WO2009150363A2 - Acide cyanhydrique contenant du carbone bioressource - Google Patents

Acide cyanhydrique contenant du carbone bioressource Download PDF

Info

Publication number
WO2009150363A2
WO2009150363A2 PCT/FR2009/050926 FR2009050926W WO2009150363A2 WO 2009150363 A2 WO2009150363 A2 WO 2009150363A2 FR 2009050926 W FR2009050926 W FR 2009050926W WO 2009150363 A2 WO2009150363 A2 WO 2009150363A2
Authority
WO
WIPO (PCT)
Prior art keywords
methanol
ammonia
methane
raw material
biomass
Prior art date
Application number
PCT/FR2009/050926
Other languages
English (en)
Other versions
WO2009150363A3 (fr
Inventor
Jean-Luc Dubois
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Priority to MX2010012677A priority Critical patent/MX2010012677A/es
Priority to EA201071336A priority patent/EA026304B1/ru
Priority to EP09761914A priority patent/EP2294010A2/fr
Priority to JP2011510029A priority patent/JP2011521872A/ja
Priority to CN2009801285509A priority patent/CN102105398A/zh
Priority to US12/993,374 priority patent/US20110150743A1/en
Priority to BRPI0912823A priority patent/BRPI0912823A2/pt
Publication of WO2009150363A2 publication Critical patent/WO2009150363A2/fr
Publication of WO2009150363A3 publication Critical patent/WO2009150363A3/fr
Priority to US14/169,248 priority patent/US20140147365A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/02Preparation, separation or purification of hydrogen cyanide
    • C01C3/0208Preparation in gaseous phase
    • C01C3/0229Preparation in gaseous phase from hydrocarbons and ammonia in the absence of oxygen, e.g. HMA-process
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/34Nitriles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/02Preparation, separation or purification of hydrogen cyanide
    • C01C3/0208Preparation in gaseous phase
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/02Preparation, separation or purification of hydrogen cyanide
    • C01C3/0208Preparation in gaseous phase
    • C01C3/0212Preparation in gaseous phase from hydrocarbons and ammonia in the presence of oxygen, e.g. the Andrussow-process
    • C01C3/0216Preparation in gaseous phase from hydrocarbons and ammonia in the presence of oxygen, e.g. the Andrussow-process characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/02Preparation, separation or purification of hydrogen cyanide
    • C01C3/0208Preparation in gaseous phase
    • C01C3/0241Preparation in gaseous phase from alcohols or aldehydes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/08Simple or complex cyanides of metals
    • C01C3/10Simple alkali metal cyanides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/18Preparation of carboxylic acid esters by conversion of a group containing nitrogen into an ester group
    • C07C67/20Preparation of carboxylic acid esters by conversion of a group containing nitrogen into an ester group from amides or lactams

