関する。
[1] 下式(1):
Figure JPOXMLDOC01-appb-C000006
(式中、1および2は不斉炭素を表す)
で示される、1-アミノ-2-ビニルシクロプロパンカルボン酸アミドまたはその塩。
[2] 式(1)で示される、前記[1]の1-アミノ-2-ビニルシクロプロパンカルボン酸アミド。
[3] 下式(2):
Figure JPOXMLDOC01-appb-C000007
(式中、1及び2は不斉炭素を表し、Xは塩酸、硫酸、硝酸又は酢酸を表す)
で示される、前記[1]の1-アミノ-2-ビニルシクロプロパンカルボン酸アミド塩。
[4] (1R,2S)異性体又は(1S,2R)異性体である、前記[1]または[2]の1-アミノ-2-ビニルシクロプロパンカルボン酸アミド。
[5] (1R,2S)異性体又は(1S,2R)異性体である、前記[3]の1-アミノ-2-ビニルシクロプロパンカルボン酸アミド塩。
[6] 1-アミノ-2-ビニルシクロプロパンカルボン酸アミドまたはその塩の製造方法であって、
 下式(3):
Figure JPOXMLDOC01-appb-C000008
(式中、1および2は不斉炭素を表す)
で示される1-アミノ-2-ビニルシクロプロパンカルボニトリルまたはその塩を加水分解して、前記[1]の式(1)で示される1-アミノ-2-ビニルシクロプロパンカルボン酸アミドまたはその塩を得ることを含む、方法。
[7] 1-アミノ-2-ビニルシクロプロパンカルボン酸またはその塩の製造方法であって、
 下式(1):
Figure JPOXMLDOC01-appb-C000009
(式中、1および2は不斉炭素を表す)
で示される1-アミノ-2-ビニルシクロプロパンカルボン酸アミドまたはその塩を加水分解して、下式(4):
Figure JPOXMLDOC01-appb-C000010
(式中、1および2は不斉炭素を表す)
で示される1-アミノ-2-ビニルシクロプロパンカルボン酸またはその塩を得ることを含む、方法。
[8] 式(1)で示される1-アミノ-2-ビニルシクロプロパンカルボン酸アミド又はその塩のラセミ混合物に、立体選択的に加水分解する活性を有する微生物の菌体もしくは菌体処理物を作用させて、式(4)で示される光学活性1-アミノ-2-ビニルシクロプロパンカルボン酸またはその塩を生成せしめることを含む、前記[7]の製造方法。
[9] 式(1)で示される1-アミノ-2-ビニルシクロプロパンカルボン酸アミド又はその塩の(1R,2S)異性体と(1S,2R)異性体とを含む混合物に、立体選択的に加水分解する活性を有する微生物の菌体もしくは菌体処理物を作用させて、式(4)で示される光学活性1-アミノ-2-ビニルシクロプロパンカルボン酸を生成せしめることを含む、前記[7]または[8]の製造方法。
 また、本発明は下記の通りの化合物および方法に言い換えることもできる。
 〔1’〕 式(1)で示される1-アミノ-2-ビニルシクロプロパンカルボン酸アミド。
 〔2’〕 式(2)で示される1-アミノ-2-ビニルシクロプロパンカルボン酸アミド塩。
 〔3’〕 (1R,2S)異性体又は(1S,2R)異性体である、前記〔1’〕の1-アミノ-2-ビニルシクロプロパンカルボン酸アミド。
 〔4’〕 (1R,2S)異性体又は(1S,2R)異性体である、前記〔2’〕の1-アミノ-2-ビニルシクロプロパンカルボン酸アミド塩。
〔5’〕 式(3)で示される1-アミノ-2-ビニルシクロプロパンカルボニトリルまたはその塩を加水分解して式(1)で示される1-アミノ-2-ビニルシクロプロパンカルボン酸アミドまたはその塩を得る、1-アミノ-2-ビニルシクロプロパンカルボン酸アミドまたはその塩の製造方法。
 〔6’〕 式(1)で示される1-アミノ-2-ビニルシクロプロパンカルボン酸アミドまたはその塩を加水分解して式(4)で示される1-アミノ-2-ビニルシクロプロパンカルボン酸またはその塩を得る、1-アミノ-2-ビニルシクロプロパンカルボン酸またはその塩の製造方法。
〔7’〕 式(1)で示される1-アミノ-2-ビニルシクロプロパンカルボン酸アミド又はその塩の(1R,2S)異性体と(1S,2R)異性体とを含む混合物を、立体選択的に加水分解する活性を有する微生物の菌体又は菌体処理物を作用させて、式(4)で示される1-アミノ-2-ビニルシクロプロパンカルボン酸を生成せしめることを特徴とする、光学活性1-アミノ-2-ビニルシクロプロパンカルボン酸の製造方法。
 本発明により、医薬・農薬中間体、特にC型肝炎薬治療薬の中間体として重要である光学活性1-アミノ-2-ビニルシクロプロパンカルボン酸へ、簡単なプロセスで変換可能な、光学活性1-アミノ-2-ビニルシクロプロパンカルボン酸アミドおよびその塩を、容易かつ効率的に製造することが可能となる。
発明の具体的説明
1-アミノ-2-ビニルシクロプロパンカルボン酸アミド
 本発明による化合物は、式(1)で示される化合物またはその塩であって、医薬・農薬中間体として有用な1-アミノ-2-ビニルシクロプロパンカルボン酸アミドまたはその塩である。特に、この化合物の(1R,2S)異性体および(1S,2R)異性体はいずれも、C型肝炎薬治療薬の中間体として重要である。
 本発明の1-アミノ-2-ビニルシクロプロパンカルボン酸アミドの製造方法において、出発原料として用いることのできる前駆体化合物としては、特に制限はなく、例えば、J.Org.Chem.,1999,64(13),4712記載の方法により合成可能な(E)-1-(ジフェニルメチレン)アミノ-2-エテニルシクロプロパンカルボニトリルやそれを塩酸等の酸で処理することで得られる化合物またはその2種以上の混合物が挙げられる。このようなものとしては、(1R,2S)-1-アミノ-2-ビニルシクロプロパンカルボニトリル、(1S,2R)-1-アミノ-2-ビニルシクロプロパンカルボニトリル、(1R,2R)-1-アミノ-2-ビニルシクロプロパンカルボニトリル、(1S,2S)-1-アミノ-2-ビニルシクロプロパンカルボニトリル、およびそれら2種以上の混合物を用いることができる。
