WO2009151110A1 - ポリフルオロ-1-アルケンおよびその製造法 - Google Patents

ポリフルオロ-1-アルケンおよびその製造法 Download PDF

Info

Publication number
WO2009151110A1
WO2009151110A1 PCT/JP2009/060732 JP2009060732W WO2009151110A1 WO 2009151110 A1 WO2009151110 A1 WO 2009151110A1 JP 2009060732 W JP2009060732 W JP 2009060732W WO 2009151110 A1 WO2009151110 A1 WO 2009151110A1
Authority
WO
WIPO (PCT)
Prior art keywords
integer
polyfluoro
alkene
product
reaction
Prior art date
Application number
PCT/JP2009/060732
Other languages
English (en)
French (fr)
Inventor
勝之 佐藤
清一郎 村田
池田 昭彦
吉山 金
Original Assignee
ユニマテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニマテック株式会社 filed Critical ユニマテック株式会社
Priority to EP09762540.4A priority Critical patent/EP2284144B1/en
Priority to US12/993,564 priority patent/US7956225B2/en
Priority to JP2010516890A priority patent/JP5278430B2/ja
Priority to CA2724968A priority patent/CA2724968C/en
Priority to CN200980122426.1A priority patent/CN102056878B/zh
Publication of WO2009151110A1 publication Critical patent/WO2009151110A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine

Definitions

  • the present invention relates to a polyfluoro-1-alkene and a method for producing the same. More specifically, it is a compound having a C 6 or less perfluoroalkyl group and used as a copolymerizable monomer in the production of a fluorinated copolymer which is an active ingredient such as a water / oil repellent.
  • the present invention relates to alkenes and methods for producing the same.
  • Acrylic acid derivatives of perfluoroalkyl alcohol such as CF 3 (CF 2 ) 7 CH 2 CH 2 OCOCH ⁇ CH 2, are used in large quantities as a water / oil repellent synthetic monomer for fibers.
  • perfluoroalkyl alcohol which is a raw material for the acrylate, is widely used as a surfactant or the like (see Patent Document 1).
  • a compound having a perfluoroalkyl group as a structural unit can be applied to the surface of fibers, metals, glass, rubber, resins, etc., thereby improving surface modification, water / oil repellency, antifouling, It is generally known that there is an effect of improving releasability, leveling properties and the like.
  • a C 8 telomer compound is particularly preferred because a compound (telomer compound) having a C 8 to C 12 perfluoroalkyl group is most likely to exhibit the desired performance as described above.
  • telomer compounds having C 8 to C 12 perfluoroalkyl groups in particular have been reported to be biodegraded in the environment and converted to compounds with relatively high bioconcentration and environmental concentration. There are concerns about exposure in the treatment process, waste, release to the environment from the treated substrate, diffusion, and the like. In addition, in the case of a compound having 14 or more carbon atoms in the perfluoroalkyl group, it is very difficult to handle due to its physicochemical properties, and the fact is that it is hardly used.
  • telomer compound having a C 8 or higher perfluoroalkyl group generation or contamination of perfluorooctanoic acids with high bioconcentration properties cannot be avoided in the production process.
  • telomer compounds although promoted the use of alternative to compounds having a withdrawal or C 6 following a perfluoroalkyl group from its production, the carbon number of the perfluoroalkyl group in There 6 the following compounds were significantly reduced in orientation in the treated substrate surface and the melting point, glass transition point or the like is significantly lower than that C 8 compound, temperature, humidity, stress, the use of an organic solvent environment It is greatly influenced by the conditions, and sufficient performance required there is not obtained, and durability is also affected.
  • An object of the present invention is a compound in which the number of continuous CF 2 groups of perfluoroalkyl groups is 5 or less, and is a resinous or elastomeric material that is an active ingredient of a surface treatment agent such as a water / oil repellent and a release agent
  • An object of the present invention is to provide a polyfluoro-1-alkene that is effectively used as a copolymerizable monomer and a method for producing the same in the production of a fluorine-containing copolymer.
  • the general formula CF 3 (CF 2 ) n CH 2 (CF 2 ) m CH CH 2 [I] (Where n is an integer from 0 to 5 and m is an integer from 1 to 7).
  • Such polyfluoro-1-alkenes have the general formula CF 3 (CF 2 ) n CH 2 (CF 2 ) m (CH 2 CH 2 ) I [II] (Where n is an integer from 0 to 5, and m is an integer from 1 to 7).
  • This is produced by reacting an inorganic basic compound with a polyfluoroalkyl iodide represented in the presence of a phase transfer catalyst.
  • the polyfluoro-1-alkene according to the present invention has an unsaturated structure that, when released into the environment, is easily decomposed into ozonolysis and the like, and is easily decomposed into a compound having low environmental concentration and bioaccumulation. However, no environmentally hazardous substances such as perfluoroalkylcarboxylic acids are produced in the production process.
  • the polyfluoro-1-alkene of the present invention which is excellent in such environmental aspects, has a surface modification property, water repellency, oil repellency, which cannot be expressed or lacked in C 6 or less telomers compared to C 8 telomers. It can be effectively used as a copolymerizable monomer of a fluorine-containing copolymer that can also improve performance such as antifouling property, releasability and leveling property.
  • polyfluoro-1-alkene is light transmissive in the visible light region by copolymerizing with at least one other fluorinated olefin monomer such as tetrafluoroethylene, hexafluoropropylene, vinylidene fluoride, etc. It is possible to provide a superior fluorine-containing copolymer.
  • a fluorinated copolymer can be laminated on various substrates such as films, sheets, tubes, hoses, rods, blocks, belts, bottles, tanks, etc., without substantially impairing its excellent light transmittance.
  • the obtained composite can be suitably used for various applications that require high light transmission, low refractive index, chemical resistance, dielectric resistance, etc., such as a chemical solution tube, a fuel hose, and an antireflection film. .
  • the polyfluoro-1-alkene according to the present invention has the general formula CF 3 (CF 2 ) n CH 2 (CF 2 ) m (CH 2 CH 2 ) I [II] n: 0 to 5 m: 1-7
  • the product is produced as a product [I] by reacting a basic compound with the polyfluoroalkyl iodide represented by the following formula and subjecting it to terminal de-HI reaction.
  • the polyfluoroalkyl iodide used as the starting raw material is obtained by a method as shown in Reference Examples described later.
  • Polyfluoroalkyl iodide can be obtained by addition reaction of terminally iodized polyfluoroalkane with ethylene.
  • the terminal iodinated polyfluoroalkane include the following compounds. CF 3 (CF 2 ) (CH 2 CF 2 ) I CF 3 (CF 2 ) 2 (CH 2 CF 2 ) I CF 3 (CF 2 ) 3 (CH 2 CF 2 ) I CF 3 (CF 2 ) 4 (CH 2 CF 2 ) I CF 3 (CF 2 ) (CH 2 CF 2 ) (CF 2 CF 2 ) I CF 3 (CF 2 ) (CH 2 CF 2 ) (CF 2 CF 2 ) 2 I CF 3 (CF 2 ) (CH 2 CF 2 ) (CF 2 CF 2 ) 2 I CF 3 (CF 2 ) (CH 2 CF 2 ) (CF 2 CF 2 ) 3 I CF 3 (CF 2 ) 2 (CH 2 CF 2 ) (CF 2 CF
  • the addition reaction of ethylene is carried out by subjecting the above compound [A] to addition reaction of pressurized ethylene in the presence of a peroxide initiator.
  • the number of additions depends on the reaction conditions, but it is 1 or more, preferably 1 It is.
  • the reaction temperature is related to the decomposition temperature of the initiator used, the reaction is generally carried out at about 80 to 120 ° C. When a peroxide initiator that decomposes at a low temperature is used, the reaction temperature is 80 ° C. or less. Reaction is possible.
  • tertiary butyl peroxide di (tertiary butyl cyclohexyl) peroxydicarbonate, dicetyl peroxydicarbonate and the like are used in an amount of about 1 to 5 mol% with respect to the compound [A]. Used in proportions.
  • the 1-position de-HI reaction is carried out by reacting polyfluoroalkyl iodide [II] with an inorganic basic compound in the presence of a phase transfer catalyst, or reacting with a nitrogen-containing organic basic compound. Is done by. Preferably, it is carried out by the former method, and a polyfluoro-1-alkene having a high purity of 99% can be obtained in a high yield. In this case, it is an essential requirement to use a phase transfer catalyst together with the inorganic basic compound. When no phase transfer catalyst is used, the de-HI reaction hardly proceeds.
  • the inorganic basic compound examples include hydroxides of monovalent or divalent metals such as lithium hydroxide, sodium hydroxide, potassium hydroxide, magnesium hydroxide, and calcium hydroxide, sodium carbonate, sodium bicarbonate, potassium carbonate, Monovalent or divalent metal carbonates such as potassium hydrogen carbonate are used.
  • As the phase transfer catalyst used together with these inorganic basic compounds quaternary onium salts, crown ethers and the like are contained in an amount of about 0.01 to 10 mol%, preferably about 0.1 to 3 mol%, based on the inorganic basic compound. Used in
  • an ammonium salt or a phosphonium salt represented by the following general formula is used.
  • a ring structure can also be formed X ⁇ : Cl ⁇ , Br ⁇ , I ⁇ , HSO 4 ⁇ , H 2 PO 4 ⁇ , RCOO ⁇ , ROSO 2 ⁇ , RSO ⁇ , ROPO 2 H ⁇ , CO 3 - such as the anion of
  • tetraethylammonium bromide tetrabutylammonium chloride, tetrabutylammonium bromide, tetrabutylammonium iodide, n-dodecyltrimethylammonium bromide, cetyldimethylbenzylammonium chloride, methylcetyldibenzylammonium bromide, cetyldimethylethylammonium Bromide, octadecyltrimethylammonium bromide, cetylpyridinium chloride, cetylpyridinium bromide, cetylpyridinium iodide, cetylpyridinium sulfate, 1-benzylpyridinium chloride, 1-benzyl-3,5-dimethylpyridinium chloride, 1-benzyl-4-phenylpyridinium Chloride, 1,4-dibenzylpyridinium chlor
  • nitrogen-containing organic basic compound examples include diethylamine, triethylamine, pyridine or derivatives thereof, diethanolamine, triethanolamine, 1,8-diazabicyclo [5.4.0] -7-undecene, diazabicyclononene, and the like.
  • 1,8-diazabicyclo [5.4.0] -7-undecene having low nucleophilicity is used.
  • polyfluoro-1-alkene and the polyfluoroalkadiene mixture can be subjected to fractional distillation due to the difference in vapor temperature during vacuum distillation.
  • inorganic or organic basic compounds are used in a molar ratio of about 0.1 to 10, preferably 0.95 to 2.5, more preferably 1.0 to 1.5, relative to polyfluoroalkane iodide [II]. If the usage rate of the basic compound is less than this, the desired de-HI reaction does not proceed smoothly, whereas if it is used at a higher usage rate, not only the removal of the basic compound becomes difficult, Problems such as inducing side reactions occur, and the amount of waste increases.
  • the de-HI reaction is performed without a solvent, but it is preferably performed in the presence of an aqueous solvent or an organic solvent from the viewpoint of reaction efficiency and heat generation control.
  • Water is generally used as an aqueous solvent, and organic solvents include alcohols such as methanol, ethanol, propanol and isopropanol, ethers such as diethyl ether, 1,4-dioxane and tetrahydrofuran, acetone, methyl ethyl ketone and methyl isobutyl ketone.
  • Ketones such as toluene, cyclohexane, acetonitrile, N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N-methyl-2- Fluorine-containing organic solvents such as aprotic polar solvents such as pyrrolidone, hydrochlorofluorocarbons such as HCFC-225, and hydrofluoroethers (for example, 3M product Novec HFE) are used.
  • aprotic polar solvents such as pyrrolidone
  • hydrochlorofluorocarbons such as HCFC-225
  • hydrofluoroethers for example, 3M product Novec HFE
  • the aqueous solvent or organic solvent is used in a volume ratio of about 0.1 to 100, preferably about 1 to 10, and more preferably 3 to 6 with respect to the polyfluoroalkane iodide [II]. However, since the reaction efficiency is not affected even if the amount of the solvent is increased, it is preferably used in a volume ratio of 3 to 6.
  • the de-HI reaction is performed at about -20 to 100 ° C, preferably about -10 to 80 ° C. At temperatures higher than this, side reactions proceed and a large amount of by-products with unknown structures are generated.
  • the reaction pressure may be any of reduced pressure, atmospheric pressure, and pressurized pressure, and it is preferable to carry out the reaction at atmospheric pressure for the convenience of the reaction apparatus.
  • phase separation after completion of the reaction after removing the basic compound from the separated organic layer by washing or the like, purification is performed by distillation according to a conventional method to obtain the target polyfluoro-1-alkene. Can be obtained.
  • the stationary phase separation is not performed by using a polar solvent, for example, the solvent is distilled off under reduced pressure, and then the same treatment as in the case of the stationary phase separation is performed.
  • Reference example 1 In an autoclave with a capacity of 1200 ml equipped with a stirrer and a thermometer, CF 3 (CF 2 ) 3 (CH 2 CF 2 ) (CF 2 CF 2 ) 2 I (99GC%) 603 g (0.99 mol) and 7 g of di-tert-butyl peroxide were charged, and the autoclave was deaerated with a vacuum pump. When the internal temperature was heated to 80 ° C., ethylene was sequentially introduced to adjust the internal pressure to 0.5 MPa. When the internal pressure decreased to 0.2 MPa, ethylene was introduced again to 0.5 MPa, and this was repeated.
  • Example 1 The 3,3,4,4,5,5,6,6,7,7,9 obtained in Reference Example 1 was added to a 50 ml glass reactor equipped with a cooling condenser, thermocouple and magnet stirrer. , 9,10,10,11,11,12,12,12-nonadecafluoro-1-iodododecane C 4 F 9 CH 2 (CF 2 ) 5 CH 2 CH 2 I 5 g (7.8 mmol) was hydroxylated. Sodium 0.34 g (8.5 mmol) and tetrabutylammonium chloride 0.03 g (0.13 mmol) were suspended in an aqueous solution dissolved in 15 ml of water, and the reaction was continued for about 72 hours under room temperature conditions.
  • Example 2 To a glass reactor having a capacity of 50 ml equipped with a cooling condenser, a thermocouple and a magnetic stirrer, 3,3,4,4,5,5,6,6,7,7,9 obtained in Reference Example 1 were added. , 9,10,10,11,11,12,12,12-nonadecafluoro-1-iodododecane C 4 F 9 CH 2 (CF 2 ) 5 CH 2 CH 2 I 5 g (7.8 mmol) A solution dissolved in 15 ml of a solvent (Asahi Glass product AK-225) was charged and cooled with ice.
  • a solvent Asahi Glass product AK-225
  • Example 3 In Example 2, 1.8 g (17.3 mmol) of triethylamine was used instead of DBU, and the total reaction time was changed to 48 hours.
  • Product B-product C (weight ratio 49:50) mixture 2.0 g (55% yield) and fraction A product (purity 98%) 1.0 g (yield 26%) Were obtained respectively.
  • Example 4 In Example 3, the amount of triethylamine was changed to 0.9 g (8.5 mmol), and the reaction was carried out using 15 ml of tetrahydrofuran instead of the fluorinated organic solvent as a solvent, whereby the product A (purity 98%) as the fraction was obtained. 1.8 g (yield 46%) was obtained.
  • Reference example 2 In an autoclave with a capacity of 1200 ml equipped with a stirrer and a thermometer, CF 3 (CF 2 ) 3 (CH 2 CF 2 ) (CF 2 CF 2 ) I (99.3GC%) 609 g (1.19 mol) and 6 g of di-tert-butyl peroxide were charged, and the autoclave was deaerated with a vacuum pump. When the internal temperature was heated to 80 ° C., ethylene was sequentially introduced to adjust the internal pressure to 0.5 MPa. When the internal pressure decreased to 0.2 MPa, ethylene was introduced again to 0.5 MPa, and this was repeated.
  • Reference example 3 In an autoclave with a capacity of 1200 ml equipped with a stirrer and a thermometer, CF 3 (CF 2 ) 3 (CH 2 CF 2 ) (CF 2 CF 2 ) 3 I (98GC%) 500 g (0.69 mol) and 7 g of di-tert-butyl peroxide were charged, and the autoclave was deaerated with a vacuum pump. When the internal temperature was heated to 80 ° C., ethylene was sequentially introduced to adjust the internal pressure to 0.5 MPa. When the internal pressure decreased to 0.2 MPa, ethylene was introduced again to 0.5 MPa, and this was repeated.
  • Reference example 4 In an autoclave with a capacity of 1200 ml equipped with a stirrer and a thermometer, CF 3 CF 2 (CH 2 CF 2 ) (CF 2 CF 2 ) I (99.8GC%) 610 g (1.48 mol) and 7 g of di-tert-butyl peroxide were charged, and the autoclave was deaerated with a vacuum pump. When the internal temperature was heated to 80 ° C., ethylene was sequentially introduced to adjust the internal pressure to 0.5 MPa. When the internal pressure decreased to 0.2 MPa, ethylene was introduced again to 0.5 MPa, and this was repeated.
  • CF 3 (CF 2 ) (CH 2 CF 2 ) (CF 2 CF 2 ) 3 (CH 2 CH 2 ) I C 2 F 5 CH 2 (CF 2 ) 7 CH 2 CH 2 I
  • It is C 2 F 5 CH 2 (CF 2) 7 CH CH 2 is a fraction of the vapor pressure 75 ⁇ 77 °C / 1kPa, 2.0g (50% yield) as a product H obtained.
  • Example 1 Comparative Example In Example 1, when tetrabutylammonium chloride as a phase transfer catalyst was not used, only 0.1 g (yield 3%) of product A (purity 97%) as the fraction was obtained. Most of the raw material was recovered unreacted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 一般式 CF3(CF2)nCH2(CF2)mCH=CH2〔I〕(ここで、nは0~5の整数であり、mは1~7の整数である)で表わされるポリフルオロ-1-アルケンが、一般式 CF3(CF2)nCH2(CF2)m(CH2CH2)I〔II〕(ここで、nは0~5の整数であり、mは1~7の整数である)で表わされるポリフルオロアルキルアイオダイドに相関移動触媒の存在下で無機塩基性化合物を反応させることによって製造され、あるいはポリフルオロアルキルアイオダイド〔II〕に含窒素有機塩基性化合物を反応させ、生成物〔I〕を1留分として取得することによって製造される。このポリフルオロ-1-アルケンは、他のフッ素化オレフィン単量体と共重合させることにより、可視光領域における光透過性にすぐれた含フッ素共重合体を形成させることができる。

Description

ポリフルオロ-1-アルケンおよびその製造法
 本発明は、ポリフルオロ-1-アルケンおよびその製造法に関する。さらに詳しくは、C6以下パーフルオロアルキル基を有する化合物であって、撥水撥油剤等の有効成分である含フッ素共重合体の製造時に共重合性単量体として用いられるポリフルオロ-1-アルケンおよびその製造法に関する。
 パーフルオロアルキルアルコールのアクリル酸誘導体、例えばCF3(CF2)7CH2CH2OCOCH=CH2は、繊維用撥水撥油剤合成モノマーとして多量に使用されている。また、そのアクリレートの原料となるパーフルオロアルキルアルコールは、界面活性剤等として広く使用されている(特許文献1参照)。
 このように、パーフルオロアルキル基を構造単位として有する化合物は、繊維、金属、ガラス、ゴム、樹脂等の表面にこれを適用することによって、表面改質性、撥水撥油性、防汚性、離型性、レベリング性などを向上させる効果のあることが一般に知られている。その中でも、パーフルオロアルキル基の炭素数がC8~C12である化合物(テロマー化合物)が上記の如き望ましい性能を最も発現し易いので、C8のテロマー化合物が特に好んで使用されている。
 一方で、特にC8~C12のパーフルオロアルキル基を有するテロマー化合物は、環境中で生物的に分解され、生体濃縮性、環境濃縮性の比較的高い化合物に変化することが報告されており、処理工程での暴露、廃棄物、処理基材等からの環境への放出、拡散などが懸念されている。また、パーフルオロアルキル基の炭素数が14以上の化合物では、それの物理化学的性状から取扱いが非常に困難であり、殆ど使用はされていないのが実情である。
 さらに、C8以上のパーフルオロアルキル基を有するテロマー化合物にあっては、それの製造プロセスにおいて、生体濃縮性の高いパーフルオロオクタン酸類の発生や混入が避けられない。
 そのため、このようなテロマー化合物を製造している各社は、それの製造からの撤退やC6以下のパーフルオロアルキル基を有する化合物への代替などを進めているが、パーフルオロアルキル基の炭素数が6以下の化合物では、処理基材表面での配向性が著しく低下し、また融点、ガラス転移点等がC8化合物と比べて著しく低いため、温度、湿度、応力、有機溶剤等の使用環境条件に大きな影響を受け、そこに求められる十分な性能が得られず、また耐久性などにも影響が出てくるようになる。
特公昭63-22237号公報
 本発明の目的は、パーフルオロアルキル基の連続したCF2基の数が5以下の化合物であって、撥水撥油剤、離型剤等の表面処理剤の有効成分となる樹脂状またはエラストマー状含フッ素共重合体の製造に際し、共重合性単量体として有効に用いられるポリフルオロ-1-アルケンおよびその製造法を提供することにある。
 本発明によって、一般式
   CF3(CF2)nCH2(CF2)mCH=CH2                  〔I〕
(ここで、nは0~5の整数であり、mは1~7の整数である)で表わされるポリフルオロ-1-アルケンが提供される。かかるポリフルオロ-1-アルケンは、一般式
   CF3(CF2)nCH2(CF2)m(CH2CH2)I                〔II〕
(ここで、nは0~5の整数であり、mは1~7の整数である)で表わされるポリフルオロアルキルアイオダイドに相関移動触媒の存在下で無機塩基性化合物を反応させることによって製造され、あるいはポリフルオロアルキルアイオダイド〔II〕に含窒素有機塩基性化合物を反応させ、生成物〔I〕を1留分として取得することによって製造される。
 本発明に係るポリフルオロ-1-アルケンは、環境中へ放出されたときそれが容易にオゾン分解などされて、環境濃縮性、生体蓄積性の低い化合物へと分解され易い不飽和構造を有し、なおその製造工程でパーフルオロアルキルカルボン酸等の環境負荷物質を生成させない。
 このような環境面ですぐれている本発明のポリフルオロ-1-アルケンは、C8テロマーと比較してC6以下のテロマーでは発現できないあるいは不足している表面改質性、撥水撥油性、防汚性、離型性、レベリング性などの性能面をも改善できる含フッ素共重合体の共重合性単量体として、有効に使用することができる。
 また、ポリフルオロ-1-アルケンは、他のフッ素化オレフィン単量体、例えばテトラフルオロエチレン、ヘキサフルオロプロピレン、フッ化ビニリデン等の少くとも一種と共重合させることにより、可視光領域における光透過性にすぐれた含フッ素共重合体を与えることができる。かかる含フッ素共重合体は、そのすぐれた光透過性を実質的に損うことなく、フィルム、シート、チューブ、ホース、ロッド、ブロック、ベルト、ボトル、タンク等の各種基材へ積層することができ、得られた複合体は、薬液チューブ、燃料ホース、反射防止膜等の高光透過性、低屈折率性、耐薬品性、耐誘電性等が要求される各種用途に好適に用いることができる。
 本発明にかかるポリフルオロ-1-アルケンは、一般式
   CF3(CF2)nCH2(CF2)m(CH2CH2)I                〔II〕
       n:0~5
       m:1~7
で表わされるポリフルオロアルキルアイオダイドに塩基性化合物を反応させ、末端脱HI化反応させることにより、生成物〔I〕として製造される。
 出発原料物質となるポリフルオロアルキルアイオダイドは、後記参考例に示される如き方法で得られる。
 また、ポリフルオロアルキルアイオダイドは、末端ヨウ素化ポリフルオロアルカンにエチレンを付加反応させることにより得られる。末端ヨウ素化ポリフルオロアルカンとしては、例えば次のような化合物が挙げられる。
   CF3(CF2)(CH2CF2)I
   CF3(CF2)2(CH2CF2)I
   CF3(CF2)3(CH2CF2)I
   CF3(CF2)4(CH2CF2)I
   CF3(CF2)(CH2CF2)(CF2CF2)I
   CF3(CF2)(CH2CF2)(CF2CF2)2I
   CF3(CF2)(CH2CF2)(CF2CF2)3I
   CF3(CF2)2(CH2CF2)(CF2CF2)I
   CF3(CF2)2(CH2CF2)(CF2CF2)2I
   CF3(CF2)2(CH2CF2)(CF2CF2)3I
 ポリフルオロアルキルアイオダイド
   CF3(CF2)nCH2(CF2)m(CH2CH2)I                〔II〕
すなわち
   CF3(CF2)n(CH2CF2)(CF2CF2)p(CH2CH2)I   (ただし、m=2p+1)
は、一般式
   CF3(CF2)n(CH2CF2)(CF2CF2)pI                〔A〕
で表わされる末端ヨウ素化化合物にエチレンを付加反応させることにより製造される。
 エチレンの付加反応は、上記化合物〔A〕に過酸化物開始剤の存在下で加圧エチレンを付加反応させることにより行われ、その付加数は反応条件にもよるが、1以上、好ましくは1である。なお、反応温度は用いられる開始剤の分解温度にも関係するが、反応は一般に約80~120℃で行われ、低温で分解する過酸化物開始剤を用いた場合には80℃以下での反応が可能である。過酸化物開始剤としては、第3ブチルパーオキサイド、ジ(第3ブチルシクロヘキシル)パーオキシジカーボネート、ジセチルパーオキシジカーボネート等が、上記化合物〔A〕に対して約1~5モル%の割合で用いられる。
 ポリフルオロアルカンアイオダイド〔II〕に塩基性化合物を反応させ、脱ハロゲン化水素化反応させることにより、1-位の脱HI化反応が生じ、ポリフルオロ-1-アルケン〔I〕を生成させる。
 1-位の脱HI化反応は、ポリフルオロアルキルアイオダイド〔II〕に、相関移動触媒の存在下で無機塩基性化合物を反応させることによって行われ、あるいは含窒素有機塩基性化合物を反応させることによって行われる。好ましくは、前者の方法によって行われ、99%という高純度のポリフルオロ-1-アルケンを高収率で得ることができる。この場合にあっては、無機塩基性化合物と共に相関移動触媒を用いることが必須の要件であり、相関移動触媒を用いない場合には、殆ど脱HI化反応は進行しない。
 無機塩基性化合物としては、例えば水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム等の1価または2価金属の水酸化物、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム等の1価または2価金属の炭酸塩等が用いられる。これらの無機塩基性化合物と共に用いられる相関移動触媒としては、第4級オニウム塩、クラウンエーテル等が、無機塩基性化合物に対して約0.01~10モル%、好ましくは約0.1~3モル%の割合で用いられる。
  第4級オニウム塩としては、次の一般式で表わされるアンモニウム塩またはホスホニウム塩の少なくとも一種が用いられる。
  (R1R2R3R4N)+X-      (R1R2R3R4P)+X-
   R1~R4:炭素数1~25のアルキル基、アルコキシ基、アリール基、アル
       キルアリール基、アラルキル基またはポリオキシアルキレン
       基であり、あるいはこれらの内の2~3個がPまたはNと共に複
