CN107244921A - 铜添加活化二硼化镁超导块体先位烧结的方法 - Google Patents

铜添加活化二硼化镁超导块体先位烧结的方法 Download PDF

Info

Publication number
CN107244921A
CN107244921A CN201710342360.3A CN201710342360A CN107244921A CN 107244921 A CN107244921 A CN 107244921A CN 201710342360 A CN201710342360 A CN 201710342360A CN 107244921 A CN107244921 A CN 107244921A
Authority
CN
China
Prior art keywords
mgb
copper
sintering
powder
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710342360.3A
Other languages
English (en)
Inventor
马宗青
程芳
刘永长
余黎明
李冲
刘晨曦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201710342360.3A priority Critical patent/CN107244921A/zh
Publication of CN107244921A publication Critical patent/CN107244921A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58057Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on magnesium boride, e.g. MgB2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明属于铜添加活化二硼化镁超导块体先位烧结的方法;将前驱粉MgB2粉中添加1~5wt.%的铜粉在玛瑙研钵中充分混合,在2~8MPa的压力下制成圆柱小片;然后放入热重差热分析仪中,在流动的高纯氩气的气氛下,升温至800~1000℃后保温0~20分钟烧结;再降至600~700℃后保温0~3个小时,最后以10~40℃/min的速度冷却至室温。本发明制备的具有高载流的MgB2超导材料是通过将铜添加技术引用到先位烧结法中获得的,材料结构稳定,临界转变温度较高,且在所有先位法制备的MgB2超导块体中具有最好的载流能力;制备方法简单,可控性强,无污染,原料来源广泛,制备成本低,具有广泛的工程应用推广前景。

Description

铜添加活化二硼化镁超导块体先位烧结的方法
技术领域
本发明属于超导技术领域,特别提出通过铜掺杂活化MgB2超导块体先位烧结制备技术。
背景技术
新型高温超导材料、超导物理及应用研究一直是近些年的热门研究领域,2001年初Nagamatsu等人发现超导临界转变温度(Tc)39K的MgB2新超导体,引起科学界广泛的关注。MgB2具有结构简单,相干长度长,临界电流密度较高,化学性能稳定等优良的特性。众所周知,在高温超导体发现之前,常规金属或合金超导体的Tc长期得不到提高。此前金属超导体的冠军是Nb3Ge,其Tc=23K。MgB2超导电性的发现,一举将常规超导体的Tc提高了17K。它是迄今发现的临界温度最高的简单、稳定的金属化合物超导材料,也是一种更有希望实用化的超导材料。因此,其超导电性一经发现,便吸引了全世界超导物理学家强烈的研究兴趣。MgB2超导材料主要有两种制备方法:原位法和先位法。两种方法最主要的区别在于所选择的前驱体粉末不同。原位法是以Mg粉和B粉的均匀混合物作为前驱体粉,然后进行热处理获得MgB2超导材料。该方法制备的MgB2超导体特点是晶粒间连接好,容易引入磁通钉扎中心,临界电流密度性能较好;但缺点是致密度低、多孔且易被氧化。先位法是以MgB2粉末作为前驱体粉末,经过热处理,即获得具有实用价值的MgB2超导材料。该方法的特点是制备工艺简单、烧结致密度高且超导线带材有效载流面积大。但是先位法制备的MgB2超导材料的晶间连接性较弱,导致其临界电流密度比较低,有待进一步改善。前期研究发现通过不同温度的保温烧结能够在一定程度上改善先位法制备MgB2的晶间连接性,进而提高其载流能力。不过在满足实际生产应用方面还有待提高。本发明通过铜掺杂活化MgB2超导块体先位烧结制备技术,获得了超导性能优异的MgB2超导材料。
发明内容
本发明通过铜掺杂发展了先位烧结制备高性能MgB2超导块体的方法。此发明中高温保温阶段时,超导块材内部的MgB2自烧结加剧,提高了晶间连接性,同时由可知,可以促进MgB4的分解,产生少量杂质MgB4。然后快速降温到低温,并在此温度保温,上述反应向逆方向进行,重新生成了晶间连接性良好的MgB2组织,对提高临界电流密度有利,此外剩余的少量MgB4也可以作为有效的磁通钉扎中心。通过铜添加可以降低此反应的温度,且加速了的反应,不但显著提高了MgB2晶粒之间的连接性,而且增加二硼化镁超导块材的有效磁通钉扎中心,最终制备出了载流能力优异的MgB2超导块体。
本发明的目的在于提供一种通过铜添加提高先位烧结MgB2临界电流密度的制备技术,通过铜添加最终先位烧结制备出了具有高载流能力的MgB2超导块体材料,该材料为将来的工程实际应用提供了很大的可能。
具体技术方案如下:
一种铜添加活化二硼化镁超导块体先位烧结的方法;其步骤如下:
(1)将前驱粉MgB2粉中添加1~5wt.%的铜粉在玛瑙研钵中充分混合,然后在2~8MPa的压力下制成圆柱小片;
(2)然后,放入热重差热分析仪或者管式烧结炉中,在流动的高纯氩气的气氛下,升温速率升至800~1000℃后烧结;然后降至600~700℃后,以10~40℃/min的冷却速度降至室温得到烧结样品。
所述步骤(2)中以10~40℃/min升温速率升至800~1000℃后,在此温度保温烧结0~20分钟。
所述步骤(2)中以10~50℃/min的冷却速度降至600~700℃后,再次保温0~3个小时。
本发明主旨是通过铜添加的先位烧结法获得高载流MgB2超导块体材料。图1是未掺杂和掺铜的超导块体材料的临界电流密度,从图中可以发现,相较于未掺铜的MgB2超导块体材料,铜添加的MgB2超导块体材料的临界电流密度在整个磁场上都有明显的提高,说明添加铜的方法有效可行。图2是样品的X射线衍射图谱,其中,Cu代表掺铜,P代表不掺铜,后面的数字对应的是高温的保温温度。从图中可以看到,对于所有烧结样品,MgB2为主相,且都有少量的MgO和MgB4存在,但是不同的是掺铜的样品中有MgCu2的峰,说明在烧结过程中,一定发生了反应,分解产物中的Mg,在未掺铜的样品中Mg和O结合发生了氧化反应,而对于铜添加的样品,Mg除了发生氧化反应还与Cu发生了反应,生成了MgCu2。图3是电阻测试,通过计算可以获得晶粒间的连接性,经过计算获得横截面积有效载流率(AF),可以发现铜的添加有效的提高了晶粒间的连接性:
(其中Δρideal=7.3μΩ·cm,ρ300k和ρ40k分别是在300K和40K的电阻率;计算出的数值越大,说明晶粒间的连接性越强)
通过计算得出,AF(掺铜)是AF(未掺杂)的486倍,说明掺铜是有效的。
本发明具有如下优点:本发明制备的具有高载流的MgB2超导材料是通过将铜添加技术引用到先位烧结法中获得的,此前大量先位法获得的MgB2材料载流能力普遍较低,且会被大量氧化,从而限制了其在实际工程中的应用。本技术制备的MgB2材料结构稳定,临界转变温度较高,且在所有先位法制备的MgB2超导块体中具有最好的载流能力;生成的试样均以MgB2为主相,少量MgO和MgB4相与之共存,掺铜试样中还会出现MgCu2相,与未添加Cu的样品相比,所有掺铜的样品的临界电流密度在低磁场下有显著的提高,最高的提高了50%;制备方法简单,可控性强,无污染,原料来源广泛,制备成本低,具有广泛的工程应用推广前景。
附图说明
图1:未掺杂和掺铜的超导块体材料的临界电流密度;
图2:未掺杂和掺铜的超导块体材料的X射线衍射图谱(XRD);
图3:未掺杂和掺铜的超导块体材料的电阻测试。
具体实施方式
选取纯度为99%的MgB2的粉末,添加一定量的铜进行混合,在设定压力下压成规格为规格Ф5×1.5mm的小片,以下实施例对本发明作进一步的详细说明:实施例1
添加质量分数为3wt.%的铜与MgB2的粉末在玛瑙研钵中进行充分混合,然后将其在5MPa的压力下压成小片,将已压制好的试样放入热重差热分析仪(Mettler Toledo TGA/DSC1/)中,通入氩气进行低温烧结,设定程序为:以20℃/min升温速率升至900℃后,在此温度保温烧结10分钟,然后以40℃/min的冷却速度降至650℃后,保温1个小时,最后以40℃/min的冷却速度降至室温。
实施例2
添加质量分数为1wt.%的铜与MgB2的粉末在玛瑙研钵中进行充分混合,然后将其在2MPa的压力下压成小片,将已压制好的试样放入热重差热分析仪(Mettler Toledo TGA/DSC1/)中,通入氩气进行低温烧结,设定程序为:以10℃/min升温速率升至1000℃后,在此温度保温烧结0分钟,然后以50℃/min的冷却速度降至600℃后,保温0个小时,最后以50℃/min的冷却速度降至室温。
实施例3
添加质量分数为5wt.%的铜与MgB2的粉末在玛瑙研钵中进行充分混合,然后将其在8MPa的压力下压成小片,将已压制好的试样放入热重差热分析仪(Mettler Toledo TGA/DSC1/)中,通入氩气进行低温烧结,设定程序为:以10℃/min升温速率升至800℃后,在此温度保温烧结20分钟,然后以10℃/min的冷却速度降至700℃后,保温3个小时,最后以10℃/min的冷却速度降至室温。
选用先位烧结法是为了获得更多的超导相,通过铜添加,不仅可以有效的降低氧化率,还可以在此基础上引入一定的有效的钉扎中心,从而获得更优的超导相。
从图2可以看出,超导相MgB2相是主相,与少量其它相共存,但是通过对烧结参数的控制,可以有效调整。图3是未掺杂和掺铜的超导块体材料的电阻测试,从结果可以看出,掺铜的样品的晶粒间的连接性提高效果显著。图1给出了所有试样的临界电流密度,与最优未掺杂的样品相比,临界电流密度在低磁场下有显著的提高,最高的提高了49.69%。
本发明提出的一种铜添加活化MgB2超导块体先位烧结制备技术,已通过实施例进行了描述,相关技术人员明显能在不脱离本发明的内容、精神和范围内对本文所述的制作方法进行改动或适当变更与组合,来实现本发明的技术。特别需要指出的是,所有相类似的替换和改动对本领域技术人员来说是显而易见的,他们都被视为包括在本发明精神、范围和内容中。

Claims (3)

1.一种铜添加活化二硼化镁超导块体先位烧结的方法;其特征是步骤如下:
(1)将前驱粉MgB2粉中添加1~5wt.%的铜粉在玛瑙研钵中充分混合,然后在2~8MPa的压力下制成圆柱小片;
(2)然后,放入热重差热分析仪或者管式烧结炉中,在流动的高纯氩气的气氛下,升温速率升至800~1000℃后烧结;然后降至600~700℃后,以10~40℃/min的冷却速度降至室温得到烧结样品。
2.如权利要求1所述的方法,其特征是所述步骤(2)中以10~40℃/min升温速率升至800~1000℃后,在此温度保温烧结0~20分钟。
3.如权利要求1所述的方法,其特征是所述步骤(2)中以10~50℃/min的冷却速度降至600~700℃后,再次保温0~3个小时。
CN201710342360.3A 2017-05-16 2017-05-16 铜添加活化二硼化镁超导块体先位烧结的方法 Pending CN107244921A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710342360.3A CN107244921A (zh) 2017-05-16 2017-05-16 铜添加活化二硼化镁超导块体先位烧结的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710342360.3A CN107244921A (zh) 2017-05-16 2017-05-16 铜添加活化二硼化镁超导块体先位烧结的方法

Publications (1)

Publication Number Publication Date
CN107244921A true CN107244921A (zh) 2017-10-13

Family

ID=60017140

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710342360.3A Pending CN107244921A (zh) 2017-05-16 2017-05-16 铜添加活化二硼化镁超导块体先位烧结的方法

Country Status (1)

Country Link
CN (1) CN107244921A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111318713A (zh) * 2020-03-05 2020-06-23 西南交通大学 一种铜掺杂制备铌三铝超导线材的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101224897A (zh) * 2007-12-04 2008-07-23 天津大学 Cu掺杂MgB2超导体及低温快速制备方法
CN101279741A (zh) * 2008-05-28 2008-10-08 西南交通大学 一种制备二硼化镁超导材料的方法
JP2009134969A (ja) * 2007-11-30 2009-06-18 Hitachi Ltd MgB2超電導線材の製造方法
CN105541338A (zh) * 2016-01-13 2016-05-04 天津大学 通过自反应提高先位二硼化镁块材超导临界电流密度的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009134969A (ja) * 2007-11-30 2009-06-18 Hitachi Ltd MgB2超電導線材の製造方法
CN101224897A (zh) * 2007-12-04 2008-07-23 天津大学 Cu掺杂MgB2超导体及低温快速制备方法
CN101279741A (zh) * 2008-05-28 2008-10-08 西南交通大学 一种制备二硼化镁超导材料的方法
CN105541338A (zh) * 2016-01-13 2016-05-04 天津大学 通过自反应提高先位二硼化镁块材超导临界电流密度的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111318713A (zh) * 2020-03-05 2020-06-23 西南交通大学 一种铜掺杂制备铌三铝超导线材的方法

Similar Documents

Publication Publication Date Title
Madre et al. Preparation of high-performance Ca3Co4O9 thermoelectric ceramics produced by a new two-step method
WO2009135348A1 (zh) 铁基化合物超导线材和带材及其制备方法
Cheng et al. Enhancement of grain connectivity and critical current density in the ex-situ sintered MgB2 superconductors by doping minor Cu
Rafieazad et al. Review on magnesium diboride (MgB2) as excellent superconductor: Effects of the production techniques on the superconducting properties
JP2005529832A (ja) 超伝導物質および合成方法
CN104445097B (zh) Sn添加FeSe1/2Te1/2的超导体提高超导性能的方法
Xu et al. Microstructure and superconducting properties of nanocarbon-doped internal Mg diffusion-processed MgB2 wires fabricated using different boron powders
CN104217817B (zh) 制备(Ba/Sr)1-xKxFe2As2超导线材或带材的方法
CN107244921A (zh) 铜添加活化二硼化镁超导块体先位烧结的方法
CN101295563B (zh) 一种有机物掺杂的MgB2块材的制备方法
CN110229005B (zh) 一种超导新材料及其制备方法
CN104774013B (zh) 一种具有高临界转变温度的Y2O3:Eu3+发光体掺杂MgB2超导体
CN101515493B (zh) 一种MgB2/Nb/Cu多芯复合超导线材的制备方法
CN100447084C (zh) 脉冲磁场作用下制备化学掺杂的MgB2系超导材料的方法
CN105541338B (zh) 通过自反应提高先位二硼化镁块材超导临界电流密度的方法
CN102531610B (zh) 高临界电流密度甘氨酸掺杂MgB2超导体及制备方法
CN101608340B (zh) 一种铁基高温超导晶体及其制备方法
CN101591172B (zh) 金属Sn掺杂MgB2超导体及高温快速制备方法
CN101508571B (zh) 一种分步烧结反应制备碳掺杂MgB2超导体的方法
CN101250060A (zh) 一种用球形镁粉制备MgB2超导材料的方法
CN115440435B (zh) 一种MgB2超导粉末的制备方法
CN105585315A (zh) 铋锶钙铜氧系超导复合材料的制备方法
Luo et al. Microstructure and superconducting properties of MgB2 bulks prepared from Mg+ B+ Mg (BH4) 2 composites
CN101450804A (zh) 还原法制备金属镍纳米颗粒掺杂MgB2超导材料的方法
CN102992771A (zh) 一种二硼化镁基超导块材的制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171013

RJ01 Rejection of invention patent application after publication