 本発明の1-アミノ-2-ビニルシクロプロパンカルボン酸アミドの製造方法において、原料から1-アミノ-2-ビニルシクロプロパンカルボン酸アミドを合成する方法としては、特に制限はないが、出発原料が1-アミノ-2-ビニルシクロプロパンカルボニトリルの場合、酸を用いた加水分解、又は塩基を用いた加水分解を行うことで、1-アミノ-2-ビニルシクロプロパンカルボン酸アミドを得ることが出来る。
 酸による加水分解の場合には、1-アミノ-2-ビニルシクロプロパンカルボン酸アミドとその塩が生成される。ここで、用いる酸に特に制限はなく、塩酸、硫酸、フッ化水素酸、臭化水素酸、沃化水素酸、硝酸、酢酸、ギ酸、リン酸、トリフルオロ酢酸、クロロ酢酸、トリクロロ酢酸、p-トルエンスルホン酸、メタンスルホン酸、強酸性イオン交換樹脂、および弱酸性イオン交換樹脂等が挙げられる。とりわけ、塩酸、硫酸、酢酸、ギ酸、リン酸、p-トルエンスルホン酸、メタンスルホン酸、強酸性イオン交換樹脂等により酸加水分解する場合が、操作性、経済性の点からも好ましい。
 塩基による加水分解の場合には、1-アミノ-2-ビニルシクロプロパンカルボン酸アミドが生成される。ここで、用いる塩基に特に制限はなく、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等の塩基が挙げられる。
 1-アミノ-2-ビニルシクロプロパンカルボン酸アミドを塩として取得する場合には、形成させる為に酸を用いる。この場合、酸の種類に特に制限はなく、使用可能な酸としては、例えば、塩酸、硫酸、フッ化水素酸、臭化水素酸、沃化水素酸、硝酸、酢酸、ギ酸、リン酸、トリフルオロ酢酸、クロロ酢酸、トリクロロ酢酸、安息香酸、クエン酸、マロン酸、マレイン酸、フマル酸、酪酸、イソ酪酸、p-トルエンスルホン酸、メタンスルホン酸、L-またはD-酒石酸、L-またはD-乳酸、L-またはD-ロイシン酸、L-またはD-リンゴ酸、L-またはD-マンデル酸、o-アセチル-L-またはD-マンデル酸、L-またはD-アスパラギン酸、(+)-または(-)-10-カンファースルホン酸、(+)-または(-)-10-カンファースルホニルクロリド、クロロギ酸(+)-または(-)-メンチル、L-またはD-グルタミン酸、(+)-または(-)カンファー酸、(+)-または(-)-cis-2-ベンズアミドシクロヘキサンカルボン酸、ジアセチル-L-またはD-酒石酸、ジベンゾイル-L-またはD-酒石酸、ジ-p-トルオイル-L-またはD-酒石酸、L-またはD-ピログルタミン酸、L-またはD-キナ酸、(R)-または(S)-プロピオン酸、(R)-または(S)-2-アセトキシプロピオン酸、(R)-または(S)-3-アセチルチオイソ酪酸、(+)-または(-)-cis-ベンズアミドシクロヘキサンカルボン酸、(R)-または(S)-2-クロロプロピオン酸、(R)-または(S)-2-ブロモプロピオン酸、3-クロロ酪酸、(R)-または(S)-2-クロロ-3-メチル酪酸、(R)-または(S)-2-クロロ-4-メチル吉草酸、(R)-または(S)-フェニルコハク酸、(R)-または(S)-メチルコハク酸、(R)-または(S)-メチルグルタル酸、(R)-または(S)-2,2-ジメチルシクロプロパンカルボン酸、L-またはD-シトラマル酸、ジ-p-アニソイル-L-またはD-酒石酸、ジーp-ベンゾイル-L-またはD-酒石酸、が挙げられる。好ましくは、アキラルな酸、例えば、フッ化水素酸、臭化水素酸、沃化水素酸、ギ酸、リン酸、トリフルオロ酢酸、クロロ酢酸、トリクロロ酢酸、安息香酸、クエン酸、マロン酸、マレイン酸、フマル酸、酪酸、イソ酪酸、p-トルエンスルホン酸、メタンスルホン酸、塩酸、硫酸、硝酸、酢酸が、入手容易性、取り扱い容易性の観点から使用しやすい。特に、塩酸、硫酸、硝酸、酢酸が安価であることから、使用しやすい。
 したがって、本発明による1-アミノ-2-ビニルシクロプロパンカルボン酸アミドの塩としては、前記で例示された酸による塩が挙げられ、好ましくは、フッ化水素酸、臭化水素酸、沃化水素酸、ギ酸、リン酸、トリフルオロ酢酸、クロロ酢酸、トリクロロ酢酸、安息香酸、クエン酸、マロン酸、マレイン酸、フマル酸、酪酸、イソ酪酸、p-トルエンスルホン酸、メタンスルホン酸、塩酸、硫酸、硝酸、酢酸が挙げられ、特に好ましくは、塩酸、硫酸、硝酸、酢酸の塩が挙げられる。
 加水分解により1-アミノ-2-ビニルシクロプロパンカルボン酸アミドを得た場合には、加水分解後に別途塩を形成させる為の酸を添加する。中和後に、塩を形成させる為の酸を添加しても良い。
 本発明の1-アミノ-2-ビニルシクロプロパンカルボニトリルの酸加水分解またはアルカリ加水分解においては、1-アミノ-2-ビニルシクロプロパンカルボニトリル1モルに対して0.001~50モル、好ましくは0.01~10モル酸または塩基を使用する。
 本発明の1-アミノ-2-ビニルシクロプロパンカルボニトリルの加水分解反応は、-20~150℃、好ましくは-5℃~50℃で0.1~24時間攪拌し、反応させることで実施できる。その際、生成する1-アミノ-2-ビニルシクロプロパンカルボン酸アミドがさらに加水分解を受け1-アミノ-2-ビニルシクロプロパンカルボン酸が生成しない条件であることが望ましい。
 また、本発明の1-アミノ-2-ビニルシクロプロパンカルボニトリルの加水分解反応は、水、有機溶媒(例えば、アルコール類として、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール等、エーテル類としてテトラヒドロフラン、ジエチルエーテル、1,4-ジオキサン、tert-ブチルメチルエーテル、tert-ブチルエチルエーテル、ジイソプロピルエチルエーテル、シクロペンチルメチルエーテル等、エステル類として、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル等、ハロゲン系炭化水素として、ジクロロメタン、クロロホルム、1,4-ジクロロエタン等が挙げられる)、加水分解を促進する添加剤(例えば、ケトン類として、アセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン、ジエチルケトン、イソプロピルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等が挙げられる)等の共存下で反応を行うこともできる。