Definitions

  • the present invention relates to hydrocyanic acid and more particularly to a hydrocyanic acid containing bioresourced carbon and a process for producing the same by ammoxidation of methane or methanol.
  • Hydrogen cyanide HCN finds many applications as a reagent in various synthetic processes or as a synthesis intermediate. In particular, it is a key reagent for the preparation of acetone cyanohydrin, a synthetic intermediate for the production of organic products, such as methyl methacrylate MMA, or the manufacture of insecticides.
  • Sodium cyanide, a derivative of HCN also has many applications in the chemical industry.
  • HCN hydrocyanic acid today is based mainly on the Andrussow process dating back to the 1930s.
  • This process consists of reacting methane or natural gas with ammonia in the presence of air and possibly oxygen on a catalyst composed of rhodium-plated platinum webs.
  • the reaction CH 4 + NH 3 -> HCN + 3 H 2 (1) being endothermic, the addition of air makes it possible, thanks to the combustion of a part of the hydrogen produced and the excess of methane, to have a globally exothermic system and thus maintain the synthesis reaction without external energy input.
  • the reaction known as ammoxidation, is as follows:
  • the kinetics is very fast with a contact time close to a few milliseconds or tenths of a millisecond, and a gas velocity of the order of a few meters per second.
  • the proportion of each reagent is optimized so as to obtain a maximum yield and avoid the flammable zone of the reaction mixture.
  • the reaction generally reaches a yield of 60 to 70%, expressed as the number of moles of hydrocyanic acid produced over the number of moles Ammonia introduced, the conversion of methane being almost quantitative.
  • the selectivity to hydrogen cyanide, expressed as number of moles of HCN produced in the number of moles of NH 3 reacted is usually 80 to 90%.
  • the Degussa process for producing HCN is based on the above-mentioned reaction (1), in the absence of oxygen or air, at a temperature of the order of 1300 ° C.
  • the reaction is carried out in reaction tubes. sintered alumina coated internally with platinum. The bundle of tubes is heated with gas inside an oven.
  • Another method is to use methanol instead of methane to produce HCN according to the reaction:
  • HCN + NH 3 + 3/2 O 2 ⁇ CH 2 CH-CN + 3H 2 O
  • A C 3 H 6 + 3 NH 3 + 3 O 2 ⁇ 3 HCN + 6H 2 O
  • B The yield of HCN largely depends on the operating conditions, the type of reactor and the catalyst used. In some cases, it is also possible to add methanol during the ammoxidation of propylene to increase the production of hydrogen cyanide. This combination is made possible in particular by the proximity of the formulations of the catalysts of molybdate type bismuth or iron antimonate, and operating conditions.
  • the hydrocyanic acid can also be obtained from the reaction of ammonia with a hydrocarbon, generally propane, in a fluidized bed of coke particles heated to a temperature of 1350-1650 ° C., according to the following reaction (Gulf process -Shawinigan):
  • the thermal input is made by electrical resistances immersed in the fluidized bed which ensures the thermal transfer.
  • the yields achieved with respect to ammonia or propane are of the order of 85%, this process nevertheless requiring a large amount of energy.
  • methane is the main component of natural gas, a fossil fuel consisting of a mixture of hydrocarbons naturally present in porous rocks in gaseous form.
  • Ammonia is produced by reacting nitrogen from air and hydrogen from steam reforming hydrocarbons in naphtha or natural gas.
  • Propylene is obtained by steam cracking or catalytic cracking of petroleum fractions. Propane is either extracted from crude oil during refining operations, or natural gas and associated gas from oil fields.
  • Raw materials from biomass are bio-sourced and have a reduced impact on the environment. They do not require all stages of extraction, refining, very expensive energy, petroleum products. The production of CO2 is reduced so that they contribute less to global warming and respond to certain concerns of sustainable development.
  • Biomass is the living raw material, of plant or animal origin, produced naturally.
  • the plant material is characterized in that the plant for its growth has consumed carbon dioxide while producing oxygen.
  • the animals for their growth consumed this vegetable raw material and thus assimilated carbon derived from atmospheric CO2.
  • Biomass is considered the energy source with the greatest potential (heat, electricity, hydrogen) since it is considered as neutral with respect to CO 2 formation.
  • the raw materials used in the HCN production processes must be of sufficient quality and purity.
  • methane of purity greater than 91% is used containing the minimum of higher hydrocarbons (ethane and especially propane) and sulfur-free.
  • the fluctuation of the quality of the Natural gas generally poses problems for the catalytic reaction of ammoxidation of methane.
  • the ammonia is filtered and evaporated and preferably does not contain oils or iron.
  • the object of the present invention is therefore to propose a process for the production of hydrocyanic acid, based on the use of raw materials containing bioressourced carbon, of constant quality, which does not require any preliminary purification steps of the raw materials, easy to be implemented, and which readily adapts to existing hydrogen cyanide manufacturing devices in the industry.
  • the hydrocyanic acid according to the invention contains biobased carbon, more specifically, it contains 14 C.
  • raw materials of renewable origin contain 14 C in the same proportions as atmospheric CO 2 .
  • All carbon samples taken from living organisms are in fact a mixture of 3 isotopes: 12 C (representing about 98.892%), 13 C (about 1, 108%) and 14 C (traces: 1, 2.10 "10 %)
  • the 14 C / 12 C ratio of living tissues is identical to that of the atmosphere.
  • 14 C exists in two predominant forms: in mineral form, that is to say carbon dioxide (CO 2 ), and in organic form, that is to say of carbon integrated in organic molecules.
  • the 14 C / 12 C ratio is kept constant by the metabolism because the carbon is continuously exchanged with the environment.
  • the proportion of 14 C is constant in the atmosphere, it is the same in the body, as long as it is alive, since it absorbs this 14 C as it absorbs 12 C.
  • the average ratio of 14 C / 12 C is 1, 2x10 "12 for a material of renewable origin, while a fossil raw material has a zero ratio.
  • 12 C is stable, that is to say that the number of atoms of 12 C in a given sample is constant over time.
  • the 14 C it is radioactive and its concentration decreases over time, its half-life is 5730 years. Given the half-life of 14 C, the 14 C content is substantially constant from the extraction of renewable raw materials to the manufacture of "biomaterials" from these raw materials, and even until the end of their usage.
  • the 14 C content of a "biomaterial” can be deduced from measurements such as the following techniques:
  • liquid scintillation spectrométhe This method consists in counting particles 'beta' resulting from the disintegration of 14 C.
  • the Beta radiation from a sample of known mass (known number of carbon atoms) for a while .
  • This 'radioactivity' is proportional to the number of 14 C atoms, which can be determined.
  • the 14 C present in the sample emits ⁇ - radiation, which in contact with the scintillating liquid (scintillator) give rise to photons. These photons have different energies (between 0 and 156 Kev) and form what is called a spectrum of 14 C.
  • the analysis relates to the CO 2 previously produced by combustion of the carbon sample in an appropriate absorbent solution, or on benzene after prior conversion of the carbon sample to benzene.
  • mass spectrometry the sample is reduced to graphite or gaseous CO 2 , analyzed in a mass spectrometer. This technique uses an accelerator and a mass spectrometer to separate 14 C ions and 12 C and thus determine the ratio of the two isotopes.
  • the present invention therefore relates to a hydrocyanic acid characterized in that it contains a mass content of 14 C such that the ratio 14 C
  • the hydrocyanic acid of the invention is such that the ratio 14 CV 12 C is equal to 1, 2 ⁇ 10 -12 , that is to say that it contains 100% of bioresourced carbon.
  • the subject of the present invention is also a process for the synthesis of a raw material mainly containing hydrocyanic acid, by reaction of ammonia with methane or methanol, optionally in the presence of air and / or oxygen, characterized in that at least one of the reagents selected from ammonia, methane and methanol is obtained from biomass.
