WO2010001823A1 - スパッタリングターゲット及びその製造方法並びに酸化Cu層の製造方法 - Google Patents

スパッタリングターゲット及びその製造方法並びに酸化Cu層の製造方法 Download PDF

Info

Publication number
WO2010001823A1
WO2010001823A1 PCT/JP2009/061690 JP2009061690W WO2010001823A1 WO 2010001823 A1 WO2010001823 A1 WO 2010001823A1 JP 2009061690 W JP2009061690 W JP 2009061690W WO 2010001823 A1 WO2010001823 A1 WO 2010001823A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
sputtering target
atomic
oxide layer
producing
Prior art date
Application number
PCT/JP2009/061690
Other languages
English (en)
French (fr)
Inventor
秀隆 矢ヶ部
克典 岩崎
英夫 村田
卓也 石川
和也 斉藤
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Publication of WO2010001823A1 publication Critical patent/WO2010001823A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/087Oxides of copper or solid solutions thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to a sputtering target made of Cu containing a certain amount of oxygen used for forming a base film of a Cu-based wiring film used in a flat display device, for example, and a method for manufacturing the same. Moreover, it is a manufacturing method of the Cu oxide layer which forms Cu oxide layer by Ar sputtering using said sputtering target.
  • Patent Document 1 In semiconductor electronic components such as thin film transistors, Cu-based wiring is formed on a substrate, but there is a problem that adhesion to the substrate is weak. Therefore, a method of forming a Cu oxide layer as a base film with a substrate of Cu-based wiring has also been proposed (see, for example, Patent Document 1). Moreover, as a Cu target used for formation of the electrode and wiring layer of a semiconductor device, the thing with an oxygen content of 100 mass ppm or less is generally used (for example, refer patent document 2). Japanese Patent Application No. 2008-280545 (Patent Document 3) published after the date of filing of Japanese Patent Application No. 2008-170600, which is a prior application for which the present application claims priority, discloses oxygen of 0.4 to 6 atoms. An oxygen-containing copper target having a composition comprising% and the balance of Cu and inevitable impurities has been proposed.
  • a Cu oxide layer is formed by reactive sputtering using a Cu sputtering target and oxygen gas.
  • This method is an excellent method for forming a Cu oxide layer.
  • the oxygen gas concentration in the chamber is distributed, so that it is difficult to form a uniform Cu oxide layer over the entire surface of the substrate, and the adhesion to the substrate is partially present. There is a problem that a weak underlayer is formed.
  • An object of the present invention is to provide a sputtering target for uniformly forming a Cu oxide layer on a substrate.
  • the present invention is a sputtering target composed of Cu, oxygen, and unavoidable impurities, and the sputtering target has an oxygen content of 7.0-33.3 atomic% when the total of Cu and oxygen is 100 atomic%.
  • the present invention when Cu powder is heat-treated in an oxygen-containing atmosphere and oxygen is introduced, then pressure sintering is performed, and the total amount of Cu and oxygen is set to 100 atomic%, so that oxygen is 7.0 to 33.3 atomic%. It is a manufacturing method of the sputtering target which obtains Cu sintered compact used as the sputtering target material which is.
  • the present invention uses a sputtering target consisting of Cu, oxygen, and unavoidable impurities on a substrate, wherein oxygen is 7.0-33.3 atomic% when the total of Cu and oxygen is 100 atomic%. It is a manufacturing method of the Cu oxide layer which forms a Cu oxide layer by sputtering.
  • a Cu oxide layer having high adhesion can be formed over the entire surface of the substrate, this is an indispensable technique as a sputtering target for forming a base film of a Cu-based wiring.
  • An important feature of the present invention is that a sputtering target in which a predetermined amount of oxygen is contained in Cu has been found as a sputtering target suitable for forming a Cu oxide layer serving as a base film for a Cu-based wiring.
  • the present invention is described in detail below.
  • the sputtering target of the present invention is a sputtering target composed of Cu, oxygen and unavoidable impurities, and contains 7.0 to 33.3 atomic% of oxygen when the total of Cu and oxygen is 100 atomic%.
  • the adhesion between the Cu oxide layer and the silicon oxide substrate or silicon thin film is improved with an increase in the amount of oxygen contained in the Cu oxide layer.
  • the sputtering target of the present invention for forming a Cu oxide layer stably forms an oxide Cu layer even in Ar sputtering without using oxygen gas. Therefore, when the total amount of Cu and oxygen is 100 atomic%, oxygen is used. In an amount of not less than 7.0 atomic%.
  • the adhesion to the glass substrate and the silicon thin film improves as the oxygen amount is increased from about 0.1 atomic% contained in a normal pure Cu sputtering target, and the oxygen amount is reduced. It was confirmed that sufficient adhesion could be secured stably from 7 atomic%.
  • the oxidized Cu layer obtained by sputtering can be stably incorporated with oxygen, and the adhesion to the substrate is improved, but the oxidized Cu is Cu 2 O. Since it exists stably, it cannot contain oxygen exceeding 33.3 atomic%. Therefore, the upper limit of the amount of oxygen in the sputtering target is set to 33.3 atomic%.