 本発明の1-アミノ-2-ビニルシクロプロパンカルボン酸アミド又はその塩を加水分解することにより、1-アミノ-2-ビニルシクロプロパンカルボン酸又はその塩を得ることができる。加水分解する方法には特に制限はなく、例えば、生体触媒を用いる方法、酸又は塩基を用いた方法等が挙げられる。
 酸による加水分解の場合、1-アミノ-2-ビニルシクロプロパンカルボン酸とその塩が生成される。用いる酸に特に制限はなく、硫酸、塩酸、フッ化水素酸、臭化水素酸、沃化水素酸、硝酸、酢酸、ギ酸、リン酸、トリフルオロ酢酸、クロロ酢酸、トリクロロ酢酸、p-トルエンスルホン酸、メタンスルホン酸、強酸性イオン交換樹脂等を使用することができ、これらを2種以上の組み合わせで使用することもできる。塩基による加水分解の場合、1-アミノ-2-ビニルシクロプロパンカルボン酸が生成される。用いる塩基に特に制限はなく、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等の塩基によるアルカリ加水分解を用いることができる。とりわけ、1-アミノ-2-ビニルシクロプロパンカルボン酸アミドを硫酸、塩酸、酢酸、ギ酸、リン酸、p-トルエンスルホン酸、メタンスルホン酸等による酸、または、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等の塩基による水酸化加水分解した場合には、1-アミノ-2-ビニルシクロプロパンカルボン酸が、容易かつ安価に取得できるため、操作性、経済性の観点からも好ましい。
 1-アミノ-2-ビニルシクロプロパンカルボン酸を塩として取得する場合には、形成させる為に酸を用いる。酸の種類に特に制限はなく、塩酸、硫酸、フッ化水素酸、臭化水素酸、沃化水素酸、硝酸、酢酸、ギ酸、リン酸、トリフルオロ酢酸、クロロ酢酸、トリクロロ酢酸、安息香酸、クエン酸、マロン酸、マレイン酸、フマル酸、酪酸、イソ酪酸、p-トルエンスルホン酸、メタンスルホン酸、L-またはD-酒石酸、L-またはD-乳酸、L-またはD-ロイシン酸、L-またはD-リンゴ酸、L-またはD-マンデル酸、o-アセチル-L-またはD-マンデル酸、L-またはD-アスパラギン酸、(+)-または(-)-10-カンファースルホン酸、(+)-または(-)-10-カンファースルホニルクロリド、クロロギ酸(+)-または(-)-メンチル、L-またはD-グルタミン酸、(+)-または(-)カンファー酸、(+)-または(-)-cis-2-ベンズアミドシクロヘキサンカルボン酸、ジアセチル-L-またはD-酒石酸、ジベンゾイル-L-またはD-酒石酸、ジ-p-トルオイル-L-またはD-酒石酸、L-またはD-ピログルタミン酸、L-またはD-キナ酸、(R)-または(S)-プロピオン酸、(R)-または(S)-2-アセトキシプロピオン酸、(R)-または(S)-3-アセチルチオイソ酪酸、(+)-または(-)-cis-ベンズアミドシクロヘキサンカルボン酸、(R)-または(S)-2-クロロプロピオン酸、(R)-または(S)-2-ブロモプロピオン酸、3-クロロ酪酸、(R)-または(S)-2-クロロ-3-メチル酪酸、(R)-または(S)-2-クロロ-4-メチル吉草酸、(R)-または(S)-フェニルコハク酸、(R)-または(S)-メチルコハク酸、(R)-または(S)-メチルグルタル酸、(R)-または(S)-2,2-ジメチルシクロプロパンカルボン酸、L-またはD-シトラマル酸、ジ-p-アニソイル-L-またはD-酒石酸、ジーp-ベンゾイル-L-またはD-酒石酸、が挙げられる。好ましくは、アキラルな酸、例えば、フッ化水素酸、臭化水素酸、沃化水素酸、ギ酸、リン酸、トリフルオロ酢酸、クロロ酢酸、トリクロロ酢酸、安息香酸、クエン酸、マロン酸、マレイン酸、フマル酸、酪酸、イソ酪酸、p-トルエンスルホン酸、メタンスルホン酸、塩酸、硫酸、硝酸、酢酸が、入手容易性、取り扱い容易性の観点から使用しやすい。特に塩酸、硫酸、硝酸、酢酸が安価であることから使用しやすい。
 したがって、本発明による1-アミノ-2-ビニルシクロプロパンカルボン酸アミドの塩としては、前記で例示された酸による塩が挙げられ、好ましくは、フッ化水素酸、臭化水素酸、沃化水素酸、ギ酸、リン酸、トリフルオロ酢酸、クロロ酢酸、トリクロロ酢酸、安息香酸、クエン酸、マロン酸、マレイン酸、フマル酸、酪酸、イソ酪酸、p-トルエンスルホン酸、メタンスルホン酸、塩酸、硫酸、硝酸、酢酸が挙げられ、特に好ましくは、塩酸、硫酸、硝酸、酢酸の塩が挙げられる。
 加水分解により1-アミノ-2-ビニルシクロプロパンカルボン酸を得た場合には、加水分解後に別途塩を形成させる為の酸を添加する。中和後に、塩を形成させる為の酸を添加しても良い。
 本発明の1-アミノ-2-ビニルシクロプロパンカルボン酸アミドの酸加水分解またはアルカリ加水分解においては、1-アミノ-2-ビニルシクロプロパンカルボン酸アミド1モルに対して0.001~50モル、好ましくは0.01~10モル酸または塩基を使用する。
 本発明の1-アミノ-2-ビニルシクロプロパンカルボン酸アミドの加水分解反応を化学的に行う場合には、0~180℃、好ましくは55℃~100℃で0.1~72時間攪拌し、反応させることで実施できる。その際、1-アミノ-2-ビニルシクロプロパンカルボニトリルを化学的に加水分解する場合と同じ試薬条件で反応を行う場合は、1-アミノ-2-ビニルシクロプロパンカルボニトリルを加水分解させる温度よりも高温で反応を実施するか、反応時間を長くすることで実施可能である。
