WO2009142266A1 - 血圧測定装置 - Google Patents

血圧測定装置 Download PDF

Info

Publication number
WO2009142266A1
WO2009142266A1 PCT/JP2009/059358 JP2009059358W WO2009142266A1 WO 2009142266 A1 WO2009142266 A1 WO 2009142266A1 JP 2009059358 W JP2009059358 W JP 2009059358W WO 2009142266 A1 WO2009142266 A1 WO 2009142266A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid bag
fluid
blood pressure
unit
pressure
Prior art date
Application number
PCT/JP2009/059358
Other languages
English (en)
French (fr)
Inventor
美佳 江藤
幸哉 澤野井
新吾 山下
Original Assignee
オムロンヘルスケア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008134541A external-priority patent/JP5228619B2/ja
Priority claimed from JP2008134542A external-priority patent/JP5169482B2/ja
Priority claimed from JP2008134543A external-priority patent/JP5228620B2/ja
Application filed by オムロンヘルスケア株式会社 filed Critical オムロンヘルスケア株式会社
Priority to CN2009801180155A priority Critical patent/CN102036604B/zh
Priority to US12/993,216 priority patent/US9706933B2/en
Priority to RU2010151962/14A priority patent/RU2503406C2/ru
Priority to DE112009001212T priority patent/DE112009001212T5/de
Publication of WO2009142266A1 publication Critical patent/WO2009142266A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/0225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/02225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers using the oscillometric method

Definitions

  • the present invention relates to a blood pressure measurement device, and more particularly to a blood pressure measurement device that measures blood pressure using an arm band (cuff) that encloses a fluid bag.
  • a blood pressure measurement device that measures blood pressure using an arm band (cuff) that encloses a fluid bag.
  • a fluid bag transmitted from a change in volume of a compressed blood vessel by increasing or reducing the pressure of an arm band (cuff) that encloses a fluid bag wrapped around a part of a living body.
  • an oscillometric method in which the volume change of the fluid is taken as the pressure change (pressure pulse wave amplitude) of the fluid bag and the blood pressure is calculated.
  • the fluid bag has such a characteristic that the pressure of the fluid bag and the volume of the fluid bag have a relationship as shown in FIG. That is, referring to FIG. 33, in the region where the pressure of the fluid bag is low, which is shown in part A, the volume of the fluid bag increases rapidly as the pressure of the fluid bag increases. Further, as shown in part B, as the pressure of the fluid bag increases, the increase rate of the volume of the fluid bag gradually decreases as the pressure of the fluid bag increases.
  • FIG. 34 shows when the fluid density in the fluid bag is low
  • FIG. 35 shows when the fluid density in the fluid bag is high.
  • (D) part). 36 shows a case where the discharge speed of the fluid exiting the fluid bag is fast, that is, when the discharge amount per unit time is large, and FIG.
  • portion (B) shows a case where the discharge speed of the fluid exiting the fluid bag is slow, that is, the discharge amount per unit time. When there is little. Specifically, it represents a change in volume of the fluid bag (portion (B)) and a change in pressure of the fluid bag (portion (C)) accompanying a change in volume of the blood vessel (portion (A)).
  • the detection accuracy of the volume change of the blood vessel has the following characteristics: (1) The higher the pressure of the fluid bag, the higher the density of the fluid in the fluid bag. (2) The larger the volume of the fluid bag, the smaller the density change of the fluid in the fluid bag due to the volume change of the blood vessel, so the detection accuracy of the volume change of the blood vessel is lower. (3) When the volume change of the fluid bag is the same, the higher the pressure of the fluid bag, the greater the density change of the fluid in the fluid bag accompanying the volume change of the fluid bag, so the detection accuracy of the volume change of the blood vessel becomes higher.
  • the detection accuracy of the volume change of the blood vessel is based on the density of the fluid in the fluid bag and the amount of fluid discharged from the fluid bag. Depends on.
  • the sphygmomanometer that depressurizes the fluid bag at a constant speed and measures the blood pressure in the depressurization process depressurizes at a constant speed.
  • the amount of fluid discharged from the fluid bag is controlled by a valve according to the circumference. Accordingly, as shown in FIG. 38C, the pressure pulse wave amplitude with respect to the constant volume change of the blood vessel is large in the region where the pressure of the fluid bag is high, and the pressure pulse with respect to the constant volume change of the blood vessel in the region where the pressure of the fluid bag is low.
  • the wave amplitude was small.
  • the amount of change in the volume of the blood vessel accompanying the change in the pressure of the fluid bag differs depending on the circumference of the measurement site, these have become an error factor in blood pressure measurement.
  • FIG. 39 shows when the fluid density in the fluid bag is low
  • FIG. 40 shows when the fluid density in the fluid bag is high.
  • (D) part). 41 shows that when the fluid flows into the fluid bag early, that is, when the amount of inflow per unit time is large
  • FIG. 42 shows when the fluid flows into the fluid bag is slow, that is, when the amount of inflow per unit time is small.
  • the detection accuracy of the volume change of the blood vessel has the following characteristics: (1) The higher the pressure in the fluid bag, the higher the fluid density in the fluid bag. (2) The larger the volume of the fluid bag, the smaller the change in fluid density in the fluid bag accompanying the change in volume of the fluid bag, so the detection accuracy of the change in volume of the blood vessel is lower. (3) When the volume change of the fluid bag is the same, the higher the pressure of the fluid bag, the greater the change in the fluid density in the fluid bag accompanying the volume change of the fluid bag, so the detection accuracy of the volume change of the blood vessel increases.
  • the accuracy of detecting the volume change of the blood vessel is the density of the fluid in the fluid bag and the amount of fluid flowing into the fluid bag. Depends on.
  • the sphygmomanometer that pressurizes the fluid bag at a constant speed and measures the blood pressure during the pressurization process pressurizes the fluid bag at a constant speed and the circumference of the measurement site. Accordingly, the amount of fluid injected into the fluid bag is controlled by a pump. At this time, the amount of fluid injected into the fluid bag changed according to the pressure of the fluid bag and the circumference of the measurement site, as shown in FIG. 43B. Accordingly, as shown in FIG.
  • the pressure pulse wave amplitude with respect to the volume change of the blood vessel is large in the region where the pressure of the fluid bag is high, and the pressure pulse wave amplitude with respect to the constant volume change of the blood vessel in the region where the pressure of the fluid bag is low.
  • the amount of change in the pressure pulse wave amplitude accompanying the change in the pressure of the fluid bag differs depending on the circumference of the measurement site, these are error factors in blood pressure measurement.
  • the pressurizing speed of the fluid bag depends on the pressure of the fluid bag and the circumference of the measurement site. Had changed.
  • the amount of fluid injected into the fluid bag changes according to the pressure of the fluid bag.
  • the pressure pulse wave amplitude with respect to the constant volume change of the blood vessel is large in the region where the pressure of the fluid bag is high, and the pressure pulse with respect to the constant volume change of the blood vessel in the region where the pressure of the fluid bag is low. The wave amplitude was small.
  • the amount of change in the volume of the blood vessel accompanying the change in the pressure of the fluid bag differs depending on the circumference of the measurement site, these have become an error factor in blood pressure measurement.
  • Reference 1 Japanese Patent Laid-Open No. 6-245911 (hereinafter referred to as Reference 1) discloses a technique for adjusting the discharge amount of a valve in accordance with the circumference of a measurement site, or a fluid storage unit that communicates with a fluid bag.
  • Reference 1 discloses a technique for adjusting the discharge amount of a valve in accordance with the circumference of a measurement site, or a fluid storage unit that communicates with a fluid bag.
  • a technique is disclosed in which the volume sum of the fluid bag and the fluid storage portion is controlled to be constant according to the winding circumference around the part. As a result, it is possible to keep the decompression speed constant even if the circumferences of the measurement sites are different.
  • Document 2 Japanese Patent Application Laid-Open No. 5-329113 (hereinafter referred to as Document 2) is provided with a volume change characteristic of the fluid bag with respect to the pressure of the fluid bag in advance, and reconverts the signal of the pressure change of the fluid bag into a volume change. A method of measuring a blood pressure value using the same is disclosed.
  • the method disclosed in Document 1 can eliminate the difference in decompression speed due to the difference in the circumference of the measurement site, but in order to keep the decompression speed constant, the valve discharge amount is interlocked with the pressure of the fluid bag. Changes, the amplitude of the pressure pulse wave changes depending on the pressure of the fluid bag. Therefore, even if the volume sum of the fluid bag and the fluid storage part is controlled to be constant, only the difference in volume due to the circumference of the measurement site is eliminated, and the pressure change of the fluid bag relative to the change in the volume of the blood vessel due to the pressure of the fluid bag is eliminated. The size changes. Therefore, there is still a problem that an error occurs in blood pressure measurement.
  • the method disclosed in Document 3 can accurately grasp the volume change of the blood vessel as the pressure change of the fluid bag, but it is difficult to reduce the pressure because the valve is closed each time a pulse wave appears. There's a problem.
  • the pressure and volume of the fluid bag are not proportional to each other. Therefore, when blood pressure measurement is performed while reducing the pressure, the fluid bag depends on the circumference of the measurement site and the pressure of the fluid bag. The flow rate of the fluid discharged from was different.
  • the amount of fluid flowing into the fluid bag differs depending on the circumference of the measurement site and the pressure of the fluid bag. Thereby, the detection accuracy of the pressure pulse wave amplitude with respect to the change in the volume of the blood vessel differs depending on the circumference of the measurement site and the pressure of the fluid bag. Therefore, there is a problem that even if the volume change of the blood vessel is the same, an error occurs in the magnitude of the pressure pulse wave amplitude depending on the blood pressure value and the circumference of the measurement site, and the accuracy of blood pressure measurement is reduced.
  • the present invention has been made in view of such problems, and an object thereof is to provide a blood pressure measurement device capable of improving the accuracy of blood pressure measurement.
  • a blood pressure measurement device includes a fluid bag, a pressurizing unit for injecting and pressurizing a fluid into the fluid bag, and discharging the fluid from the fluid bag.
  • a decompression unit for decompressing, a sensor for measuring a change in the internal pressure of the fluid bag, and a blood pressure measurement unit for calculating a maximum blood pressure value and a minimum blood pressure value based on the change in the internal pressure of the fluid bag obtained by the sensor;
  • a pressurization unit, a decompression unit, and a control unit for controlling the blood pressure measurement unit, the blood pressure measurement unit of the fluid bag obtained by the sensor in the pressurization process in which fluid is injected into the fluid bag by the pressurization unit
  • One of the maximum blood pressure value and the minimum blood pressure value is calculated based on the change in the internal pressure, and the maximum blood pressure is calculated based on the change in the internal pressure of the fluid bag obtained by the sensor in the decompression process in which the fluid is discharged
  • control unit controls the discharge amount by determining a control amount for controlling the fluid discharge amount in the decompression unit so that the discharge amount is proportional to the decompression speed of the fluid bag in the decompression process. Control the amount of emissions.
  • the blood pressure measurement unit calculates a minimum blood pressure value based on a change in the internal pressure of the fluid bag obtained by the sensor in the decompression process in which the fluid is discharged from the fluid bag by the decompression unit.
  • control unit controls the discharge amount by determining a control amount for controlling the fluid discharge amount in the decompression unit so that the discharge amount is proportional to the decompression speed of the fluid bag in the decompression process. Control the amount of emissions.
  • the blood pressure measurement unit calculates the maximum blood pressure value based on the change in the internal pressure of the fluid bag obtained by the sensor during the decompression process in which the fluid is discharged from the fluid bag by the decompression unit.
  • the decompression unit includes a valve provided in the fluid bag, the control amount for controlling the discharge amount is a gap of the valve, and the control unit is within a time range in which the internal pressure of the fluid bag changes within a predetermined range across the maximum blood pressure.
  • the blood pressure measurement unit calculates the minimum blood pressure value based on the change in the internal pressure of the fluid bag obtained by the sensor during the decompression process in which the blood pressure measurement unit discharges the fluid from the fluid bag by the decompression unit.
  • the valve gap is determined to be smaller than the gap determined, and the valve gap is controlled to be held in the determined gap in the decompression process, thereby controlling the discharge amount for controlling the discharge amount.
  • control unit includes an acquisition unit for acquiring information related to the circumference of the measurement site, and the control unit determines a gap of the valve according to the circumference.
  • the blood pressure measurement device further includes an input unit for inputting a circumference, and acquires information about the circumference by input from the input unit.
  • the acquisition unit acquires information on the circumference based on the pressurization time in the pressurization unit until the internal pressure of the fluid bag reaches a predetermined pressure.
  • the blood pressure measurement device further includes a winding member for winding the fluid bag around the measurement site, the winding member includes a slide resistance, and the acquisition unit winds the fluid bag around the measurement site with the winding member.
  • the winding member includes a slide resistance
  • the acquisition unit winds the fluid bag around the measurement site with the winding member.
  • the decompression unit includes a valve provided in the fluid bag, and the control amount for controlling the discharge amount is a valve gap, and the control unit holds the valve gap in the determined gap in the decompression process.
  • the discharge amount for controlling the discharge amount is controlled.
  • the blood pressure measurement unit further calculates a blood pressure value based on a change in the internal pressure of the fluid bag obtained by the sensor in a pressurization process in which fluid is injected into the fluid bag by the pressurization unit, and the control unit performs the pressurization process
  • the valve gap is determined according to the blood pressure value calculated based on the change in the internal pressure of the fluid bag.
  • the blood pressure measurement unit further calculates a cycle of the pulse wave based on a change in the internal pressure of the fluid bag obtained by the sensor in a pressurization process in which fluid is injected into the fluid bag by the pressurization unit, and the control unit
  • the valve gap is determined according to the period of the pulse wave calculated based on the change in the internal pressure of the fluid bag in the pressure process.
  • control unit controls the pressurization unit based on the internal pressure of the fluid bag so that the amount of fluid injected into the fluid bag by the pressurization unit per unit time is proportional to the pressurization speed of the fluid bag.
  • a control amount for determining the pressure is controlled.
  • the blood pressure measurement unit calculates the minimum blood pressure value based on the change in the internal pressure of the fluid bag obtained by the sensor during the pressurization process in which the fluid is injected into the fluid bag by the pressurization unit stage.
  • control unit controls the pressurization unit based on the internal pressure of the fluid bag so that the amount of fluid injected into the fluid bag by the pressurization unit per unit time is proportional to the pressurization speed of the fluid bag.
  • a control amount for determining the pressure is controlled.
  • the blood pressure measurement unit calculates the maximum blood pressure value based on the change in the internal pressure of the fluid bag obtained by the sensor during the pressurization process in which the fluid is injected into the fluid bag by the pressurization unit.
  • the pressurizing unit includes a pump for injecting fluid into the fluid bag
  • the control amount for controlling the pressurizing unit is a drive voltage for driving the pump
  • the control unit The drive voltage is updated based on the internal pressure of the fluid bag at a predetermined timing.
  • control unit includes an acquisition unit for acquiring information related to the circumference of the measurement site, and the control unit determines a control parameter for controlling a drive voltage for driving the pump based on the circumference. To do.
  • control unit has one of a maximum blood pressure value and a minimum blood pressure value based on a change in the internal pressure of the fluid bag obtained by the sensor in the decompression process in which the blood pressure measurement unit discharges the fluid from the fluid bag by the decompression unit.
  • the decompression unit is controlled to discharge the fluid from the fluid bag.
  • a blood pressure measurement device includes a fluid bag, a pressurization unit for injecting and pressurizing fluid into the fluid bag, and a decompression unit for discharging and depressurizing the fluid from the fluid bag.
  • a control unit for controlling the pressurizing unit, the depressurizing unit, and the blood pressure measuring unit, and the control unit is configured to control the amount of discharge in the depressurizing unit so that the discharge amount is proportional to the depressurization rate of the fluid bag
  • a control amount for controlling the discharge amount of the fluid is determined, and the discharge amount is controlled.
  • the decompression unit includes a valve provided in the fluid bag, the control amount is a valve gap, and the control unit controls the discharge amount by controlling the valve gap to be held in the determined gap in the decompression process. Control.
  • control unit determines a valve gap that is a control amount so that a pressure reduction rate including a predetermined number or more of the pulse rate is included within a time period during which the internal pressure of the fluid bag changes from the highest blood pressure to the lowest blood pressure.
  • the pressurization unit includes a pump, and the acquisition unit acquires information on the circumference based on the rotation speed of the pump and the internal pressure of the fluid bag.
  • the blood pressure measurement device further includes a measurement unit for measuring the discharge amount, and the control unit reduces the pressure based on the discharge amount measured by the measurement unit and the change in the internal pressure of the fluid bag obtained by the sensor.
  • the amount of fluid discharged from the pressure reducing unit is controlled so that the amount discharged becomes proportional to the pressure reducing speed of the fluid bag.
  • the blood pressure measurement device further includes an increasing unit for increasing the capacity of the fluid bag, and the pressurizing unit injects and pressurizes the fluid into the fluid bag whose volume is increased by the increasing unit.
  • the increase unit includes an injection unit for injecting the incompressible fluid into the fluid bag, and the control unit supplies the incompressible fluid at the injection unit before injecting the fluid into the fluid bag at the pressurization unit. Control to inject into fluid bag.
  • control unit controls to inject a predetermined amount of incompressible fluid into the fluid bag at the injection unit before injecting the fluid into the fluid bag at the pressurization unit.
  • the control unit is prior to injecting fluid into the fluid bag at the pressurization unit until the pressure of the fluid bag reaches a predetermined pressure or until the pressurization rate of the fluid bag reaches a predetermined pressurization rate.
  • the step of injecting the incompressible fluid into the fluid bag at the injection part and the pressure of the fluid bag after the pressure of the fluid bag reaches a predetermined pressure or after the pressurization speed of the fluid bag reaches the predetermined pressurization speed And a step of opening the fluid bag to the atmospheric pressure and a step of closing the fluid bag and starting injecting the fluid by the pressurizing unit after the pressure of the fluid bag is set to the atmospheric pressure.
  • a portion that connects the fluid bag and a discharge port for discharging the fluid at the decompression unit is provided with a filter that allows fluid to pass through and does not allow incompressible fluid to pass through.
  • the increasing portion is a filling member disposed in the fluid bag.
  • the filling member includes any one of a sponge, a spring, and a microbead.
  • a blood pressure measurement device includes a fluid bag, a pressurizing unit for injecting and pressurizing fluid into the fluid bag, a sensor for measuring a change in internal pressure of the fluid bag, A blood pressure measuring unit for calculating a blood pressure value based on a change in internal pressure of the fluid bag obtained by the sensor in a pressurizing process of injecting fluid into the fluid bag by the unit, and for controlling the pressurizing unit and the blood pressure measuring unit A controller, and the controller pressurizes based on the internal pressure of the fluid bag so that the amount of fluid injected into the fluid bag per unit time by the pressurizer is proportional to the pressurization speed of the fluid bag.
  • a control amount for controlling the unit is determined, and the pressurizing unit is controlled.
  • the pressurizing unit includes a pump for injecting fluid into the fluid bag
  • the control amount is a drive voltage for driving the pump
  • the control unit is configured to control the internal pressure of the fluid bag at a predetermined timing in the pressurizing process.
  • the drive voltage is updated based on
  • control unit is a drive for driving a pump that is a control amount so that a pressurization speed that includes a predetermined number of pulses or more is included in a time when the internal pressure of the fluid bag changes from the lowest blood pressure to the highest blood pressure. Determine the voltage.
  • the acquisition unit acquires information on the circumference based on the number of rotations of the pump and the internal pressure of the fluid bag.
  • the blood pressure measurement device further includes a measurement unit for measuring the amount of fluid injected into the fluid bag, and the control unit includes the amount of fluid injected into the fluid bag measured by the measurement unit per unit time.
  • the pressurizing unit is controlled so that the amount of fluid injected into the fluid bag by the pressurizing unit per unit time is proportional to the pressurizing speed of the fluid bag.
  • control unit determines whether or not the pressurizing speed of the fluid bag is within an allowable range, and terminates the pressurization in the pressurizing unit when it is not within the allowable range.
  • the detection accuracy of the volume change of the blood vessel can be made close to a constant regardless of the pressure of the fluid bag.
  • a blood pressure measurement error can be reduced.
  • the rate of change in the detection accuracy of the change in volume of the blood vessel can be made close to a constant value.
  • a blood pressure measurement error can be reduced. Further, this eliminates the need to correct the volume of the fluid bag that varies depending on the circumference of the measurement site.
  • an electronic sphygmomanometer that measures blood pressure in the process of depressurizing the fluid bag, when the fluid density in the fluid bag is low, the volume change of the fluid bag, the change in the fluid density in the fluid bag accompanying the volume change of the blood vessel, and It is a figure showing the pressure change of a fluid bag.
  • an electronic sphygmomanometer that measures blood pressure in the process of depressurizing the fluid bag, when the fluid density in the fluid bag is high, the volume change of the fluid bag, the change in fluid density in the fluid bag, and the change in volume of the blood vessel, and It is a figure showing the pressure change of a fluid bag.
  • the fluid bag In an electronic sphygmomanometer that measures blood pressure in the process of depressurizing the fluid bag, when the fluid discharging speed from the fluid bag is fast, that is, when the amount of discharge per unit time is large, the fluid bag It is a figure showing the volume change and the pressure change of a fluid bag. In an electronic sphygmomanometer that measures blood pressure in the process of depressurizing the fluid bag, when the fluid discharge rate from the fluid bag is slow, that is, when the discharge amount per unit time is small, the fluid bag It is a figure showing the volume change and the pressure change of a fluid bag.
  • an electronic sphygmomanometer that measures blood pressure in the process of pressurizing the fluid bag, when the fluid density in the fluid bag is high, the volume change of the fluid bag, the change in the fluid density in the fluid bag associated with the volume change of the blood vessel, and It is a figure showing the pressure change of a fluid bag.
  • the volume of the fluid bag that accompanies a change in the volume of the blood vessel when the fluid flows into the fluid bag quickly, that is, when the amount of inflow per unit time is large It is a figure showing the change and the pressure change of a fluid bag.