  • Raw material containing mainly hydrocyanic acid means that the process leads to the production of hydrogen cyanide optionally containing impurities related to the nature of the reagents used or generated during the process, this hydrocyanic acid can then be used as raw material in organic syntheses.
  • ammonia has been obtained from hydrogen derived from a synthesis gas (consisting essentially of carbon monoxide and hydrogen) resulting from the gasification of the biomass.
  • Gasification is a thermochemical process for producing a hydrogen-rich gas from biomass and a gaseous reactant such as air, oxygen or water vapor.
  • the transformation takes place at high temperature (800-1000 ° C.) and generally at atmospheric pressure or low overpressure.
  • any material of animal or vegetable origin can be used.
  • Materials of animal origin are as non-limiting examples fish oils and fats, such as cod liver oil, whale oil, sperm whale, dolphin oil, seal oil, sardine oil, herring oil, shark oil , oils and fats of cattle, swine, goats, equines, and poultry, such as tallow, lard, milk fat, bacon, chicken fat, beef, pork, horse, and others.
  • Materials of plant origin are, for example, vegetable oils, cereal straw fodder, such as wheat straw, corn straw; cereal residues as maize residues; cereal flours, such as wheat flour; cereals such as wheat, barley, sorghum, maize; wood, waste and scrap wood; grains; sugar cane, sugar cane residues; shoots and stems of peas; beetroot, molasses such as beet molasses; potatoes, potato tops, potato residues; starch; mixtures of cellulose, hemicellulose and lignin; or the black liquor of stationery.
  • the gaseous composition of the mixture produced is a function of many factors such as the composition of the reaction mixture (presence or absence of nitrogen in large quantities), the water content, the design of the gasification reactor (fixed bed or fluidized bed) or the temperature of the reaction.
  • the gasification reactions are largely endothermic. The easiest way to provide the necessary heat is to use air as a gasifier and thus partially burn the biomass. Water vapor can advantageously be used as an oxidizing agent for the purpose of maximum production of hydrogen.
  • the hydrogen, after conversion by water of the carbon monoxide produced synthesis gas is purified before being introduced into a high pressure ammonia synthesis catalytic reactor (100 to 250 bars).
  • the hydrogen used to prepare the ammonia comes from the recovery of waste liquor from the manufacture of cellulosic pulps.
  • Valorisation of biomass to methane According to a second embodiment, methane has been obtained from biogas. Biogas is the gas produced by the fermentation of animal and / or plant organic matter in the absence of oxygen.
  • This fermentation also called anaerobic digestion, occurs naturally or spontaneously in landfills containing organic waste, but can be carried out in digesters, for example to treat sewage sludge, industrial or agricultural organic waste, pig manure, garbage.
  • biomass containing animal dung is used as a nitrogen input necessary for growth of microorganisms ensuring the fermentation of biomass into methane.
  • the biogas is essentially composed of methane and carbon dioxide, the carbon dioxide is then removed by washing the biogas using a basic aqueous solution of sodium hydroxide, potassium hydroxide or amine, or by water under pressure or by absorption in a solvent such as methanol. It is possible to obtain in this way pure methane of constant quality.
  • methanol was obtained from pyrolysis of the wood.
  • methanol has been obtained by fermentation of plant crops such as wheat, sugar cane or beet giving fermentable products.
  • methanol has been obtained by gasification of all materials of animal or vegetable origin, leading to a synthesis gas consisting essentially of carbon monoxide and hydrogen which is reacted with the water.
  • Materials of animal or vegetable origin are those described above as raw materials for obtaining ammonia by valorization of biomass.
  • the synthesis gas for preparing methanol comes from the recovery of waste liquor from the manufacture of cellulosic pulps.
  • ammonia is reacted with methane in the presence of air and optionally oxygen on a composite catalyst of platinum rhodium coated at a temperature ranging from 1050 to 1150 ° C.
  • a composite catalyst of platinum rhodium coated at a temperature ranging from 1050 to 1150 ° C.
  • the CH 4 / NH 3 molar ratio ranges from 1.0 to 1.2, the molar ratio (CH 4 + NH 3 ) / total O 2 is from 1.6 to 1.9; the pressure is usually 1 to 2 bar.
  • ammonia is reacted with methanol at a temperature ranging from 350 ° C. to 600 ° C., in the presence of a catalyst, for example a catalyst based on of molybdenum-bismuth-iron supported on silica or a catalyst based on antimony and iron.
  • a catalyst for example a catalyst based on of molybdenum-bismuth-iron supported on silica or a catalyst based on antimony and iron.
  • reaction conditions and the catalysts described in the aforementioned documents US Pat. No. 3,911,089 may be used for this reaction; US 4,511,548; JP 2002-097017; EP 340,909; EP 404,529; EP 476,579; JP 2002-097015; JP 2002-097016;
  • the process according to the invention may further comprise one or more purification steps.
  • the raw material obtained according to the process of the invention is different from the product which can be obtained according to the conventional processes for the manufacture of hydrocyanic acid from raw materials of fossil origin; it includes the conventional by-products of these processes, such as unreacted reagents, described in Ullmann's Encyclopedia of Industrial Chemistry, Vth Edn (1987), Vol A8, pp. 161-163, but may include impurities related to the nature of the reagents implemented or generated during the process. It is usable, possibly after a purification step in processes using hydrogen cyanide as raw material.
  • the invention also relates to the use of the raw material mainly containing hydrocyanic acid according to the invention for producing acetone cyanohydrin (also known as acetone cyanohydrin).
  • the reaction between this raw material and acetone to give acetone cyanohydrin is generally carried out in the liquid phase at a temperature of the order of 25 ° C. to 40 ° C., at atmospheric pressure, with a molar ratio of HCN / acetone. in the range of 0.7 to 1.1.
  • Acetone cyanohydrin is an intermediate compound for producing methyl methacrylate (MMA) in two possible ways: A first way is to form, by reaction of sulfuric acid on acetone cyanohydrin, ⁇ -oxyisobutyramide monosulfate, which turns into sulfuric methacrylamide. The latter is then hydrolyzed and esterified with methanol to form methyl methacrylate.
  • a second way is to react directly methanol on acetone cyanohydrin, then to implement a dehydration reaction to lead to methyl methacrylate.
  • Acetone cyanohydrin is used more generally for the manufacture of organic products and insecticides.
  • the raw material obtained from the process according to the invention is also used to produce adiponitrile by reaction with butadiene according to the reaction:
  • hexamethylene diamine which is an intermediate compound for producing polyamide 6/6 (Nylon ®) by polycondensation of hexamethylenediamine adipate.
  • Polyamide 6/6 Nylon ®
  • J 6-515-1 to 7 which describes the synthesis of polyamide 6-6 along this route.
  • the raw material obtained from the process according to the invention is used in a process for the synthesis of methionine or hydroxyanalogue of methionine.
  • the chemical processes exploited industrially are essentially based on the same main raw materials and the same key intermediates, namely:
  • acrolein CH 2 CH-CHO and methyl mercaptan CH 3 SH (MSH) leading by reaction with methylmercaptopropionaldehyde CH 3 -S-CH 2 -CH 2 -CHO (MMP), also designated by 3- (methylthio) propanal or by methylthiopropionic aldehyde (AMTP), - hydrocyanic acid (HCN) or sodium cyanide (NaCN), which after reaction with MMP finally leads to the methionine or hydroxyanalogue of methionine.
  • MMP methylmercaptopropionaldehyde CH 3 -S-CH 2 -CH 2 -CHO
  • AMTP methylthiopropionic aldehyde
  • HCN - hydrocyanic acid
  • NaCN sodium cyanide
  • the raw material obtained from the process according to the invention is also used to produce sodium cyanide by neutralization with sodium hydroxide according to the reaction: HCN + NaOH ⁇ Na CN + H 2 O
  • Sodium cyanide has many applications, particularly for the extraction of precious metals, electroplating or the synthesis of chemical compounds.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pest Control & Pesticides (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Plant Pathology (AREA)
  • Environmental Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Agronomy & Crop Science (AREA)
  • Dentistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

La présente invention porte sur un acide cyanhydrique contenant du carbone bioressourcé et un procédé de production d'une matière première contenant principalement celui-ci, par réaction d'ammoniac sur du méthane ou du méthanol, éventuellement en présence d'air et/ou d'oxygène, caractérisé en ce que l'un au moins des réactifs choisis parmi l'ammoniac, le méthane et le méthanol est obtenu à partir de biomasse. L'invention porte également sur les utilisations de cette matière première pour produire de la cyanhydrine d'acétone, de l'adiponitrile, de la méthionine ou l'hydroxyanalogue de la méthionine, du cyanure de sodium.

Description

ACIDE CYANHYDRIQUE CONTENANT DU CARBONE BIORESSOURCE
La présente invention porte sur l'acide cyanhydrique et a plus particulièrement pour objet un acide cyanhydrique contenant du carbone bioressourcé et un procédé de production de celui-ci par ammoxydation de méthane ou de méthanol.
L'acide cyanhydrique HCN trouve de nombreuses applications comme réactif dans divers procédés de synthèse ou comme intermédiaire de synthèse. C'est en particulier un réactif clé pour la préparation de la cyanhydrine d'acétone, intermédiaire de synthèse pour la fabrication de produits organiques, tel que le méthacrylate de méthyle MAM, ou la fabrication d'insecticides. Le cyanure de sodium, dérivé de HCN possède également de nombreuses applications dans l'industrie chimique.
La production industrielle d'acide cyanhydrique HCN actuelle est basée principalement sur le procédé Andrussow datant des années 1930. Ce procédé consiste à faire réagir du méthane ou du gaz naturel sur de l'ammoniac en présence d'air et éventuellement d'oxygène sur un catalyseur composé de toiles de platine rhodié. La réaction CH4 + NH3 -> HCN + 3 H2 (1 ) étant endothermique, l'addition d'air permet, grâce à la combustion d'une partie de l'hydrogène produit et de l'excès de méthane, d'avoir un système globalement exothermique et ainsi d'entretenir la réaction de synthèse sans apport d'énergie extérieure.
La réaction, connue sous le nom d'ammoxydation, est la suivante :
CH4 + NH3 + 3/2 O2 -* HCN + 3 H2O + chaleur (2) Le procédé est basé sur les réactions (1 ) et (2).
La cinétique est très rapide avec un temps de contact proche de quelques millisecondes ou dixièmes de millisecondes, et une vitesse des gaz de l'ordre de quelques mètres par seconde. La proportion de chaque réactif est optimisée de manière à obtenir un rendement maximal et éviter la zone d'inflammabilité du mélange réactionnel.
La réaction atteint généralement un rendement de 60 à 70 %, exprimé en nombre de moles d'acide cyanhydrique produites sur le nombre de moles d'ammoniac introduites, la conversion du méthane étant presque quantitative. La sélectivité en acide cyanhydrique, exprimée en nombre de moles d'HCN produites sur le nombre de moles de NH3 ayant réagi, est généralement de 80 à 90 %. Le procédé Degussa pour produire HCN est basé sur la réaction (1 ) précitée, en l'absence d'oxygène ou d'air, à une température de l'ordre de 13000C. La réaction s'effectue dans des tubes d'alumine frittée revêtus intérieurement de platine. Le faisceau de tubes est chauffé au gaz à l'intérieur d'un four. Un autre procédé consiste à utiliser du méthanol en remplacement du méthane pour produire HCN selon la réaction :
CH3OH + NH3 + O2 → HCN + 3 H2O (3)
Ce procédé, décrit notamment dans les années 1950-1960 dans les brevets GB 718,112 et GB 913,836 de Distillers Compagny, met en oeuvre un catalyseur à base d'oxyde de molybdène à une température allant de 3400C à 450°C, ou un catalyseur à base d'antimoine et d'étain à une température allant de 3500C à 600°C. On pourra se référer à l'article de Walter Sedriks dans Process Economies Reviews PEP'76-3, Juin 1977. Ce procédé a fait l'objet de différents perfectionnements, notamment au niveau des systèmes catalytiques mis en œuvre ; on peut citer par exemple les systèmes à base d'oxydes mixtes de molybdène-bismuth-fer supportés sur silice (US 3,911 ,089 de Sumitomo, US 4,511 ,548 de The Standard OiI Company, JP 2002-097017 de Mitsubishi), les catalyseurs à base de Fe-Sb-O décrits par Nitto Chemical lndustry (EP 340 909, EP 404 529, EP 476 579, Science and Technology in Catalysis 1998, pages 335-338, Applied Catalysis A : General 194-195, 2000, 497-505) ou par Mitsubishi (JP 2002-097015, JP 2002-097016, EP 832 877).
Il existe encore d'autres procédés pour produire l'acide cyanhydrique. On peut citer notamment la synthèse selon le procédé Sohio de l'acrylonitrile à partir de propylène (réaction A) qui génère de l'acide cyanhydrique comme sous-produit (réaction B) :
C3 H6 + NH3 + 3/2 O2 → CH2=CH-CN + 3 H2 O (A) C3 H6 + 3 NH3 + 3 O2 → 3 HCN + 6 H2 O (B) Le rendement en HCN dépend largement des conditions opératoires, du type de réacteur ainsi que du catalyseur utilisé. Dans certains cas, on peut aussi ajouter du méthanol au cours de l'ammoxydation du propylène pour augmenter la production d'acide cyanhydrique. Cette combinaison est rendue possible notamment par la proximité des formulations des catalyseurs de type molybdate de bismuth ou antimoniate de fer, et des conditions opératoires.
L'acide cyanhydrique peut être obtenu également à partir de la réaction d'ammoniac avec un hydrocarbure, généralement du propane, dans un lit fluidisé de particules de coke chauffé à une température de 1350-16500C, selon la réaction suivante (procédé Gulf-Shawinigan) :
C3H8 + 3 NH3 → 3 HCN + 7 H2 (C)
L'apport thermique est fait par des résistances électriques immergées dans le lit fluidisé qui assure le transfert thermique. Les rendements atteints par rapport à l'ammoniac ou le propane sont de l'ordre de 85%, ce procédé nécessitant néanmoins une quantité d 'énergie importante.
Les matières premières utilisées dans ces différents procédés de production d'acide cyanhydrique (méthane, ammoniac, propylène, propane) sont principalement d'origine fossile ou pétrolière. En effet, le méthane est le composant principal du gaz naturel, combustible fossile constitué d'un mélange d'hydrocarbures présent naturellement dans des roches poreuses sous forme gazeuse. L'ammoniac est obtenu par réaction de l'azote de l'air et d'hydrogène provenant de reformage par la vapeur d'eau des hydrocarbures présents dans le naphta ou dans le gaz naturel. Le propylène est obtenu par vapocraquage ou craquage catalytique de coupes pétrolières. Le propane est extrait soit du pétrole brut au cours des opérations de raffinage, soit du gaz naturel et des gaz associés dans les gisements de pétrole.
Ces différents procédés comportent ainsi de nombreuses sources d'émissions de CO2 et contribuent à l'augmentation de l'effet de serre. A titre indicatif, dans le procédé de synthèse industrielle de l'ammoniac, les émissions cumulées de CO2 sont de 4300 g/kg de NH3, les émissions de CO2 associées à la production de HCN ont été évaluées à 4400 g/kg de HCN (Catalysis Today 99, 2005, 5-14). En outre, ces procédés mettent en œuvre du pétrole dont les gisements s'épuisent rapidement ; son extraction est de plus en plus difficile (puits de grande profondeur), nécessitant des équipements lourds et chers, devant résister à de hautes températures (400-5000C). Etant donnée la diminution des réserves pétrolières mondiales, la source de ces matières premières va peu à peu s'épuiser.
Les matières premières issues de la biomasse sont bioressourcées et ont un impact réduit sur l'environnement. Elles ne nécessitent pas toutes les étapes d'extraction, de raffinage, très coûteuses en énergie, des produits pétroliers. La production de CO2 est réduite de sorte qu'elles contribuent moins au réchauffement climatique et répondent à certaines préoccupations de développement durable.
Il apparaît donc nécessaire de disposer de procédés de synthèse d'acide cyanhydrique non dépendants de matière première d'origine fossile, mais utilisant plutôt des matières premières d'origine renouvelable, c'est-à-dire contenant du carbone bioressourcé.
Le problème qu'entend résoudre la présente invention est de concevoir de l'acide cyanhydrique contenant du carbone bioressourcé ; celui-ci est obtenu à partir de biomasse. On entend par biomasse la matière première vivante, d'origine végétale ou animale, produite naturellement. La matière végétale se caractérise en ce que la plante pour sa croissance a consommé du gaz carbonique tout en produisant de l'oxygène. Les animaux pour leur croissance ont de leur côté consommé cette matière première végétale et ont ainsi assimilé le carbone dérivé du CO2 atmosphérique. La biomasse est considérée comme la source d'énergie ayant le potentiel (chaleur, électricité, hydrogène) le plus important puisqu'elle est considérée comme neutre vis à vis de la formation de CO2.
Du fait de l'extrême sensibilité des catalyseurs à un empoisonnement par certaines impuretés, les matières premières mises en œuvre dans les procédés de production de HCN doivent avoir une qualité et une pureté suffisante. En particulier, dans le procédé d'ammoxydation du méthane, on utilise du méthane de pureté supérieure à 91 % contenant le minimum d'hydrocarbures supérieurs (éthane et surtout propane) et exempt de soufre. La fluctuation de la qualité du gaz naturel pose généralement des problèmes pour la réaction catalytique d'ammoxydation du méthane. L'ammoniac est filtré et évaporé et de préférence ne contient pas d'huiles ni de fer.
La présente invention a donc pour but de proposer un procédé de production d'acide cyanhydrique, basé sur l'utilisation de matières premières contenant du carbone bioressourcé, de qualité constante, qui ne nécessite pas d'étapes préalables de purification des matières premières, facile à mettre en œuvre, et qui s'adapte aisément aux dispositifs de fabrication d'acide cyanhydrique existants dans l'industrie. L'acide cyanhydrique selon l'invention contient du carbone bioressourcé, plus précisément, il contient du 14C.
En effet, à la différence des matériaux issus de matières fossiles, les matières premières d'origine renouvelable contiennent du 14C dans les mêmes proportions que le CO2 atmosphérique. Tous les échantillons de carbone tirés d'organismes vivants (animaux ou végétaux) sont en fait un mélange de 3 isotopes : 12C (représentant environ 98,892 %), 13C (environ 1 ,108 %) et 14C (traces: 1 ,2.10"10 %). Le rapport 14C/12C des tissus vivants est identique à celui de l'atmosphère. Dans l'environnement, le 14C existe sous deux formes prépondérantes : sous forme minérale, c'est-à-dire de gaz carbonique (CO2), et sous forme organique, c'est-à-dire de carbone intégré dans des molécules organiques.
Dans un organisme vivant, le rapport 14C/12C est maintenu constant par le métabolisme car le carbone est continuellement échangé avec l'environnement. La proportion de 14C étant constante dans l'atmosphère, il en est de même dans l'organisme, tant qu'il est vivant, puisqu'il absorbe ce 14C comme il absorbe le 12C. Le rapport moyen de 14C/12C est égal à 1 , 2x10"12 pour une matière d'origine renouvelable, tandis qu'une matière première fossile a un rapport nul.
Le 12C est stable, c'est-à-dire que le nombre d'atomes de 12C dans un échantillon donné est constant au cours du temps. Le 14C, lui, est radioactif et sa concentration décroît au cours du temps, sa demi-vie est de 5730 ans. Compte tenu de la demi-vie du 14C, la teneur en 14C est sensiblement constante depuis l'extraction des matières premières renouvelables, jusqu'à la fabrication des « biomatériaux » issus de ces matières premières et même jusqu'à la fin de leur utilisation. La teneur en 14C d'un « biomatériau » peut être déduite de mesures effectuées par exemple selon les techniques suivantes :
Par spectrométhe à scintillation liquide : cette méthode consiste à compter des particules 'Béta' issues de la désintégration du 14C. On mesure le rayonnement Béta issu d'un échantillon de masse connue (nombre d'atomes de carbone connu) pendant un certain temps. Cette 'radioactivité' est proportionnelle au nombre d'atomes de 14C, que l'on peut ainsi déterminer. Le 14C présent dans l'échantillon émet des rayonnements β-, qui au contact du liquide scintillant (scintillateur) donnent naissance à des photons. Ces photons ont des énergies différentes (comprises entre 0 et 156 Kev) et forment ce que l'on appelle un spectre de 14C. Selon deux variantes de cette méthode, l'analyse porte soit sur le CO2 préalablement produit par combustion de l'échantillon carboné dans une solution absorbante appropriée, soit sur le benzène après conversion préalable de l'échantillon carboné en benzène.
Par spectrométhe de masse : l'échantillon est réduit en graphite ou en CO2 gazeux, analysé dans un spectromètre de masse. Cette technique utilise un accélérateur et un spectromètre de masse pour séparer les ions 14C des 12C et donc déterminer le rapport des deux isotopes.
Ces méthodes de mesure de la teneur en 14C des matériaux sont décrites précisément dans les normes ASTM D 6866 (notamment D6866-06) et dans les normes ASTMD 7026 (notamment 7026-04). Ces méthodes comparent les données mesurées sur l'échantillon analysé avec les données d'un échantillon référence contenant 100% de carbone bioressourcé (pour lequel 14C/12C vaut 1 ,2x10"12), pour donner un pourcentage relatif de carbone bioressourcé dans l'échantillon. Le rapport 14C/12C de l'échantillon peut ensuite en être déduit. La méthode de mesure préférentiellement utilisée est la spectrométrie de masse décrite dans la norme ASTM D6866-06 (« accelerator mass spectroscopy »).
La présente invention a donc pour objet un acide cyanhydrique caractérisé en ce qu'il contient une teneur en masse de 14C tel que le ratio 14C
/12C est compris entre 0,2 x 10~12 et 1 ,2 x 10~12 selon la norme ASTM D 6866, de préférence le ratio 14CV12C est compris entre 0,6 x10"12 et 1 ,2 x10"12. Dans un mode de réalisation préféré, l'acide cyanhydrique de l'invention est tel que le ratio 14CV12C est égal à 1 ,2x10"12, c'est-à-dire qu'il contient 100% de carbone bioressourcé.
La présente invention a également pour objet un procédé de synthèse d'une matière première contenant principalement de l'acide cyanhydrique, par réaction d'ammoniac sur du méthane ou du méthanol, éventuellement en présence d'air et/ou d'oxygène, caractérisé en ce que l'un au moins des réactifs choisis parmi l'ammoniac, le méthane et le méthanol est obtenu à partir de biomasse.
Matière première contenant principalement de l'acide cyanhydrique signifie que le procédé conduit à l'obtention d'acide cyanhydrique comportant éventuellement des impuretés liées à la nature des réactifs mis en œuvre ou générées au cours du procédé, cet acide cyanhydrique pouvant ensuite être utilisé comme matière première dans des synthèses organiques.
Valorisation de la biomasse en ammoniac
Conformément à un premier mode de réalisation, on a obtenu l'ammoniac à partir d'hydrogène issu d'un gaz de synthèse (composé essentiellement de monoxyde de carbone et d'hydrogène) résultant de la gazéification de la biomasse.
La gazéification est un procédé thermochimique permettant de produire un gaz riche en hydrogène à partir de la biomasse et d'un réactif gazeux tel que l'air, l'oxygène ou la vapeur d'eau. La transformation a lieu à haute température (800-10000C) et généralement à pression atmosphérique ou faible surpression.
La concentration en oxygène (dans l'air ou l'eau) n'est pas suffisante lors de la gazéification pour conduire à l'oxydation complète. Ainsi, de grandes quantités de CO et H2 sont produites selon les réactions suivantes : C + H2O -> CO + H2 C + CO2 -> 2 CO Parallèlement, d'autres produits gazeux (CH4, hydrocarbures plus lourds, CO2 mais aussi NH3, gaz soufrés ou chlorés, NOx) et des produits solides (goudrons, charbon et poussières) peuvent être formés en faible quantité selon les conditions mise en œuvre.
Comme biomasse, on peut utiliser toute matière d'origine animale ou végétale. Les matières d'origine animale sont à titre d'exemples non limitatifs les huiles et graisses de poisson, telles que huile de foie de morue, huile de baleine, de cachalot, de dauphin, de phoque, de sardine, de hareng, de squales, les huiles et graisses de bovins, porcins, caprins, équidés, et volailles, telles que suif, saindoux, graisse de lait, lard, graisses de poulet, de bœuf, de porc, de cheval, et autres. Les matières d'origine végétale sont par exemple les huiles végétales, le fourrage de paille de céréales, comme paille de blé, paille de maïs ; résidus de céréales, comme résidus de maïs ; farines de céréales, comme farine de blé ; céréales telles que le blé, l'orge, le sorgho, le maïs ; bois, déchets et rebuts de bois ; grains ; canne à sucre, résidus de canne à sucre ; sarments et tiges de pois ; betterave, mélasses telles que mélasses de betteraves ; pommes de terre, fanes de pommes de terre, résidus de pommes de terre ; amidon ; mélanges de cellulose, hémicellulose et lignine ; ou la liqueur noire de papeterie.
La composition gazeuse du mélange produit est fonction de nombreux facteurs tels que la composition du mélange réactionnel (présence ou non d'azote en grande quantité), la teneur en eau, la conception du réacteur de gazéification (à lit fixe ou fluidisé) ou la température de la réaction. Les réactions de gazéification sont largement endothermiques. La voie la plus simple pour apporter la chaleur nécessaire consiste à utiliser l'air comme agent de gazéification et ainsi à brûler partiellement la biomasse. On peut utiliser avantageusement la vapeur d'eau comme agent oxydant dans le but d'une production maximale d'hydrogène. Les technologies conventionnelles pour la gazéification de la biomasse sont essentiellement de deux types : Les procédés à lits fixes dans lesquels le combustible solide introduit dans la partie supérieure descend par gravité dans le réacteur et réagit au contact de l'agent oxydant, généralement de l'air ou de l'oxygène, et les procédés à lits fluidisés dans lesquels la biomasse, préalablement réduite en taille (quelques dizaines de millimètres) et séchée est introduite, solide ou liquide, dans un lit de sable, ce qui améliore les transferts de chaleur et de matière. D'autres technologies sont utilisables, en particulier la technologie dénommée Chemrec, décrite par exemple dans le document FR 2 544 758, adaptée à la gazéification de liqueur résiduaire de pâte à papier. Cette technologie est basée sur une combustion entre 10000C et 13000C dans une zone réactionnelle dans laquelle on fournit de l'énergie thermique extérieure indépendamment de la combustion.
L'hydrogène, après conversion par la vapeur d'eau du monoxyde de carbone produit du gaz de synthèse est purifié avant d'être introduit dans un réacteur catalytique de synthèse d'ammoniac à haute pression (100 à 250 bars).
Selon un mode de réalisation préféré de l'invention, l'hydrogène utilisé pour préparer l'ammoniac provient de la récupération de liqueur résiduaire de la fabrication des pâtes cellulosiques. On pourra se référer aux documents FR 2 544 758, EP 666 831 ou US 7,294,225 de Chemrec qui décrivent notamment la gazéification de liqueurs résiduaires de la fabrication de cellulose. Valorisation de la biomasse en méthane Conformément à un second mode de réalisation, on a obtenu le méthane à partir de biogaz. Le biogaz est le gaz produit par la fermentation de matières organiques animales et/ou végétales en l'absence d'oxygène. Cette fermentation, appelée aussi méthanisation, se produit naturellement ou spontanément dans les décharges contenant des déchets organiques, mais peut être effectuée dans des digesteurs, pour traiter par exemples des boues d'épuration, des déchets organiques industriels ou agricoles, des lisiers de porc, des ordures ménagères. De préférence, on utilise de la biomasse contenant des déjections animales qui servent d'intrant azoté nécessaire à la croissance des microorganismes assurant la fermentation de la biomasse en méthane. Le biogaz est composé essentiellement de méthane et de gaz carbonique, le gaz carbonique est ensuite éliminé par lavage du biogaz à l'aide d'une solution aqueuse basique de soude, potasse ou aminé, ou encore par de l'eau sous pression ou par absorption dans un solvant tel que le méthanol. Il est possible d'obtenir selon cette voie du méthane pur de qualité constante. On pourra se référer aux différentes technologies de méthanisation de l'état de la technique, à l'article Review of Current Status of Anaerobic Digestion Technology for Treatment of Municipal SoNd Waste November 1998, RISE-AT et aux différents procédés biologiques existants pour le traitement des eaux résiduaires, tel que par exemple le procédé Laran® de Linde. Valorisation de la biomasse en méthanol
Conformément à un troisième mode de réalisation, on a obtenu le méthanol à partir de la pyrolyse du bois. Conformément à une quatrième mode de réalisation, on a obtenu le méthanol par fermentation de cultures de plantes comme le blé, la canne à sucre ou la betterave donnant des produits fermentables.
Conformément à un cinquième mode de réalisation, on a obtenu le méthanol par gazéification de toutes matières d'origine animale ou végétale, conduisant à un gaz de synthèse composé essentiellement de monoxyde de carbone et d'hydrogène que l'on fait réagir avec l'eau. Les matières d'origine animale ou végétale sont celles décrites ci-dessus comme matières premières pour l'obtention d'ammoniac par valorisation de la biomasse.
On ne sortirait pas du domaine de l'invention en utilisant du méthane issu de biogaz pour produire le gaz de synthèse.
Selon un mode de réalisation préféré de l'invention, le gaz de synthèse pour préparer le méthanol provient de la récupération de liqueur résiduaire de la fabrication des pâtes cellulosiques. On pourra se référer aux documents EP 666 831 et US 7,294,225 de Chemrec qui décrivent notamment la gazéification de liqueurs résiduaires de la fabrication de cellulose, et l'obtention de méthanol, ainsi qu'aux pages 92-105 de l'ouvrage Procédés de pétrochimie - Caractéristiques techniques et économiques- Tome 1 -Editions Technip - le gaz de synthèse et ses dérivés, qui traite de l'obtention du méthanol à partir de gaz de synthèse.
Fabrication de la matière première contenant principalement de l'acide cvanhvdrique Conformément à un premier mode de réalisation du procédé selon l'invention, on fait réagir de l'ammoniac avec du méthane en présence d'air et éventuellement d'oxygène sur un catalyseur composé de toiles de platine rhodié à une température allant de 1050 à 11500C. Généralement, le rapport molaire CH4/ NH3 va de 1 ,0 à 1 ,2, le rapport molaire (CH4+NH3) / O2 total va de 1 ,6 à 1 ,9 ; la pression est généralement de 1 à 2 bar.
Conformément à un second mode de réalisation du procédé selon l'invention, on fait réagir de l'ammoniac avec du méthanol à une température allant de 3500C à 600°C, en présence d'un catalyseur, par exemple un catalyseur à base de molybdène-bismuth-fer supporté sur silice ou d'un catalyseur à base d'antimoine et de fer.
On pourra notamment utiliser pour cette réaction les conditions opératoires et les catalyseurs décrits dans les documents précités US 3,911 ,089 ; US 4,511 ,548 ; JP 2002-097017 ; EP 340 909 ; EP 404 529 ; EP 476 579 ; JP 2002-097015 ; JP 2002-097016 ; EP 832 877. Le procédé selon l'invention peut comporter en outre une ou plusieurs étapes de purification.
La matière première obtenue selon le procédé de l'invention est différente du produit que l'on peut obtenir selon les procédés classiques de fabrication d'acide cyanhydrique à partir de matières premières d'origine fossile ; elle comporte les sous-produits classiques de ces procédés, tels que les réactifs non réagis, décrits dans Ullmann's Encyclopédia of Industrial Chemistry, Vth Edn (1987), Vol A8, pages 161 -163, mais peut comprendre des impuretés liées à la nature des réactifs mis en œuvre ou générées au cours du procédé. Elle est utilisable, éventuellement après une étape de purification dans les procédés mettant en œuvre l'acide cyanhydrique comme matière première. Ainsi, l'invention porte également sur l'utilisation de la matière première contenant principalement de l'acide cyanhydrique selon l'invention pour fabriquer de la cyanhydrine d'acétone (dénommée aussi acétone cyanhydrine). La réaction entre cette matière première et l'acétone pour donner la cyanhydrine d'acétone est généralement réalisée en phase liquide à une température de l'ordre de 25°C à 400C, à pression atmosphérique, avec un rapport molaire HCN/acétone de l'ordre de 0,7 à 1 ,1.
L'acétone cyanhydrine est un composé intermédiaire pour produire du méthacrylate de méthyle (MAM) selon deux voies possibles : Une première voie consiste à former, par réaction d'acide sulfurique sur l'acétone cyanhydrine, de l'α-oxyisobutyramide monosulfate, qui se transforme en méthacrylamide sulfurique. Ce dernier est ensuite hydrolyse et estérifié par le méthanol pour former le méthacrylate de méthyle.
Une seconde voie consiste à faire réagir directement du méthanol sur l'acétone cyanhydrine, puis à mettre en œuvre une réaction de déshydratation pour conduire au méthacrylate de méthyle.
On pourra se reporter à l'article Techniques de l'Ingénieur, traité Génie des Procédés, J 6-400-1 à 6 qui décrit les conditions de mise en œuvre industrielle du procédé de production de méthacrylate de méthyle selon la voie cyanhydrine d'acétone.
La cyanhydrine d'acétone est utilisée plus généralement pour la fabrication de produits organiques et d'insecticides.
La matière première obtenue à partir du procédé selon l'invention est utilisée aussi pour produire de l'adiponitrile par réaction avec du butadiène selon la réaction :
CH2=CH-CH=CH2 + 2 HCN → NC-(CH2)4-CN
L'adiponitrile, après hydrogénation conduit à l'hexaméthylènediamine qui est un composé intermédiaire pour produire le polyamide 6-6 (Nylon®) par polycondensation de l'adipate d'hexaméthylènediamine. On pourra se reporter à l'article Techniques de l'Ingénieur, traité Génie des Procédés, J 6-515-1 à 7 qui décrit la synthèse de polyamide 6-6 selon cette voie. Avantageusement, la matière première obtenue à partir du procédé selon l'invention est utilisée dans un procédé de synthèse de méthionine ou d'hydroxyanalogue de la méthionine. Les procédés chimiques exploités industriellement reposent essentiellement sur les mêmes matières premières principales et les mêmes intermédiaires clés, à savoir :
- l'acroléine CH2=CH-CHO et le méthyl mercaptan CH3SH (MSH) conduisant par réaction au méthylmercaptopropionaldéhyde CH3-S-CH2-CH2- CHO (MMP), désigné aussi par 3-(méthylthio)propanal ou par aldéhyde méthylthiopropionique (AMTP), - l'acide cyanhydrique (HCN) ou le cyanure de sodium (NaCN), qui après réaction avec le MMP, conduit finalement à la méthionine ou à l'hydroxyanalogue de la méthionine.
On pourra se reporter à l'articleTechniques de l'Ingénieur, traité Génie des Procédés, J 6-410-1 à 9 qui décrit les conditions de mise en œuvre industrielle des procédés de synthèse de la méthionine passant par le méthylmercaptopropionaldéhyde comme produit intermédiaire et utilisant l'acide cyanhydrique comme réactif.
Avantageusement, la matière première obtenue à partir du procédé selon l'invention est utilisée aussi pour produire du cyanure de sodium par neutralisation avec de l'hydroxyde de sodium selon la réaction : HCN + Na OH → Na CN + H2O
Le cyanure de sodium possède de nombreuses applications, notamment pour l'extraction de métaux précieux, la galvanoplastie ou la synthèse de composés chimiques.