 また、本発明の1-アミノ-2-ビニルシクロプロパンカルボン酸アミドの加水分解反応においては水、有機溶媒(例えば、アルコール類として、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール等、エーテル類としてテトラヒドロフラン、ジエチルエーテル、1,4-ジオキサン、tert-ブチルメチルエーテル、tert-ブチルエチルエーテル、ジイソプロピルエチルエーテル、シクロペンチルメチルエーテル等、エステル類として、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル等、ハロゲン系炭化水素として、ジクロロメタン、クロロホルム、1,4-ジクロロエタン等が挙げられる)等の共存化で反応を行うこともできる。
 また、本発明により得られる1-アミノ-2-ビニルシクロプロパンカルボン酸アミド、およびその塩は、誘導体化して医薬、農薬原料として使用することもできる。
 1-アミノ-2-ビニルシクロプロパンカルボン酸アミド、およびその塩から誘導できる化合物としては、1-アミノ-2-ビニルシクロプロパンカルボン酸、1-アミノ-2-エチルシクロプロパンカルボン酸アミド、1-アミノ-N-(シクロプロピルスルホニル)-2-ビニルシクロプロパンカルボン酸アミド、1-メチルアミノ-2-ビニルシクロプロパンカルボン酸アミド、1-エチルアミノ-2-ビニルシクロプロパンカルボン酸アミド、1-プロピルアミノ-2-ビニルシクロプロパンカルボン酸アミド、1-イソプロピルアミノ-2-ビニルシクロプロパンカルボン酸アミド、1-アミノ-2-ビニルシクロプロパンカルボヒドラジド、1-アミノ-2-ビニルシクロプロパンカルボチオアミド、1-アミノ-2-ホルミルシクロプロパンカルボン酸アミド、1-アミノ-2-(オキシラン-2-イル)シクロプロパンカルボン酸アミド等が挙げられる。
 1-アミノ-2-ビニルシクロプロパンカルボン酸アミド又はその塩を光学活性カルボン酸アミドの立体選択的な加水分解活性を有する微生物等の生体触媒を用いて光学分割することも可能である。
 生体触媒の具体例としては、Xanthobacter属、Serratia属、Chromobacterium属、Protaminobacter属、Pseudomonas属またはMicobacterium属等に属する微生物等の菌体又は該菌体処理物が挙げられるが、これらに限定されるものではない。より具体的には、プロタミノバクター・アルボフラバス(Protaminobacter alboflavus)ATCC8458、キサントバクター・オ-トトロフィカス(Xanthobacter autotrophicus)DSM597、クロモバクテリウム イオディウム(Chromobacterium iodium)IFO3558等が挙げられる。また、これらの微生物から人工的変異手段によって誘導される変異株、または細胞融合若しくは遺伝子組換え法等の遺伝学的手法により誘導される組換え株等のいずれの株であっても上記能力を有するものであれば、本発明に使用できる。これらの微生物の培養は、通常、資化し得る炭素源、窒素源、各微生物に必須の無機塩、栄養等を含有させた培地を用いて行われる。培養時のpHは4~10の範囲が好ましく、温度は20~50℃が好ましい。培養は1日~1週間程度好気的に行われる。このようにして培養された微生物は、菌体または該菌体処理物、例えば、培養液、分離菌体、菌体破砕物、さらには精製した酵素として反応に使用される。また、常法に従って菌体または酵素を固定化して使用することもできる。
 (E)-1-アミノ-2-ビニルシクロプロパンカルボン酸アミド又はその塩を生体触媒による立体選択的なアミド加水分解反応に供する方法は、リパーゼ等のエステル加水分解酵素による光学分割と比較して、アミノ基に特別な修飾を行うといった特別な修飾を行うことなく光学分割が可能となることから、反応基質の合成工程の簡略化が可能である点で好ましく、また、不要な光学異性体の重量を減ずる効果もあることから、原子効率の点からも好ましい。また、極性の高い置換基に特別な修飾を加えないことから反応基質の水溶性が維持され、反応基質を溶解させるために水と共存させる両親媒性の有機溶媒の使用量を減らすことができ、安全面、経済面の観点から有用である。尚、1-アミノ-2-ビニルシクロプロパンカルボン酸アミドを加水分解する際は、(1R,2S)異性体と(1S,2R)異性体混合物を用いても良い。
 本発明の光学活性1-アミノ-2-ビニルシクロプロパンカルボン酸アミドおよびその塩は、カルボン酸アミド部位の化学的修飾により、医薬、農薬中間体として有用な誘導体への変換も可能である。化学的修飾として、例えば、N-アルキル化反応、酸ヒドラジン化反応、オゾン分解反応、イミド化反応、チオアミド化反応、酸化反応、接触水素化反応等を行うことで有用な医薬、農薬中間体を取得することも可能である。
 以下、実施例により本発明をより具体的に説明するが、本発明はこれらの例にのみ限定されるものではない。
光学純度の測定
 本実施例において、1-アミノ-2-ビニルシクロプロパンカルボン酸アミドおよび1-アミノ-2-ビニルシクロプロパンカルボン酸の光学純度は、HPLC分析により決定した。なお、これらの分析においては下記条件を使用した。
・カラム: SUMICHIRAL(登録商標)OA-5000(4.6×50mm,5μm)
・移動相: 1mM CuSO・5H
・流量: 1mL/分
・検出器: UV210nm
参考例1:
 ビス(ジベンジリデンアセトン)パラジウム(0)280mg(0.5mmol)と、トリフェニルホスフィン263mg(1mmol)を、窒素雰囲気下でテトラヒドロフラン40mL中に溶解し、室温で10分間攪拌した。ここに、1,4-ジクロロブタジエン1.25g(10mmol)のテトラヒドロフラン溶液20mLを加え、溶液の色が橙色に変化した後に、N-(ジフェニルメチレン)アミノアセトニトリル2.52g(12mmol)のテトラヒドロフラン溶液20mLと、45%水素化ナトリウム(油性)1.07g(20mmol)とを加えた。得られた反応液を15分間攪拌した後に、セライトろ過し、得られた有機層を、水30mLと飽和食塩水30mLで洗浄した。有機層を減圧濃縮後、溶離液として20%のジエチルエーテル/石油エーテルを使用して、残渣をシリカゲルクロマトグラフィ-により精製した。精製した(E)-1-(ジフェニルメチレン)アミノ-2-エテニルシクロプロパンカルボニトリルを透明な黄色油として得た(2.32g,収率71%)。
H NMR(CDCl)1.69(dd,J=8.2,5.6Hz,1H),1.94(dd,J=8.2,5.6Hz,1H),2.37(ddd,J=8.2,8.2,7.1Hz,1H),5.24-5.36(m,2H),5.55(ddd,J=15.3,8.4,7.1Hz,1H),7.12-7.65(m,10H)
実施例1:
 参考例1と同様にして得られた(E)-1-(ジフェニルメチレン)アミノ-2-エテニルシクロプロパンカルボニトリル1.39g(5.1mmol)を、トルエン5mLに溶解し、0℃で12N 塩酸水溶液4.25mL(51mmol)を滴下した。その温度(0℃)で30分間攪拌した後に、分液により有機層を除いた。水層を40℃で2時間攪拌後、水4.25mLを加え溶媒を減圧濃縮することで、1-アミノ-2-ビニルシクロプロパンカルボン酸アミドの(1R,2S)異性体と(1S,2R)異性体の混合物の塩酸塩を黄土色結晶として得た(813mg,収率98%)。
H NMR(DO)δ 1.61(dd,J=10.3,8.0Hz,1H),1.72(t,J=8.0Hz,1H),2.30(dd,17.2,8.0Hz,1H),5.21(d,J=10.3Hz,1H),5.29(d,J=17.2Hz,1H),5.63(ddd,J=17.2,10.3,6.8Hz,1H)
13C NMR(DO)δ 16.7,28.8,41.0,121.2,131.2,170.9
実施例2:
 参考例1と同様にして得られた(E)-1-(ジフェニルメチレン)アミノ-2-エテニルシクロプロパンカルボニトリル1.85g(6.8mmol)を、トルエン7mLに溶解し、0℃で6N 塩酸水溶液5.65mL(33.9mmol)を滴下した。その温度(0℃)で30分間攪拌した後に、分液により有機層を除いた。得られた水層を減圧濃縮した残渣に1.5N 水酸化ナトリウム水溶液13.7mL(20.5mmol)とアセトン5.7mLの混合溶液に溶解し、室温で1時間攪拌した。10% NHCl水溶液で中和後、減圧濃縮した。残渣をメタノール10mLに懸濁させ、ろ過により不溶物を分離した。ろ液を減圧留去し、1-アミノ-2-ビニルシクロプロパンカルボン酸アミドの(1R,2S)異性体と(1S,2R)異性体の混合物を黄土色結晶として得た(0.70g,収率82%)。
実施例3:
 下記表の組成を有する培地を調製し、この培地200mLを1Lの三角フラスコに入れ、滅菌後、キサントバクタ-・オートトロフィカス(Xanthobacter autotrophicus)DSM597(理研バイオリソースセンターより入手)を接種し、30℃で72時間振とう培養を行った。
Figure JPOXMLDOC01-appb-T000011
 次いで培養液から、遠心分離により、乾燥菌体0.5gに相当する濃縮菌体を得た。
 実施例2と同様にして得られた1-アミノ-2-ビニルシクロプロパンカルボン酸アミドの(1R,2S)異性体および(1S,2R)異性体の混合物(ラセミ混合物)1.0g(7.93mol)を、水100mLに溶かした後、300mLフラスコに入れ、乾燥菌体0.5gに相当する濃縮菌体を加えて、30℃で5時間攪拌して加水分解反応を行った。反応後、反応液から遠心分離によって菌体を除去して得られた上清をHPLCにより分析したところ反応の転化率は25%であり、得られた(1S,2R)-1-アミノ-2-ビニル-シクロプロパンカルボン酸の光学純度は>99%e.e.であった。
 なお前述の転化率とは、HPLC測定により得られた各異性体のエリア面積値を用いて、下記のようにして計算することができる:
・転化率=[(前記アミドの(1R,2S)異性体のエリア面積値-前記アミドの(1S,2R)異性体のエリア面積値×100)]/前記アミドの(1R,2S)異性体のエリア面積値
(ここで、ラセミ混合物においては、アミドの(1R,2S)異性体と同(1S,2R)異性体とが等量存在すると考えられるので、前記式中の「アミドの(1R,2S)異性体のエリア面積値」は、「アミドの(1S,2R)異性体」の加水分解反応前値に相当するといえることから、前記式のようにして転化率を算出することとした)。
実施例4:
 実施例1で得られた1-アミノ-2-ビニルシクロプロパンカルボン酸アミドの(1R,2S)異性体と(1S,2R)異性体の混合物の塩酸塩50mg(0.31mmol)を、1.5N 水酸化ナトリウム水溶液0.62mL(0.93mmol)に溶解し、70℃で加熱攪拌した。反応時間3時間で1-アミノ-2-ビニルシクロプロパンカルボン酸アミドの転化率83%で1-アミノ-2-ビニルシクロプロパンカルボン酸が生成した。
 なお、本実施例4における転化率とは、下記の分析条件によるHPLC測定により得られた各成分のエリア面積値を用いて、下記式に従って算出することができる:
・転化率=(反応前のアミドエリアー反応後のアミドエリア)/反応前のアミドエリア×100
[HPLC分析]
 ・カラム: Inertsil ODS-3(4.0×250mm,5μm)
 ・移動相: MeCN:30mM リン酸二水素ナトリウム=60:40
 ・流量: 1mL/分
 ・検出器: UV 210nm
 本発明により得られる1-アミノ-2-ビニルシクロプロパンカルボン酸アミドおよびその塩は、医薬、農薬の製造中間体として大変有用である。