  • FIG. 1 In an electronic sphygmomanometer that measures blood pressure in the process of pressurizing the fluid bag, it shows the relationship between the pressure of the fluid bag and the pressurization speed in the sphygmomanometer that pressurizes the pump with a constant driving voltage for pressurizing the fluid bag.
  • FIG. 1 In an electronic sphygmomanometer that measures blood pressure in the process of pressurizing the fluid bag, the pressure of the fluid bag and the unit time of fluid to the fluid bag in the sphygmomanometer that pressurizes with a constant driving voltage of the pump for pressurizing the fluid bag It is a figure which shows the relationship with the amount of inflow per hit.
  • a sphygmomanometer 1 which is a blood pressure measurement device according to the first embodiment includes a main body 2 and a cuff 5 wound around a measurement site, which are connected by a tube 10.
  • an operation unit 3 such as a switch and a display unit 4 for displaying measurement results and the like are arranged.
  • the operation unit 3 includes a power switch 31 for instructing power ON / OFF, a measurement switch 32 for instructing start of measurement, a stop switch 33 for instructing stop of measurement, and recorded measurement values Includes a record call switch 34 for calling and displaying.
  • a fluid bag 13 is disposed in the cuff 5. For example, air corresponds to the fluid injected into the fluid bag 13 and discharged from the fluid bag 13. The fluid bag 13 is pressed against the measurement site by winding the cuff 5 around the measurement site. Examples of the measurement site include an upper arm or a wrist.
  • the fluid bag 13 is connected to a pressure sensor 23 that measures a change in the internal pressure of the fluid bag 13, a pump 21 that injects / discharges fluid from the fluid bag 13, and a valve 22.
  • the pressure sensor 23, the pump 21, and the valve 22 are connected to an oscillation circuit 28, a pump drive circuit 26, and a valve drive circuit 27, respectively. Further, the oscillation circuit 28, the pump drive circuit 26, and the valve drive circuit 27 are Each is connected to a CPU (Central Processing Unit) 40 that controls the entire sphygmomanometer 1.
  • CPU Central Processing Unit
  • the CPU 40 further includes a display unit 4, an operation unit 3, a memory 6 that stores a program executed by the CPU 40 and serves as a work area when executing the program, and a memory 7 that stores measurement results and the like. And a power source 53 are connected.
  • the CPU 40 is driven by receiving power supply from the power source 53.
  • the CPU 40 includes a circumference information acquisition unit 41 and a valve drive voltage determination unit 43. These are formed in the CPU 40 when the CPU 40 executes a predetermined program stored in the memory 6 based on an operation signal input from the operation unit 3.
  • the circumference information acquisition unit 41 acquires circumference information that is the size of the measurement site and inputs the circumference information to the valve drive voltage determination unit 43.
  • the valve drive voltage determination unit 43 determines a voltage (hereinafter referred to as drive voltage Ev) for driving the valve 22 based on the circumference information.
  • the CPU 40 outputs a control signal corresponding to the drive voltage Ev determined by the valve drive voltage determination unit 43 to the valve drive circuit 27. Further, the CPU 40 executes a predetermined program stored in the memory 6 based on the operation signal input from the operation unit 3 and outputs a control signal to the pump drive circuit 26.
  • the pump drive circuit 26 and the valve drive circuit 27 drive the pump 21 and the valve 22 according to the control signal.
  • the pump 21 is driven by a pump drive circuit 26 according to a control signal from the CPU 40 and injects fluid into the fluid bag 13.
  • the valve 22 has its opening / closing and opening width (hereinafter referred to as a gap) controlled by a valve drive circuit 27 according to a control signal from the CPU 40, and discharges the fluid in the fluid bag 13.
  • the pressure sensor 23 is a capacitance type pressure sensor, and its capacitance value changes due to a change in the internal pressure of the fluid bag 13.
  • the oscillation circuit 28 is converted into a signal having an oscillation frequency corresponding to the capacitance value of the pressure sensor 23 and input to the CPU 40.
  • the CPU 40 executes a predetermined process based on the change in the internal pressure of the fluid bag 13 obtained from the pressure sensor 23, and outputs the control signal to the pump drive circuit 26 and the valve drive circuit 27 according to the result. Further, the CPU 40 calculates a blood pressure value based on the change in the internal pressure of the fluid bag 13 obtained from the pressure sensor 23, performs a process for displaying the measurement result on the display unit 4, and data and a control signal for displaying the measurement result. Are output to the display unit 4. Further, the CPU 40 performs a process for storing the blood pressure value in the memory 7.
  • a first specific example of processing executed at the timing when the measurement switch 32 is operated in the sphygmomanometer 1 will be described with reference to the flowchart of FIG.
  • the processing shown in the flowchart of FIG. 2 is realized by the CPU 40 executing a predetermined program stored in the memory 6.
  • CPU 40 monitors the input of an operation signal from operation unit 3, and when detecting that measurement switch 32 is operated, in step S ⁇ b> 101, circumference information acquisition unit 41 of CPU 40 determines the measurement site.
  • the circumference information representing the circumference of the measurement site having the size of is acquired.
  • circumference information such as “thick” and “thin” is input at the time of measurement by a switch or the like constituting the operation unit 3, and the circumference information acquisition unit 41 is based on an operation signal from the operation unit 3. Circumference information shall be acquired.
  • the acquisition method of the circumference information in the circumference information acquisition part 41 is not limited to the above-mentioned method.
  • the circumference information is obtained by the process of steps S201 to S205 instead of the above step S101. May be obtained.
  • the CPU 40 outputs a control signal for driving the pump 21 at a predetermined voltage that is specified in advance to the pump driving circuit 26, and the pump 21 is driven at a predetermined voltage so that the fluid bag 13 is The fluid bag 13 is pressurized until it reaches a prescribed predetermined pressure.
  • the CPU 40 stores the pressurization time until the fluid bag 13 reaches the predetermined pressure in step S205.
  • the pressurization speed decreases as the circumference of the measurement region increases. Therefore, as shown in FIG. 4B, the pressurization time increases as the circumference of the measurement site increases. That is, it can be said that the pressurization time until the fluid bag 13 reaches a predetermined pressure is an index representing the circumference of the measurement site. Therefore, the circumference information acquisition unit 41 acquires the pressurization time stored in step S205 as circumference information.
  • the circumference information acquisition part 41 is obtained similarly from the rotation speed of the pump 21 and the pressure of the fluid bag 13 instead of the pressurization time.
  • a slide resistance is included in a cloth (not shown) for winding the fluid bag 13 around the measurement site, and the circumference information acquisition unit 41 winds the fluid bag 13 around the measurement site.
  • the circumference information may be acquired from the resistance value obtained from the above sliding resistance.
  • step S103 and S105 the CPU 40 outputs a control signal to the pump drive circuit 26, and pressurizes the fluid bag 13 until the fluid bag 13 reaches a predetermined pressure.
  • the CPU 40 outputs a control signal to the pump drive circuit 26 in step S107 and stops pressurization of the fluid bag 13.
  • step S109 the valve drive voltage determination unit 43 of the CPU 40 determines the drive voltage Ev of the valve 22 based on the circumference information acquired in step S101 or steps S201 to S205.
  • step S111 the CPU 40 outputs a control signal to the valve drive circuit 27 so as to drive the valve 22 while maintaining the drive voltage Ev determined in step S109, and starts depressurization of the fluid bag 13.
  • step S113 the CPU 40 extracts a vibration component accompanying the arterial volume change superimposed on the internal pressure of the fluid bag 13 obtained during decompression, and calculates a blood pressure value by a predetermined calculation. It should be noted that when the pressure reduction rate in step S111 is too fast and the blood pressure value is not calculated in step S113, or conversely, when the pressure reduction rate in step S111 is too slow and the discharge does not proceed (NO in step S114).
  • step S117 the CPU 40 determines that an error has occurred, and outputs a control signal to the valve drive circuit 27 so as to open the valve 22. The fluid in the fluid bag 13 is rapidly discharged. If not, that is, if the blood pressure value is calculated in step S113 (YES in step S114), the valve 22 is opened in accordance with the control signal from the CPU 40 in step S115, and the fluid in the fluid bag 13 is discharged. .
  • the degree of change in the pressure reduction speed relative to the pressure of the fluid bag when the driving voltage Ev is kept constant varies depending on the circumference of the measurement site.
  • the circumference of the measurement site is a parameter for determining the drive voltage Ev.
  • step S109 the valve drive voltage determination unit 43 determines the drive voltage Ev using the relationship shown in FIG.
  • step S109 the drive voltage Ev is determined with a magnitude proportional to the circumference of the measurement site.
  • the degree of change in the pressure reduction speed relative to the pressure of the fluid bag 13 when the circumference of the measurement site is the same varies depending on the gap of the valve 22, that is, the magnitude of the drive voltage.
  • the degree of change in pressure reduction rate increases as the gap of valve 22 increases, and the degree of change in pressure reduction rate decreases as the gap decreases. Therefore, from the relationship shown in FIG. 7, the size of the gap is preferably such that the decompression speed of the fluid bag 13 from the calculation of the maximum blood pressure to the calculation of the minimum blood pressure is within a predetermined speed range. .
  • the size of the gap is preferably the size of the gap at which the rate of pressure reduction is such that the pulse rate that can be detected between the systolic blood pressure and the systolic blood pressure during decompression is equal to or greater than a predetermined number. More preferably, the “predetermined number” is 5. This is because the decompression speed is controlled so that a pulse rate of about 5 is measured between the systolic blood pressure and the systolic blood pressure during decompression, as described in Japanese Patent Application Laid-Open No. 2001-70263 by the applicant of the present application. This is because it is considered appropriate to set in consideration of the performance of the decompression measurement algorithm.
  • a decompression speed at which a pulse rate of 5 or more is measured between the systolic blood pressure and the systolic blood pressure during decompression is obtained by, for example, experiments and stored in the memory 6 in advance.
  • the value is preferably about 3 mmHg / sec to 13 mmHg / sec.
  • the coefficients ⁇ and ⁇ in the above equation (1) are set so that the blood pressure reduction rate in the range where the pressure of the fluid bag 13 is about the blood pressure value is within the target pressure reduction rate of about 3 mmHg / sec to 13 mmHg / sec. It can be set to any value.
  • Such coefficients ⁇ and ⁇ are obtained in advance by experiments or the like and are stored in the memory 6 of the sphygmomanometer 1.
  • the drive voltage Ev is determined by inputting the circumference information acquired in the above equation (1) in step S109.
  • the memory 6 has a circumference.
  • a table that defines the relationship between the information and the drive voltage Ev may be stored, and the valve drive voltage determination unit 43 may read the drive voltage Ev corresponding to the acquired circumference information from the table.
  • the sphygmomanometer 1 is configured to calculate a blood pressure value based on a change in the internal pressure of the fluid bag 13 obtained in a pressure reducing process after pressurizing the fluid bag 13 to a predetermined pressure. Therefore, in step S303, preferably, the CPU 40 calculates a pressure value that is higher by a predetermined pressure value than the maximum blood pressure value estimated in step S301 as the pressurization end pressure.
  • the drive voltage Ev is determined in the same manner as the processing shown in FIG. 2 and FIG. Then, the blood pressure value is calculated in the depressurization process in which control is performed to drive the valve while maintaining the drive voltage Ev.
  • step S109 the valve drive voltage determination unit 43 replaces or adds to the relationship shown in FIG. 5 described above, or considers the drive voltage in consideration of the maximum blood pressure value estimated in step S301.
  • Ev is determined.
  • the drive voltage Ev has a magnitude proportional to the circumference of the measurement site and the estimated systolic blood pressure. It is determined by the corresponding size.
  • the offset amount S is calculated based on the estimated systolic blood pressure value.
  • the offset amount S may be calculated based on the estimated minimum blood pressure value, pulse pressure, or pulse wave period.
  • the size of the gap is preferably such that the pressure of the fluid bag 13 is within the target pressure reduction rate within the range where the pressure of the fluid bag 13 is about the blood pressure value. Therefore, the coefficient ⁇ in the above equation (2) also sets the pressure reduction speed from the calculation of the maximum blood pressure of the fluid bag 13 to the calculation of the minimum blood pressure within a target pressure reduction speed of about 3 mmHg / sec to 13 mmHg / sec. It can be set to such a value.
  • step S111 the CPU 40 controls to drive the valve 22 while maintaining the drive voltage Ev determined in step S109.
  • the gap of the valve 22 is controlled to be constant during decompression.
  • the decompression speed of the fluid bag 13 changes as shown in FIG. That is, from FIG. 10A, when the pressure of the fluid bag 13 becomes a certain pressure or less, the pressure reduction speed of the fluid bag 13 is substantially the same regardless of the circumference of the measurement site, and thereafter (decreases). Almost no change due to pressure change.
  • the discharge amount from the valve 22 at the pressure of the fluid bag 13 changes as shown in FIG. That is, as shown in FIG.
  • controlling the drive voltage Ev to be constant that is, controlling the gap of the valve 22 to be constant means that the discharge amount from the valve 22 and the fluid It can be said that the drive voltage Ev is controlled so as to be proportional to the pressure reduction speed of the bag 13.
  • the flow rate of the fluid exiting the fluid bag 13 and the pressure reduction speed can be brought close to a proportional relationship.
  • the detection accuracy of the volume change of the blood vessel can be made almost constant, and the measurement accuracy can be improved. That is, as shown in FIG. 10C, regardless of the pressure change of the fluid bag 13, the pressure pulse wave amplitude with respect to a constant volume change can be made constant at a value corresponding to the circumference of the measurement site.
  • FIG. 11 is a diagram for explaining the relationship between the pressure of the fluid bag 13 and the detected pulse wave amplitude.
  • (A) has shown the pressure change according to the time passage of the fluid bag 13, and the pressure change of an arterial pressure.
  • a dotted line A in (A) indicates a change in pressure of the fluid bag 13 when the pressure of the fluid bag is controlled to be reduced at a constant speed.
  • the change in the pressure of the fluid bag 13 when the drive voltage Ev is constant, that is, when the pressure is reduced so that the gap of the valve 22 is constant is indicated by a solid line B. ing.
  • the pressure is reduced according to the pressure change (decompression) of the fluid bag 13 as shown in FIG.
  • the measured intra-arterial pressure is measured as shown in (C). Specifically, in (C), a line segment obtained by connecting the measured values of the arterial pressure shown in (B) is indicated by a dotted line.
  • the conventional sphygmomanometer controlled to reduce the pressure of the fluid bag at a constant speed as shown in FIG. 34 and FIG. 35, even in the same intra-arterial pressure, it is high in a region where the pressure of the fluid bag is low.
  • the detection accuracy of the volume change of the blood vessel is lowered.
  • the detection accuracy of the volume change of the blood vessel in the low pressure region of the fluid bag 13 is high. It is remarkably shown that the detection accuracy is improved over the conventional sphygmomanometer controlled to reduce the pressure of the fluid bag at a constant speed. Similarly, it is shown that the detection accuracy of the volume change of the blood vessel in the high pressure region is also improved.
  • the CPU 40 maintains the drive voltage Ev at the drive voltage Ev determined by the valve drive voltage determination unit 43 at the step S109 in the decompression process at the step S111. That is, the drive voltage Ev is kept constant. Control to keep.
  • the sphygmomanometer 1 further includes a flow meter 55 that measures the amount of discharge from the valve 22, as shown in FIG.
  • the drive voltage Ev may be updated by 43 so that the discharge amount from the valve 22 and the pressure reduction speed are in a proportional relationship.
  • the CPU 40 performs feedback control to control the drive voltage Ev so that the drive voltage Ev is changed to a drive voltage Ev determined at a specific timing such as a predetermined time interval.
  • the flow rate of the fluid coming out of the fluid bag 13 and the pressure reduction speed can be brought closer to a proportional relationship.
  • the pressure pulse wave amplitude with respect to a constant blood vessel volume change can be made to be constant, and the measurement accuracy can be improved.
  • sphygmomanometer 1-1 is used for storing non-pressure fluid connected to fluid bag 13 with tube 10 in addition to the hardware configuration of sphygmomanometer 1 shown in FIG.
  • a tank 54 is further provided. The tank 54 is connected to the pump 51 and the valve 52. Pump 51 and valve 52 are connected to pump drive circuit 56 and valve drive circuit 57, respectively. Pump drive circuit 56 and valve drive circuit 57 are each connected to CPU 40.
  • the CPU 40 determines a voltage for driving the pump 51 and the valve 52 by executing a predetermined program stored in the memory 6 based on the operation signal input from the operation unit 3, and the pump drive circuit 56. And the control signal according to the determined voltage is output to the valve drive circuit 57.
  • the pump 51 is driven, the incompressible fluid stored in the tank 54 flows into the fluid bag 13 through the tube 10.
  • the valve 52 By driving the valve 52, the incompressible fluid in the fluid bag 13 is discharged.
  • a filter 9 is provided at a portion connecting the fluid bag 13 and the valve 22.
  • the incompressible fluid in the tank 54 moves to the fluid bag 13
  • the incompressible fluid is prevented from leaking from the valve 22 for injecting the fluid into the fluid bag 13 or discharging the fluid from the fluid bag 13. Therefore, the material of the filter 9 is preferably a material that allows fluid to permeate but does not allow incompressible fluid to permeate.
  • step S1401 the CPU 40 outputs a control signal to the valve drive circuit 27 to close the valve 22, and seals the fluid inlet and outlet to the fluid bag 13.
  • step S1403 a control signal is output to the pump drive circuit 56 to drive the pump 51, and the tank 54 is filled until the fluid bag 13 reaches a predetermined pressure defined in advance or reaches a predetermined pressurization speed.
  • the incompressible fluid is caused to flow into the fluid bag 13. That is, the incompressible fluid is moved from the tank 54 to the fluid bag 13.
  • the CPU 40 sends a control signal to the valve drive circuit 57 in step S1407.
  • the output valve 52 is closed, and the inlet of the incompressible fluid to the fluid bag 13 is blocked.
  • the CPU 40 outputs a control signal to the valve drive circuit 27, opens the valve 22, and releases the pressure in the fluid bag 13.
  • a predetermined amount of incompressible fluid is injected into the fluid bag 13, and the internal pressure is atmospheric pressure.
  • steps S103 to S107 which is the same as the processing according to the first embodiment, is executed, and the fluid bag 13 is pressurized until the fluid bag 13 reaches a predetermined pressure. In this state, pressurization of the fluid bag 13 is stopped. Thereafter, the blood pressure value is calculated in step S113 while the fluid bag 13 is decompressed in step S111.
  • step S1413 when the calculation of the blood pressure value is completed (YES in step S1411), in step S1413, the CPU 40 outputs a control signal to the valve drive circuit 57 to open the valve 52, and the incompressibility in the fluid bag 13 is reached. Drain the fluid. Thereafter, in step S115, the valve 22 is opened according to the control signal from the CPU 40, and the fluid in the fluid bag 13 is discharged.
  • the sphygmomanometer 1-1 Prior to pressurization of the fluid bag 13 in step S103, the sphygmomanometer 1-1 injects a predetermined amount of incompressible fluid into the fluid bag 13 to increase the volume of the fluid bag 13, and then flows in. It is characterized by reducing the volume of fluid.
  • the sphygmomanometer 1-1 injects a predetermined amount of incompressible fluid into the fluid bag 13 to increase the volume of the fluid bag 13, and then flows in. It is characterized by reducing the volume of fluid.
  • the incompressible fluid is introduced into the fluid bag 13 as a method for suppressing the volume change of the fluid bag 13 in the low pressure region.
  • the fluid bag 13 is filled in advance.
  • a method of arranging members may also be used. For example, as shown in FIG. 15A, a method in which a gel material such as microbeads is previously introduced into the fluid bag 13 as a filling member may be used. Further, for example, as shown in FIG. 15B and FIG. 15C, a method in which an elastic material such as a sponge or a spring is arranged in the fluid bag 13 in advance as a filling member may be used.
  • the filling member is not limited to the above-described gel material or elastic material, and may be other materials.
  • the filling member may be a combination of these plural materials.
  • control at the time of depressurization of the sphygmomanometer 1 according to the first embodiment and the configuration of the sphygmomanometer 1-1 according to the modification may be combined.
  • the process in step S109 is performed so that the gap of the valve 22 is controlled to be constant and the pressure is reduced. Good.
  • the flow rate of the fluid exiting the fluid bag 13 and the pressure reduction speed can be made closer to a proportional relationship.
  • the detection accuracy of the volume change of the blood vessel can be made almost constant, and the measurement accuracy can be improved.
  • a sphygmomanometer 1 ′ that is a blood pressure measurement device according to the second embodiment is substantially the same as the hardware configuration of the sphygmomanometer 1 according to the first embodiment shown in FIG. 1.
  • the hardware configuration is the same.
  • the CPU 40 includes a pump drive voltage determination unit 45 instead of the valve drive voltage determination unit 43.
  • the circumference information acquisition unit 41 and the pump drive voltage determination unit 45 are formed in the CPU 40 when the CPU 40 executes a predetermined program stored in the memory 6 based on an operation signal input from the operation unit 3. .
  • the circumference information acquisition unit 41 acquires circumference information that is the size of the measurement site and inputs the circumference information to the pump drive voltage determination unit 45.
  • the pump drive voltage determination unit 45 determines a control parameter Ap for controlling a voltage for driving the pump 21 (hereinafter, drive voltage Ep) based on the circumference information.
  • the pump drive voltage determining unit 45 determines the drive voltage Ep based on the control parameter Ap and the internal pressure P that is the pressure of the fluid bag 13 measured by the pressure sensor 23 input via the oscillation circuit 28. To do.
  • the CPU 40 outputs a control signal corresponding to the drive voltage Ep determined by the pump drive voltage determination unit 45 to the pump drive circuit 26. Further, the CPU 40 executes a predetermined program stored in the memory 6 based on the operation signal input from the operation unit 3 and outputs a control signal to the valve drive circuit 27.
  • the circumference information acquisition unit 41 of the CPU 40 determines the circumference of the measurement site that is the size of the measurement site. Is obtained.
  • the pressurization time until the fluid bag 13 reaches a predetermined pressure is used as the circumference information.
  • the resistance value obtained from the slide resistance is Long information may be acquired.
  • step S401 the pump drive voltage determination unit 45 of the CPU 40 determines a control parameter Ap for controlling the drive voltage Ep of the pump 21 based on the circumference information acquired in step S101.
  • step S403 the CPU 40 determines the drive voltage Ep using the control parameter Ap and the internal pressure P determined in step S401, and sends a control signal to the pump drive circuit 26 so as to drive the pump 21 with the determined drive voltage Ep. Output and pressurize the fluid bag 13.
  • the CPU 40 may perform the above-described process at a predetermined timing and determine the drive voltage Ep according to the change in the internal pressure of the fluid bag 13. Examples of the predetermined timing include a predetermined time interval and a timing when the pressure of the fluid bag 13 reaches a predetermined pressure.
  • step S113 ' the CPU 40 extracts a vibration component accompanying the volume change of the artery superimposed on the internal pressure of the fluid bag 13 obtained during pressurization, and calculates a blood pressure value by a predetermined calculation. It should be noted that when the pressurization speed in step S403 is too fast and the blood pressure value is not calculated in step S113 ′, conversely, when the pressurization speed in step S403 is too slow and pressurization does not proceed ( In step S114, NO, and in step S117, the CPU 40 determines that an error has occurred, and outputs a control signal to the valve drive circuit 27 so as to open the valve 22, and rapidly discharges the fluid in the fluid bag 13. If not, that is, if the blood pressure value is calculated in step S113 ′ (YES in step S114), the valve 22 is opened in accordance with the control signal from the CPU 40 in step S115, and the fluid in the fluid bag 13 is discharged.
  • the pressurization speed in step S403 is too fast and the blood pressure value is not calculated
  • FIG. 18 is a diagram showing the relationship between the pressure of the fluid bag 13 and the pressurization speed for each circumference of the measurement site when the drive voltage Ep is kept constant.
  • the pressurization speed is generally higher as the circumference of the measurement site is smaller.
  • the larger the circumference of the measurement site the lower the pressurization speed as a whole.
  • the smaller the circumference of the measurement site the greater the degree of change in the pressurization speed, and the greater the circumference of the measurement site, the smaller the degree of change in the pressurization speed. That is, it can be said from the relationship shown in FIG. 18 that the circumference of the measurement site is a parameter for determining the drive voltage Ep.
  • step S401 the pump drive voltage determination unit 45 determines the control parameter Ap using the relationship shown in FIG.
  • the pump drive voltage determination unit 45 determines the control parameter Ap by substituting the circumference information acquired in step S101 or step S201 into the following formula (3):
  • Control parameter Ap ⁇ ′ ⁇ peripheral length information + ⁇ ′ (3)
  • FIG. 19 shows the pressure of the fluid bag 13 and the inflow speed of the fluid into the fluid bag 13, that is, the inflow amount per unit time, for each driving voltage Ep when the circumference of the measurement site is fixed to a certain size. It is a figure showing a relationship. Referring to FIG. 19, the larger the driving voltage Ep (higher), that is, the larger the driving force of the pump 21, the larger the inflow speed. On the contrary, the smaller the driving voltage Ep (lower), that is, the smaller the driving force of the pump 21, the smaller the inflow speed. In addition, the greater the drive voltage Ep, the greater the change in the inflow speed, and the smaller the drive voltage Ep, the smaller the change in the inflow speed.
  • step S403 the pump drive voltage determination unit 45 determines the drive voltage Ep using the relationship shown in FIG.
  • the drive voltage Ep is determined by substituting the control parameter Ap determined as described above and the internal pressure P of the fluid bag 13 into the following equation (4):
  • Drive voltage Ep control parameter Ap ⁇ internal pressure P (4)
  • the drive voltage Ep is determined with a magnitude proportional to the circumference of the measurement site and the internal pressure P. . Further, in step S403, not only is the drive voltage Ep determined and further increased as described above when the pressure of the fluid bag 13 reaches a predetermined pressure in step S105, but the predetermined timing thereafter. In the same manner, the drive voltage Ep may be determined (updated). When the drive voltage Ep is determined at the predetermined timing, the pump drive voltage determination unit 45 determines the drive voltage Ep by substituting the internal pressure P at that time into the above equation (3).
  • the drive voltage Ep has such a magnitude that the pressurization speed is such that the pulse rate that can be detected between the minimum blood pressure and the maximum blood pressure during pressurization is a predetermined number or more. More preferably, as described above, the “predetermined number” is five.
  • the pressurization speed at which a pulse rate of 5 or more is measured between the minimum blood pressure and the maximum blood pressure during pressurization is preferably about 3 mmHg / sec to 13 mmHg / sec.
  • the coefficients ⁇ ′ and ⁇ ′ in the above equation (3) set the pressurization speed of the fluid bag 13 from the calculation of the minimum blood pressure to the calculation of the maximum blood pressure as a target of about 3 mmHg / sec to 13 mmHg / sec.
  • the value can be set to be within the pressurization speed.
  • Such coefficients ⁇ ′ and ⁇ ′ are obtained in advance by experiments, the relationship shown in FIG. 19, and the like, and are stored in the memory 6 of the sphygmomanometer 1 ′.
  • the control parameter Ap is determined by inputting the circumference information acquired in the above equation (3) in step S401.
  • the memory 6 has a circumference.
  • a table that defines the relationship between the information and the control parameter Ap may be stored, and the pump drive voltage determination unit 45 may read the control parameter Ap corresponding to the acquired circumference information from the table.
  • the memory 6 stores a table that defines the relationship between the circumference information and the drive voltage Ep, and the pump drive voltage determination unit 45 obtains the circumference obtained from the table.
  • the drive voltage Ep corresponding to the information may be read.
  • step S403 the CPU 40 updates the driving voltage Ep according to the internal pressure P while pressurizing the fluid bag 13.
  • the pressurization speed of the fluid bag 13 changes (increases) as shown in FIG.
  • the flow rate of the fluid injected into the fluid bag 13 per unit time and the pressurization speed of the fluid bag 13 can be made close to a proportional relationship. Therefore, measurement accuracy can be improved. That is, as shown in FIG. 21C, regardless of the pressure change of the fluid bag 13, the pressure pulse wave amplitude with respect to a constant volume change can be made constant at a value corresponding to the circumference of the measurement site.
  • FIG. 22 is a diagram for explaining the relationship between the pressure of the fluid bag 13 and the detected pulse wave amplitude.
  • (A) has shown the pressure change according to the time passage of the fluid bag 13, and the pressure change of an arterial pressure.
  • a dotted line A in (A) shows a change in pressure of the fluid bag 13 when the pressure of the fluid bag is controlled to be pressurized at a constant speed.
  • the pressure change of the fluid bag 13 when the drive voltage Ep is controlled to be updated according to the internal pressure P that is the pressure of the fluid bag 13 is increased. This is indicated by the solid line B.
  • the driving voltage Ep of the pump 21 is updated according to the pressure of the fluid bag 13 at the time of pressurization.
  • the measured intra-arterial pressure is measured as shown in (C).
  • a line segment obtained by connecting the measured values of the arterial pressure shown in (B) is indicated by a dotted line.
  • the detection accuracy of the volume change of the blood vessel is lower than that in the high region.
  • the detection accuracy of the volume change of the blood vessel in the low pressure region of the fluid bag 13 is detected.
  • the detection accuracy of the sphygmomanometer controlled to pressurize the fluid bag at a constant speed is improved.
  • the detection accuracy of the volume change of the blood vessel in the high pressure region is also improved.
  • the CPU 40 updates the drive voltage Ep based on the pressure of the fluid bag 13 in the pressurization process in step S403.
  • the sphygmomanometer 1 ′ further includes a flow meter 55 for measuring the amount of fluid flowing into the fluid bag 13, as shown in FIG.
  • the drive voltage Ep may be updated by the pump drive voltage determination unit 45 so that the amount of fluid flowing into the fluid bag 13 per unit time is proportional to the pressurization speed. Also by this, the inflow amount per unit time of the fluid into the fluid bag 13 and the pressurization speed can be brought close to a proportional relationship. Thereby, the pressure pulse wave amplitude with respect to a constant blood vessel volume change can be made to be constant, and the measurement accuracy can be improved.
  • a hardware configuration of a sphygmomanometer 1′-1 as a modification of the sphygmomanometer 1 ′ will be described with reference to FIG.
  • the sphygmomanometer 1 ′ has the same configuration as the sphygmomanometer 1-1. That is, referring to FIG. 24, the sphygmomanometer 1′-1 has a non-pressure fluid connected to the fluid bag 13 through the tube 10 in addition to the hardware configuration of the sphygmomanometer 1 ′ shown in FIG.
  • a tank 54 is further provided for storage. The tank 54 is connected to the pump 51 and the valve 52. Pump 51 and valve 52 are connected to pump drive circuit 56 and valve drive circuit 57, respectively.
  • Pump drive circuit 56 and valve drive circuit 57 are each connected to CPU 40.
  • the CPU 40 determines a voltage for driving the pump 51 and the valve 52 by executing a predetermined program stored in the memory 6 based on the operation signal input from the operation unit 3, and the pump drive circuit 56. And the control signal according to the determined voltage is output to the valve drive circuit 57.
  • the pump 51 is driven, the incompressible fluid stored in the tank 54 flows into the fluid bag 13 through the tube 10.
  • the valve 52 By driving the valve 52, the incompressible fluid in the fluid bag 13 is discharged.
  • a filter 9 is provided at a portion connecting the fluid bag 13 and the valve 22.
  • the incompressible fluid in the tank 54 moves to the fluid bag 13
  • the incompressible fluid is prevented from leaking from the valve 22 for injecting the fluid into the fluid bag 13 or discharging the fluid from the fluid bag 13. Therefore, the material of the filter 9 is preferably a material that allows fluid to permeate but does not allow incompressible fluid to permeate.
  • sphygmomanometer 1 'performs the same processing as sphygmomanometer 1-1. That is, the same processing as that of the sphygmomanometer 1-1 is performed from step S1401 to S1409, and the incompressible fluid in the tank 54 is caused to flow into the fluid bag 13 until the internal pressure of the fluid bag 13 reaches a predetermined pressure. Thereafter, the inlet of the incompressible fluid to the fluid bag 13 is blocked, the valve 22 is opened, and the pressure in the fluid bag 13 is released. As a result, a predetermined amount of incompressible fluid is injected into the fluid bag 13, and the internal pressure becomes atmospheric pressure.
  • step S111 is executed as in the process according to the second embodiment, and the blood pressure value is calculated in step S113 while the fluid bag 13 is pressurized.
  • the CPU 40 outputs a control signal to the valve drive circuit 57 and opens the valve 52.
  • the incompressible fluid in the fluid bag 13 is discharged.
  • step S115 the valve 22 is opened according to the control signal from the CPU 40, and the fluid in the fluid bag 13 is discharged.
  • the sphygmomanometer 1'-1 also injects a predetermined amount of incompressible fluid into the fluid bag 13 and pressurizes the fluid bag 13 prior to pressurization of the fluid bag 13 in step S111.
  • the volume of 13 is increased and the volume of the flowing fluid is reduced.
  • the sphygmomanometer 1′-1 also has a method as shown in FIGS. 15A to 15C as a method of suppressing the volume change of the volume change of the fluid bag 13 in the low pressure region. Or you may take the method of combining these.
  • control at the time of pressurization of the sphygmomanometer 1 ' may be combined with the configuration of the sphygmomanometer 1'-1 according to the modification. That is, in the process in the sphygmomanometer 1′-1, the process in step S101 not shown in FIG. 24 is performed, the circumference information acquisition unit 41 acquires the circumference information, and the pump drive voltage determination unit 45 The control parameter Ap is determined. Further, in place of step S111 ', the process of step S111 described above is executed, and when the fluid bag 13 is pressurized, the pump drive voltage determination unit 45 determines the drive voltage Ep.
  • the pump drive voltage determination part 45 may update the drive voltage Ep according to the internal pressure of the fluid bag 13 during pressurization by step S111. By doing so, the flow rate of the fluid injected into the fluid bag 13 per unit time and the pressurization speed of the fluid bag 13 can be made closer to each other in a proportional relationship. Thereby, the detection accuracy of the volume change of the blood vessel can be made almost constant, and the measurement accuracy can be improved.
  • blood pressure is measured in both the pressurization process and the decompression process in the sphygmomanometer 1 and the sphygmomanometer 1 '.
  • the blood pressure monitor 1 will be described.
  • the third embodiment a specific example of processing executed at the timing when the measurement switch 32 is operated on the sphygmomanometer 1 will be described with reference to the flowchart of FIG.
  • the CPU 40 detects the pressure sensor in step S104.
  • the vibration component accompanying the volume change of the artery superimposed on the internal pressure of the fluid bag 13 is extracted from the output from 23, and the maximum blood pressure value is calculated by a predetermined calculation.
  • the pressurization in step S103 may be a normal, constant-velocity pressurization.
  • step S104 When the systolic blood pressure value is calculated in step S104 (YES in step S105 '), the processing from step S107 described above is performed.
  • the fluid bag 13 is controlled such that the process in step S113 described above, that is, the drive voltage Ev is constant (that is, the gap of the valve 22 is constant) in step S111 described above.
  • the CPU 40 calculates a minimum blood pressure value by a predetermined calculation from the output from the pressure sensor 23 (step S113 ′′).
  • FIG. 27 is a diagram for explaining the relationship between the pressure of the fluid bag 13 and the detected pulse wave amplitude.
  • A has shown the pressure change according to the time passage of the fluid bag 13, and the pressure change of an arterial pressure.
  • B shows the intra-arterial pressure measured according to the pressure change (pressurization) of the fluid bag 13 in step S104.
  • the intra-arterial pressure measured in step S113 ′′ is the same as that shown in FIG.
  • step S301 ' the CPU 40 estimates the maximum blood pressure value based on the change in the internal pressure of the fluid bag 13 obtained from the pressure sensor 23, and calculates the pressure at the end of pressurization of the fluid bag 13 in step S303.
  • the CPU 40 outputs a control signal to the pump drive circuit 26 in step S107, Stop the pressure.
  • step S111 ' a process for reducing the pressure at a constant constant speed is executed, and the intra-arterial pressure is measured in the pressure reduction process to calculate the maximum blood pressure value (step S112).
  • FIG. 29 is a diagram for explaining the relationship between the pressure of the fluid bag 13 of the sphygmomanometer 1 'and the detected pulse wave amplitude in the third embodiment.
  • A has shown the pressure change according to the time passage of the fluid bag 13, and the pressure change of an arterial pressure.
  • B shows the intra-arterial pressure measured according to the pressure change (decompression) in the decompression process of the fluid bag 13. The intra-arterial pressure measured by pressurization is the same as that shown in FIG.
  • step S104 by measuring the intra-arterial pressure in step S104 in the sphygmomanometer 1, the artery in step S113 or step S113 ′′ is measured.
  • the number of pulse waves that can be acquired on the high pressure side is increased, as shown by comparing FIG. 29 (B) and FIG.
  • the number of pulse waves that can be acquired on the high pressure side is increased by measuring the intra-arterial pressure in the depressurization process as compared to the case of measuring the intra-arterial pressure in the pressurization process.
  • the blood pressure value is calculated by measuring the intra-arterial pressure by the measurement method in the third embodiment, so that the measurement method in the first embodiment or the second embodiment By measuring method
  • the measurement method in the first embodiment or the second embodiment By measuring method
  • By performing the above-described control it is possible to improve the detection accuracy of the volume change of the blood vessel in the low pressure region of the fluid bag 13 and the detection accuracy of the volume change of the blood vessel in the high region.
  • the detection accuracy of the volume change of the blood vessel in the low pressure region of the fluid bag 13 is also high, and the volume change of the blood vessel in the high region is also achieved.
  • the detection accuracy can be improved.
  • the control described in the second embodiment may be performed when the fluid bag 13 is pressurized, and the control described in the first embodiment may be performed when the fluid bag 13 is depressurized.
  • the CPU 40 of the sphygmomanometer 1 ′′ as the blood pressure measurement device according to the fourth embodiment includes the valve drive voltage determination unit 43 described in the first embodiment, and the second And the pump drive voltage determination unit 45 described in the embodiment.
  • FIG. 31 A specific example of processing executed at the timing when the measurement switch 32 is operated in the sphygmomanometer 1 ′′ will be described with reference to the flowchart of FIG. 31.
  • the processing shown in the flowchart of FIG. 2 is a combination of the process shown in the flowchart of FIG. 8, the process shown in the flowchart of FIG. 8, and the process shown in the flowchart of FIG. 17, as described in the third embodiment.
  • the intra-arterial pressure is measured and the blood pressure value is calculated in any of the 13 pressurization processes and the decompression process.
  • step S101 the circumference information acquisition unit 41 of the CPU 40 obtains circumference information representing the circumference of the measurement site, which is the size of the measurement site.
  • step S401 the pump drive voltage determining unit 45 of the CPU 40 determines a control parameter Ap for controlling the drive voltage Ep of the pump 21 based on the circumference information acquired in step S101.
  • step S403 the CPU 40 determines the drive voltage Ep using the control parameter Ap and the internal pressure P determined in step S401.
  • the CPU 40 outputs a control signal to the pump drive circuit 26 so as to drive the pump 21 with the determined drive voltage Ep, and pressurizes the fluid bag 13.
  • the processing so far is the same as the processing in the second embodiment described using the flowchart of FIG.
  • the CPU 40 measures the intra-arterial pressure and calculates the minimum blood pressure value in step S405. This process is the same as the process in the third embodiment. Furthermore, in the fourth embodiment, in step S301 ′, the CPU 40 estimates the maximum blood pressure value based on the change in the internal pressure of the fluid bag 13 obtained from the pressure sensor 23, and in step S303, pressurization of the fluid bag 13 is completed. Calculate the pressure of the hour. When the pressure in the fluid bag 13 reaches the pressurization end pressure calculated in step S303 (YES in step S105 ′), the CPU 40 outputs a control signal to the pump drive circuit 26 in step S107, Stop the pressure. The processing so far is the same as the processing in the modification of the first embodiment described with reference to the flowchart of FIG.
  • step S109 the valve drive voltage determination unit 43 of the CPU 40 determines the drive voltage Ev of the valve 22 based on the circumference information acquired in step S101.
  • step S111 the CPU 40 outputs a control signal to the valve drive circuit 27 so as to drive the valve 22 while maintaining the drive voltage Ev determined in step S109, and starts depressurization of the fluid bag 13.
  • the processing so far is the same as the processing in the first embodiment described using the flowchart of FIG.
  • the CPU 40 measures the intra-arterial pressure and calculates the maximum blood pressure value in step S112.
  • the pressure reduction control described in the first embodiment is performed, as shown in FIG.
  • the speed change is large, and the number of pulse waves that can be acquired on the high-pressure side is reduced as shown in FIG. Therefore, in the fourth embodiment, in step S109, the decompression speed on the high pressure side is not increased in the decompression process in step S111, that is, the decompression of the fluid bag 13 does not proceed rapidly on the high pressure side.
  • the drive voltage Ev is determined such that the gap is smaller than when the valve 22 is driven with the drive voltage Ev determined in step S109 of the process in the first embodiment.
  • the pulse rate that can be detected between the systolic blood pressure and the diastolic blood pressure is equal to or greater than a predetermined number.
  • the pulse rate that can be detected in a predetermined range that does not include the minimum blood pressure value that sandwiches the maximum blood pressure value is described in the fourth embodiment.
  • the size of the gap that provides a depressurization speed that is a predetermined number or more is preferable.
  • the preferable decompression speed in the fourth embodiment may be described in the memory 6 in advance as in the first embodiment.
  • the drive voltage Ev may be determined in the fourth embodiment by storing in the memory 6 the coefficients ⁇ and ⁇ of the above formula (1) corresponding to such a pressure reduction speed.
  • the coefficients ⁇ and ⁇ stored in the memory 6 described in the first embodiment may be used with different predetermined ratios.
  • step S112 when the systolic blood pressure value is calculated in step S112 (YES in step S114 ′), the valve 22 is opened in accordance with the control signal from the CPU 40 in step S115, and the fluid bag 13 The fluid inside is discharged.
  • FIG. 32 is a diagram for explaining the relationship between the pressure of the fluid bag 13 and the detected pulse wave amplitude.
  • A has shown the pressure change according to the time passage of the fluid bag 13, and the pressure change of an arterial pressure.
  • B shows the intra-arterial pressure measured in accordance with the pressure change (pressurization) of the fluid bag 13 in step S405.
  • C shows the intra-arterial pressure measured in accordance with the pressure change (decompression) of the fluid bag 13 in step S112.
  • the driving voltage Ep described in the second embodiment is updated according to the internal pressure P of the fluid bag 13.
  • Control is performed to pressurize the fluid bag 13.
  • the processing described in the modification of the first embodiment is executed, and based on the intra-arterial pressure measured in the pressurization process of the fluid bag 13
  • the pressurization is finished in the fourth embodiment.
  • the pressure may be increased until a predetermined pressure is reached regardless of the normal maximum blood pressure value, however, the pressure applied for the measurement at the time of pressure reduction by performing the above processing.
  • the driving voltage Ev described in the first embodiment is constant, that is, the gap of the valve 22 is constant during the decompression process of the fluid bag 13.
  • control is performed such that the drive voltage Ev is constant at a voltage value such that the gap is smaller than when the valve 22 is driven with the voltage value determined in step S109 of the process in the first embodiment.
  • the pressure drop on the high pressure side becomes moderate, and as shown in (C), the number of pulse waves detected in that region increases. Therefore, decompression By systolic blood pressure value from the intra-arterial pressure measured in enough for the high pressure side is calculated, it is possible to obtain a high systolic blood pressure accuracy.
  • the minimum blood pressure value is already obtained in the pressurization process as described above. Therefore, when the maximum blood pressure value is obtained in the decompression process, the fluid bag is obtained. Thus, the fluid can be quickly discharged and the measurement process can be completed, thereby making it possible to shorten the pressure reduction time compared with the method of obtaining the maximum blood pressure value and the minimum blood pressure value in the pressure reduction process, and to measure the whole blood pressure. Therefore, it is possible to reduce the time required for the person being measured.
  • 1,1-1,1 ', 1'-1,1 "sphygmomanometer, 2 main body, 3 operation unit, 4 display unit, 5 cuff, 6,7 memory, 9 filter, 10 tube, 13 fluid bag, 31 power supply Switch, 21, 51 pump, 22, 52 valve, 23 pressure sensor, 26, 56 pump drive circuit, 27, 57 valve drive circuit, 28 oscillation circuit, 32 measurement switch, 33 stop switch, 34 record call switch, 40 CPU, 41 circumference information acquisition unit, 43 valve drive voltage determination unit, 45 pump drive voltage determination unit, 53 power source, 54 tank, 55 flow meter.

Abstract

 血圧計では、測定部位の周長を表わす値が取得されて(S101)、その値に基づいてポンプの駆動電圧を制御するためのパラメータが決定され(S401)、パラメータと流体袋内圧とに基づいて駆動電圧が決定され流体袋が加圧される(S403)。加圧過程において最低血圧値が算出される(S405)。また、最高血圧値が推定され(S301’)、流体袋内圧がその圧に達すると加圧が停止される(S107)。次に、測定部位の周長に基づいて流体袋から流体を排出するための弁のギャップが決定され(S109)、ギャップを一定にして減圧するよう制御される(S111)。減圧過程において最高血圧値が算出される(S112)。最高血圧値が算出された時点で流体袋から流体が排出されて(S115)、測定が終了する。

Description

血圧測定装置
 この発明は血圧測定装置に関し、特に、流体袋を内包する腕帯(カフ)を利用して血圧を測定する血圧測定装置に関する。
 電子血圧計の採用する血圧の算出方法の1つとして、生体の一部に巻いた流体袋を内包する腕帯(カフ)を加減圧することにより、圧迫された血管の容積変化から伝わる流体袋の容積変化を流体袋の圧力変化(圧脈波振幅)としてとらえ、血圧を算出するオシロメトリック法がある。
 流体袋は、流体袋の圧力と流体袋の容積とが図33に示されるような関係となるような特性を備えている。すなわち、図33を参照して、A部分に示される流体袋の圧力の低い領域では、流体袋の圧力の増加に対して流体袋の容積が急激に増加する。また、B部分に示されるように、流体袋の圧力が高くなるに連れて、流体袋の圧力の増加に対して流体袋の容積の増加率が徐々に減少する。
 流体袋を減圧する過程で血圧を測定する電子血圧計について説明する。このとき、図34は流体袋内の流体密度が低いとき、図35は流体袋内の流体密度が高いとき、を表わしている。詳しくは、血管の容積変化((A)部分)に伴う、流体袋の容積変化((B)部分)、流体袋内の流体密度の変化((C)部分)、および流体袋の圧力変化((D)部分)を表わしている。また、図36は流体袋から出る流体の排出速度が速いとき、つまり単位時間当たりの排出量が多いとき、図37は流体袋から出る流体の排出速度が遅いとき、つまり単位時間当たりの排出量が少ないとき、を表わしている。詳しくは、血管の容積変化((A)部分)に伴う、流体袋の容積変化((B)部分)、および流体袋の圧力変化((C)部分)を表わしている。
 図34~図37より、流体袋を減圧する過程で血圧を測定する電子血圧計では、血管の容積変化の検出精度には、以下のような特徴があることが読取られる:
 (1)流体袋の圧力が高いほど、流体袋内の流体の密度は高い、
 (2)流体袋の容積が大きいほど血管の容積変化に伴う流体袋内の流体の密度変化は小さいため、血管の容積変化の検出精度は低い、
 (3)流体袋の容積変化が同じ場合、流体袋の圧力が高いほど流体袋の容積変化に伴う流体袋内の流体の密度変化が大きくなるため、血管の容積変化の検出精度は高くなる、
 (4)流体袋の圧力が同じであっても、流体袋内の流体の排出量によって血管の容積変化による流体袋の容積変化の大きさが変化するため、血管の容積変化の検出精度は異なる、および
 (5)流体袋内の流体の排出量が多いほど、血管の容積変化による流体袋の容積変化は小さくなるため、血管の容積変化の検出精度は低くなる。
 そのため、オシロメトリック法を用い、流体袋を減圧する過程で血圧を測定する電子血圧計では、血管の容積変化の検出精度は、流体袋内の流体の密度、および流体袋からの流体の排出量に依存する。
 流体袋を一定の速度で減圧し、減圧過程で血圧を測定する血圧計は、図38Aに示されるように一定の速度で減圧するために、図38Bのように流体袋の圧力や測定部位の周長に応じて、流体袋から排出する流体の量を弁で制御している。これにより、図38Cに示されるように、流体袋の圧力が高い領域では血管の一定の容積変化に対する圧脈波振幅が大きく、流体袋の圧力が低い領域では血管の一定の容積変化に対する圧脈波振幅が小さくなっていた。また、流体袋の圧力変化に伴う血管の容積変化の変化量が測定部位の周長によって異なっていたため、これらが血圧測定の誤差要因となっていた。
 次に、流体袋を加圧する過程で血圧を測定する電子血圧計について説明する。このとき、図39は流体袋内の流体密度が低いとき、図40は流体袋内の流体密度が高いとき、を表わしている。詳しくは、血管の容積変化((A)部分)に伴う、流体袋の容積変化((B)部分)、流体袋内の流体密度の変化((C)部分)、および流体袋の圧力変化((D)部分)を表わしている。また、図41は流体袋への流体の流入が早いとき、つまり単位時間当たりの流入量が多いとき、図42は流体袋への流体の流入が遅いとき、つまり単位時間当たりの流入量が少ないとき、を表わしている。詳しくは、血管の容積変化((A)部分)に伴う、流体袋の容積変化((B)部分)、および流体袋の圧力変化((C)部分)を表わしている。
 図39~図42より、流体袋を加圧する過程で血圧を測定する電子血圧計では、血管の容積変化の検出精度には、以下のような特徴があることが読取られる:
 (1)流体袋の圧力が高いほど、流体袋内の流体密度は高い、
 (2)流体袋の容積が大きいほど流体袋の容積変化に伴う流体袋内の流体密度変化は小さいため、血管の容積変化の検出精度は低い、
 (3)流体袋の容積変化が同じ場合、流体袋の圧力が高いほど流体袋の容積変化に伴う流体袋内の流体密度変化が大きくなるため、血管の容積変化の検出精度は高くなる、
 (4)流体袋の圧力が同じであっても、流体袋への流体の流入量によって血管の容積変化による流体袋の容積変化の大きさが変化するため、血管の容積変化の検出精度は異なる、および
 (5)流体袋への流体の流入量が多いほど、血管の容積変化による流体袋の容積変化は小さくなるため、血管の容積変化の検出精度は低くなる。
 そのため、オシロメトリック法を用い、流体袋を加圧する過程で血圧を測定する電子血圧計では、血管の容積変化の検出精度は、流体袋内の流体の密度、および流体袋への流体の流入量に依存する。
 流体袋を一定の速度で加圧し、加圧過程で血圧を測定する血圧計は、図43Aに示されるように一定の速度で加圧するために、流体袋の加圧速度や測定部位の周長に応じて、流体袋に注入する流体の量をポンプで制御している。このとき、流体袋に注入する流体の量は、図43Bに示されるように流体袋の圧力や測定部位の周長に応じて変化していた。これにより、図43Cに示されるように、流体袋の圧力が高い領域では血管の容積変化に対する圧脈波振幅が大きく、流体袋の圧力が低い領域では血管の一定の容積変化に対する圧脈波振幅が小さくなっていた。また、流体袋の圧力変化に伴う圧脈波振幅の変化量が測定部位の周長によって異なっていたため、これらが血圧測定の誤差要因となっていた。
 また、流体袋を加圧するためのポンプの駆動電圧を一定にして加圧する血圧計では、図44Aに示されるように、流体袋の加圧速度が流体袋の圧力や測定部位の周長に応じて変化していた。また、図44Bに示されるように、流体袋に注入する流体の量が流体袋の圧力に応じて変化していた。これにより、図44Cに示されるように、流体袋の圧力が高い領域では血管の一定の容積変化に対する圧脈波振幅が大きく、流体袋の圧力が低い領域では血管の一定の容積変化に対する圧脈波振幅が小さくなっていた。また、流体袋の圧力変化に伴う血管の容積変化の変化量が測定部位の周長によって異なっていたため、これらが血圧測定の誤差要因となっていた。
 これらの問題を解消するための技術として、以下のような方法が開示されている。すなわち、特開平6-245911号公報(以下、文献1)は、測定部位の周長に応じて弁の排出量を調整する技術、あるいは流体袋と連通する流体格納部を備え、流体袋の測定部位への巻きつけ周長に応じて流体袋と流体格納部との容積和を一定にして制御する技術を開示している。これにより、測定部位の周長が異なっても減圧速度を一定に保つことを実現している。
 また、特開平5-329113号公報(以下、文献2)は、流体袋の圧力に対する流体袋の容積変化特性を予め備えておき、流体袋の圧力変化の信号を容積変化へと換算しなおし、それを用いて血圧値を計測する方法を開示している。
 また、特開平4-250133号公報(以下、文献3)は、脈波出現区間においては、流体袋内の流体を排出する弁を閉じて流体袋の容積変化に伴う血管の容積変化の減衰を防ぐ方法を開示している。
特開平6-245911号公報 特開平5-329113号公報 特開平4-250133号公報
 しかしながら、文献1に開示されている方法では測定部位の周長の違いによる減圧速度の差をなくすことはできるが、減圧速度を一定に保つために流体袋の圧力と連動して弁の排出量が変化することにより、圧脈波振幅は流体袋の圧力によって変化する。そのため、流体袋と流体格納部との容積和を一定にして制御しても測定部位の周長による容積の差がなくなるのみで、流体袋の圧力によって血管の容積変化に対する流体袋の圧力変化の大きさが変化する。よって、依然、血圧測定に誤差が発生する、という問題がある。
 また、文献2に開示されている方法では、流体袋の圧力と容積変化特性とを予め与えておく必要がある。しかしながら、この変化特性は、流体袋の巻き方や腕の太さ、人体の軟らかさなどにより無限に変化するために、十分な補正を行なうことができないという問題がある。また、より複雑な複数の補正(流量検出、測定部位のサイズ検出、巻き付け状態検出、人体の軟度検出など)が必要で、大掛かりな装置が必要であり、実用的ではないという問題もある。
 また、文献3に開示されている方法では血管の容積変化を流体袋の圧力変化として正確に捉えることはできるが、脈波が出現するたびに弁を閉じるため、減圧するのが困難であるという問題がある。
 つまり、これらの文献に開示されている方法では、流体袋の圧力と容積とが比例関係にないため、減圧しながら血圧測定を行なう場合は、測定部位の周長や流体袋の圧力によって流体袋から排出する流体の流量が異なっていた。また、加圧しながら血圧測定を行なう場合は、測定部位の周長や流体袋の圧力によって流体袋への流体の流入量が異なっていた。これにより、測定部位の周長や流体袋の圧力によって血管の容積変化に対する圧脈波振幅の検出精度が異なっていた。従って、血管の容積変化が同じであっても血圧値や測定部位の周長によって圧脈波振幅の大きさに誤差が生じるため、血圧測定の精度が低下してしまう、という問題があった。
 本発明はこのような問題に鑑みてなされたものであって、血圧測定の精度を向上させることのできる血圧測定装置を提供することを目的の1つとする。
 上記目的を達成するために、本発明のある局面に従うと、血圧測定装置は、流体袋と、流体袋に流体を注入して加圧するための加圧部と、流体袋から流体を排出して減圧するための減圧部と、流体袋の内圧変化を測定するためのセンサと、センサで得られる流体袋の内圧変化に基づいて最高血圧値と最低血圧値とを算出するための血圧測定部と、加圧部、減圧部、および血圧測定部を制御するための制御部とを備え、血圧測定部は、加圧部によって流体袋に流体を注入する加圧過程においてセンサで得られる流体袋の内圧変化に基づいて、最高血圧値と最低血圧値とのうちの一方を算出し、減圧部によって流体袋から流体を排出する減圧過程においてセンサで得られる流体袋の内圧変化に基づいて、最高血圧値と最低血圧値とのうちの上記一方と異なる他方を算出する。
 好ましくは、制御部は、減圧過程において排出量が流体袋の減圧速度と比例関係となるように減圧部での流体の排出量を制御するための制御量を決定して、排出量を制御するための排出量を制御する。血圧測定部は、減圧部によって流体袋から流体を排出する減圧過程においてセンサで得られる流体袋の内圧変化に基づいて、最低血圧値を算出する。
 好ましくは、制御部は、減圧過程において排出量が流体袋の減圧速度と比例関係となるように減圧部での流体の排出量を制御するための制御量を決定して、排出量を制御するための排出量を制御する。血圧測定部は、減圧部によって流体袋から流体を排出する減圧過程においてセンサで得られる流体袋の内圧変化に基づいて、最高血圧値を算出する。
 好ましくは、減圧部は流体袋に備えられる弁を含み、排出量を制御するための制御量は弁のギャップであり、制御部は、流体袋の内圧が最高血圧を挟む所定範囲変化する時間内に所定数以上の脈拍数が含まれる減圧速度となり、かつ、血圧測定部が減圧部によって流体袋から流体を排出する減圧過程においてセンサで得られる流体袋の内圧変化に基づいて最低血圧値を算出する場合に決定されるギャップよりも小さい弁のギャップを決定し、減圧過程において弁のギャップを決定されたギャップに保持するよう制御することで排出量を制御するための排出量を制御する。
 好ましくは、制御部は、測定部位の周長に関する情報を取得するための取得部を含み、制御部は周長に応じて弁のギャップを決定する。
 好ましくは、血圧測定装置は、周長を入力するための入力部をさらに備え、入力部から入力によって周長に関する情報を取得する。
 好ましくは、取得部は、流体袋に内圧が所定の圧力となるまでの加圧部での加圧時間に基づいて周長に関する情報を取得する。
 好ましくは、血圧測定装置は、流体袋を測定部位に巻き付けるための巻付部材をさらに備え、巻付部材にはスライド抵抗が含まれ、取得部は、巻付部材で流体袋を測定部位に巻き付けることでスライド抵抗から得られる抵抗値に基づいて周長に関する情報を取得する。
 好ましくは、減圧部は流体袋に備えられる弁を含み、排出量を制御するための制御量は弁のギャップであり、制御部は、減圧過程において弁のギャップを決定されたギャップに保持するよう制御することで排出量を制御するための排出量を制御する。
 好ましくは、血圧測定部は、さらに、加圧部によって流体袋に流体を注入する加圧過程においてセンサで得られる流体袋の内圧変化に基づいて血圧値を算出し、制御部は、加圧過程における流体袋の内圧変化に基づいて算出される血圧値に応じて弁のギャップを決定する。
 好ましくは、血圧測定部は、さらに、加圧部によって流体袋に流体を注入する加圧過程においてセンサで得られる流体袋の内圧変化に基づいて脈波の周期を算出し、制御部は、加圧過程における流体袋の内圧変化に基づいて算出される脈波の周期に応じて弁のギャップを決定する。
 好ましくは、制御部は、加圧部による流体袋への流体の単位時間当たりの注入量が流体袋の加圧速度と比例関係となるように、流体袋の内圧に基づいて加圧部を制御するための制御量を決定して、加圧部を制御する。血圧測定部は、加圧部段によって流体袋に流体を注入する加圧過程においてセンサで得られる流体袋の内圧変化に基づいて、最低血圧値を算出する。
 好ましくは、制御部は、加圧部による流体袋への流体の単位時間当たりの注入量が流体袋の加圧速度と比例関係となるように、流体袋の内圧に基づいて加圧部を制御するための制御量を決定して、加圧部を制御する。血圧測定部は、加圧部によって流体袋に流体を注入する加圧過程においてセンサで得られる流体袋の内圧変化に基づいて、最高血圧値を算出する。
 好ましくは、加圧部は流体袋に流体を注入するためのポンプを含み、加圧部を制御するための制御量はポンプを駆動するための駆動電圧であり、制御部は、加圧過程において所定のタイミングで流体袋の内圧に基づいて駆動電圧を更新する。
 好ましくは、制御部は、測定部位の周長に関する情報を取得するための取得部を含み、制御部は周長に基づいて、ポンプを駆動するための駆動電圧を制御するための制御パラメータを決定する。
 好ましくは、制御部は、血圧測定部が、減圧部によって流体袋から流体を排出する減圧過程においてセンサで得られる流体袋の内圧変化に基づいて、最高血圧値と最低血圧値とのうちの一方と異なる他方を算出した時点で、流体袋から流体を排出するよう減圧部を制御する。
 本発明の他の局面に従うと、血圧測定装置は、流体袋と、流体袋に流体を注入して加圧するための加圧部と、流体袋から流体を排出して減圧するための減圧部と、流体袋の内圧変化を測定するためのセンサと、減圧部によって流体袋から流体を排出する減圧過程においてセンサで得られる流体袋の内圧変化に基づいて、血圧値を算出するための血圧測定部と、加圧部、減圧部、および血圧測定部を制御するための制御部とを備え、制御部は、減圧過程において排出量が流体袋の減圧速度と比例関係となるように減圧部での流体の排出量を制御するための制御量を決定し、排出量を制御する。
 好ましくは、減圧部は流体袋に備えられる弁を含み、制御量は弁のギャップであり、制御部は、減圧過程において弁のギャップを決定されたギャップに保持するよう制御することで排出量を制御する。
 好ましくは、制御部は、流体袋の内圧が最高血圧から最低血圧まで変化する時間内に所定数以上の脈拍数が含まれる減圧速度となるように制御量である弁のギャップを決定する。
 好ましくは、加圧部はポンプを含み、取得部は、ポンプの回転数と流体袋の内圧とに基づいて周長に関する情報を取得する。
 好ましくは、血圧測定装置は、排出量を測定するための測定部をさらに備えて、制御部は、測定部で測定される排出量とセンサで得られる流体袋の内圧変化とに基づいて、減圧過程において排出量が流体袋の減圧速度と比例関係となるように減圧部での流体の排出量を制御する。
 好ましくは、血圧測定装置は、流体袋の容量を増加させるための増加部をさらに備えて、加圧部は、増加部によって容積が増加された流体袋に対して流体を注入して加圧する。
 好ましくは、増加部は流体袋に非圧縮性流体を注入するための注入部を含み、制御部は、加圧部で流体袋に流体を注入するよりも以前に注入部で非圧縮性流体を流体袋に注入するよう制御する。
 好ましくは、制御部は、加圧部で流体袋に流体を注入するよりも以前に注入部で所定量の非圧縮性流体を流体袋に注入するよう制御する。
 好ましくは、制御部は、流体袋の圧力が所定圧力に達するまで、または流体袋の加圧速度が所定の加圧速度に達するまで、加圧部で流体袋に流体を注入するよりも以前に注入部で非圧縮性流体を流体袋に注入するステップと、流体袋の圧力が所定圧力に達した後、または流体袋の加圧速度が所定の加圧速度に達した後に、流体袋の圧力を開放して大気圧とするステップと、流体袋の圧力を大気圧とした後に、流体袋を閉塞して加圧部による流体の注入を開始するステップとを含む制御を実行する。
 好ましくは、流体袋と減圧部で流体を排出するための排出口とを接続する部分に、流体は透過し、非圧縮性流体は透過しないフィルタを備える。
 好ましくは、増加部は、流体袋内に配される充填部材である。
 好ましくは、充填部材は、スポンジ、バネ、およびマイクロビーズのうちのいずれか1つを含む。
 本発明のさらに他の局面に従うと、血圧測定装置は、流体袋と、流体袋に流体を注入して加圧するための加圧部と、流体袋の内圧変化を測定するためのセンサと、圧部によって流体袋に流体を注入する加圧過程においてセンサで得られる流体袋の内圧変化に基づいて、血圧値を算出するための血圧測定部と、加圧部および血圧測定部を制御するための制御部とを備え、制御部は、加圧部による流体袋への流体の単位時間当たりの注入量が流体袋の加圧速度と比例関係となるように、流体袋の内圧に基づいて加圧部を制御するための制御量を決定し、加圧部を制御する。
 好ましくは、加圧部は流体袋に流体を注入するためのポンプを含み、制御量はポンプを駆動するための駆動電圧であり、制御部は、加圧過程において所定のタイミングで流体袋の内圧に基づいて駆動電圧を更新する。
 好ましくは、制御部は、流体袋の内圧が最低血圧から最高血圧まで変化する時間内に所定数以上の脈拍数が含まれる加圧速度となるように制御量であるポンプを駆動するための駆動電圧を決定する。
 好ましくは、取得部は、ポンプの回転数と流体袋の内圧とに基づいて周長に関する情報を取得する。
 好ましくは、血圧測定装置は、流体袋への流体の注入量を測定するための測定部をさらに備えて、制御部は、測定部で測定される流体袋への流体の単位時間当たりの注入量に基づいて、加圧過程において加圧部による流体袋への流体の単位時間当たりの注入量が流体袋の加圧速度と比例関係となるように加圧部を制御する。
 好ましくは、制御部は、流体袋の加圧速度が許容範囲内であるか否かを判断し、許容範囲内にないときに加圧部における加圧を終了させる。
 この発明によると、血圧測定装置において、血管の容積変化の検出精度を流体袋の圧力によらず一定に近づけることができる。これにより、血圧測定誤差を低減することができる。また、測定部位の周長によって流体袋の容積が異なっていても血管の容積変化の検出精度の変化の割合を一定に近づけることができる。これにより、血圧測定誤差を低減することができる。また、これにより測定部位の周長によって異なる流体袋の容積を補正する必要がなくなる。
第1の実施の形態にかかる血圧測定装置である血圧計のハードウェア構成の具体例を示すブロック図である。 第1の実施の形態にかかる血圧計において測定スイッチが操作されたタイミングで実行される処理の、第1の具体例を示すフローチャートである。 第1の実施の形態にかかる血圧計において測定スイッチが操作されたタイミングで実行される処理の、第2の具体例を示すフローチャートである。 測定部位の周長と加圧速度との関係を示す図である。 測定部位の周長と加圧時間との関係を示す図である。 測定部位の周長ごとの、弁の駆動電圧を一定に保持した場合の流体袋の圧力に対する減圧速度の変化度合いを示す図である。 第1の実施の形態にかかる血圧計において決定される、弁の駆動電圧と測定部位の周長との関係を示す図である。 弁のギャップごとの、測定部位の周長が同一であった場合の流体袋の圧力に対する減圧速度の変化度合いを示す図である。 第1の実施の形態にかかる血圧計において測定スイッチが操作されたタイミングで実行される処理の、変形例を示すフローチャートである。 第1の実施の形態の変形例1にかかる血圧計において決定される、弁の駆動電圧と測定部位の周長との関係を示す図である。 第1の実施の形態にかかる血圧計における、流体袋の圧力と減圧速度との関係を示す図である。 第1の実施の形態にかかる血圧計における、流体袋の圧力と流体の排出量との関係を示す図である。 第1の実施の形態にかかる血圧計における、流体袋の圧力と一定の容積変化に対する圧脈波振幅値との関係を示す図である。 流体袋の圧力と検出される脈波振幅との関係を説明するための図である。 第1の実施の形態にかかる血圧測定装置である血圧計のハードウェア構成の他の具体例を示すブロック図である。 第1の実施の形態の変形例2にかかる血圧計のハードウェア構成の具体例を示すブロック図である。 第1の実施の形態の変形例2にかかる血圧計において測定スイッチが操作されたタイミングで実行される処理の具体例を示すフローチャートである。 第1の実施の形態の変形例2にかかる血圧計の構成の、他の具体例を示す図である。 第1の実施の形態の変形例2にかかる血圧計の構成の、他の具体例を示す図である。 第1の実施の形態の変形例2にかかる血圧計の構成の、他の具体例を示す図である。 第2の実施の形態にかかる血圧測定装置である血圧計のハードウェア構成の具体例を示すブロック図である。 第2の実施の形態にかかる血圧計において測定スイッチが操作されたタイミングで実行される処理の具体例を示すフローチャートである。 測定部位の周長ごとの、ポンプの駆動電圧を一定に保持した場合の流体袋の圧力と加圧速度との関係を表わす図である。 ポンプの駆動電圧ごとの、流体袋の圧力と流体袋への単位時間当たりの流体の流入量との関係を表わす図である。 第2の実施の形態にかかる血圧計において決定される、ポンプの駆動電圧と流体袋の圧力と測定部位の周長との関係を示す図である。 第2の実施の形態にかかる血圧計における、流体袋の圧力と流体袋への流体の単位時間当たりの流入量との関係を示す図である。 第2の実施の形態にかかる血圧計における、流体袋の圧力と流体袋の加圧速度との関係を示す図である。 第2の実施の形態にかかる血圧計における、流体袋の圧力と一定の容積変化に対する圧脈波振幅値との関係を示す図である。 流体袋の圧力と検出される脈波振幅との関係を説明するための図である。 第2の実施の形態にかかる血圧測定装置である血圧計のハードウェア構成の他の具体例を示すブロック図である。 第2の実施の形態の変形例にかかる血圧計のハードウェア構成の具体例を示すブロック図である。 第2の実施の形態の変形例にかかる血圧計において測定スイッチが操作されたタイミングで実行される処理の具体例を示すフローチャートである。 第3の実施の形態にかかる血圧計において測定スイッチが操作されたタイミングで実行される処理の具体例を示すフローチャートである。 流体袋の圧力と検出される脈波振幅との関係を説明するための図である。 第3の実施の形態にかかる血圧計において測定スイッチが操作されたタイミングで実行される処理の具体例を示すフローチャートである。 流体袋の圧力と検出される脈波振幅との関係を説明するための図である。 第4の実施の形態にかかる血圧測定装置である血圧計のハードウェア構成の具体例を示すブロック図である。 第4の実施の形態にかかる血圧計において測定スイッチが操作されたタイミングで実行される処理の具体例を示すフローチャートである。 流体袋の圧力と検出される脈波振幅との関係を説明するための図である。 流体袋の特性を説明する図である。 流体袋を減圧する過程で血圧を測定する電子血圧計において、流体袋内の流体密度が低いときの、血管の容積変化に伴う、流体袋の容積変化、流体袋内の流体密度の変化、および流体袋の圧力変化を表わす図である。 流体袋を減圧する過程で血圧を測定する電子血圧計において、流体袋内の流体密度が高いときの、血管の容積変化に伴う、流体袋の容積変化、流体袋内の流体密度の変化、および流体袋の圧力変化を表わす図である。 流体袋を減圧する過程で血圧を測定する電子血圧計において、流体袋から出る流体の排出速度が速いとき、つまり単位時間当たりの排出量が多いときの、血管の容積変化に伴う、流体袋の容積変化、および流体袋の圧力変化を表わす図である。 流体袋を減圧する過程で血圧を測定する電子血圧計において、流体袋から出る流体の排出速度が遅いとき、つまり単位時間当たりの排出量が少ないときの、血管の容積変化に伴う、流体袋の容積変化、および流体袋の圧力変化を表わす図である。 流体袋を一定の速度で減圧し、減圧する過程で血圧を測定する血圧計における、流体袋の圧力と減圧速度との関係を示す図である。 流体袋を一定の速度で減圧し、減圧する過程で血圧を測定する血圧計における、流体袋の圧力と流体の排出量との関係を示す図である。 流体袋を一定の速度で減圧し、減圧する過程で血圧を測定する血圧計における、流体袋の圧力と一定の容積変化に対する圧脈波振幅値との関係を示す図である。 流体袋を加圧する過程で血圧を測定する電子血圧計において、流体袋内の流体密度が低いときの、血管の容積変化に伴う、流体袋の容積変化、流体袋内の流体密度の変化、および流体袋の圧力変化を表わす図である。 流体袋を加圧する過程で血圧を測定する電子血圧計において、流体袋内の流体密度が高いときの、血管の容積変化に伴う、流体袋の容積変化、流体袋内の流体密度の変化、および流体袋の圧力変化を表わす図である。 流体袋を加圧する過程で血圧を測定する電子血圧計において、流体袋への流体の流入が早いとき、つまり単位時間当たりの流入量が多いときの、血管の容積変化に伴う、流体袋の容積変化、および流体袋の圧力変化を表わす図である。 流体袋を加圧する過程で血圧を測定する電子血圧計において、流体袋への流体の流入が遅いとき、つまり単位時間当たりの流入量が少ないときの、血管の容積変化に伴う、流体袋の容積変化、および流体袋の圧力変化を表わす図である。 流体袋を一定の速度で加圧し、加圧する過程で血圧を測定する血圧計における、流体袋の圧力と加圧速度との関係を示す図である。 流体袋を一定の速度で加圧し、加圧する過程で血圧を測定する血圧計における、流体袋の圧力と流体袋への流体の単位時間当たりの流入量との関係を示す図である。 流体袋を一定の速度で加圧し、加圧する過程で血圧を測定する血圧計における、流体袋の圧力と一定の容積変化に対する圧脈波振幅値との関係を示す図である。 流体袋を加圧する過程で血圧を測定する電子血圧計において、流体袋を加圧するためのポンプの駆動電圧を一定にして加圧する血圧計における、流体袋の圧力と加圧速度との関係を示す図である。 流体袋を加圧する過程で血圧を測定する電子血圧計において、流体袋を加圧するためのポンプの駆動電圧を一定にして加圧する血圧計における、流体袋の圧力と流体袋への流体の単位時間当たりの流入量との関係を示す図である。 流体袋を加圧する過程で血圧を測定する電子血圧計において、流体袋を加圧するためのポンプの駆動電圧を一定にして加圧する血圧計における、流体袋の圧力と一定の容積変化に対する圧脈波振幅値との関係を示す図である。
 以下に、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品および構成要素には同一の符号を付してある。それらの名称および機能も同じである。
 [第1の実施の形態]
 第1の実施の形態として、流体袋を減圧する過程で血圧を測定する血圧測定装置について説明する。
 図1を参照して、第1の実施の形態にかかる血圧測定装置である血圧計1は、本体2と、測定部位に巻付けるカフ5とを備え、それらがチューブ10で接続される。本体2の正面には、スイッチ等の操作部3と、測定結果等を表示する表示部4とが配備される。操作部3は、電源のON/OFFを指示するための電源スイッチ31、測定の開始を指示するための測定スイッチ32、測定の停止を指示するための停止スイッチ33、および記録されている測定値を呼出して表示させるための記録呼出スイッチ34を含む。カフ5には流体袋13が配置される。流体袋13に注入され、流体袋13から排出される流体は、たとえば空気が該当する。カフ5を測定部位に巻付けることで流体袋13が測定部位に押付けられる。測定部位としては、たとえば上腕または手首などが挙げられる。
 流体袋13は、流体袋13の内圧変化を測定する圧力センサ23、流体袋13に対する流体の注入/排出を行なうポンプ21、および弁22に接続される。圧力センサ23、ポンプ21、および弁22は、各々、発振回路28、ポンプ駆動回路26、および弁駆動回路27に接続され、さらに、発振回路28、ポンプ駆動回路26、および弁駆動回路27は、各々、血圧計1全体を制御するCPU(Central Processing Unit)40に接続される。
 CPU40には、さらに、表示部4と、操作部3と、CPU40で実行されるプログラムを記憶したりプログラムを実行する際の作業領域となったりするメモリ6と、測定結果等を記憶するメモリ7と、電源53とが接続される。
 CPU40は、電源53から電力供給を受けて駆動する。CPU40は周長情報取得部41および弁駆動電圧決定部43を含む。これらは、CPU40が操作部3から入力される操作信号に基づいてメモリ6に記憶されている所定のプログラムを実行することで、CPU40に形成される。周長情報取得部41は測定部位のサイズである周長情報を取得し、弁駆動電圧決定部43に入力する。弁駆動電圧決定部43は周長情報に基づいて弁22を駆動させるための電圧(以下、駆動電圧Ev)を決定する。CPU40は、弁駆動回路27に、弁駆動電圧決定部43で決定された駆動電圧Evに応じた制御信号を出力する。また、CPU40は、操作部3から入力される操作信号に基づいてメモリ6に記憶されている所定のプログラムを実行しポンプ駆動回路26に制御信号を出力する。
 ポンプ駆動回路26および弁駆動回路27は、制御信号に従ってポンプ21および弁22を駆動させる。ポンプ21は、CPU40からの制御信号に従ったポンプ駆動回路26によってその駆動が制御されて、流体袋13内に流体を注入する。弁22は、CPU40からの制御信号に従った弁駆動回路27によってその開閉および開き幅(以下、ギャップと称する)が制御されて、流体袋13内の流体を排出する。
 圧力センサ23は静電容量形の圧力センサであり、流体袋13の内圧変化により容量値が変化する。発振回路28は、圧力センサ23の容量値に応じた発振周波数の信号に変換され、CPU40に入力される。CPU40は、圧力センサ23から得られた流体袋13の内圧変化に基づいて所定の処理を実行し、その結果に応じてポンプ駆動回路26および弁駆動回路27に上記制御信号を出力する。また、CPU40は、圧力センサ23から得られた流体袋13の内圧変化に基づいて血圧値を算出し、測定結果を表示部4に表示させるための処理を行ない、表示させるためのデータと制御信号とを表示部4に出力する。また、CPU40は、血圧値をメモリ7に記憶させるための処理を行なう。
 血圧計1において測定スイッチ32が操作されたタイミングで実行される処理の、第1の具体例を、図2のフローチャートを用いて説明する。図2のフローチャートに示される処理は、CPU40がメモリ6に記憶されている所定のプログラムを実行することにより実現される。
 図2を参照して、CPU40は、操作部3からの操作信号の入力を監視し、測定スイッチ32が操作されたことを検知すると、ステップS101でCPU40の周長情報取得部41は、測定部位のサイズである測定部位の周長を表わす周長情報を取得する。ここでは、操作部3を構成するスイッチなどによって、測定時にたとえば「太」、「細」などの周長情報が入力されるものとし、周長情報取得部41は操作部3からの操作信号より周長情報を取得するものとする。
 なお、周長情報取得部41での周長情報の取得方法は上述の方法には限定されない。たとえば、血圧計1において測定スイッチ32が操作されたタイミングで実行される処理の第2の具体例として図3に示されるように、上記ステップS101に替えてステップS201~S205の処理で周長情報を取得してもよい。詳しくは、ステップS201でCPU40はポンプ駆動回路26に予め規定されてある所定の電圧でポンプ21を駆動させるための制御信号を出力し、所定の電圧でポンプ21を駆動させて流体袋13が予め規定されている所定の圧力に達するまで流体袋13を加圧する。所定の圧力に達すると(ステップS203でYES)、ステップS205でCPU40は、流体袋13が所定圧力に達するまでの加圧時間を記憶する。図4Aに示されるように、ポンプ21を駆動させる駆動電圧が同じ場合、測定部位の周長が大きくなるほど加圧速度は小さくなる。従って、図4Bに示されるように、測定部位の周長が大きくなるほど加圧時間は大きくなる。つまり、流体袋13が所定圧力に達するまでの加圧時間は測定部位の周長を表わす指標と言える。そこで、周長情報取得部41は、ステップS205で記憶された加圧時間を周長情報として取得する。なお、周長情報取得部41は、加圧時間に替えて、ポンプ21の回転数と流体袋13の圧力とからも、同様にして得られる。また、他の例として、流体袋13を測定部位に巻きつけるための布(不図示)にスライド抵抗が含まれており、周長情報取得部41は、流体袋13を測定部位に巻きつけたときの上記スライド抵抗から得られる抵抗値から周長情報を取得してもよい。
 ステップS103、S105でCPU40はポンプ駆動回路26に制御信号を出力し、流体袋13が予め規定されている所定の圧力に達するまで流体袋13を加圧する。所定の圧力に達すると(ステップS105でYES)、ステップS107でCPU40はポンプ駆動回路26に制御信号を出力し、流体袋13の加圧を停止する。その後、ステップS109でCPU40の弁駆動電圧決定部43は、ステップS101またはステップS201~S205で取得された周長情報に基づいて弁22の駆動電圧Evを決定する。ステップS111でCPU40は、ステップS109で決定された駆動電圧Evを保持して弁22を駆動させるよう制御信号を弁駆動回路27に出力し、流体袋13の減圧を開始する。ステップS113でCPU40は、減圧中に得られる流体袋13の内圧に重畳した動脈の容積変化に伴う振動成分を抽出し、所定の演算により血圧値を算出する。なお、上記ステップS111での減圧速度が速すぎて上記ステップS113で血圧値が算出されないときや、逆に、上記ステップS111での減圧速度が遅すぎて排出が進まないときなど(ステップS114でNO)、ステップS117でCPU40はエラーと判断して、弁22を開放させるよう制御信号を弁駆動回路27に出力し、流体袋13内の流体を急速に排出する。そうでない場合、つまり上記ステップS113で血圧値が算出された場合には(ステップS114でYES)、ステップS115でCPU40からの制御信号に従って弁22が開放され、流体袋13内の流体が排出される。
 上記ステップS109の、弁駆動電圧決定部43での駆動電圧Evの決定について説明する。
 ここで、駆動電圧Evを一定に保持した場合の流体袋の圧力に対する減圧速度の変化度合いは、図5に示されるように、測定部位の周長によって異なる。具体的には、図5を参照して、測定部位の周長が小さいほど減圧速度の変化度合いが大きく、測定部位の周長が大きいほど減圧速度の変化度合いが小さい。つまり、図5に示される関係より、測定部位の周長は駆動電圧Evを決定するためのパラメータであると言える。
 上記ステップS109で、弁駆動電圧決定部43は、上述の図5に示された関係を利用して駆動電圧Evを決定する。具体例として、弁駆動電圧決定部43は、以下の式(1)に上記ステップS101または上記ステップS201~S205で取得された周長情報を代入することで駆動電圧Evを決定する:
  駆動電圧Ev=α×周長情報+β  …式(1)。
 ステップS109で上述の式(1)が用いられることで、図6に示されるように、駆動電圧Evが測定部位の周長に比例した大きさで決定される。
 ここで、測定部位の周長が同一であった場合の流体袋13の圧力に対する減圧速度の変化度合いは、図7に示されるように、弁22のギャップ、つまり駆動電圧の大きさによって異なる。具体的には、図7を参照して、弁22のギャップが大きくなるほど減圧速度の変化度合いが大きく、ギャップが小さくなるほど減圧速度の変化度合いが小さい。従って、図7に示される関係より、ギャップの大きさは、流体袋13の、最高血圧の算出から最低血圧の算出までの減圧速度を、所定の速度の範囲内とするような大きさが好ましい。より詳しくは、ギャップの大きさは、減圧時の最高血圧と最低血圧との間に検出できる脈拍数が所定数以上となるような減圧速度となるギャップの大きさが好ましい。より好ましくは、上記「所定数」は5である。なぜなら、本願出願人による特開2001-70263号公報にも記載されているように、減圧時の最高血圧と最低血圧との間に5程度の脈拍数が測定されるように減圧速度が制御されるよう減圧測定のアルゴリズムの性能を考慮して設定されることが妥当であるとされているためである。なお、減圧時の最高血圧と最低血圧との間に5以上の脈拍数が測定されるような減圧速度はたとえば実験等によって得られ、予めメモリ6に記憶されているものとする。その値として具体的には、好ましくは3mmHg/sec~13mmHg/sec程度である。従って、上記式(1)の係数α,βは、流体袋13の圧力が血圧値程度の範囲における血圧減圧速度を、3mmHg/sec~13mmHg/sec程度である目標とする減圧速度内とするような値とすることができる。このような係数α,βは、予め実験等によって求められ、血圧計1のメモリ6に記憶されているものとする。なお、上の例では、ステップS109で上記式(1)に取得された周長情報を入力して駆動電圧Evを決定するものとしているが、式(1)に替えて、メモリ6が周長情報と駆動電圧Evとの関係を規定するテーブルを記憶しておき、弁駆動電圧決定部43がそのテーブルから、取得された周長情報に対応する駆動電圧Evを読出してもよい。
 [変形例1]
 血圧計1において測定スイッチ32が操作されたタイミングで実行される処理の変形例を、図8のフローチャートを用いて説明する。図8に示される処理においては、図3に示された第2の具体例と同様に、ステップS201~S205で流体袋13の圧力が所定圧力に達するまでの加圧時間に基づいて測定部位の周長が推定されると共に、その後の加圧過程において、ステップS301でCPU40は、圧力センサ23から得られた流体袋13の内圧変化に基づいて最高血圧値を推定し、ステップS303で流体袋13の加圧終了時の圧力を算出する。血圧計1は所定圧力まで流体袋13を加圧した後の減圧過程で得られる流体袋13の内圧変化に基づいて血圧値を算出する構成である。そのため、ステップS303では、好ましくは、CPU40は、ステップS301で推定された最高血圧値よりも所定圧力値分高い圧力値を加圧終了圧力として算出する。流体袋13の圧力がステップS303で算出された加圧終了圧力に達すると(ステップS105’でYES)、以降、図2や図3に示された処理と同様にして駆動電圧Evが決定されて、駆動電圧Evを保持して弁を駆動させるような制御が行なわれる減圧過程において血圧値が算出される。
 なお、変形例においては、ステップS109で弁駆動電圧決定部43は、上述の図5に示された関係に替えて、または加えて、ステップS301で推定された最高血圧値を考慮して駆動電圧Evを決定する。具体例として、弁駆動電圧決定部43は、以下の式(2)に上記ステップ101または上記ステップS201~S205で取得された周長情報を代入することで駆動電圧Evを決定する:
  駆動電圧Ev=α×周長情報+β+オフセット量S、
  オフセット量S=推定最高血圧値×γ    …式(2)。
 変形例におけるステップS109で上述の式(2)が用いられることで、図9に示されるように、駆動電圧Evが、測定部位の周長に比例した大きさで、かつ推定された最高血圧に応じた大きさで決定される。なお、上の具体例では、オフセット量Sは推定最高血圧値に基づいて算出されるものとしている。しかしながら、オフセット量Sは、推定最低血圧値、脈圧、または脈波の周期に基づいて算出されるものであってもよい。
 図7を用いて説明された関係より、ギャップの大きさは、流体袋13の圧力が血圧値程度の範囲における血圧減圧速度を目標とする減圧速度内とするような大きさが好ましい。従って、上記式(2)の係数γもまた、流体袋13の最高血圧の算出から最低血圧の算出までの減圧速度を、3mmHg/sec~13mmHg/sec程度である目標とする減圧速度内とするような値とすることができる。
 上記ステップS111では、CPU40によって、上記ステップS109で決定された駆動電圧Evを保持して弁22を駆動させるよう制御される。すなわち、減圧時に弁22のギャップが一定となるよう制御される。これにより、減圧時、流体袋13の減圧速度は、流体袋13の圧力変化に伴って図10Aに示されるように変化する。すなわち、図10Aより、流体袋13の圧力がある圧力以下となった場合、流体袋13の減圧速度は、測定部位の周長の大小に関わらず、ほぼ同じ値で、以降の(減少する)圧力変化によってほぼ変化しなくなる。また、減圧時、流体袋13の圧力における弁22からの排出量は、流体袋13の圧力変化に伴って図10Bに示されるように変化する。すなわち、図10Bより、流体袋13の圧力がある圧力以下となった場合、弁22からの排出量は、測定部位の周長に応じた値で、以降の(減少する)圧力変化によってほぼ変化しなくなる。つまり、図10A、図10Bに示された関係より、駆動電圧Evが一定となるように制御すること、すなわち弁22のギャップを一定とするよう制御することは、弁22からの排出量と流体袋13の減圧速度とを比例関係となるように駆動電圧Evを制御することである、と言える。
 CPU40がこのように制御することで、血圧計1においては、流体袋13から出る流体の流量と減圧速度とを比例関係に近づけることができる。それにより、血管の容積変化の検出精度を一定に近づけることができ、測定精度を向上させることができる。つまり、図10Cに示されるように、流体袋13の圧力変化に関わらず、一定の容積変化に対する圧脈波振幅を測定部位の周長に応じた値で一定とすることができる。
 図11は、流体袋13の圧力と検出される脈波振幅との関係を説明するための図である。(A)は、流体袋13の時間経過に従った圧力変化と、動脈内圧の圧力変化とを示している。(A)中の点線Aは、従来の、流体袋の圧力を等速減圧するよう制御した場合の、流体袋13の圧力変化を示している。それに対して、本実施の形態にかかる血圧計1において、駆動電圧Evが一定、すなわち弁22のギャップが一定となるよう制御して減圧した場合の流体袋13の圧力変化は実線Bで示されている。血圧計1において駆動電圧Evが一定、すなわち弁22のギャップが一定となるよう制御して減圧されることで、従来では(B)に示されるように流体袋13の圧力変化(減圧)に従って測定される動脈内圧が、(C)に示されるように測定される。詳しくは、(C)において、(B)に示された動脈内圧の各測定値を結んで得られる線分が、点線で示されている。従来の、流体袋の圧力を等速減圧するよう制御される血圧計においては、図34および図35に示されたように、同じ動脈内圧であっても、流体袋の圧力が低い領域では高い領域と比較して血管の容積変化の検出精度が低くなる。それに対して、本実施の形態にかかる血圧計1では、(B)と(C)とを比較することで示されるように、流体袋13の圧力の低い領域における血管の容積変化の検出精度が、従来の、流体袋の圧力を等速減圧するよう制御される血圧計での検出精度よりも向上していることが顕著に示されている。同様に、圧力の高い領域における血管の容積変化の検出精度も向上していることが示されている。
 なお、上の例では、上記ステップS111での減圧過程において、CPU40は駆動電圧Evを上記ステップS109で弁駆動電圧決定部43によって決定された駆動電圧Evに保持する、つまり駆動電圧Evを一定に保つよう制御している。しかしながら、血圧計1が上に示された構成に加えて、図12に示されるように、弁22からの排出量を測定する流量計55をさらに含んで、減圧過程において、弁駆動電圧決定部43によって、弁22からの排出量と減圧速度とが比例関係となるように駆動電圧Evが更新されてもよい。この場合、CPU40はフィードバック制御を行ない、駆動電圧Evを、所定の時間間隔等の特定のタイミングで決定される駆動電圧Evに変更して保持するよう制御する。このようなフィードバック制御がされることで、流体袋13から出る流体の流量と減圧速度とを比例関係により近づけることができる。それにより、一定の血管の容積変化に対する圧脈波振幅を一定に近づけることができ、測定精度を向上させることができる。
 [変形例2]
 血圧計1の変形例としての血圧計1-1のハードウェア構成を、図13を用いて説明する。図13を参照して、血圧計1-1は、図1に示された血圧計1のハードウェア構成に加えて、チューブ10で流体袋13に接続された、非圧性流体を保管するためのタンク54をさらに備える。タンク54は、ポンプ51および弁52に接続される。ポンプ51および弁52は、各々、ポンプ駆動回路56および弁駆動回路57に接続され、さらに、ポンプ駆動回路56および弁駆動回路57は、各々、CPU40に接続される。CPU40は、操作部3から入力される操作信号に基づいてメモリ6に記憶されている所定のプログラムを実行することで、ポンプ51および弁52を駆動させるための電圧を決定し、ポンプ駆動回路56および弁駆動回路57に、決定された電圧に応じた制御信号を出力する。ポンプ51が駆動することで、タンク54に保管されている非圧縮性流体がチューブ10を介して流体袋13に流入する。弁52が駆動することで、流体袋13内の非圧縮性流体が排出される。
 流体袋13と弁22とを接続する部分にはフィルタ9が設けられている。タンク54内の非圧縮性流体が流体袋13に移動する際、流体袋13に流体を注入する、または流体袋13から流体を排出するための弁22から非圧縮性流体が漏れ出すことを防止するため、フィルタ9の素材は、流体は透過させるが非圧縮性流体は透過させない素材であることが好ましい。
 血圧計1-1において測定スイッチ32が操作されたタイミングで実行される処理の具体例を、図14のフローチャートを用いて説明する。図14のフローチャートに示される処理は、CPU40がメモリ6に記憶されている所定のプログラムを実行することにより実現される。
 図14を参照して、変形例においては、ステップS1401でCPU40は弁駆動回路27に制御信号を出力し弁22を閉塞して、流体袋13への流体の流入口および排出口を封鎖する。その後、ステップS1403でポンプ駆動回路56に制御信号を出力しポンプ51を駆動させて、流体袋13が予め規定されている所定の圧力に達するまで、または所定の加圧速度に達するまでタンク54内の非圧縮性流体を流体袋13内へ流入させる。つまり、非圧縮性流体をタンク54から流体袋13に移動させる。流体袋13の内圧が所定の圧力に達すると、または流体袋13の加圧速度が所定の加圧速度に達すると(ステップS1405でYES)、ステップS1407でCPU40は弁駆動回路57に制御信号を出力し弁52を閉塞して、流体袋13への非圧縮性流体の流入口を封鎖する。そして、封鎖後、ステップS1409でCPU40は弁駆動回路27に制御信号を出力し弁22を開放して、流体袋13内の圧力を開放する。これにより、流体袋13には所定量の非圧縮性流体が注入され、さらに内圧が大気圧となっている。
 その後、第1の実施の形態にかかる処理と同様の、ステップS103~S107の処理が実行され、流体袋13が予め規定されている所定の圧力に達するまで流体袋13が加圧されて、その状態で流体袋13の加圧が停止される。そして、その後、ステップS111で流体袋13が減圧されつつ、ステップS113で血圧値が算出される。
 血圧計1-1では、血圧値の算出が終了すると(ステップS1411でYES)、ステップS1413でCPU40は弁駆動回路57に制御信号を出力し弁52を開放し、流体袋13内の非圧縮性流体を排出する。その後、ステップS115でCPU40からの制御信号に従って弁22が開放され、流体袋13内の流体が排出される。
 血圧計1-1は、上記ステップS103での流体袋13の加圧に先立って、所定量、非圧縮性流体を流体袋13に注入して流体袋13の容積を増加させておき、流入する流体の容量を軽減しておくことを特徴とする。これにより、初期状態からすべて流体を流入する方法に比べて、先に図33を用いて説明されたように、図33においてA部分で示されている、流体袋13の内圧の低い領域での流体袋13の容積変化が抑えられる。このため、血圧計1-1においては、血管の容積変化の検出精度を向上させることができる。
 なお、上の例では低圧領域での流体袋13の容積変化の容積変化を抑える方法として非圧縮性流体を流体袋13に流入するものとしているが、他の方法として、流体袋13に予め充填部材を配する方法であってもよい。たとえば、図15Aに示されるように、充填部材としてマイクロビーズ等のゲル素材を予め流体袋13に流入しておく方法であってもよい。またたとえば、図15B、図15Cに示されるように、充填部材としてスポンジやバネ等の弾性素材を予め流体袋13内に配する方法であってもよい。これらの充填部材が予め流体袋13内に配されることによって、流体袋13の容積を加圧前に増加させることができる。なお、充填部材は、上述のゲル素材や弾性素材に限定されず、その他の素材であってもよい。また、充填部材はこれら複数の素材の組み合わせであってもよい。
 さらに、第1の実施の形態にかかる血圧計1の減圧時の制御と、変形例にかかる血圧計1-1の構成とを組合わせてもよい。つまり、血圧計1-1における処理で上記ステップS107で流体袋13の加圧を停止した後に、上記ステップS109の処理を行なって、弁22のギャップが一定となるよう制御して減圧してもよい。このようにすることで、流体袋13から出る流体の流量と減圧速度とをより比例関係に近づけることができる。それにより、血管の容積変化の検出精度を一定に近づけることができ、測定精度を向上させることができる。
 [第2の実施の形態]
 第2の実施の形態として、流体袋を加圧する過程で血圧を測定する血圧測定装置について説明する。
 図16を参照して、第2の実施の形態にかかる血圧測定装置である血圧計1’は、図1に示された第1の実施の形態にかかる血圧計1のハードウェア構成と、ほぼ同様のハードウェア構成である。
 第2の実施の形態にかかる血圧計1’では、CPU40に、弁駆動電圧決定部43に替えて、ポンプ駆動電圧決定部45が含まれる。周長情報取得部41およびポンプ駆動電圧決定部45は、CPU40が操作部3から入力される操作信号に基づいてメモリ6に記憶されている所定のプログラムを実行することで、CPU40に形成される。周長情報取得部41は測定部位のサイズである周長情報を取得し、ポンプ駆動電圧決定部45に入力する。ポンプ駆動電圧決定部45は周長情報に基づいてポンプ21を駆動させるための電圧(以下、駆動電圧Ep)を制御するための制御パラメータApを決定する。さらに、ポンプ駆動電圧決定部45は、制御パラメータApと、発振回路28を介して入力される圧力センサ23で測定される流体袋13の圧力である内圧Pとに基づいて、駆動電圧Epを決定する。CPU40は、ポンプ駆動回路26に、ポンプ駆動電圧決定部45で決定された駆動電圧Epに応じた制御信号を出力する。また、CPU40は、操作部3から入力される操作信号に基づいてメモリ6に記憶されている所定のプログラムを実行し弁駆動回路27に制御信号を出力する。
 血圧計1’において測定スイッチ32が操作されたタイミングで実行される処理の具体例を、図17のフローチャートを用いて説明する。図17のフローチャートに示される処理は、CPU40がメモリ6に記憶されている所定のプログラムを実行することにより実現される。
 図17を参照して、第1の実施の形態において図2に示された処理のステップS101と同様にして、CPU40の周長情報取得部41は、測定部位のサイズである測定部位の周長を表わす周長情報を取得する。なお、第2の実施の形態においても、第1の実施の形態において図3、図4を用いて説明されたように、流体袋13が所定圧力に達するまでの加圧時間を周長情報として取得してもよいし、先述のように、流体袋13を測定部位に巻きつけるための布(不図示)にスライド抵抗が含まれている場合には、上記スライド抵抗から得られる抵抗値から周長情報を取得してもよい。
 ステップS401でCPU40のポンプ駆動電圧決定部45は、ステップS101で取得された周長情報に基づいてポンプ21の駆動電圧Epを制御するための制御パラメータApを決定する。
 ステップS403でCPU40は、ステップS401で決定された制御パラメータApと内圧Pとを用いて駆動電圧Epを決定し、決定された駆動電圧Epでポンプ21を駆動させるよう制御信号をポンプ駆動回路26に出力し、流体袋13を加圧する。なお、ステップS403でCPU40は、上述の処理を所定のタイミングで行なって、流体袋13の内圧変化に応じて駆動電圧Epを決定してもよい。所定のタイミングとは、たとえば所定の時間間隔や、流体袋13の圧力が所定の圧力に達したタイミングなどが挙げられる。そして、ステップS113’でCPU40は、加圧中に得られる流体袋13の内圧に重畳した動脈の容積変化に伴う振動成分を抽出し、所定の演算により血圧値を算出する。なお、上記ステップS403での加圧速度が速すぎて上記ステップS113’で血圧値が算出されないときや、逆に、上記ステップS403での加圧速度が遅すぎて加圧が進まないときなど(ステップS114でNO)、ステップS117でCPU40はエラーと判断して、弁22を開放させるよう制御信号を弁駆動回路27に出力し、流体袋13内の流体を急速に排出する。そうでない場合、つまり上記ステップS113’で血圧値が算出された場合には(ステップS114でYES)、ステップS115でCPU40からの制御信号に従って弁22が開放され、流体袋13内の流体が排出される。
 上記ステップS401のポンプ駆動電圧決定部45での制御パラメータApの決定、および上記ステップS403のポンプ駆動電圧決定部45での駆動電圧Epの決定について説明する。
 図18は、駆動電圧Epを一定に保持した場合の、測定部位の周長ごとの、流体袋13の圧力と加圧速度との関係を表わす図である。図18を参照して、測定部位の周長が小さいほど全体的に加圧速度が大きい。逆に測定部位の周長が大きいほど、全体的に加圧速度が小さい。また、測定部位の周長が小さいほど加圧速度の変化度合いが大きく、測定部位の周長が大きいほど加圧速度の変化度合いが小さい。つまり、図18に示される関係より、測定部位の周長は駆動電圧Epを決定するためのパラメータであると言える。
 そこで、上記ステップS401で、ポンプ駆動電圧決定部45は、上述の図18に示された関係を利用して制御パラメータApを決定する。具体例として、ポンプ駆動電圧決定部45は、以下の式(3)に上記ステップS101または上記ステップS201で取得された周長情報を代入することで制御パラメータApを決定する:
  制御パラメータAp=α’×周長情報+β’  …式(3)。
 図19は、測定部位の周長をある大きさに固定した場合の、駆動電圧Epごとの、流体袋13の圧力と流体袋13への流体の流入速度、つまり単位時間当たりの流入量との関係を表わす図である。図19を参照して、駆動電圧Epが大きい(高い)ほど、つまりポンプ21の駆動力が大きいほど全体的に流入速度が大きい。逆に、駆動電圧Epが小さい(低い)ほど、つまりポンプ21の駆動力が小さいほど、全体的に流入速度が小さい。また、駆動電圧Epが大きいほど流入速度の変化度合いが大きく、駆動電圧Epが小さいほど流入速度の変化度合いが小さい。
 そこで、上記ステップS403で、ポンプ駆動電圧決定部45は、上述の図19に示された関係を利用して駆動電圧Epを決定する。具体例として、上述のようにして決定された制御パラメータApと流体袋13の内圧Pとを以下の式(4)に代入することで、駆動電圧Epを決定する:
  駆動電圧Ep=制御パラメータAp×内圧P  …式(4)。
 ステップS401,S403で上述の式(3),(4)が用いられることで、図20に示されるように、駆動電圧Epが測定部位の周長と内圧Pに比例した大きさで決定される。さらに、上記ステップS403では、上記ステップS105で流体袋13の圧力が所定の圧力に達した段階で上述のように駆動電圧Epが決定されてさらに加圧されるのみならず、その後の所定のタイミングでさらに同様にして、駆動電圧Epが決定(更新)されてもよい。上記所定のタイミングで駆動電圧Epが決定される場合、ポンプ駆動電圧決定部45はそのときの内圧Pを上記式(3)に代入することで駆動電圧Epを決定する。
 より詳しくは、駆動電圧Epは、加圧時の最低血圧と最高血圧との間に検出できる脈拍数が所定数以上となるような加圧速度となる大きさが好ましい。より好ましくは、先述のように、上記「所定数」は5である。加圧時の最低血圧と最高血圧との間に5以上の脈拍数が測定されるような加圧速度は、好ましくは3mmHg/sec~13mmHg/sec程度である。従って、上記式(3)の係数α’,β’は、流体袋13の、最低血圧の算出から最高血圧の算出までの加圧速度を、3mmHg/sec~13mmHg/sec程度である目標とする加圧速度内とするような値とすることができる。このような係数α’,β’は、予め実験や図19に示される関係等によって求められ、血圧計1’のメモリ6に記憶されているものとする。なお、上の例では、ステップS401で上記式(3)に取得された周長情報を入力して制御パラメータApを決定するものとしているが、式(3)に替えて、メモリ6が周長情報と制御パラメータApとの関係を規定するテーブルを記憶しておき、ポンプ駆動電圧決定部45がそのテーブルから、取得された周長情報に対応する制御パラメータApを読出してもよい。同様に、式(4)に替えて、メモリ6が周長情報と駆動電圧Epとの関係を規定するテーブルを記憶しておき、ポンプ駆動電圧決定部45がそのテーブルから、取得された周長情報に対応する駆動電圧Epを読出してもよい。
 上記ステップS403でCPU40は、流体袋13を加圧しながら内圧Pに応じて駆動電圧Epを更新する。これにより、加圧時、流体袋13への流体の単位時間当たりの流入量は、流体袋13の圧力変化に伴って図21Aに示されるように制御される。このとき、流体袋13の加圧速度は、流体袋13の圧力変化に伴って図21Bに示されるように変化(増加)する。これにより、血圧計1’においては、流体袋13に単位時間当たりに注入する流体の流量と流体袋13の加圧速度とを比例関係に近づけることができる。そのため、測定精度を向上させることができる。つまり、図21Cに示されるように、流体袋13の圧力変化に関わらず、一定の容積変化に対する圧脈波振幅を測定部位の周長に応じた値で一定とすることができる。
 図22は、流体袋13の圧力と検出される脈波振幅との関係を説明するための図である。(A)は、流体袋13の時間経過に従った圧力変化と、動脈内圧の圧力変化とを示している。(A)中の点線Aは、従来の、流体袋の圧力を等速加圧するよう制御した場合の、流体袋13の圧力変化を示している。それに対して、本実施の形態にかかる血圧計1’において、駆動電圧Epを流体袋13の圧力である内圧Pに応じて更新するよう制御して加圧した場合の流体袋13の圧力変化は実線Bで示されている。血圧計1’において加圧時にポンプ21の駆動電圧Epが流体袋13の圧力に応じて更新されることで、従来では(B)に示されるように流体袋13の圧力変化(加圧)に従って測定される動脈内圧が、(C)に示されるように測定される。詳しくは、(C)において、(B)に示された動脈内圧の各測定値を結んで得られる線分が、点線で示されている。従来の、流体袋の圧力を等速加圧するよう制御される血圧計においては、図39および図40に示されたように、同じ動脈内圧であっても、流体袋の流体密度が低い領域では高い領域と比較して血管の容積変化の検出精度が低くなる。それに対して、本実施の形態にかかる血圧計1’では、(B)と(C)とを比較することで示されるように、流体袋13の圧力の低い領域における血管の容積変化の検出精度が、従来の、流体袋の圧力を等速加圧するよう制御される血圧計での検出精度よりも向上していることが顕著に示されている。同様に、圧力の高い領域における血管の容積変化の検出精度も向上していることが示されている。
 なお、上の例では、上記ステップS403での加圧過程において、CPU40は駆動電圧Epを流体袋13の圧力に基づいて更新している。しかしながら、血圧計1’が上に示された構成に加えて、図23に示されるように、流体袋13への流体の流入量を測定する流量計55をさらに含んで、加圧過程において、ポンプ駆動電圧決定部45によって、流体袋13への流体の単位時間当たりの流入量と加圧速度とが比例関係となるように駆動電圧Epが更新されてもよい。これによっても、流体袋13への流体の単位時間当たりの流入量と加圧速度とを比例関係に近づけることができる。それにより、一定の血管の容積変化に対する圧脈波振幅を一定に近づけることができ、測定精度を向上させることができる。
 [変形例]
 血圧計1’の変形例としての血圧計1’-1のハードウェア構成を、図24を用いて説明する。血圧計1’は血圧計1-1と同様の構成である。すなわち、図24を参照して、血圧計1’-1は、図16に示された血圧計1’のハードウェア構成に加えて、チューブ10で流体袋13に接続された、非圧性流体を保管するためのタンク54をさらに備える。タンク54は、ポンプ51および弁52に接続される。ポンプ51および弁52は、各々、ポンプ駆動回路56および弁駆動回路57に接続され、さらに、ポンプ駆動回路56および弁駆動回路57は、各々、CPU40に接続される。CPU40は、操作部3から入力される操作信号に基づいてメモリ6に記憶されている所定のプログラムを実行することで、ポンプ51および弁52を駆動させるための電圧を決定し、ポンプ駆動回路56および弁駆動回路57に、決定された電圧に応じた制御信号を出力する。ポンプ51が駆動することで、タンク54に保管されている非圧縮性流体がチューブ10を介して流体袋13に流入する。弁52が駆動することで、流体袋13内の非圧縮性流体が排出される。
 流体袋13と弁22とを接続する部分にはフィルタ9が設けられている。タンク54内の非圧縮性流体が流体袋13に移動する際、流体袋13に流体を注入する、または流体袋13から流体を排出するための弁22から非圧縮性流体が漏れ出すことを防止するため、フィルタ9の素材は、流体は透過させるが非圧縮性流体は透過させない素材であることが好ましい。
 血圧計1’-1において測定スイッチ32が操作されたタイミングで実行される処理の具体例を、図25のフローチャートを用いて説明する。図25のフローチャートに示される処理は、CPU40がメモリ6に記憶されている所定のプログラムを実行することにより実現される。
 図25を参照して、血圧計1’では血圧計1-1と共通する処理が行なわれる。すなわち、ステップS1401~S1409までは血圧計1-1と同じ処理が行なわれて、流体袋13の内圧が所定の圧力に達するまでタンク54内の非圧縮性流体を流体袋13内へ流入させた後、流体袋13への非圧縮性流体の流入口を封鎖し、弁22を開放して、流体袋13内の圧力を開放する。これにより、流体袋13には所定量の非圧縮性流体が注入され、さらに内圧が大気圧となる。
 その後、第2の実施の形態にかかる処理と同様の、ステップS111の処理が実行され、流体袋13が加圧されつつ、ステップS113で血圧値が算出される。血圧値の算出が終了すると(ステップS114でYES)、血圧計1’-1では、血圧計1-1と同様に、ステップS1413でCPU40は弁駆動回路57に制御信号を出力し弁52を開放し、流体袋13内の非圧縮性流体を排出する。その後、ステップS115でCPU40からの制御信号に従って弁22が開放され、流体袋13内の流体が排出される。
 血圧計1’-1もまた、血圧計1-1と同様に、上記ステップS111での流体袋13の加圧に先立って、所定量、非圧縮性流体を流体袋13に注入して流体袋13の容積を増加させておき、流入する流体の容量を軽減しておくことを特徴とする。これにより、初期状態からすべて流体を流入する方法に比べて、先に図33を用いて説明されたように、図33においてA部分で示されている、流体袋13の圧力の低い領域での流体袋13の容積変化が抑えられる。このため、血圧計1’-1においては、血管の容積変化の検出精度を向上させることができる。
 なお、血圧計1’-1においても血圧計1-1と同様に、低圧領域での流体袋13の容積変化の容積変化を抑える方法として、図15A~図15Cに示されたような方法、またはこれらの組み合わせた方法を採ってもよい。
 さらに、第2の実施の形態にかかる血圧計1’の加圧時の制御と、変形例にかかる血圧計1’-1の構成とを組合わせてもよい。つまり、血圧計1’-1における処理で図24には示されていない上述のステップS101の処理を行なって周長情報取得部41が周長情報を取得して、ポンプ駆動電圧決定部45が制御パラメータApを決定する。さらに、ステップS111’に替えて、上述のステップS111の処理を実行し、流体袋13を加圧する際にポンプ駆動電圧決定部45が駆動電圧Epを決定する。または、ステップS111で加圧中に流体袋13の内圧に応じてポンプ駆動電圧決定部45が駆動電圧Epを更新してもよい。このようにすることで、流体袋13に単位時間当たりに注入する流体の流量と流体袋13の加圧速度とを比例関係により近づけることができる。それにより、血管の容積変化の検出精度を一定に近づけることができ、測定精度を向上させることができる。
 [第3の実施の形態]
 第1の実施の形態にかかる血圧計1において上述の制御がなされることで、図11の(A)に示されるように、減圧過程において流体袋13の内圧が変化する。また、第2の実施の形態にかかる血圧計1’において上述の制御がなされることで、図22の(A)に示されるように、加圧過程において流体袋13の内圧が変化する。図11の(A)および図22の(A)のいずれにも示されているように、これらの制御方法では、高圧側での速度変化が大きくなる。したがって、いずれの場合であっても、図11の(C)および図22の(C)にも示されているように、高圧側において取得できる脈波の数が少なくなる。つまり、いずれの制御方法でも、高圧側では低圧側ほど脈波情報を得ることができていない。
 そこで、第3の実施の形態では、血圧計1、血圧計1’において、加圧過程と減圧過程との両過程において血圧測定を行なうものとする。
 先に、血圧計1について説明する。第3の実施の形態において、血圧計1で測定スイッチ32が操作されたタイミングで実行される処理の具体例を、図26のフローチャートを用いて説明する。第3の実施の形態では、図2に示された第1の実施の形態での処理と比較すると、ステップS103で流体袋13が加圧されている過程において、ステップS104でCPU40は、圧力センサ23からの出力より流体袋13の内圧に重畳した動脈の容積変化に伴う振動成分を抽出し、所定の演算により最高血圧値を算出する。なお、上記ステップS103での加圧は、通常の、等速加圧であってよい。そして、上記ステップS104で最高血圧値が算出された場合には(ステップS105’でYES)、上述のステップS107以降の処理が行なわれる。なお、第3の実施の形態では、上述のステップS113での処理、つまり上述のステップS111で駆動電圧Evが一定(すなわち弁22のギャップが一定)となるよう制御がなされている、流体袋13の減圧過程において、CPU40は、圧力センサ23からの出力から、所定の演算により最低血圧値を算出する(ステップS113”)。
 図27は、流体袋13の圧力と検出される脈波振幅との関係を説明するための図である。(A)は、流体袋13の時間経過に従った圧力変化と、動脈内圧の圧力変化とを示している。(B)は、上記ステップS104で流体袋13の圧力変化(加圧)に従って測定される動脈内圧を示している。上記ステップS113”で測定される動脈内圧は、図11の(C)に示されるものと同様である。
 次に、血圧計1’について説明する。図28のフローチャートに、第3の実施の形態において、血圧計1’で測定スイッチ32が操作されたタイミングで実行される処理の具体例を、図28のフローチャートを用いて説明する。第3の実施の形態では、図17に示された第2の実施の形態での処理と比較すると、ステップS403までは第2の実施の形態での処理と同様の処理が行なわれる。その後、第3の実施の形態においては、ステップS403で流体袋13が上述の加圧制御されている過程において、ステップS405でCPU40が動脈内圧を測定し、最低血圧値を算出する。ステップS301’でCPU40は、圧力センサ23から得られた流体袋13の内圧変化に基づいて最高血圧値を推定し、ステップS303で流体袋13の加圧終了時の圧力を算出する。そして、流体袋13の圧力がステップS303で算出された加圧終了圧力に達すると(ステップS105’でYES)、ステップS107でCPU40はポンプ駆動回路26に制御信号を出力し、流体袋13の加圧を停止する。その後のステップS111’で通常の等速減圧する処理が実行されて、減圧過程において動脈内圧が測定されて最高血圧値が算出される(ステップS112)。
 図29は、第3の実施の形態において血圧計1’の流体袋13の圧力と検出される脈波振幅との関係を説明するための図である。(A)は、流体袋13の時間経過に従った圧力変化と、動脈内圧の圧力変化とを示している。(B)は、流体袋13の減圧過程において圧力変化(減圧)に従って測定される動脈内圧を示している。加圧で測定される動脈内圧は、図22の(C)に示されるものと同様である。
 図27の(B)と図11の(C)とを比較することで示されるように、血圧計1において、上記ステップS104で動脈内圧を測定することで、上記ステップS113またはステップS113”で動脈内圧を測定する場合と比較して、高圧側において取得できる脈波の数が増加している。同様に、図29の(B)と図22の(C)とを比較することで示されるように、血圧計1’において、減圧過程において動脈内圧を測定することで、加圧過程で動脈内圧を測定する場合と比較して、高圧側において取得できる脈波の数が増加している。つまり、血圧計1,1’において第3の実施の形態における測定方法で動脈内圧を測定して血圧値を算出することで、第1の実施の形態における測定方法、または第2の実施の形態における測定方法で測定するよりも、高圧側において動脈情報を多く得ることができる。その結果、最高血圧の測定精度を向上させることができる。従って、血圧計1において、第1の実施の形態で説明された制御と上述の制御とを行なうことで、流体袋13の圧力の低い領域の血管の容積変化の検出精度も、高い領域の血管の容積変化の検出精度も向上させることができる。同様に、血圧計1’において、第2の実施の形態で説明された制御と上述の制御とを行なうことで、流体袋13の圧力の低い領域の血管の容積変化の検出精度も、高い領域の血管の容積変化の検出精度も向上させることができる。
 [第4の実施の形態]
 さらに、流体袋13の加圧時に第2の実施の形態で説明された制御が行なわれ、減圧時に第1の実施の形態で説明された制御が行なわれてもよい。図30に示されるように、第4の実施の形態にかかる血圧測定装置である血圧計1”のCPU40には、第1の実施の形態で説明された弁駆動電圧決定部43と、第2の実施の形態で説明されたポンプ駆動電圧決定部45とが含まれる。
 血圧計1”において測定スイッチ32が操作されたタイミングで実行される処理の具体例を、図31のフローチャートを用いて説明する。図31のフローチャートに示される処理は、先に説明された、図2のフローチャートに示された処理、図8のフローチャートに示された処理、および図17のフローチャートに示された処理の組み合わせであって、第3の実施の形態に説明されたように、流体袋13の加圧過程および減圧過程のいずれの過程においても動脈内圧が測定されて、血圧値が算出される処理である。
 詳しくは、図31を参照して、ステップS101でCPU40の周長情報取得部41は、測定部位のサイズである測定部位の周長を表わす周長情報を取得する。ステップS401でCPU40のポンプ駆動電圧決定部45が、ステップS101で取得された周長情報に基づいてポンプ21の駆動電圧Epを制御するための制御パラメータApを決定する。そして、ステップS403でCPU40は、ステップS401で決定された制御パラメータApと内圧Pとを用いて駆動電圧Epを決定する。CPU40は、決定された駆動電圧Epでポンプ21を駆動させるよう制御信号をポンプ駆動回路26に出力し、流体袋13を加圧する。ここまでの処理は、図17のフローチャートを用いて説明された、第2の実施の形態での処理と同様である。
 第4の実施の形態では、ステップS403で流体袋13が加圧制御されている過程において、ステップS405でCPU40が動脈内圧を測定し、最低血圧値を算出する。この処理は、第3の実施の形態での処理と同様である。さらに、第4の実施の形態では、ステップS301’でCPU40は、圧力センサ23から得られた流体袋13の内圧変化に基づいて最高血圧値を推定し、ステップS303で流体袋13の加圧終了時の圧力を算出する。そして、流体袋13の圧力がステップS303で算出された加圧終了圧力に達すると(ステップS105’でYES)、ステップS107でCPU40はポンプ駆動回路26に制御信号を出力し、流体袋13の加圧を停止する。ここまでの処理は、図8のフローチャートを用いて説明された、第1の実施の形態の変形例での処理と同様である。
 次に、ステップS109でCPU40の弁駆動電圧決定部43は、ステップS101で取得された周長情報に基づいて弁22の駆動電圧Evを決定する。ステップS111でCPU40は、ステップS109で決定された駆動電圧Evを保持して弁22を駆動させるよう制御信号を弁駆動回路27に出力し、流体袋13の減圧を開始する。ここまでの処理は、図2のフローチャートを用いて説明された、第1の実施の形態での処理と同様である。
 第4の実施の形態では、ステップS111で流体袋13が減圧制御されている過程において、ステップS112でCPU40が動脈内圧を測定し、最高血圧値を算出する。なお、第3の実施の形態において説明されたように、第1の実施の形態で説明された減圧制御が行なわれている過程では、図11の(A)に示されるように高圧側での速度変化が大きく、図11の(C)に示されるように高圧側において取得できる脈波の数が少なくなる。そこで、第4の実施の形態では、ステップS111での減圧過程で高圧側での減圧速度が大きくならないように、つまり、高圧側で急速に流体袋13の減圧が進まないように、ステップS109において、第1の実施の形態における処理のステップS109で決定された駆動電圧Evで弁22を駆動させるときよりもギャップが小さくなるような駆動電圧Evを決定する。具体的には、第1の実施の形態において、減圧時に最高血圧値、最低血圧値共に算出する場合には、最高血圧と最低血圧との間に検出できる脈拍数が所定数以上となるような減圧速度となるギャップの大きさが好適な例として説明されたが、第4の実施の形態では、減圧時に最高血圧値を挟む、最低血圧値を含まない程度の所定範囲に検出できる脈拍数が所定数以上となるような減圧速度となるギャップの大きさが好ましい。第4の実施の形態での好ましい減圧速度は、第1の実施の形態と同様に、予めメモリ6に記載されていてもよい。そして、そのような減圧速度に応じた上記式(1)の係数α,βがメモリ6に記憶されていることで、第4の実施の形態において駆動電圧Evが決定されてもよい。または、第4の実施の形態では、第1の実施の形態で説明されたメモリ6に記憶されている係数α,βを所定割合異ならせて用いてもよい。
 さらに、第4の実施の形態では、上記ステップS112で最高血圧値が算出された場合には(ステップS114’でYES)、ステップS115でCPU40からの制御信号に従って弁22が開放され、流体袋13内の流体が排出される。
 図32は、流体袋13の圧力と検出される脈波振幅との関係を説明するための図である。(A)は、流体袋13の時間経過に従った圧力変化と、動脈内圧の圧力変化とを示している。(B)は、上記ステップS405で流体袋13の圧力変化(加圧)に従って測定される動脈内圧を示している。(C)は、上記ステップS112で流体袋13の圧力変化(減圧)に従って測定される動脈内圧を示している。
 第4の実施の形態にかかる血圧計1”では、流体袋13の加圧過程で、第2の実施の形態において説明された、駆動電圧Epを流体袋13の内圧Pに応じて更新しながら流体袋13を加圧する制御がなされる。これにより、先述のように、特に、流体袋13の圧力の低い領域における血管の容積変化の検出精度を向上させることができる。つまり、(A)に示されるように、低圧側での圧力の増加が緩やかであり、(B)に示されるようにその領域で検出される脈波の数が多くなる。従って、加圧過程の低圧側で測定された動脈内圧より最低血圧値が算出されることで、精度の高い最低血圧値を得ることができる。
 さらに、第4の実施の形態にかかる血圧計1”では、第1の実施の形態の変形例において説明された処理が実行されて、流体袋13の加圧過程で測定される動脈内圧に基づいて最高血圧値が推定され、流体袋13の圧力が推定された最高血圧値に応じた圧力に達した時点で加圧が終了している。なお、第4の実施の形態において、この処理がなされず、通常の、最高血圧値に関わらず予め規定されている圧力に達するまで加圧する処理がなされてもよい。しかしながら、上記処理が行なわれることにより、減圧時の測定のために加圧する圧力を、最高血圧値に関わらず予め規定されている圧力に達するまで加圧する場合の圧力よりも低く抑えることができる。また、最高血圧値に関わらず予め規定されている圧力に達するまで加圧する方法と比較すると、加圧時間を短縮でき、全体の血圧測定に要する時間を短縮することができる。従って、被測定者の負担を軽減することができる。
 また、第4の実施の形態にかかる血圧計1”では、流体袋13の減圧過程で、第1の実施の形態において説明された、駆動電圧Evが一定、すなわち弁22のギャップが一定となるような制御がなされる。これにより、先述のように、特に、流体袋13の圧力の低い領域における血管の容積変化の検出精度を向上させることができる。さらに、第4の実施の形態では、先述のように、第1の実施の形態における処理のステップS109で決定された電圧値で弁22を駆動させるときよりもギャップが小さくなるような電圧値で駆動電圧Evを一定となるような制御がなされる。これにより、(A)に示されるように、高圧側での圧力の低下が緩やかになり、(C)に示されるようにその領域で検出される脈波の数が多くなる。従って、減圧過程の高圧側で測定された動脈内圧より最高血圧値が算出されることで、精度の高い最高血圧値を得ることができる。
 さらに、第4の実施の形態にかかる血圧計1”では、先述のように加圧過程においてすでに最低血圧値が得られている。そのため、減圧過程において最高血圧値が得られた時点で流体袋13の流体を急速に排出し、測定処理を終了することができる。これにより、減圧過程において最高血圧値と最低血圧値とを得る方法と比較すると、減圧時間を短縮でき、全体の血圧測定に要する時間を短縮することができる。従って、被測定者の負担を軽減することができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1,1-1,1’,1’-1,1” 血圧計、2 本体、3 操作部、4 表示部、5 カフ、6,7 メモリ、9 フィルタ、10 チューブ、13 流体袋、31 電源スイッチ、21,51 ポンプ、22,52 弁、23 圧力センサ、26,56 ポンプ駆動回路、27,57 弁駆動回路、28 発振回路、32 測定スイッチ、33 停止スイッチ、34 記録呼出スイッチ、40 CPU、41 周長情報取得部、43 弁駆動電圧決定部、45 ポンプ駆動電圧決定部、53 電源、54 タンク、55 流量計。