Claims

REVENDICATIONS
1. Acide cyanhydrique caractérisé en ce qu'il contient une teneur en masse de 14C tel que le ratio 14C /12C est compris entre 0,2 x10"12 et 1 ,2 x10"12 selon la norme ASTM D 6866.
2. Procédé de synthèse d'une matière première contenant principalement de l'acide cyanhydrique par réaction d'ammoniac sur du méthane ou du méthanol, éventuellement en présence d'air et/ou d'oxygène, caractérisé en ce que l'un au moins des réactifs choisis parmi l'ammoniac, le méthane et le méthanol est obtenu à partir de biomasse.
3. Procédé selon la revendication 2 caractérisé en ce que l'on a obtenu l'ammoniac à partir d'hydrogène issu d'un gaz de synthèse (CO/H2) résultant de la gazéification de la biomasse.
4. Procédé selon la revendication 2 caractérisé en ce que l'on a obtenu le méthane à partir de biogaz (CH4ZCO2) produit par la fermentation de matières organiques animales ou végétales en l'absence d'oxygène, le CO2 étant éliminé par lavage du biogaz à l'aide d'une solution aqueuse basique de soude, potasse ou aminé, ou encore par de l'eau sous pression ou par absorption dans un solvant.
5. Procédé selon la revendication 2 caractérisé en ce que l'on a obtenu le méthanol à partir de la pyrolyse du bois.
6. Procédé selon la revendication 2 caractérisé en ce que l'on a obtenu le méthanol par fermentation de cultures de plantes.
7. Procédé selon la revendication 2 caractérisé en ce que l'on a obtenu le méthanol par gazéification de toutes matières d'origine animale ou végétale, conduisant à un gaz de synthèse composé essentiellement de monoxyde de carbone et d'hydrogène que l'on fait réagir avec l'eau.
8. Procédé selon la revendication 7 caractérisé en que le gaz de synthèse est issu de liqueur résiduaire de la fabrication des pâtes cellulosiques.
9. Procédé selon l'une quelconque des revendications 2 à 4 caractérisé en ce que l'on fait réagir de l'ammoniac avec du méthane en présence d'air et éventuellement d'oxygène sur un catalyseur composé de toiles de platine rhodié à une température allant de vers 1050 - 11500C.
10. Procédé selon l'une des revendications 2, 3, 5 à 8 caractérisé en ce que l'on fait réagir de l'ammoniac avec du méthanol à une température allant de 3500C à 600°C, en présence d'un catalyseur.
11. Matière première susceptible d'être obtenue suivant le procédé selon l'une quelconque des revendications 2 à 10.
12. Utilisation de la matière première selon la revendication 11 pour fabriquer de la cyanhydrine d'acétone, de l'adiponitrile, de la méthionine ou l'hydroxyanalogue de la méthionine, du cyanure de sodium.
13. Cyanhydrine d'acétone obtenue selon la revendication 12.
14. Utilisation de la cyanhydrine d'acétone selon la revendication 13 pour la fabrication de produits organiques, tel que le méthacrylate de méthyle, et d'insecticides.
PCT/FR2009/050926 2008-05-21 2009-05-19 Acide cyanhydrique contenant du carbone bioressource WO2009150363A2 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
MX2010012677A MX2010012677A (es) 2008-05-21 2009-05-19 Ácido cianhídrico que contiene carbono de biorecursos .
EA201071336A EA026304B1 (ru) 2008-05-21 2009-05-19 Цианисто-водородная кислота, содержащая биовозобновляемый углерод
EP09761914A EP2294010A2 (fr) 2008-05-21 2009-05-19 Acide cyanhydrique contenant du carbone bioressource
JP2011510029A JP2011521872A (ja) 2008-05-21 2009-05-19 バイオ資源炭素を含むシアン化水素酸
CN2009801285509A CN102105398A (zh) 2008-05-21 2009-05-19 含有生物来源碳的氢氰酸
US12/993,374 US20110150743A1 (en) 2008-05-21 2009-05-19 Hydrocyanic acid containing bioresource carbon
BRPI0912823A BRPI0912823A2 (pt) 2008-05-21 2009-05-19 ácido hidrociânico contendo carbono de biorecursos
US14/169,248 US20140147365A1 (en) 2008-05-21 2014-01-31 Hydrocyanic acid containing bioresource carbon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0853286A FR2931477B1 (fr) 2008-05-21 2008-05-21 Acide cyanhydrique derive de matiere premiere renouvable
FR0853286 2008-05-21

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/993,374 A-371-Of-International US20110150743A1 (en) 2008-05-21 2009-05-19 Hydrocyanic acid containing bioresource carbon
US14/169,248 Division US20140147365A1 (en) 2008-05-21 2014-01-31 Hydrocyanic acid containing bioresource carbon

Publications (2)

Publication Number Publication Date
WO2009150363A2 true WO2009150363A2 (fr) 2009-12-17
WO2009150363A3 WO2009150363A3 (fr) 2010-03-11

Family

ID=40219339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/050926 WO2009150363A2 (fr) 2008-05-21 2009-05-19 Acide cyanhydrique contenant du carbone bioressource

Country Status (10)

Country Link
US (2) US20110150743A1 (fr)
EP (1) EP2294010A2 (fr)
JP (3) JP2011521872A (fr)
KR (1) KR20110021795A (fr)
CN (2) CN107032370A (fr)
BR (1) BRPI0912823A2 (fr)
EA (1) EA026304B1 (fr)
FR (1) FR2931477B1 (fr)
MX (1) MX2010012677A (fr)
WO (1) WO2009150363A2 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101614096B1 (ko) * 2010-08-12 2016-04-29 한국전자통신연구원 이동통신 시스템에서 멀티 캐리어 구조를 위한 채널 관리 방법
CN104556151B (zh) * 2013-10-12 2018-01-23 西北大学 一种普鲁士蓝的制备方法
JP2018521946A (ja) * 2015-07-14 2018-08-09 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー シアン化水素からニトリル類を除去するための方法
JP6449527B1 (ja) * 2017-06-29 2019-01-09 株式会社神鋼環境ソリューション 有機亜鉛化合物の合成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4511548A (en) * 1981-12-18 1985-04-16 The Standard Oil Company Ammoxidation of methanol to produce hydrogen cyanide
WO1988001611A1 (fr) * 1986-08-26 1988-03-10 Whisenhunt, Fred, S. Hydrogazeification d'une biomasse pour produire du methane en grandes quantites
US6417385B1 (en) * 1999-04-22 2002-07-09 Degussa Ag Method of producing acetone-cyanhydrin

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB718112A (en) * 1951-11-06 1954-11-10 Distillers Co Yeast Ltd Manufacture of hydrogen cyanide
JPS5135400B2 (fr) * 1972-10-06 1976-10-01
JPS5535377B2 (fr) * 1973-01-24 1980-09-12
GB1426254A (en) * 1972-10-06 1976-02-25 Sumitomo Chemical Co Process for preparing hydrogen cyanide
JPS5199700A (ja) * 1975-02-28 1976-09-02 Nitto Chemical Industry Co Ltd Seisanseizoho
US4107278A (en) * 1976-08-16 1978-08-15 E. I. Du Pont De Nemours And Company Process for making HCN
SE448007B (sv) * 1983-04-21 1987-01-12 Skf Steel Eng Ab Forfarande och anordning for atervinning av kemikalier ur massaavlut
JPH0764555B2 (ja) * 1988-04-05 1995-07-12 日東化学工業株式会社 青酸製法
JP2950851B2 (ja) * 1989-06-23 1999-09-20 三菱レイヨン株式会社 鉄・アンチモン・リン含有金属酸化物触媒組成物およびその製法
JP3371112B2 (ja) * 1990-09-18 2003-01-27 ダイヤニトリックス株式会社 鉄・アンチモン含有金属酸化物触媒組成物およびその製法
CN1040642C (zh) * 1993-10-14 1998-11-11 中国石油化工总公司 丙酮氰醇的真空精馏提纯方法
EP0742781B1 (fr) * 1994-02-01 2004-09-29 INVISTA Technologies S.à.r.l. Preparation de cyanure d'hydrogene
WO1996030464A1 (fr) * 1995-03-31 1996-10-03 University Of Hawaii Gazeification supercritique catalytique de biomasses mouillees
JP3415748B2 (ja) * 1996-07-15 2003-06-09 株式会社荏原製作所 有機性廃棄物の二段ガス化方法及び装置
JP3999850B2 (ja) * 1997-07-22 2007-10-31 三菱レイヨン株式会社 流動層反応による青酸の製造方法
JP3091168B2 (ja) * 1996-09-25 2000-09-25 三菱レイヨン株式会社 流動層反応器におけるアンモ酸化法
EP0832877B1 (fr) * 1996-09-25 2001-11-21 Mitsubishi Rayon Co., Ltd. Procédé d'ammoxydation dans un réacteur à lit fluidisé
KR20010049667A (ko) * 1999-07-12 2001-06-15 마크 에스. 아들러 산화질소와 메탄으로부터 시안화수소를 제조하는 비/디방법
SE0004185D0 (sv) * 2000-11-15 2000-11-15 Nykomb Synergetics B V New process
US7070743B2 (en) * 2002-03-14 2006-07-04 Invista North America S.A R.L. Induction-heated reactors for gas phase catalyzed reactions
SE526429C2 (sv) * 2003-10-24 2005-09-13 Swedish Biofuels Ab Metod för att framställa syreinnehållande föreningar utgående från biomassa
JP2005211764A (ja) * 2004-01-28 2005-08-11 I'm Pact World:Kk 生ごみ処理機の脱臭装置及び脱臭方法
CA2496839A1 (fr) * 2004-07-19 2006-01-19 Woodland Chemical Systems Inc. Methode de production d'ethanol a partir de gaz de synthese a teneur elevee en monoxyde de carbone
JP4564907B2 (ja) * 2005-09-05 2010-10-20 茂人 早藤 超臨界水分解ガスの処理方法、及びこれを利用したエネルギー回収システム、有機化合物製造システム
US7998339B2 (en) * 2005-12-12 2011-08-16 Neste Oil Oyj Process for producing a hydrocarbon component
JP5307325B2 (ja) * 2006-07-19 2013-10-02 独立行政法人農業・食品産業技術総合研究機構 メタン発酵消化液の濃縮装置とその濃縮方法
US8128898B2 (en) * 2006-10-31 2012-03-06 Sasol Techonology (Proprietary) Limited Removal of hydrogen cyanide from synthesis gas
JP4438791B2 (ja) * 2006-11-22 2010-03-24 株式会社Ihi アンモニア製造方法及び装置
EP1953130B1 (fr) * 2007-01-30 2011-06-29 MT-Biomethan GmbH Procédé et installation de gaz brut contenant du dioxyde de carbone et de méthane, en particulier du biogaz, pour un gain de méthane
JP5391522B2 (ja) * 2007-03-12 2014-01-15 株式会社Ihi アンモニア合成方法
US7385081B1 (en) * 2007-11-14 2008-06-10 Bp Corporation North America Inc. Terephthalic acid composition and process for the production thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4511548A (en) * 1981-12-18 1985-04-16 The Standard Oil Company Ammoxidation of methanol to produce hydrogen cyanide
WO1988001611A1 (fr) * 1986-08-26 1988-03-10 Whisenhunt, Fred, S. Hydrogazeification d'une biomasse pour produire du methane en grandes quantites
US6417385B1 (en) * 1999-04-22 2002-07-09 Degussa Ag Method of producing acetone-cyanhydrin

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BAKER, E.G. ; MUDGE, L.K. ; BROWN, M.D.: "Methanol and ammonia from biomass" CHEMICAL ENGINEERING PROGRESS, vol. 80, no. 12, décembre 1984 (1984-12), pages 43-46, XP009110804 U.S. *
H. B. SINGH ET AL.: "In situ measurements of HCN and CH3CN over the Pacific Ocean: Sources, sinks, and budgets" JOURNAL OF GEOPHYSICAL RESEARCH, vol. 108, no. D20, 13 septembre 2003 (2003-09-13), pages GTE 16-1-GTE 16-14, XP002510685 American Geophysical Union, U.S *
L. ANDRUSSOW: "Über die katalytische Oxydation von Ammoniak-Methan-Gemischen zu Blausäure" ANGEWANDTE CHEMIE, vol. 48, no. 37, 14 septembre 1935 (1935-09-14), pages 593-595, XP002510687 *

Also Published As

Publication number Publication date
EA201071336A1 (ru) 2011-06-30
EA026304B1 (ru) 2017-03-31
JP2015096467A (ja) 2015-05-21
EP2294010A2 (fr) 2011-03-16
FR2931477A1 (fr) 2009-11-27
US20110150743A1 (en) 2011-06-23
FR2931477B1 (fr) 2012-08-17
KR20110021795A (ko) 2011-03-04
MX2010012677A (es) 2011-02-24
CN107032370A (zh) 2017-08-11
BRPI0912823A2 (pt) 2015-10-13
WO2009150363A3 (fr) 2010-03-11
JP2011521872A (ja) 2011-07-28
CN102105398A (zh) 2011-06-22
JP2017039643A (ja) 2017-02-23
US20140147365A1 (en) 2014-05-29

Similar Documents

Publication Publication Date Title
EP2361239B1 (fr) Procédé de fabrication de méthylmercaptopropionaldehyde et de methionine à partir de matières premières renouvelables
FR2940801A1 (fr) Procede de fabrication d'un methacrylate de methyle derive de la biomasse
KR20190025042A (ko) 수소열분해 생성물 증기로부터 황화수소를 황산암모늄으로서 제거
JP2017039643A (ja) バイオ資源炭素を含むシアン化水素酸
Boukis et al. Catalytic gasification of digestate sludge in supercritical water on the pilot plant scale
EP2362893A1 (fr) Fabrication de chlorure de vinyle monomere a partir de matieres renouvelables, chlorure de vinyle monomere obtenu et utilisation
US8303849B2 (en) HCN removal from syngas using chemical and biological treatment
FR2935142A1 (fr) Dimethyldisulfure issu au moins partiellement de matieres renouvellables
JP2017066149A (ja) バイオマス由来のメチルメタクリレートの製造方法
WO2011055051A2 (fr) Glutaraldehyde bioressource et ses procedes de fabrication
US20220325216A1 (en) Intermittent feedstock to gas fermentation
JP2005328849A (ja) 一酸化炭素の嫌気性発酵
RENEWABLE Devaux et al.
Alves et al. Biological fermentation of syngas

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980128550.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09761914

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 20107025980

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011510029

Country of ref document: JP

Ref document number: MX/A/2010/012677

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 8252/DELNP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009761914

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 201071336

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 12993374

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0912823

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101119