Claims (9)

  1.  下式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式中、1および2は不斉炭素を表す)
    で示される、1-アミノ-2-ビニルシクロプロパンカルボン酸アミドまたはその塩。
  2.  式(1)で示される、請求項1に記載の1-アミノ-2-ビニルシクロプロパンカルボン酸アミド。
  3.  下式(2):
    Figure JPOXMLDOC01-appb-C000002
    (式中、1及び2は不斉炭素を表し、Xは塩酸、硫酸、硝酸又は酢酸を表す)
    で示される、請求項1に記載の1-アミノ-2-ビニルシクロプロパンカルボン酸アミド塩。
  4.  (1R,2S)異性体又は(1S,2R)異性体である、請求項1または2に記載の1-アミノ-2-ビニルシクロプロパンカルボン酸アミド。
  5.  (1R,2S)異性体又は(1S,2R)異性体である、請求項3に記載の1-アミノ-2-ビニルシクロプロパンカルボン酸アミド塩。
  6.  1-アミノ-2-ビニルシクロプロパンカルボン酸アミドまたはその塩の製造方法であって、
     下式(3):
    Figure JPOXMLDOC01-appb-C000003
    (式中、1および2は不斉炭素を表す)
    で示される1-アミノ-2-ビニルシクロプロパンカルボニトリルまたはその塩を加水分解して、請求項1に記載の式(1)で示される1-アミノ-2-ビニルシクロプロパンカルボン酸アミドまたはその塩を得ることを含む、方法。
  7.  1-アミノ-2-ビニルシクロプロパンカルボン酸またはその塩の製造方法であって、
     下式(1):
    Figure JPOXMLDOC01-appb-C000004
    (式中、1および2は不斉炭素を表す)
    で示される1-アミノ-2-ビニルシクロプロパンカルボン酸アミドまたはその塩を加水分解して、下式(4):
    Figure JPOXMLDOC01-appb-C000005
    (式中、1および2は不斉炭素を表す)
    で示される1-アミノ-2-ビニルシクロプロパンカルボン酸またはその塩を得ることを含む、方法。
  8.  式(1)で示される1-アミノ-2-ビニルシクロプロパンカルボン酸アミド又はその塩のラセミ混合物に、立体選択的に加水分解する活性を有する微生物の菌体もしくは菌体処理物を作用させて、式(4)で示される光学活性1-アミノ-2-ビニルシクロプロパンカルボン酸またはその塩を生成せしめることを含む、請求項7に記載の製造方法。
  9.  式(1)で示される1-アミノ-2-ビニルシクロプロパンカルボン酸アミド又はその塩の(1R,2S)異性体と(1S,2R)異性体とを含む混合物に、立体選択的に加水分解する活性を有する微生物の菌体もしくは菌体処理物を作用させて、式(4)で示される光学活性1-アミノ-2-ビニルシクロプロパンカルボン酸を生成せしめることを含む、請求項7または8に記載の製造方法。
PCT/JP2012/065452 2011-06-21 2012-06-18 1-アミノ-2-ビニルシクロプロパンカルボン酸アミドおよびその塩、ならびにその製造方法 WO2012176715A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/128,385 US20140142337A1 (en) 2011-06-21 2012-06-18 1-amino-2-vinylcyclopropane carboxylic acid amide and salt thereof, and method for producing same
EP12802722.4A EP2725012A1 (en) 2011-06-21 2012-06-18 1-amino-2-vinyl cyclopropane carboxylic acid amide, salt of same, and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-137246 2011-06-21
JP2011137246 2011-06-21