Claims (28)

  1.  流体袋(13)と、
     前記流体袋に流体を注入して加圧するための加圧部(21、26)と、
     前記流体袋から流体を排出して減圧するための減圧部(22、27)と、
     前記流体袋の内圧変化を測定するためのセンサ(23)と、
     前記センサで得られる前記流体袋の内圧変化に基づいて最高血圧値と最低血圧値とを算出するための血圧測定部(40)と、
     前記加圧部、前記減圧部、および前記血圧測定部を制御するための制御部(40)とを備え、
     前記血圧測定部は、
     前記加圧部によって前記流体袋に流体を注入する加圧過程において前記センサで得られる前記流体袋の内圧変化に基づいて、最高血圧値と最低血圧値とのうちの一方を算出し、
     前記減圧部によって前記流体袋から流体を排出する減圧過程において前記センサで得られる前記流体袋の内圧変化に基づいて、最高血圧値と最低血圧値とのうちの前記一方と異なる他方を算出する、血圧測定装置。
  2.  前記制御部は、前記減圧過程において前記排出量が前記流体袋の減圧速度と比例関係となるように前記減圧部での前記流体の排出量を制御するための制御量を決定して、前記排出量を制御するための排出量を制御し、
     前記血圧測定部は、前記減圧部によって前記流体袋から流体を排出する減圧過程において前記センサで得られる前記流体袋の内圧変化に基づいて、最低血圧値を算出する、請求の範囲第1項に記載の血圧測定装置。
  3.  前記制御部は、前記減圧過程において前記排出量が前記流体袋の減圧速度と比例関係となるように前記減圧部での前記流体の排出量を制御するための制御量を決定して、前記排出量を制御するための排出量を制御し、
     前記血圧測定部は、前記減圧部によって前記流体袋から流体を排出する減圧過程において前記センサで得られる前記流体袋の内圧変化に基づいて、最高血圧値を算出する、請求の範囲第1項に記載の血圧測定装置。
  4.  前記減圧部は前記流体袋に備えられる弁(22)を含み、
     前記排出量を制御するための制御量は前記弁のギャップであり、
     前記制御部は、前記流体袋の内圧が最高血圧を挟む所定範囲変化する時間内に所定数以上の脈拍数が含まれる減圧速度となり、かつ、前記血圧測定部が前記減圧部によって前記流体袋から流体を排出する減圧過程において前記センサで得られる前記流体袋の内圧変化に基づいて最低血圧値を算出する場合に決定されるギャップよりも小さい前記弁のギャップを決定し、減圧過程において前記弁のギャップを決定されたギャップに保持するよう制御することで前記排出量を制御するための排出量を制御する、請求の範囲第3項に記載の血圧測定装置。
  5.  前記制御部は、測定部位の周長に関する情報を取得するための取得部(41)を含み、
     前記制御部は前記周長に応じて前記弁のギャップを決定する、請求の範囲第4項に記載の血圧測定装置。
  6.  前記減圧部は前記流体袋に備えられる弁(22)を含み、
     前記排出量を制御するための制御量は前記弁のギャップであり、
     前記制御部は、減圧過程において前記弁のギャップを決定されたギャップに保持するよう制御することで前記排出量を制御するための排出量を制御する、請求の範囲第2項または第3項に記載の血圧測定装置。
  7.  前記血圧測定部は、さらに、前記加圧部によって前記流体袋に流体を注入する加圧過程において前記センサで得られる前記流体袋の内圧変化に基づいて血圧値を算出し、
     前記制御部は、前記加圧過程における前記流体袋の内圧変化に基づいて算出される前記血圧値に応じて前記弁のギャップを決定する、請求の範囲第6項に記載の血圧測定装置。
  8.  前記血圧測定部は、さらに、前記加圧部によって前記流体袋に流体を注入する加圧過程において前記センサで得られる前記流体袋の内圧変化に基づいて脈波の周期を算出し、
     前記制御部は、前記加圧過程における前記流体袋の内圧変化に基づいて算出される脈波の周期に応じて前記弁のギャップを決定する、請求の範囲第6項に記載の血圧測定装置。
  9.  前記制御部は、測定部位の周長に関する情報を取得するための取得部(41)を含み、
     前記制御部は前記周長に応じて前記弁のギャップを決定する、請求の範囲第6項に記載の血圧測定装置。
  10.  前記制御部は、前記加圧部による前記流体袋への前記流体の単位時間当たりの注入量が前記流体袋の加圧速度と比例関係となるように、前記流体袋の内圧に基づいて前記加圧部を制御するための制御量を決定して、前記加圧部を制御し、
     前記血圧測定部は、前記加圧部段によって前記流体袋に流体を注入する加圧過程において前記センサで得られる前記流体袋の内圧変化に基づいて、最低血圧値を算出する、請求の範囲第1項に記載の血圧測定装置。
  11.  前記制御部は、前記加圧部による前記流体袋への前記流体の単位時間当たりの注入量が前記流体袋の加圧速度と比例関係となるように、前記流体袋の内圧に基づいて前記加圧部を制御するための制御量を決定して、前記加圧部を制御し、
     前記血圧測定部は、前記加圧部によって前記流体袋に流体を注入する加圧過程において前記センサで得られる前記流体袋の内圧変化に基づいて、最高血圧値を算出する、請求の範囲第1項に記載の血圧測定装置。
  12.  前記加圧部は前記流体袋に前記流体を注入するためのポンプ(21)を含み、
     前記加圧部を制御するための制御量は前記ポンプを駆動するための駆動電圧であり、
     前記制御部は、加圧過程において所定のタイミングで前記流体袋の内圧に基づいて前記駆動電圧を更新する、請求の範囲第10項または第11項に記載の血圧測定装置。
  13.  前記制御部は、測定部位の周長に関する情報を取得するための取得部(41)を含み、
     前記制御部は前記周長に基づいて、前記ポンプを駆動するための駆動電圧を制御するための制御パラメータを決定する、請求の範囲第12項に記載の血圧測定装置。
  14.  前記制御部は、前記血圧測定部が、前記減圧部によって前記流体袋から流体を排出する減圧過程において前記センサで得られる前記流体袋の内圧変化に基づいて、最高血圧値と最低血圧値とのうちの前記一方と異なる他方を算出した時点で、前記流体袋から流体を排出するよう前記減圧部を制御する、請求の範囲第1項に記載の血圧測定装置。
  15.  流体袋(13)と、
     前記流体袋に流体を注入して加圧するための加圧部(21、26)と、
     前記流体袋から流体を排出して減圧するための減圧部(22、27)と、
     前記流体袋の内圧変化を測定するためのセンサ(23)と、
     前記減圧部によって前記流体袋から流体を排出する減圧過程において前記センサで得られる前記流体袋の内圧変化に基づいて、血圧値を算出するための血圧測定部(40)と、
     前記加圧部、前記減圧部、および前記血圧測定部を制御するための制御部(40)とを備え、
     前記制御部は、前記減圧過程において前記排出量が前記流体袋の減圧速度と比例関係となるように前記減圧部での前記流体の排出量を制御するための制御量を決定し、前記排出量を制御する、血圧測定装置。
  16.  前記減圧部は前記流体袋に備えられる弁(22)を含み、
     前記制御量は前記弁のギャップであり、
     前記制御部は、減圧過程において前記弁のギャップを決定されたギャップに保持するよう制御することで前記排出量を制御する、請求範囲第15項に記載の血圧測定装置。
  17.  前記制御部は、前記流体袋の内圧が最高血圧から最低血圧まで変化する時間内に所定数以上の脈拍数が含まれる減圧速度となるように前記制御量である前記弁のギャップを決定する、請求の範囲第16項に記載の血圧測定装置。
  18.  前記制御部は、測定部位の周長に関する情報を取得するための取得部(41)を含み、
     前記制御部は前記周長に応じて前記制御量である前記弁のギャップを決定する、請求の範囲第16項に記載の血圧測定装置。
  19.  前記血圧測定部は、さらに、前記加圧部によって前記流体袋に流体を注入する加圧過程において前記センサで得られる前記流体袋の内圧変化に基づいて血圧値を算出し、
     前記制御部は、前記加圧過程における前記流体袋の内圧変化に基づいて算出される前記血圧値に応じて前記制御量である前記弁のギャップを決定する、請求の範囲第16項に記載の血圧測定装置。
  20.  前記血圧測定部は、さらに、前記加圧部によって前記流体袋に流体を注入する加圧過程において前記センサで得られる前記流体袋の内圧変化に基づいて脈波の周期を算出し、
     前記制御部は、前記加圧過程における前記流体袋の内圧変化に基づいて算出される脈波の周期に応じて前記弁のギャップを決定する、請求の範囲第16項に記載の血圧測定装置。
  21.  前記排出量を測定するための測定部(55)をさらに備えて、
     前記制御部は、前記測定部で測定される前記排出量と前記センサで得られる前記流体袋の内圧変化とに基づいて、前記減圧過程において前記排出量が前記流体袋の減圧速度と比例関係となるように前記減圧部での前記流体の排出量を制御する、請求の範囲第15項に記載の血圧測定装置。
  22.  前記流体袋の容量を増加させるための増加部(9、51、52、54、56、57)をさらに備えて、
     前記加圧部は、前記増加部によって容積が増加された前記流体袋に対して前記流体を注入して加圧する、請求の範囲第15項に記載の血圧測定装置。
  23.  流体袋(13)と、
     前記流体袋に流体を注入して加圧するための加圧部(21、26)と、
     前記流体袋の内圧変化を測定するためのセンサ(23)と、
     前記加圧部によって前記流体袋に流体を注入する加圧過程において前記センサで得られる前記流体袋の内圧変化に基づいて、血圧値を算出するための血圧測定部(40)と、
     前記加圧部および前記血圧測定部を制御するための制御部(40)とを備え、
     前記制御部は、前記加圧部による前記流体袋への前記流体の単位時間当たりの注入量が前記流体袋の加圧速度と比例関係となるように、前記流体袋の内圧に基づいて前記加圧部を制御するための制御量を決定し、前記加圧部を制御する、血圧測定装置。
  24.  前記加圧部は前記流体袋に前記流体を注入するためのポンプ(21)を含み、
     前記制御量は前記ポンプを駆動するための駆動電圧であり、
     前記制御部は、加圧過程において所定のタイミングで前記流体袋の内圧に基づいて前記駆動電圧を更新する、請求の範囲第23項に記載の血圧測定装置。
  25.  前記制御部は、前記流体袋の内圧が最低血圧から最高血圧まで変化する時間内に所定数以上の脈拍数が含まれる加圧速度となるように前記制御量である前記ポンプを駆動するための駆動電圧を決定する、請求の範囲第24項に記載の血圧測定装置。
  26.  前記制御部は、測定部位の周長に関する情報を取得するための取得部(41)を含み、
     前記制御部は前記周長に基づいて、前記制御量である前記ポンプを駆動するための駆動電圧を制御するための制御パラメータを決定する、請求の範囲第24項に記載の血圧測定装置。
  27.  前記流体袋への前記流体の注入量を測定するための測定部(55)をさらに備えて、
     前記制御部は、前記測定部で測定される前記流体袋への前記流体の単位時間当たりの注入量に基づいて、前記加圧過程において前記加圧部による前記流体袋への前記流体の単位時間当たりの注入量が前記流体袋の加圧速度と比例関係となるように前記加圧部を制御する、請求の範囲第23項に記載の血圧測定装置。
  28.  前記流体袋の容量を増加させるための増加部(9、51、52、54、56、57)をさらに備え、
     前記加圧部は、前記増加部によって容積が増加された前記流体袋に対して前記流体を注入して加圧する、請求の範囲第23項に記載の血圧測定装置。
PCT/JP2009/059358 2008-05-22 2009-05-21 血圧測定装置 WO2009142266A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801180155A CN102036604B (zh) 2008-05-22 2009-05-21 血压测定装置
US12/993,216 US9706933B2 (en) 2008-05-22 2009-05-21 Blood pressure measurement device
RU2010151962/14A RU2503406C2 (ru) 2008-05-22 2009-05-21 Устройство для измерения кровяного давления
DE112009001212T DE112009001212T5 (de) 2008-05-22 2009-05-21 Blutdruckmessgerät

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008134541A JP5228619B2 (ja) 2008-05-22 2008-05-22 血圧測定装置
JP2008-134543 2008-05-22
JP2008134542A JP5169482B2 (ja) 2008-05-22 2008-05-22 血圧測定装置
JP2008-134541 2008-05-22
JP2008134543A JP5228620B2 (ja) 2008-05-22 2008-05-22 血圧測定装置
JP2008-134542 2008-05-22

Publications (1)

Publication Number Publication Date
WO2009142266A1 true WO2009142266A1 (ja) 2009-11-26

Family

ID=41340193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059358 WO2009142266A1 (ja) 2008-05-22 2009-05-21 血圧測定装置

Country Status (5)

Country Link
US (1) US9706933B2 (ja)
CN (1) CN102036604B (ja)
DE (1) DE112009001212T5 (ja)
RU (1) RU2503406C2 (ja)
WO (1) WO2009142266A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009279198A (ja) * 2008-05-22 2009-12-03 Omron Healthcare Co Ltd 血圧測定装置
JP2009279196A (ja) * 2008-05-22 2009-12-03 Omron Healthcare Co Ltd 血圧測定装置
JP2009279197A (ja) * 2008-05-22 2009-12-03 Omron Healthcare Co Ltd 血圧測定装置
CN101881267A (zh) * 2010-05-12 2010-11-10 北京超思电子技术有限责任公司 一种充气泵控制电路及电子血压计
WO2013061778A1 (ja) * 2011-10-26 2013-05-02 オムロンヘルスケア株式会社 電子血圧計
WO2013061780A1 (ja) * 2011-10-26 2013-05-02 オムロンヘルスケア株式会社 電子血圧計
WO2013061779A1 (ja) * 2011-10-26 2013-05-02 オムロンヘルスケア株式会社 電子血圧計
WO2017169924A1 (ja) * 2016-03-29 2017-10-05 日本電気株式会社 血圧計、血圧測定方法及び血圧測定プログラム
EP3432788B1 (en) * 2016-03-23 2023-11-22 Koninklijke Philips N.V. Blood pressure monitor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103908238B (zh) * 2014-04-16 2017-02-15 江苏物联网研究发展中心 血压数据校正方法、装置和电子血压计

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63145636A (ja) * 1986-12-08 1988-06-17 コーリン電子株式会社 自動血圧計用カフ圧力制御方法およびカフ圧力制御装置
JPS6440030A (en) * 1987-08-07 1989-02-10 Fukuda Denshi Kk Sphygmonamometric method
JPH03121045A (ja) * 1989-10-05 1991-05-23 Terumo Corp 電子血圧計
JPH0647011A (ja) * 1992-07-14 1994-02-22 Parama Tec:Kk 血圧計及び脈波計における圧力降下速度制御方法及び装置
JPH06245911A (ja) * 1993-02-23 1994-09-06 Matsushita Electric Works Ltd 血圧計
JPH07313473A (ja) * 1994-05-23 1995-12-05 Nippon Colin Co Ltd リニヤ昇圧型血圧測定装置
JPH10314132A (ja) * 1997-05-16 1998-12-02 Omron Corp 血圧測定装置
WO2001017427A1 (fr) * 1999-09-08 2001-03-15 Omron Corporation Sphygmomanometre electronique
JP2006288531A (ja) * 2005-04-07 2006-10-26 Nippon Telegr & Teleph Corp <Ntt> 血圧計及び血圧計の制御方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6185175A (ja) * 1984-10-03 1986-04-30 Shinwa Seisakusho:Kk 生海苔洗浄装置
US5178152A (en) * 1986-04-21 1993-01-12 Terumo Corporation Electronic sphygmomanometer
JPS6335230A (ja) * 1986-07-28 1988-02-15 オムロン株式会社 電子血圧計
FI84690C (fi) * 1988-05-20 1992-01-10 Instrumentarium Oy Foerfarande och anordning foer reglering av trycket i en blodtrycksmaetares mansett.
DE69025095T2 (de) * 1989-05-25 1996-08-22 Omron Tateisi Electronics Co Elektrisches Blutdruckmessgerät
JPH04250133A (ja) 1991-01-28 1992-09-07 Matsushita Electric Works Ltd 血圧計の定速排気装置
JP3113737B2 (ja) 1992-06-03 2000-12-04 テルモ株式会社 電子血圧計
ES2249211T3 (es) * 1999-04-28 2006-04-01 Omron Healthcare Co., Ltd. Esfigmomanometro electronico con regimen ajustable de alivio de la presion.
RU2210974C2 (ru) * 2001-07-31 2003-08-27 Казанский государственный технический университет им. А.Н. Туполева Установка для поверки автоматизированных средств измерений артериального давления и частоты пульса
KR100745747B1 (ko) * 2001-08-21 2007-08-02 삼성전자주식회사 선형적으로 변화시킬 수 있는 공기 압력을 이용한 혈압측정 장치 및 방법
JP3925858B2 (ja) * 2002-11-08 2007-06-06 日本精密測器株式会社 非観血式血圧計
JP3815487B2 (ja) * 2004-04-26 2006-08-30 オムロンヘルスケア株式会社 血圧測定用帯の巻付け制御装置
EP1790284B1 (en) * 2004-09-10 2010-04-07 Terumo Kabushiki Kaisha Sphygmomanometer
JP4470876B2 (ja) * 2005-12-20 2010-06-02 オムロンヘルスケア株式会社 電子血圧計
JP4511489B2 (ja) * 2006-04-11 2010-07-28 日本精密測器株式会社 電動排気弁及び血圧計
JP4702216B2 (ja) * 2006-08-03 2011-06-15 オムロンヘルスケア株式会社 電子血圧計およびその制御方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63145636A (ja) * 1986-12-08 1988-06-17 コーリン電子株式会社 自動血圧計用カフ圧力制御方法およびカフ圧力制御装置
JPS6440030A (en) * 1987-08-07 1989-02-10 Fukuda Denshi Kk Sphygmonamometric method
JPH03121045A (ja) * 1989-10-05 1991-05-23 Terumo Corp 電子血圧計
JPH0647011A (ja) * 1992-07-14 1994-02-22 Parama Tec:Kk 血圧計及び脈波計における圧力降下速度制御方法及び装置
JPH06245911A (ja) * 1993-02-23 1994-09-06 Matsushita Electric Works Ltd 血圧計
JPH07313473A (ja) * 1994-05-23 1995-12-05 Nippon Colin Co Ltd リニヤ昇圧型血圧測定装置
JPH10314132A (ja) * 1997-05-16 1998-12-02 Omron Corp 血圧測定装置
WO2001017427A1 (fr) * 1999-09-08 2001-03-15 Omron Corporation Sphygmomanometre electronique
JP2006288531A (ja) * 2005-04-07 2006-10-26 Nippon Telegr & Teleph Corp <Ntt> 血圧計及び血圧計の制御方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009279198A (ja) * 2008-05-22 2009-12-03 Omron Healthcare Co Ltd 血圧測定装置
JP2009279196A (ja) * 2008-05-22 2009-12-03 Omron Healthcare Co Ltd 血圧測定装置
JP2009279197A (ja) * 2008-05-22 2009-12-03 Omron Healthcare Co Ltd 血圧測定装置
CN101881267A (zh) * 2010-05-12 2010-11-10 北京超思电子技术有限责任公司 一种充气泵控制电路及电子血压计
JP2013090826A (ja) * 2011-10-26 2013-05-16 Omron Healthcare Co Ltd 電子血圧計
WO2013061780A1 (ja) * 2011-10-26 2013-05-02 オムロンヘルスケア株式会社 電子血圧計
WO2013061779A1 (ja) * 2011-10-26 2013-05-02 オムロンヘルスケア株式会社 電子血圧計
JP2013090824A (ja) * 2011-10-26 2013-05-16 Omron Healthcare Co Ltd 電子血圧計
WO2013061778A1 (ja) * 2011-10-26 2013-05-02 オムロンヘルスケア株式会社 電子血圧計
US9017264B2 (en) 2011-10-26 2015-04-28 Omron Healthcare Co., Ltd. Electronic blood pressure meter
US9138152B2 (en) 2011-10-26 2015-09-22 Omron Healthcare Co., Ltd. Electronic blood pressure meter
EP3432788B1 (en) * 2016-03-23 2023-11-22 Koninklijke Philips N.V. Blood pressure monitor
WO2017169924A1 (ja) * 2016-03-29 2017-10-05 日本電気株式会社 血圧計、血圧測定方法及び血圧測定プログラム
JPWO2017169924A1 (ja) * 2016-03-29 2019-02-14 日本電気株式会社 血圧計、血圧測定方法及び血圧測定プログラム
US11298031B2 (en) 2016-03-29 2022-04-12 Nec Corporation Sphygmomanometer, blood pressure measurement method, and blood pressure measurement program
JP7120001B2 (ja) 2016-03-29 2022-08-17 日本電気株式会社 血圧計、血圧測定方法及び血圧測定プログラム

Also Published As

Publication number Publication date
DE112009001212T5 (de) 2011-03-24
CN102036604A (zh) 2011-04-27
US9706933B2 (en) 2017-07-18
US20110125035A1 (en) 2011-05-26
RU2010151962A (ru) 2012-06-27
RU2503406C2 (ru) 2014-01-10
CN102036604B (zh) 2013-03-06

Similar Documents

Publication Publication Date Title
WO2009142266A1 (ja) 血圧測定装置
EP2110074B1 (en) Apparatus and method of evaluating vascular endothelial function
RU2502463C2 (ru) Устройство измерения информации о кровяном давлении, способное получать показатель для определения степени артериосклероза
EP2294976B1 (en) Apparatus for evaluating vascular endothelial function
US8808189B2 (en) Blood pressure measurement device including cuff to be wrapped around measurement site
US20130030310A1 (en) Blood pressure measurement device
JP2007244837A (ja) 血圧測定装置
JP5565164B2 (ja) 電子血圧計
JP3835461B2 (ja) 電子血圧計
TWI437975B (zh) 能精確測定血壓之血壓測定裝置
DE112010001358T5 (de) Elektronisches Blutdruckmessgerät
JP5233967B2 (ja) 血圧測定装置
JP5228619B2 (ja) 血圧測定装置
US20150201847A1 (en) Apparatus for evaluating vascular endothelial function
JP5228620B2 (ja) 血圧測定装置
JP5928341B2 (ja) 電子血圧計および当該電子血圧計における血圧測定方法
JP5169482B2 (ja) 血圧測定装置
JP2007209492A (ja) 血管内皮機能評価システム
JP5111053B2 (ja) 血圧測定装置
JP2012115413A (ja) 電子血圧計
JP2009297223A (ja) 血圧情報測定装置におけるカフ構造、および血圧情報測定装置
WO2013061778A1 (ja) 電子血圧計
KR200238575Y1 (ko) 혈압측정계의 자동가압장치
Kastinger From Model to Practice: Cuffless Blood Pressure Measurement on the Finger
WO2019202856A1 (ja) 電子血圧計および心不全検出器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980118015.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09750628

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010151962

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 12993216

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112009001212

Country of ref document: DE

Date of ref document: 20110324

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 09750628

Country of ref document: EP

Kind code of ref document: A1