  • a wiring film may be formed on a substrate such as glass or a wiring film may be formed on a silicon thin film formed on the substrate.
  • a substrate such as glass
  • a wiring film may be formed on a silicon thin film formed on the substrate.
  • the sputtering target containing 7.0 atomic% or more of oxygen according to the present invention is used.
  • the Cu oxide layer formed by using has good adhesion to the silicon thin film and also has an effect of suppressing mutual diffusion with the silicon thin film.
  • the sputtering target of the present invention is mainly composed of Cu and oxygen, but may also contain impurities inevitably included.
  • impurities it is desired that the content of inevitable impurities is as small as possible, nitrogen or carbon, which is a gas component other than oxygen, or a transition metal such as Fe, Ni, Cr, and a semi-metal group, as long as the effects of the present invention are not impaired Inevitable impurities such as Al and Si may be included.
  • nitrogen of gas component is 50 mass ppm or less
  • carbon is 250 mass ppm or less
  • Fe, Ni, Cr are each 200 mass ppm or less
  • Al are each 50 mass ppm or less
  • Cu is each 50 mass ppm or less
  • the purity should be 99.9% by mass or more.
  • a Cu oxide layer having improved adhesion to the substrate can be formed by forming a Cu oxide layer by sputtering in an Ar atmosphere.
  • the sputtering target of the present invention contributes to the formation of a stable Cu oxide layer even when applied to reactive sputtering in an atmosphere in which oxygen gas is introduced into Ar.
  • the sputtering target of the present invention can be produced by heat-treating Cu powder in an oxygen-containing atmosphere and then pressure-sintering to obtain a Cu sintered body containing 7.0 to 33.3 atomic% of oxygen. It is. By heating the Cu powder in an oxygen-containing atmosphere, the amount of oxygen can be increased. Note that the amount of oxygen in the Cu powder can be controlled by adjusting the heating temperature and heating time in an oxygen atmosphere.
  • As Cu powder to be used commercially available Cu powder having a purity of 99.9% or more and an oxygen content of about 500 ppm by mass can be used.
  • the oxygen-containing atmosphere in the heat treatment is preferably an atmosphere having an oxygen concentration of 19% or more by volume percentage.
  • the heating temperature the higher the temperature is, the more the oxidation proceeds, but it is desirable that the heating is performed at 100 to 900 ° C. in which Cu powder does not dissolve. Further, the longer the heating time, the more effective, but it is desirable that the heating time is 20 minutes to 6 hours in consideration of productivity. Further, since the Cu powder to be used is electrolytic copper powder, it is preferable to use a powder having a particle size distribution (d50) of 50 to 150 ⁇ m.
  • pressure sintering for example, sintering by hot isostatic pressing (HIP) or hot pressing can be applied.
  • HIP hot isostatic pressing
  • the pressure applied during sintering is 20 MPa or more and the sintering temperature is 850 to 1000 ° C.
  • Table 1 Each heating temperature shown in Table 1 in a Cu powder having a purity of 99.9%, an oxygen content of 360 mass ppm, and a particle size distribution (d50) of 100 ⁇ m in an oxygen-containing atmosphere (in the air) with an oxygen concentration of 19% by volume percentage
  • Table 1 shows the results of measuring the oxygen content of each of the obtained powders by the non-dispersive infrared suction method.
  • the obtained sintered body was machined to obtain a sputtering target having a diameter of 100 mm and a thickness of 5 mm.
  • the amount of oxygen in the obtained target was measured by the non-dispersive infrared absorption method, and Table 2 shows the amounts of oxygen when the sum of Cu and oxygen is 100 atomic%.
  • sputtering was performed on a glass substrate (Corning 1737) using a sputtering target of Samples 1 to 6 prepared above in an Ar gas pressure atmosphere of 0.48 Pa at an input power of 1000 W, and an oxygen-containing film with a thickness of 50 nm was contained. A Cu thin film was formed. Further, a pure Cu film having a thickness of 200 nm was formed on the above thin film by sputtering at a power of 1000 W in an Ar gas pressure atmosphere of 0.48 Pa using a Cu target having a purity of 99.99%.
  • Samples 4 to 6 of the examples of the present invention have sufficient adhesion without film peeling in the adhesion test on the glass substrate. It can also be seen that the sheet resistance can maintain a low electrical resistance of 0.10 ⁇ / ⁇ .
  • each sputtering target produced in Example 1 was used and the film thickness was 50 nm under the same sputtering conditions as in Example 1.
  • An oxygen-containing Cu thin film was formed.
  • a pure Cu film having a film thickness of 200 nm was formed on the oxygen-containing Cu thin film by sputtering with an input power of 1000 W in an Ar gas pressure atmosphere of 0.48 Pa using a Cu target having a purity of 99.99%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