Publications (1)

Publication Number Publication Date
WO2012176715A1 true WO2012176715A1 (ja) 2012-12-27

Family

ID=47422552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065452 WO2012176715A1 (ja) 2011-06-21 2012-06-18 1-アミノ-2-ビニルシクロプロパンカルボン酸アミドおよびその塩、ならびにその製造方法

Country Status (4)

Country Link
US (1) US20140142337A1 (ja)
EP (1) EP2725012A1 (ja)
JP (1) JPWO2012176715A1 (ja)
WO (1) WO2012176715A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111918969A (zh) * 2018-03-30 2020-11-10 株式会社Api 新型水解酶和利用该酶的(1s,2s)-1-烷氧基羰基-2-乙烯基环丙烷羧酸的制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI758313B (zh) * 2016-10-12 2022-03-21 美商陶氏農業科學公司 一種用於製備(1r,3r)-及(1s,3s)-2,2-二鹵基-3-(經取代之苯基)環丙烷甲酸的方法
CN116508749A (zh) * 2023-07-03 2023-08-01 四川科宏达集团有限责任公司 一种除草剂增效助剂及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000009543A2 (en) 1998-08-10 2000-02-24 Boehringer Ingelheim (Canada) Ltd. Hepatitis c inhibitor tri-peptides
JP2007516981A (ja) * 2003-12-15 2007-06-28 日本たばこ産業株式会社 N−置換−n−スルホニルアミノシクロプロパン化合物及びその医薬用途
WO2007088571A2 (en) 2006-02-02 2007-08-09 Abiogen Pharma S.P.A. A process for resolving racemic mixtures and a diastereoisomeric complex of a resolving agent and an enantiomer of interest
WO2008070358A2 (en) * 2006-11-16 2008-06-12 Phenomix Corporation N-cyclopropyl-hydroxyproline-based tripeptidic hepatitis c serine protease inhibitors containing an isoindole, pyrrolopyridine, pyrrolopyrimidine or pyrrolopyrazine heterocycle in the side chain
JP2009536158A (ja) * 2006-04-11 2009-10-08 ノバルティス アクチエンゲゼルシャフト Hcv阻害剤
WO2010041739A1 (ja) 2008-10-10 2010-04-15 株式会社カネカ 光学活性ビニルシクロプロパンカルボン酸誘導体及び光学活性ビニルシクプロパンアミノ酸誘導体の製造方法
US20110135599A1 (en) * 2009-12-03 2011-06-09 Gilead Sciences, Inc. Antiviral compounds

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000009543A2 (en) 1998-08-10 2000-02-24 Boehringer Ingelheim (Canada) Ltd. Hepatitis c inhibitor tri-peptides
JP2010043124A (ja) 1998-08-10 2010-02-25 Boehringer Ingelheim (Canada) Ltd C型肝炎インヒビタートリペプチド
JP2007516981A (ja) * 2003-12-15 2007-06-28 日本たばこ産業株式会社 N−置換−n−スルホニルアミノシクロプロパン化合物及びその医薬用途
WO2007088571A2 (en) 2006-02-02 2007-08-09 Abiogen Pharma S.P.A. A process for resolving racemic mixtures and a diastereoisomeric complex of a resolving agent and an enantiomer of interest
JP2009536158A (ja) * 2006-04-11 2009-10-08 ノバルティス アクチエンゲゼルシャフト Hcv阻害剤
WO2008070358A2 (en) * 2006-11-16 2008-06-12 Phenomix Corporation N-cyclopropyl-hydroxyproline-based tripeptidic hepatitis c serine protease inhibitors containing an isoindole, pyrrolopyridine, pyrrolopyrimidine or pyrrolopyrazine heterocycle in the side chain
WO2010041739A1 (ja) 2008-10-10 2010-04-15 株式会社カネカ 光学活性ビニルシクロプロパンカルボン酸誘導体及び光学活性ビニルシクプロパンアミノ酸誘導体の製造方法
EP2345633A1 (en) 2008-10-10 2011-07-20 Kaneka Corporation Optically active vinyl-cyclopropane carboxylic acid derivative and optically active vinyl-cyclopropane amino acid derivative manufacturing method
US20110135599A1 (en) * 2009-12-03 2011-06-09 Gilead Sciences, Inc. Antiviral compounds

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DRUGS OF THE FUTURE, vol. 34, no. 7, 2009, pages 545
J. ORG. CHEM., vol. 64, no. 13, 1999, pages 4712
ORGANIC RESEARCH & DEVELOPMENT, vol. 14, 2010, pages 692

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111918969A (zh) * 2018-03-30 2020-11-10 株式会社Api 新型水解酶和利用该酶的(1s,2s)-1-烷氧基羰基-2-乙烯基环丙烷羧酸的制造方法

Also Published As

Publication number Publication date
EP2725012A1 (en) 2014-04-30
JPWO2012176715A1 (ja) 2015-02-23
US20140142337A1 (en) 2014-05-22

Similar Documents

Publication Publication Date Title
JP4051082B2 (ja) 脂肪族ジニトリルのシアノカルボン酸への立体選択性生物変換
JP3789938B2 (ja) 酵素触媒作用アシル化による1級及び2級のヘテロ原子置換アミンのラセミ体分割
US8338142B2 (en) Method for producing optically active 3-aminopiperidine or salt thereof
US20070197788A1 (en) Method for the preparation of enantiomer forms of cis-configured 3-hydroxycyclohexane carboxylic acid derivatives using hydrolases
EP2017259A2 (en) Preparation of gamma-amino acids having affinity for the alpha-2-delta protein
KR100452248B1 (ko) 카비놀분리방법
WO2005073388A1 (ja) 光学活性1−置換—2—メチルピロリジンおよびその中間体の製造法
JPWO2011078172A1 (ja) 光学活性3−置換グルタル酸モノアミドの製造法
WO2012176715A1 (ja) 1-アミノ-2-ビニルシクロプロパンカルボン酸アミドおよびその塩、ならびにその製造方法
WO2010053050A1 (ja) O-アルキルセリンおよびn-ベンジル-o-アルキルセリンの製造法
Schoemaker et al. Enzymatic Catalysis in Organic Synthesis. Synthesis of Enantiomerically Pure C�-Substituted�-Amino and�-Hydroxy Acids
JPWO2008056827A1 (ja) ベタインの製造方法
US20200024621A1 (en) Enzymatic process for the preparation of (1s,2r)-2-(difluoromethyl)-1-(propoxycarbonyl)cyclopropanecarboxylic acid
JP4319847B2 (ja) (1s,2s)−2−フルオロシクロプロパンカルボン酸誘導体の製造方法
JP4843812B2 (ja) 酵素を使用するラセミα−置換ヘテロ環式カルボン酸の光学分割方法
JP7280984B2 (ja) (2s)-2-[(4r)-2-オキソ-4-プロピル-ピロリジン-1-イル]酪酸の調製のための酵素的プロセスおよびそのブリバラセタムへの変換
US20070077632A1 (en) Method for preparing (s)-indoline-2-carboxylic acid and (s)-indoline-2-carboxylic acid methyl ester using hydrolytic enzyme
JP2003534808A (ja) 酵素を用いるR−体又はS−体のα−置換ヘテロサイクリックカルボン酸及びこれと反対鏡像の鏡像異性体のα−置換ヘテロサイクリックカルボン酸エステルの調製方法
JP4720132B2 (ja) 光学活性なn−保護−オクタヒドロ−1h−インドール−2−カルボン酸の製造方法
EP1536017B1 (en) Process for producing optically active octahydro-1H-indole-2-carboxylic acid
JP5092465B2 (ja) ピペコリン酸の立体選択的なエステル化方法
JP4746019B2 (ja) 光学活性β−シアノイソ酪酸類及びその製造方法
JP2015012838A (ja) 光学活性アミノ酸の製造法
JP2008222637A (ja) 光学活性ピペコリン酸またはその誘導体の製造方法。
JP2004261086A (ja) ピペコリン酸の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802722

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013521566

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012802722

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14128385

Country of ref document: US