WO2009153907A1 - 固体撮像装置及びその製造方法 - Google Patents

固体撮像装置及びその製造方法 Download PDF

Info

Publication number
WO2009153907A1
WO2009153907A1 PCT/JP2009/001731 JP2009001731W WO2009153907A1 WO 2009153907 A1 WO2009153907 A1 WO 2009153907A1 JP 2009001731 W JP2009001731 W JP 2009001731W WO 2009153907 A1 WO2009153907 A1 WO 2009153907A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
center
pixel
imaging device
state imaging
Prior art date
Application number
PCT/JP2009/001731
Other languages
English (en)
French (fr)
Inventor
勝野元成
山下一博
佐伯幸作
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2009153907A1 publication Critical patent/WO2009153907A1/ja
Priority to US12/966,286 priority Critical patent/US8274586B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14605Structural or functional details relating to the position of the pixel elements, e.g. smaller pixel elements in the center of the imager compared to pixel elements at the periphery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes

Definitions

  • the present invention relates to a solid-state imaging device and a manufacturing method thereof, and more particularly, to a solid-state imaging device including a plurality of pixels arranged in a matrix.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge Coupled Device
  • the CMOS image sensor has a lower incident light quantity to the photodiode than the CCD image sensor, so it may be difficult to ensure excellent sensitivity characteristics.
  • CMOS image sensor needs to form a plurality of wiring layers (usually two to four layers) in order to mount a plurality of circuits. This is because light is blocked by the metal wiring, so that it is difficult for incident light to reach the photodiode.
  • Patent Document 1 a structure for condensing incident light with higher efficiency by forming two lenses on a photodiode has been proposed (for example, see Patent Document 1).
  • FIG. 17 is a diagram showing a circuit configuration of a unit pixel of a conventional solid-state imaging device.
  • the solid-state imaging device 500 illustrated in FIG. 17 includes a unit pixel 510, a horizontal selection transistor 123, a vertical scanning circuit 140, and a horizontal scanning circuit 141. In FIG. 17, only one unit pixel 510 is shown, but the solid-state imaging device 500 includes a plurality of unit pixels 510 arranged in a matrix.
  • the unit pixel 510 includes a photodiode 111, a charge transfer gate 112, a floating diffusion (FD) unit 114, a reset transistor 120, a vertical selection transistor 121, and an amplification transistor 122.
  • FD floating diffusion
  • the photodiode 111 is a photoelectric conversion unit that converts incident light into signal charges (electrons) and accumulates the converted signal charges.
  • the gate electrode of the charge transfer gate 112 is connected to the read signal line 113.
  • the charge transfer gate 112 transfers the signal charge accumulated in the photodiode 111 to the FD unit 114 based on a read pulse applied to the read signal line 113.
  • the FD unit 114 is connected to the gate electrode of the amplification transistor 122.
  • the amplification transistor 122 impedance-converts the potential change of the FD unit 114 into a voltage signal and outputs the converted voltage signal to the vertical signal line 133.
  • the gate electrode of the vertical selection transistor 121 is connected to the vertical selection line 131.
  • the vertical selection transistor 121 is turned on or off based on a vertical selection pulse applied to the vertical selection line 131, and drives the amplification transistor 122 for a predetermined period.
  • the gate electrode of the reset transistor 120 is connected to the vertical reset line 130.
  • the reset transistor 120 resets the potential of the FD unit 114 to the potential of the power supply line 132 based on the vertical reset pulse applied to the vertical reset line 130.
  • the vertical scanning circuit 140 and the horizontal scanning circuit 141 scan the plurality of unit pixels 510 once during one cycle.
  • the vertical scanning circuit 140 selects a unit pixel 510 in a row corresponding to the vertical selection line 131 by outputting a vertical selection pulse to one vertical selection line 131 for a certain period of one cycle. To do.
  • the output signal (voltage signal) of each selected unit pixel 510 is output to each vertical signal line 133.
  • the horizontal scanning circuit 141 selects the horizontal selection transistor 123 by sequentially outputting a horizontal selection pulse to each horizontal selection line 134 during a certain period.
  • the selected horizontal selection transistor 123 outputs the output signal of the connected vertical signal line 133 to the horizontal signal line 135.
  • the vertical scanning circuit 140 When the horizontal scanning circuit 141 finishes scanning all the unit pixels 510 in one row, the vertical scanning circuit 140 outputs a vertical selection pulse to the vertical selection line 131 in the next row. Next, each pixel in the new row is scanned as described above.
  • all unit pixels 510 are scanned once during one cycle, so that the output signals of all unit pixels 510 are output to the horizontal signal line 135 in time series.
  • FIG. 18 is a cross-sectional view illustrating a configuration of an imaging region of a conventional solid-state imaging device 500.
  • FIG. 19 is a diagram schematically showing the connection relationship of the constituent elements of the unit pixel 510.
  • the solid-state imaging device 500 includes a semiconductor substrate 201, an insulating layer 202, wirings 203A to 203C, light shielding films 204A and 204B, a passivation film 205, an intralayer lens 606, and a planarization film. 207, a color filter 208, and a top lens 610.
  • the photodiode 111, the charge transfer gate 112, and the FD portion 114 are formed on the semiconductor substrate 201.
  • the insulating layer 202 is formed on the semiconductor substrate 201.
  • a plurality of layers of wirings 203A to 203C are formed in the insulating layer 202.
  • the wirings 203A to 203C are made of aluminum, for example.
  • the light shielding films 204A and 204B are formed on the wiring 203A and the wiring 203B, respectively, and prevent light from entering the circuit section such as a transistor.
  • the light shielding films 204A and 204B are wiring protective films formed during wiring manufacturing.
  • a protective film such as a SiN film or a SiON film is formed to protect the wirings 203A to 203C during manufacturing.
  • the protective film is formed on the entire upper surface of the wirings 203A to 203C.
  • a stacked film of a silicon oxide film and a silicon nitride film is formed on the photodiode 111. Thereby, the incident light to the photodiode 111 is reflected.
  • the protective film silicon nitride film
  • the protective film functions as a light-shielding film in a region other than on the photodiode 111, so it is preferable to leave it.
  • the passivation film 205 is formed on the insulating layer 202, and is formed of, for example, silicon nitride.
  • the in-layer lens 606 is formed on the passivation film 205.
  • the planarizing film 207 is formed on the in-layer lens 606, and is formed of, for example, silicon oxide or resin (acrylic resin or fluorine resin).
  • the color filter 208 is formed on the planarizing film 207.
  • the top lens 610 is an on-chip lens formed on the color filter 208.
  • the n-type impurity layer forming the photodiode 111, the FD portion 114, and the reset transistor 120 is provided so as to be connected by a channel region below the gate electrode.
  • efficient signal charge transfer and erasure can be performed.
  • top lens 610 and the in-layer lens 606 collect the incident light 310 on the photodiode 111.
  • the top lens 610 and the in-layer lens 606 are formed at regular intervals at a constant pitch.
  • the relative positional relationship of the in-layer lens 606 is common to the plurality of unit pixels 510. That is, each component is arranged at equal intervals at the same pitch so as to have the same translational symmetry. As a result, the incident light 310 is incident on the photodiode 111 in each unit pixel in the same manner, and a high-quality image with little variation for each unit pixel 510 can be obtained.
  • an amplification type solid-state imaging device such as a CMOS image sensor requires multilayer wiring of at least two layers, desirably three layers or more as described above, and this increases the thickness of the structure formed above the photodiode 111.
  • the height from the surface of the photodiode 111 to the uppermost third-layer wiring 203C is about 3 to 5 ⁇ m, which is about the same as the pixel size.
  • the position of the opening of the top lens 610 and the light shielding films 204A and 204B is called pupil correction so that obliquely incident light is also collected by the photodiode 111.
  • a method of reducing shading by correcting Specifically, the openings of the top lens 610 and the light shielding films 204A and 204B are shifted in the direction in which the light is incident as viewed from the photodiode 111.
  • a solid-state imaging device having a multi-pixel 1-cell structure in which the transistor 120 is shared between a plurality of adjacent unit pixels 510 has been proposed.
  • the number of transistors and the number of wirings per unit pixel can be reduced.
  • a sufficient area of the photodiode 111 can be ensured, and vignetting due to wiring can be reduced, so that it is possible to effectively cope with a reduction in unit pixels.
  • the photodiodes 111 are not arranged at an equal pitch.
  • the substantial center of gravity of the photodiode is not disposed at an equal pitch.
  • the center of light incident on the photodiode 111 does not coincide with the center of the photodiode 111. Therefore, the sensitivity is reduced by reducing the amount of incident light.
  • the amount of light incident on the photodiode 111 varies among the unit pixels 510 according to the direction of incident light. As a result, the signal output from each unit pixel 510 varies. That is, there arises a problem that sensitivity varies between pixels.
  • an object of the present invention is to provide a solid-state imaging device capable of suppressing variations in sensitivity between pixels, and a manufacturing method thereof.
  • a solid-state imaging device is a solid-state imaging device including a plurality of pixels arranged in a matrix, and each of the plurality of pixels photoelectrically converts light into an electrical signal.
  • the substantial center of the surface is shifted in the first direction from the center of the pixel, and the first lens is formed in an asymmetric shape so that the position of the focal point is shifted in the first direction from the center of the pixel,
  • the second lens is formed such that the focal position is shifted from the center of the pixel in the first direction.
  • the focal positions of the first lens and the second lens are shifted from the center of the pixel toward the substantial center of the light receiving surface of the photoelectric conversion unit.
  • the solid-state imaging device can suppress variations in sensitivity between pixels.
  • the solid-state imaging device can suppress the reduction of the area of the first lens due to the shift of the focal position by using the asymmetric first lens.
  • the plurality of pixels further include a gate electrode that covers a part of the light receiving surface of the photoelectric conversion unit and transfers an electrical signal photoelectrically converted by the photoelectric conversion unit, and the first direction is: The direction opposite to the direction in which the gate electrode is arranged with respect to the photoelectric conversion unit may be used.
  • the first lens is perpendicular to the surface of the photoelectric conversion unit and is symmetric with respect to a plane horizontal to the first direction and including the center of the pixel, and is perpendicular to the surface of the photoelectric conversion unit and the first It may be asymmetric with respect to a plane perpendicular to the direction and including the center of the pixel.
  • the region where the first lens at the end opposite to the first direction in each pixel is not formed is wider than the region where the first lens at the end in the first direction of the pixel is not formed. Also good.
  • the solid-state imaging device can shift the focus position of the first lens in the first direction while suppressing the reduction of the area of the first lens due to the shift of the focus position. .
  • the first direction may be a diagonal direction of the pixel.
  • the first lens is in contact with the first lens of two pixels located in the first direction among the first lenses of four adjacent pixels, and is located in a direction opposite to the first direction. It does not have to be in contact with the first lens of the pixel.
  • the solid-state imaging device can improve the light collection rate of the first lens.
  • the second lens may have substantially the same shape, and may be arranged such that a center position is shifted from the center of the pixel in the first direction.
  • the position of the focal point of the second lens can be shifted using the second lens having the same shape as the conventional one.
  • the first lens and the second lens have a focal point in the first direction from the center of the pixel, and a gate length direction of the gate electrode in a region where the gate electrode covers a part of the photoelectric conversion unit. It may be formed so as to be displaced by a distance corresponding to 1 ⁇ 2 of the distance.
  • the focal positions of the first lens and the second lens can be made substantially coincident with the substantial center of the light receiving surface of the photoelectric conversion unit.
  • the first lens may be arranged such that a center position is shifted from the center of the pixel in the first direction.
  • the plurality of pixels may include a first pixel and a second pixel, and the first direction may be different in the first pixel and the second pixel.
  • the plurality of pixels may have a multi-pixel 1-cell structure, and the one cell may include the first pixel and the second pixel, respectively.
  • the photoelectric conversion unit is arranged based on a first arrangement cell
  • the first lens and the second lens are arranged based on a second arrangement cell
  • the plurality of pixels are arranged in a matrix.
  • the center of the second arrangement cell of the pixel is closer to the center side of the pixel array than the center of the first arrangement cell of the pixel as it goes from the center of the pixel array to the periphery.
  • the substantial center of the light receiving surface of the photoelectric conversion unit is shifted in the first direction from the center of the first arrangement cell, and the focal point of the first lens is the center of the second arrangement cell.
  • the second lens may be formed such that a focal position is shifted from the center of the second arrangement cell in the first direction.
  • the second lens may be an upward convex lens.
  • the second lens may be a downward convex lens.
  • the distance between the surface of the photoelectric conversion unit and the first lens and the distance between the surface of the photoelectric conversion unit and the second lens can be made smaller than in the case of using an upward convex lens. Thereby, it becomes easy to condense incident light to a photoelectric conversion part.
  • the method for manufacturing a solid-state imaging device is a method for manufacturing a solid-state imaging device including a plurality of pixels arranged in a matrix, wherein each of the plurality of pixels photoelectrically converts light into an electrical signal. And a first lens that collects incident light, and a second lens that collects incident light collected by the first lens on the photoelectric conversion unit.
  • the focal positions of the first lens and the second lens are shifted from the center of the pixel toward the substantial center of the light receiving surface of the photoelectric conversion unit.
  • the solid-state imaging device manufactured by the manufacturing method according to the present invention can suppress variations in sensitivity between pixels.
  • the solid-state imaging device manufactured by the manufacturing method according to the present invention can suppress the reduction of the area of the first lens due to the shift of the focal position by using the asymmetric first lens.
  • the first lens forming step is line symmetric with respect to a line in the first direction including the center of the pixel as a center line, and a line in a direction perpendicular to the first direction including the center of the pixel.
  • a reflow step of forming a lens is line symmetric with respect to a line in the first direction including the center of the pixel as a center line, and a line in a direction perpendicular to the first direction including the center of the pixel.
  • the mask is used to pattern the material of the first lens into a pentagon obtained by cutting out one of the corners of the rectangle, and one of the corners of the rectangle is opposite to the first direction. It may be the corner of the direction.
  • the asymmetrical first lens can be easily manufactured.
  • the present invention can provide a solid-state imaging device capable of suppressing variations in sensitivity between pixels and a manufacturing method thereof.
  • FIG. 1 is a circuit diagram showing a configuration of a unit cell of the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 2 is a plan view of the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 3 is a cross-sectional view of the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 4 is a plan view showing an arrangement example of the photodiodes in the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 5A is a plan view showing an arrangement example of the top lens in the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 1 is a circuit diagram showing a configuration of a unit cell of the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 2 is a plan view of the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 3 is a cross-sectional
  • FIG. 5B is a plan view showing an arrangement example of top lenses in a modification of the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 6 is a diagram illustrating an arrangement example of the inner lenses in the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 7A is a diagram for explaining a method of manufacturing the in-layer lens in the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 7B is a diagram for explaining a method of manufacturing the in-layer lens in the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 7C is a diagram for explaining a method of manufacturing the in-layer lens in the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 7A is a diagram for explaining a method of manufacturing the in-layer lens in the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 7B is a diagram for explaining a
  • FIG. 7D is a diagram for explaining a method of manufacturing the in-layer lens in the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 8A is a plan view showing a resist pattern used for forming a top lens in the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 8B is a plan view of the top lens in the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 9A is a diagram for explaining a method of manufacturing a top lens in the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 9B is a diagram for explaining the method of manufacturing the top lens in the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 9A is a diagram for explaining a method of manufacturing a top lens in the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 9B is a diagram for explaining the method of manufacturing the top lens in
  • FIG. 10A is a plan view of the solid-state imaging device according to Embodiment 1 of the present invention when the top lens is not in contact.
  • FIG. 10B is a cross-sectional view of the solid-state imaging device according to Embodiment 1 of the present invention when the top lens is not in contact.
  • FIG. 10C is a plan view when the top lens is in contact with the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 10D is a cross-sectional view of the solid-state imaging device according to Embodiment 1 of the present invention when the top lens contacts.
  • FIG. 11 is a graph showing the relationship between the area of the region where the top lens is not formed and the light collection rate in the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 12 is a plan view of the top lens in the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 13 is a cross-sectional view of a modified example of the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 14 is a diagram showing a schematic configuration of an imaging apparatus according to Embodiment 2 of the present invention.
  • FIG. 15A is a plan view showing the arrangement in the pixel array of the intralayer lens according to Embodiment 2 of the present invention.
  • FIG. 15B is a plan view showing the arrangement of the top lens in the pixel array according to Embodiment 2 of the present invention.
  • FIG. 15A is a plan view showing the arrangement in the pixel array of the intralayer lens according to Embodiment 2 of the present invention.
  • FIG. 15B is a plan view showing the arrangement of the top lens in the pixel array according to Embodiment 2 of the present invention.
  • FIG. 16 is a cross-sectional view of the periphery of the pixel array of the solid-state imaging device according to Embodiment 2 of the present invention.
  • FIG. 17 is a circuit diagram showing a configuration of a unit pixel of a conventional solid-state imaging device.
  • FIG. 18 is a cross-sectional view illustrating a configuration of an imaging region in a conventional solid-state imaging device.
  • FIG. 19 is a diagram schematically illustrating a connection relationship between constituent elements of a unit pixel in a conventional solid-state imaging device.
  • the solid-state imaging device according to Embodiment 1 of the present invention is a MOS image sensor (CMOS image sensor).
  • the solid-state imaging device 100 according to Embodiment 1 of the present invention has a 4-pixel 1-cell structure.
  • FIG. 1 is a circuit diagram showing a structure of a unit cell 110 in the solid-state imaging device 100 according to the embodiment of the present invention.
  • the unit cell 110 includes four unit pixels 101A to 101D, a reset transistor 120, a vertical selection transistor 121, and an amplification transistor 122. Note that the four unit pixels 101A to 101D are referred to as unit pixels 101 when they are not particularly distinguished.
  • the unit cell 110 shown in FIG. 1 includes a common FD unit 114 for the four unit pixels 101A to 101D.
  • the reset transistor 120, the vertical selection transistor 121, and the amplification transistor 122 are shared by the four unit pixels 101A to 101D.
  • the unit pixels 101A to 101D each include a photodiode 111 and a charge transfer gate 112.
  • the photodiode 111 is a photoelectric conversion unit that converts incident light into signal charges (electrons) and accumulates the converted signal charges.
  • the gate electrode of the charge transfer gate 112 is connected to the read signal line 113.
  • the charge transfer gate 112 converts the signal charge accumulated in the photodiode 111 based on the readout pulse applied to the readout signal line 113.
  • the transistor transferred to the unit 114.
  • the FD unit 114 is connected to the drains of the charge transfer gates 112 of the four unit pixels 101A to 101D.
  • the FD unit 114 is connected to the gate electrode of the amplification transistor 122.
  • the amplification transistor 122 impedance-converts the potential change of the FD unit 114 into a voltage signal and outputs the converted voltage signal to the vertical signal line 133.
  • the gate electrode of the vertical selection transistor 121 is connected to the vertical selection line 131.
  • the vertical selection transistor 121 drives the amplification transistor 122 for a predetermined period by turning on or off based on a vertical selection pulse applied to the vertical selection line 131.
  • the gate electrode of the reset transistor 120 is connected to the vertical reset line 130.
  • the reset transistor 120 resets the potential of the FD unit 114 to the potential of the power supply line 132 based on the vertical reset pulse applied to the vertical reset line 130.
  • the solid-state imaging device 100 includes a vertical scanning circuit 140 and a horizontal scanning circuit 141 as in the solid-state imaging device 500 shown in FIG.
  • the solid-state imaging device 100 includes a plurality of unit pixels 101 (unit cells 110) arranged in a matrix.
  • the vertical scanning circuit 140 and the horizontal scanning circuit 141 scan the plurality of unit pixels 101 once during one cycle.
  • the vertical scanning circuit 140 outputs a vertical selection pulse to one vertical selection line 131 for a certain period during one cycle, so that the unit cells 110 of the row corresponding to the vertical selection line 131, that is, A set of four unit pixels 101A to 101D is selected.
  • the signal charges accumulated in the photodiodes 111 of the unit pixels 101A to 101D are sequentially transferred to the FD unit 114 based on the readout pulse applied to the readout signal line 113.
  • the signal charge transferred to the FD unit 114 is converted into a voltage signal by the amplification transistor 122, and the converted voltage signal is sequentially output to the vertical signal line 133.
  • the horizontal scanning circuit 141 selects the horizontal selection transistor 123 by sequentially outputting a horizontal selection pulse to each horizontal selection line 134 during a certain period.
  • the selected horizontal selection transistor 123 outputs the output signal of the connected vertical signal line 133 to the horizontal signal line 135.
  • the vertical scanning circuit 140 When the scanning of all the unit pixels 101 in one row is completed by the horizontal scanning circuit 141, the vertical scanning circuit 140 outputs a vertical selection pulse to the vertical selection line 131 in the next row. Next, similarly to the above, each unit pixel 101 in a new row is scanned.
  • the output signals of all the unit pixels 101 are output to the horizontal signal line 135 in time series.
  • the solid-state imaging device 100 can reduce the number of transistors per unit pixel 101 by having a 4-pixel 1-cell configuration. Thereby, the solid-state imaging device 100 can sufficiently secure the light receiving area of the photodiode 111.
  • FIG. 2 is a plan view of the imaging region of the solid-state imaging device 100.
  • FIG. 3 is a cross-sectional view of the unit pixels 101A, 101B, 101E, and 101F on the F1-F2 plane of FIG.
  • the same symbols (a, b, c, d,... X) are attached to the photodiodes 111 of the four unit pixels 101 included in one unit cell 110. Further, in order to indicate the position of the unit pixel 101, the origin (0, 0) is taken in the lower left, and a set of x (row number) indicating the vertical position and y (column number) indicating the horizontal position ( x, y) shall be used.
  • the dummy transistor 125 shown in FIG. 2 is a gate electrode provided in order to improve the optical characteristics between the adjacent unit pixels 101.
  • the gate shape of the transistor arrangement region where the vertical selection transistor 121 and the amplification transistor 122 are arranged and the transistor arrangement region where the reset transistor 120 and the dummy transistor 125 are arranged are the same or substantially the same. By doing so, the difference in sensitivity between pixels can be reduced. Thus, by equalizing the influence of reflection of light incident on the gate electrode, the difference in sensitivity between pixels can be reduced. Note that the dummy transistor 125 is not necessarily required.
  • the solid-state imaging device 100 includes a semiconductor substrate 201, an insulating layer 202, wirings 203A to 203C, light shielding films 204A and 204B, a passivation film 205, an intralayer lens 206, and a planarizing film. 207, a color filter 208, a top lens 210, and a low refractive index film 211.
  • the semiconductor substrate 201 is, for example, a silicon substrate.
  • the insulating layer 202 is formed on the semiconductor substrate 201 and is made of, for example, silicon oxide.
  • the wirings 203A to 203C are made of, for example, aluminum, copper, or titanium.
  • the first layer wiring 203A is a global wiring for applying a potential to a substrate contact (not shown), the charge transfer gate 112, and the like.
  • the second-layer wiring 203B and the third-layer wiring 203C are local wiring for connecting transistors between the unit pixels 101, and global wiring used for the vertical selection line 131, the vertical signal line 133, and the like. It is.
  • the wirings 203A to 203C are laid out so as to avoid the top of the photodiode 111 as much as possible. Thereby, the aperture ratio of the photodiode 111 can be increased, so that a large amount of light can be introduced into the photodiode 111.
  • the light shielding films 204A and 204B are formed on the wiring 203A and the wiring 203B, respectively, and prevent light from entering the circuit section such as a transistor.
  • the passivation film 205 is a protective film formed on the insulating layer 202 and made of, for example, silicon nitride.
  • the intralayer lens 206 is an upward convex lens.
  • the planarizing film 207 is formed on the inner lens 206, and is formed of, for example, silicon oxide.
  • the color filter 208 is formed on the planarizing film 207 and transmits only light in a predetermined frequency band.
  • the top lens 210 is an on-chip lens formed on the color filter 208.
  • the low refractive index film 211 is formed on the top lens 210.
  • the refractive index of the low refractive index film 211 is lower than the refractive index of the top lens 210.
  • the low refractive index film 211 has a refractive index of about 1.2 to 1.5
  • the top lens 210 has a refractive index of about 1.5 to 1.8.
  • the low refractive index film 211 is formed of an acrylic resin or a fluorinated resin.
  • the top lens 210 condenses the incident light 310 transmitted through the low refractive index film 211.
  • the in-layer lens 206 condenses the incident light 310 condensed by the top lens 210 and transmitted through the color filter 208 and the flattening film 207 on the photodiode 111.
  • the MOS image sensor has a larger number of wiring layers than the CCD image sensor.
  • the MOS image sensor has a larger distance between the surface of the semiconductor substrate 201 and the intralayer lens 206 and a distance between the surface of the semiconductor substrate 201 and the top lens 210 than the CCD image sensor.
  • the height of the inner lens 206 is about 0.7 ⁇ m, and the height of the top lens 210 is about 0.5 ⁇ m.
  • the condensing position is much higher than the surface of the semiconductor substrate 201. Therefore, in the MOS image sensor, the height of the inner lens 206 is set to about 0.3 ⁇ m, and the height of the top lens 210 is set to about 0.2 ⁇ m.
  • the top lens 210 is formed by a heat flow method to be described later.
  • the heat flow method it is extremely difficult to reduce the height of the top lens 210 to 0.5 ⁇ m or less. Therefore, the refractive index of the top lens 210 can be effectively reduced by applying the low refractive index film 211 having a refractive index lower than that of the top lens 210 on the top lens 210.
  • the low refractive index film 211 may not be formed, it is preferable to form the low refractive index film 211 in the case of the structure of the solid-state imaging device 100 according to the present invention.
  • the n-type region of the photodiode 111 and the n-type region of the FD portion 114 are provided so as to be connected via the channel region of the charge transfer gate 112 so that efficient signal charge transfer can be performed. Yes.
  • the center of the photodiode 111 is substantially the same as the center 301 of the unit pixel 101, but the charge transfer gate 112 is formed so as to cover a part on the photodiode 111, thereby condensing the photodiode 111. Is shifted from the center 301 of the unit pixel 101.
  • the arrangement of the centroids 302 of each photodiode 111 is an arrangement in which a section with a large pitch (section including the boundary position 321) and a section with a small pitch (section including the boundary position 322) appear alternately.
  • the unit pixel 101 ⁇ / b> A and the unit pixel 101 ⁇ / b> B share the FD unit 114 at the boundary position 321, so the pitch of the centroid 302 of the photodiode 111 is large.
  • the unit pixel 101B and the unit pixel 101E do not share the FD portion 114 at the boundary position 322, the pitch of the centroid 302 of the photodiode 111 is small.
  • FIG. 4 is a plan view showing an arrangement example of the photodiodes 111 in the unit pixel 101.
  • the center 301 of the unit pixel 101 and the center of gravity 302 of the photodiode 111 do not match.
  • the center of gravity 302 of the photodiode 111 is the center of the light receiving surface of the photodiode 111, that is, the center of gravity of the region of the surface of the photodiode 111 that is not covered by the charge transfer gate 112.
  • the arrangement of the charge transfer gates 112 in the adjacent unit pixels 101 is different.
  • the positions of the centroids 302 of the photodiodes 111 are also different.
  • the center of the photodiode 111 and the center 301 of the unit pixel 101 substantially coincide with each other.
  • the center of the photodiode 111 is the center of the photodiode 111 including a region where the charge transfer gate 112 is formed.
  • FIG. 5A is a plan view showing an arrangement example of the top lens 210.
  • the center of gravity 303 of the top lens 210 substantially coincides with the center of gravity 302 of the photodiode 111.
  • the center of gravity 303 of the top lens 210 is the optical center of gravity of the top lens 210, that is, the center position (focus position (light) of light that is perpendicular to the photodiode 111 is collected by the top lens 210. Axis)).
  • the arrangement position (center position) of the top lens 210 is substantially the same, and by changing the shape (orientation) of the top lens 210, the top lens 210 The center of gravity 303 is adjusted.
  • the shape of the top lens 210 is perpendicular to the surface of the semiconductor substrate 201 (photodiode 111) and perpendicular to the direction in which the center of gravity 303 of the top lens 210 is displaced (hereinafter referred to as a displacement direction), and is a unit pixel.
  • 101 is asymmetric with respect to the plane including the center 301.
  • the shape of the top lens 210 is symmetric with respect to a plane that is perpendicular to the surface of the semiconductor substrate 201, is horizontal in the displacement direction, and includes the center 301 of the unit pixel 101.
  • the invalid area where the top lens 210 is not formed is small in the displacement direction (the direction from the center 301 of the unit pixel 101 to the center of gravity 303 of the top lens 210) and large in the direction opposite to the displacement direction. That is, the invalid area at the end of the unit pixel 101 opposite to the displacement direction is wider than the invalid area at the end of the unit pixel 101 in the displacement direction.
  • the arrangement position may be changed.
  • FIG. 5B is a plan view showing an arrangement example of the top lens 210 when the shape and arrangement position of the top lens 210 are changed.
  • the center lens 303 of the top lens 210 is made to substantially coincide with the center of gravity 302 of the photodiode 111 by adjusting the shape of the top lens 210 after the arrangement position of the top lens 210 is shifted in the displacement direction. May be.
  • FIG. 6 is a plan view showing an arrangement example of the in-layer lenses 206.
  • the center of gravity 304 of the in-layer lens 206 substantially coincides with the center of gravity 302 of the photodiode 111.
  • the center of gravity 304 of the in-layer lens 206 is the optical center of gravity of the in-layer lens 206, that is, the center position (focus position (light) of light that is perpendicular to the photodiode 111 by the in-layer lens 206. Axis)).
  • the centroid 304 of the in-layer lens 206 is obtained by making the shape of the in-layer lens 206 substantially the same in the plurality of unit pixels 101 and changing the arrangement position (center position) of the in-layer lens 206. Is adjusted.
  • the shape of the intralayer lens 206 is point-symmetric with respect to the center of gravity 304 of the intralayer lens 206.
  • the shape may be changed after making the arrangement position of the intralayer lens 206 substantially the same, or both the shape and the arrangement position may be changed.
  • the photodiode 111 of the unit pixel (i, j) 101A and the photodiode 111 of the unit pixel (i + 1, j + 1) 101B are arranged point-symmetrically with the FD portion 114 as the center.
  • the photodiodes 111 in the i-th row are arranged point-symmetrically around the photodiode in the right column and the FD portion 114 in the (i + 1) -th row, respectively.
  • the center of gravity 304 of the in-layer lens 206 and the center of gravity 303 of the top lens 210 are displaced. Specifically, the center of gravity 304 of the inner lens 206 and the center of gravity 303 of the top lens 210 are shifted in the same direction as the direction in which the photodiode 111 is displaced. In this case, the deviation of the centroid 304 of the in-layer lens 206 and the centroid 303 of the top lens 210 between the unit pixel 101 in the i-th row and the photodiode 111 in the right column of the (i + 1) -th row. The direction is the opposite direction.
  • the distance between the center of gravity 302 of the photodiode 111 is narrowed, the distance between the center of gravity 303 of the top lens 210 and the center of gravity 304 of the intralayer lens 206 is also narrowed, and conversely, the distance between the centers of gravity 302 of the photodiode 111 is increased.
  • the distance between the center of gravity 303 of the top lens 210 and the center of gravity 304 of the intralayer lens 206 is also increased.
  • the top lens 210 and the center of gravity 303 of the top lens 210 and the center of gravity 304 of the in-layer lens 206 substantially coincide with the center of gravity 302 of the photodiode 111.
  • An in-layer lens 206 is disposed.
  • incident light 310 incident on the top lens 210 parallel to the optical axis is collected in a region near the center of gravity 302 of the photodiode 111 by the top lens 210 and the in-layer lens 206. Therefore, the solid-state imaging device 100 can effectively collect incident light.
  • the center of gravity 302 of the photodiode 111, the center of gravity 303 of the top lens 210, and the center of gravity 304 of the in-layer lens 206 substantially coincide with each other, so that the light collected by the top lens 210 and the in-layer lens 206 is collected. Is less likely to be vignetted (reflected) or absorbed by the charge transfer gate 112 above the shared region of the semiconductor substrate 201. Therefore, the variation in the amount of incident light between the unit pixels 101 can be reduced. Thereby, the solid-state imaging device 100 has the same sensitivity in each unit pixel 101, and preferable imaging characteristics can be obtained. Furthermore, the solid-state imaging device 100 can reduce the color mixture caused by the vignetting light leaking into the adjacent unit pixels 101 by minimizing the light vignetting.
  • the solid-state imaging device 100 shifts the center of gravity 303 of the top lens 210 in the displacement direction by making the top lens 210 asymmetrical.
  • the top lens 210 is placed at the center 301 of the unit pixel 101. It is necessary to reduce the area of the top lens 210 compared to the case where it is arranged.
  • the solid-state imaging device 100 by using the asymmetrical top lens 210, it is not necessary to shift the arrangement position (or the shift amount can be reduced). Therefore, the solid-state imaging device 100 can suppress the reduction of the area of the top lens 210 due to the shift of the center of gravity 303 of the top lens 210.
  • the wirings 203A to 203C may be arranged so as to be deviated in accordance with the center of gravity 302 of the photodiode 111. As a result, vignetting caused by the wirings 203A to 203C can be reduced.
  • center of gravity 303 of the top lens 210 and the center of gravity 302 of the photodiode 111 do not necessarily coincide with each other, and the center of gravity 304 of the intralayer lens 206 and the center of gravity 302 of the photodiode 111 do not necessarily coincide with each other.
  • the center of gravity 303 of the top lens 210 and the center of gravity 304 of the in-layer lens 206 may be shifted from the center of the photodiode 111 (the center 301 of the unit pixel 101) to the side closer to the center of gravity 302 of the photodiode 111.
  • the incident light quantity of the photodiode 111 can be increased, and the sensitivity variation between the unit pixels 101 can be reduced.
  • the center of gravity 304 of the in-layer lens 206 and the center of gravity 303 of the top lens 210 deviate from the center of the photodiode 111 in the direction opposite to the direction in which the charge transfer gate 112 is disposed.
  • the center of gravity 303 and the layer of the top lens 210 are opposite to the direction in which the charge transfer gate 112 is formed in the diagonal direction of the unit pixel 101 (upper left of the upper left unit pixel 101).
  • the center of gravity 304 of the inner lens 206 is shifted.
  • the gravity center 303 of the top lens 210 and the gravity center 304 of the in-layer lens 206 may be shifted in the opposite direction to the direction in which the charge transfer gate 112 is formed in the diagonal direction of the photodiode 111.
  • the center of the photodiode 111 of the top lens 210 (unit pixel 101).
  • the shift amount d2 from the center 301) and the shift amount d3 from the center of the photodiode 111 of the in-layer lens 206 are, for example, d1 / 2.
  • the shift amounts d2 and d3 are not necessarily the same.
  • the amount of shift between the center of gravity 303 of the top lens 210 and the center of gravity 304 of the intralayer lens 206 is made different so that the focal position when the light is collected by two lenses substantially coincides with the center of gravity 302 of the photodiode 111. May be.
  • the shift amounts d2 and d3 may satisfy the relationship of d3> d1 / 2> d2 or d2> d1 / 2> d3.
  • the manufacturing method other than the inner lens 206 and the top lens 210, which is a characteristic part of the present invention, is the same as the conventional method, and a description thereof is omitted.
  • FIG. 7A to 7D are views for explaining a method of manufacturing the in-layer lens 206.
  • FIG. 7A to 7D are views for explaining a method of manufacturing the in-layer lens 206.
  • a silicon nitride layer 401 is formed on the passivation film 205.
  • a resist 402 is formed on the silicon nitride layer 401.
  • a convex resist 403 is formed as shown in FIG. 7B.
  • a convex inner lens 206 is formed as shown in FIG. 7C.
  • the area of the in-layer lens 206 increases as the distance M2 between the in-layer lenses 206 after the etch back decreases. Thereby, a condensing rate improves.
  • a deposited film 206B may be deposited again on the inner lens 206 after the inner lens 206 is etched back.
  • the distance between the inner lens 206 (the inner lens 206 and the deposited film 206B) is reduced from M2 to M3, so that the area of the inner lens 206 can be increased.
  • the distance M3 between the inner lenses 206 is preferably about 300 nm. If the distance M3 is further increased, the curvature of the end of the inner lens 206 decreases as compared with the vicinity of the center of the inner lens 206. Thereby, the condensing rate of the in-layer lens 206 is lowered.
  • FIG. 8A, 8B, 9A, and 9B are views for explaining a method of manufacturing the top lens 210.
  • FIG. 8A, 8B, 9A, and 9B are views for explaining a method of manufacturing the top lens 210.
  • FIG. 8A is a plan view showing a resist pattern used for forming the top lens 210.
  • FIG. 9A is a cross-sectional view taken along the G1-G2 plane of FIG. 8A.
  • FIG. 8B is a plan view of the top lens 210 formed by the manufacturing method.
  • FIG. 9B is a cross-sectional view taken along plane H1-H2 in FIG. 8B.
  • the top lens 210 is formed using a heat flow method.
  • the positive resist mask layout 412 is a line whose center line is a diagonal line (a line in the displacement direction including the center 301 of the unit pixel 101) that is horizontal to the displacement direction of the unit pixel 101. It is symmetrical and has an asymmetric shape with a diagonal line perpendicular to the displacement direction (a line in a direction perpendicular to the displacement direction including the center 301 of the unit pixel 101) as the center line.
  • the mask layout 412 has a pentagonal shape obtained by cutting out one of the diagonal corners.
  • one of the square corners to be cut out is an angle located in the direction opposite to the displacement direction.
  • the heat treatment temperature for reflow is set too high, the lens material is completely melted and the shape is uniform in all directions, so there is no deviation. Therefore, reflow is performed at the optimum heat treatment temperature (about 200 degrees). Need to do.
  • a gray scale mask when forming such an asymmetric lens shape.
  • a plurality of unit patterns are two-dimensionally formed on the gray scale mask.
  • Each of the unit patterns is a mask having an asymmetric transmittance distribution.
  • the production of a gray scale mask requires advanced techniques and is extremely expensive.
  • a lens having an asymmetric shape can be formed at low cost.
  • the lens When the lens is composed of two layers, a top lens 210 and an in-layer lens 206, the top lens 210 guides light incident on the pixel to the in-layer lens 206, and the in-layer lens 206 guides light to the photodiode 111.
  • the top lens 210 is formed so that the adjacent top lenses 210 are in contact with each other in order to guide the light incident on the pixels to the in-layer lens 206 at the highest possible rate.
  • FIG. 10A is a plan view when the top lens 210 is not in contact between adjacent unit pixels.
  • 10B is a cross-sectional view of the I1-I2 plane of FIG. 10A.
  • FIG. 10C is a plan view when the top lens 210 is in contact between adjacent unit pixels.
  • FIG. 10D is a cross-sectional view of the J1-J2 plane of FIG. 10C.
  • the lens shape is circular for the sake of explanation.
  • the curvature of the lens becomes small particularly near the boundary of the unit pixel 101. Therefore, the curvature of the top lens 210 is smaller in the horizontal and vertical directions (vertical and horizontal directions in FIGS. 10A and 10C) than in the diagonal direction (oblique directions in FIGS. 10A and 10C).
  • the area B of the region where the lens is not formed when the top lens 210 is in contact is smaller than the area A of the region where the lens is not formed when the top lens 210 is not in contact. That is, the area of the top lens 210 can be increased by bringing the top lens 210 into contact.
  • FIG. 11 is a graph showing the relationship between the area of the region where the top lens 210 is not formed and the light collection rate.
  • the light collection rate is improved up to a predetermined area.
  • the area where the top lens 210 is not formed is made a predetermined area or less, the adjacent top lens 210 comes into contact. Thereby, the curvature of the top lens 210 falls in the part which the top lens 210 contacts. Thereby, the condensing rate of the top lens 210 falls.
  • the focal position in the horizontal direction approaches the top surface of the substrate, and light is reflected by the first layer wiring 203A and the second layer wiring 203B, thereby reducing the light collection rate. . That is, there is an optimum value for the area of the region where the top lens 210 is not formed. Usually, in the case of a 1.75 ⁇ m cell, the optimum value of the area is about 0.09 ⁇ m 2 . That is, the optimal ratio of the area occupied by the region where the top lens is not formed to the entire cell area is about 3% to 5%.
  • the light collection rate can be maximized.
  • FIG. 12 is a plan view of the top lens 210.
  • the top lens 210 is in contact with the top lens 210 of the adjacent unit pixel 101 at the two-way boundaries 420 and 421, and between the adjacent unit pixels 101 at the remaining two-way boundaries 422 and 423. It does not contact the top lens 210.
  • the top lens 210 is in contact with the top lenses 210 of the two unit pixels 101 located in the displacement direction among the top lenses 210 of the four adjacent unit pixels 101, and in the direction opposite to the displacement direction. It does not contact the top lens 210 of the two unit pixels 101 located.
  • the solid-state imaging device 100 according to the embodiment of the present invention has been described above, but the present invention is not limited to this embodiment.
  • the in-layer lens 206 may be a concave (downward convex) lens.
  • FIG. 13 is a cross-sectional view illustrating a configuration of a modified example of the solid-state imaging device 100 according to Embodiment 1 of the present invention.
  • the solid-state imaging device 100 may include a concave inner lens 206 ⁇ / b> A.
  • a concave lens By using a concave lens, the distance between the surface of the semiconductor substrate 201 and the intralayer lens 206A and the distance between the surface of the semiconductor substrate 201 and the top lens 210 can be made smaller than when a convex lens is used. Specifically, the distance between the surface of the semiconductor substrate 201 and the intralayer lens 206A can be shortened from 4 ⁇ m to 3 ⁇ m, and the distance between the surface of the semiconductor substrate 201 and the top lens 210 can be shortened from 5 ⁇ m to 4 ⁇ m. This makes it easy to collect incident light on the photodiode 111.
  • the solid-state imaging device 100 uses the two lenses of the top lens 210 and the in-layer lens 206, but a single lens may be used.
  • the solid-state imaging device 100 may use three or more lenses.
  • the solid-state imaging device 100 has a 4-pixel 1-cell configuration, but the present invention is not limited to this.
  • the solid-state imaging device 100 may have a two-pixel one-cell configuration, or a configuration in which four or more pixels are one cell.
  • the present invention may be applied to a CCD image sensor.
  • FIG. 14 shows a schematic configuration of an imaging apparatus (camera) equipped with the solid-state imaging apparatus 100 according to Embodiment 1 of the present invention, and particularly shows a relationship among the camera lens 430, the pixel array 431, and the incident angle of light rays. is there.
  • the top lens 210 and the inner layer are increased from the central portion 432 of the pixel array 431 toward the peripheral portions 433 and 434 of the pixel array 431 where the oblique component of incident light increases.
  • the solid-state imaging device 100 in which the positions of the lens 206 and the wirings 203A to 203C are shifted toward the center 432 side of the pixel array 431 with respect to the center 301 of the unit pixel 101 will be described.
  • FIG. 15A is a plan view showing the arrangement of the in-layer lenses 206 in the pixel array 431.
  • FIG. 15B is a plan view showing the arrangement of the top lens 210 in the pixel array 431.
  • the 15A and 15B are unit cells for the lower layer components (the photodiode 111, the charge transfer gate 112, etc.) included in the unit pixel 101.
  • the second arrangement cell 442 is a unit cell for the upper layer components (the top lens 210, the inner lens 206, the wirings 203A to 203C, etc.) included in the unit pixel 101.
  • the lower layer component is arranged based on the first arrangement cell 441, and the upper layer component is arranged based on the second arrangement cell 442.
  • the first arrangement cell 441 and the second arrangement cell 442 overlap at the center of the pixel array 431, and the second arrangement cell 442 increases from the center of the pixel array 431 toward the periphery. Is shifted to the center side of the pixel array 431 with respect to the center of the first arrangement cell 441. In other words, the inner lens 206 and the top lens 210 are shifted toward the center of the pixel array 431 as they approach the periphery.
  • FIG. 16 is a cross-sectional view of the vicinity of the L1-L2 plane in FIGS. 15A and 15B, which is the peripheral portion of the pixel array 431.
  • the solid-state imaging device 100 As shown in FIG. 16, by shifting the in-layer lens 206 and the top lens 210 toward the center of the pixel array 431, oblique light can be easily incident on the center of gravity of the photodiode 111. Thereby, the solid-state imaging device 100 according to Embodiment 2 of the present invention can increase the light collection rate.
  • the center of gravity 304 of the in-layer lens 206 and the center of gravity 303 of the top lens 210 are displaced in the direction of the center of gravity 302 of the photodiode 111.
  • the centroid 302 of the photodiode 111 is shifted in the displacement direction from the center of the first arrangement cell 441 of the unit pixel 101
  • the centroid 303 of the top lens 210 has the centroid 303 of the unit pixel 101.
  • the inner lens 206 is formed so that the center of gravity 304 is shifted from the center of the second arrangement cell 442 of the unit pixel 101 in the deviation direction.
  • the arrangement of the in-layer lens 206 and the top lens 210 is also arranged every other row in the order of large, small, large, small,... With respect to the center direction of the pixel array 431.
  • the arrangement position of the top lens 210 is shifted toward the center part 432 side of the pixel array 431 as it goes from the central part of the pixel array 431 to the peripheral part.
  • the shape of the top lens 210 is adjusted. By doing so, the center of gravity 303 of the top lens 210 may be shifted toward the center 432 side of the pixel array 431. Furthermore, the shape and arrangement position of the top lens 210 may be adjusted.
  • the present invention can be applied to a solid-state imaging device, and in particular to a video camera, a digital still camera, a facsimile, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

 本発明に係る固体撮像装置(100)は、行列状に配置された複数の単位画素(101)を備える固体撮像装置であって、複数の単位画素(101)は、それぞれ、光を電気信号に光電変換するフォトダイオード(111)と、入射光を集光するトップレンズ(210)と、トップレンズ(210)により集光された入射光をフォトダイオード(111)に集光する層内レンズ(206)とを備え、フォトダイオード(111)の重心(302)は、単位画素(101)の中心(301)から第1方向にずれており、トップレンズ(210)は、重心(303)が単位画素(101)の中心(301)から第1方向にずれるように、非対称な形状で形成され、層内レンズ(206)は、重心(304)が単位画素(101)の中心(301)から第1方向にずれるように形成される。

Description

固体撮像装置及びその製造方法
 本発明は、固体撮像装置及びその製造方法に関し、特に、行列状に配置された複数の画素を備える固体撮像装置に関する。
 固体撮像装置として、一般的にCMOS(Complementary Metal Oxide Semiconductor)イメージセンサと、CCD(Charge Coupled Device)イメージセンサとが知られている。CMOSイメージセンサの製造プロセスは、CMOSのLSIのプロセスと似ているため、CCDイメージセンサに比べ、同じチップに複数の回路を積載できる利点がある。例えば、CMOSイメージセンサは、A/D変換回路、及びタイミングジェネレーターなどを同じチップに積載できる。
 一方で、CMOSイメージセンサは、CCDイメージセンサに比べて、フォトダイオードへの入射光量が低下するため、優れた感度特性を確保することが困難な場合がある。
 なぜなら、CMOSイメージセンサは、複数の回路を搭載するために、複数の配線層(通常は2層~4層)を形成する必要がある。この金属配線によって光が遮られることで、フォトダイオードに入射光が届きにくくなるからである。
 そこで、フォトダイオード上に2個のレンズを形成することにより、入射光をより高効率で集光させる構造が提案されている(例えば、特許文献1参照)。
 以下、従来の固体撮像装置について説明する。
 図17は、従来の固体撮像装置の単位画素の回路構成を示す図である。
 図17に示す固体撮像装置500は、単位画素510と、水平選択トランジスタ123と、垂直走査回路140と、水平走査回路141とを備える。なお、図17では、1つの単位画素510のみを記載しているが、固体撮像装置500は、行列状に配置された複数の単位画素510を備える。
 単位画素510は、フォトダイオード111と、電荷転送ゲート112と、フローティングディフュージョン(FD)部114と、リセットトランジスタ120と、垂直選択トランジスタ121と、増幅トランジスタ122とを備える。
 フォトダイオード111は、入射光を信号電荷(電子)に変換し、変換した信号電荷を蓄積する光電変換部である。
 電荷転送ゲート112のゲート電極は、読み出し信号線113に接続される。電荷転送ゲート112は、読み出し信号線113に印加される読み出しパルスに基づいて、フォトダイオード111に蓄積された信号電荷をFD部114に転送する。
 FD部114は、増幅トランジスタ122のゲート電極に接続される。
 増幅トランジスタ122は、FD部114の電位変化を電圧信号にインピーダンス変換し、変換した電圧信号を垂直信号線133に出力する。
 垂直選択トランジスタ121のゲート電極は垂直選択線131に接続される。垂直選択トランジスタ121は、垂直選択線131に印加される垂直選択パルスに基づいてON又はOFFし、所定の期間だけ増幅トランジスタ122を駆動する。
 リセットトランジスタ120のゲート電極は、垂直リセット線130に接続される。リセットトランジスタ120は、垂直リセット線130に印加される垂直リセットパルスに基づいて、FD部114の電位を電源線132の電位にリセットする。
 垂直走査回路140及び水平走査回路141は、1サイクルの間に複数の単位画素510を1度ずつ走査する。
 具体的には、垂直走査回路140は、1サイクルの間の一定期間、1つの垂直選択線131に垂直選択パルスを出力することにより、当該垂直選択線131に対応する行の単位画素510を選択する。選択された各単位画素510の出力信号(電圧信号)がそれぞれの垂直信号線133に出力される。
 水平走査回路141は、一定期間の間に各水平選択線134に水平選択パルスを順次出力することで水平選択トランジスタ123を選択する。
 選択された水平選択トランジスタ123は、接続される垂直信号線133の出力信号を水平信号線135に出力する。
 水平走査回路141により、1つの行の全単位画素510の走査が終了すると、垂直走査回路140は、次の行の垂直選択線131に垂直選択パルスを出力する。次に、上記と同様に、新しい行の各画素が走査される。
 以上の動作を繰り返して、1サイクルの間に全単位画素510が1度ずつ走査されることで、全単位画素510の出力信号が時系列的に水平信号線135に出力される。
 図18は、従来の固体撮像装置500の撮像領域の構成を示す断面図である。
 図19は、単位画素510の構成要素の接続関係を模式的に示す図である。
 図18に示すように、固体撮像装置500は、半導体基板201と、絶縁層202と、配線203A~203Cと、遮光膜204A及び204Bと、パッシベーション膜205と、層内レンズ606と、平坦化膜207と、カラーフィルタ208と、トップレンズ610とを備える。
 フォトダイオード111、電荷転送ゲート112、及びFD部114は、半導体基板201に形成される。
 絶縁層202は、半導体基板201の上に形成される。複数層の配線203A~203Cは、絶縁層202内に形成される。配線203A~203Cは、例えば、アルミニウムで形成される。
 遮光膜204A及び204Bは、それぞれ配線203A及び配線203Bの上に形成され、トランジスタ等の回路部への光の入射を防止する。遮光膜204A及び204Bは、配線製造時に形成される配線保護膜である。
 通常、配線203A~203Cが、Cuなど腐食しやすい材料で形成される場合、製造時に配線203A~203Cを保護するためにSiN膜、又はSiON膜などの保護膜が形成される。この場合、保護膜は、配線203A~203C上部全面に形成される。しかしながら、保護膜がフォトダイオード111上に形成されると、フォトダイオード111上に酸化シリコン膜と窒化シリコン膜(保護膜)との積層膜が形成される。これにより、フォトダイオード111への入射光が反射される。
 そこで、フォトダイオード111上のみは、保護膜(窒化シリコン膜)を除去することが好ましい。また、フォトダイオード111上以外の領域では、保護膜は、遮光膜として機能するので、残しておくことが好ましい。
 また、回路部に入射光310が漏れ入ると、光電変換が起こる。その結果生じた電子によって偽信号が発生し、当該偽信号がノイズとなる。遮光膜204A及び204Bを設けることにより、当該ノイズを低減できる。
 パッシベーション膜205は、絶縁層202の上に形成され、例えば、窒化シリコンで形成される。
 層内レンズ606は、パッシベーション膜205の上に形成される。
 平坦化膜207は、層内レンズ606の上に形成され、例えば、酸化シリコン、又は樹脂(アクリル系樹脂、又はフッ素系樹脂)で形成される。
 カラーフィルタ208は、平坦化膜207の上に形成される。
 トップレンズ610は、カラーフィルタ208の上に形成されるオンチップレンズである。
 図19に示すように、フォトダイオード111、FD部114及びリセットトランジスタ120を形成するn型不純物層はゲート電極下部のチャネル領域によって連結されるように設けられている。これにより、効率的な信号電荷の転送及び消去ができる。
 また、トップレンズ610及び層内レンズ606は、フォトダイオード111に入射光310を集光する。トップレンズ610及び層内レンズ606は、一定のピッチで等間隔に形成される。
 ここで、従来の固体撮像装置500では、単位画素510における、フォトダイオード111、電荷転送ゲート112、FD部114、リセットトランジスタ120、垂直選択トランジスタ121、増幅トランジスタ122、画素内配線、トップレンズ610及び層内レンズ606の相対的な位置関係は、複数の単位画素510で共通である。すなわち、各構成要素は、同じ並進対称性をもつように同じピッチで等間隔に配列される。この結果、入射光310は、各単位画素でフォトダイオード111に同じように入射することになり、単位画素510ごとのばらつきの小さい良質な画像を得ることができる。
 ところで、CMOSイメージセンサなどの増幅型固体撮像装置では、上記のように少なくとも2層、望ましくは3層以上の多層配線が必要であり、これによりフォトダイオード111の上部に作られる構造が厚くなる。例えば、フォトダイオード111の表面から最上部の3層目の配線203Cまでの高さは、画素サイズと同程度の3~5μmとなる。
 このため、被写体をレンズにより結像したうえで撮像する固体撮像装置においては、撮像領域の周辺部寄りの領域ではシェーディングが大きいという問題がある。すなわち、斜めに入射する光が遮光膜204A及び204B及び配線203A~203Cによって遮られることで、フォトダイオード111に集光される光量が減少する。これにより、画質劣化が顕著になるという問題がある。
 そこで、撮像領域の周辺部寄りの領域においては、斜めに入射する光もフォトダイオード111に集光されるように、瞳補正と称してトップレンズ610、及び遮光膜204A及び204Bの開口部の位置を補正することで、シェーディングを軽減する方法が知られている。具体的には、フォトダイオード111から見て光が入射して来る方向にトップレンズ610及び遮光膜204A及び204Bの開口部をずらして配置する。
 また、フォトダイオード111への入射光量の減少を防止するために、単位画素510内のトランジスタの面積を減少させることで、フォトダイオード111の面積の減少を抑える方法が用いられている。しかしながら、この方法で固体撮像装置の特性を保つのにも限界がある。
 これに対して、各単位画素510に必須であるフォトダイオード111及び電荷転送ゲート112以外の、従来全ての単位画素510に設けられていたFD部114、増幅トランジスタ122、垂直選択トランジスタ121、及びリセットトランジスタ120を複数の隣接する単位画素510間で共有する多画素1セル構造の固体撮像装置が提案されている。多画素1セル構造の固体撮像装置では、単位画素当りのトランジスタ数及び配線数を減らすことができる。これにより、十分なフォトダイオード111の面積を確保でき、かつ、配線によるケラレを減少できるので、単位画素の縮小化に有効に対応できる。
特開2006-114592号公報
 しかしながら、多画素1セル構造では、フォトダイオード111が等ピッチに配置されない。または、フォトダイオード111上に配置されるゲート電極により、フォトダイオードの実質的な重心位置は等ピッチに配置されない。これにより、フォトダイオード111に入射する光の中心は、フォトダイオード111の中心とは一致しない。よって、入射光量が減少することで、感度が低下する。また、入射する光の向きに応じて、単位画素510間で、フォトダイオード111への入射光量にばらつきが生じる。これにより、各単位画素510からの信号出力にばらつきが生じる。つまり、画素間で感度がばらつくという問題が生じる。
 そこで本発明は、画素間の感度のばらつきを抑制できる固体撮像装置、及びその製造方法を提供することを目的とする。
 上記目的を達成するために、本発明に係る固体撮像装置は、行列状に配置された複数の画素を備える固体撮像装置であって、前記複数の画素は、それぞれ、光を電気信号に光電変換する光電変換部と、入射光を集光する第1レンズと、前記第1レンズにより集光された入射光を前記光電変換部に集光する第2レンズとを備え、前記光電変換部の受光面の実質的な中心は、画素の中心から第1方向にずれており、前記第1レンズは、焦点の位置が画素の中心から前記第1方向にずれるように非対称な形状で形成され、前記第2レンズは、焦点の位置が画素の中心から前記第1方向にずれるように形成される。
 この構成によれば、第1レンズ及び第2レンズの焦点の位置は、画素の中心から光電変換部の受光面の実質的な中心に近づく方向にずれる。これにより、本発明に係る固体撮像装置は、光電変換部への入射光量を増加できる。
 さらに、光電変換部が等ピッチで配置されない場合、つまり、画素間で光電変換部の相対位置が異なる場合であっても、各画素において、第1レンズ及び第2レンズの焦点の位置を、光電変換部の受光面の実質的な中心に近づけることで、画素間の光電変換部への入射光量のばらつきを低減できる。つまり、本発明に係る固体撮像装置は、画素間の感度のばらつきを抑制できる。
 さらに、本発明に係る固体撮像装置は、非対称な形状の第1レンズを用いることで、焦点の位置をずらすことによる第1レンズの面積の縮小を抑制できる。
 また、前記複数の画素は、さらに、前記光電変換部の受光面の一部を覆い、前記光電変換部により光電変換された電気信号を転送するためのゲート電極を備え、前記第1方向は、前記光電変換部に対して前記ゲート電極が配置される方向と逆方向であってもよい。
 この構成によれば、画素間でゲート電極の配置位置が異なることにより、画素間で光電変換部の受光面の実質的な中心が異なる場合であっても、画素間の光電変換部への入射光量のばらつきを低減できる。
 また、前記第1レンズは、前記光電変換部の表面と垂直かつ前記第1方向と水平かつ当該画素の中心を含む面に対して対称であり、前記光電変換部の表面と垂直かつ前記第1方向と垂直かつ当該画素の中心を含む面に対して非対称であってもよい。
 また、前記各画素における前記第1方向と逆側の端部の前記第1レンズが形成されない領域は、当該画素における前記第1方向側の端部の前記第1レンズが形成されない領域より広くてもよい。
 この構成によれば、本発明に係る固体撮像装置は、焦点の位置をずらすことによる第1レンズの面積の縮小を抑制しつつ、第1レンズの焦点の位置を第1方向にずらすことができる。
 また、前記第1方向は、前記画素の対角線方向であってもよい。
 また、前記第1レンズは、隣接する4つの画素の第1レンズのうち、前記第1方向に位置する2つの画素の第1レンズと接触し、前記第1方向と逆方向に位置する2つの画素の第1レンズと接触しなくてもよい。
 この構成によれば、本発明に係る固体撮像装置は、第1レンズの集光率を向上できる。
 また、前記複数の画素において、前記第2レンズは、ほぼ同一形状であり、かつ中心位置が当該画素の中心から前記第1方向にずれるように配置されてもよい。
 この構成によれば、従来と同様の形状の第2レンズを用いて、第2レンズの焦点の位置をずらすことができる。
 また、前記第1レンズ及び前記第2レンズは、焦点の位置が当該画素の中心から前記第1方向に、前記ゲート電極が前記光電変換部の一部を覆う領域の前記ゲート電極のゲート長方向の距離の1/2に相当する距離ずれるように形成されてもよい。
 この構成によれば、第1レンズ及び第2レンズの焦点の位置を光電変換部の受光面の実質的な中心に略一致させることができる。
 また、前記第1レンズは、中心位置が画素の中心から前記第1方向にずれるように配置されてもよい。
 また、前記複数の画素は、第1画素及び第2画素を含み、前記第1画素及び第2画素において、前記第1方向は、異なる方向であってもよい。
 また、前記複数の画素は、多画素1セル構造であり、当該1セルは、それぞれ前記第1画素及び第2画素を含んでもよい。
 また、前記複数の画素のそれぞれにおいて、前記光電変換部は第1配置セルに基づき配置され、前記第1レンズ及び前記第2レンズは第2配置セルに基づき配置され、前記複数の画素が行列状に配置される画素アレイにおいて、当該画素アレイの中心から周辺に向かうに従い、前記画素の前記第2配置セルの中心は、当該画素の前記第1配置セルの中心に対して前記画素アレイの中心側にずれ、前記光電変換部の受光面の実質的な中心は、前記第1配置セルの中心から第1方向にずれており、前記第1レンズは、焦点の位置が前記第2配置セルの中心から前記第1方向にずれるように形成され、前記第2レンズは、焦点の位置が前記第2配置セルの中心から前記第1方向にずれるように形成されてもよい。
 この構成によれば、画素アレイの周辺部の画素における、光電変換部への入射光量の低下を抑制できる。
 また、前記第2レンズは、上凸レンズであってもよい。
 また、前記第2レンズは、下凸レンズであってもよい。
 この構成によれば、上凸レンズを用いる場合よりも、光電変換部の表面と第1レンズとの距離、及び光電変換部の表面と第2レンズとの距離を小さくできる。これにより、入射光を光電変換部に集光させやすくなる。
 また、本発明に係る固体撮像装置の製造方法は、行列状に配置された複数の画素を備える固体撮像装置の製造方法であって、前記複数の画素は、それぞれ、光を電気信号に光電変換する光電変換部と、入射光を集光する第1レンズと、前記第1レンズにより集光された入射光を前記光電変換部に集光する第2レンズとを備え、前記製造方法は、受光面の実質的な中心が画素の中心から第1方向にずれた前記光電変換部を形成する光電変換部形成ステップと、焦点の位置が画素の中心から前記第1方向にずれた前記第2レンズを形成する第2レンズ形成ステップと、焦点の位置が画素の中心から前記第1方向にずれるように、非対称な形状の前記第1レンズを形成する第1レンズ形成ステップとを含む。
 これによれば、第1レンズ及び第2レンズの焦点の位置は、画素の中心から光電変換部の受光面の実質的な中心に近づく方向にずれる。これにより、本発明に係る製造方法により製造された固体撮像装置は、光電変換部への入射光量を増加できる。
 さらに、光電変換部が等ピッチで配置されない場合、つまり、画素間で光電変換部の相対位置が異なる場合であっても、各画素において、第1レンズ及び第2レンズの焦点の位置を、光電変換部の受光面の実質的な中心に近づけることで、画素間の光電変換部への入射光量のばらつきを低減できる。つまり、本発明に係る製造方法により製造された固体撮像装置は、画素間の感度のばらつきを抑制できる。
 さらに、本発明に係る製造方法により製造された固体撮像装置は、非対称な形状の第1レンズを用いることで、焦点の位置をずらすことによる第1レンズの面積の縮小を抑制できる。
 また、前記第1レンズ形成ステップは、前記画素の中心を含む前記第1方向の線を中心線とする線対称であり、かつ前記画素の中心を含む前記第1方向と直行する方向の線を中心線として非対称であるマスクを用いて、前記第1レンズの材料をパターニングするパターニングステップと、前記パターニングされた前記材料をリフローすることで、表面が凸状に湾曲した非対称な形状の前記第1レンズを形成するリフローステップとを含んでもよい。
 また、前記パターニングステップでは、前記マスクを用いて、長方形の角の1つを切り取った5角形に前記第1レンズの材料をパターニングし、当該長方形の角の1つは、前記第1方向と逆方向の角であってもよい。
 これによれば、非対称な形状の第1レンズを容易に製造できる。
 以上より、本発明は、画素間の感度のばらつきを抑制できる固体撮像装置及びその製造方法を提供できる。
図1は、本発明の実施の形態1に係る固体撮像装置の単位セルの構成を示す回路図である。 図2は、本発明の実施の形態1に係る固体撮像装置の平面図である。 図3は、本発明の実施の形態1に係る固体撮像装置の断面図である。 図4は、本発明の実施の形態1に係る固体撮像装置におけるフォトダイオードの配置例を示す平面図である。 図5Aは、本発明の実施の形態1に係る固体撮像装置におけるトップレンズの配置例を示す平面図である。 図5Bは、本発明の実施の形態1に係る固体撮像装置の変形例におけるトップレンズの配置例を示す平面図である。 図6は、本発明の実施の形態1に係る固体撮像装置における層内レンズの配置例を示す図である。 図7Aは、本発明の実施の形態1に係る固体撮像装置における層内レンズの製造方法を説明するための図である。 図7Bは、本発明の実施の形態1に係る固体撮像装置における層内レンズの製造方法を説明するための図である。 図7Cは、本発明の実施の形態1に係る固体撮像装置における層内レンズの製造方法を説明するための図である。 図7Dは、本発明の実施の形態1に係る固体撮像装置における層内レンズの製造方法を説明するための図である。 図8Aは、本発明の実施の形態1に係る固体撮像装置におけるトップレンズの形成に用いるレジストパターンを示す平面図である。 図8Bは、本発明の実施の形態1に係る固体撮像装置におけるトップレンズの平面図である。 図9Aは、本発明の実施の形態1に係る固体撮像装置におけるトップレンズの製造方法を説明するための図である。 図9Bは、本発明の実施の形態1に係る固体撮像装置におけるトップレンズの製造方法を説明するための図である。 図10Aは、本発明の実施の形態1に係る固体撮像装置におけるトップレンズが接触しない場合の平面図である。 図10Bは、本発明の実施の形態1に係る固体撮像装置におけるトップレンズが接触しない場合の断面図である。 図10Cは、本発明の実施の形態1に係る固体撮像装置におけるトップレンズが接触する場合の平面図である。 図10Dは、本発明の実施の形態1に係る固体撮像装置におけるトップレンズが接触する場合の断面図である。 図11は、本発明の実施の形態1に係る固体撮像装置におけるトップレンズが形成されない領域の面積と、集光率との関係を示すグラフである。 図12は、本発明の実施の形態1に係る固体撮像装置におけるトップレンズの平面図である。 図13は、本発明の実施の形態1に係る固体撮像装置の変形例の断面図である。 図14は、本発明の実施の形態2に係る撮像装置の概略構成を示す図である。 図15Aは、本発明の実施の形態2に係る層内レンズの画素アレイにおける配置を示す平面図である。 図15Bは、本発明の実施の形態2に係るトップレンズの画素アレイにおける配置を示す平面図である。 図16は、本発明の実施の形態2に係る固体撮像装置の画素アレイの周辺部における断面図である。 図17は、従来の固体撮像装置の単位画素の構成を示す回路図である。 図18は、従来の固体撮像装置における撮像領域の構成を示す断面図である。 図19は、従来の固体撮像装置における単位画素の構成要素の接続関係を模式的に示す図である。
 以下、図面を参照しながら、本発明の実施の形態に係る固体撮像装置について説明する。
 (実施の形態1)
 本発明の実施の形態1に係る固体撮像装置の各単位画素において、トップレンズ及び層内レンズの焦点の位置は、フォトダイオードの受光面の実質的な中心にほぼ一致する。これにより、本発明の実施の形態1に係る固体撮像装置は、画素間の感度のばらつきを抑制できる。
 本発明の実施の形態1に係る固体撮像装置は、MOSイメージセンサ(CMOSイメージセンサ)である。また、本発明の実施の形態1に係る固体撮像装置100は、4画素1セル構造を有する。
 図1は、本発明の実施の形態に係る固体撮像装置100における単位セル110の構造を示す回路図である。
 単位セル110は、4つの単位画素101A~101Dと、リセットトランジスタ120と、垂直選択トランジスタ121と、増幅トランジスタ122とを備える。なお、4つの単位画素101A~101Dを特に区別しない場合には単位画素101と記す。
 図1に示す単位セル110は、4つの単位画素101A~101Dに対して共通のFD部114を備える。また、リセットトランジスタ120、垂直選択トランジスタ121、及び増幅トランジスタ122は、4つの単位画素101A~101Dで共有される。
 単位画素101A~101Dは、それぞれフォトダイオード111と、電荷転送ゲート112とを備える。
 フォトダイオード111は、入射光を信号電荷(電子)に変換し、変換した信号電荷を蓄積する光電変換部である。
 電荷転送ゲート112のゲート電極は、読み出し信号線113に接続される。電荷転送ゲート112は、読み出し信号線113に印加される読み出しパルスに基づいて、フォトダイオード111に蓄積された信号電荷を

部114に転送するトランジスタである。
 FD部114は、4つの単位画素101A~101Dの電荷転送ゲート112のドレインに接続される。また、FD部114は、増幅トランジスタ122のゲート電極に接続される。
 増幅トランジスタ122は、FD部114の電位変化を電圧信号にインピーダンス変換し、変換した電圧信号を垂直信号線133に出力する。
 垂直選択トランジスタ121のゲート電極は垂直選択線131に接続される。垂直選択トランジスタ121は、垂直選択線131に印加される垂直選択パルスに基づいてON又はOFFすることにより、所定の期間だけ増幅トランジスタ122を駆動する。
 リセットトランジスタ120のゲート電極は、垂直リセット線130に接続される。リセットトランジスタ120は、垂直リセット線130に印加される垂直リセットパルスに基づいて、FD部114の電位を電源線132の電位にリセットする。
 また、図1には図示しないが、固体撮像装置100は、図13に示す固体撮像装置500と同様に、垂直走査回路140と、水平走査回路141とを備える。また、固体撮像装置100は、行列状に配置された複数の単位画素101(単位セル110)を備える。
 垂直走査回路140及び水平走査回路141は、1サイクルの間に複数の単位画素101を1度ずつ走査する。
 具体的には、垂直走査回路140は、1サイクルの間の一定期間、1つの垂直選択線131に垂直選択パルスを出力することにより、当該垂直選択線131に対応する行の単位セル110、つまり4個で一組の単位画素101A~101Dを選択する。
 この際、単位画素101A~101Dのフォトダイオード111に蓄積された信号電荷は、読み出し信号線113に印加される読み出しパルスに基づいて、順次、FD部114に転送される。FD部114に転送された信号電荷は増幅トランジスタ122によって電圧信号に変換され、変換された電圧信号が順次垂直信号線133に出力される。
 水平走査回路141は、一定期間の間に各水平選択線134に水平選択パルスを順次出力することで水平選択トランジスタ123を選択する。
 選択された水平選択トランジスタ123は、接続される垂直信号線133の出力信号を水平信号線135に出力する。
 水平走査回路141により、1つの行の全単位画素101の走査が終了すると、垂直走査回路140は、次の行の垂直選択線131に垂直選択パルスを出力する。次に、上記と同様に、新しい行の各単位画素101が走査される。
 以上の動作を繰り返して、1サイクルの間に全単位画素101が1度ずつ走査されることで、全単位画素101の出力信号が時系列的に水平信号線135に出力される。
 このように、固体撮像装置100は、4画素1セル構成を有することで、単位画素101当りのトランジスタ数を減らすことができる。これにより、固体撮像装置100は、フォトダイオード111の受光面積を十分に確保できる。
 図2は、固体撮像装置100の撮像領域の平面図である。図3は、図2のF1-F2面における単位画素101A、101B、101E及び101Fの断面図である。
 なお、図2では、1つの単位セル110に含まれる4つの単位画素101のフォトダイオード111に、同じ記号(a、b、c、d、・・・x)を付している。また、単位画素101の位置を示すために、左下に原点(0,0)をとり、縦方向の位置を示すx(行番号)と横方向の位置を示すy(列番号)との組(x,y)を用いるものとする。
 また、図2に示すダミートランジスタ125は、隣接する単位画素101間の光学特性を向上させるために併設しているゲート電極である。具体的には、垂直選択トランジスタ121、及び増幅トランジスタ122が配置されているトランジスタ配置領域と、リセットトランジスタ120、及びダミートランジスタ125が配置されているトランジスタ配置領域のゲート形状を同様、又はほぼ同様となるようにすることにより、画素間の感度差を小さくできる。このように、ゲート電極に入射した光の反射の影響を同等にすることで、画素間の感度差を小さくできる。なお、ダミートランジスタ125は、必ずしも必要ではない。
 図3に示すように、固体撮像装置100は、半導体基板201と、絶縁層202と、配線203A~203Cと、遮光膜204A及び204Bと、パッシベーション膜205と、層内レンズ206と、平坦化膜207と、カラーフィルタ208と、トップレンズ210と、低屈折率膜211とを備える。
 半導体基板201は、例えばシリコン基板である。
 絶縁層202は、半導体基板201の上に形成され、例えば酸化シリコンで形成される。
 配線203A~203Cは、例えば、アルミニウム、銅又はチタンで形成される。1層目の配線203Aは、基板コンタクト(図示省略)、及び電荷転送ゲート112等に電位を印加するための大域的な配線である。2層目の配線203B及び3層目の配線203Cは、単位画素101間のトランジスタを接続するための局所的な配線、及び、垂直選択線131及び垂直信号線133などに用いられる大域的な配線である。
 配線203A~203Cは、フォトダイオード111の上方をできるだけ避けるようにレイアウトされる。これにより、フォトダイオード111の開口率を上げることができるので、フォトダイオード111に多くの光を導入できる。
 遮光膜204A及び204Bは、それぞれ配線203A及び配線203Bの上に形成され、トランジスタ等の回路部への光の入射を防止する。遮光膜204A及び204Bは、SiN膜(n=1.8~2程度)、又はSiON膜(n=1.55~1.8程度)で形成される保護膜である。
 パッシベーション膜205は、絶縁層202の上に形成され、例えば、窒化シリコンで形成される保護膜である。
 層内レンズ206は、パッシベーション膜205の上に形成され、SiN膜(n=1.8~2程度)、又はSiON膜(n=1.55~1.8程度)などの高屈折材料で形成される。層内レンズ206は上凸レンズである。
 平坦化膜207は、層内レンズ206の上に形成され、例えば、酸化シリコンで形成される。
 カラーフィルタ208は、平坦化膜207の上に形成され、所定の周波数帯域の光のみを透過する。
 トップレンズ210は、カラーフィルタ208の上に形成されるオンチップレンズである。トップレンズ210は、アクリル系樹脂(n=1.5程度)、SiN膜(n=1.8~2程度)、SiON膜(n=1.55~1.8程度)又はフッ化樹脂で形成される。
 低屈折率膜211は、トップレンズ210の上に形成される。低屈折率膜211の屈折率はトップレンズ210の屈折率より低い。例えば、低屈折率膜211の屈折率は1.2~1.5程度であり、トップレンズ210の屈折率は1.5~1.8程度である。例えば、低屈折率膜211は、アクリル樹脂、又はフッ化樹脂で形成される。
 トップレンズ210は、低屈折率膜211を透過した入射光310を集光する。次に、層内レンズ206は、トップレンズ210により集光され、カラーフィルタ208及び平坦化膜207を透過した入射光310を、フォトダイオード111に集光する。
 ここで、MOSイメージセンサは、CCDイメージセンサに比べて、配線層数が多い。これにより、MOSイメージセンサは、CCDイメージセンサに比べ、半導体基板201の表面と層内レンズ206との距離、及び、半導体基板201の表面とトップレンズ210との距離が大きい。
 このような場合、トップレンズ210及び層内レンズ206の曲率を小さくする必要がある。なぜなら、曲率が大きい場合、集光位置が半導体基板201の表面よりも高い位置になる。これにより、半導体基板201の表面では入射光の広がりが大きくなるので、フォトダイオード111へ十分に集光できないためである。
 通常、CCDイメージセンサの1.75μmのセルでは、層内レンズ206の高さは0.7μm程度であり、トップレンズ210の高さは0.5μm程度である。この高さをそのままMOSイメージセンサに適用した場合、集光位置が半導体基板201の表面よりもはるかに高い位置となる。そのため、MOSイメージセンサでは、層内レンズ206の高さを0.3μm程度とし、トップレンズ210の高さを0.2μm程度とする。
 ここで、トップレンズ210は、後述する熱フロー法で形成される。熱フロー法では、トップレンズ210の高さを0.5μm以下にすることは極めて困難である。そこで、トップレンズ210の上に、トップレンズ210よりも屈折率が低い低屈折率膜211を塗布することにより、トップレンズ210の屈折率を実効的に小さくできる。
 なお、低屈折率膜211を形成しなくてもよいが、本発明に係る固体撮像装置100の構造の場合は、低屈折率膜211を形成することが好ましい。
 また、フォトダイオード111のn型領域とFD部114のn型領域とは、効率的な信号電荷の転送が行えるように、電荷転送ゲート112のチャネル領域を介して連結されるように設けられている。この場合、フォトダイオード111の中心は、単位画素101の中心301とほぼ同一であるが、フォトダイオード111上の一部分を覆うように電荷転送ゲート112が形成されることによって、フォトダイオード111の集光の重心302が単位画素101の中心301からずれる。
 この結果、各フォトダイオード111の重心302の配列は、ピッチが大きい区間(境界位置321を含む区間)とピッチが小さい区間(境界位置322を含む区間)とが交互に現れる配列になる。例えば、図3に示すように、単位画素101Aと単位画素101Bとは、境界位置321において、互いにFD部114を共有しているので、フォトダイオード111の重心302のピッチが大きい。一方、単位画素101Bと単位画素101Eとは、境界位置322において、FD部114を共有していないので、フォトダイオード111の重心302のピッチが小さい。
 図4は、単位画素101におけるフォトダイオード111の配置例を示す平面図である。
 図4に示すように、4画素1セル構成を用いた場合、単位画素101の中心301と、フォトダイオード111の重心302とは一致しない。ここで、フォトダイオード111の重心302とは、フォトダイオード111の受光面の実質的な中心、つまりフォトダイオード111の表面のうち電荷転送ゲート112により覆われない領域の重心である。
 つまり、4画素1セル構成を用いた場合、隣接する単位画素101において、それぞれ電荷転送ゲート112の配置が異なる。これにより、フォトダイオード111の重心302の位置もそれぞれ異なる。
 また、例えば、フォトダイオード111の中心と、単位画素101の中心301とはほぼ一致する。ここで、フォトダイオード111の中心とは、電荷転送ゲート112が形成されている領域を含むフォトダイオード111の中心である。
 図5Aは、トップレンズ210の配置例を示す平面図である。
 図5Aに示すように、トップレンズ210の重心303は、フォトダイオード111の重心302とほぼ一致する。ここで、トップレンズ210の重心303とは、トップレンズ210の光学的な重心、つまり、フォトダイオード111に対して垂直な光が、トップレンズ210により集光される中心位置(焦点の位置(光軸))である。例えば、図5Aに示すように、複数の単位画素101において、トップレンズ210の配置位置(中心位置)はほぼ同一であり、トップレンズ210の形状(向き)を変更することで、トップレンズ210の重心303が調整される。
 具体的には、トップレンズ210の形状は、半導体基板201(フォトダイオード111)の表面に垂直、かつトップレンズ210の重心303を偏位する方向(以下、偏位方向)に垂直、かつ単位画素101の中心301を含む面に対して非対称である。また、トップレンズ210の形状は、半導体基板201の表面に垂直、かつ偏位方向に水平、かつ単位画素101の中心301を含む面に対して対称である。
 また、トップレンズ210が形成されない無効領域が偏位方向(単位画素101の中心301からトップレンズ210の重心303への方向)で小さく、偏位方向と反対の方向で大きくなる。つまり、単位画素101における偏位方向と逆側の端部の無効領域は、当該単位画素101における偏位方向の端部の無効領域より広い。
 なお、トップレンズ210の形状に加え、配置位置を変更してもよい。
 図5Bは、トップレンズ210の形状及び配置位置を変更した場合のトップレンズ210の配置例を示す平面図である。図5Bに示すようにトップレンズ210の配置位置を偏位方向にずらしたうえで、トップレンズ210の形状を調整することにより、トップレンズ210の重心303をフォトダイオード111の重心302にほぼ一致させてもよい。
 なお、トップレンズ210の形状をほぼ同一としたうえで配置位置のみを調整してもよい。
 図6は、層内レンズ206の配置例を示す平面図である。
 図6に示すように、層内レンズ206の重心304は、フォトダイオード111の重心302とほぼ一致する。層内レンズ206の重心304とは、層内レンズ206の光学的な重心、つまり、フォトダイオード111に対して垂直な光が、層内レンズ206により集光される中心位置(焦点の位置(光軸))である。例えば、図6に示すように、複数の単位画素101において層内レンズ206の形状をほぼ同一とし、層内レンズ206の配置位置(中心位置)を変更することで、層内レンズ206の重心304が調整される。また、層内レンズ206の形状は、当該層内レンズ206の重心304に対して点対称である。なお、層内レンズ206の配置位置をほぼ同一としたうえで形状を変更してもよいし、形状及び配置位置を共に変更してもよい。
 また、単位画素(i,j)101Aのフォトダイオード111と、単位画素(i+1,j+1)101Bのフォトダイオード111とは、FD部114を中心として点対称に配置される。同様に、i番目の行の各フォトダイオード111は、それぞれ、(i+1)番目の行の、1つ右の列のフォトダイオードとFD部114を中心として点対称に配置される。
 これに合わせて、層内レンズ206の重心304及びトップレンズ210の重心303を偏位させて配置する。具体的には、層内レンズ206の重心304及びトップレンズ210の重心303を、フォトダイオード111を偏位した方向と同方向にずらす。この場合、i番目の行の単位画素101と、(i+1)番目の行の、1つ右の列のフォトダイオード111とでは、層内レンズ206の重心304及びトップレンズ210の重心303の偏位方向は、逆方向になる。
 すなわち、フォトダイオード111の重心302の間隔が狭まっている箇所では、トップレンズ210の重心303及び層内レンズ206の重心304の間隔も狭め、逆にフォトダイオード111の重心302の間隔が広がっている箇所では、トップレンズ210の重心303及び層内レンズ206の重心304の間隔も広げるように配置される。
 以上より、本発明の実施の形態1に係る固体撮像装置100は、トップレンズ210の重心303及び層内レンズ206の重心304が、フォトダイオード111の重心302とほぼ一致するようにトップレンズ210及び層内レンズ206が配置される。これにより、光軸に平行にトップレンズ210に入射した入射光310は、トップレンズ210及び層内レンズ206により、フォトダイオード111の重心302に近い領域に集光される。よって、固体撮像装置100は、効果的に入射光を集光できる。
 さらに、各単位画素101において、フォトダイオード111の重心302と、トップレンズ210の重心303及び層内レンズ206の重心304がほぼ一致するので、トップレンズ210及び層内レンズ206によって集光された光の一部が、半導体基板201の共有領域の上部の電荷転送ゲート112でケラレ(反射)又は吸収されることも少なくなる。よって、各単位画素101間での入射光量のばらつきを低減できる。これにより、固体撮像装置100は、各単位画素101で感度がそろい、好ましい撮像特性が得られる。さらに、固体撮像装置100は、光のケラレを最小限に抑えられることで、ケラレした光が隣接する単位画素101に漏れ入ることで生じる混色を減少できる。
 さらに、固体撮像装置100は、トップレンズ210を非対称な形状とすることで、トップレンズ210の重心303を、偏位方向にずらす。ここで、トップレンズ210の形状を変化させず、配置位置のみを偏位方向にずらした場合、隣接する単位画素101間で偏位方向が異なるため、トップレンズ210を単位画素101の中心301に配置した場合に比べて、トップレンズ210の面積を縮小させる必要がある。一方、固体撮像装置100では、非対称な形状のトップレンズ210を用いることで、配置位置をずらす必要がない(又は、ずらし量を低減できる)。よって、固体撮像装置100は、トップレンズ210の重心303をずらすことによるトップレンズ210の面積の縮小を抑制できる。
 また、層内レンズ206及びトップレンズ210のみではなく、配線203A~203Cも、フォトダイオード111の重心302に合わせて偏位させて配置してもよい。これにより、配線203A~203Cにより生じるケラレを減少できる。
 なお、トップレンズ210の重心303とフォトダイオード111の重心302とは必ずしも一致しなくてもよく、層内レンズ206の重心304とフォトダイオード111の重心302とは必ずしも一致しなくてもよい。
 例えば、トップレンズ210の重心303及び層内レンズ206の重心304を、フォトダイオード111の中心(単位画素101の中心301)からフォトダイオード111の重心302に近づける側にずらせばよい。これにより、フォトダイオード111の入射光量を増加させ、かつ、単位画素101間の感度ばらつきを低減できる。
 言い換えると、層内レンズ206の重心304及びトップレンズ210の重心303は、フォトダイオード111の中心に対して、電荷転送ゲート112が配置される方向の逆方向にずれる。例えば、図4~図6に示す例では、単位画素101の対角線方向における電荷転送ゲート112が形成される方向の逆方向(左上の単位画素101の左上方向)にトップレンズ210の重心303及び層内レンズ206の重心304をずらす。なお、フォトダイオード111の対角線方向における電荷転送ゲート112が形成される方向の逆方向にトップレンズ210の重心303及び層内レンズ206の重心304をずらしてもよい。
 ここで、電荷転送ゲート112のチャネル長方向(転送方向)における、フォトダイオード111と電荷転送ゲート112との重なり部分の長さをd1とすると、トップレンズ210のフォトダイオード111の中心(単位画素101の中心301)からのずらし量d2、及び層内レンズ206のフォトダイオード111の中心からのずらし量d3は、例えば、d1/2となる。
 例えば、1辺の画素サイズが1.75μmである場合、d1=200nm程度であるので、d2=d3=100nmとなる。ただし、ずらし量d2とd3とは必ずしも同じである必要はない。例えば、2つのレンズで集光される場合の焦点位置が、フォトダイオード111の重心302とほぼ一致するように、トップレンズ210の重心303と層内レンズ206の重心304とのずらし量を異ならせてもよい。例えば、ずらし量d2及びd3は、d3>d1/2>d2、又は、d2>d1/2>d3の関係を満たせばよい。
 次に、固体撮像装置100の製造方法を説明する。
 なお、本発明の特徴部分である層内レンズ206及びトップレンズ210以外の製造方法は、従来と同様であり説明は省略する。
 図7A~図7Dは、層内レンズ206の製造方法を説明するための図である。
 まず、図7Aに示すように、パッシベーション膜205の上に、窒化シリコン層401を形成する。次に、窒化シリコン層401の上に、レジスト402を形成する。
 次に、レジストリフローを行うことで、図7Bに示すように凸形状のレジスト403を形成する。
 次に、エッチバックを行うことで、図7Cに示すように凸形状の層内レンズ206を形成する。
 ここで、エッチバック後の層内レンズ206間の距離M2が小さいほど、層内レンズ206の面積が増加する。これにより、集光率が向上する。ただし、1辺が1.75μmの画素セルの場合、距離M2を700nm以下で形成することは困難である。なぜなら、レジスト402は等方的にエッチングされるため、エッチバック後の層内レンズ206間の距離M2は、大きくなるからである。
 これに対して、図7Dに示すように、層内レンズ206のエッチバック後に、再度、層内レンズ206上に堆積膜206Bを堆積してもよい。これにより、層内レンズ206(層内レンズ206及び堆積膜206B)間の距離は、M2からM3に縮小するので、層内レンズ206の面積を増加できる。例えば、1辺が1.75μmの画素セルの場合、層内レンズ206間の距離M3は300nm程度が好ましい。これ以上距離M3を増加させると、層内レンズ206端の曲率が層内レンズ206の中心付近に比べて低下する。これにより、層内レンズ206の集光率が低下する。
 図8A、図8B、図9A及び図9Bは、トップレンズ210の製造方法を説明するための図である。
 図8Aは、トップレンズ210の形成に用いるレジストパターンを示す平面図である。図9Aは、図8AのG1-G2面における断面図である。図8Bは、当該製造方法により形成されたトップレンズ210の平面図である。図9Bは、図8BのH1-H2面における断面図である。
 トップレンズ210は、熱フロー法を用いて形成される。
 まず、カラーフィルタ208の上の平坦化膜上に、無機系又は有機系の透明材料から構成されるレンズ材料を形成する。次に、形成したレンズ材料の上にポジ型レジストを形成する。ここで、ポジ型レジストのマスクレイアウト412は、図8Aのように、単位画素101の偏位方向と水平な対角線(単位画素101の中心301を含む偏位方向の線)を中心線とする線対称であり、かつ偏位方向と直行する対角線(単位画素101の中心301を含む偏位方向と直行する方向の線)を中心線として非対称な形状である。具体的には、マスクレイアウト412は、正方形の対角の1つを切り取った5角形の形状である。ここで、切り取られる正方形の角の1つは、偏位方向と逆方向に位置する角である。
 当該マスクレイアウト412を用いてパターニングを行うことで、図9Aに示すフォトレジスト411が形成される。
 次に、フォトレジスト411を所要の温度でリフローすることで、フォトレジスト411の表面を凸状の湾曲状にする。この結果、図8B及び図9Bに示すように、凸状湾曲部を有する非対称なトップレンズ210が形成される。
 ここで、リフローの熱処理温度を高く設定しすぎると、レンズ材料が完全に溶融して、全方向に形状が一定な偏位の無い構造となるので、最適な熱処理温度(200度程度)でリフローを行う必要がある。
 従来、このような非対称のレンズ形状を形成する場合、グレースケールマスクを用いることが提唱されている。グレースケールマスクには複数の単位パターンが2次元状に形成されている。当該単位パターンのそれぞれは、非対称な透過率分布を有するマスクである。しかしながら、グレースケールマスクの作製には、高度な技術が必要であり、かつ極めて高いコストがかかる。
 一方、本発明の実施の形態1に係る製造方法を用いることで、低コストで非対称な形状のレンズを形成できる。
 次に、上記製造方法で形成されたトップレンズ210の詳細な構成を説明する。
 レンズがトップレンズ210及び層内レンズ206の2層で構成される場合、トップレンズ210は画素への入射光を層内レンズ206に導き、層内レンズ206はフォトダイオード111に光を導く。
 この場合、トップレンズ210では、画素に入射する光を可能な限り高い割合で層内レンズ206に導くようにするため、隣接するトップレンズ210が接触するように形成する。
 図10Aは、トップレンズ210が隣接する単位画素間で接触しない場合の平面図である。図10Bは、図10AのI1-I2面の断面図である。図10Cは、トップレンズ210が隣接する単位画素間で接触する場合の平面図である。図10Dは、図10CのJ1-J2面の断面図である。なお、レンズ形状は説明のために円形としている。
 図10C及び図10Dに示すように、トップレンズ210が接触する場合、特に単位画素101の境界付近で、レンズの曲率が小さくなる。そのため、対角方向(図10A及び図10Cの斜め方向)に比べて、水平及び垂直方向(図10A及び図10Cの縦及び横方向)ではトップレンズ210の曲率が小さくなる。
 一方で、トップレンズ210が接触する場合のレンズが形成されない領域の面積Bは、トップレンズ210が接触しない場合のレンズが形成されない領域の面積Aに比べて小さくなる。つまり、トップレンズ210を接触させることで、トップレンズ210の面積を大きくできる。
 図11は、トップレンズ210が形成されない領域の面積と、集光率との関係を示すグラフである。
 一般的に、トップレンズ210が形成されない領域の面積を小さくすると、所定の面積までは集光率は向上する。しかし、トップレンズ210が形成されない領域を所定の面積以下にすると、隣接するトップレンズ210が接触する。これにより、トップレンズ210が接触する部分で、トップレンズ210の曲率が低下する。これにより、トップレンズ210の集光率が低下する。
 一方、当該面積を小さくしすぎると、水平方向の焦点位置が基板上面に近づき、光が1層目の配線203A及び2層目の配線203Bで反射されるようになり、集光率が低下する。つまり、トップレンズ210が形成されない領域の面積には最適な値がある。通常、1.75μmセルの場合には、当該面積の最適な値は0.09μm2程度である。つまり、セル全体の面積に対して、トップレンズが形成されない領域が占める面積の割合は、3%~5%程度が最適である。
 このように、トップレンズ210と層内レンズ206を形成することで、集光率を最大限に高めることができる。
 図12は、トップレンズ210の平面図である。
 例えば、図12に示すように、トップレンズ210は、2方向の境界420及び421では隣接する単位画素101のトップレンズ210と接触し、残る2方向の境界422及び423では隣接する単位画素101のトップレンズ210と接触しない。具体的には、トップレンズ210は、隣接する4つの単位画素101のトップレンズ210のうち、偏位方向に位置する2つの単位画素101のトップレンズ210と接触し、偏位方向と逆方向に位置する2つの単位画素101のトップレンズ210と接触しない。トップレンズ210をこのような構造にすることで集光率を最大にできる。
 以上、本発明の実施の形態に係る固体撮像装置100について説明したが、本発明は、この実施の形態に限定されるものではない。
 例えば、層内レンズ206は凹形状(下凸状)のレンズであってもよい。図13は、本発明の実施の形態1に係る固体撮像装置100の変形例の構成を示す断面図である。
 図13に示すように、固体撮像装置100は、凹形状の層内レンズ206Aを備えてもよい。凹レンズを用いることで、凸レンズを用いる場合よりも、半導体基板201の表面と層内レンズ206Aとの距離、及び半導体基板201の表面とトップレンズ210との距離を小さくできる。具体的には、半導体基板201の表面と層内レンズ206Aとの距離を4μmから3μmに短縮でき、半導体基板201の表面とトップレンズ210との距離を5μmから4μmに短縮できる。これにより、入射光をフォトダイオード111に集光させやすくなる。
 また、上記説明では、固体撮像装置100は、トップレンズ210と層内レンズ206との2つのレンズを用いる例を示したが、単一のレンズを用いてもよい。また、固体撮像装置100は、3つ以上のレンズを用いてもよい。
 また、上記説明では、固体撮像装置100は、4画素1セル構成としたが、本発明はこれに限定されるものではない。例えば、固体撮像装置100は、2画素1セル構成、又は4画素1以上を1セルとする構成であってもよい。
 また、本発明をCCDイメージセンサに適用してもよい。
 (実施の形態2)
 本発明の実施の形態2では、上記実施の形態1に係る固体撮像装置100の特徴に加え、画素アレイの周辺部への入射光量を増加できる固体撮像装置について説明する。
 図14は、本発明の実施の形態1に係る固体撮像装置100を搭載した撮像装置(カメラ)の概略構成を示し、特にカメラレンズ430、画素アレイ431及び光線の入射角度の関係を示す図である。
 図14に示すように、画素アレイ(撮像領域)431の中心部432では、入射光は半導体基板201に垂直(角度0°)で入射する。一方、画素アレイ431の周辺部433及び434では、斜め光(角度25°程度)が入射する。
 近年、イメージセンサの微細化が進み、画素単位のアスペクト比(フォトダイオード111の開口面積と深さとの比)が増大したため、周辺部433及び434に入射する光の斜め成分が増大する。
 これに対して、本発明の実施の形態2では、画素アレイ431の中心部432から、入射光の斜め成分が増大する画素アレイ431の周辺部433及び434に向かうにつれ、トップレンズ210、層内レンズ206、及び配線203A~203Cの位置を、単位画素101の中心301に対して、画素アレイ431の中心部432側にずらした固体撮像装置100について説明する。
 図15Aは、層内レンズ206の画素アレイ431における配置を示す平面図である。図15Bは、トップレンズ210の画素アレイ431における配置を示す平面図である。
 図15A及び図15Bに示す第1配置セル441は、単位画素101に含まれる下層の構成要素(フォトダイオード111及び電荷転送ゲート112等)に対する単位セルである。第2配置セル442は、単位画素101に含まれる上層の構成要素(トップレンズ210、層内レンズ206、及び配線203A~203C等)に対する単位セルである。
 つまり、複数の単位画素101のそれぞれにおいて、下層の構成要素は、第1配置セル441に基づき配置され、上層の構成要素は、第2配置セル442に基づき配置される。
 図15A及び図15Bに示すように、第1配置セル441と、第2配置セル442とは、画素アレイ431の中心部では重なり、画素アレイ431の中心から周辺に向かうに従い、第2配置セル442の中心は、第1配置セル441の中心に対して画素アレイ431の中心側にずれる。つまり、層内レンズ206及びトップレンズ210は、周辺に近づくほど、画素アレイ431の中心側にずれる。
 図16は、画素アレイ431の周辺部である図15A及び図15BにおけるL1-L2面付近の断面図である。なお、画素アレイ431の中心部である図15A及び図15BにおけるK1-K2面付近の断面図は図3と同様である。
 図16に示すように、層内レンズ206及びトップレンズ210を画素アレイ431の中心側にずらすことで、斜め光をフォトダイオード111の重心へ入射させやすくなる。これにより、本発明の実施の形態2に係る固体撮像装置100は、集光率を高めることができる。
 なお、実施の形態1で説明したように、本発明に係る固体撮像装置100では、層内レンズ206の重心304及びトップレンズ210の重心303は、フォトダイオード111の重心302の方向に偏位して配置されている。つまり、複数の単位画素101において、フォトダイオード111の重心302は、当該単位画素101の第1配置セル441の中心から偏位方向にずれており、トップレンズ210は、重心303が当該単位画素101の第2配置セル442の中心から偏位方向にずれるように形成され、層内レンズ206は、重心304が当該単位画素101の第2配置セル442の中心から偏位方向にずれるように形成される。
 これにより、層内レンズ206及びトップレンズ210の配置も1行おきに画素アレイ431の中心方向に対するずらし量が大・小・大・小・・・・の順番で配置される。
 なお、上記説明では、画素アレイ431の中心部から周辺部に向かうにつれ、トップレンズ210の配置位置を、画素アレイ431の中心部432側にずらす例を説明したが、トップレンズ210の形状を調整することにより、トップレンズ210の重心303を画素アレイ431の中心部432側にずらしてもよい。さらに、トップレンズ210の形状及び配置位置を調整してもよい。
 本発明は、固体撮像装置に適用でき、特に、ビデオカメラ、デジタルスチルカメラ及びファクシミリ等に適用できる。
 100、500 固体撮像装置
 101、101A、101B、101C、101D、101E、101F、510 単位画素
 110 単位セル
 111 フォトダイオード
 112 電荷転送ゲート
 113 読み出し信号線
 114 FD部
 120 リセットトランジスタ
 121 垂直選択トランジスタ
 122 増幅トランジスタ
 123 水平選択トランジスタ
 125 ダミートランジスタ
 130 垂直リセット線
 131 垂直選択線
 132 電源線
 133 垂直信号線
 134 水平選択線
 135 水平信号線
 140 垂直走査回路
 141 水平走査回路
 201 半導体基板
 202 絶縁層
 203A、203B、203C 配線
 204A、204B 遮光膜
 205 パッシベーション膜
 206、206A、606 層内レンズ
 206B 堆積膜
 207 平坦化膜
 208 カラーフィルタ
 210、610 トップレンズ
 211 低屈折率膜
 301 単位画素の中心
 302 フォトダイオードの重心
 303 トップレンズの重心
 304 層内レンズの重心
 310 入射光
 321、322 境界位置
 401 窒化シリコン層
 402、403 レジスト
 411 フォトレジスト
 412 マスクレイアウト
 420、421、422、423 境界
 430 カメラレンズ
 431 画素アレイ
 432 中心部
 433、434 周辺部
 441 第1配置セル
 442 第2配置セル

Claims (17)

  1.  行列状に配置された複数の画素を備える固体撮像装置であって、
     前記複数の画素は、それぞれ、
     光を電気信号に光電変換する光電変換部と、
     入射光を集光する第1レンズと、
     前記第1レンズにより集光された入射光を前記光電変換部に集光する第2レンズとを備え、
     前記光電変換部の受光面の実質的な中心は、画素の中心から第1方向にずれており、
     前記第1レンズは、焦点の位置が画素の中心から前記第1方向にずれるように非対称な形状で形成され、
     前記第2レンズは、焦点の位置が画素の中心から前記第1方向にずれるように形成される
     固体撮像装置。
  2.  前記複数の画素は、さらに、
     前記光電変換部の受光面の一部を覆い、前記光電変換部により光電変換された電気信号を転送するためのゲート電極を備え、
     前記第1方向は、前記光電変換部に対して前記ゲート電極が配置される方向と逆方向である
     請求項1記載の固体撮像装置。
  3.  前記第1レンズは、前記光電変換部の表面と垂直かつ前記第1方向と水平かつ当該画素の中心を含む面に対して対称であり、前記光電変換部の表面と垂直かつ前記第1方向と垂直かつ当該画素の中心を含む面に対して非対称である
     請求項1記載の固体撮像装置。
  4.  前記各画素における前記第1方向と逆側の端部の前記第1レンズが形成されない領域は、当該画素における前記第1方向側の端部の前記第1レンズが形成されない領域より広い
     請求項1記載の固体撮像装置。
  5.  前記第1方向は、前記画素の対角線方向である
     請求項1記載の固体撮像装置。
  6.  前記第1レンズは、隣接する4つの画素の第1レンズのうち、前記第1方向に位置する2つの画素の第1レンズと接触し、前記第1方向と逆方向に位置する2つの画素の第1レンズと接触しない
     請求項5記載の固体撮像装置。
  7.  前記複数の画素において、前記第2レンズは、ほぼ同一形状であり、かつ中心位置が当該画素の中心から前記第1方向にずれるように配置される
     請求項1記載の固体撮像装置。
  8.  前記第1レンズ及び前記第2レンズは、焦点の位置が当該画素の中心から前記第1方向に、前記ゲート電極が前記光電変換部の一部を覆う領域の前記ゲート電極のゲート長方向の距離の1/2に相当する距離ずれるように形成される
     請求項2記載の固体撮像装置。
  9.  前記第1レンズは、中心位置が画素の中心から前記第1方向にずれるように配置される
     請求項1記載の固体撮像装置。
  10.  前記複数の画素は、第1画素及び第2画素を含み、
     前記第1画素及び第2画素において、前記第1方向は、異なる方向である
     請求項1記載の固体撮像装置。
  11.  前記複数の画素は、多画素1セル構造であり、
     当該1セルは、それぞれ前記第1画素及び第2画素を含む
     請求項10記載の固体撮像装置。
  12.  前記複数の画素のそれぞれにおいて、前記光電変換部は第1配置セルに基づき配置され、前記第1レンズ及び前記第2レンズは第2配置セルに基づき配置され、
     前記複数の画素が行列状に配置される画素アレイにおいて、当該画素アレイの中心から周辺に向かうに従い、前記画素の前記第2配置セルの中心は、当該画素の前記第1配置セルの中心に対して前記画素アレイの中心側にずれ、
     前記光電変換部の受光面の実質的な中心は、前記第1配置セルの中心から第1方向にずれており、
     前記第1レンズは、焦点の位置が前記第2配置セルの中心から前記第1方向にずれるように形成され、
     前記第2レンズは、焦点の位置が前記第2配置セルの中心から前記第1方向にずれるように形成される
     請求項1記載の固体撮像装置。
  13.  前記第2レンズは、上凸レンズである
     請求項1記載の固体撮像装置。
  14.  前記第2レンズは、下凸レンズである
     請求項1記載の固体撮像装置。
  15.  行列状に配置された複数の画素を備える固体撮像装置の製造方法であって、
     前記複数の画素は、それぞれ、
     光を電気信号に光電変換する光電変換部と、
     入射光を集光する第1レンズと、
     前記第1レンズにより集光された入射光を前記光電変換部に集光する第2レンズとを備え、
     前記製造方法は、
     受光面の実質的な中心が画素の中心から第1方向にずれた前記光電変換部を形成する光電変換部形成ステップと、
     焦点の位置が画素の中心から前記第1方向にずれた前記第2レンズを形成する第2レンズ形成ステップと、
     焦点の位置が画素の中心から前記第1方向にずれるように、非対称な形状の前記第1レンズを形成する第1レンズ形成ステップとを含む
     固体撮像装置の製造方法。
  16.  前記第1レンズ形成ステップは、
     前記画素の中心を含む前記第1方向の線を中心線とする線対称であり、かつ前記画素の中心を含む前記第1方向と直行する方向の線を中心線として非対称であるマスクを用いて、前記第1レンズの材料をパターニングするパターニングステップと、
     前記パターニングされた前記材料をリフローすることで、表面が凸状に湾曲した非対称な形状の前記第1レンズを形成するリフローステップとを含む
     請求項15記載の固体撮像装置の製造方法。
  17.  前記パターニングステップでは、前記マスクを用いて、長方形の角の1つを切り取った5角形に前記第1レンズの材料をパターニングし、
     当該長方形の角の1つは、前記第1方向と逆方向の角である
     請求項16記載の固体撮像装置の製造方法。
PCT/JP2009/001731 2008-06-17 2009-04-15 固体撮像装置及びその製造方法 WO2009153907A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/966,286 US8274586B2 (en) 2008-06-17 2010-12-13 Solid-state imaging device and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-158436 2008-06-17
JP2008158436A JP2009302483A (ja) 2008-06-17 2008-06-17 固体撮像装置及びその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/966,286 Continuation US8274586B2 (en) 2008-06-17 2010-12-13 Solid-state imaging device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2009153907A1 true WO2009153907A1 (ja) 2009-12-23

Family

ID=41433833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001731 WO2009153907A1 (ja) 2008-06-17 2009-04-15 固体撮像装置及びその製造方法

Country Status (3)

Country Link
US (1) US8274586B2 (ja)
JP (1) JP2009302483A (ja)
WO (1) WO2009153907A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110310290A1 (en) * 2010-06-22 2011-12-22 Shigeru Oouchida Range-finding device and imaging apparatus
JP2015534107A (ja) * 2012-09-11 2015-11-26 ヘプタゴン・マイクロ・オプティクス・プライベート・リミテッドHeptagon Micro Optics Pte. Ltd. 切頭レンズ、切頭レンズの対、および対応する装置の製造
CN109686750A (zh) * 2014-06-02 2019-04-26 佳能株式会社 图像拾取装置和图像拾取系统

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009289927A (ja) * 2008-05-28 2009-12-10 Panasonic Corp 固体撮像装置及びその製造方法
JP5705462B2 (ja) * 2010-06-01 2015-04-22 シャープ株式会社 固体撮像素子および電子情報機器
JP5500007B2 (ja) 2010-09-03 2014-05-21 ソニー株式会社 固体撮像素子およびカメラシステム
JP2014011304A (ja) * 2012-06-29 2014-01-20 Toshiba Corp 固体撮像装置
JP2014072471A (ja) * 2012-10-01 2014-04-21 Sony Corp 固体撮像装置および製造方法、並びに電子機器
JP2014154662A (ja) * 2013-02-07 2014-08-25 Sony Corp 固体撮像素子、電子機器、および製造方法
JP6334203B2 (ja) * 2014-02-28 2018-05-30 ソニー株式会社 固体撮像装置、および電子機器
WO2015153806A1 (en) 2014-04-01 2015-10-08 Dartmouth College Cmos image sensor with pump gate and extremely high conversion gain
JP6327911B2 (ja) * 2014-04-03 2018-05-23 キヤノン株式会社 光学素子、光学素子アレイ及び固体撮像装置
JP2016058538A (ja) * 2014-09-09 2016-04-21 キヤノン株式会社 固体撮像装置およびカメラ
US9830489B2 (en) 2016-03-29 2017-11-28 Analog Devices, Inc. Simple code reader
KR102662032B1 (ko) 2019-06-19 2024-05-03 삼성전자주식회사 이미지 센서 및 이미지 센서를 포함하는 전자 장치

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311594A (ja) * 2003-04-03 2004-11-04 Sony Corp 固体撮像素子
JP2006049721A (ja) * 2004-08-06 2006-02-16 Matsushita Electric Ind Co Ltd 固体撮像装置及びその製造方法
JP2006215547A (ja) * 2005-02-03 2006-08-17 Samsung Electronics Co Ltd マイクロレンズの製造方法、マイクロレンズアレイの製造方法、及びイメージセンサの製造方法
WO2006130517A1 (en) * 2005-06-01 2006-12-07 Eastman Kodak Company Asymmetrical microlenses on pixel arrays
WO2007027518A1 (en) * 2005-08-30 2007-03-08 Micron Technology, Inc. Ellipsoidal gapless micro lenses for imagers
JP2007095751A (ja) * 2005-09-27 2007-04-12 Dainippon Printing Co Ltd 固体撮像素子およびその製造方法
JP2007208817A (ja) * 2006-02-03 2007-08-16 Toshiba Corp 固体撮像装置
JP2008032912A (ja) * 2006-07-27 2008-02-14 Dainippon Printing Co Ltd マイクロレンズの製造方法
JP2008153370A (ja) * 2006-12-15 2008-07-03 Matsushita Electric Ind Co Ltd 固体撮像装置及びその製造方法
JP2008300631A (ja) * 2007-05-31 2008-12-11 Fujitsu Microelectronics Ltd 固体撮像素子

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107194A (ja) * 1994-10-03 1996-04-23 Fuji Photo Optical Co Ltd 固体撮像装置
JPH10125887A (ja) * 1996-10-21 1998-05-15 Toshiba Corp 固体撮像素子
EP1458028B1 (en) * 1999-12-02 2011-05-11 Nikon Corporation Solid-state image sensor and production method of the same
WO2004034477A1 (en) * 2002-10-11 2004-04-22 Smal Camera Technologies Optical system comprising a solid-state image sensor with microlenses and a non-telecentric taking lens
JP2004253573A (ja) * 2003-02-19 2004-09-09 Sharp Corp 半導体装置およびその製造方法
JP4311171B2 (ja) 2003-11-18 2009-08-12 ソニー株式会社 固体撮像素子
US7060961B2 (en) * 2003-12-12 2006-06-13 Canon Kabushiki Kaisha Image sensing element and optical instrument having improved incident light use efficiency
EP1557886A3 (en) * 2004-01-26 2006-06-07 Matsushita Electric Industrial Co., Ltd. Solid-state imaging device and camera
US7443005B2 (en) * 2004-06-10 2008-10-28 Tiawan Semiconductor Manufacturing Co., Ltd. Lens structures suitable for use in image sensors and method for making the same
JP4626255B2 (ja) 2004-10-13 2011-02-02 ソニー株式会社 固体撮像素子の製造方法
JP4793042B2 (ja) 2005-03-24 2011-10-12 ソニー株式会社 固体撮像素子及び撮像装置
US7638804B2 (en) * 2006-03-20 2009-12-29 Sony Corporation Solid-state imaging device and imaging apparatus
JP5232118B2 (ja) * 2009-09-30 2013-07-10 富士フイルム株式会社 撮像デバイスおよび電子カメラ

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311594A (ja) * 2003-04-03 2004-11-04 Sony Corp 固体撮像素子
JP2006049721A (ja) * 2004-08-06 2006-02-16 Matsushita Electric Ind Co Ltd 固体撮像装置及びその製造方法
JP2006215547A (ja) * 2005-02-03 2006-08-17 Samsung Electronics Co Ltd マイクロレンズの製造方法、マイクロレンズアレイの製造方法、及びイメージセンサの製造方法
WO2006130517A1 (en) * 2005-06-01 2006-12-07 Eastman Kodak Company Asymmetrical microlenses on pixel arrays
WO2007027518A1 (en) * 2005-08-30 2007-03-08 Micron Technology, Inc. Ellipsoidal gapless micro lenses for imagers
JP2007095751A (ja) * 2005-09-27 2007-04-12 Dainippon Printing Co Ltd 固体撮像素子およびその製造方法
JP2007208817A (ja) * 2006-02-03 2007-08-16 Toshiba Corp 固体撮像装置
JP2008032912A (ja) * 2006-07-27 2008-02-14 Dainippon Printing Co Ltd マイクロレンズの製造方法
JP2008153370A (ja) * 2006-12-15 2008-07-03 Matsushita Electric Ind Co Ltd 固体撮像装置及びその製造方法
JP2008300631A (ja) * 2007-05-31 2008-12-11 Fujitsu Microelectronics Ltd 固体撮像素子

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110310290A1 (en) * 2010-06-22 2011-12-22 Shigeru Oouchida Range-finding device and imaging apparatus
US9267797B2 (en) * 2010-06-22 2016-02-23 Ricoh Company, Ltd. Range-finding device and imaging apparatus
JP2015534107A (ja) * 2012-09-11 2015-11-26 ヘプタゴン・マイクロ・オプティクス・プライベート・リミテッドHeptagon Micro Optics Pte. Ltd. 切頭レンズ、切頭レンズの対、および対応する装置の製造
US10377094B2 (en) 2012-09-11 2019-08-13 Ams Sensors Singapore Pte. Ltd. Manufacture of truncated lenses, of pairs of truncated lenses and of corresponding devices
CN109686750A (zh) * 2014-06-02 2019-04-26 佳能株式会社 图像拾取装置和图像拾取系统

Also Published As

Publication number Publication date
US20110080509A1 (en) 2011-04-07
US8274586B2 (en) 2012-09-25
JP2009302483A (ja) 2009-12-24

Similar Documents

Publication Publication Date Title
WO2009153907A1 (ja) 固体撮像装置及びその製造方法
WO2009144864A1 (ja) 固体撮像装置及びその製造方法
KR102471261B1 (ko) 고체 촬상 소자 및 고체 촬상 소자의 제조 방법, 전자 기기
JP5263279B2 (ja) 固体撮像装置及びその製造方法並びに電子機器
JP4793042B2 (ja) 固体撮像素子及び撮像装置
JP4310283B2 (ja) 固体撮像装置およびこれを用いたカメラ
TWI636557B (zh) Solid-state imaging device, manufacturing method thereof, and electronic device
JP2012204354A (ja) 固体撮像装置、固体撮像装置の製造方法及び電子機器
JP2010239076A (ja) 固体撮像装置とその製造方法、及び電子機器
US20120153418A1 (en) Solid-state imaging device and manufacturing method thereof
JP2014089432A (ja) 固体撮像装置、固体撮像装置におけるマイクロレンズの形成方法、及び、電子機器
JP2007019435A (ja) 固体撮像装置およびその製造方法、並びにカメラ
JP2008270679A (ja) 固体撮像装置およびその製造方法および撮像装置
JP4682504B2 (ja) 固体撮像装置及びその製造方法並びに電子機器
JP2007287818A (ja) 固体撮像素子およびその製造方法
JP2006202907A (ja) 撮像素子
JP5332823B2 (ja) 固体撮像素子、撮像装置
JP2007173746A (ja) 固体撮像装置およびこれを備えるカメラ
JP2013016702A (ja) 固体撮像装置及びカメラモジュール
JP4626255B2 (ja) 固体撮像素子の製造方法
JP4840536B2 (ja) 固体撮像素子及び撮像装置
JP2006344656A (ja) 固体撮像素子及びその製造方法
JP2006286873A (ja) 固体撮像素子およびその製造方法
JP2007194359A (ja) 固体撮像素子及び固体撮像素子の製造方法
JP2007012677A (ja) 固体撮像素子およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09766355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09766355

Country of ref document: EP

Kind code of ref document: A1