       素環構造を形成することもできる
     X-:Cl-、Br-、I-、HSO4 -、H2PO4 -、RCOO-、ROSO2 -、RSO-、ROPO2H-
       CO3 --等のアニオン
  具体的には、例えばテトラエチルアンモニウムブロマイド、テトラブチルアンモニウムクロライド、テトラブチルアンモニウムブロマイド、テトラブチルアンモニウムアイオダイド、n-ドデシルトリメチルアンモニウムブロマイド、セチルジメチルベンジルアンモニウムクロライド、メチルセチルジベンジルアンモニウムブロマイド、セチルジメチルエチルアンモニウムブロマイド、オクタデシルトリメチルアンモニウムブロマイド、セチルピリジニウムクロライド、セチルピリジニウムブロマイド、セチルピリジニウムアイオダイド、セチルピリジニウムサルフェート、1-ベンジルピリジニウムクロライド、1-ベンジル-3,5-ジメチルピリジニウムクロライド、1-ベンジル-4-フェニルピリジニウムクロライド、1,4-ジベンジルピリジニウムクロライド、1-ベンジル-4-(ピロリジニル)ピリジニウムクロライド、1-ベンジル-4-ピリジノピリジニウムクロライド、テトラエチルアンモニウムアセテート、トリメチルベンジルアンモニウムベンゾエート、トリメチルベンジルアンモニウム-p-トルエンスルホネート、トリメチルベンジルアンモニウムボレート、8-ベンジル-1,8-ジアザビシクロ[5,4,0]-ウンデク-7-エニウムクロライド、1,8-ジアザビシクロ[5,4,0]-ウンデセン-7-メチルアンモニウムメトサルフェート、5-ベンジル-1,5-ジアザビシクロ[4,3,0]-5-ノネニウムクロライド、5-ベンジル-1,5-ジアザビシクロ[4,3,0]-5-ノネニウムブロマイド、5-ベンジル-1,5-ジアザビシクロ[4,3,0]-5-ノネニウムテトラフルオロボレート、5-ベンジル-1,5-ジアザビシクロ[4,3,0]-5-ノネニウムヘキサフルオロホスフェートなどの4級アンモニウム塩、あるいは例えばテトラフェニルホスホニウムクロライド、トリフェニルベンジルホスホニウムクロライド、トリフェニルベンジルホスホニウムブロマイド、トリフェニルメトキシメチルホスホニウムクロライド、トリフェニルメチルカルボニルメチルホスホニウムクロライド、トリフェニルエトキシカルボニルメチルホスホニウムクロライド、トリオクチルベンジルホスホニウムクロライド、トリオクチルメチルホスホニウムブロマイド、トリオクチルエチルホスホニウムアセテート、トリオクチルエチルホスホニウムジメチルホスフェート、テトラオクチルホスホニウムクロライド、セチルジメチルベンジルホスホニウムクロライドなどの4級ホスホニウム塩が挙げられる。
 また、含窒素有機塩基性化合物としては、ジエチルアミン、トリエチルアミン、ピリジンまたはその誘導体、ジエタノールアミン、トリエタノールアミン、1,8-ジアザビシクロ〔5.4.0〕-7-ウンデセン、ジアザビシクロノネン等が挙げられ、好ましくは求核性の低い1,8-ジアザビシクロ〔5.4.0〕-7-ウンデセンが用いられる。
 含窒素有機塩基性化合物が用いられた場合には、目的物であるポリフルオロ-1-アルケンの他に、後記実施例2~4に示される如く、ポリフルオロアルカジエン混合物が多く副生するが、ポリフルオロ-1-アルケンとポリフルオロアルカジエン混合物とは、減圧蒸留時の蒸気温の違いによって、これらを分留することができる。
 これらの無機または有機の塩基性化合物は、ポリフルオロアルカンアイオダイド〔II〕に対してモル比で約0.1~10、好ましくは0.95~2.5、さらに好ましくは1.0~1.5の割合で用いられる。塩基性化合物の使用割合がこれよりも少ないと、所望の脱HI反応が円滑に進行せず、一方これよりも多い使用割合で用いられると、塩基性化合物の除去が困難となるばかりではなく、副反応を誘発するなどの問題が生じ、廃棄物量が増加することになる。
 脱HI反応は、無溶媒でも行われるが、反応効率、発熱制御の観点から、水性溶媒または有機溶媒の存在下で行うことが好ましい。水性溶媒としては一般に水が用いられ、また有機溶媒としては、メタノール、エタノール、プロパノール、イソプロパノール等のアルコール類、ジエチルエーテル、1,4-ジオキサン、テトラヒドロフラン等のエーテル類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、トルエン、シクロヘキサン等の炭化水素類、アセトニトリル、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N-メチル-2-ピロリドン等の非プロトン性極性溶媒、HCFC-225等のハイドロクロロフルオロカーボン、ハイドロフルオロエーテル(例えば、3M社製品ノベックHFE)等の含フッ素有機溶媒が用いられる。
 水性溶媒または有機溶媒は、ポリフルオロアルカンアイオダイド〔II〕に対して容積比で約0.1~100、好ましくは約1~10、さらに好ましくは3~6の割合で用いられる。ただし、溶媒量を多くしても反応効率に影響がみられないため、3~6の容量比で用いることが好ましい。
 脱HI反応は、約-20~100℃、好ましくは約-10~80℃で行われる。これよりも高い温度では、副反応が進行し、構造不明な副生成物が多量に発生する。反応圧力については、減圧下、大気圧下、加圧下のいずれでもよく、反応装置の簡便性からは大気圧下で行うことが好ましい。
 反応終了後静置分相する場合には、分液された有機層を水洗などにより塩基性化合物を除去した後、定法にしたがって蒸留などによる精製を行い、目的物であるポリフルオロ-1-アルケンを得ることができる。極性溶媒を用いるなどして静置分相しない場合には、溶媒を減圧下で留去した後、静置分相する場合と同様な処理が行われる。
 次に、実施例について本発明を説明する。
 参考例1
 攪拌機および温度計を備えた容量1200mlのオートクレーブに、
   CF3(CF2)3(CH2CF2)(CF2CF2)2I (99GC%)
603g(0.99モル)およびジ第3ブチルパーオキサイド7gを仕込み、真空ポンプでオートクレーブを脱気した。内温を80℃迄加熱したところで、エチレンを逐次的に導入し、内圧を0.5MPaとした。内圧が0.2MPa迄下がったら、再びエチレンを導入して0.5MPaとし、これをくり返した。内温を80~115℃に保ちながら、約3時間かけてエチレン41g(1.45モル)を導入した。内温50℃以下で内容物を回収し、
   CF3(CF2)3(CH2CF2)(CF2CF2)2(CH2CH2)I (98GC%)
すなわち
   C4F9CH2(CF2)5CH2CH2I
637g(収率98.8%)を得た。
 実施例1
 冷却コンデンサ、熱電対およびマグネット攪拌子を備えた容量50mlのガラス製反応器に、上記参考例1で得られた3,3,4,4,5,5,6,6,7,7,9,9,10,10,11,11,12,12,12-ノナデカフルオロ-1-ヨードドデカンC4F9CH2(CF2)5CH2CH2I 5g(7.8ミリモル)を、水酸化ナトリウム0.34g(8.5ミリモル)およびテトラブチルアンモニウムクロライド0.03g(0.13ミリモル)を水15mlに溶解させた水溶液中にけん濁させ、室温条件下で約72時間攪拌を継続して反応させた。
 反応終了後、静置分層させた下層について、水20mlを用いた洗浄を2回、その後飽和食塩水による洗浄を1回行い、得られた反応生成物溶液を無水硫酸マグネシウムで脱水・乾燥させた。回収液を減圧蒸留により精製し、生成物Aを蒸気温76~77℃/1kPaの留分(純度99%)3.2g(収率80%)を得た。得られた留分の構造を19F-NMRおよび1H-NMRで確認した。
  生成物A:3,3,4,4,5,5,6,6,7,7,9,9,10,10,11,11,12,12,12-ノナデカ
       フルオロ-1-ドデセン
       CF3CF2CF2CF2CH2CF2CF2CF2CF2CF2CH=CH2
  1H-NMR(CDCl3、TMS):δ2.89 (CH 2CF2)
             5.79 (CH=CH2)
             5.97 (CH=CH 2)
  19F-NMR(CDCl3、C6F6):ppm  -82.1 (CF 3)
              -126.9 (CF3CF 2CF2CF2)
              -124.8 (CF3CF2CF 2CF2)
              -113.2 (CF 2CH2CF2)
              -113.0 (CF2CH2CF 2)
              -121.7 (CH2CF2CF 2CF2)
              -124.2 (CH2CF2CF2CF 2)
              -124.6 (CF 2CF2CH=CH2)
              -114.8 (CF2CF 2CH=CH2)
 実施例2
 冷却コンデンサ、熱電対およびマグネット攪拌子を備えた容量50mlのガラス製反応器に、前記参考例1で得られた3,3,4,4,5,5,6,6,7,7,9,9,10,10,11,11,12,12,12-ノナデカフルオロ-1-ヨードドデカンC4F9CH2(CF2)5CH2CH2I 5g(7.8ミリモル)を含フッ素有機溶媒(旭硝子製品AK-225)15mlに溶解させた溶液として仕込み、氷冷した後、内温を0~10℃の範囲に保ちながら、1,8-ジアザビシクロ〔5.4.0〕-7-ウンデセン〔DBU〕1.3g(8.5ミリモル)を滴下した。滴下終了後、約0℃で約1時間攪拌し、次いで室温条件下で約23時間攪拌を継続した(全反応時間24時間)。
 反応終了後、水20mlを用いた洗浄を2回、その後飽和食塩水による洗浄を1回行い、得られた反応生成物溶液を無水硫酸マグネシウムで脱水・乾燥させた。反応溶媒を減圧下で留去した後、残留物を減圧蒸留により精製し、蒸気温68~70℃/1kPaの留分を1.2g(収率33%)得た。得られた留分の構造を19F-NMRおよび1H-NMRで確認し、下記生成物Bと生成物Cとの重量比約48:52の混合物であることを確認した。次いで、蒸気温76~77℃/1kPaの留分としての生成物A(純度98%)を0.6g(収率15%)得た。
  生成物B:3,3,4,4,5,5,6,6,7,7,9,10,10,11,11,12,12,12-オクタデカ
       フルオロドデカ-1,8-ジエン
       CF3CF2CF2CF=CHCF2CF2CF2CF2CF2CH=CH2
  生成物C:3,3,4,4,5,5,6,6,7,9,9,10,10,11,11,12,12,12-オクタデカ
       フルオロドデカ-1,7-ジエン
       CF3CF2CF2CF2CH=CFCF2CF2CF2CF2CH=CH2
  1H-NMR:TMS
   生成物Bδ=5.81(1H:-CF=CH-)、5.79(1H:-CF2-CH=)、5.97(2H:=CH 2)
   生成物Cδ=5.81(1H:-CH=CF-)、5.79(1H:-CF2-CH=)、5.97(2H:=CH 2)
  19F-NMR:CFCl3
   生成物Bδ=-79.95(3F:CF 3-)、-108.35(2F:=CHCF 2-)、-111.34(1F:
        -CF=)、-112.34(2F:-CF 2CH=)、-117.4~126.3(10F:-CF 2-)
   生成物Cδ=-80.20(3F:CF 3-)、-108.35(2F:=CHCF 2-)、-109.81(1F:
        =CF-)、-112.34(2F:-CF 2CH=)、-117.4~126.3(10F:-CF 2-)
 実施例3
 実施例2において、DBUの代りにトリエチルアミン1.8g(17.3ミリモル)を用い、全反応時間を48時間に変更した。前記留分としての生成物B-生成物C(重量比49:50)混合物2.0g(収率55%)および前記留分としての生成物A(純度98%)1.0g(収率26%)がそれぞれ得られた。
 実施例4
 実施例3において、トリエチルアミン量を0.9g(8.5ミリモル)に変更し、また溶媒として含フッ素有機溶媒の代りにテトラヒドロフラン15mlを用いて反応させ、前記留分としての生成物A(純度98%)が1.8g(収率46%)得られた。
 参考例2
 攪拌機および温度計を備えた容量1200mlのオートクレーブに、
   CF3(CF2)3(CH2CF2)(CF2CF2)I (99.3GC%)
609g(1.19モル)およびジ第3ブチルパーオキサイド6gを仕込み、真空ポンプでオートクレーブを脱気した。内温を80℃迄加熱したところで、エチレンを逐次的に導入し、内圧を0.5MPaとした。内圧が0.2MPa迄下がったら、再びエチレンを導入して0.5MPaとし、これをくり返した。内温を80~115℃に保ちながら、約3時間かけてエチレン50g(1.79モル)を導入した。内温50℃以下で内容物を回収し、
   CF3(CF2)3(CH2CF2)(CF2CF2)(CH2CH2)I (97.4GC%)
640g(収率97.3%)を得た。
 実施例5
 実施例1において、
  CF3(CF2)3(CH2CF2)(CF2CF2)2(CH2CH2)I=C4F9CH2(CF2)5CH2CH2I
の代りに、上記参考例2で得られたポリフルオロアルキルアイオダイドが4.2g用いられた。
  CF3(CF2)3(CH2CF2)(CF2CF2)(CH2CH2)I=C4F9CH2(CF2)3CH2CH2I
蒸気圧63~65℃/1kPaの留分であるC4F9CH2(CF2)3CH=CH2が、生成物Dとして2.6g(収率81%)得られた。
  生成物D:3,3,4,4,5,5,7,7,8,8,9,9,10,10,10-ペンタデカフルオロ-1-
       デセン
       CF3CF2CF2CF2CH2CF2CF2CF2CH=CH2
  1H-NMR(CDCl3、TMS):δ2.89 (CH 2CF2)
             5.79 (CH=CH2)
             5.97 (CH=CH 2)
  19F-NMR(CDCl3、C6F6):ppm  -82.0 (CF 3)
              -126.7 (CF3CF 2CF2CF2)
              -124.9 (CF3CF2CF 2CF2)
              -113.0 (CF 2CH2CF2)
              -111.5 (CF2CH2CF 2)
              -111.8 (CH2CF2CF 2CF2)
              -114.8 (CH2CF2CF2CF 2)
 参考例3
 攪拌機および温度計を備えた容量1200mlのオートクレーブに、
   CF3(CF2)3(CH2CF2)(CF2CF2)3I (98GC%)
500g(0.69モル)およびジ第3ブチルパーオキサイド7gを仕込み、真空ポンプでオートクレーブを脱気した。内温を80℃迄加熱したところで、エチレンを逐次的に導入し、内圧を0.5MPaとした。内圧が0.2MPa迄下がったら、再びエチレンを導入して0.5MPaとし、これをくり返した。内温を80~115℃に保ちながら、約3時間かけてエチレン23g(0.95モル)を導入した。内温50℃以下で内容物を回収し、
   CF3(CF2)3(CH2CF2)(CF2CF2)3(CH2CH2)I (96GC%)
すなわち
   C4F9CH2(CF2)7CH2CH2I
515g(収率98.6%)を得た。
 実施例6
 実施例1において、
  CF3(CF2)3(CH2CF2)(CF2CF2)2(CH2CH2)I=C4F9CH2(CF2)5CH2CH2I
の代りに、上記参考例3で得られたポリフルオロアルキルアイオダイドが5.8g用いられた。
  CF3(CF2)3(CH2CF2)(CF2CF2)3(CH2CH2)I=C4F9CH2(CF2)7CH2CH2I
蒸気圧90~94℃/1kPaの留分であるC4F9CH2(CF2)7CH=CH2が、生成物Eとして3.0g(収率63%)得られた。
  生成物E:3,3,4,4,5,5,6,6,7,7,8,8,9,9,11,11,12,12,13,13,14,14,14-
       トリコサフルオロ-1-テトラデセン
       CF3CF2CF2CF2CH2CF2CF2CF2CF2CF2CF2CF2CH=CH2
  1H-NMR(CDCl3、TMS):δ2.89 (CH 2CF2)
             5.79 (CH=CH2)
             5.97 (CH=CH 2)
  19F-NMR(CDCl3、C6F6):ppm  -82.1 (CF 3)
              -126.9 (CF3CF 2CF2CF2)
              -124.8 (CF3CF2CF 2CF2)
              -113.4 (CF 2CH2CF2)
              -113.0 (CF2CH2CF 2)
              -121.7 (CH2CF2CF 2CF2)
              -122.7 (CH2CF2CF2CF 2)
              -124.3 (CF 2CF2CF2CF2CH=CH2)
              -122.6 (CF2CF 2CF2CF2CH=CH2)
              -122.9 (CF2CF2CF 2CF2CH=CH2)
              -114.8 (CF2CF2CF2CF 2CH=CH2)
 参考例4
 攪拌機および温度計を備えた容量1200mlのオートクレーブに、
   CF3CF2(CH2CF2)(CF2CF2)I (99.8GC%)
610g(1.48モル)およびジ第3ブチルパーオキサイド7gを仕込み、真空ポンプでオートクレーブを脱気した。内温を80℃迄加熱したところで、エチレンを逐次的に導入し、内圧を0.5MPaとした。内圧が0.2MPa迄下がったら、再びエチレンを導入して0.5MPaとし、これをくり返した。内温を80~115℃に保ちながら、約3時間かけてエチレン62g(2.23モル)を導入した。内温50℃以下で内容物を回収し、
   CF3CF2(CH2CF2)(CF2CF2)(CH2CH2)I (98.7GC%)
644g(収率98.0%)を得た。
 実施例7
 実施例1において、
  CF3(CF2)3(CH2CF2)(CF2CF2)2(CH2CH2)I=C4F9CH2(CF2)5CH2CH2I
の代りに、上記参考例4で得られたポリフルオロアルキルアイオダイドが3.4g用いられた。
  CF3(CF2)(CH2CF2)(CF2CF2)(CH2CH2)I=C2F5CH2(CF2)3CH2CH2I
蒸気圧52~55℃/1kPaの留分であるC2F5CH2(CF2)3CH=CH2が、生成物Fとして2.1g(収率87%)得られた。
  生成物F:3,3,4,4,5,5,7,7,8,8,8-ウンデカフルオロ-1-オクテン
       CF3CF2CH2CF2CF2CF2CH=CH2
  1H-NMR(CDCl3、TMS):δ2.89 (CH 2CF2)
             5.79 (CH=CH2)
             5.97 (CH=CH 2)
  19F-NMR(CDCl3、C6F6):ppm  -87.1 (CF 3)
              -116.8 (CF3CF 2CH2CF2)
              -111.6 (CF3CF2CH2CF 2)
              -111.9 (CF 2CF2CH=CH2)
              -114.8 (CF2CF 2CH=CH2)
 参考例5
 攪拌機および温度計を備えた容量1200mlのオートクレーブに、
   CF3CF2(CH2CF2)(CF2CF2)2I (99.4GC%)
605g(1.18モル)およびジ第3ブチルパーオキサイド6gを仕込み、真空ポンプでオートクレーブを脱気した。内温を80℃迄加熱したところで、エチレンを逐次的に導入し、内圧を0.5MPaとした。内圧が0.2MPa迄下がったら、再びエチレンを導入して0.5MPaとし、これをくり返した。内温を80~115℃に保ちながら、約3時間かけてエチレン50g(1.79モル)を導入した。内温50℃以下で内容物を回収し、
   CF3CF2(CH2CF2)(CF2CF2)2(CH2CH2)I (97.3GC%)
639g(収率98.0%)を得た。
 実施例8
 実施例1において、
  CF3(CF2)3(CH2CF2)(CF2CF2)2(CH2CH2)I=C4F9CH2(CF2)5CH2CH2I
の代りに、上記参考例5で得られたポリフルオロアルキルアイオダイドが4.2g用いられた。
  CF3(CF2)(CH2CF2)(CF2CF2)2(CH2CH2)I=C2F5CH2(CF2)5CH2CH2I
蒸気圧63~65℃/1kPaの留分であるC2F5CH2(CF2)5CH=CH2が、生成物Gとして2.5g(収率78%)得られた。
  生成物G:3,3,4,4,5,5,6,6,7,7,9,9,10,10,10-ペンタデカフルオロ-1-
       デセン
       CF3CF2CH2CF2CF2CF2CF2CF2CH=CH2
  1H-NMR(CDCl3、TMS):δ2.89 (CH 2CF2)
             5.79 (CH=CH2)
             5.97 (CH=CH 2)
  19F-NMR(CDCl3、C6F6):ppm  -87.1 (CF 3)
              -116.8 (CF3CF 2CH2CF2)
              -113.0 (CF3CF2CH2CF 2)
              -121.5 (CH2CF2CF 2CF2)
              -124.1 (CH2CF2CF2CF 2)
              -124.2 (CF 2CF2CH=CH2)
              -114.8 (CF2CF 2CH=CH2)
 参考例6
 攪拌機および温度計を備えた容量1200mlのオートクレーブに、
   CF3CF2(CH2CF2)(CF2CF2)3I (98.7GC%)
605g(0.98モル)およびジ第3ブチルパーオキサイド7gを仕込み、真空ポンプでオートクレーブを脱気した。内温を80℃迄加熱したところで、エチレンを逐次的に導入し、内圧を0.5MPaとした。内圧が0.2MPa迄下がったら、再びエチレンを導入して0.5MPaとし、これをくり返した。内温を80~115℃に保ちながら、約3時間かけてエチレン43g(1.53モル)を導入した。内温50℃以下で内容物を回収し、
   CF3CF2(CH2CF2)(CF2CF2)3(CH2CH2)I (97.7GC%)
630g(収率98.5%)を得た。
 実施例9
 実施例1において、
  CF3(CF2)3(CH2CF2)(CF2CF2)2(CH2CH2)I=C4F9CH2(CF2)5CH2CH2I
の代りに、上記参考例6で得られたポリフルオロアルキルアイオダイド5.0gが用いられた。
  CF3(CF2)(CH2CF2)(CF2CF2)3(CH2CH2)I=C2F5CH2(CF2)7CH2CH2I
蒸気圧75~77℃/1kPaの留分であるC2F5CH2(CF2)7CH=CH2が、生成物Hとして2.0g(収率50%)得られた。
  生成物H:3,3,4,4,5,5,6,6,7,7,8,8,9,9,11,11,12,12,12-ノナデカフル
       オロ-1-ドデセン
       CF3CF2CH2CF2CF2CF2CF2CF2CF2CF2CH=CH2
  1H-NMR(CDCl3、TMS):δ2.89 (CH 2CF2)
             5.79 (CH=CH2)
             5.97 (CH=CH 2)
  19F-NMR(CDCl3、C6F6):ppm  -87.1 (CF 3)
              -116.8 (CF3CF 2CH2CF2)
              -113.0 (CF3CF2CH2CF 2)
              -121.7 (CH2CF2CF 2CF2)
              -122.7 (CH2CF2CF2CF 2)
              -124.2 (CF 2CF2CF2CF2CH=CH2)
              -122.4 (CF2CF 2CF2CF2CH=CH2)
              -122.7 (CF2CF2CF 2CF2CH=CH2)
              -114.8 (CF2CF2CF2CF 2CH=CH2)
 比較例
 実施例1において、相関移動触媒としてのテトラブチルアンモニウムクロライドを用いないと、前記留分としての生成物A(純度97%)が0.1g(収率3%)が得られたのみで、原料物質の殆どは未反応のまま回収された。
 参考例7
 攪拌機を備えた容量500mlのSUS316製オートクレーブ内を真空まで脱気した後、パーフルオロ(2-n-ブチルテトラヒドロフラン)溶媒330gを仕込み、オートクレーブ内の脱気、窒素置換を行い、そこにテトラフルオロエチレン〔TFE〕20g(67モル%)および実施例1で得られた生成物A(ノナデカフルオロ-1-ドデセン)50g(33モル%)をそれぞれ仕込み、50℃に加温すると、オートクレーブ内の内圧は0.62MPa・Gとなった。
 次いで、開始剤としてイソブチリルパーオキサイドの25重量%AK225(CF3CF2CHCl2/CClF2CF2CHClF=45/55重量%混合溶媒)溶液3gを定量ポンプを用いて導入して重合反応を開始させ、内圧が0.30MPa・Gになるまで、20時間重合反応を行った。得られたスラリーを、n-ヘキサン中に投入し、ロ過、乾燥させて、含フッ素共重合体21gを得た。
  (得られた含フッ素共重合体の性状)
   共重合組成比:TFE/生成物A=55/45重量%
          19F NMR法による
   数平均分子量Mn:9500
           Shodex GPC KD-805+KD-803+KD-Gを用い、テトラヒド
           ロフラン溶出液により、GPC測定を行った(ポリスチ
           レン換算値)
   光透過率:95%以上
        厚さ100μmのフィルムについて、日本分光製紫外可視分光
        光度計を用い、波長400~800nmでの光透過率を測定
 参考例8
 参考例7において、脱気、窒素置換後の共単量体仕込みを、TFE 20g(54.4モル%)、フッ化ビニリデン〔VdF〕3.3g(14.0モル%)および生成物A 59.3g(31.6モル%)に変更した。含フッ素共重合体25gが得られ、その共重合組成はTFE/VdF/生成物A=50/7/43重量%であり、数平均分子量Mnは11000、光透過率は95%以上であった。
 参考例9
 参考例7において、脱気、窒素置換後の共単量体仕込みを、フッ化ビニリデン〔VdF〕20g(70モル%)および生成物A 41.5g(30モル%)に変更した。含フッ素共重合体22gが得られ、その共重合組成はVdF/生成物A=/54/46重量%であり、数平均分子量Mnは21000、光透過率は95%以上であった。

Claims (7)

  1.  一般式
       CF3(CF2)nCH2(CF2)mCH=CH2               〔I〕
    (ここで、nは0~5の整数であり、mは1~7の整数である)で表わされるポリフルオロ-1-アルケン。
  2.  一般式
       CF3(CF2)nCH2(CF2)m(CH2CH2)I             〔II〕
    (ここで、nは0~5の整数であり、mは1~7の整数である)で表わされるポリフルオロアルキルアイオダイドに、相関移動触媒の存在下で無機塩基性化合物を反応させ、一般式
       CF3(CF2)nCH2(CF2)mCH=CH2               〔I〕
    (ここで、nは0~5の整数であり、mは1~7の整数である)で表わされるポリフルオロ-1-アルケンを1留分として取得することを特徴とするポリフルオロ-1-アルケンの製造法。
  3.  相関移動触媒が第4級オニウム塩である請求項2記載のポリフルオロ-1-アルケンの製造法。
  4.  水性溶媒中で反応が行われる請求項2記載のポリフルオロ-1-アルケンの製造法。
  5.  一般式
       CF3(CF2)nCH2(CF2)m(CH2CH2)I             〔II〕
    (ここで、nは0~5の整数であり、mは1~7の整数である)で表わされるポリフルオロアルキルアイオダイドに、含窒素有機塩基性化合物を反応させ、一般式
       CF3(CF2)nCH2(CF2)mCH=CH2               〔I〕
    (ここで、nは0~5の整数であり、mは1~7の整数である)で表わされるポリフルオロ-1-アルケンを1留分として取得することを特徴とするポリフルオロ-1-アルケンの製造法。
  6.  含窒素有機塩基性化合物が1,8-ジアザビシクロ〔5.4.0〕-7-ウンデセンである請求項5記載のポリフルオロ-1-アルケンの製造法。
  7.  含窒素有機塩基性化合物がトリエチルアミンである請求項5記載のポリフルオロ-1-アルケンの製造法。
PCT/JP2009/060732 2008-06-13 2009-06-12 ポリフルオロ-1-アルケンおよびその製造法 WO2009151110A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP09762540.4A EP2284144B1 (en) 2008-06-13 2009-06-12 Polyfluoro-1-alkane and method of manufacture therefor
US12/993,564 US7956225B2 (en) 2008-06-13 2009-06-12 Polyfluoro-1-alkene and method for producing the same
JP2010516890A JP5278430B2 (ja) 2008-06-13 2009-06-12 ポリフルオロ−1−アルケンおよびその製造法
CA2724968A CA2724968C (en) 2008-06-13 2009-06-12 Polyfluoro-1-alkene and method for producing the same
CN200980122426.1A CN102056878B (zh) 2008-06-13 2009-06-12 聚氟-1-链烯及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-154916 2008-06-13
JP2008154916 2008-06-13

Publications (1)

Publication Number Publication Date
WO2009151110A1 true WO2009151110A1 (ja) 2009-12-17

Family

ID=41416813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060732 WO2009151110A1 (ja) 2008-06-13 2009-06-12 ポリフルオロ-1-アルケンおよびその製造法

Country Status (6)

Country Link
US (1) US7956225B2 (ja)
EP (1) EP2284144B1 (ja)
JP (1) JP5278430B2 (ja)
CN (1) CN102056878B (ja)
CA (1) CA2724968C (ja)
WO (1) WO2009151110A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140651A1 (ja) * 2009-06-04 2010-12-09 ユニマテック株式会社 グラフト共重合体およびそれを有効成分とする離型剤
WO2012035942A1 (ja) * 2010-09-14 2012-03-22 ユニマテック株式会社 新規含フッ素ビニルエーテル化合物およびその製造法
JP2013224270A (ja) * 2012-04-20 2013-10-31 Daikin Industries Ltd フルオロアルキルアイオダイドの利用方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9610634B2 (en) * 2009-09-17 2017-04-04 Unimatec Co., Ltd. Emulsion and mold-releasing agent using the same
US8580886B2 (en) 2011-09-20 2013-11-12 Dow Corning Corporation Method for the preparation and use of bis (alkoxysilylorgano)-dicarboxylates
KR20150003148A (ko) 2011-12-02 2015-01-08 다우 코닝 코포레이션 에스테르―작용성 실란 및 그의 제조 및 용도; 및 상 전이 촉매로서의 이미늄 화합물의 용도
US10131598B2 (en) 2014-09-30 2018-11-20 Nok Corporation Polyfluoroalkyl allyl compound and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174334A (ja) * 1982-03-26 1983-10-13 ペ・セ・ユ−・カ・プロデユイ・シミク・ユ−ジヌ・ク−ルマン 1,2−ビス−(パ−フルオロアルキル)−エテンのトランス異性体類およびその製造方法
JPS6322237B2 (ja) 1982-12-13 1988-05-11 Nippon Mektron Kk
DE4034123A1 (de) * 1990-10-26 1992-04-30 Merck Patent Gmbh Partiell fluorierte verbindungen

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005102983A1 (ja) * 2004-04-26 2005-11-03 Daikin Industries, Ltd. 含フッ素アクリル酸エステルの製造方法
RU2453529C2 (ru) * 2006-08-31 2012-06-20 Асахи Гласс Компани, Лимитед Соль перфторкарбоновой кислоты и способ ее получения

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174334A (ja) * 1982-03-26 1983-10-13 ペ・セ・ユ−・カ・プロデユイ・シミク・ユ−ジヌ・ク−ルマン 1,2−ビス−(パ−フルオロアルキル)−エテンのトランス異性体類およびその製造方法
JPS6322237B2 (ja) 1982-12-13 1988-05-11 Nippon Mektron Kk
DE4034123A1 (de) * 1990-10-26 1992-04-30 Merck Patent Gmbh Partiell fluorierte verbindungen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2284144A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140651A1 (ja) * 2009-06-04 2010-12-09 ユニマテック株式会社 グラフト共重合体およびそれを有効成分とする離型剤
US8377187B2 (en) 2009-06-04 2013-02-19 Unimatec Co., Ltd. Graft copolymer and mold-releasing agent comprising same as active ingredient
JP5464212B2 (ja) * 2009-06-04 2014-04-09 ユニマテック株式会社 グラフト共重合体およびそれを有効成分とする離型剤
EP2439038A4 (en) * 2009-06-04 2015-09-02 Unimatec Co Ltd PFROPOPOPOLYMER AND MOLDING SOLVENT THEREFORE AS ACTIVE AGENT
EP2439038B1 (en) * 2009-06-04 2017-05-10 Unimatec Co., Ltd. Graft copolymer and mold release agent comprising same as active ingredient
WO2012035942A1 (ja) * 2010-09-14 2012-03-22 ユニマテック株式会社 新規含フッ素ビニルエーテル化合物およびその製造法
US9024077B2 (en) 2010-09-14 2015-05-05 Unimatec Co., Ltd. Fluorine-containing vinyl ether compound and method for producing the same
JP2013224270A (ja) * 2012-04-20 2013-10-31 Daikin Industries Ltd フルオロアルキルアイオダイドの利用方法

Also Published As

Publication number Publication date
JP5278430B2 (ja) 2013-09-04
CN102056878B (zh) 2014-02-12
EP2284144A1 (en) 2011-02-16
CA2724968C (en) 2012-12-18
CN102056878A (zh) 2011-05-11
JPWO2009151110A1 (ja) 2011-11-17
US7956225B2 (en) 2011-06-07
CA2724968A1 (en) 2009-12-17
EP2284144A4 (en) 2013-12-11
US20110077435A1 (en) 2011-03-31
EP2284144B1 (en) 2015-02-25

Similar Documents

Publication Publication Date Title
JP5278430B2 (ja) ポリフルオロ−1−アルケンおよびその製造法
RU2158273C2 (ru) Фторированные термопластичные эластомеры и способ их получения
US20030060670A1 (en) Process for producing fluoroolefins
JP5257449B2 (ja) ポリフルオロアルカジエン混合物およびその製造法
JPH0234935B2 (ja)
US8835696B2 (en) Method of preparing fluorine-containing ether
US8357772B2 (en) Terminally iodized polyfluoroalkane and method for producing the same
JP2008044863A (ja) ペルフルオロ有機過酸化物ならびにその製造方法、および重合体の製造方法
JP5851027B2 (ja) 新規なフッ化不飽和化合物及び該化合物から得られるポリマー
JP6804552B2 (ja) フッ素化化合物の製造方法
JP7184055B2 (ja) 1,3-ジオキソラン化合物及びペルフルオロ(2,2-ジメチル-1,3-ジオキソール)の製造方法
EP3728177B1 (en) Methods of making polyfunctional polyfluorinated compounds
EP1760063A1 (en) Fluorine-containing vinyl ether compound and process for producing the same
EP2330093B1 (en) Fluoroolefin iodide mixture and method for producing same
JP2010195937A (ja) 含フッ素有機過酸化物、重合開始剤および含フッ素重合体の製造方法
JP6228424B2 (ja) 含フッ素オレフィン化合物、およびその製造方法
JPWO2005102982A1 (ja) 含フッ素(メタ)アクリル酸エステルの製造方法
JP4012778B2 (ja) 片末端にビニリデン基を有するパーフルオロアルキレンエーテル誘導体
US4594458A (en) Vinyl ether monomers derived from alkyl perfluoro-ω-(2-iodoethoxy) compounds
US4531011A (en) Alkyl perfluoro-omega-(2-iodoethoxy) compounds and vinyl ethers therefrom
JP2019156732A (ja) HCFC−224ca及び/又はCFO−1213yaの精製方法、HCFC−224caの製造方法、並びにCFO−1213yaの製造方法
JP2009203172A (ja) パーフルオロ多官能ビニルエーテル化合物の製造方法
JP2008266190A (ja) 含フッ素ビニルエーテル化合物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980122426.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09762540

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010516890

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2724968

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12993564

Country of ref document: US

Ref document number: 2009762540

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE