WO2009154314A1 - 太陽電池用基板および色素増感型太陽電池用酸化物半導体電極 - Google Patents

太陽電池用基板および色素増感型太陽電池用酸化物半導体電極 Download PDF

Info

Publication number
WO2009154314A1
WO2009154314A1 PCT/JP2009/064265 JP2009064265W WO2009154314A1 WO 2009154314 A1 WO2009154314 A1 WO 2009154314A1 JP 2009064265 W JP2009064265 W JP 2009064265W WO 2009154314 A1 WO2009154314 A1 WO 2009154314A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
oxide semiconductor
glass substrate
substrate
dye
Prior art date
Application number
PCT/JP2009/064265
Other languages
English (en)
French (fr)
Inventor
正弘 澤田
知浩 永金
明彦 坂本
直 瀬戸
智史 藤本
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008240955A external-priority patent/JP2010073551A/ja
Priority claimed from JP2008258761A external-priority patent/JP5365983B2/ja
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to US12/999,008 priority Critical patent/US20110094584A1/en
Priority to EP09766762A priority patent/EP2299536A4/en
Priority to CN2009801227541A priority patent/CN102106033A/zh
Publication of WO2009154314A1 publication Critical patent/WO2009154314A1/ja
Priority to US14/563,150 priority patent/US20150090335A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0092Compositions for glass with special properties for glass with improved high visible transmittance, e.g. extra-clear glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2095Light-sensitive devices comprising a flexible sustrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03925Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIIBVI compound materials, e.g. CdTe, CdS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to a solar cell substrate and an oxide semiconductor electrode for a dye-sensitized solar cell using the solar cell substrate.
  • solar cells such as single crystal silicon, polycrystalline silicon solar cells and amorphous silicon solar cells. These solar cells are mainly used for household power generation and commercial power generation. As other solar cells, CIS solar cells, CdTe solar cells, dye-sensitized solar cells, organic thin film solar cells, and the like have been developed, and these are also being put to practical use.
  • a glass substrate with a transparent conductive film is used as an electrode substrate.
  • soda lime glass is generally used because it is advantageous in terms of manufacturing cost and versatility.
  • the transparent conductive film fluorine-doped tin oxide (FTO), antimony-doped tin oxide (ATO), tin-doped indium oxide (ITO), or the like is used.
  • FTO and ATO are inferior in resistivity as compared with ITO, they are chemically and thermally stable, and can be expected to have effects such as light confinement due to the uneven shape of the film surface and conductivity improvement due to an increase in surface area. Therefore, it is widely used as an electrode substrate for amorphous silicon solar cells and dye-sensitized solar cells (see, for example, Patent Document 1 and Non-Patent Document 1).
  • thermal chemical vapor deposition is used for the production of the FTO film and the ATO film because of its good film formability and low cost.
  • the film is formed by subjecting a mixed gas of a compound containing tin and fluorine to a thermal decomposition reaction on a glass substrate heated to about 480 ° C. or more.
  • the thermal CVD method includes an on-line CVD method in which film is formed using the heat in a plate glass production line, and an off-line CVD method in which a glass once cooled is cut into a predetermined size and reheated to form a film. is there.
  • solar cells have come to be used as power sources in addition to conventional batteries.
  • solar cells When solar cells are used for portable electronic devices, they are required to be thinner and lighter than solar cells used for conventional outdoor home use and commercial power generation.
  • the power generation efficiency with respect to light other than direct sunlight such as room light is high.
  • dye-sensitized solar cells are particularly suitable.
  • the electrode substrate In order to make the solar cell thinner and lighter, it is most effective to make the electrode substrate thinner.
  • double-side polishing is performed for reasons such as time reduction and cost reduction.
  • a conductive film is formed on one side of a glass substrate, only one side can be polished, which takes time and cost. Further, there is a problem that the conductive film is easily scratched in the polishing process.
  • an oxide semiconductor electrode in which an oxide semiconductor layer such as titanium oxide or zinc oxide is formed on a substrate with a transparent conductive film (conductive film surface) is used.
  • an oxide semiconductor layer such as titanium oxide or zinc oxide
  • conductive film surface a transparent conductive film
  • the oxide semiconductor layer easily peels off from the substrate with the conductive film (conductive film surface), and predetermined characteristics cannot be obtained.
  • the present invention has been made in view of the above circumstances, and a substrate for a solar cell in which an oxide semiconductor layer is difficult to peel off, and an oxide semiconductor for a dye-sensitized solar cell using the solar cell substrate. It is a first object to provide an electrode.
  • the glass substrate is heated to about 480 ° C. or more to form the film.
  • the temperature of the gas sprayed onto the glass substrate is relatively low, the temperature of the glass substrate is likely to decrease due to film formation.
  • the glass substrate thickness is sufficiently thick as in the prior art, deformation is difficult to occur, but when the plate thickness is thin, especially when the thickness is 2 mm or less, the deformation becomes significant, and there is a problem that it cannot be used as an electrode substrate for a solar cell. It was.
  • the present invention provides a solar cell substrate that is less likely to be deformed when an FTO film or an ATO film is formed, and a dye-sensitized solar cell oxide semiconductor electrode using the solar cell substrate.
  • the thermal expansion coefficient of the glass substrate used for the solar cell substrate is related to the ease of peeling of the oxide semiconductor layer. Completed the invention.
  • the first aspect of the present invention is a solar cell substrate in which a transparent conductive film is formed on a glass substrate, and the glass substrate has a thermal expansion coefficient of 50 ⁇ 10 ⁇ 7 to 110 ⁇ 10 ⁇ 7 /
  • the present invention relates to a solar cell substrate characterized by being at ° C.
  • the thermal expansion coefficient of the glass substrate refers to a value in the range of 30 to 380 ° C. measured according to JIS R3103.
  • a paste or slurry containing oxide particles is applied to the glass substrate (conductive film surface) on which the conductive film is formed, and then 400 to 600 ° C.
  • the heat treatment (baking) is preferably performed at 420 to 570 ° C., more preferably 450 to 550 ° C., and the oxide particles are sintered.
  • the oxide semiconductor layer contracts as the oxide particles are sintered, stress is generated between the glass substrate (conductive film side) and the oxide semiconductor layer, and this stress is generated in the oxide semiconductor layer. Cause peeling. This stress is greater as the oxide semiconductor layer is thicker and the glass substrate is thicker.
  • the glass substrate contracts when cooled from the highest temperature during the heat treatment to room temperature, and thus between the glass substrate (conductive film side) and the oxide semiconductor layer. Stress can be relieved and peeling of the oxide semiconductor layer can be prevented.
  • the solar cell substrate according to the first aspect of the present invention can be used for a dye-sensitized solar cell substrate.
  • the solar cell substrate according to the first aspect of the present invention preferably has a glass substrate having a strain point of 525 ° C. or higher.
  • the strain point refers to a value measured based on JIS R3103.
  • the strain point of the glass substrate by setting the strain point of the glass substrate to 525 ° C. or higher, it is possible to suppress thermal deformation of the glass substrate in the heating step and the oxide semiconductor layer sintering step when forming the conductive film.
  • the stress between the glass substrate (conductive film side) and the oxide semiconductor layer increases as the thickness of the glass substrate increases. Therefore, it is desirable to reduce the thickness of the glass substrate.
  • the thickness of the glass substrate is reduced, there is a problem that the glass substrate is easily thermally deformed in the sintering process. Under such circumstances, setting the strain point of the glass substrate to 525 ° C. or more is particularly effective when the glass substrate is thin.
  • the glass substrate preferably has a thickness of 2 mm or less.
  • the present invention also provides a dye-sensitized solar cell, wherein an oxide semiconductor layer having a thickness of 5 to 50 ⁇ m is formed on the transparent conductive film of the solar cell substrate according to the first aspect.
  • the present invention relates to an oxide semiconductor electrode.
  • the oxide semiconductor layer preferably contains titanium oxide.
  • the oxide semiconductor layer is preferably composed of a plurality of layers having different light transmittances.
  • the oxide semiconductor layer is preferably composed of at least two kinds having different light transmittances.
  • the stress acting between the oxide semiconductor layer and the glass substrate (conductive film side) is likely to increase due to the difference in the sintering behavior of each layer, so that the effect of the present invention is easily obtained.
  • the oxide semiconductor layer is preferably composed of a plurality of layers having different particle size distributions of oxide particles.
  • the oxide semiconductor layer preferably includes a layer made of oxide particles having an average primary particle diameter of 30 nm or less.
  • the present inventors have determined that the strain point of the glass substrate is constant in a solar cell substrate in which an FTO film or an ATO film is formed on a thin glass substrate.
  • the present invention was completed by finding that the object can be achieved by limiting the range.
  • the solar cell substrate according to the second aspect of the present invention is obtained by forming a conductive film made of fluorine-doped tin oxide or antimony-doped tin oxide on a glass substrate having a thickness of 0.05 to 2 mm.
  • the distortion point of a glass substrate is 525 degreeC or more, It is characterized by the above-mentioned.
  • the strain point of the glass substrate refers to a value measured according to JIS R3103.
  • the film formation temperature of the FTO film and the ATO film is approximately 480 ° C. or more although it varies depending on the raw material and film thickness used for film formation.
  • the film formation rate becomes extremely slow, which is not preferable for practical use.
  • the deposition rate increases, and at the same time, the unevenness of the film surface increases.
  • the unevenness on the film surface contributes to the light containment effect and the increase in surface area, leading to improved conductivity.
  • the film formation temperature is preferably 510 ° C. or higher.
  • the glass substrate used in the present invention has a very thin thickness of 0.05 to 2 mm and is likely to be thermally deformed when the conductive film is formed.
  • the strain point of the glass substrate is 525 ° C. or higher and the film forming temperature. If it is sufficiently high, it is possible to prevent the glass substrate from being deformed during the formation of the conductive film.
  • the solar cell substrate according to the second aspect of the present invention can be used for a dye-sensitized solar cell.
  • a dye-sensitized solar cell is a porous oxide semiconductor comprising a glass substrate with a conductive film and a porous oxide semiconductor layer (mainly a TiO 2 layer) formed on the glass substrate with a conductive film (on the conductive film).
  • An electrode a dye such as a Ru dye adsorbed on the porous oxide semiconductor electrode, an iodine electrolyte containing iodine, a counter electrode substrate on which a catalyst film and a transparent conductive film are formed, and the like.
  • the porous oxide semiconductor layer is further formed into a glass with a conductive film at a heating temperature of about 500 ° C. It is formed on the substrate (on the conductive film).
  • the heat resistance temperature of a conductive film formed on a glass substrate depends on the film formation temperature. Therefore, if the film forming temperature of the conductive film is around 500 ° C., the film characteristics change in the porous oxide semiconductor layer forming step, and in particular, the resistivity may increase and the energy conversion efficiency may decrease. . In the present invention, since the strain point of the glass substrate is 525 ° C.
  • the solar cell substrate of the present invention is suitable for a dye-sensitized solar cell.
  • the FTO film and the ATO film have a larger degree of unevenness on the film surface than the ITO film, an effect (anchor effect) that the porous oxide semiconductor layer such as a TiO 2 layer is easily fixed is expected. it can.
  • the glass substrate preferably has a thermal expansion coefficient of 70 ⁇ 10 ⁇ 7 to 110 ⁇ 10 ⁇ 7 / ° C.
  • the thermal expansion coefficient of the glass substrate refers to a thermal expansion coefficient in the range of 30 to 380 ° C. measured according to JIS R3103.
  • the outer peripheral edges of the glass substrate with a conductive film and the counter electrode substrate are made of resin or lead. It is necessary to seal with low melting glass such as glass or bismuth borate glass.
  • low melting glass such as glass or bismuth borate glass.
  • Low melting point glass such as lead glass and bismuth borate glass generally has a large coefficient of thermal expansion, so adding a refractory filler reduces the coefficient of thermal expansion and reduces the difference in coefficient of thermal expansion from the glass substrate. It has been taken.
  • the glass substrate can be easily sealed with bismuth borate glass by limiting the thermal expansion coefficient of the glass substrate to a relatively high range of 70 ⁇ 10 ⁇ 7 / ° C. or higher. From the viewpoint of the environment, a preferable dye-sensitized solar cell can be obtained.
  • the present invention also provides a dye-sensitized solar cell characterized in that an oxide semiconductor layer having a thickness of 5 to 50 ⁇ m is formed on the conductive film of the solar cell substrate according to the second aspect.
  • the present invention relates to an oxide semiconductor electrode.
  • the oxide semiconductor layer is preferably composed of oxide particles having an average primary particle diameter of 30 nm or less.
  • the oxide semiconductor layer preferably has a porosity of 60 to 80%.
  • the porosity of the oxide semiconductor layer is calculated by the following equation.
  • W is the mass of the oxide semiconductor layer
  • V is the volume of the oxide semiconductor layer
  • is the apparent density of the oxide semiconductor layer
  • D is the theoretical density of the oxide semiconductor
  • P is the porosity of the oxide semiconductor layer.
  • a solar cell substrate particularly useful as a dye-sensitized solar cell in which peeling of an oxide semiconductor layer is prevented or deformation of a glass substrate is prevented during formation of a conductive film. Can be obtained.
  • the glass substrate has a thermal expansion coefficient of 50 ⁇ 10 ⁇ 7 to 110 ⁇ 10 ⁇ 7 / ° C., preferably 55 ⁇ 10 ⁇ 7 to 100 ⁇ 10 ⁇ 7 / C., more preferably 60 ⁇ 10 ⁇ 7 to 95 ⁇ 10 ⁇ 7 / ° C.
  • the thermal expansion coefficient of the glass substrate is less than 50 ⁇ 10 ⁇ 7 / ° C., as described above, the effect of reducing stress generated between the glass substrate (conductive film side) and the oxide semiconductor layer is small, and the oxide The semiconductor layer is easily peeled off.
  • the thermal expansion coefficient of the glass substrate is larger than 110 ⁇ 10 ⁇ 7 / ° C.
  • the stress caused by the thermal expansion of the glass substrate increases in the firing process of the oxide semiconductor layer, and the oxide semiconductor layer is peeled off. It becomes easy.
  • the strain point of the glass substrate is preferably 525 ° C. or more, 540 ° C. or more, and particularly preferably 560 ° C. or more.
  • the strain point of the glass substrate is lower than 525 ° C., the glass substrate is likely to be thermally deformed in the heating step and the oxide semiconductor layer baking step when forming the conductive film.
  • the thickness of the glass substrate is preferably 2 mm or less, 1.8 mm or less, and particularly preferably 1.5 mm or less.
