JP2003095650A - 臨界電流密度の高いMgB2系超電導体及びその製造方法 - Google Patents

臨界電流密度の高いMgB2系超電導体及びその製造方法

Info

Publication number
JP2003095650A
JP2003095650A JP2002154900A JP2002154900A JP2003095650A JP 2003095650 A JP2003095650 A JP 2003095650A JP 2002154900 A JP2002154900 A JP 2002154900A JP 2002154900 A JP2002154900 A JP 2002154900A JP 2003095650 A JP2003095650 A JP 2003095650A
Authority
JP
Japan
Prior art keywords
mgb
current density
critical current
based superconductor
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002154900A
Other languages
English (en)
Inventor
Cho Yu
趙 勇
Hiyo Yu
馮 勇
Hajime Go
源 呉
Takahito Machi
敬人 町
Anshiki Satsumoto
安識 札本
Naoki Koshizuka
直己 腰塚
Masahito Murakami
雅人 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Superconductivity Technology Center
Original Assignee
International Superconductivity Technology Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Superconductivity Technology Center filed Critical International Superconductivity Technology Center
Priority to JP2002154900A priority Critical patent/JP2003095650A/ja
Publication of JP2003095650A publication Critical patent/JP2003095650A/ja
Pending legal-status Critical Current

Links

Classifications

    • Y02E40/64
    • Y02E40/641

Landscapes

  • Ceramic Products (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】 【課題】 製造が容易で量産性に優れ、MgB2 の高い臨
界温度特性を保持したまま優れた超電導特性(高い臨界
電流密度等)を示すMgB2 系超電導体を得る。 【解決手段】 図1に示すように、Mg,B及びTiの混合
物を加圧成形し、これを大気圧下等にて(望ましくは6
00℃以上で)焼成することにより、MgB2 多結晶体に
Ti及び/又はTi化合物が分散して存在するMgB2 系超電
導体を製造する。MgB2 系超電導体の組成を、原料添加
量の調整によりMg:B:Ti=x:2:yなる原子比で
「 0.7<x<1.2 」で「0.07<y<0.3 」の範囲、好ま
しくは「0.07<y<0.2 」の範囲とするのが良い。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】この発明は、高い臨界電流密
度を示すなどの優れた超電導特性を有すると共に製造の
容易なMgB2 系超電導体並びにその製造方法に関し、電
力用ケ−ブル,マグネット,モ−タ,発電機等に適用す
るための超電導線材や超電導バルク材を低コストで安定
供給できる道を開くものである。
【0002】
【従来の技術】現在、強磁界マグネット等に適用されて
いる超電導線材としてはNbTiや Nb3Sn等の金属系超電導
材料が主流をなしているが、これらの材料は臨界温度Tc
が低いのでその使用は液体ヘリウム温度領域に限られ、
そのため超電導クエンチの問題が大きかった。
【0003】このような状況下で、最近、マグネシウム
のホウ化物であるMgB2 の超電導特性に関する報告が注
目され、超電導材料としての利用性が様々な観点から検
討されている。しかし、MgB2 は臨界温度Tcが39Kと
比較的高くてクエンチの点で有利であるだけでなく、従
来の金属間化合物超電導体よりも高い20K程度まで使
用温度が拡大すると期待されているものの、高い臨界電
流密度を示す材料を得るためには高圧雰囲気での合成が
必要であり、そのため低コストでの量産性が望まれるよ
うになってきた超電導材料としての利用性に十分な展望
が開けないでいた。
【0004】
【発明が解決しようとする課題】このようなことから、
本発明が目的としたのは、製造が容易で量産性に優れ、
かつMgB2 の高い臨界温度特性を保持したままで高い臨
界電流密度を示すMgB2系の超電導材料を提供すること
である。
【0005】
【課題を解決するための手段】本発明者等は、上記目的
を達成すべく鋭意研究を行った結果、「MgとBの混合粉
末を焼結する」という公知の手法では高圧雰囲気下で焼
結しなければ高い臨界電流密度を示す多結晶MgB2 焼結
体が得られなかったのに対して、原料のMgとBとを混合
する際に主として焼結助材として適量の金属Tiを添加し
ておき、これを焼結するようにすれば、大気圧相当の雰
囲気圧の下での焼結によっても、高い臨界温度特性を保
持したままで高い臨界電流密度を示す多結晶のMgB2
超電導体が安定して得られるとの新規な知見を得ること
ができたのである。
【0006】本発明は上記知見事項等を基にしてなされ
たものであり、次の 1) 項乃至 11)項に示すMgB2 系超
電導体並びにその製造方法を提供するものである。 1) TiあるいはTi化合物の何れか又は双方がMgB2 系焼
結体中に分散して存在することを特徴とする、臨界電流
密度の高いMgB2 系超電導体。 2) TiあるいはTi化合物の何れか又は双方が、MgB2
晶粒界に存在する、前記項記載の臨界電流密度の高い
MgB2 系超電導体。 3) 焼結体中に含まれるMg,B及びTiの量を原子比で
「Mg:B:Ti=x:2:y」と表記したとき、x及びy
がそれぞれ「 0.7<x<1.2 」及び「0.05<y<0.3 」
である、前記1)項又は2)項に記載の臨界電流密度の高い
MgB2 系超電導体。 4) 焼結体中に含まれるMg,B及びTiの量を原子比で
「Mg:B:Ti=x:2:y」と表記したとき、x及びy
がそれぞれ「 0.7<x<1.2 」及び「0.07<y<0.2 」
である、前記1)項又は2)項に記載の臨界電流密度の高い
MgB2 系超電導体。 5) 臨界電流密度が、温度20Kでかつ自己磁界の下に
おいて5×105 A/cm2以上である、前記1)項乃至4)項の
何れかに記載の臨界電流密度の高いMgB2系超電導体。 6) 臨界電流密度が、温度20Kでかつ磁界1Tの下に
おいて2×105 A/cm2以上である、前記1)項乃至4)項の
何れかに記載の臨界電流密度の高いMgB2系超電導体。 7) Mg,B及びTiの混合物を成形して焼結することを特
徴とする、前記1)項乃至6)項の何れかに記載の臨界電流
密度の高いMgB2 系超電導体を製造する方法。 8) Mg,B及びTiの混合物を線材に加工成形して焼成す
ることを特徴とする、前記1)項乃至6)項の何れかに記載
の臨界電流密度の高いMgB2 系超電導体を製造する方
法。 9) Mg,B及びTiの混合物を焼結した後粉砕し、この粉
砕物を線材に加工成形して焼成することを特徴とする、
前記1)項乃至6)項の何れかに記載の臨界電流密度の高い
MgB2 系超電導体を製造する方法。 10) Mg,B及びTiの混合物、又はMg,B及びTiの混合物
を焼結してから粉砕した粉砕物を、金属管内に充填し、
線材に成形加工して焼成することを特徴とする前記7)項
乃至9)項の何れかに記載の臨界電流密度の高いMgB2
超電導体を製造する方法。 11) 焼結(焼成)を大気圧下で行う、前記7)項乃至 10)
項の何れかに記載の臨界電流密度の高いMgB2 系超電導
体の製造方法。 12) 焼結(焼成)を600℃以上の温度で実施する、前
記7)項乃至 11)項の何れかに記載の臨界電流密度の高い
MgB2 系超電導体の製造方法。
【0007】
【発明の実施の形態】以下、本発明におけるMgB2 系超
電導体並びにその製造方法をより具体的に説明する。本
発明法に従って、Mg,B及びTiの混合物を加圧成形し、
これを焼成(焼結)すると、“Ti”あるいは“Ti化合
物”の何れか又は双方が分散して存在する緻密なMgB2
系超電導体が得られる。図1は、上記本発明に係るMgB
2 系超電導体の製造方法例を説明した模式図である。な
お、一般には、超電導体のバルク材を得る場合には焼結
を行い、超電導体の線材を得る場合には焼成を行うが、
本明細書においては“焼結”及び“焼成”の用語を特に
区別することなく使用している。
【0008】ここで、Mg,B及びTiの混合物を加圧成形
では、焼結体の製造において一般的な50〜200MPa
程度の圧力を加えれば良い。線材を製造する場合には、
上記混合物を金属製のパイプに詰めて線材に加工成形し
た後、焼成する。この場合、Mg,B及びTiの混合物を焼
結した後、この焼結体を粉砕し、得られた粉砕物(焼結
粉)を金属製のパイプに詰めて線材に加工成形してから
焼成を行っても良い。また、焼成温度はMgB2 系焼結体
(超電導体)の生成反応が生じる温度であれば良いが、
Mg(融点:650℃)の反応が600℃以上の温度域で
促進されることから、焼成温度を600℃以上とするの
が望ましい。そして、Mgが蒸発しない温度以下で焼成す
るのが好ましい。焼成時の雰囲気は非酸化性雰囲気(例
えば不活性ガス雰囲気)とするのが良いが、得られるMg
2 系超電導体の特性やコスト面からはArガス雰囲気と
することが推奨される。そして、焼成時の雰囲気圧は大
気圧(大気圧相当雰囲気圧)で十分であるが、高圧雰囲
気下での焼成を行っても差し支えないことは勿論であ
る。
【0009】さて、本発明法により得られる前記「“T
i”あるいは“Ti化合物”の何れか又は双方が分散して
存在するMgB2 系超電導体」では、主としてMgB2 多結
晶体の粒界に“Ti”あるいは“Ti化合物”が分散して存
在しているが、一部が結晶粒内に存在する場合もある。
このMgB2 多結晶体に分散して存在する“Ti”又は“Ti
化合物”の故に、MgB 2 系超電導体は大気圧下で焼成し
た場合でも非常に緻密なものとなる。
【0010】そして、このMgB2 系超電導体には、超電
導の臨界温度Tcが39K弱を示し、臨界電流密度も温度
20Kにおける自己磁界での値が5×105 A/cm2以上、
温度20Kにおける磁界1Tでの値が2×105 A/cm2
上に達するものも認められた{この材料は、 後述する実
施例で得られたMgB2 系超電導体の、 Mg,B及びTiの量
を原子比で「Mg:B:Ti=x:2:y」と表したときの
xの値が 0.9でyの値が 0.1のものである)。
【0011】また、本発明法により得られる前記MgB2
系超電導体は、不可逆磁界Hirr がTiを含まないものと
比べて第二臨界磁界Hc2に近い値を示すという特徴も有
している。一般に、超電導体は第二臨界磁界Hc2以下で
超電導状態を保っているが、不可逆磁界Hirr 以上の磁
場では超電導体内の磁束が動いてしまって抵抗を発生す
るので超電導電流を流せなくなってしまう。つまり、不
可逆磁界Hirr が第二臨界磁界Hc2に近ければ高い磁場
をかけても大きな超電導電流を流せるので、不可逆磁界
irr が第二臨界磁界Hc2に近いことが望まれており、
この点でもTiを含有する前記MgB2 系超電導体は好まし
い材料であると言える。
【0012】本発明法により得られる前記MgB2 系超電
導体は、その中に分散して存在する“Ti”又は“Ti化合
物”の故に、大気圧で焼成したMgB2 多結晶焼結体であ
っても非常に緻密であり、これが超電導材料に望まれる
高い臨界電流密度等を示す大きな要因の1つであると考
えられる(因みに、 Ti添加なしに大気圧下で焼結したも
のは、 多孔質で密度の低い焼結体となり、 臨界電流密度
も著しく劣ったものとなる)。
【0013】なお、場合によってMgB2 多結晶体に存在
する“Ti化合物”は、原料混合物に添加したTiから焼結
工程中に生じた化合物であるTiB2 やTiB4 等であり、
これらの存在も、Tiと同様にMgB2 焼結体の臨界温度に
それほど影響することなく磁束線の動きを止めるピン止
めセンタ−として働き、高い臨界電流密度等を付与する
一因になっていると考えられる。
【0014】ところで、本発明に係るMgB2 系超電導体
では、その組成を、Mg,B及びTiの量を原子比で「Mg:
B:Ti=x:2:y」と表記したときにx及びyがそれ
ぞれ「 0.7<x<1.2 」及び「0.05<y<0.3 」の範囲
内となるように調整するのが良い。組成をこの範囲に調
整することによって、超電導特性(臨界電流密度,磁化
の強さ,不可逆臨界磁界等)が一段と優れた超電導体が
実現される。望ましくは、上記Ti量yを「0.07<y<0.
2 」の範囲内に調整するならば、その超電導特性は更に
優れた値に安定化する。なお、MgB2 系超電導体組成の
調整は、原料の調整段階においてMg原料,B原料及びTi
原料の添加量を加減することにより行えば良い。
【0015】上述のように、本発明は、超電導特性の優
れたMgB2 系超電導体を高圧雰囲気での焼結(焼成)を
要することなく提供できるようにしたものであるが、以
下、本発明を実施例により更に具体的に説明する。
【0016】
【実施例】何れも、純度が99%で、粒度が300メッシ
ュのMg粉末とB粉末(アモルファス)とTi粉末とを大気
中で混合し、直径7mm,高さ6mmのタブレット(圧粉
体)に加圧成型した。次いで、上記タブレット(圧粉
体)を電気炉内のMgOプレ−ト上に載せ、1気圧のAr気
流中で、まず600℃で1時間加熱し、続いて800℃
で1時間加熱した後、更に900℃で2時間加熱し、そ
の後電気炉中で室温まで冷却した。この処理によって、
MgB2 系超電導体(焼結体)を得た。図2は、本実施例
における処理工程を説明した模式図である。
【0017】なお、MgB2 系超電導体は、原料粉末の仕
込み量組成を調整することにより、Mg,B及びTiの量を
原子比で「Mg:B:Ti=x:2:y」と表記したときの
x及びyの値(x,y)がそれぞれ(1,0),(0.98,
0.02),(0.95, 0.05),(0.9,0.1),(0.8, 0.2),(0.6,
0.4),(0.2, 0.8)並びに(0,1)と、Ti量が様々に
異なるものを得た。
【0018】作製した各試料の結晶性を、XRD(X-ray
diffraction) や、EDS(energydisprersion spectru
m) 付きのHRTEM(high resolution transmission e
lectron microscope)により評価した結果、x=0.9 ,
y=0.1 においてMgB2 相の量(volume fraction) は最
も多いことが分かった。
【0019】図3に、Ti添加によって得られたMgB2
超電導体(Mg:B:Ti=x:2:yなる原子比にてx=
0.9 ,y=0.1 )のHRTEMによる写真図(電子顕微
鏡写真図)を示す。図3において、黒く見える部分が分
散したTi相であり、明るく見える地の部分がMgB2 結晶
の相である。
【0020】次に、得られた前記各MgB2 系超電導体に
つき超電導特性の調査を行った。まず、図4は、得られ
たMgB2 系超電導体(x=1でy=0のもの, x=0.9
でy=0.1 のもの, x=0.8 でy=0.2 のもの, x=0.
6 でy=0.4 のもの)における磁化率の温度依存性(ゼ
ロ磁場冷却)の調査結果を示すグラフであるが、何れも
臨界温度Tcが37.5〜38.6Kの高い値を示していることが
分かる。
【0021】また、図5は、Tiの原子比(y)と磁化の
強さM及び臨界温度Tcとの調査結果を示すグラフである
が、yの値が「0.05<y<0.3 」の範囲では臨界温度Tc
にそれほどの悪影響が及ばずに高い磁化を示すことが分
かる。
【0022】更に、図6は、得られたMgB2 系超電導体
(x=0.9 でy=0.1 のもの, x=0.8 でy=0.2 のも
の, x=1でy=0のもの)に関する種々の温度での臨
界電流密度Jc の磁界依存性を示したグラフであるが、
y=0の材料(Tiを含有しない材料)に比べて、x=0.
9 でy=0.1 の材料やx=0.8 でy=0.2 の材料は非常
に高い臨界電流密度Jc を示すことが分かる。
【0023】なお、表1は、実施例で得られたMgB2
超電導体(x=0.9 でy=0.1 のもの)に関する種々の
温度と磁界での臨界電流密度Jc の測定結果をまとめて
示したものである。
【0024】
【表1】
【0025】そして、図7は、実施例で得られたMgB2
系超電導体(x=0.9 でy=0.1 のもの, x=0.8 でy
=0.2 のもの, x=1でy=0のもの)に関する不可逆
磁界Hirr と第二臨界磁界Hc2の温度依存性を示したグ
ラフであるが、y=0の材料(Tiを含有しない材料)に
比べてy=0.1 やy=0.2 の材料は不可逆磁界Hirr
第二臨界磁界Hc2に近い値を示すことが分かる。従っ
て、本発明に係るMgB2 系超電導体はTiを含有しない材
料に比べて超電導電流を流せる磁界領域も非常に大き
く、この点からしても優れた超電導材料である。なお、
図7に示した第二臨界磁界Hc2のデ−タは、y=0.1 の
試料に関しての異なる温度での磁代M−Hカ−ブから測
定したものであるが、y=0,0.05及び0.2 の試料から
測定されたHc2のデ−タもy=0.1 の試料のそれと殆ど
変わらないものであった。
【0026】
【発明の効果】以上に説明した如く、この発明によれ
ば、従来は高圧の雰囲気下での焼結によってしか得られ
なかった高い臨界電流密度を示す緻密なMgB2 系超電導
体を大気圧程度の低圧雰囲気下でも製造することが可能
であるので、電力用ケ−ブル,マグネット,モ−タ,発
電機等に適用するための超電導線材や超電導バルク材等
を低コストで量産することができる。このように、本発
明は、低価格で高品質の超電導体を安定的に供給するこ
とを可能とするなど、産業上極めて有用な効果がもたら
される。
【図面の簡単な説明】
【図1】本発明に係るMgB2 系超電導体の製造方法例を
説明した模式図である。
【図2】実施例におけるMgB2 系超電導体製造のための
処理工程を説明した模式図である。
【図3】実施例で得られたMgB2 系超電導体(Mg:B:
Ti=x:2:yなる原子比にてx=0.9 ,y=0.1 )の
電子顕微鏡写真図である。
【図4】実施例で得られたMgB2 系超電導体(Mg:B:
Ti=x:2:yなる原子比にてx=1でy=0のもの,
x=0.9 でy=0.1 のもの, x=0.8 でy=0.2 のも
の, x=0.6 でy=0.4 のもの)における磁化率の温度
依存性を測定した結果を示すグラフである。
【図5】実施例で得られたMgB2 系超電導体のTi量(M
g:B:Ti=x:2:yなる原子比でのyの値)と磁化
の強さM及び臨界温度Tcとの関係を示すグラフである。
【図6】実施例で得られたMgB2 系超電導体 (Mg:B:
Ti=x:2:yなる原子比にてx=0.9 でy=0.1 のも
の, x=0.8 でy=0.2 のもの, x=1でy=0のも
の)に関する種々の温度での臨界電流密度Jc の磁界依
存性を示したグラフである。
【図7】実施例で得られたMgB2 系超電導体(Mg:B:
Ti=x:2:yなる原子比にてx=0.9 でy=0.1 のも
の, x=0.8 でy=0.2 のもの, x=1でy=0のも
の)に関する不可逆磁界Hirr と第二臨界磁界Hc2の温
度依存性を示したグラフである。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 勇 馮 東京都江東区東雲1丁目14番3号 財団法 人国際超電導産業技術研究センタ−超電導 工学研究所内 (72)発明者 呉 源 東京都江東区東雲1丁目14番3号 財団法 人国際超電導産業技術研究センタ−超電導 工学研究所内 (72)発明者 町 敬人 東京都江東区東雲1丁目14番3号 財団法 人国際超電導産業技術研究センタ−超電導 工学研究所内 (72)発明者 札本 安識 東京都江東区東雲1丁目14番3号 財団法 人国際超電導産業技術研究センタ−超電導 工学研究所内 (72)発明者 腰塚 直己 東京都江東区東雲1丁目14番3号 財団法 人国際超電導産業技術研究センタ−超電導 工学研究所内 (72)発明者 村上 雅人 東京都江東区東雲1丁目14番3号 財団法 人国際超電導産業技術研究センタ−超電導 工学研究所内 Fターム(参考) 4G001 BA61 BA68 BB41 BB61 BC12 BC13 BC23 BC54 BC56 BC57 BC62 BD22 BE26 4G047 JA05 JC16 KA01 KB04 KB13 KB17 LB01 5G321 AA98 BA01 BA03 DC99

Claims (12)

    【特許請求の範囲】
  1. 【請求項1】 TiあるいはTi化合物の何れか又は双方が
    MgB2 系焼結体中に分散して存在することを特徴とす
    る、臨界電流密度の高いMgB2 系超電導体。
  2. 【請求項2】 TiあるいはTi化合物の何れか又は双方
    が、MgB2 結晶粒界に存在する、請求項1記載の臨界電
    流密度の高いMgB2 系超電導体。
  3. 【請求項3】 焼結体中に含まれるMg,B及びTiの量を
    原子比で「Mg:B:Ti=x:2:y」と表記したとき、
    x及びyがそれぞれ「 0.7<x<1.2 」及び「0.05<y
    <0.3 」である、請求項1又は2に記載の臨界電流密度
    の高いMgB2系超電導体。
  4. 【請求項4】 焼結体中に含まれるMg,B及びTiの量を
    原子比で「Mg:B:Ti=x:2:y」と表記したとき、
    x及びyがそれぞれ「 0.7<x<1.2 」及び「0.07<y
    <0.2 」である、請求項1又は2に記載の臨界電流密度
    の高いMgB2系超電導体。
  5. 【請求項5】 臨界電流密度が、温度20Kでかつ自己
    磁界の下において5×105 A/cm2以上である、請求項1
    乃至4の何れかに記載の臨界電流密度の高いMgB2 系超
    電導体。
  6. 【請求項6】 臨界電流密度が、温度20Kでかつ磁界
    1Tの下において2×105 A/cm2以上である、請求項1
    乃至4の何れかに記載の臨界電流密度の高いMgB2 系超
    電導体。
  7. 【請求項7】 Mg,B及びTiの混合物を加圧成形して焼
    結することを特徴とする、請求項1乃至6の何れかに記
    載の臨界電流密度の高いMgB2 系超電導体を製造する方
    法。
  8. 【請求項8】 Mg,B及びTiの混合物を線材に加工成形
    して焼成することを特徴とする、請求項1乃至6の何れ
    かに記載の臨界電流密度の高いMgB2 系超電導体を製造
    する方法。
  9. 【請求項9】 Mg,B及びTiの混合物を焼結した後粉砕
    し、この粉砕物を線材に加工成形して焼成することを特
    徴とする、請求項1乃至6の何れかに記載の臨界電流密
    度の高いMgB2 系超電導体を製造する方法。
  10. 【請求項10】 Mg,B及びTiの混合物、又はMg,B及
    びTiの混合物を焼結してから粉砕した粉砕物を、金属管
    内に充填し、線材に成形加工して焼成することを特徴と
    する請求項7乃至9の何れかに記載の臨界電流密度の高
    いMgB2 系超電導体を製造する方法。
  11. 【請求項11】 焼結(焼成)を大気圧下で行う、請求
    項7乃至10の何れかに記載の臨界電流密度の高いMgB2
    系超電導体の製造方法。
  12. 【請求項12】 焼結(焼成)を600℃以上の温度で
    実施する、請求項7乃至11の何れかに記載の臨界電流密
    度の高いMgB2 系超電導体の製造方法。
JP2002154900A 2001-06-01 2002-05-29 臨界電流密度の高いMgB2系超電導体及びその製造方法 Pending JP2003095650A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002154900A JP2003095650A (ja) 2001-06-01 2002-05-29 臨界電流密度の高いMgB2系超電導体及びその製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001167389 2001-06-01
JP2001-167389 2001-06-01
JP2002154900A JP2003095650A (ja) 2001-06-01 2002-05-29 臨界電流密度の高いMgB2系超電導体及びその製造方法

Publications (1)

Publication Number Publication Date
JP2003095650A true JP2003095650A (ja) 2003-04-03

Family

ID=26616241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002154900A Pending JP2003095650A (ja) 2001-06-01 2002-05-29 臨界電流密度の高いMgB2系超電導体及びその製造方法

Country Status (1)

Country Link
JP (1) JP2003095650A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059261A (ja) * 2005-08-25 2007-03-08 National Institute For Materials Science MgB2超電導体とその線材並びにそれらの製造方法
JP2007123194A (ja) * 2005-10-31 2007-05-17 Shin Nikkei Co Ltd MgB2/Al超伝導押出し材及びその製造方法
CN100354985C (zh) * 2005-12-28 2007-12-12 西北有色金属研究院 一种MgB2超导体的制备方法
KR100812798B1 (ko) 2006-12-29 2008-03-12 한국기계연구원 마그네슘 다이보라이드 초전도 분말 제조방법
CN100376010C (zh) * 2005-12-23 2008-03-19 上海大学 高密度MgB2超导线材的制备方法
CN100376009C (zh) * 2005-12-23 2008-03-19 上海大学 高密度MgB2超导块材的制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059261A (ja) * 2005-08-25 2007-03-08 National Institute For Materials Science MgB2超電導体とその線材並びにそれらの製造方法
JP2007123194A (ja) * 2005-10-31 2007-05-17 Shin Nikkei Co Ltd MgB2/Al超伝導押出し材及びその製造方法
CN100376010C (zh) * 2005-12-23 2008-03-19 上海大学 高密度MgB2超导线材的制备方法
CN100376009C (zh) * 2005-12-23 2008-03-19 上海大学 高密度MgB2超导块材的制备方法
CN100354985C (zh) * 2005-12-28 2007-12-12 西北有色金属研究院 一种MgB2超导体的制备方法
KR100812798B1 (ko) 2006-12-29 2008-03-12 한국기계연구원 마그네슘 다이보라이드 초전도 분말 제조방법

Similar Documents

Publication Publication Date Title
WO2002055435A1 (fr) Compose intermetallique supraconducteur, alliage supraconducteur et leurs procedes de preparation
JP2002343162A (ja) 超電導性線材及び帯材の製法
Muralidhar et al. Improved critical current densities of bulk MgB2 using carbon-coated amorphous boron
CN1986407A (zh) 含碳的MgB2超导材料及其制备方法
JP2005529832A (ja) 超伝導物質および合成方法
Zhu et al. First order transition in Pb $ _ {10-x} $ Cu $ _x $(PO $ _4 $) $ _6 $ O ($0.9< x< 1.1$) containing Cu $ _2 $ S
CN101168442B (zh) 一种高性能MgB2超导材料及其制备方法
US6953770B2 (en) MgB2—based superconductor with high critical current density, and method for manufacturing the same
CN1929044B (zh) 含有Si元素和C元素的MgB2超导材料及其制备方法
US20040116301A1 (en) Superconducting borides and wires made thereof
JP2003095650A (ja) 臨界電流密度の高いMgB2系超電導体及びその製造方法
Sastry et al. Synthesis and processing of (Hg, Pb) 1Ba2Ca2Cu3Oy superconductors
Muralidhar et al. Enhanced Critical Current Density in Bulk MgB 2
JP4350407B2 (ja) 臨界電流密度及び不可逆磁界の高いMgB2系超電導体
CN101608340B (zh) 一种铁基高温超导晶体及其制备方法
Koblischka et al. Magnetic Characterization of Bulk C-Added MgB 2
CN116356189B (zh) 一种中熵合金超导体材料其制备方法和应用
Zhang et al. Fabrication of Nb3Al superconductor by the optimized mechanical alloying method with low temperature
CN101215165B (zh) 一种含有富勒烯的MgB2超导材料及其制备方法
CN102992771A (zh) 一种二硼化镁基超导块材的制造方法
US7445681B2 (en) Intermetallic compound superconducting material comprising magnesium and beryllium and alloy superconducting material containing the intermetallic compound
CN107244921A (zh) 铜添加活化二硼化镁超导块体先位烧结的方法
Shao et al. Phase evolution mechanism study and fabrication of PbMo6S8 superconducting materials with two-step sintering process
JP2972869B2 (ja) 酸化物高温超伝導体の作製法
Wongsatanawarid et al. A Study of Calcination Conditions for Synthesizing Fine Particles of (NdEuGd) BaCuO and (NdEuGd) BaCuO.

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070612