 本発明の目的は、基板上に均一に酸化Cuの層を形成するためのスパッタリングターゲットを提供することにある。  本発明は、Cuと酸素と不可避的不純物からなるスパッタリングターゲットであって、Cuと酸素の総和を100原子%とした時に酸素が7.0~33.3原子%であるスパッタリングターゲットである。また、Cu粉末を酸素含有雰囲気中で加熱処理して酸素導入した後に、加圧焼結しCuと酸素の総和を100原子%とした時に酸素が7.0~33.3原子%であるスパッタリングターゲット素材となるCu焼結体を得るスパッタリングターゲットの製造方法である。

Description

スパッタリングターゲット及びその製造方法並びに酸化Cu層の製造方法
 本発明は、例えば、平面表示装置に用いられるCu系配線膜の下地膜形成に使用される酸素を一定量含有するCuからなるスパッタリングターゲットおよびその製造方法に関するものである。また、上記のスパッタリングターゲットを用いてArスパッタリングによって酸化Cu層を形成する酸化Cu層の製造方法である。
 近年、平面表示装置に使用される薄膜トランジスタ等の半導体電子部品においては、電子回路の高集積化や表示装置の大型化による応答速度の高速化の進展に伴い、配線層の低抵抗化が求められている。現在、低抵抗化の配線層としては、主にAl系の材料(純AlやAlを主成分とした合金)が用いられているが、更なる低抵抗化が要求されているため、Cu系の材料(純CuやCuを主成分とした合金)の採用が検討されている。
 薄膜トランジスタ等の半導体電子部品において、Cu系配線は基板上に形成されるが、基板に対する密着性が弱いと言った問題がある。そのため、Cu系配線の基板との下地膜として酸化Cu層を形成する方法も提案されている(例えば、特許文献1参照)。また、半導体デバイスの電極・配線層の形成に使用されるCuターゲットとしては、一般的に酸素含有量100質量ppm以下のものが使用されている(例えば、特許文献2参照)。
 また、本願が優先権主張を行なう先の出願である特願2008-170600号の出願の日後に公開された特開2008-280545号(特許文献3)には、酸素を0.4~6原子%含有し残部がCuおよび不可避的不純物からなる組成の酸素含有銅ターゲットが提案されている。
特開平6-333925号公報 特開2000-239836号公報 特開2008-280545号公報
 特許文献1に提案される方法では、Cuのスパッタリングターゲットと酸素ガスを用いた反応性スパッタリングにより、酸化Cuの層を形成している。この方法は、酸化Cu層を形成するための優れた方法である。しかし、平面表示装置用基板等の大型基板では、チャンバ内の酸素ガス濃度に分布を生じるため、基板全面に渡って均一な酸化Cu層を形成するのが難しく、部分的に基板と密着性が弱い下地膜が形成されると言った問題がある。
 本発明の目的は、基板上に均一に酸化Cu層を形成するためのスパッタリングターゲットを提供することである。
 本発明は上述した問題に鑑みてなされたものである。
 即ち本発明は、Cuと酸素と不可避的不純物からなるスパッタリングターゲットであって、Cuと酸素の総和を100原子%とした時に酸素が7.0~33.3原子%であるスパッタリングターゲットである。
 また、本発明はCu粉末を酸素含有雰囲気中で加熱処理して酸素導入した後に、加圧焼結しCuと酸素の総和を100原子%とした時に酸素が7.0~33.3原子%であるスパッタリングターゲット素材となるCu焼結体を得るスパッタリングターゲットの製造方法である。
 また、本発明は基板上に、Cuと酸素と不可避的不純物からなり、Cuと酸素の総和を100原子%とした時に酸素が7.0~33.3原子%であるスパッタリングターゲットを用いてArスパッタリングして酸化Cu層を形成する酸化Cu層の製造方法である。
 本発明によれば、基板全面に渡って高い密着性を有する酸化Cuの層を形成できるようになるので、Cu系配線の下地膜形成用スパッタリングターゲットとして、欠くことのできない技術となる。
 本発明の重要な特徴は、Cu系配線の下地膜となる酸化Cu層を形成するために好適なスパッタリングターゲットとして、Cuに所定量の酸素を含有させたスパッタリングターゲットを見出した点にある。以下に本発明を詳しく説明する。