  • the glass substrate may be made of SiO 2 —RO—R ′ 2 O glass, SiO 2 —Al 2 O 3 —RO—R ′ 2 O glass, SiO 2 —Al 2.
  • R ′ represents one or more of Li, Na, and K.
  • to glass refers to a glass containing a corresponding component as an essential component.
  • R ′ 2 O is a component that increases the thermal expansion coefficient and facilitates melting of the glass, but at the same time tends to lower the strain point.
  • RO like R ′ 2 O, is a component that increases the coefficient of thermal expansion and facilitates melting of the glass, but has a property of reducing the strain point as compared with R ′ 2 O. Therefore, by appropriately substituting these components, it is possible to facilitate melting of the glass while keeping the thermal expansion coefficient and the strain point within a preferable range.
  • SiO 2 —Al 2 O 3 —RO—R ′ 2 O-based glass is 50% by mass to SiO 2 50% to 70%, Al 2 O 3 0.5% to 15%, MgO + CaO + SrO + BaO + ZnO 10% to 27%, Li
  • An example is a composition containing a composition of 2 O + Na 2 O + K 2 O 7-15%, ZrO 2 0-9%, TiO 2 0-5%, SnO 2 + Sb 2 O 3 + As 2 O 3 + SO 3 0-1%. Can be mentioned.
  • SiO 2 is a glass network constituent, and its content is 50 to 70%, preferably 52 to 65%.
  • the content of SiO 2 is less than 50%, the strain point tends to be low.
  • the content of SiO 2 is more than 70%, the thermal expansion coefficient becomes too low, the meltability deteriorates, and devitrification easily occurs.
  • Al 2 O 3 is a component for increasing the strain point, and its content is 0.5 to 15%, preferably 2 to 12%.
  • the content of Al 2 O 3 is less than 0.5%, it is difficult to obtain the effect of increasing the strain point.
  • the content of Al 2 O 3 is more than 15%, the melting temperature becomes high, so that the meltability is deteriorated and devitrification easily occurs.
  • MgO, CaO, SrO, BaO and ZnO are all components for improving the meltability of the glass and controlling the thermal expansion coefficient.
  • it has the property that the ratio of lowering the strain point is lower than that of the alkali metal oxide.
  • the total content of these components is 10 to 27%, preferably 15 to 25%. If the total amount of these components is less than 10%, the melting temperature tends to be high and the meltability tends to deteriorate. On the other hand, if it exceeds 27%, devitrification tends to occur and molding tends to be difficult.
  • Li 2 O, Na 2 O and K 2 O are all components for improving the meltability of glass and controlling the thermal expansion coefficient.
  • the total content of these components is 7 to 15%, preferably 8 to 13%. If the total amount of these components is less than 7%, the melting temperature becomes high and the meltability tends to deteriorate, whereas if it exceeds 15%, the strain point tends to decrease.
  • ZrO 2 is a component that increases the strain point and improves the chemical durability.
  • the content of ZrO 2 is 0 to 9%, preferably 1 to 7%. When the content of ZrO 2 exceeds 9%, a devitrified material is likely to be generated at the time of melting, and molding tends to be difficult.
  • TiO 2 is a component that prevents the glass from being colored (solarization) by ultraviolet rays.
  • iron ions are contained as impurities in the glass substrate (for example, 0.01 to 0.2%), coloring due to iron ions tends to occur when the solar cell is used for a long time. Therefore, this kind of coloring can be prevented by adding TiO 2 to the glass composition.
  • the content of TiO 2 is 0 to 5%, preferably 1 to 4%. When the content of TiO 2 is more than 5%, devitrification tends to occur, and molding tends to be difficult.
  • SnO 2 , Sb 2 O 3 , As 2 O 3 and SO 3 are all components used as fining agents.
  • the total content of these components is 0 to 1%, preferably 0.1 to 0.8%. If the total amount of these components exceeds 1%, devitrification tends to occur, and molding tends to be difficult.
  • SiO 2 —Al 2 O 3 —RO-based glass by mass%, SiO 2 30 to 50%, Al 2 O 3 0.5 to 15%, MgO + CaO + SrO + BaO + ZnO 30 to 60%, B 2 O 3 0 to An example is a composition containing 10%, ZrO 2 0-5%, TiO 2 0-5%, SnO 2 + Sb 2 O 3 + As 2 O 3 + SO 3 0-1%.
  • SiO 2 is a glass network constituent, and its content is 30 to 50%, preferably 32 to 42%. If the content of SiO 2 is less than 32%, vitrification becomes difficult. On the other hand, when the content of SiO 2 is more than 42%, the coefficient of thermal expansion becomes too low, the meltability deteriorates, and devitrification easily occurs.
  • Al 2 O 3 is a component for increasing the strain point of glass, and its content is 0.5 to 15%, preferably 2 to 10%.
  • the content of Al 2 O 3 is less than 0.5%, it is difficult to obtain the effect of increasing the strain point.
  • the content of Al 2 O 3 is more than 10%, the melting temperature becomes high, so that the meltability is deteriorated and devitrification easily occurs.
  • MgO, CaO, SrO, BaO and ZnO are all components for improving the meltability of the glass and controlling the thermal expansion coefficient.
  • it has the property that the ratio of lowering the strain point is lower than that of the alkali metal oxide.
  • the total content of these components is 30 to 60%, preferably 35 to 50%. If the total amount of these components is less than 30%, the melting temperature becomes high and the meltability tends to deteriorate. On the other hand, if it exceeds 60%, devitrification tends to occur and molding tends to be difficult.
  • B 2 O 3 is a component that lowers the high temperature viscosity of the glass and suppresses devitrification of the glass. Its content is 0 to 10%, preferably 1 to 8%. If the content of B 2 O 3 is more than 10%, the thermal expansion coefficient is too low, which is not preferable.
  • ZrO 2 is a component that increases the strain point and improves the chemical durability.
  • the content of ZrO 2 is 0 to 9%, preferably 1 to 7%. When the content of ZrO 2 exceeds 9%, a devitrified material is likely to be generated at the time of melting, and molding tends to be difficult.
  • TiO 2 is a component that prevents the glass from being colored (solarization) by ultraviolet rays.
  • iron ions are contained as impurities in the glass substrate (for example, 0.01 to 0.2%), coloring due to iron ions is likely to occur when a solar cell using the glass substrate is used for a long period of time. Become. Therefore, this kind of coloring can be prevented by containing TiO 2 .
  • the content of TiO 2 is 0 to 5%, preferably 1 to 4%. When the content of TiO 2 exceeds 5%, devitrification tends to occur and molding tends to be difficult.
  • SnO 2 , Sb 2 O 3 , As 2 O 3 and SO 3 are all components used as fining agents.
  • the total content of these components is 0 to 1%, preferably 0.1 to 0.8%. When the total amount of these components exceeds 1%, devitrification tends to occur and molding tends to be difficult.
  • FTO fluorine-doped tin oxide
  • ATO antimony-doped tin oxide
  • ITO tin-doped indium oxide
  • FTO and ATO are inferior in resistivity as compared with ITO, they are chemically and thermally stable, and further can be expected to have effects such as light confinement due to the uneven shape of the film surface and conductivity improvement due to an increase in surface area. preferable.
  • SnCl 4 , C 4 H 9 SnCl 3 , (CH 3 ) 2 SnCl 2 as a tin source, HF, CF 3 COOH, CHF as a fluorine source 2 , CCl 2 F 2 , SbCl 3 or the like can be used as an antimony source.
  • the film thickness of the FTO film and the ATO film is not particularly limited, but is preferably adjusted in the range of 0.5 to 1.5 ⁇ m.
  • the film thickness of the FTO film and the ATO film is less than 0.5 ⁇ m, sufficient conductivity cannot be obtained.
  • the film thickness is more than 1.5 ⁇ m, the transmittance with respect to the solar spectrum is reduced, and the power generation efficiency of the solar cell is reduced. It tends to decrease.
  • the resistance value of the FTO film and the ATO film is preferably 10 ⁇ / ⁇ or less, more preferably 7 ⁇ / ⁇ or less.
  • the resistance value of the film exceeds 10 ⁇ / ⁇ , the conductivity is lowered and the performance as a solar cell tends to be inferior.
  • the average surface roughness (Ra) of the FTO film and the ATO film is preferably 20 nm or more, more preferably 30 nm or more. By setting the average surface roughness of the film in this range, the light containment effect is exhibited, the surface area of the film is increased, and the conductivity can be improved.
  • an undercoat layer such as SiO 2 may be provided between the FTO film or ATO film and the glass substrate. Providing such an undercoat layer prevents a situation in which alkali ions are eluted from the glass and the conductivity of the FTO film or ATO film is lowered, or problems such as pinholes and uneven film thickness distribution occur. be able to.
  • the thickness of the oxide semiconductor layer is 5 to 50 ⁇ m, preferably 8 to 40 ⁇ m, more preferably 10 to 30 ⁇ m.
  • the thickness of the oxide semiconductor layer is less than 5 ⁇ m, the power generation efficiency of the dye-sensitized solar cell tends to be low.
  • the thickness of the oxide semiconductor layer is greater than 50 ⁇ m, it is difficult to effectively use the irradiation light, and the oxide semiconductor layer is easily peeled off.
  • the oxide semiconductor layer is preferably composed of a plurality of layers (at least two layers) having different light transmissivities, and an oxide semiconductor layer having high light transmissivity is arranged in order from the layer closer to the glass substrate. More preferably. This makes it possible to effectively use the irradiation light and improve the power generation efficiency of the dye-sensitized solar cell.
  • the particle diameter of the oxide particles constituting the oxide semiconductor is reduced, or the number of oxide particles per unit volume of the oxide semiconductor layer is reduced. Is effective.
  • the average primary particle diameter of the oxide particles is preferably 30 nm or less, 25 nm or less, and particularly preferably 20 nm or less.
  • the oxide semiconductor layer is preferably composed of oxide particles containing titanium oxide.
  • the crystal system of titanium oxide is preferably an anatase type because of its excellent energy conversion efficiency.
  • the oxide particles are not limited to titanium oxide, and any oxide particles that exhibit performance as a dye-sensitized solar cell can be used. For example, zinc oxide etc. are mentioned.
  • the oxide semiconductor layer is formed by applying an oxide semiconductor paste onto a conductive film and baking it.
  • the method for applying the oxide semiconductor paste include a screen printing method, a doctor blade method, a squeegee method, a spin coating method, and a spray method.
  • the screen printing method is preferable because a thick film having a thickness of several to several tens of ⁇ m can be uniformly formed over a large area.
  • the oxide semiconductor paste is mainly composed of oxide particles, a solvent, and a resin.
  • the resin is added for the purpose of adjusting the viscosity of the paste.
  • surfactant, a thickener, etc. can also be added as needed.
  • acrylic acid ester (acrylic resin), cellulose compounds such as ethyl cellulose, carboxy cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, polyethylene glycol derivatives, nitrocellulose, polymethylstyrene, polyethylene carbonate, methacrylic acid ester, etc.
  • acrylic acid ester, ethyl cellulose, and nitrocellulose are preferable because of their good thermal decomposability.
  • Solvents include N, N′-dimethylformamide (DMF), ⁇ -terpineol, higher alcohol, ⁇ -butyllactone ( ⁇ -BL), tetralin, butyl carbitol acetate, ethyl acetate, isoamyl acetate, diethylene glycol monoethyl ether, Diethylene glycol monoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl ether, triethylene glycol Propylene glycol monobutyl ether, propylene carbonate, dimethyl sulfoxide (DMSO), N- Chill-2-pyrrolidone and the like can be used.
  • ⁇ -terpineol is preferable because it is highly viscous and
  • the firing temperature of the oxide semiconductor paste is preferably 400 to 600 ° C., 420 to 570 ° C., particularly 450 to 550 ° C. If it is less than 400 ° C., the resin does not completely burn, the bonding of the oxide particles is insufficient, and the battery performance decreases. On the other hand, when the temperature is higher than 600 ° C., the glass substrate is likely to be deformed, and stress generated is increased due to contraction of the oxide semiconductor layer, and peeling is likely to occur.
  • the strain point of the glass substrate is 525 ° C. or higher, and preferably 540 ° C. or higher in consideration of temperature unevenness during film formation.
  • the strain point of the glass substrate is lower than 525 ° C., thermal deformation tends to occur during film formation.
  • the strain point of the glass substrate is preferably 15 ° C. or more, preferably 30 ° C. or more higher than the film formation temperature of the FTO film or the ATO film.
  • the film formation temperature refers to the holding temperature of the glass substrate during film formation.
  • Examples of such glass include SiO 2 —Al 2 O 3 —RO—R ′ 2 O, SiO 2 —Al 2 O 3 —B 2 O 3 —RO, and SiO 2 —Al 2 O 3 —R ′ 2.
  • Al 2 O 3 and ZrO 2 are components that increase the strain point of the glass, but the high-temperature viscosity also increases at the same time, and the meltability tends to deteriorate.
  • alkali metal oxides such as Li 2 O, Na 2 O, and K 2 O are components that lower the high-temperature viscosity, but the glass strain point tends to decrease.
  • MgO, CaO, SrO, BaO, and ZnO are components that lower the high-temperature viscosity of glass, and have the property that the ratio of lowering the strain point is lower than that of alkali metal oxides. Therefore, by appropriately replacing the alkali metal oxide with these components, it is possible to increase the strain point of the glass while maintaining the high temperature viscosity of the glass at a relatively low level.
  • SiO 2 —Al 2 O 3 —RO—R ′ 2 O-based glass is 50% by mass to SiO 2 50% to 70%, Al 2 O 3 0.5% to 15%, MgO + CaO + SrO + BaO + ZnO 10% to 27%, Li
  • An example is a composition containing a composition of 2 O + Na 2 O + K 2 O 7-15%, ZrO 2 0-9%, TiO 2 0-5%, SnO 2 + Sb 2 O 3 + As 2 O 3 + SO 3 0-1%. Can be mentioned.
  • SiO 2 is a glass network constituent, and its content is 50 to 70%, preferably 52 to 65%.
  • the content of SiO 2 is less than 50%, the strain point of the glass tends to be low.
  • the content of SiO 2 is more than 70%, the melting temperature becomes high, so that the meltability is deteriorated and devitrification easily occurs.
  • Al 2 O 3 is a component for increasing the strain point of glass, and its content is 0.5 to 15%, preferably 2 to 12%.
  • the content of Al 2 O 3 is less than 0.5%, it is difficult to obtain the effect of increasing the strain point.
  • the content of Al 2 O 3 is more than 15%, the melting temperature becomes high, so that the meltability is deteriorated and devitrification easily occurs.
  • MgO, CaO, SrO, BaO and ZnO are all components for improving the meltability of the glass and controlling the thermal expansion coefficient. Further, as described above, it has the property that the ratio of lowering the strain point is smaller than that of the alkali metal oxide.
  • the total content of these components is 10 to 27%, preferably 15 to 25%. If the total amount of these components is less than 10%, the melting temperature tends to be high and the meltability tends to deteriorate. On the other hand, if it exceeds 27%, devitrification tends to occur and molding tends to be difficult.
  • Li 2 O, Na 2 O and K 2 O are all components for improving the meltability of glass and controlling the thermal expansion coefficient.
  • the total content of these components is 7 to 15%, preferably 8 to 13%. If the total amount of these components is less than 7%, the melting temperature becomes high and the meltability tends to deteriorate, whereas if it exceeds 15%, the strain point tends to be low.
  • ZrO 2 is a component that increases the strain point and improves the chemical durability.
  • the content of ZrO 2 is 0 to 9%, preferably 1 to 7%. When the content of ZrO 2 exceeds 9%, a devitrified material is likely to be generated at the time of melting, and molding tends to be difficult.
  • TiO 2 is a component that prevents the glass from being colored (solarization) by ultraviolet rays.
  • iron ions are contained as impurities in the glass substrate (for example, 0.01 to 0.2%), coloring due to iron ions is likely to occur when a solar cell using the glass substrate is used for a long period of time. Become. Therefore, this kind of coloring can be prevented by containing TiO 2 .
  • the content of TiO 2 is 0 to 5%, preferably 1 to 4%. When the content of TiO 2 exceeds 5%, devitrification tends to occur and molding tends to be difficult.
  • SnO 2 , Sb 2 O 3 , As 2 O 3 and SO 3 are all components used as fining agents.
  • the total content of these components is 0 to 1%, preferably 0.1 to 0.8%. When the total amount of these components exceeds 1%, devitrification tends to occur and molding tends to be difficult.
  • the SiO 2 —Al 2 O 3 —B 2 O 3 —RO-based glass having a higher strain point has a mass percentage of SiO 2 of 50 to 70%, Al 2 O 3 of 10 to 20%, and B 2 O 3.
  • Examples thereof include those containing a composition of 9 to 15%, MgO + CaO + SrO + BaO 10 to 18%, SnO 2 + Sb 2 O 3 + As 2 O 3 0.05 to 1%.
  • SiO 2 is a glass network constituent.
  • the content of SiO 2 is 50 to 70%, preferably 55 to 65%. If the content of SiO 2 is less than 50%, the strain point tends to be low. On the other hand, when the content of SiO 2 is more than 70%, the melting temperature becomes high, the meltability is deteriorated, and devitrification easily occurs.
  • Al 2 O 3 is a component for increasing the strain point of glass.
  • the content of Al 2 O 3 is 10 to 20%, preferably 12 to 18%.
  • the content of Al 2 O 3 is less than 10%, it is difficult to sufficiently obtain the effect of increasing the strain point.
  • the content of Al 2 O 3 is more than 20%, the melting temperature becomes high, the meltability deteriorates, and devitrification easily occurs.
  • B 2 O 3 is a component that works as a flux and lowers the viscosity of the glass to facilitate melting.
  • the content of B 2 O 3 is 9 to 15%, preferably 9 to 14%.
  • the content of B 2 O 3 is less than 9%, the effect as a flux tends to be insufficient.
  • the strain point tends to be lowered.
  • MgO, CaO, SrO, BaO and ZnO are all components for improving the meltability of the glass and controlling the thermal expansion coefficient. Further, as described above, it has the property that the ratio of lowering the strain point is smaller than that of the alkali metal oxide.
  • the total content of these components is 10 to 18%, preferably 11 to 16%. When the total amount of these components is less than 10%, the melting temperature tends to be high and the meltability tends to deteriorate. On the other hand, when it exceeds 18%, devitrification tends to occur and molding tends to be difficult.
  • the content of each component is MgO 0 to 2.5% (further 0.1 to 2%), CaO 6.5 to 15% (further 7 to 13%), SrO 3 to 10% (Furthermore, 3 to 8%) and BaO 0 to 3% (further 0.1 to 2%) are preferable.
  • SnO 2 , Sb 2 O 3 and As 2 O 3 are all components having a function as a fining agent.
  • the total content of these components is 0.05 to 1%. When the total amount of these components is less than 0.05%, it is difficult to obtain a sufficient effect as a fining agent, while when it exceeds 1%, devitrification is likely to occur.
  • the glass substrate has a thickness of 0.05 to 2 mm, preferably 0.1 to 1.5 mm, more preferably 0.2 to 1.2 mm.
  • the thickness of the glass substrate is larger than 2 mm, it is difficult to achieve a thin and lightweight solar cell.
  • the thickness of the glass substrate is less than 0.05 mm, the glass substrate is excellent in flexibility (flexibility), but the strength is reduced and the glass substrate is easily damaged.
  • the conductive film is made of fluorine-doped tin oxide (FTO) or antimony-doped tin oxide (ATO).
  • FTO fluorine-doped tin oxide
  • ATO antimony-doped tin oxide
  • SnCl 4 , C 4 H 9 SnCl 3 , (CH 3 ) 2 SnCl 2 as a tin source, HF, CF 3 COOH as a fluorine source, CHF 2 , CCl 2 F 2 , SbCl 3 or the like can be used as an antimony source.
  • the film thickness of the FTO film and the ATO film is not particularly limited, but is preferably adjusted in the range of 0.5 to 1.5 ⁇ m. If the film thickness of the FTO film and the ATO film is less than 0.5 ⁇ m, sufficient conductivity cannot be obtained. On the other hand, if the film thickness is more than 1.5 ⁇ m, the transmittance for the solar spectrum decreases and the power generation efficiency of the solar cell decreases. Cheap.
  • the resistance value of the FTO film and the ATO film is preferably 10 ⁇ / ⁇ or less, more preferably 7 ⁇ / ⁇ or less.
  • the resistance value exceeds 10 ⁇ / ⁇ , the conductivity of the film is lowered, and the performance as a solar cell tends to be inferior.
  • the average surface roughness (Ra) of the FTO film and the ATO film is preferably 20 nm or more, more preferably 30 nm or more. By setting the average surface roughness of the film in this range, the light containment effect is exhibited, the surface area of the film is increased, and the conductivity can be improved.
  • an undercoat layer such as SiO 2 may be provided between the FTO film or ATO film and the glass substrate.
  • an undercoat layer such as SiO 2 may be provided between the FTO film or ATO film and the glass substrate.
  • the thermal expansion coefficient of the glass substrate is adjusted in the range of 70 ⁇ 10 ⁇ 7 to 110 ⁇ 10 ⁇ 7 / ° C. It is preferable to do. As described above, if the thermal expansion coefficient of the glass substrate is smaller than 70 ⁇ 10 ⁇ 7 / ° C., the difference in thermal expansion coefficient from the low-melting glass for sealing becomes large. May occur and iodine electrolyte leakage may occur. On the other hand, when the thermal expansion coefficient of the glass substrate is larger than 110 ⁇ 10 ⁇ 7 / ° C., the substrate is likely to be thermally deformed when forming the FTO film or the ATO film.
  • the thermal expansion coefficient of the glass substrate is not limited to the above range.
  • the thermal expansion coefficient is ⁇ 5 ⁇ 10
  • a glass substrate of ⁇ 7 to 110 ⁇ 10 ⁇ 7 / ° C., or 30 ⁇ 10 ⁇ 7 to 110 ⁇ 10 ⁇ 7 / ° C. can be used.
  • a glass substrate having a thermal expansion coefficient smaller than 70 ⁇ 10 ⁇ 7 / ° C. can be used.
  • the thermal expansion coefficient is 60 ⁇ 10 ⁇ 7 / ° C. or less, and further 50 ⁇ 10 ⁇ 7.
  • a glass substrate at / ° C or lower can be used.
  • the thickness of the oxide semiconductor layer is 5 to 50 ⁇ m, preferably 8 to 40 ⁇ m, more preferably 10 to 30 ⁇ m.
  • the thickness of the oxide semiconductor layer is less than 5 ⁇ m, the power generation efficiency of the dye-sensitized solar cell tends to be low.
  • the thickness of the oxide semiconductor layer is greater than 50 ⁇ m, it is difficult to effectively use the irradiation light, and the oxide semiconductor layer is easily peeled off.
  • the oxide semiconductor layer is composed of a single layer or a plurality of layers (at least two layers) having different light transmittances.
  • the oxide semiconductor layer is composed of a plurality of layers (at least two layers) having different light transmissivities, and furthermore, an oxide semiconductor layer having a high light transmissivity is arranged in order from the layer closer to the glass substrate.
  • an oxide semiconductor layer having a high light transmissivity is arranged in order from the layer closer to the glass substrate.
  • the oxide semiconductor layer is peeled off Tend to be prominent.
  • the oxide semiconductor layer is preferably formed as a single layer.
  • the oxide semiconductor layer As a means for increasing the light transmittance of the oxide semiconductor layer, it is effective to reduce the particle diameter of the oxide particles constituting the oxide semiconductor.
  • the average primary particle diameter of the oxide particles is preferably 30 nm or less, 25 nm or less, and particularly preferably 20 nm or less. When the average primary particle diameter of the oxide particles exceeds 30 nm, the light transmittance of the oxide semiconductor layer tends to be inferior.
  • the porosity of the oxide semiconductor layer is preferably 60 to 80%, particularly 65 to 75%.
  • the porosity of the oxide semiconductor layer is less than 60%, peeling is likely to occur due to stress generated during firing, and a sufficient amount of dye adsorption cannot be obtained, so that power generation efficiency is reduced.
  • the porosity of the oxide semiconductor layer exceeds 80%, the number of effective oxide semiconductor particles decreases, or the power generation efficiency decreases due to a decrease in paths for moving electrons. Further, the mechanical strength of the film is lowered, and peeling easily occurs even when a slight external impact is applied.
  • the oxide semiconductor layer is preferably composed of oxide particles containing titanium oxide.
  • the crystal system of titanium oxide is preferably an anatase type because of its excellent energy conversion efficiency.
  • the oxide particles are not limited to titanium oxide, and any oxide particles that exhibit performance as a dye-sensitized solar cell can be used. For example, zinc oxide etc. are mentioned.
  • the oxide semiconductor layer is formed by applying an oxide semiconductor paste onto a conductive film and baking it.
  • the method for applying the oxide semiconductor paste include a screen printing method, a doctor blade method, a squeegee method, a spin coating method, and a spray method.
  • the screen printing method is preferable because a thick film having a thickness of several to several tens of ⁇ m can be uniformly formed over a large area.
  • the oxide semiconductor paste is mainly composed of oxide particles, a solvent, and a resin.
  • the resin is added for the purpose of adjusting the viscosity of the paste.
  • surfactant, a thickener, etc. can also be added as needed.
  • acrylic acid ester (acrylic resin), cellulose compounds such as ethyl cellulose, carboxy cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, polyethylene glycol derivatives, nitrocellulose, polymethylstyrene, polyethylene carbonate, methacrylic acid ester, etc.
  • acrylic acid ester, ethyl cellulose, and nitrocellulose are preferable because of their good thermal decomposability.
  • Solvents include N, N′-dimethylformamide (DMF), ⁇ -terpineol, higher alcohol, ⁇ -butyllactone ( ⁇ -BL), tetralin, butyl carbitol acetate, ethyl acetate, isoamyl acetate, diethylene glycol monoethyl ether, Diethylene glycol monoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl ether, triethylene glycol Propylene glycol monobutyl ether, propylene carbonate, dimethyl sulfoxide (DMSO), N- Chill-2-pyrrolidone and the like can be used.
  • ⁇ -terpineol is preferable because it is highly viscous and
  • the firing temperature of the oxide semiconductor paste is preferably 400 to 600 ° C., 420 to 570 ° C., particularly 450 to 550 ° C. If it is less than 400 ° C., the resin does not completely burn, the bonding of the oxide particles is insufficient, and the battery performance decreases. On the other hand, when the temperature is higher than 600 ° C., the glass substrate is likely to be deformed, and stress generated is increased due to contraction of the oxide semiconductor layer, and peeling is likely to occur.
  • substrate for solar cells of this invention is not specifically limited, It selects suitably according to a use. Note that as the size of the substrate increases, unevenness in temperature distribution during film formation tends to occur and thermal deformation easily occurs, so that the effects of the present invention can be easily obtained. Specifically, the present invention is effective when the area of the glass substrate with a conductive film is 1000 mm 2 or more, further 5000 mm 2 or more, particularly 10,000 mm 2 or more.
  • a glass substrate (100 mm ⁇ 100 mm) having the composition, thickness, thermal expansion coefficient and strain point shown in Table 1 was prepared.
  • the thermal expansion coefficient is a value measured using a dilatometer.
  • the strain point is a value measured by DTA.
  • an FTO film (film thickness: 1 ⁇ m) as a conductive film was formed on each glass substrate by a thermal CVD method at a film formation temperature of 510 ° C.
  • the obtained glass substrate with a conductive film was gradually cooled and then placed on a surface plate, and the presence or absence of deformation was confirmed by a gap gauge.
  • the state of the glass substrate with the conductive film was evaluated with “ ⁇ ” when the deformation was less than 0.1 mm and “ ⁇ ” when the deformation was 0.1 mm or more. The results are shown in Table 1.
  • Titanium oxide paste is made of Solaron Ti-Nanoxide T / SP (hereinafter referred to as T / SP, average particle size 13 nm), which is transparent in the latter half of the firing, and Ti-Nanoxide D / SP (hereinafter referred to as D / SP, which is opaque after firing).
  • T / SP Solaron Ti-Nanoxide
  • D / SP Ti-Nanoxide D / SP
  • An average particle size of 13 nm (partially including an average particle size of 400 nm) was used.
  • Titanium oxide paste was printed on a glass substrate with a conductive film (on the conductive film surface) in the order of T / SP and D / SP, and baked at 500 ° C. for 30 minutes in an electric furnace. Each film thickness was 6 ⁇ m for T / SP and 14 ⁇ m for D / SP, for a total film thickness of 20 ⁇ m.
  • the scotch mending tape 810 was applied to the baked titanium oxide layer, pressed with a rubber roller, and then peeled off at once to confirm the adhesion between the glass substrate (conductive film surface) and the titanium oxide layer.
  • the degree of adhesion between the titanium oxide layer and the glass substrate (conductive film surface) at this time is the area where the titanium oxide layer is peeled off and the glass substrate (conductive film surface) is exposed relative to the printed area of the titanium oxide layer.
  • B less than 10 to 30%
  • C less than 30 to 80%
  • D 80 to 100%
  • a and B were evaluated as good. The results are shown in Table 1.
  • Examples 5 to 8 and Comparative Examples 3 and 4 On each glass substrate (120 mm ⁇ 120 mm) described in Table 1, an FTO film as a conductive film was formed by a thermal CVD method. Specifically, (CH 3 ) 2 SnCl 2 and CF 3 COOH are used as raw materials, and these are once gasified and then sprayed onto a glass substrate heated to the film formation temperature described in Table 1 to form a film. This was performed to obtain a glass substrate with a conductive film. Film formation was performed after each glass substrate was held at the film formation temperature for 10 minutes. The film formation time was adjusted in the range of 2 to 5 minutes so that the thickness of the FTO film was about 1 ⁇ m.
  • Each obtained glass substrate with a conductive film was gradually cooled, and the glass substrate with a conductive film after the slow cooling was placed on a surface plate, and the presence or absence of deformation was confirmed by a gap gauge.
  • the state of the glass substrate with the conductive film was evaluated with “ ⁇ ” when the deformation was less than 0.1 mm and “X” when the deformation was 0.1 mm or more. The results are shown in Table 2.
  • Example 9 to 13 The glass substrate with conductive film of Examples 5 and 6 was cut into a size of 15 mm ⁇ 15 mm, and a titanium oxide paste was screen-printed on the conductive film using a 200 mesh screen. Titanium oxide paste is made of Solaronix Ti-Nanoxide T / SP (hereinafter referred to as T / SP, average particle size 13 nm) which is transparent in the latter half of the baking, and Ti-Nanoxide D / SP (hereinafter referred to as D / SP, which is opaque after firing). An average particle size of 13 nm (partially including an average particle size of 400 nm particles)) was used. In Examples 9 and 11, only D / SP was printed, in Examples 10 and 12, only T / SP was screened, and in Example 13, T / SP and D / SP were screen-printed in this order. Firing was performed for 30 minutes.
  • T / SP Solaronix Ti-Nanoxide T / SP
  • D / SP Ti-Nanoxide D
  • the scotch mending tape 810 was applied to the baked titanium oxide layer, pressed with a rubber roller, and then peeled off at once to confirm the adhesion between the glass substrate (conductive film surface) and the titanium oxide layer.
  • the degree of adhesion between the titanium oxide layer and the glass substrate (conductive film surface) at this time is the area where the titanium oxide layer is peeled off and the glass substrate (conductive film surface) is exposed relative to the printed area of the titanium oxide layer.
  • B less than 10 to 30%
  • C less than 30 to 80%
  • D 80 to 100%
  • a and B were evaluated as good. The results are shown in Table 3.
  • the solar cell substrate of the present invention is suitable as an electrode substrate for use in silicon-based thin film solar cells including amorphous silicon solar cells, dye-sensitized solar cells, CdTe solar cells, and the like, and particularly dye-sensitized type. It is suitable as an electrode substrate used for a solar cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Electrochemistry (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 本発明は、透明導電膜がガラス基板上に形成されてなる太陽電池用基板であって、ガラス基板の熱膨張係数が50×10-7~110×10-7/℃であることを特徴とする太陽電池用基板を提供する。さらに、0.05~2mmの厚みを有するガラス基板上にフッ素ドープ酸化スズまたはアンチモンドープ酸化スズからなる導電膜が成膜されてなる太陽電池用基板であって、ガラス基板の歪点が525℃以上であることを特徴とする太陽電池用基板をも提供する。

Description

太陽電池用基板および色素増感型太陽電池用酸化物半導体電極
 本発明は、太陽電池用基板、および当該太陽電池用基板を用いた色素増感型太陽電池用酸化物半導体電極に関する。
 近年、単結晶シリコン、多結晶シリコン太陽電池またはアモルファスシリコン太陽電池を始めとする太陽電池に対する需要がますます高まっている。これらの太陽電池は、主に家庭用発電、商業用発電などに利用されている。また、その他の太陽電池として、CIS太陽電池、CdTe太陽電池、色素増感型太陽電池、有機薄膜太陽電池などが開発されており、これらも実用化されようとしている。
 アモルファスシリコン太陽電池や色素増感型太陽電池などには、電極基板として透明導電膜付ガラス基板が用いられる。ここで、ガラス基板としては、製造コストや汎用性の面で有利なことから、一般にソーダライムガラスが用いられている。また透明導電膜としては、フッ素ドープ酸化スズ(FTO)、アンチモンドープ酸化スズ(ATO)、スズドープ酸化インジウム(ITO)などが用いられる。中でもFTOやATOは、ITOに比べ抵抗率では劣るものの、化学的および熱的に安定であり、さらに膜表面の凹凸形状による光の封じ込めや表面積の増大化による導電性向上などの効果が期待できるため、アモルファスシリコン太陽電池や色素増感型太陽電池用の電極基板として汎用されている(例えば、特許文献1および非特許文献1参照)。
 一般に、FTO膜およびATO膜の作製には、成膜性が良好であり、かつ低コストであることから熱化学気相成長(熱CVD)法が用いられる。具体的には、スズおよびフッ素を含む化合物の混合ガスを、約480℃以上に熱したガラス基板上で熱分解反応させることにより成膜される。なお、熱CVD法には、板ガラス製造ラインでその熱を利用して成膜するオンラインCVD法と、一旦冷却されたガラスを所定の寸法に切断し、再加熱して成膜するオフラインCVD法がある。
 ところで、近年の携帯電子機器の普及に伴い、電源として、従来のバッテリーに加え、太陽電池が使用されるようになってきている。太陽電池が携帯電子機器に用いられる場合、従来の屋外設置の家庭用や商業用発電に用いられる太陽電池よりも、薄型化および軽量化が求められる。また、室内光などの直射日光以外の光に対する発電効率が高いことも求められる。このような用途には、色素増感型太陽電池が特に適している。
 また、太陽電池を薄型化および軽量化するためには、電極基板を薄型化することが最も有効である。電極基板を薄型化するためには、例えば、電極基板を構成するガラス基板を研磨して薄くする方法が挙げられる。通常、ガラスを研磨する場合、時間短縮やコスト削減などの理由により両面研磨が行われる。しかしながら、ガラス基板の片側に導電膜が成膜されている場合、片面しか研磨することができないため時間とコストが掛かる。また、研磨工程において導電膜にキズが入りやすいという問題がある。
 そこで、予め薄板ガラス基板を用意し、その表面に導電膜を成膜する方法が提案されている。当該方法によれば、ガラス基板の研磨作業が不要であるため時間とコストの削減となり、太陽電池の薄型化および軽量化を効率よく実現することが可能となる。
日本国特開2002-260448号公報
透明導電膜の技術(改訂2版)、オーム社、153~165頁
 色素増感型太陽電池には、透明導電膜付基板(導電膜表面)上に酸化チタンや酸化亜鉛などの酸化物半導体層が形成された酸化物半導体電極が用いられる。ここで、酸化物半導体層と導電膜付基板(導電膜表面)の密着性を高めると、太陽電池のエネルギー変換効率が向上する。しかしながら、基板の種類によっては、酸化物半導体層が導電膜付基板(導電膜表面)から剥離しやすく、所定の特性が得られないという問題がある。
 したがって、本発明は、上記の事情に鑑みてなされたものであり、酸化物半導体層が剥離しにくい太陽電池用基板、および当該太陽電池用基板を用いた色素増感型太陽電池用酸化物半導体電極を提供することを第1の目的とする。
 また、既述のように、ガラス基板にFTO膜やATO膜をオフラインCVD法で成膜する場合、ガラス基板を約480℃以上まで加熱して成膜が行われる。しかしながら、ガラス基板に吹き付けられるガス温度は比較的低いため、成膜によりガラス基板の温度が低下しやすい。それにより、ガラス基板の面方向や厚み方向の温度分布にムラが生じたりすると、応力が発生し変形が生じやすい。したがって、従来のようにガラス基板厚みが十分に厚い場合は変形が生じにくいが、板厚が薄い場合、特に2mm以下となると変形は顕著となり、太陽電池用電極基板として使用できなくなるといった問題が生じていた。
 したがって、本発明は、FTO膜またはATO膜の成膜時に変形が生じにくい太陽電池用基板、および当該太陽電池用基板を用いた色素増感型太陽電池用酸化物半導体電極を提供することを第2の目的とする。
 本発明者等は前記第1の目的について鋭意検討を行った結果、太陽電池用基板に用いるガラス基板の熱膨張係数が、酸化物半導体層の剥離のしやすさと関係があることを見出し、本発明を完成した。
 すなわち、本発明の第1の態様は、透明導電膜がガラス基板上に形成されてなる太陽電池用基板であって、ガラス基板の熱膨張係数が50×10-7~110×10-7/℃であることを特徴とする太陽電池用基板に関する。本発明において、ガラス基板の熱膨張係数はJIS R3103に準じて測定された30~380℃の範囲における値を指す。
 以下に、ガラス基板の熱膨張係数と酸化物半導体層の剥離のしやすさが相関する理由を述べる。
 ガラス基板(導電膜表面)上に酸化物半導体層を形成するには、酸化物粒子を含むペーストまたはスラリーを導電膜が形成されたガラス基板(導電膜表面)に塗布した後、400~600℃、好ましくは420~570℃、より好ましくは450~550℃で熱処理(焼成)し、酸化物粒子を焼結させる工程を経る。この際、酸化物粒子が焼結するのに伴って酸化物半導体層が収縮するため、ガラス基板(導電膜側)と酸化物半導体層の間に応力が発生し、この応力が酸化物半導体層の剥離の原因となる。この応力は酸化物半導体層の厚さが厚いほど、また、ガラス基板の厚さが厚いほど大きい。そこで、ガラス基板の熱膨張係数を前記範囲とすることにより、熱処理時における最高温度から室温に冷却する際のガラス基板の収縮によって、ガラス基板(導電膜側)と酸化物半導体層との間の応力を緩和させることができ、酸化物半導体層の剥離を防止することができる。
 本発明の第1の態様に係る太陽電池用基板は、色素増感型太陽電池用基板に用いることができる。
 また、本発明の第1の態様に係る太陽電池用基板は、ガラス基板の歪点が525℃以上であることが好ましい。本発明において、歪点はJIS R3103に基づいて測定した値を指す。
 このように、ガラス基板の歪点を525℃以上とすることにより、導電膜形成時の加熱工程および酸化物半導体層の焼結工程におけるガラス基板の熱変形を抑制することが可能となる。なお、既述のとおり、ガラス基板(導電膜側)と酸化物半導体層の間の応力はガラス基板の厚さが厚いほど大きくなるため、ガラス基板の厚さは薄くすることが望まれる。しかしながら、ガラス基板の厚さを薄くすると焼結工程においてガラス基板が熱変形しやすくなる問題がある。このような事情から、ガラス基板の歪点を525℃以上とすることは、ガラス基板の厚さが薄い場合に特に有効である。
 さらに、本発明の第1の態様に係る太陽電池用基板は、ガラス基板の厚さが2mm以下であることが好ましい。
 また、本発明は、前記第1の態様に係る太陽電池用基板の透明導電膜上に、厚さ5~50μmの酸化物半導体層が形成されてなることを特徴とする色素増感型太陽電池用酸化物半導体電極に関する。
 ここで、前記色素増感型太陽電池用酸化物半導体電極においては、酸化物半導体層が酸化チタンを含むことが好ましい。
 また、前記色素増感型太陽電池用酸化物半導体電極においては、酸化物半導体層が、光透過性の異なる複数の層で構成されることが好ましい。
 後述するように、照射光を有効活用するため、酸化物半導体層の構成としては、光透過性の異なる少なくとも2種以上で構成されることが好ましい。当該構成とした場合、各層の焼結挙動の違いによって酸化物半導体層とガラス基板(導電膜側)の間に働く応力が増加しやすくなるため、本発明による効果が得られやすくなる。
 また、前記色素増感型太陽電池用酸化物半導体電極においては、酸化物半導体層が、酸化物粒子の粒子径分布が異なる複数の層で構成されることが好ましい。
 さらに、前記色素増感型太陽電池用酸化物半導体電極においては、酸化物半導体層が、平均一次粒子径が30nm以下の酸化物粒子からなる層を含むことが好ましい。
 さらに、本発明者等は前記第2の目的についても鋭意検討を行った結果、薄板ガラス基板にFTO膜またはATO膜が成膜されてなる太陽電池用基板において、ガラス基板の歪点を一定の範囲に限定することにより、前記目的を達成できることを見出し、本発明を完成した。
 すなわち、本発明の第2の態様に係る太陽電池用基板は、0.05~2mmの厚みを有するガラス基板上にフッ素ドープ酸化スズまたはアンチモンドープ酸化スズからなる導電膜が成膜されてなるものであって、ガラス基板の歪点が525℃以上であることを特徴とする。本発明においてガラス基板の歪点は、JIS R3103に準じて測定された値をいう。
 FTO膜およびATO膜の成膜温度は、例えば熱CVD法による場合、成膜に使用される原料や膜厚によっても異なるが、概ね480℃以上である。ガラス基板温度が480℃より低い場合、成膜速度が極端に遅くなるため、実用上好ましくない。基板温度が上がるにつれ成膜速度が速くなり、同時に膜表面の凹凸も大きくなる。この膜表面の凹凸は、光の封じ込め効果や表面積の増大化に寄与し、導電性向上につながる。良好な成膜速度および膜の表面状態を得るためには、成膜温度は510℃以上であること好ましい。特に、本発明で用いられるガラス基板は、厚みが0.05~2mmと非常に薄く、導電膜の成膜時に熱変形が生じやすいが、ガラス基板の歪点が525℃以上と成膜温度よりも十分に高ければ、導電膜の成膜時におけるガラス基板の変形を防止することが可能となる。
 本発明の第2の態様に係る太陽電池用基板は、色素増感型太陽電池に用いることができる。
 色素増感型太陽電池は、導電膜付ガラス基板と、導電膜付ガラス基板上(導電膜上)に形成された多孔質酸化物半導体層(主にTiO層)からなる多孔質酸化物半導体電極と、その多孔質酸化物半導体電極に吸着されたRu色素等の色素と、ヨウ素を含むヨウ素電解液と、触媒膜と透明導電膜が成膜された対極基板等で構成される。
 色素増感型太陽電池においては、ガラス基板上にFTO膜やATO膜などの導電膜が成膜されたのち、さらに、約500℃の加熱温度にて多孔質酸化物半導体層が導電膜付ガラス基板上(導電膜上)に形成される。一般に、ガラス基板上に成膜された導電膜の耐熱温度は、成膜温度に依存する。そのため、導電膜の成膜温度が500℃付近であると、多孔質酸化物半導体層形成工程にて膜特性が変化し、特に抵抗率が上昇し、エネルギー変換効率が低下してしまうおそれがある。本発明においては、ガラス基板の歪点が525℃以上であるため、従来のソーダライムガラス等の基板と比べて、より高温での導電膜の成膜が可能であるため、多孔質酸化物半導体層の形成工程によって膜特性が変化しにくい。したがって、本発明の太陽電池用基板は色素増感型太陽電池用として好適である。
 なお、FTO膜やATO膜は、ITO膜と比較して膜表面の凹凸の度合いが大きいため、TiO層などの多孔質酸化物半導体層が十分に固定されやすくなる効果(アンカー効果)も期待できる。
 また、本発明の第2の態様に係る太陽電池用基板において、ガラス基板の熱膨張係数が70×10-7~110×10-7/℃であることが好ましい。本発明において、ガラス基板の熱膨張係数は、JIS R3103に準じて測定された30~380℃の範囲における熱膨張係数をいう。
 例えば、色素増感型太陽電池では、導電膜付ガラス基板と対極基板の間に充填されたヨウ素電解液の漏れを防止するために、導電膜付ガラス基板と対極基板の外周縁を樹脂あるいは鉛ガラスやビスマスホウ酸ガラスなどの低融点ガラスで封止する必要がある。低融点ガラスにより封止する場合、低融点ガラスとガラス基板との熱膨張係数の差が大きすぎると、封止部分またはガラス基板にクラックが生じ、ヨウ素電解液の漏れが発生するおそれがある。鉛ガラスやビスマスホウ酸ガラスなどの低融点ガラスは、一般に熱膨張係数が大きいため、耐火物フィラーを添加することにより熱膨張係数を低下させ、ガラス基板との熱膨張係数差を小さくするという手法がとられている。
 近年、環境への配慮から、封止材として無鉛ガラスが用いられるようになってきている。しかしながら、ビスマスホウ酸ガラスは、鉛ガラスと比較して熱膨張係数を低下させにくく、低熱膨張ガラス基板への対応が困難であった。そこで、本発明の第2の態様では、ガラス基板の熱膨張係数を70×10-7/℃以上と比較的高い範囲に限定することにより、ビスマスホウ酸ガラスによる封止にも対応が容易であり、環境の面からも好ましい色素増感型太陽電池とすることができる。
 一方、ガラス基板の熱膨張係数を110×10-7/℃以下に限定することにより、FTO膜やATO膜の成膜時における基板の熱変形や破損を防止することが可能となる。
 また、本発明は、前記第2の態様に係る太陽電池用基板の導電膜上に、厚さ5~50μmの酸化物半導体層が形成されてなることを特徴とする色素増感型太陽電池用酸化物半導体電極に関する。
 ここで、本発明の第2の態様に係る色素増感型太陽電池用酸化物半導体電極において、酸化物半導体層が、平均一次粒子径が30nm以下の酸化物粒子からなることが好ましい。
 このように、酸化物半導体層を構成する酸化物粒子の平均一次粒子径を小さくすることにより、酸化物半導体層の光透過性を高めることが可能となる。
 また、本発明の第2の態様に係る色素増感型太陽電池用酸化物半導体電極において、酸化物半導体層の気孔率が60~80%であることが好ましい。
 酸化物半導体層の気孔率を当該範囲に限定することにより、発生する応力を緩和できるとともに、色素の吸着を十分に行うことができる。なお、本発明において、酸化物半導体層の気孔率は以下の式により算出される。
  ρ=W/V
  P=(1-ρ/D)×100〔%〕
 ここで、Wは酸化物半導体層の質量、Vは酸化物半導体層の体積、ρは酸化物半導体層の見かけ密度、Dは酸化物半導体の理論密度、Pは酸化物半導体層の気孔率を示す。
 本発明によれば、酸化物半導体層の剥離が防止され、あるいは、導電膜の成膜時におけるガラス基板の変形が防止された、色素増感型太陽電池用として特に有用な太陽電池用基板を得ることが出来る。
 まず、本発明の第1の態様について詳細に説明する。
 本発明の第1の態様に係る太陽電池用基板において、ガラス基板の熱膨張係数は50×10-7~110×10-7/℃、好ましくは55×10-7~100×10-7/℃、より好ましくは60×10-7~95×10-7/℃である。ガラス基板の熱膨張係数が50×10-7/℃未満であると、前述したように、ガラス基板(導電膜側)と酸化物半導体層に間に発生する応力の低減効果が小さく、酸化物半導体層の剥離が生じやすい。一方、ガラス基板の熱膨張係数が110×10-7/℃より大きいと、酸化物半導体層の焼成工程において、ガラス基板の熱膨張に起因する応力が大きくなり、酸化物半導体層の剥離が生じやすくなる。
 また、ガラス基板の歪点は525℃以上、540℃以上、特に560℃以上が好ましい。ガラス基板の歪点が525℃より低いと、導電膜形成時の加熱工程および酸化物半導体層の焼成工程においてガラス基板の熱変形が生じやすくなる。
 さらに、前述したように、ガラス基板(導電膜側)と酸化物半導体層の間に働く応力を低く保つため、ガラス基板の厚さは2mm以下、1.8mm以下、特に1.5mm以下が好ましい。
 本発明の太陽電池用基板において、ガラス基板の材質としては、SiO-RO-R’O系ガラス、SiO-Al-RO-R’O系ガラス、SiO-Al-RO系ガラス、SiO-Al-B-RO系ガラス、SiO-Al-R’O系ガラス、SiO-B-R’O系ガラス、SiO-B-Al-RO-R’O系ガラスなどが挙げられる(ただし、RはMg、Ca、Sr、Ba、Znのいずれか1種以上を示し、R’はLi、Na、Kのいずれか1種以上を示す)。なお、本発明において「~系ガラス」とは、該当する成分を必須成分として含有するガラスをいう。
 ここで、R’Oは熱膨張係数を高めるとともにガラスの溶融を容易にする成分であるが、同時に歪点を低下させる傾向がある。ROもR’Oと同様に熱膨張係数を高めるとともにガラスの溶融を容易にする成分であるが、R’Oと比較して歪点を低下させる割合が少ない性質を有する。よって、これらの成分を適宜置換することにより、熱膨張係数および歪点を好ましい範囲に保ちつつ、ガラスの溶融を容易にすることができる。
 例えば、SiO-Al-RO-R’O系ガラスとしては、質量%で、SiO 50~70%、Al 0.5~15%、MgO+CaO+SrO+BaO+ZnO 10~27%、LiO+NaO+KO 7~15%、ZrO 0~9%、TiO 0~5%、SnO+Sb+As+SO 0~1%の組成を含有するものが一例として挙げられる。
 このようにガラス組成を限定した理由は以下のように説明される。
 SiOはガラスの網目構成成分であり、その含有量は50~70%、好ましくは52~65%である。SiOの含有量が50%より少ないと、歪点が低くなる傾向がある。一方、SiOの含有量が70%より多いと、熱膨張係数が低くなり過ぎるとともに、溶融性が悪化し、また失透しやすくなる。
 Alは歪点を高めるための成分であり、その含有量は0.5~15%、好ましくは2~12%である。Alの含有量が0.5%より少ないと、歪点を高める効果が得られにくい。一方、Alの含有量が15%より多いと、溶融温度が高くなるため溶融性が悪化し、また失透しやすくなる。
 MgO、CaO、SrO、BaOおよびZnOは、いずれもガラスの溶融性を向上させるとともに、熱膨張係数を制御するための成分である。また既述のように、アルカリ金属酸化物と比較して歪点を低下させる割合が少ない性質を有する。これらの成分の含有量は合量で10~27%、好ましくは15~25%である。これらの成分の合量が10%より少ないと、溶融温度が高くなり溶融性が悪化しやすく、一方、27%より多いと失透しやすく、成形が困難となりやすい。
 LiO、NaOおよびKOは、いずれもガラスの溶融性を向上させるとともに、熱膨張係数を制御するための成分である。これらの成分の含有量は合量で7~15%、好ましくは8~13%である。これらの成分の合量が7%より少ないと、溶融温度が高くなり溶融性が悪化しやすく、一方、15%より多いと、歪点が低下しやすくなる。
 ZrOは歪点を高め、かつ化学的耐久性を向上させる成分である。ZrOの含有量は0~9%、好ましくは1~7%である。ZrOの含有量が9%より多くなると、溶融時に失透物が生成しやすく成形が困難となりやすい。
 TiOはガラスの紫外線による着色(ソーラリゼーション)を防止する成分である。ガラス基板中に不純物として鉄イオンを含有していると(例えば、0.01~0.2%)、太陽電池を長期間使用することにより、鉄イオンによる着色が生じやすくなる。そこで、ガラス組成中にTiOを添加すると、この種の着色を防止することができる。TiOの含有量は0~5%、好ましくは1~4%である。TiOの含有量が5%より多いと、失透しやすくなり、成形が困難となりやすい。
 SnO、Sb、AsおよびSOは、いずれも清澄剤として使用する成分である。これらの成分の含有量は合量で0~1%、好ましくは0.1~0.8%である。これらの成分の合量が1%より多くなると、失透しやすくなり、成形が困難となりやすい。
 また、SiO-Al-RO系ガラスとしては、質量%で、SiO 30~50%、Al 0.5~15%、MgO+CaO+SrO+BaO+ZnO 30~60%、B 0~10%、ZrO 0~5%、TiO 0~5%、SnO+Sb+As+SO 0~1%の組成を含有するものが一例として挙げられる。
 SiOはガラスの網目構成成分であり、その含有量は30~50%、好ましくは32~42%である。SiOの含有量が32%より少ないと、ガラス化しにくくなる。一方、SiOの含有量が42%より多いと、熱膨張係数が低くなり過ぎるとともに、溶融性が悪化し、また失透しやすくなる。
 Alはガラスの歪点を高めるための成分であり、その含有量は0.5~15%、好ましくは2~10%である。Alの含有量が0.5%より少ないと、歪点を高める効果が得られにくい。一方、Alの含有量が10%より多いと、溶融温度が高くなるため溶融性が悪化し、また失透しやすくなる。
 MgO、CaO、SrO、BaOおよびZnOは、いずれもガラスの溶融性を向上させるとともに、熱膨張係数を制御するための成分である。また既述のように、アルカリ金属酸化物と比較して歪点を低下させる割合が少ない性質を有する。これらの成分の含有量は合量で30~60%、好ましくは35~50%である。これらの成分の合量が30%より少ないと、溶融温度が高くなり溶融性が悪化しやすく、一方、60%より多いと失透しやすく、成形が困難となりやすい。
 Bはガラスの高温粘性を下げるとともに、ガラスの失透を抑制する成分である。その含有量は0~10%、好ましくは1~8%である。Bの含有量が10%より多くなると熱膨張係数が下がりすぎるため好ましくない。
 ZrOは歪点を高め、かつ化学的耐久性を向上させる成分である。ZrOの含有量は0~9%、好ましくは1~7%である。ZrOの含有量が9%より多くなると、溶融時に失透物が生成しやすく成形が困難となりやすい。
 TiOはガラスの紫外線による着色(ソーラリゼーション)を防止する成分である。ガラス基板中に不純物として鉄イオンを含有していると(例えば、0.01~0.2%)、当該ガラス基板を用いた太陽電池を長期間使用することにより、鉄イオンによる着色が生じやすくなる。そこで、TiOを含有することによって、この種の着色を防止することができる。TiOの含有量は0~5%、好ましくは1~4%である。TiOの含有量が5%より多くなると、失透しやすく、成形が困難となりやすい。
 SnO、Sb、AsおよびSOは、いずれも清澄剤として使用する成分である。これらの成分の含有量は合量で0~1%、好ましくは0.1~0.8%である。これらの成分の合量が1%より多くなると、失透しやすく、成形が困難となりやすい。
 導電膜を構成する材料としては、フッ素ドープ酸化スズ(FTO)、アンチモンドープ酸化スズ(ATO)、スズドープ酸化インジウム(ITO)などが好ましい。中でもFTOやATOは、ITOに比べ抵抗率では劣るものの、化学的および熱的に安定であり、さらに膜表面の凹凸形状による光の封じ込めや表面積の増大による導電性向上などの効果が期待できるため好ましい。
 熱CVD法などの成膜方法によるFTO膜、ATO膜の原料としては、スズ源としてSnCl、CSnCl、(CHSnCl、フッ素源としてHF、CFCOOH、CHF、CCl、またアンチモン源としてSbClなどを用いることができる。
 FTO膜およびATO膜の膜厚は特に限定されないが、0.5~1.5μmの範囲で調整することが好ましい。FTO膜およびATO膜の膜厚が0.5μmより薄いと、十分な導電性が得られず、一方、1.5μmより厚いと、太陽光スペクトルに対する透過率が低下し、太陽電池の発電効率が低下しやすくなる。
 FTO膜およびATO膜の抵抗値は、好ましくは10Ω/□以下、より好ましくは7Ω/□以下である。膜の抵抗値が10Ω/□を超えると、導電性が低下し、太陽電池としての性能に劣る傾向がある。
 FTO膜およびATO膜の平均表面粗さ(Ra)は、好ましくは20nm以上、より好ましくは30nm以上である。膜の平均表面粗さを当該範囲とすることにより、光の封じ込め効果が発揮されるとともに、膜の表面積が増大し、導電性を向上させることができる。
 なお、ガラス基板がアルカリ金属酸化物を含むガラスからなる場合、FTO膜またはATO膜とガラス基板の間にSiOなどのアンダーコート層を設けてもよい。このようなアンダーコート層を設けると、ガラスからアルカリイオンが溶出してFTO膜またはATO膜の導電性が低下したり、ピンホールや膜厚分布の不均一等の問題が発生する事態を防止することができる。
 本発明の色素増感型太陽電池用酸化物半導体電極において、酸化物半導体層の厚さは5~50μm、好ましくは8~40μm、より好ましくは10~30μmである。酸化物半導体層の厚さが5μmより薄いと、色素増感型太陽電池の発電効率が低くなりやすい。一方、酸化物半導体層の厚さが50μmより厚いと、照射光を有効活用しにくくなるとともに、酸化物半導体層の剥離が起こりやすくなる。
 酸化物半導体層は、光透過性の異なる複数の層(少なくとも2層以上)で構成されることが好ましく、さらに、ガラス基板に近い側の層から順に光透過性の高い酸化物半導体層が配置されていることがより好ましい。これにより、照射光を有効活用し、色素増感型太陽電池の発電効率を向上させることが可能となる。
 酸化物半導体層の光透過性を高める手段としては、酸化物半導体を構成する酸化物粒子の粒子径を小さくすること、または、酸化物半導体層の単位体積あたりの酸化物粒子数を低減させることが有効である。
 酸化物粒子の平均一次粒子径は30nm以下、25nm以下、特に20nm以下が好ましい。
 酸化物半導体層は、酸化チタンを含む酸化物粒子から構成されることが好ましい。酸化チタンの結晶系としては、エネルギー変換効率に優れるためアナターゼ型が好ましい。ただし、酸化物粒子は、酸化チタンに限定されるものではなく、色素増感型太陽電池としての性能を発揮するものであれば使用可能である。例えば、酸化亜鉛などが挙げられる。
 酸化物半導体層は、酸化物半導体ペーストを導電膜上に塗布し、焼成することにより形成される。酸化物半導体ペーストの塗布方法としては、スクリーン印刷法、ドクターブレード法、スキージ法、スピンコート法、スプレー法などが挙げられる。特に、スクリーン印刷法は、大面積に均一に数~数十μmの厚膜を形成することができ、好ましい。
 酸化物半導体ペーストは、主に酸化物粒子と溶媒と樹脂とからなる。樹脂はペーストの粘性を調整する目的で添加される。また、必要に応じて、界面活性剤、増粘剤等を添加することもできる。
 樹脂としては、アクリル酸エステル(アクリル樹脂)、エチルセルロース、カルボキシセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロースなどのセルロース系化合物、ポリエチレングリコール誘導体、ニトロセルロース、ポリメチルスチレン、ポリエチレンカーボネート、メタクリル酸エステル等が使用可能である。特に、アクリル酸エステル、エチルセルロース、ニトロセルロースは、熱分解性が良好であるため、好ましい。
 溶媒としては、N、N’-ジメチルホルムアミド(DMF)、α-ターピネオール、高級アルコール、γ-ブチルラクトン(γ-BL)、テトラリン、ブチルカルビトールアセテート、酢酸エチル、酢酸イソアミル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ベンジルアルコール、トルエン、3-メトキシ-3-メチルブタノール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノブチルエーテル、プロピレンカーボネート、ジメチルスルホキシド(DMSO)、N-メチル-2-ピロリドン等が使用可能である。特に、α-ターピネオールは、高粘性であり、樹脂等の溶解性も良好であるため、好ましい。
 酸化物半導体ペーストの焼成温度は400~600℃、420~570℃、特に450~550℃が好ましい。400℃未満であると、樹脂が完全に燃焼せず、酸化物粒子の結合が不十分であり、電池性能が低下する。一方、600℃より高いと、ガラス基板が変形しやすいとともに、酸化物半導体層の収縮に伴い、発生する応力が大きくなり、剥がれが生じやすくなる。
 つづいて、本発明の第2の態様について詳細に説明する。
 本発明の第2の態様において、ガラス基板の歪点は525℃以上であり、成膜時の温度むらなどを考慮すると、好ましくは540℃以上である。ガラス基板の歪点が525℃未満であると、成膜時に熱変形が生じやすくなる。なお、FTO膜またはATO膜の成膜温度との兼ね合いで言えば、ガラス基板の歪点は、FTO膜またはATO膜の成膜温度より15℃以上、好ましくは30℃以上高いことが好ましい。ここで、成膜温度とは、成膜時におけるガラス基板の保持温度をいう。
 このようなガラスとしては、SiO-Al-RO-R’O系、SiO-Al-B-RO系、SiO-Al-R’O系、SiO-B-R’O系、SiO-B-Al-RO-R’O系ガラスなどが挙げられる(ただし、RはMg、Ca、Sr、Ba、Znのいずれかを示し、R’はLi、Na、Kのいずれかを示す)。
 ここで、AlおよびZrOは、ガラスの歪点を高める成分であるが、高温粘性も同時に高くなり、溶融性が悪化する傾向がある。一方、LiO、NaO、KOなどのアルカリ金属酸化物は、高温粘性を下げる成分であるが、ガラスの歪点が低下する傾向がある。
 MgO、CaO、SrO、BaO、ZnOは、ガラスの高温粘性を下げる成分であり、アルカリ金属酸化物と比較して歪点を低下させる割合が少ないという性質を有する。よって、アルカリ金属酸化物をこれらの成分と適宜置換することにより、ガラスの高温粘性を比較的低いレベルに維持しつつ、ガラスの歪点を高めることができる。
 例えば、SiO-Al-RO-R’O系ガラスとしては、質量%で、SiO 50~70%、Al 0.5~15%、MgO+CaO+SrO+BaO+ZnO 10~27%、LiO+NaO+KO 7~15%、ZrO 0~9%、TiO 0~5%、SnO+Sb+As+SO 0~1%の組成を含有するものが一例として挙げられる。
 このようにガラス組成を限定した理由は以下のように説明される。
 SiOはガラスの網目構成成分であり、その含有量は50~70%、好ましくは52~65%である。SiOの含有量が50%より少ないと、ガラスの歪点が低くなる傾向がある。一方、SiOの含有量が70%より多いと、溶融温度が高くなるため溶融性が悪化し、また失透しやすくなる。
 Alはガラスの歪点を高めるための成分であり、その含有量は0.5~15%、好ましくは2~12%である。Alの含有量が0.5%より少ないと、歪点を高める効果が得られにくい。一方、Alの含有量が15%より多いと、溶融温度が高くなるため溶融性が悪化し、また失透しやすくなる。
 MgO、CaO、SrO、BaOおよびZnOは、いずれもガラスの溶融性を向上させるとともに、熱膨張係数を制御するための成分である。また既述のように、アルカリ金属酸化物と比較して歪点を低下させる割合が少ないという性質を有する。これらの成分の含有量は合量で10~27%、好ましくは15~25%である。これらの成分の合量が10%より少ないと、溶融温度が高くなり溶融性が悪化しやすく、一方、27%より多いと失透しやすく、成形が困難となりやすい。
 LiO、NaOおよびKOは、いずれもガラスの溶融性を向上させるとともに、熱膨張係数を制御するための成分である。これらの成分の含有量は合量で7~15%、好ましくは8~13%である。これらの成分の合量が7%より少ないと、溶融温度が高くなり溶融性が悪化しやすく、一方、15%より多いと、歪点が低くなりやすくなる。
 ZrOは歪点を高め、かつ化学的耐久性を向上させる成分である。ZrOの含有量は0~9%、好ましくは1~7%である。ZrOの含有量が9%より多くなると、溶融時に失透物が生成しやすく成形が困難となりやすい。
 TiOはガラスの紫外線による着色(ソーラリゼーション)を防止する成分である。ガラス基板中に不純物として鉄イオンを含有していると(例えば、0.01~0.2%)、当該ガラス基板を用いた太陽電池を長期間使用することにより、鉄イオンによる着色が生じやすくなる。そこで、TiOを含有することによって、この種の着色を防止することができる。TiOの含有量は0~5%、好ましくは1~4%である。TiOの含有量が5%より多くなると、失透しやすく、成形が困難となりやすい。
 SnO、Sb、AsおよびSOは、いずれも清澄剤として使用する成分である。これらの成分の含有量は合量で0~1%、好ましくは0.1~0.8%である。これらの成分の合量が1%より多くなると、失透しやすく、成形が困難となりやすい。
 また、より歪点の高いSiO-Al-B-RO系ガラスとしては、質量%で、SiO 50~70%、Al 10~20%、B 9~15%、MgO+CaO+SrO+BaO 10~18%、SnO+Sb+As 0.05~1%の組成を含有するものが挙げられる。
 このようにガラス組成を限定した理由は以下のように説明される。
 SiOはガラスの網目構成成分である。SiOの含有量は50~70%、好ましくは55~65%である。SiOの含有量が50%より少ないと、歪点が低くなりやすい。一方、SiOの含有量が70%より多いと、溶融温度が高くなり溶融性が悪化し、また失透しやすくなる。
 Alは、ガラスの歪点を高めるための成分である。Alの含有量は10~20%、好ましくは12~18%である。Alの含有量が10%より少ないと、歪点を高める効果が十分に得られにくい。一方、Alの含有量が20%より多いと、溶融温度が高くなり溶融性が悪化し、また失透しやすくなる。
 Bは融剤として働き、ガラスの粘性を下げて溶融を容易にする成分である。Bの含有量は9~15%、好ましくは9~14%である。Bの含有量が9%より少ないと、融剤としての効果が不十分となりやすい。一方、Bの含有量が15%より多いと、歪点が低下しやすい。
 MgO、CaO、SrO、BaOおよびZnOは、いずれもガラスの溶融性を向上させるとともに、熱膨張係数を制御するための成分である。また既述のように、アルカリ金属酸化物と比較して歪点を低下させる割合が少ないという性質を有する。これらの成分の含有量は合量で10~18%、好ましくは11~16%である。これらの成分の合量が10%より少ないと、溶融温度が高くなり溶融性が悪化しやすく、一方、18%より多いと、失透しやすく、成形が困難となりやすい。なお、各成分の含有量としては、MgO 0~2.5%(さらには0.1~2%)、CaO 6.5~15%(さらには、7~13%)、SrO 3~10%(さらには、3~8%)、BaO 0~3%(さらには、0.1~2%)であることが好ましい。
 SnO、Sb、Asはいずれも清澄剤としての働きを有する成分である。これらの成分の含有量は合量で0.05~1%である。これらの成分の合量が0.05%より少ないと、清澄剤としての十分な効果が得られにくく、一方、1%より多いと、失透しやすくなる。
 本発明の第2の態様において、ガラス基板の厚みは0.05~2mm、好ましくは0.1~1.5mm、より好ましくは0.2~1.2mmである。ガラス基板の厚みが2mmよりも大きい場合、太陽電池の薄型軽量化を達成しにくい。一方、ガラス基板の厚みが0.05mmよりも薄い場合、柔軟性(可撓性)に優れるものの、強度が低下し破損しやすくなる。
 本発明の第2の態様において、導電膜はフッ素ドープ酸化スズ(FTO)またはアンチモンドープ酸化スズ(ATO)からなるものである。例えば熱CVD法などの成膜方法によるFTO膜、ATO膜の原料としては、スズ源としてSnCl、CSnCl、(CHSnCl、フッ素源としてHF、CFCOOH、CHF、CCl、またアンチモン源としてSbClなどを用いることができる。
 FTO膜およびATO膜の膜厚は特に限定されないが、0.5~1.5μmの範囲で調整することが好ましい。FTO膜およびATO膜の膜厚が0.5μmより薄いと、十分な導電性が得られず、一方、1.5μmより厚いと、太陽光スペクトルに対する透過率が下がり太陽電池の発電効率が低下しやすい。
 FTO膜およびATO膜の抵抗値は、好ましくは10Ω/□以下、より好ましくは7Ω/□以下である。抵抗値が10Ω/□を超えると、膜の導電性が低下し、太陽電池としての性能に劣る傾向がある。
 FTO膜およびATO膜の平均表面粗さ(Ra)は、好ましくは20nm以上、より好ましくは30nm以上である。膜の平均表面粗さを当該範囲とすることにより、光の封じ込め効果が発揮されるとともに、膜の表面積が増大し、導電性を向上させることができる。
 なお、ガラス基板がアルカリ金属酸化物を含むガラスからなる場合、FTO膜またはATO膜とガラス基板の間にSiOなどのアンダーコート層を設けてもよい。このようなアンダーコート層を設けることにより、ガラスから溶出するアルカリイオンによるFTO膜またはATO膜の導電性低下を防止することができる。
 本発明の第2の態様において、特に太陽電池用基板を色素増感型太陽電池用として用いる場合、ガラス基板の熱膨張係数を70×10-7~110×10-7/℃の範囲で調整することが好ましい。既述のように、ガラス基板の熱膨張係数が70×10-7/℃より小さいと、封止用の低融点ガラスとの熱膨張係数差が大きくなるため、封止部分またはガラス基板にクラックが生じ、ヨウ素電解液の漏れが発生するおそれがある。一方、ガラス基板の熱膨張係数が110×10-7/℃より大きいと、FTO膜やATO膜の成膜時において、基板が熱変形しやすくなる。
 なお、ガラス基板の封止に、樹脂等の、低融点ガラス以外の封止材を用いる場合は、ガラス基板の熱膨張係数は上記範囲に限定されず、例えば、熱膨張係数が-5×10-7~110×10-7/℃、さらには30×10-7~110×10-7/℃のガラス基板を用いることができる。特に、熱膨張係数が70×10-7/℃より小さいガラス基板も用いることが可能であり、具体的には、熱膨張係数が60×10-7/℃以下、さらには50×10-7/℃以下のガラス基板を用いることができる。
 本発明の色素増感型太陽電池用酸化物半導体電極において、酸化物半導体層の厚さは5~50μm、好ましくは8~40μm、より好ましくは10~30μmである。酸化物半導体層の厚さが5μmより薄いと、色素増感型太陽電池の発電効率が低くなりやすい。一方、酸化物半導体層の厚さが50μmより厚いと、照射光を有効活用しにくくなるとともに、酸化物半導体層の剥離が起こりやすくなる。
 酸化物半導体層は、単層あるいは光透過性の異なる複数の層(少なくとも2層以上)で構成される。
 酸化物半導体層は、光透過性の異なる複数の層(少なくとも2層以上)で構成すること、さらには、ガラス基板に近い側の層から順に光透過性の高い酸化物半導体層を配置することにより、照射光を有効活用し、色素増感型太陽電池の発電効率を向上させることが可能となることが知られている。一方、当該構成とした場合、各層の焼結挙動の違いによって酸化物半導体層とガラス基板の間に働く応力が増加しやすくなるため、酸化物半導体層の剥離が生じやすくなる。特に、ガラス基板の熱膨張係数が小さい場合(例えば、70×10-7/℃未満、60×10-7/℃以下、さらには50×10-7/℃以下)、酸化物半導体層の剥離が顕著になる傾向がある。そこで、このような酸化物半導体層の剥離を抑制するという観点では、酸化物半導体層を単層で構成することが好ましい。
 酸化物半導体層の光透過性を高める手段としては、酸化物半導体を構成する酸化物粒子の粒子径を小さくすることが有効である。
 酸化物粒子の平均一次粒子径は30nm以下、25nm以下、特に20nm以下が好ましい。酸化物粒子の平均一次粒子径が30nmを超えると、酸化物半導体層の光透過性に劣る傾向がある。
 酸化物半導体層の気孔率は、60~80%、特に65~75%が好ましい。酸化物半導体層の気孔率が60%未満であると、焼成時に発生する応力により剥離が生じやすく、また十分な量の色素吸着が得られないため発電効率が低下する。酸化物半導体層の気孔率が80%を超えると、実効酸化物半導体粒子数が減る、あるいは、電子が移動するためのパスが減るなどにより発電効率が低下する。また、膜の機械的強度が落ち、僅かな外的衝撃が負荷されただけでも剥がれが生じやすくなる。
 酸化物半導体層は、酸化チタンを含む酸化物粒子から構成されることが好ましい。酸化チタンの結晶系としては、エネルギー変換効率に優れるためアナターゼ型が好ましい。ただし、酸化物粒子は、酸化チタンに限定されるものではなく、色素増感型太陽電池としての性能を発揮するものであれば使用可能である。例えば、酸化亜鉛などが挙げられる。
 酸化物半導体層は、酸化物半導体ペーストを導電膜上に塗布し、焼成することにより形成される。酸化物半導体ペーストの塗布方法としては、スクリーン印刷法、ドクターブレード法、スキージ法、スピンコート法、スプレー法などが挙げられる。特に、スクリーン印刷法は、大面積に均一に数~数十μmの厚膜を形成することができ、好ましい。
 酸化物半導体ペーストは、主に酸化物粒子と溶媒と樹脂とからなる。樹脂はペーストの粘性を調整する目的で添加される。また、必要に応じて、界面活性剤、増粘剤等を添加することもできる。
 樹脂としては、アクリル酸エステル(アクリル樹脂)、エチルセルロース、カルボキシセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロースなどのセルロース系化合物、ポリエチレングリコール誘導体、ニトロセルロース、ポリメチルスチレン、ポリエチレンカーボネート、メタクリル酸エステル等が使用可能である。特に、アクリル酸エステル、エチルセルロース、ニトロセルロースは、熱分解性が良好であるため、好ましい。
 溶媒としては、N、N’-ジメチルホルムアミド(DMF)、α-ターピネオール、高級アルコール、γ-ブチルラクトン(γ-BL)、テトラリン、ブチルカルビトールアセテート、酢酸エチル、酢酸イソアミル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ベンジルアルコール、トルエン、3-メトキシ-3-メチルブタノール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノブチルエーテル、プロピレンカーボネート、ジメチルスルホキシド(DMSO)、N-メチル-2-ピロリドン等が使用可能である。特に、α-ターピネオールは、高粘性であり、樹脂等の溶解性も良好であるため、好ましい。
 酸化物半導体ペーストの焼成温度は400~600℃、420~570℃、特に450~550℃が好ましい。400℃未満であると、樹脂が完全に燃焼せず、酸化物粒子の結合が不十分であり、電池性能が低下する。一方、600℃より高いと、ガラス基板が変形しやすいとともに、酸化物半導体層の収縮に伴い、発生する応力が大きくなり、剥がれが生じやすくなる。
 本発明の太陽電池用基板の大きさは特に限定されず、用途に応じて適宜選択される。なお、基板の大きさが大きくなるほど成膜時の温度分布のムラが生じやすくなり、熱変形が生じやすくなるため、本発明の効果が得られやすくなる。具体的には、導電膜付ガラス基板の面積が1000mm以上、さらには5000mm以上、特に10000mm以上の場合に本発明は有効である。
 以下、本発明を実施例に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。
 先に、本発明の第1の態様について実施例に基づき説明する。
 まず、表1に記載の組成、厚さ、熱膨張係数および歪点を有するガラス基板(100mm×100mm)を用意した。なお、熱膨張係数は、ディラトメータを用いて測定した値である。また、歪点はDTAにより測定した値である。
 次に、ジメチル塩化スズ及びトリフルオロ酢酸を用い、熱CVD法により成膜温度510℃にて、各ガラス基板に導電膜としてのFTO膜(膜厚1μm)を成膜した。
 得られた導電膜膜付ガラス基板を徐冷した後、定盤上に載置し、隙間ゲージにより変形の有無を確認した。変形が0.1mm未満の場合を「○」、0.1mm以上の場合を「×」として、導電膜膜付ガラス基板の状態を評価した。結果を表1に示す。
 各導電膜膜付ガラス基板を15mm×15mmのサイズに切断し、それに酸化チタンペーストを200メッシュスクリーンを用いスクリーン印刷した。酸化チタンペーストは、焼成後半透明であるSolaronix社Ti-Nanoxide T/SP(以下T/SP、平均粒径13nm)、および焼成後不透明である同社Ti-Nanoxide D/SP(以下、D/SP、平均粒径13nm(一部、平均粒径400nm粒子含む))を用いた。酸化チタンペーストを導電膜膜付ガラス基板上(導電膜表面上)にT/SP、D/SPの順で印刷し、電気炉で500℃にて30分間焼成を行った。それぞれの膜厚は、T/SPが6μm、D/SPが14μmであり、計20μmの膜厚であった。
 次に、焼成された酸化チタン層にスコッチメンディングテープ810を貼り付け、ゴムローラーで加圧した後、一気に引き剥がすことによりガラス基板(導電膜表面)と酸化チタン層の密着性を確認した。このときの酸化チタン層とガラス基板(導電膜表面)の密着性の度合いを、酸化チタン層の印刷面積に対して、酸化チタン層が剥がれガラス基板(導電膜表面)が剥き出しになっている面積の割合を求め、A:0~10%未満、B:10~30%未満、C:30~80%未満、D:80~100%のように評価し、AおよびBを良とした。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~4では、ガラス基板の熱膨張係数が50×10-7~110×10-7/℃であるため、酸化チタン層の密着性はいずれもAあるいはBであり、良好であった。一方、比較例1および2では、ガラス基板の熱膨張係数が50×10-7/℃よりも小さいため、密着性が悪く、いずれもDであった。特に比較例2では、テープによる引き剥がし試験を行う前に、ガラス基板(導電膜表面)から酸化チタン層が剥がれている様子が肉眼で観察された。
 続いて、本発明の第2の態様について実施例に基づき説明する。
(実施例5~8および比較例3、4)
 表1に記載の各ガラス基板(120mm×120mm)上に、熱CVD法により導電膜としてのFTO膜を成膜した。具体的には、原料として(CHSnCl、CFCOOHを用い、これらを一旦ガス化した後、表1記載の成膜温度に加熱されたガラス基板上に吹き付けることにより成膜を行い、導電膜付ガラス基板を得た。成膜は、各ガラス基板を成膜温度にて10分間保持した後に行った。また、FTO膜の膜厚は約1μmとなるよう、2~5分の範囲で成膜時間を調整した。
 得られた各導電膜付ガラス基板を徐冷し、徐冷後の導電膜付ガラス基板を定盤上に載置して隙間ゲージにより変形の有無を確認した。変形が0.1mm未満の場合を「○」、0.1mm以上の場合を「×」として導電膜付ガラス基板の状態を評価した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例5~8では、導電膜付ガラス基板の歪点がいずれも525℃以上であるため、成膜後の試料に変形は確認されなかった。一方、比較例3および4では、実施例5~8よりガラス基板の厚みが大きく、かつ成膜温度が低いにも係わらず、0.5mm以上の変形が確認された。
(実施例9~13)
 実施例5および6の導電膜付ガラス基板を15mm×15mmのサイズに切断し、200メッシュスクリーンを用いて、導電膜上に酸化チタンペーストをスクリーン印刷した。酸化チタンペーストは、焼成後半透明であるSolaronix社Ti-Nanoxide T/SP(以下T/SP、平均粒径13nm)、および焼成後不透明である同社Ti-Nanoxide D/SP(以下、D/SP、平均粒径13nm(一部、平均粒径400nm粒子含む))を用いた。実施例9および11ではD/SPのみを、実施例10および12ではT/SPのみを、さらに実施例13ではT/SP、D/SPの順でスクリーン印刷し、電気炉で500℃にて30分間焼成を行った。
 次に、焼成された酸化チタン層にスコッチメンディングテープ810を貼り付け、ゴムローラーで加圧した後、一気に引き剥がすことによりガラス基板(導電膜表面)と酸化チタン層の密着性を確認した。このときの酸化チタン層とガラス基板(導電膜表面)の密着性の度合いを、酸化チタン層の印刷面積に対して、酸化チタン層が剥がれガラス基板(導電膜表面)が剥き出しになっている面積の割合を求め、A:0~10%未満、B:10~30%未満、C:30~80%未満、D:80~100%のように評価し、AおよびBを良とした。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2008年6月17日付で出願された日本特許出願(特願2008-157645)、2008年9月19日付で出願された日本特許出願(特願2008-240955)及び2008年10月3日付で出願された日本特許出願(特願2008-258761)に基づいており、その全体が引用により援用される。
 本発明の太陽電池用基板は、アモルファスシリコン太陽電池を始めとするシリコン系薄膜太陽電池、色素増感型太陽電池、CdTe太陽電池、などに用いられる電極基板として好適であり、特に色素増感型太陽電池に用いられる電極基板として好適である。

Claims (15)

  1.  透明導電膜がガラス基板上に形成されてなる太陽電池用基板であって、ガラス基板の熱膨張係数が50×10-7~110×10-7/℃であることを特徴とする太陽電池用基板。
  2.  太陽電池が色素増感型太陽電池であることを特徴とする請求項1に記載の太陽電池用基板。
  3.  ガラス基板の歪点が525℃以上であることを特徴とする請求項1または2に記載の太陽電池用基板。
  4.  ガラス基板の厚さが2mm以下であることを特徴とする請求項1~3のいずれか一つに記載の太陽電池用基板。
  5.  請求項1~4のいずれかに記載の太陽電池用基板の透明導電膜上に、厚さ5~50μmの酸化物半導体層が形成されてなることを特徴とする色素増感型太陽電池用酸化物半導体電極。
  6.  酸化物半導体層が酸化チタンを含むことを特徴とする請求項5に記載の色素増感型太陽電池用酸化物半導体電極。
  7.  酸化物半導体層が、光透過性の異なる複数の層で構成されることを特徴とする請求項5または6に記載の色素増感型太陽電池用酸化物半導体電極。
  8.  酸化物半導体層が、酸化物粒子の粒子径分布が異なる複数の層で構成されることを特徴とする請求項5~7のいずれかに記載の色素増感型太陽電池用酸化物半導体電極。
  9.  酸化物半導体層が、平均一次粒子径が30nm以下の酸化物粒子からなる層を含むことを特徴とする請求項5~8のいずれかに記載の色素増感型太陽電池用酸化物半導体電極。
  10.  0.05~2mmの厚みを有するガラス基板上にフッ素ドープ酸化スズまたはアンチモンドープ酸化スズからなる導電膜が成膜されてなる太陽電池用基板であって、ガラス基板の歪点が525℃以上であることを特徴とする太陽電池用基板。
  11.  太陽電池が色素増感型太陽電池であることを特徴とする請求項10に記載の太陽電池用基板。
  12.  ガラス基板の熱膨張係数が70×10-7~110×10-7/℃であることを特徴とする請求項10または11に記載の太陽電池用基板。
  13.  請求項10~12のいずれかに記載の太陽電池用基板の導電膜上に、厚さ5~50μmの酸化物半導体層が形成されてなることを特徴とする色素増感型太陽電池用酸化物半導体電極。
  14.  酸化物半導体層が、平均一次粒子径が30nm以下の酸化物粒子からなることを特徴とする請求項13に記載の色素増感型太陽電池用酸化物半導体電極。
  15.  酸化物半導体層の気孔率が60~80%であることを特徴とする請求項13または14に記載の色素増感型太陽電池用酸化物半導体電極。
PCT/JP2009/064265 2008-06-17 2009-08-12 太陽電池用基板および色素増感型太陽電池用酸化物半導体電極 WO2009154314A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/999,008 US20110094584A1 (en) 2008-06-17 2009-08-12 Solar cell substrate and oxide semiconductor electrode for dye-sensitized solar cell
EP09766762A EP2299536A4 (en) 2008-06-17 2009-08-12 SUBSTRATE FOR SOLAR CELL AND OXIDE SEMICONDUCTOR ELECTRODE FOR COLOR-SENSITIZED SOLAR CELL
CN2009801227541A CN102106033A (zh) 2008-09-19 2009-08-12 用于太阳能电池的基板和用于色素增感型太阳能电池的氧化物半导体电极
US14/563,150 US20150090335A1 (en) 2008-06-17 2014-12-08 Solar cell substrate and oxide semiconductor electrode for dye- sensitized solar cell

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008-157645 2008-06-17
JP2008157645 2008-06-17
JP2008240955A JP2010073551A (ja) 2008-09-19 2008-09-19 色素増感型太陽電池用基板および色素増感型太陽電池用酸化物半導体電極
JP2008-240955 2008-09-19
JP2008-258761 2008-10-03
JP2008258761A JP5365983B2 (ja) 2008-06-17 2008-10-03 太陽電池用導電膜付ガラス基板

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/999,008 A-371-Of-International US20110094584A1 (en) 2008-06-17 2009-08-12 Solar cell substrate and oxide semiconductor electrode for dye-sensitized solar cell
US14/563,150 Division US20150090335A1 (en) 2008-06-17 2014-12-08 Solar cell substrate and oxide semiconductor electrode for dye- sensitized solar cell

Publications (1)

Publication Number Publication Date
WO2009154314A1 true WO2009154314A1 (ja) 2009-12-23

Family

ID=43596934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064265 WO2009154314A1 (ja) 2008-06-17 2009-08-12 太陽電池用基板および色素増感型太陽電池用酸化物半導体電極

Country Status (3)

Country Link
US (2) US20110094584A1 (ja)
EP (1) EP2299536A4 (ja)
WO (1) WO2009154314A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010138698A2 (en) * 2009-05-29 2010-12-02 Corning Incorporated Fusion formable sodium containing glass
WO2011011667A1 (en) * 2009-07-24 2011-01-27 Corning Incorporated Fusion formable silica and sodium containing glasses
JP2011044318A (ja) * 2009-08-20 2011-03-03 Nisshin Steel Co Ltd 色素増感型太陽電池およびその製造方法
WO2011091961A1 (en) * 2010-01-29 2011-08-04 Schott Ag Photovoltaic cell having a substrate glass made of aluminosilicate glass
EP2383793A1 (en) * 2010-04-28 2011-11-02 Asahi Glass Company, Limited Solar cell
WO2011092546A3 (en) * 2009-12-24 2011-12-01 Gerresheimer Pisa S.P.A. Use of a glass composition for making a solar collector with a glass-metal joint
WO2012055860A3 (de) * 2010-10-26 2012-07-19 Schott Ag Transparente schichtverbunde
WO2012123677A1 (fr) * 2011-03-15 2012-09-20 Saint-Gobain Glass France Substrat pour cellule photovoltaïque
US10308545B2 (en) 2010-10-26 2019-06-04 Schott Ag Highly refractive thin glasses
US10343946B2 (en) 2010-10-26 2019-07-09 Schott Ag Highly refractive thin glasses

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9782949B2 (en) 2008-05-30 2017-10-10 Corning Incorporated Glass laminated articles and layered articles
US9371247B2 (en) 2009-05-29 2016-06-21 Corsam Technologies Llc Fusion formable sodium free glass
FR2972446B1 (fr) * 2011-03-09 2017-11-24 Saint Gobain Substrat pour cellule photovoltaique
CN104024170A (zh) * 2012-01-12 2014-09-03 日本电气硝子株式会社 玻璃
TWI564262B (zh) 2012-02-29 2017-01-01 康寧公司 高cte之硼矽酸鉀核心玻璃與包含其之玻璃物件
US9808143B2 (en) 2012-06-18 2017-11-07 Universite Laval Optogenetic probe
CN104470860B (zh) * 2012-07-18 2018-04-13 Hoya株式会社 玻璃成型品及其制造方法、光学元件坯料、以及光学元件及其制造方法
US9853171B2 (en) * 2012-09-05 2017-12-26 Zinniatek Limited Photovoltaic devices with three dimensional surface features and methods of making the same
US11352287B2 (en) 2012-11-28 2022-06-07 Vitro Flat Glass Llc High strain point glass
KR102225583B1 (ko) 2013-04-29 2021-03-10 코닝 인코포레이티드 광기전력 모듈 패키지
DE102015109994A1 (de) * 2014-06-23 2015-12-24 Schott Ag Elektrisches Speichersystem mit einem scheibenförmigen diskreten Element, scheibenförmiges diskretes Element, Verfahren zu dessen Herstellung sowie dessen Verwendung
CN106463658A (zh) * 2014-06-23 2017-02-22 肖特股份有限公司 包括片状不连续元件的蓄电系统、片状不连续元件及其制造方法和应用
JP2018505515A (ja) 2014-12-01 2018-02-22 ショット アクチエンゲゼルシャフトSchott AG シート状の独立した部材を有する蓄電システム、独立したシート状の部材、その製造方法、およびその使用
WO2019183931A1 (zh) * 2018-03-30 2019-10-03 深圳市首骋新材料科技有限公司 晶硅太阳能电池正面导电浆料及其制备方法和太阳能电池

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135819A (ja) * 1997-10-31 1999-05-21 Matsushita Electric Ind Co Ltd 化合物薄膜太陽電池
JP2001093591A (ja) * 1999-09-28 2001-04-06 Toshiba Corp 光電変換素子
JP2002260448A (ja) 2000-11-21 2002-09-13 Nippon Sheet Glass Co Ltd 導電膜、その製造方法、それを備えた基板および光電変換装置
JP2003142170A (ja) * 2001-10-31 2003-05-16 Toyota Central Res & Dev Lab Inc 光電極及びこれを備えた色素増感型太陽電池
JP2003217688A (ja) * 2002-01-18 2003-07-31 Sharp Corp 色素増感型光電変換素子
JP2007042366A (ja) * 2005-08-02 2007-02-15 Fujikura Ltd 電極基板および光電変換素子
JP2007311242A (ja) * 2006-05-19 2007-11-29 Fujikura Ltd 電極基板の製造方法、電極基板、光電変換素子および色素増感太陽電池
JP2008157645A (ja) 2006-12-21 2008-07-10 Casio Comput Co Ltd Gps受信装置およびgps受信方法
JP2008240955A (ja) 2007-03-28 2008-10-09 Bridgestone Corp 防振装置
JP2008258761A (ja) 2007-04-02 2008-10-23 Oki Electric Ind Co Ltd 音声監視通報システム

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4342943A (en) * 1979-10-17 1982-08-03 Owens-Illinois, Inc. P2 O5 -V2 O5 -PbO glass which reduces arcing in funnel portion of CRT
JPS61111935A (ja) * 1984-11-02 1986-05-30 Hitachi Ltd ガラス組成物
CH674596A5 (ja) * 1988-02-12 1990-06-15 Sulzer Ag
US5009922A (en) * 1989-03-02 1991-04-23 Ashahi Glass Company, Ltd. Method of forming a transparent conductive film
US5076876A (en) * 1989-06-21 1991-12-31 Diemat, Inc. Method of attaching an electronic device to a substrate
JP3144823B2 (ja) * 1991-04-26 2001-03-12 旭硝子株式会社 無アルカリガラス
US5252521A (en) * 1992-10-19 1993-10-12 Ferro Corporation Bismuth-containing lead-free glass enamels and glazes of low silica content
US5733828A (en) * 1996-02-15 1998-03-31 Asahi Glass Company Ltd. Hermetic sealing composition
US5753571A (en) * 1997-02-13 1998-05-19 E. I. Du Pont De Nemours And Company Lead and cadmium-free encapsulant composition
US6103648A (en) * 1998-05-28 2000-08-15 Circon Corporation Bulk conducting glass compositions and fibers
US6255239B1 (en) * 1998-12-04 2001-07-03 Cerdec Corporation Lead-free alkali metal-free glass compositions
WO2001003232A1 (fr) * 1999-06-30 2001-01-11 Catalysts & Chemicals Industries Co., Ltd. Cellule photoelectrique
JP4000500B2 (ja) * 1999-08-02 2007-10-31 日本電気硝子株式会社 Li2O−Al2O3−SiO2系結晶化ガラス及び結晶性ガラス
WO2001085631A1 (fr) * 2000-05-11 2001-11-15 Matsushita Electric Industrial Co., Ltd. Composition de verre, verre d'etancheite pour tete magnetique et tete magnetique correspondante
US6677516B2 (en) * 2001-01-29 2004-01-13 Sharp Kabushiki Kaisha Photovoltaic cell and process for producing the same
WO2003087001A1 (fr) * 2002-03-29 2003-10-23 Matsushita Electric Industrial Co., Ltd. Composition de verre de bismuth, et tete magnetique et ecran a plasma contenant ladite composition sous forme d'element d'obturation
JP4103672B2 (ja) * 2003-04-28 2008-06-18 株式会社村田製作所 導電性ペーストおよびガラス回路構造物
DE10329117A1 (de) * 2003-06-27 2005-01-20 Siemens Ag Kunststoffmasse, Erzeugnis mit der Kunststoffmasse und Verwendung der Kunststoffmasse
CN100372792C (zh) * 2003-06-27 2008-03-05 大和电子株式会社 封接加工用无铅玻璃材料以及用其制成的封接加工制品以及封接加工方法
AU2004306318C1 (en) * 2003-10-06 2008-10-09 Ngk Spark Plug Co., Ltd. Dye-sensitized solar cell
CN100380730C (zh) * 2003-10-06 2008-04-09 日本特殊陶业株式会社 染料敏化太阳电池
US7438829B2 (en) * 2003-11-13 2008-10-21 E.I. Du Pont De Nemours And Company Thick film getter paste compositions for use in moisture control
US7207193B2 (en) * 2003-12-08 2007-04-24 Corning Incorporated Method of fabricating low-warp flat glass
EP1589548A1 (en) * 2004-04-23 2005-10-26 Sony Deutschland GmbH A method of producing a porous semiconductor film on a substrate
US20050242725A1 (en) * 2004-04-26 2005-11-03 Shinya Hasegawa Glass composition and paste composition suitable for a plasma display panel, and plasma display panel
JP2006083045A (ja) * 2004-09-17 2006-03-30 Hitachi Ltd ガラス部材
US7291573B2 (en) * 2004-11-12 2007-11-06 Asahi Techno Glass Corporation Low melting glass, sealing composition and sealing paste
US7528084B2 (en) * 2005-02-02 2009-05-05 The Shepherd Color Company Durable functional glass enamel coating for automotive applications
US7494607B2 (en) * 2005-04-14 2009-02-24 E.I. Du Pont De Nemours And Company Electroconductive thick film composition(s), electrode(s), and semiconductor device(s) formed therefrom
US8093491B2 (en) * 2005-06-03 2012-01-10 Ferro Corporation Lead free solar cell contacts
US7670973B2 (en) * 2005-10-28 2010-03-02 Schott Ag Lead and arsenic free optical glass with high refractive index
US8071183B2 (en) * 2006-06-02 2011-12-06 Hitachi Displays, Ltd. Display apparatus
JP4590386B2 (ja) * 2006-10-23 2010-12-01 株式会社オハラ 光学ガラス
JP4411424B2 (ja) * 2006-10-23 2010-02-10 株式会社住田光学ガラス 高屈折率の精密プレス成形用光学ガラス
JP5158561B2 (ja) * 2007-04-13 2013-03-06 日本電気硝子株式会社 積層体及びそれを用いた太陽電池
US20080318061A1 (en) * 2007-06-20 2008-12-25 Akira Inaba Insulation paste for a metal core substrate and electronic device
KR101457362B1 (ko) * 2007-09-10 2014-11-03 주식회사 동진쎄미켐 유리 프릿 및 이를 이용한 전기소자의 밀봉방법
KR101464321B1 (ko) * 2007-11-26 2014-11-24 주식회사 동진쎄미켐 저융점 프릿 페이스트 조성물 및 이를 이용한 전기소자의밀봉방법
US7736546B2 (en) * 2008-01-30 2010-06-15 Basf Se Glass frits
EP2295384A4 (en) * 2008-04-18 2013-12-18 Nippon Electric Glass Co GLASS COMPOSITION FOR COLOR-SENSITIZED SOLAR CELL AND MATERIAL FOR COLOR-SENSITIZED SOLAR CELL
EP2295383A4 (en) * 2008-04-18 2012-10-10 Nippon Electric Glass Co GLASS COMPOSITION FOR DYE-SENSITIZED SOLAR CELL AND MATERIAL FOR DYE-SENSITIZED SOLAR CELL
JP2011044426A (ja) * 2009-07-24 2011-03-03 Nippon Electric Glass Co Ltd 太陽電池用導電膜付ガラス基板

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135819A (ja) * 1997-10-31 1999-05-21 Matsushita Electric Ind Co Ltd 化合物薄膜太陽電池
JP2001093591A (ja) * 1999-09-28 2001-04-06 Toshiba Corp 光電変換素子
JP2002260448A (ja) 2000-11-21 2002-09-13 Nippon Sheet Glass Co Ltd 導電膜、その製造方法、それを備えた基板および光電変換装置
JP2003142170A (ja) * 2001-10-31 2003-05-16 Toyota Central Res & Dev Lab Inc 光電極及びこれを備えた色素増感型太陽電池
JP2003217688A (ja) * 2002-01-18 2003-07-31 Sharp Corp 色素増感型光電変換素子
JP2007042366A (ja) * 2005-08-02 2007-02-15 Fujikura Ltd 電極基板および光電変換素子
JP2007311242A (ja) * 2006-05-19 2007-11-29 Fujikura Ltd 電極基板の製造方法、電極基板、光電変換素子および色素増感太陽電池
JP2008157645A (ja) 2006-12-21 2008-07-10 Casio Comput Co Ltd Gps受信装置およびgps受信方法
JP2008240955A (ja) 2007-03-28 2008-10-09 Bridgestone Corp 防振装置
JP2008258761A (ja) 2007-04-02 2008-10-23 Oki Electric Ind Co Ltd 音声監視通報システム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Technology of Transparent Conductive Film", OHMSHA, LTD., pages: 153 - 165
See also references of EP2299536A4

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102574726A (zh) * 2009-05-29 2012-07-11 康宁股份有限公司 可熔合成形的含钠玻璃
WO2010138698A3 (en) * 2009-05-29 2011-01-20 Corning Incorporated Fusion formable sodium containing glass
WO2010138698A2 (en) * 2009-05-29 2010-12-02 Corning Incorporated Fusion formable sodium containing glass
US9637408B2 (en) 2009-05-29 2017-05-02 Corsam Technologies Llc Fusion formable sodium containing glass
WO2011011667A1 (en) * 2009-07-24 2011-01-27 Corning Incorporated Fusion formable silica and sodium containing glasses
US8647995B2 (en) 2009-07-24 2014-02-11 Corsam Technologies Llc Fusion formable silica and sodium containing glasses
US9530910B2 (en) 2009-07-24 2016-12-27 Corsam Technologies Llc Fusion formable silica and sodium containing glasses
JP2011044318A (ja) * 2009-08-20 2011-03-03 Nisshin Steel Co Ltd 色素増感型太陽電池およびその製造方法
WO2011092546A3 (en) * 2009-12-24 2011-12-01 Gerresheimer Pisa S.P.A. Use of a glass composition for making a solar collector with a glass-metal joint
US9120697B2 (en) 2009-12-24 2015-09-01 Gerresheimer Pisa S.P.A. Use of a glass composition for making a solar collector with a glass-metal joint
WO2011091961A1 (en) * 2010-01-29 2011-08-04 Schott Ag Photovoltaic cell having a substrate glass made of aluminosilicate glass
CN102742020A (zh) * 2010-01-29 2012-10-17 肖特公开股份有限公司 具有由硅铝酸盐玻璃制成的基板玻璃的光伏电池
US9023745B2 (en) 2010-01-29 2015-05-05 Schott Ag Photovoltaic cell having a substrate glass made of aluminosilicate glass
EP2383793A1 (en) * 2010-04-28 2011-11-02 Asahi Glass Company, Limited Solar cell
JP2013543832A (ja) * 2010-10-26 2013-12-09 ショット・アーゲー 透明層複合体アセンブリ
JP2016029009A (ja) * 2010-10-26 2016-03-03 ショット・アーゲー 透明層複合体アセンブリ
WO2012055860A3 (de) * 2010-10-26 2012-07-19 Schott Ag Transparente schichtverbunde
US10308545B2 (en) 2010-10-26 2019-06-04 Schott Ag Highly refractive thin glasses
US10343946B2 (en) 2010-10-26 2019-07-09 Schott Ag Highly refractive thin glasses
CN103402936A (zh) * 2011-03-15 2013-11-20 法国圣戈班玻璃厂 用于光电池的基材
FR2972724A1 (fr) * 2011-03-15 2012-09-21 Saint Gobain Substrat pour cellule photovoltaique
EA024931B1 (ru) * 2011-03-15 2016-11-30 Сэн-Гобэн Гласс Франс Фотоэлемент
WO2012123677A1 (fr) * 2011-03-15 2012-09-20 Saint-Gobain Glass France Substrat pour cellule photovoltaïque

Also Published As

Publication number Publication date
US20150090335A1 (en) 2015-04-02
EP2299536A4 (en) 2011-12-21
US20110094584A1 (en) 2011-04-28
EP2299536A1 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
WO2009154314A1 (ja) 太陽電池用基板および色素増感型太陽電池用酸化物半導体電極
JP2010073551A (ja) 色素増感型太陽電池用基板および色素増感型太陽電池用酸化物半導体電極
JP5330400B2 (ja) 改良された抵抗率を有する層で被覆したガラス基板
EP2458643B1 (en) Glass substrate with conductive film for solar cell
TWI460142B (zh) Insulated with lead - free low - melting glass paste
WO2010067848A1 (ja) 封着ガラス、封着材料層付きガラス部材、および電子デバイスとその製造方法
JP5349791B2 (ja) 色素増感型太陽電池製造用無鉛ガラスおよびガラスセラミックス組成物
JPWO2010061853A1 (ja) 封着材料層付きガラス部材およびそれを用いた電子デバイスとその製造方法
TW201209005A (en) Sealing material paste, and process for production of electronic device using same
WO2010128679A1 (ja) 封着材料層付きガラス部材とそれを用いた電子デバイスおよびその製造方法
WO2012090695A1 (ja) 電子デバイスとその製造方法
JPWO2010071176A1 (ja) 封着材料層付きガラス部材とその製造方法、および電子デバイスとその製造方法
WO2010137667A1 (ja) 封着材料層付きガラス部材とそれを用いた電子デバイスおよびその製造方法
JP5365983B2 (ja) 太陽電池用導電膜付ガラス基板
JP6246544B2 (ja) Cigs太陽電池用絶縁基板およびcigs太陽電池
JP2013219079A (ja) 電子デバイスとその製造方法
JP4380589B2 (ja) 電極被覆用低融点ガラスおよびプラズマディスプレイ装置
JP4282885B2 (ja) 電極被覆用低融点ガラスおよびプラズマディスプレイ装置
KR101255779B1 (ko) 밀봉성 및 내구성이 우수한 염료감응 태양전지
JP4075298B2 (ja) 電極被覆用低融点ガラス
WO2012046817A1 (ja) 電子デバイス及びその製造方法
JP2014037334A (ja) レーザ封止用無鉛ガラスおよびそれを用いたガラスセラミックス組成物
JP2014149941A (ja) 気密封止パッケージおよびその製造方法
KR101301482B1 (ko) 부식 방지 효과가 우수한 전극 보호용 조성물을 이용한 염료감응 태양전지
JP2012140296A (ja) 耐腐食性を有する無鉛低融点ガラス組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980122754.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09766762

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12999008

Country of ref document: US

Ref document number: 2009766762

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE