WO2009135348A1 - 铁基化合物超导线材和带材及其制备方法 - Google Patents

铁基化合物超导线材和带材及其制备方法 Download PDF

Info

Publication number
WO2009135348A1
WO2009135348A1 PCT/CN2008/001883 CN2008001883W WO2009135348A1 WO 2009135348 A1 WO2009135348 A1 WO 2009135348A1 CN 2008001883 W CN2008001883 W CN 2008001883W WO 2009135348 A1 WO2009135348 A1 WO 2009135348A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
iron
superconducting
wire
powder
Prior art date
Application number
PCT/CN2008/001883
Other languages
English (en)
French (fr)
Inventor
马衍伟
张现平
高召顺
王栋樑
王雷
齐彦鹏
Original Assignee
中国科学院电工研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院电工研究所 filed Critical 中国科学院电工研究所
Publication of WO2009135348A1 publication Critical patent/WO2009135348A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic superconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment

Definitions

  • Iron-based compound superconducting wire and strip and preparation method thereof
  • the invention relates to a superconducting wire and a strip and a preparation method thereof, in particular to a superconducting wire and a strip made of a novel superconducting phase iron-based compound having a superconducting property and a metal phase and a preparation method thereof.
  • Iron-based compound superconducting material is a newly discovered compound superconductor
  • the iron-based compound superconducting material Compared with the oxide high-temperature superconducting material, the iron-based compound superconducting material has a simpler crystal structure, a large coherence length, and a weak junction without a grain boundary, and can carry a high critical current density. At the same time, compared with oxide high-temperature superconducting materials, the processing properties of iron-based compound superconductors are excellent, so the preparation of iron-based compound superconducting materials has received extensive international attention [Dong J. et al., Evidence for Spin Density Wave in LaFeAsO arXiv: 0803.3426 (2008) , Cruz C. et al. , Magnetic Order versus Superconductivity in the Iron-based layered La (O ⁇ FJ FeAs.
  • the object of the present invention is to provide an iron-based compound superconducting wire and strip having a high superconducting property and a preparation method thereof for the purpose of satisfying the engineering application of an iron-based compound superconducting material.
  • the core of the iron-based compound superconducting wire of the present invention is an iron-based compound having superconducting properties, and the core is coated with a metal pipe, a composite metal pipe or an alloy pipe, and a metal pipe, a composite metal pipe or an alloy pipe. Selected from iron, copper, mild steel, stainless steel, chromium, vanadium, manganese, titanium, zirconium, molybdenum, nickel, niobium, tungsten, niobium and tantalum.
  • the preparation method of the superconducting wire of the invention is as follows:
  • LnO F iPn or LnOi IPn is thoroughly mixed.
  • Ln is selected from the group consisting of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, One or more of Tm, Yb, Lu, and Y
  • M is an element selected from the group consisting of Fe, Co, Ni, and Ru
  • a metal or composite metal tube selected from the group consisting of iron, copper, mild steel, stainless steel, chromium, vanadium, manganese, titanium, zirconium, molybdenum, nickel, niobium, tungsten, niobium and tantalum Or in the alloy tube, the powder is filled and filled in the tube, and then the ends of the tube are closed to assemble into a composite;
  • the assembled composite is swaged and drawn according to a certain processing rate. Processing the wire;
  • step annealing furnace was evacuated at room temperature to more than 10-2 Pa, and then filled with argon gas, then 0.5 wire incubated at a temperature of 700-1500 ° C at the After -100 hours, the furnace to be annealed is finally cooled to room temperature to obtain an iron-based compound superconducting wire.
  • the superconducting core of the iron-based compound superconducting tape of the present invention is an iron-based compound having superconducting properties, and the superconducting core is covered with a metal pipe, a composite metal pipe or an alloy pipe, a metal pipe, a composite metal pipe or an alloy pipe.
  • the materials of fabrication are selected from the group consisting of iron, copper, mild steel, stainless steel, chromium, vanadium, manganese, titanium, zirconium, molybdenum, nickel, niobium, tungsten, niobium and tantalum.
  • the preparation method of the superconducting tape of the invention is:
  • LnO F ⁇ MPn or LnOt- ⁇ is sufficiently mixed.
  • Ln is selected from the group consisting of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, One or more of Er, Tm, Yb, Lu, and Y
  • M is an element selected from the group consisting of Fe, Co, Ni, and Ru
  • a metal or composite metal tube selected from the group consisting of iron, copper, mild steel, stainless steel, chromium, vanadium, manganese, titanium, zirconium, molybdenum, nickel, niobium, tungsten, niobium and tantalum Or in the alloy tube, the powder is filled and filled in the tube, and then the ends of the tube are closed to assemble into a composite;
  • the assembled composite body is swaged, drawn and rolled according to a certain processing rate, and processed to obtain a strip;
  • step 3 Place the strip processed in step 2 in an annealing furnace, vacuum at room temperature to 1 ( ⁇ 2 Pa or more, then fill with argon, then keep the strip at 700-1500 ° C. 0. 5-100 hours, the final annealing furnace is cooled to room temperature to obtain an iron-based compound superconducting tape.
  • the iron-based compound superconducting wire or strip of the present invention is characterized in that the prepared iron-based compound superconducting wire or strip has a critical transition temperature of 26 K or more.
  • the invention has the advantages of using excellent workability and hardness, and is selected from the group consisting of iron, copper, mild steel, stainless steel, chromium, vanadium, manganese, titanium, zirconium, molybdenum, nickel, niobium, tungsten, niobium and tantalum.
  • a metal tube or a composite metal tube or an alloy tube is used as a sheath material of an iron-based compound, which is advantageous for fully crushing and compacting the initial raw material powder during processing, and refining the finally formed iron-based compound grain, effectively
  • the grain connectivity of the iron-based compound is enhanced, and the metal fluidity during processing is improved, and the occurrence of cracking is avoided.
  • the composite superconductor material is subjected to the comprehensive processing of material swaging, drawing and rolling, and the formed superconductor is more dense, thereby greatly improving the superconducting performance of the material.
  • the invention can realize the one-time rapid sintering of the iron-based compound wire or the strip material, and avoids the problems of high cost caused by the step-by-step sintering method which is currently widely used.
  • the prepared iron-based compound wire or tape includes an iron-based compound having superconducting properties and a metal layer surrounding the iron-based compound, and the wire or the strip has a critical transition temperature of 26 K or more.
  • a method for preparing a superconducting wire or strip, the preparation process thereof is:
  • LnO F ⁇ Pn or Lnt ⁇ MPn are thoroughly mixed, wherein: Ln is selected from the group consisting of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, One or more elements of Lu and Y; M is an element selected from the group consisting of Fe, Co, Ni, and Ru; Pn is As, P or Sb; 50;
  • the mixed homogenized powder is charged into a metal tube selected from the group consisting of iron, copper, mild steel, stainless steel, chromium, vanadium, manganese, titanium, zirconium, molybdenum, nickel, niobium, tungsten, niobium and tantalum.
  • a metal tube or alloy tube the powder is filled and compacted in the tube, and then the ends of the tube are closed;
  • the assembled composite is swaged, drawn and rolled according to a certain pass processing rate (rolling only for the strip), and the wire or strip is processed;
  • the powders of La, As, Fe 2 O 3 , Fe and LaF 3 are accurately weighed according to the chemical ratio shown by the chemical formula LaOo. ⁇ o. ⁇ eAs, and the powder is ground in an argon atmosphere glove box. It is fully mixed and mixed, and the mixed powder is put into a 10cm long iron pipe.
  • the inner diameter of the iron pipe is 5mm and the outer diameter is 8mm, so that the powder is enriched and compacted in the pipe, and then the ends of the iron pipe are closed, and then An iron pipe containing a mixed powder was swaged to 1 ⁇ 2 m and then pulled to 1 mm to obtain a superconducting wire.
  • the processed wire is placed in a vacuum annealing furnace, and vacuum is taken at room temperature.
  • the powders of Eu, La 2 O 3 , FeAs, and FeF 3 were subjected to the chemical formula EuO. 85 F. 15
  • the chemical ratio shown by FeAs is accurately weighed, and the powder is ground in an argon atmosphere glove box to make it fully mixed.
  • the powder after mixing and mixing is placed in a 20-cm long tube. l Omm, outer diameter 12mm, so that the powder is filled and compact in the tube, then close the ends of the tube, then swivel the tube with the mixed powder to 6mm, then pull to lmm, get superconductivity Wire.
  • the processed wire is placed in a vacuum annealing furnace, and vacuum is taken at room temperature.
  • the powders of CeAs, Fe, Ce0 2 , CeF 3 and Fe 2 As were subjected to the chemical formula CeO. 84 F.
  • the chemical ratio shown in 16 FeAs was accurately weighed, and the powder was ground in an argon atmosphere glove box to make it fully uniformly mixed.
  • the uniformly mixed powder was placed in a 30 cm long stainless steel tube with an inner diameter of 15 mm. The outer diameter is 19mm, so that the powder is filled and compacted in the tube, and then the two ends of the stainless steel tube are closed, and then the stainless steel tube with the mixed powder is swaged to 3mm, and then pulled to 0, 5mm to obtain the superconducting wire. .
  • the processed wire is placed in a vacuum annealing furnace, and vacuum is applied at room temperature. After reaching a vacuum of 10 - 3 Pa, the high-purity argon gas is charged, and then the temperature is raised to 1,150. C is kept for 50 hours, and finally cooled to room temperature with the furnace to prepare Ce0 84 F with a superconducting transition temperature of not less than 26K. . 16 FeAs wire.
  • the powders of SmAs, SmF 3 , Fe and Fe 2 0 3 are accurately weighed according to the chemical ratio shown by the chemical formula SmOo ⁇ Fo. ⁇ eAs, and the powder is ground in an argon atmosphere glove box to make it fully uniform.
  • the mixture is mixed and filled into a 20cm long nickel tube.
  • the inner diameter of the tube is 12mm and the outer diameter is 15mm.
  • the powder is filled and compacted in the tube, and then the ends of the nickel tube are closed.
  • the nickel tube of the mixed powder was swaged to 5 mm and then pulled to 1 mm to obtain a superconducting wire.
  • the processed wire is placed in a vacuum annealing furnace, and vacuum is applied at room temperature.
  • the powders of Nd, As, Fe, Fe 2 0 3 and FeF 3 are accurately weighed according to the chemical ratio shown by the chemical formula Nd [O 0 . 89 F 0 . folk] FeAs, and the powder is placed in an argon atmosphere glove. Grind in the box, make it fully mix and mix, put the powder after mixing and hook into the 10cm long ⁇ Zirconium tube alloy tube, the inner diameter of the tube is 3mm, the outer diameter is 5mm, so that 3 The powder is filled and compacted in the tube, and then the ends of the tube are closed, and then the zirconia tube alloy tube containing the mixed powder is swaged to 4 mm, and then pulled to 1 mm to obtain a superconducting wire.
  • the processed wire is placed in a vacuum annealing furnace, and vacuum is applied at room temperature. After reaching a vacuum of 10 - 3 Pa, it is filled with high-purity argon gas, then heated to 1300 Torr for 20 hours, and finally cooled to room temperature with the furnace.
  • a Nd [Oo. 8 9F 0 11 ] FeAs wire having a superconducting transition temperature of not less than 45 K was prepared.
  • the powders of PrAs, Fe, Fe 2 0 3 and FeF 3 were accurately weighed according to the chemical ratio shown by the chemical formula Pr [Oo. 8 9Fo. n] FeAs, and the powder was ground in an argon atmosphere glove box. Make it fully mixed and mix the powder after mixing the uniform sentence into a 10cm long zirconium tube with an inner diameter of 10mm and an outer diameter of 13mm, so that the powder is filled and compacted in the tube, and then the ends of the zirconium tube are closed, and then This zirconium tube containing the mixed powder was swaged to 1 ⁇ 2 m and then pulled to 1 mm to obtain a superconducting wire.
  • the processed wire is placed in a vacuum annealing furnace, and vacuum is applied at room temperature. After a vacuum of 10 - 3 Pa is reached, high purity argon is charged, and then the temperature is raised to 1200. C heat preservation for 40 hours, and finally cooled to room temperature with the furnace to prepare a Pr [Oo. 89F 0 . ii] FeAs wire with a superconducting transition temperature of not less than 45K.
  • the processed wire is placed in a vacuum annealing furnace, and vacuum is applied at room temperature. After a vacuum of 10 - 3 Pa is reached, high purity argon is charged, and then the temperature is raised to 1200. C is kept for 50 hours, and finally cooled to room temperature with the furnace to make the superconducting transition temperature not lower than 26K.
  • the chemical ratio shown by fl5 FeAs is accurately weighed, and the powder is ground in an argon atmosphere glove box to make it fully mixed, and the mixed powder is placed in a 40 cm long tungsten tube. The inner diameter is 4mm and the outer diameter is 7mm. The powder is filled and compacted in the tube. Then the two ends of the tungsten tube are closed, and then the tungsten tube with the mixed powder is swaged to 4mm, and then pulled to lmm to obtain superconductivity. Wire. The processed wire is placed in a vacuum annealing furnace, and vacuum is applied at room temperature.
  • the processed wire is placed in a vacuum annealing furnace, and vacuum is taken at room temperature until It is reached. ) — After 3 weeks of vacuum, it is filled with high-purity argon gas, then heated to 1200 ° C for 40 hours, and finally cooled to room temperature with the furnace to make Dy0 0. 7 Fo. with superconducting transition temperature not lower than 26K. 3 FeAs wire.
  • the powders of HoAs, HoF 3 , Fe and Fe 2 0 3 are in accordance with the chemical formula HoO. 85 F. 15
  • the chemical ratio shown by FeAs is accurately weighed, and the powder is ground in an argon atmosphere glove box to make it fully mixed and mixed. Packed into a 25cm long low carbon steel pipe, the inner diameter of the pipe is 6mm, and the outer diameter is 8mm. The powder is filled and compacted in the pipe. Then the two ends of the low carbon steel pipe are closed, and the low carbon steel pipe is placed in the copper pipe. The inner diameter of the copper pipe is 8.
  • the low carbon steel and copper composite pipe with mixed powder is swaged to 4mm, and then pulled to lmm to obtain superconducting wire.
  • the processed wire is placed in a vacuum annealing furnace, and vacuum is applied at room temperature. After reaching a vacuum of 10 - 3 Pa, it is filled with high-purity argon gas, then heated to 1250 ° C for 55 hours, and finally cooled with the furnace. At room temperature, HoO with a superconducting transition temperature of not less than 26K is prepared. 85 F. . 15 FeAs wire.
  • Er, AS, CO 2 0 3 , CO, and ErF 3 powder according to the formula ErO.
  • the chemical ratio of 9 F Q 1 CoAs is accurately weighed, and the powder is ground in an argon atmosphere glove box to make it fully mixed.
  • the powder after mixing and mixing is placed in a 10 cm long manganese tube.
  • the inner diameter of the tube is 5mm and the outer diameter is 8mm, so that the powder is filled and compacted in the tube, and then the ends of the manganese tube are closed, and then the manganese tube containing the mixed powder is swaged to 4mm, and then pulled to lmm, Super wire.
  • the furnace is placed in a vacuum annealing furnace, vacuuming at room temperature, to reach a vacuum of 10 - 3 Pa, then filled with high-purity argon, and then heated to 1500 ° C insulation 0. 5 hours, and finally with the furnace After cooling to room temperature, the superconducting core chemical composition is ErO ⁇ F CoAs wire, and the wire has a superconducting transition temperature of not less than 26K.
  • the powders of Yb, P, Ni 2 0 3 and Ni are in accordance with the chemical formula YbO. 9
  • the chemical ratio of NiP is accurately weighed, and the powder is ground in an argon atmosphere glove box to make it fully mixed.
  • the mixed powder is placed in a 10 cm long vanadium tube. 5mm, 8mm outer diameter, make the powder full and tight in the tube, then close the vanadium tube ends, then swivel the vanadium tube with mixed powder to 1 ⁇ 2111, then pull to 2mm, and finally pass the flat roll
  • the superconducting tape is obtained by rolling.
  • the processed strips were placed in a vacuum annealing furnace, vacuum at room temperature, to be achieved 10-3
  • the vacuum of the Pa is filled with high purity argon and then raised to 700. C is kept for 100 hours, and finally cooled to room temperature with the furnace, then the chemical composition of the superconducting core is YbO ⁇ NU strip, and the superconducting transition temperature of the strip is not less than 26
  • the powders of Lu, As, Ru 2 0 3 and Ru were subjected to the chemical formula LuO D . 5 F. 5
  • the chemical ratio shown by RuAs is accurately weighed, and the powder is ground in an argon atmosphere glove box to make it fully mixed.
  • the mixed powder is placed in a 10 cm long tube. The inner diameter is 5mm and the outer diameter is 8mm, so that the powder is filled and compacted in the tube, then the ends of the manifold are closed, and then the mixing tube with the mixed powder is swaged to 4mm, then pulled to 2mm, and finally passed through the flat Roller rolling gives a superconducting tape.
  • the processed strips were placed in a vacuum annealing furnace, vacuum at room temperature, charged with high-purity argon gas to be achieved after a degree of vacuum of 10-2 Pa, and then warmed to 1300'C incubated for 30 hours, and finally cooled with furnace At room temperature, the superconducting core chemical composition is LuO. 5 Ru. 5 As strip, the strip has a superconducting transition temperature of not less than 26K.
  • the powders of Y, Sb, Fe 2 0 3 and Fe are in accordance with the chemical formula YO. 8 F. 2
  • the chemical ratio shown by FeSb is accurately weighed, and the powder is ground in an argon atmosphere glove box to make it fully and uniformly mixed.
  • the powder after mixing and mixing is placed in a 10 cm long chromium tube with an inner diameter of 5 mm. , the outer diameter of 8mm, so that the powder is filled and compact in the tube, and then the two ends of the chrome tube are closed, and then the chrome tube containing the mixed powder is swaged to 4mm, then pulled to 2mm, and finally passed through the flat roll A superconducting tape is obtained.
  • the processed strip was placed in a vacuum annealing furnace, and evacuated at room temperature. After reaching a vacuum of 10 to 4 Pa, it was filled with high purity argon gas, and then heated to 1250. C is kept for 60 hours, and finally cooled to room temperature with the furnace, and the chemical composition of the superconducting core is YO. . 8 F. 2 FeAs strip, the strip has a superconducting transition temperature of not less than 26K.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

铁基化合物超导线材和带材及其制备方法 技术领域
本发明涉及超导线材和带材及其制备方法, 特别涉及具有 超导性质的新型超导相铁基化合物与金属相制成的超导线材和 带材及其制备方法。 背景技术
铁基化合物超导材料是一种新近发现的化合物超导体
[Kamihara Y. et al. , Iron-based layered superconductor LaOi.xFxFeAs (x=0.05-0.12) with Tc=26 K. J. Am. Chem. Sco. 130, 3296-3297 (2008)],其超导转变温度据预测有望达到 100K, 性能明显优于目前应用的 Nb 系超导材料和 Bi 系超导材料, 是 一种在 20-90K范围内具有极大应用前景的新型超导材料。 与氧 化物高温超导材料相比, 铁基化合物超导材料的晶体结构更为 简单, 相干长度大, 无晶界弱连接, 可以承载较高的临界电流 密度。 同时, 相对于氧化物高温超导材料, 铁基化合物超导体 的加工性能优良, 因此铁基化合物超导材料的制备受到国际上 的广泛关注 [Dong J. et al., Evidence for Spin Density Wave in LaFeAsO. arXiv: 0803.3426 (2008) , Cruz C. et al. , Magnetic Order versus Superconductivity in the Iron-based layeredLa (O^FJ FeAs. arXiv: 0804.0795 (2008) , Chen X. H. et al. , Superconductivity at 43 K in samarium-arsenide oxides SmFeAsOi— XFX. arXiv: 0803.3603vl (2008) , Chen G. F. et al. , Superconductivity at 41 K and its competition with spin - density - wave insability in layered CeOi_xFxFeAs. arXiv: 0803. 3790v2 (2008), Ren Z. A. et al., Superconduct ivi ty at 52 K in iron-based F— doped layered quanternary compound CeO^F.FeAs. arXiv: 0803. 4283vl (2008) ]。 在铁基化合物的 超导电性发现的短短两个月内, 已经有近 30篇论文发表。 目前 关于铁基化合物超导材料的研究主要集中在块材方面, 但是对 于超导材料的实际工程应用来说, 其线材和带材的制备技术具 有更加重要的意义。 发明内容
本发明的目的是为了满足铁基化合物超导材料工程应用需 要, 提供具有较高超导性能的铁基化合物超导线材和带材及其 制备方法。
本发明的铁基化合物超导线材的线芯为具有超导性能的铁 基化合物, 线芯外包覆有金属管、 复合金属管或合金管, 金属 管、 复合金属管或合金管的制作材料选自铁、 铜、 低碳钢、 不 锈钢、 铬、 钒、 锰、 钛、 锆、 钼、 镍、 铌、 钨、 铪和钽。
本发明的超导线材的制备方法为:
1. 将按照化学式 LnO F iPn或 LnOi IPn, 准确配制的原料 粉末充分混合, 上述化学式中: Ln为选自 La、 Ce、 Pr、 Nd、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Yb、 Lu和 Y中的一种或多种元 素; M为选自 Fe、 Co、 Ni和 Ru中的元素; Pn为 As , P或 Sb; ^=0-0. 50;
将混合均勾的粉末装入选自铁、 铜、 低碳钢、 不锈钢、 铬、 钒、 锰、 钛、 锆、 钼、 镍、 铌、 钨、 铪和钽的一种金属管或复 合金属管或合金管内, 粉末在管内填充充实、 紧密, 然后封闭 管的两端, 组装成复合体;
2. 将组装的复合体按照一定的道次加工率进行旋锻、拉拔, 加工得到线材;
3. 将经步骤 2加工所得的线材置于退火炉中, 于室温下抽 真空至 10— 2帕以上, 之后充入氩气, 然后将线材在 700-1500°C 的温度下保温 0. 5-100 小时, 最后待退火炉冷却至室温, 得到 铁基化合物超导线材。
本发明的铁基化合物超导带材的超导芯为具有超导性能的 铁基化合物, 超导芯外包覆有金属管、 复合金属管或合金管, 金属管、 复合金属管或合金管的制作材料选自铁、 铜、 低碳钢、 不锈钢、 铬、 钒、 锰、 钛、 锆、 钼、 镍、 铌、 钨、 铪和钽。
本发明超导带材的制备方法为:
1. 将按照化学式 LnO F^MPn或 LnOt-ϋΡη, 准确配制的原料 粉末充分混合, 上述化学式中: Ln为选自 La、 Ce、 Pr、 Nd、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Yb、 Lu和 Y中的一种或多种元 素; M为选自 Fe、 Co、 Ni和 Ru中的元素; Pn为 As, P或 Sb; ^=0-0. 50;
将混合均勾的粉末装入选自铁、 铜、 低碳钢、 不锈钢、 铬、 钒、 锰、 钛、 锆、 钼、 镍、 铌、 钨、 铪和钽的一种金属管或复 合金属管或合金管内, 粉末在管内填充充实、 紧密, 然后封闭 管的两端, 组装成复合体;
2. 将组装的复合体按照一定的道次加工率进行旋锻、拉拔、 轧制, 加工得到带材;
3. 将经步驟 2加工所得的带材置于退火炉中, 于室温下抽 真空至 1 (Γ2帕以上, 之后充入氩气, 然后将带材在 700-1500。C 的温度下保温 0. 5-100 小时, 最后待退火炉冷却至室温, 得到 铁基化合物超导带材。
本发明的铁基化合物超导线材或带材, 其特征在于制备的 铁基化合物超导线材或带材的临界转变温度在 26 K以上。 本发明的优点是, 采用加工性能优良、 硬度较大的、 选自 铁、 铜、 低碳钢、 不锈钢、 铬、 钒、 锰、 钛、 锆、 钼、 镍、 铌、 钨、 铪和钽的一种金属管或复合金属管或合金管作为铁基化合 物的包套材料, 有利于在加工过程中将初始的原料粉充分破碎、 压实, 使最终形成的铁基化合物晶粒细化, 有效强化铁基化合 物的晶粒连接性, 同时改善了加工过程中的金属流动性, 避免 了出现断裂现象。 其次包套复合超导体材料经过材料旋锻、 拉 拔、 轧制的综合加工过程, 形成的超导体更为致密, 因而大大 提高了材料的超导性能。 另外, 本发明可实现铁基化合物线材 或带材的一次快速烧结成材, 避免了目前普遍釆用的分步烧结 方法带来的成本较高等问题。 制备的铁基化合物线材或带材包 括具有超导性能的铁基化合物和包围铁基化合物的金属层, 线 材或带材的临界转变温度在 26K以上。 具体实施方式:
一种超导线材或带材的制备方法, 其制备过程为:
将按照化学式 LnO F^Pn或 Lnt ^MPn准确配制的原料充分 混合, 其中: Ln为选自 La、 Ce、 Pr、 Nd、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Yb、 Lu和 Y中的一种或多种元素; M为选自 Fe、 Co、 Ni和 Ru中的元素; Pn为 As , P或 Sb;
Figure imgf000006_0001
50;
2.将混合均勾的粉末装入选自铁、 铜、 低碳钢、 不锈钢、 铬、 钒、 锰、 钛、 锆、 钼、 镍、 铌、 钨、 铪和钽的一种金属管、 复合金属管或合金管内, 粉末在管内达到充实、 紧密, 然后封 闭管两端;
3. 将组装的复合体按照一定的道次加工率进行旋锻、 拉拔 和轧制 (轧制仅对于带材) , 加工得到线材或带材;
4.将加工后线材或带材置于退火炉中, 于室温下抽真空后 充入氩气, 然后将线材或带材在 700-1500 eC的温度下保温 0. 5-100小时, 最后待退火炉冷却至室温, 得到铁基化合物超导 线材或带材。 下面具体说明符合本发明的实施例:
实施例 1
首先将 La、 As、 Fe203、 Fe 以及 LaF3的粉末按照化学式 LaOo. ^o. ^eAs所示的化学比准确称量粉末,并将此粉末置于氩气 氛手套箱中研磨, 使其充分均勾混合, 将混合均 后的粉末装 入 10cm长的铁管中, 铁管内径 5mm, 外径 8mm, 使粉末在管中 达到充实、 紧密, 然后封闭铁管两端, 继而对这一装有混合粉 末的铁管进行旋锻至 ½m, 然后拉拔至 1mm, 得到超导线材。 将 加工后的线材置于真空退火炉中, 于室温下抽真空, 待达到 10— 3 帕的真空度后充入高纯氩气, 然后升温至 1200'C保温 40小时, 最后随退火炉冷却至室温, 便制成超导转变温度不低于 26K 的 LaOcFo. iFeAs线材。
实施例 2
首先将 Eu、 La203、 FeAs 以及 FeF3的粉末按照化学式 EuO。85F。 15FeAs 所示的化学比准确称量粉末, 并将此粉末置于氩 气氛手套箱中研磨, 使其充分均勾混合, 将混合均勾后的粉末 装入 20cm长的钽管中, 管内径 l Omm, 外径 12mm, 使粉末在管 中达到充实、 紧密, 然后封闭钽管两端, 继而对这一装有混合 粉末的钽管进行旋锻至 6mm, 然后拉拔至 lmm, 得到超导线材。 将加工后的线材置于真空退火炉中, 于室温下抽真空, 待达到 10—3帕的真空度后充入高纯氩气, 然后升温至 1200°C保温 50小 时, 最后随炉子冷却至室温, 便制成超导转变温度不低于 26K 的 EuOo. esFo. isFeAs线材。 实施例 3
首先将 CeAs、 Fe、 Ce02、 CeF3以及 Fe2As的粉末按照化学式 CeO。84F。16FeAs 所示的化学比准确称量粉末, 并将此粉末置于氩 气氛手套箱中研磨, 使其充分均匀混合, 将混合均匀后的粉末 装入 30cm长的不锈钢管中, 管内径 15mm, 外径 19mm, 使粉末 在管中达到充实、 紧密, 然后封闭不锈钢管两端, 继而对这一 装有混合粉末的不锈钢管进行旋锻至 3mm, 然后拉拔至 0, 5mm, 得到超导线材。 将加工后的线材置于真空退火炉中, 于室温下 抽真空, 待达到 10—3帕的真空度后充入高纯氩气, 然后升温至 1150。C保温 50小时, 最后随炉子冷却至室温, 便制成超导转变 温度不低于 26K的 Ce084F。.16FeAs线材。
实施例 4
首先将 SmAs、 SmF3、 Fe 以及 Fe203的粉末按照化学式 SmOo^Fo. ^eAs所示的化学比准确称量粉末,并将此粉末置于氩气 氛手套箱中研磨, 使其充分均勾混合, 将混合均勾后的粉末装 入 20cm长的镍管中, 管内径 12mm, 外径 15mm, 使粉末在管中 达到充实、 紧密, 然后封闭镍管两端, 继而对这一装有混合粉 末的镍管进行旋锻至 5mm, 然后拉拔至 lmm, 得到超导线材。 将 加工后的线材置于真空退火炉中, 于室温下抽真空, 待达到 10— 3 帕的真空度后充入高纯氩气, 然后升温至 1160'C保温 40小时, 最后随炉子冷却至室温, 便制成超导转变温度不低于 40K 的 SmO FJeAs线材。
实施例 5
首先将 Nd、 As、 Fe、 Fe203以及 FeF3的粉末按照化学式 Nd [O0.89F0.„] FeAs 所示的化学比准确称量粉末, 并将此粉末置于 氩气氛手套箱中研磨, 使其充分均勾混合, 将混合均勾后的粉 末装入 10cm长的铌锆管合金管中, 管内径 3mm, 外径 5mm, 使 3 粉末在管中达到充实、 紧密, 然后封闭铌管两端, 继而对这一 装有混合粉末的铌锆管合金管进行旋锻至 4mm,然后拉拔至 1mm, 得到超导线材。 将加工后的线材置于真空退火炉中, 于室温下 抽真空, 待达到 10—3帕的真空度后充入高纯氩气, 然后升温至 1300Ό保温 20小时, 最后随炉子冷却至室温, 便制成超导转变 温度不低于 45K的 Nd [Oo. 89F0 11] FeAs线材。
实施例 6
首先将 PrAs、 Fe、 Fe203以及 FeF3的粉末按照化学式 Pr [ Oo. 89Fo. n] FeAs 所示的化学比准确称量粉末, 并将此粉末置于 氩气氛手套箱中研磨, 使其充分均勾混合, 将混合均句后的粉 末装入 10cm长的锆管中, 管内径 10mm, 外径 13mm, 使粉末在 管中达到充实、 紧密, 然后封闭锆管两端, 继而对这一装有混 合粉末的锆管进行旋锻至 ½m,然后拉拔至 lmm,得到超导线材。 将加工后的线材置于真空退火炉中, 于室温下抽真空, 待达到 10— 3帕的真空度后充入高纯氩气, 然后升温至 1200。C保温.40小 时, 最后随炉子冷却至室温, 便制成超导转变温度不低于 45K 的 Pr [Oo. 89F0. i i] FeAs线材。
实施例 7
首先将 Gd203、 GdF3、 Fe、 As 以及 Gd 的粉末按照化学式 GdO。 83F。 17FeAs 所示的化学比准确称量粉末, 并将此粉末置于氩 气氛手套箱中研磨, 使其充分均匀混合, 将混合均勾后的粉末 装入 15cm长的鉬管中, 管内径 6min, 外径 9nim, 使粉末在管中 达到充实、 紧密, 然后封闭钼管两端, 继而对这一装有混合粉 末的钼管进行旋锻至 4mm, 然后拉拔至 lmm, 得到超导线材。 将 加工后的线材置于真空退火炉中, 于室温下抽真空, 待达到 10— 3 帕的真空度后充入高纯氩气, 然后升温至 1200。C保温 50小时, 最后随炉子冷却至室温, 便制成超导转变温度不低于 26K 的 GdOo. gaFo. nFeAs线材。
实施例 8
首先将 Tb、 As、 Fe203、 Fe 以及 FeF3的粉末按照化学式 TbO。 95F。. fl5FeAs 所示的化学比准确称量粉末, 并将此粉末置于氩 气氛手套箱中研磨, 使其充分均勾混合, 将混合均勾后的粉末 装入 40cm长的钨管中, 管内径 4mm, 外径 7mm, 使粉末在管中 达到充实、 紧密, 然后封闭钨管两端, 继而对这一装有混合粉 末的钨管进行旋锻至 4mm, 然后拉拔至 lmm, 得到超导线材。 将 加工后的线材置于真空退火炉中, 于室温下抽真空, 待达到 10—3 帕的真空度后充入高纯氩气, 然后升温至 1200。C保温 40小时, 最后随炉子冷却至室温, 便制成超导转变温度不低于 26K 的 TbO。 95F。。5FeAs线材。
实施例 9
首先将 Dy、 As、 Fe203、 Fe 以及 DyF3的粉末按照化学式 DyO0.7F„.3FeAs所示的化学比准确称量粉末,并将此粉末置于氩气 氛手套箱中研磨, 使其充分均勾混合, 将混合均勾后的粉末装 入 12cm长的钛管中, 管内径 8mm, 外径 l lmm, 使粉末在管中达 到充实、 紧密, 然后封闭钛管两端, 继而对这一装有混合粉末 的钛管进行旋锻至 4mm, 然后拉拔至 lmm, 得到超导线材。 将加 工后的线材置于真空退火炉中, 于室温下抽真空, 待达到 I t)—3 帕的真空度后充入高纯氩气, 然后升温至 1200。C保温 40小时, 最后随炉子冷却至室温, 便制成超导转变温度不低于 26K 的 Dy00.7Fo.3FeAs线材。
实施例 10
首先将 HoAs、 HoF3、 Fe 以及 Fe203的粉末按照化学式 HoO。 85F。.15FeAs 所示的化学比准确称量粉末, 并将此粉末置于氩 气氛手套箱中研磨, 使其充分均勾混合, 将混合均勾后的粉末 装入 25cm长的低碳钢管中, 管内径 6mm, 外径 8mm, 使粉末在 管中达到充实、 紧密, 然后封闭低碳钢管两端, 并将低碳钢管 装入铜管, 铜管内径为 8. 2mm, 外径为 10mm, 继而对这一装有 混合粉末的低碳钢和铜复合管进行旋锻至 4mm,然后拉拔至 lmm, 得到超导线材。 将加工后的线材置于真空退火炉中, 于室温下 抽真空, 待达到 10—3帕的真空度后充入高纯氩气, 然后升温至 1250°C保温 55小时, 最后随炉子冷却至室温, 便制成超导转变 温度不低于 26K的 HoO。 85F。.15FeAs线材。
实施例 11
首先将 Er、 A S、 CO203、 CO 以及 ErF3的粉末按照化学式 ErO。 9FQ 1CoAs所示的化学比准确称量粉末,并将此粉末置于氩气 氛手套箱中研磨, 使其充分均勾混合, 将混合均勾后的粉末装 入 10cm长的锰管中, 管内径 5mm, 外径 8mm, 使粉末在管中达 到充实、 紧密, 然后封闭锰管两端, 继而对这一装有混合粉末 的锰管进行旋锻至 4mm, 然后拉拔至 lmm, 得到超导线材。 将加 工后的线材置于真空退火炉中, 于室温下抽真空, 待达到 10— 3 帕的真空度后充入高纯氩气,然后升温至 1500'C保温 0. 5小时, 最后随炉子冷却至室温,便制成超导芯化学组成为 ErO^F CoAs 线材, 该线材的超导转变温度不低于 26K。
实施例 12
首先将 Yb、 P、 Ni203以及 Ni的粉末按照化学式 YbO。 9NiP所 示的化学比准确称量粉末, 并将此粉末置于氩气氛手套箱中研 磨, 使其充分均句混合, 将混合均句后的粉末装入 10cm长的钒 管中, 管内径 5mm, 外径 8mm, 使粉末在管中达到充实、 紧密, 然后封闭钒管两端, 继而对这一装有混合粉末的钒管进行旋锻 至 ½111, 然后拉拔至 2mm, 最后通过平辊轧制得到超导带材。 将 加工后的带材置于真空退火炉中, 于室温下抽真空, 待达到 10— 3 帕的真空度后充入高纯氩气, 然后升温至 700。C保温 100小时, 最后随炉子冷却至室温, 便制成超导芯化学组成为 YbO^NU 带材, 该带材的超导转变温度不低于 26K。
实施例 13
首先将 Lu、 As、 Ru203以及 Ru的粉末按照化学式 LuOD.5F。.5RuAs 所示的化学比准确称量粉末, 并将此粉末置于氩气氛手套箱中 研磨, 使其充分均勾混合, 将混合均勾后的粉末装入 10cm长的 铪管中, 管内径 5mm, 外径 8mm, 使粉末在管中达到充实、 紧密, 然后封闭铪管两端, 继而对这一装有混合粉末的铪管进行旋锻 至 4mm, 然后拉拔至 2mm, 最后通过平辊轧制得到超导带材。 将 加工后的带材置于真空退火炉中, 于室温下抽真空, 待达到 10-2 帕的真空度后充入高纯氩气, 然后升温至 1300'C保温 30小时, 最后随炉子冷却至室温, 便制成超导芯化学组成为 LuO。5Ru。5As 带材, 该带材的超导转变温度不低于 26K。
实施例 14
首先将 Y、 Sb、 Fe203以及 Fe的粉末按照化学式 YO。 8F。 2FeSb 所示的化学比准确称量粉末, 并将此粉末置于氩气氛手套箱中 研磨, 使其充分均匀混合, 将混合均勾后的粉末装入 10cm长的 铬管中, 管内径 5mm, 外径 8mm, 使粉末在管中达到充实、 紧密, 然后封闭铬管两端, 继而对这一装有混合粉末的铬管进行旋锻 至 4mm, 然后拉拔至 2mm, 最后通过平辊轧制得到超导带材。 将 加工后的带材置于真空退火炉中, 于室温下抽真空, 待达到 l O-4 帕的真空度后充入高纯氩气, 然后升温至 1250。C保温 60小时, 最后随炉子冷却至室温, 便制成超导芯化学组成为 YO。.8F。.2FeAs 带材, 该带材的超导转变温度不低于 26K。
以上实施例说明应用这种技术可以制备性能很好的线材和 带材, 为铁基化合物超导材料的实际应用提供了材料基础。

Claims

权 利 要 求
1、 一种超导线材, 其特征在于该超导线材的线芯为具有超 导性能的铁基化合物超导材料, 线芯外层包覆有金属管、 复合 金属管或合金管, 金属管、 复合金属管或合金管的制作材料选 自铁、 铜、 低碳钢、 不锈钢、 铬、 钒、 锰、 钛、 锆、 钼、 镍、 铌、 钨、 铪和钽。
2、 用于制备如权利要求 1 所述的超导线材的方法, 其特征 在于该制备方法包括以下步骤:
( 1 )将按照化学式 LnO^F iPn或 Lnt lPn 准确配制的原 料粉末充分混合, 上述化学式中: Ln为选自 La、 Ce、 Pr、 Nd、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Yb、 Lu和 Y中的一种或多 种元素; M为选自 Fe、 Co、 Ni和 Ru中的元素; Pn为 As , P 或 Sb; 50;
将混合均匀的粉末装入选自铁、 铜、 低碳钢、 不锈钢、 铬、 钒、 锰、 钛、 锆、 钼、 镍、 铌、 钨、 铪和钽的一种金属管或复 合金属管或合金管内, 粉末在管内填充充实、 紧密, 然后封闭 管的两端, 组装成复合体;
( 2 )将组装的复合体按照一定的道次加工率进行旋锻和拉 拔, 加工得到线材;
( 3 )将经步骤 2加工所得的线材置于退火炉中, 于室温下 抽真空至 10— 2帕以上, 之后充入氩气, 然后将线材在 700-1500 。C的温度下保温 0. 5-100 小时, 最后待退火炉冷却至室温, 得 到铁基化合物超导线材。
3、 一种超导带材, 其特征在于该超导带材的超导芯为具有 超导性能的铁基化合物超导材料, 超导芯外层包覆有金属管、 复合金属管或合金管, 金属管、 复合金属管或合金管的制作材 料选自铁、 铜、 低碳钢、 不锈钢、 铬、 钒、 锰、 钛、 锆、 钼、 镍、 铌、 钨、 铪和钽。
4、 用于制备如权利要求 3 所述的超导带材的方法, 其特征 在于该制备方法包括以下步骤:
( 1 )将按照化学式 LnO F !Pn或 LnO,— ϋΡη 准确配制的原 料粉末充分混合, 上述化学式中: Ln为选自 La、 Ce、 Pr、 Nd、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Yb、 Lu和 Y中的一种或多 种元素; M为选自 Fe、 Co, Ni和 Ru中的元素; Pn为 As , P 或 Sb; 50;
将混合均勾的粉末装入选自铁、 铜、 低碳钢、 不锈钢、 铬、 钒、 锰、 钛、 锆、 钼、 镍、 铌、 钨、 铪和钽的一种金属管或复 合金属管或合金管内, 粉末在管内填充充实、 紧密, 然后封闭 管的两端, 组装成复合体;
( 2 )将组装的复合体按照一定的道次加工率进行旋锻、 拉 拔和轧制, 加工得到带材;
( 3 )将经步骤 2加工所得的带材置于退火炉中, 于室温下 抽真空至 10— 2帕以上, 之后充入氩气, 然后将带材在 700-1500 °C的温度下保温 0. 5-100 小时, 最后待退火炉冷却至室温, 得 到铁基化合物超导带材。
PCT/CN2008/001883 2008-05-07 2008-11-17 铁基化合物超导线材和带材及其制备方法 WO2009135348A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810106039.6 2008-05-07
CN200810106039.6A CN101271747B (zh) 2008-05-07 2008-05-07 一种铁基化合物超导线材、带材及其制备方法

Publications (1)

Publication Number Publication Date
WO2009135348A1 true WO2009135348A1 (zh) 2009-11-12

Family

ID=40005635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/001883 WO2009135348A1 (zh) 2008-05-07 2008-11-17 铁基化合物超导线材和带材及其制备方法

Country Status (2)

Country Link
CN (1) CN101271747B (zh)
WO (1) WO2009135348A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110212841A1 (en) * 2010-02-24 2011-09-01 Iowa State University Research Foundation, Inc. Low resistivity contact to iron-pnictide superconductors
CN114141427A (zh) * 2021-12-10 2022-03-04 福建师范大学 一种掺杂碳提高FeSeTe单晶超导性能的方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101271747B (zh) * 2008-05-07 2013-05-01 中国科学院电工研究所 一种铁基化合物超导线材、带材及其制备方法
CN101386529B (zh) * 2008-10-24 2014-03-19 中国科学院电工研究所 一种铁基化合物超导体的制备方法
CN101383204B (zh) * 2008-10-24 2011-03-30 中国科学院电工研究所 一种铕铁砷超导体线材或带材的制备方法
WO2010140593A1 (ja) * 2009-06-05 2010-12-09 独立行政法人物質・材料研究機構 鉄系超電導線材とその製造方法
CN101707083B (zh) * 2009-12-15 2012-01-25 中国科学院电工研究所 采用银包套制备的铁基化合物超导线材或带材
CN101707089B (zh) * 2009-12-15 2011-08-10 中国科学院电工研究所 一种提高铁基超导体上临界场和临界电流密度的方法
CN102074311B (zh) * 2010-12-08 2012-07-04 中国科学院电工研究所 一种制备高密度铁基化合物超导带材的方法
CN102082010B (zh) * 2010-12-28 2012-11-14 中国科学院电工研究所 一种铁基超导体的制备方法
CN102412017B (zh) * 2011-10-19 2014-06-04 中国科学院电工研究所 一种提高铁基超导体上临界场和临界电流密度的方法
CN103943280B (zh) * 2014-04-30 2016-06-29 中国科学院电工研究所 一种REFeAsO1-xFx铁基超导线材或带材的制备方法
CN105506255B (zh) * 2015-12-11 2017-11-17 朱惠冲 钨基合金线材抗断加工工艺
CN106601366B (zh) * 2016-12-14 2018-07-13 中国科学院电工研究所 一种122型铁基化合物超导线材或带材的制备方法
CN111681848B (zh) * 2020-06-11 2022-03-08 中国科学院电工研究所 铁基超导线圈及制备方法及测量铁基超导接头电阻的方法
CN114507802A (zh) * 2022-01-18 2022-05-17 北京工业大学 一种用于激光增材制造的低成本高熵合金粉芯丝材及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1986407A (zh) * 2005-12-23 2007-06-27 中国科学院电工研究所 含碳的MgB2超导材料及其制备方法
CN101271747A (zh) * 2008-05-07 2008-09-24 中国科学院电工研究所 一种铁基化合物超导线材、带材及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1089385A (zh) * 1992-12-26 1994-07-13 中国科学院物理研究所 一种高稳定稀土-铁-永磁碳化物及其制备方法
CN1140646C (zh) * 2000-05-15 2004-03-03 中国科学院物理研究所 一种具有大磁熵变的稀土-铁基化合物
CN1865457A (zh) * 2006-06-13 2006-11-22 中国科学院电工研究所 一种铁基二硼化镁超导线带材的热处理方法
CN100587859C (zh) * 2007-08-30 2010-02-03 中国科学院电工研究所 一种Fe/Cu包套结构二硼化镁多芯超导线的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1986407A (zh) * 2005-12-23 2007-06-27 中国科学院电工研究所 含碳的MgB2超导材料及其制备方法
CN101271747A (zh) * 2008-05-07 2008-09-24 中国科学院电工研究所 一种铁基化合物超导线材、带材及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOICHI KAMIHARA ET AL.: "Iron-Based Layered Superconductor La[O1-xFx]FeAs (x=0.05-0.12) with Tc=26K.", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 130, no. 11, 23 February 2008 (2008-02-23), pages 3296 - 3297 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110212841A1 (en) * 2010-02-24 2011-09-01 Iowa State University Research Foundation, Inc. Low resistivity contact to iron-pnictide superconductors
US8450246B2 (en) * 2010-02-24 2013-05-28 Iowa State University Research Foundation, Inc. Low resistivity contact to iron-pnictide superconductors
CN114141427A (zh) * 2021-12-10 2022-03-04 福建师范大学 一种掺杂碳提高FeSeTe单晶超导性能的方法
CN114141427B (zh) * 2021-12-10 2023-06-06 福建师范大学 一种掺杂碳提高FeSeTe单晶超导性能的方法

Also Published As

Publication number Publication date
CN101271747A (zh) 2008-09-24
CN101271747B (zh) 2013-05-01

Similar Documents

Publication Publication Date Title
WO2009135348A1 (zh) 铁基化合物超导线材和带材及其制备方法
Ma Progress in wire fabrication of iron-based superconductors
JP5855457B2 (ja) 磁気冷却用またはヒートポンプ用の金属系材料の製造方法
JP2011520252A (ja) 熱磁気発生機
WO2013056526A1 (zh) 一种提高铁基超导体上临界场和临界电流密度的方法
CN102093850A (zh) 高温稳定的具有大磁熵变的La(Fe,Si)13基多间隙原子氢化物磁制冷材料及其制备方法
CN101383204B (zh) 一种铕铁砷超导体线材或带材的制备方法
CN105803285B (zh) 一种超细晶Sc2O3掺杂W基复合材料及其制备方法
CN101728028B (zh) 原位法制备多芯TiC掺杂MgB2线带材的方法
CN106876041A (zh) 一种石墨烯钇钡铜超导材料的制备方法
CN101635187B (zh) 一种改善高钨含量Ni-W合金基带立方织构的方法
Feng et al. Zr and Si co-substitution for SmCo7 alloy with enhanced magnetic properties and improved oxidation and corrosion resistances
Jiao et al. Microstructure and magnetic properties of (Mn54Al46) 98C2 magnets fabricated by liquid-phase sintering with the Mn65Ga35 as an additive
US6953770B2 (en) MgB2—based superconductor with high critical current density, and method for manufacturing the same
CN108666045A (zh) 一种放电等离子体烧结技术制备铁硒超导材料的方法
CN102254665B (zh) 铁钴基纳米晶软磁合金的制备方法
WO2018124256A1 (ja) 希土類蓄冷材並びにこれを備えた蓄冷器及び冷凍機
CN101608340B (zh) 一种铁基高温超导晶体及其制备方法
JP3728504B2 (ja) MgB2超伝導線材の作製方法
Tsapleva et al. The Materials Science of Modern Technical Superconducting Materials
JP3945600B2 (ja) Nb 3 Sn超伝導線材の製造方法
CN101736209B (zh) 镱基大块非晶合金及其制备方法
Luo et al. Microstructure and superconducting properties of MgB2 bulks prepared from Mg+ B+ Mg (BH4) 2 composites
JP2003095650A (ja) 臨界電流密度の高いMgB2系超電導体及びその製造方法
Zhang et al. Fabrication of Nb3Al superconductor by the optimized mechanical alloying method with low temperature

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08874158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08874158

Country of ref document: EP

Kind code of ref document: A1