 本発明のスパッタリングターゲットは、Cuと酸素と不可避的不純物からなるスパッタリングターゲットであって、Cuと酸素の総和を100原子%とした時に酸素が7.0~33.3原子%含むものである。
 酸化Cu層とシリコン系酸化物等の基板やシリコン系薄膜との密着性は、酸化Cu層中に含有される酸素量の増加とともに向上し、一定量以上の含有でその効果が飽和する。酸化Cu層を形成するための本発明のスパッタリングターゲットは、酸素ガスを用いないArスパッタリングであっても安定して酸化Cu層を形成するため、Cuと酸素の総和を100原子%とした時に酸素を7.0原子%以上含むものとした。本発明者の検討によれば、ガラス基板やシリコン薄膜に対する密着性は、通常の純Cuスパッタリングターゲットに含まれる0.1原子%程度から酸素量を増加させるにしたがって効果が向上し、酸素量が7原子%から安定的に十分な密着性を確保できることを確認した。
 また、スパッタリングターゲット中の酸素量が多いほど成膜したスパッタリングによって得られる酸化Cu層に安定して酸素を含有させることが可能となり基板との密着力は向上するが、酸化CuはCuOとして安定して存在するため、33.3原子%を超えて酸素を含有し得ない。そのため、スパッタリングターゲット中の酸素量の上限を33.3原子%とした。
 また、薄膜トランジスタ等の半導体部品においてはガラス等の基板上に配線膜が形成される場合と基板上に形成したシリコン薄膜上に配線膜を形成する場合がある。Cuを配線膜に適用する場合には、このシリコン薄膜との相互拡散反応により駆動素子の特性が劣化するという問題があるが、本発明の7.0原子%以上の酸素を含有したスパッタリングターゲットを使用して成膜された酸化Cu層ではシリコン薄膜に対する良好な密着性を有するとともに、シリコン薄膜との相互拡散を抑制する効果も有する。
 なお、本発明においては、スパッタリング成膜した下地膜の基板との密着性を確保するために酸素を一定量含有したCu膜を形成できる酸素をスパッタリングターゲット中に含有する必要がある。そのため、本発明のスパッタリングターゲットは、Cuと酸素とが主たる構成成分であるが、不可避的に含まれる不純物も含み得る。できるだけ不可避的不純物の含有量が少ないことが望まれるが、本発明の作用を損なわない範囲で、酸素以外のガス成分である窒素、あるいは炭素、遷移金属であるFe、Ni、Cr、半金族のAl,Si等の不可避的不純物を含んでもよい。例えば、ガス成分の窒素は50質量ppm以下、炭素は250質量ppm以下、Fe、Ni、Crは各々200質量ppm以下、Al、Siは各々50質量ppm以下等であり、ガス成分を除いたCuの純度として99.9%質量以上であれば良い。
 また、本発明のスパッタリングターゲットを用いて、Ar雰囲気中でのスパッタリングによって酸化Cu層を形成することで基板との密着力が向上した酸化Cu層を形成できる。なお、本発明のスパッタリングターゲットはArに酸素ガスを導入した雰囲気中での反応性スパッタリングへの適用に際しても安定した酸化Cu層の形成に寄与する。
 本発明のスパッタリングターゲットは、Cu粉末を酸素含有雰囲気中で加熱処理した後に、加圧焼結して酸素を7.0~33.3原子%含有させたCu焼結体を得ることによって製造可能である。
 Cu粉末は、酸素含有雰囲気中で加熱することで、酸素量を増加させることが可能となる。なお、Cu粉末中の酸素量は、酸素雰囲気中での加熱温度や加熱時間を調整することで制御することが可能である。
 使用するCu粉末としては、市販される純度99.9%以上、酸素量500質量ppm程度のCu粉末が利用できる。なお、加熱処理の際の酸素含有雰囲気としては、体積百分率で酸素濃度19%以上の雰囲気であることが望ましい。また、加熱温度としては、高温であるほど酸化の進行が進むが、Cu粉末の溶解が発生しない範囲である100~900℃で行うことが望ましい。また、加熱時間は長いほど有効であるが、生産性を考慮して20分~6時間とするのが望ましい。また、使用するCu粉末としては、電解銅粉であるため、粒度分布(d50)が50~150μmのものを用いるのが好ましい。
 また、加圧焼結としては、例えば、熱間静水圧プレス(HIP)やホットプレスによる焼結が適用できる。なお、スパッタリングターゲットとして安定して使用可能な相対密度98%以上を得るため、焼結時の加圧圧力は20MPa以上、焼結温度は850~1000℃とすることが望ましい。
 
 純度99.9%、酸素含有量360質量ppm、粒度分布(d50)が100μmのCu粉末を、体積百分率で酸素濃度19%の酸素含有雰囲気中(大気中)で、表1に示す各加熱温度、加熱時間で加熱処理した粉末を作製した。得られた各粉末の酸素含有量を非分散赤外吸引法で測定した結果を表1に示す。得られた粉末を、表2に示す割合で混合して、軟鋼製の加圧容器に充填した後、加圧圧力120MPa、加熱温度950℃、保持時間1時間の条件で熱間静水圧プレス(HIP)による加圧焼結を施してCu焼結体を作製した。得られた焼結体を機械加工して、直径100mm×厚さ5mmのスパッタリングターゲットを得た。得られたターゲットの酸素量を非分散赤外吸収法にて測定し、Cuと酸素の総和を100原子%とした時の酸素量をそれぞれ表2に示す。
 次に、上記で作製した試料1~6のスパッタリングターゲットを使用してガラス基板(コーニング1737)上に、0.48PaのArガス圧力雰囲気中、投入電力1000Wでスパッタリングし、膜厚50nmの酸素含有Cu薄膜を形成した。さらに、上記の薄膜上に、純度99.99%のCuターゲットを使用して、0.48PaのArガス圧力雰囲気中、投入電力1000Wでスパッタリングし、膜厚200nmの純Cu膜を形成した。
 上記で形成した積層膜に関して以下の評価を行った。
(1)密着性試験
 形成した積層膜に2mm間隔で碁盤目に切り目を入れて桝目を作製した後、薄膜表面にテープを貼り、引き剥がした時にガラス基板上に残った桝目を面積率で評価した。評価結果を表2に示す。
(2)シート抵抗値評価
 形成した積層膜を0.5Pa以下に減圧した真空雰囲気中で温度350℃、1時間の加熱処理を行った後に、四探針法によりシート抵抗を測定した。測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2から、本発明例の試料4~6は、ガラス基板上の密着性試験において膜剥れが生じておらず、十分な密着性を有していることが分かる。
 また、シート抵抗値は0.10Ω/□の低い電気抵抗を維持できることが分かる。
 25×50mmのガラス基板上(コーニング1737)に、膜厚50nmのシリコン薄膜を形成した後に、実施例1で作製した各スパッタリングターゲットを使用して、実施例1と同一のスパッタリング条件で膜厚50nmの酸素含有Cu薄膜を形成した。さらに、酸素含有Cu薄膜上に、純度99.99%のCuターゲットを使用して、0.48PaのArガス圧力雰囲気中、投入電力1000Wでスパッタリングし、膜厚200nmの純Cu膜を形成した。
 上記で形成した積層膜に関して以下の評価を行った。
(1)密着性試験
 形成した積層膜に2mm間隔で碁盤目に切り目を入れて桝目を作製した後、薄膜表面にテープを貼り、引き剥がした時にシリコン薄膜上に残った桝目を面積率で評価した。評価結果を表3に示す。
(2)シリコン拡散評価
 まず、形成した積層膜を四探針法によりシート抵抗を測定した。さらに、0.5Pa以下に減圧した真空雰囲気中で温度250℃、1時間の加熱処理を行った後に、四探針法によりシート抵抗を測定した。加熱処理後にシート抵抗が上昇したものをシリコン拡散が生じたものと評価した。評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3から、本発明例の試料4~6は、Si膜上の密着性試験においても膜剥れが生じておらず、十分な密着性を有していることが分かる。また、加熱処理後にシート抵抗の上昇が無いことから、配線膜へのシリコンの拡散反応が生じていないことが分かる。

Claims (3)

  1.  Cuと酸素と不可避的不純物からなるスパッタリングターゲットであって、Cuと酸素の総和を100原子%とした時に酸素が7.0~33.3原子%であることを特徴とするスパッタリングターゲット。
  2.  Cu粉末を酸素含有雰囲気中で加熱処理して酸素導入した後に、加圧焼結しCuと酸素の総和を100原子%とした時に酸素が7.0~33.3原子%であるスパッタリングターゲット素材となるCu焼結体を得ることを特徴とするスパッタリングターゲットの製造方法。
  3.  基板上に、Cuと酸素と不可避的不純物からなり、Cuと酸素の総和を100原子%とした時に酸素が7.0~33.3原子%であるスパッタリングターゲットを用いてArスパッタリングして酸化Cu層を形成することを特徴とする酸化Cu層の製造方法。
PCT/JP2009/061690 2008-06-30 2009-06-26 スパッタリングターゲット及びその製造方法並びに酸化Cu層の製造方法 WO2010001823A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-170600 2008-06-30
JP2008170600 2008-06-30

Publications (1)

Publication Number Publication Date
WO2010001823A1 true WO2010001823A1 (ja) 2010-01-07

Family

ID=41465920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061690 WO2010001823A1 (ja) 2008-06-30 2009-06-26 スパッタリングターゲット及びその製造方法並びに酸化Cu層の製造方法

Country Status (1)

Country Link
WO (1) WO2010001823A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6464338A (en) * 1987-09-04 1989-03-10 Hitachi Ltd Wiring for semiconductor device
JPH01240649A (ja) * 1988-03-17 1989-09-26 Matsushita Electric Ind Co Ltd 超伝導体薄膜の製造方法
WO2002039508A1 (en) * 2000-11-08 2002-05-16 Mitsubishi Denki Kabushiki Kaisha Bolometer material, bolometer thin film, method for manufacturing bolometer thin film and infrared detecting element using the same
JP2004307247A (ja) * 2003-04-04 2004-11-04 Sumitomo Metal Mining Co Ltd 導電性酸化物焼結体、その製造方法及びそれを用いて得られるスパッタリングターゲット
JP2006124753A (ja) * 2004-10-27 2006-05-18 Bridgestone Corp Cu2O膜、その成膜方法及び太陽電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6464338A (en) * 1987-09-04 1989-03-10 Hitachi Ltd Wiring for semiconductor device
JPH01240649A (ja) * 1988-03-17 1989-09-26 Matsushita Electric Ind Co Ltd 超伝導体薄膜の製造方法
WO2002039508A1 (en) * 2000-11-08 2002-05-16 Mitsubishi Denki Kabushiki Kaisha Bolometer material, bolometer thin film, method for manufacturing bolometer thin film and infrared detecting element using the same
JP2004307247A (ja) * 2003-04-04 2004-11-04 Sumitomo Metal Mining Co Ltd 導電性酸化物焼結体、その製造方法及びそれを用いて得られるスパッタリングターゲット
JP2006124753A (ja) * 2004-10-27 2006-05-18 Bridgestone Corp Cu2O膜、その成膜方法及び太陽電池

Similar Documents

Publication Publication Date Title
JP2008506040A (ja) 銅合金から製造した導電線のための材料
KR20100084668A (ko) 내화성 금속으로 도핑된 스퍼터링 타겟
JP2011523978A (ja) モリブデン−ニオブ合金、かかる合金を含有するスパッタリングターゲット、かかるターゲットの製造方法、それから製造される薄膜、およびその使用
TWI572725B (zh) MoTi靶材的製造方法
JP2010248619A (ja) 酸素含有Cu合金膜の製造方法
JP2004076080A (ja) 配線用薄膜およびスパッタリングターゲット
JP2001093862A (ja) 液晶ディスプレイ用の電極・配線材及びスパッタリングターゲット
JPH1150242A (ja) 電極膜形成用Cu系スパッタリングターゲットおよびその製造方法ならびにCu系電極膜
JP2006077295A (ja) Cu合金配線材料及びCu合金スパッタリングターゲット
JP2004076079A (ja) 配線用薄膜およびスパッタリングターゲット
JP4743645B2 (ja) 金属薄膜配線
JP5622079B2 (ja) スパッタリングターゲット
JP5656135B2 (ja) Cu系配線膜
WO2010001823A1 (ja) スパッタリングターゲット及びその製造方法並びに酸化Cu層の製造方法
EP4130309A1 (en) Composite material and heat dissipation member
JP2011084754A (ja) スパッタリングターゲットの製造方法
JP2008280545A (ja) 酸素含有銅ターゲット
JP2010077530A (ja) スパッタリングターゲットの製造方法及びスパタリングターゲット
JP2006179881A (ja) 配線・電極及びスパッタリングターゲット
WO2018147136A1 (ja) 配線構造及びその製造方法、スパッタリングターゲット材、並びに酸化防止方法
JP4905618B2 (ja) 配線形成用材料、配線形成用スパッタリングターゲット、配線薄膜及び電子部品
JP4962904B2 (ja) 熱欠陥発生がなくかつ密着性に優れた液晶表示装置用配線または電極の形成方法
JP5327651B2 (ja) 電子部品用薄膜配線および薄膜配線形成用スパッタリングターゲット材
JP5077695B2 (ja) フラットパネルディスプレイ用配線膜を形成するためのスパッタリングターゲット
JP2006196521A (ja) 積層配線膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09773401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP