CN111318713A - 一种铜掺杂制备铌三铝超导线材的方法 - Google Patents

一种铜掺杂制备铌三铝超导线材的方法 Download PDF

Info

Publication number
CN111318713A
CN111318713A CN202010146462.XA CN202010146462A CN111318713A CN 111318713 A CN111318713 A CN 111318713A CN 202010146462 A CN202010146462 A CN 202010146462A CN 111318713 A CN111318713 A CN 111318713A
Authority
CN
China
Prior art keywords
powder
superconducting wire
wire
niobium
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010146462.XA
Other languages
English (en)
Other versions
CN111318713B (zh
Inventor
张勇
李国威
余炫
胡元斌
余洲
刘连
赵勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN202010146462.XA priority Critical patent/CN111318713B/zh
Publication of CN111318713A publication Critical patent/CN111318713A/zh
Application granted granted Critical
Publication of CN111318713B publication Critical patent/CN111318713B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/003Drawing materials of special alloys so far as the composition of the alloy requires or permits special drawing methods or sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/12Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

一种铜掺杂制备铌三铝超导线材的方法,包括以下步骤:A、将Nb粉、Al粉和Cu粉,按照Nb3(Al1‑xCux),0.02≤x≤0.03的化学计量比称量,然后在行星球磨罐中充分混合,得混合粉末;B、将混合粉末装入直径8‑12mm的Nb管中,并用铜块将两端密封,得到线材前驱体;C、将线材前驱体冷拉拔至直径1.5~1.7mm,得到拉拔后的线材前驱体;D、将拉拔后的线材前驱体用真空快热快冷装置进行快热快冷处理,得到超导线材初品;E、将超导线材初品放入石英管中进行退火烧结,烧结后随炉冷却,即得到掺杂铜的铌三铝超导线材。该方法制得的铌三铝超导线材,其临界电流密度大,不可逆场高、转变温度高。

Description

一种铜掺杂制备铌三铝超导线材的方法
技术领域
本发明提出了一种铌三铝超导线材的方法。
背景技术
铌三铝(Nb3Al)超导线材具有良好的超导性能,在高场下仍具有较高临界电流密度。其较高的应变允许,在减小超导磁体设计体积和降低失超风险方面具有潜在优势,被认为是替代Nb3Sn的理想材料。另外,Nb3Al超导材料的较低密度和极高熔点,在航空航天等耐高温领域具有良好的应用前景。
Nb3Al超导线材的常用制备方法有:快热快冷法、熔炼法和离子束法。其中快热快冷法制备的超导线材具有较高的超导性能,适于工业的规模生产。而将快热快冷法与粉末装管法相结合制备Nb3Al超导线材,具有工艺成本不高、易于调整原料配比和反应较为充分的特点,是一种简单易行,适用于小规模生产的方法。
已有报道称,通过粉末装管法与快热快冷法结合成功制备了Nb3Al超导线材,但其超导性能却并远未达到材料本征:其临界电流密度(Jc)仅为7.2×104A·cm-2(8K,5T),最高设计使用磁场(不可逆场、Hc)为11.3T,转变温度Tc为16.6K;这与产业化程度较高的Nb3Sn的性能与成本相比,并不具有优势,导致其不能实际应用。
发明内容
本发明的目的是提出一种铜掺杂制备铌三铝超导线材的方法,该方法制得的铌三铝超导线材,其临界电流密度大,不可逆场高、转变温度高,超导性能得到全面提升。
本发明实现其发明目的所采用的技术方案是,一种铜掺杂制备铌三铝超导线材的方法,包括以下步骤:
A、将Nb粉、Al粉和Cu粉,按照Nb3(Al1-xCux),0.02≤x≤0.03的化学计量比称量,然后在行星球磨罐中充分混合,得混合粉末;
B、将步骤A的混合粉末装入直径8-12mm的Nb管中,并用铜块将两端密封,得到线材前驱体;
C、将线材前驱体冷拉拔至直径1.5~1.7mm,得到拉拔后的线材前驱体;
D、将拉拔后的线材前驱体用真空快热快冷装置进行焦耳热电流为180~182A、升温时间1s,降温时间1s的快热快冷处理,得到超导线材初品;
E、将超导线材初品放入石英管中进行温度为800~900℃、时间为8~10h的退火烧结,烧结后随炉冷却,即得到掺杂铜的铌三铝超导线材。
与现有技术相比,本发明的有益效果是:
一、申请人发现:掺杂化学计量比0.02-0.03的Cu,由于掺杂量少,在快热快冷处理过程中并不会形成抑制超导性能的Nb-Al-Cu三元化合物;却能在真空快热快冷处理过程中,由导热系数高的Cu促进短时间内的热量传导,对铌铝反应产生催化作用,形成更均匀、一致的铌铝超导体,增加了超导相的比例,使最终产物性能提高。而退火处理温度低于Cu的熔点,掺杂的Cu在退火处理过程中从Nb3Al的晶界处析出,增加了Nb3Al的晶界,进而增加了Nb3Al超导体的钉扎中心,进一步提高了Nb3Al的超导性能。总之,本发明通过微量的Cu掺杂提高了Nb3Al线材中超导相的比例、增加了Nb3Al的晶界及钉扎中心,从而全面提高了Nb3Al的超导性能。
测试表明,本发明方法制备的Nb3Al超导线材,其临界电流密度在7.9×104A·cm-2~9.7×105A·cm-2(8K,5T)之间,高于未掺杂的Nb3Al的临界电流密度7.2×104A·cm-2(8K,5T);其不可逆场在25.4~25.7T之间,比未掺杂Nb3Al的11.3T提高了1倍以上;转变温度Tc为18.0K,比未掺杂Nb3Al的16.6K有明显提高。
进一步,本发明的Nb粉、Al粉和Cu粉的颗粒度均为20-45微米。
这种粒度的Nb粉、Al粉和Cu粉能很好地在快热快冷处理过程形成超导相,
进一步,本发明的步骤A、步骤B和步骤E的操作,均在氩气保护下进行。
这样,在原料的球磨混合和装填过程、及最后的退火烧结中避免了氧气混入产生氧化反应,能够形成高性能的Nb3Al超导体。
下面结合具体实施方式对本发明作进一步的详细说明。
具体实施方式
实施例1
一种铜掺杂制备铌三铝超导线材的方法,包括以下步骤:
A、在氩气保护下:在氩气保护下:将粒度为20微米,纯度99.99%的Nb粉、粒度为20微米,纯度99.95%的Al粉和粒度为45微米,纯度99.999%的Cu粉,按照Nb3(Al1-xCux),x=0.03的化学计量比称量,然后在行星球磨罐中充分混合,得混合粉末;
B、在氩气保护下:将步骤A的混合粉末装入直径8mm的Nb管中,并用铜块将两端密封,得到线材前驱体;
C、将线材前驱体冷拉拔至直径1.7mm,得到拉拔后的线材前驱体;
D、将拉拔后的线材前驱体用真空快热快冷装置进行焦耳热电流为182A、升温时间1s,降温时间1s的快热快冷处理,得到超导线材初品;
E、在氩气保护下:将超导线材初品放入石英管中进行温度为900℃、时间为9h的退火烧结,烧结后随炉冷却;即得到掺杂铜的铌三铝超导线材。
实施例2
一种铜掺杂制备铌三铝超导线材的方法,包括以下步骤:
A、在氩气保护下:在氩气保护下:将粒度为45微米,纯度99.99%的Nb粉、粒度为45微米,纯度99.95%的Al粉和粒度为20微米,纯度99.999%的Cu粉,按照Nb3(Al1-xCux),x=0.02的化学计量比称量,然后在行星球磨罐中充分混合,得混合粉末;
B、在氩气保护下:将步骤A的混合粉末装入直径10mm的Nb管中,并用铜块将两端密封,得到线材前驱体;
C、将线材前驱体冷拉拔至直径1.6mm,得到拉拔后的线材前驱体;
D、将拉拔后的线材前驱体用真空快热快冷装置进行焦耳热电流为180A、升温时间1s,降温时间1s的快热快冷处理,得到超导线材初品;
E、在氩气保护下:将超导线材初品放入石英管中进行温度为800℃、时间为10h的退火烧结,烧结后随炉冷却;即得到掺杂铜的铌三铝超导线材。
实施例3
一种铜掺杂制备铌三铝超导线材的方法,包括以下步骤:
A、在氩气保护下:在氩气保护下:将粒度为30微米,纯度99.99%的Nb粉、粒度为30微米,纯度99.95%的Al粉和粒度为30微米,纯度99.999%的Cu粉,按照Nb3(Al1-xCux),x=0.025的化学计量比称量,然后在行星球磨罐中充分混合,得混合粉末;
B、在氩气保护下:将步骤A的混合粉末装入直径12mm的Nb管中,并用铜块将两端密封,得到线材前驱体;
C、将线材前驱体冷拉拔至直径1.5mm,得到拉拔后的线材前驱体;
D、将拉拔后的线材前驱体用真空快热快冷装置进行焦耳热电流为181A、升温时间1s,降温时间1s的快热快冷处理,得到超导线材初品;
E、在氩气保护下:将超导线材初品放入石英管中进行温度为850℃、时间为8h的退火烧结,烧结后随炉冷却;即得到掺杂铜的铌三铝超导线材。
对照例:
对照例的操作与实施例1的基本操作完全相同,不同的仅仅是未掺杂铜,即A步称量的化学计量比由Nb3(Al1-xCux),x=0.03改为Nb3(Al1-xCux),x=0。
测试结果表明:
实施例1制得的Nb3Al超导线材的临界电流密度Jc为9.7×104A·cm-2(8K,5T),不可逆场Hc为25.7T,超导转变温度Tc为18.0K。
实施例2制得的Nb3Al超导线材的临界电流密度Jc为7.9×104A·cm-2(8K,5T),不可逆场Hc为25.4T,超导转变温度Tc为18.0K。
对照例制得的Nb3Al超导线材的临界电流密度Jc为7.2×104A·cm-2(8K,5T),不可逆场Hc为11.3T,超导转变温度Tc为16.6K。
总之,本发明方法制备的Nb3Al超导线材,其临界电流密度在7.9×104A·cm-2~9.7×105A·cm-2(8K,5T)之间,高于未掺杂的Nb3Al的临界电流密度7.2×104A·cm-2(8K,5T);其不可逆场在25.4~25.7T之间,比未掺杂Nb3Al的11.3T提高了1倍以上;转变温度Tc为18.0K,比未掺杂Nb3Al的16.6K有明显提高。

Claims (3)

1.一种铜掺杂制备铌三铝超导线材的方法,包括以下步骤:
A、将Nb粉、Al粉和Cu粉,按照Nb3(Al1-xCux),0.02≤x≤0.03的化学计量比称量,然后在行星球磨罐中充分混合,得混合粉末;
B、将步骤A的混合粉末装入直径8-12mm的Nb管中,并用铜块将两端密封,得到线材前驱体;
C、将线材前驱体冷拉拔至直径1.5~1.7mm,得到拉拔后的线材前驱体;
D、将拉拔后的线材前驱体用真空快热快冷装置进行焦耳热电流为180~182A、升温时间1s,降温时间1s的快热快冷处理,得到超导线材初品;
E、将超导线材初品放入石英管中进行温度为800~900℃、时间为8~10h的退火烧结,烧结后随炉冷却,即得到掺杂铜的铌三铝超导线材。
2.根据权利要求1所述的一种铜掺杂制备铌三铝超导线材的方法,其特征在于:所述的Nb粉、Al粉和Cu粉的颗粒度均为20-45微米。
3.根据权利要求1所述的一种铜掺杂制备铌三铝超导线材的方法,其特征在于:所述的步骤A、步骤B和步骤E的操作,均在氩气保护下进行。
CN202010146462.XA 2020-03-05 2020-03-05 一种铜掺杂制备铌三铝超导线材的方法 Active CN111318713B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010146462.XA CN111318713B (zh) 2020-03-05 2020-03-05 一种铜掺杂制备铌三铝超导线材的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010146462.XA CN111318713B (zh) 2020-03-05 2020-03-05 一种铜掺杂制备铌三铝超导线材的方法

Publications (2)

Publication Number Publication Date
CN111318713A true CN111318713A (zh) 2020-06-23
CN111318713B CN111318713B (zh) 2022-10-14

Family

ID=71169359

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010146462.XA Active CN111318713B (zh) 2020-03-05 2020-03-05 一种铜掺杂制备铌三铝超导线材的方法

Country Status (1)

Country Link
CN (1) CN111318713B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114540690A (zh) * 2022-02-24 2022-05-27 福建师范大学 一种制备高性能Nb3(Al,Ge) 超导体的方法
CN114927290A (zh) * 2022-05-26 2022-08-19 西北有色金属研究院 一种快热快冷工艺制备Fe(Se,Te)超导线材的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020179184A1 (en) * 2001-04-09 2002-12-05 Rudziak Mark K. Nb3Al superconductor and method of manufacture
CN101016158A (zh) * 2005-12-23 2007-08-15 上海大学 脉冲磁场作用下制备化学掺杂的MgB2系超导材料的方法
CN101224897A (zh) * 2007-12-04 2008-07-23 天津大学 Cu掺杂MgB2超导体及低温快速制备方法
CN103093899A (zh) * 2013-02-25 2013-05-08 西部超导材料科技股份有限公司 Nb3Al超导线材多芯线前驱体的制备方法
CN105976940A (zh) * 2016-05-05 2016-09-28 成都君禾天成科技有限公司 一种采用高能球磨法制备超导材料的方法
CN106024196A (zh) * 2016-06-24 2016-10-12 西南交通大学 Nb3Al超导材料的制备方法
CN107244921A (zh) * 2017-05-16 2017-10-13 天津大学 铜添加活化二硼化镁超导块体先位烧结的方法
CN108806880A (zh) * 2018-06-21 2018-11-13 西南交通大学 一种基于粉末装管的Nb3Al超导线材的制备方法
CN109702210A (zh) * 2019-01-11 2019-05-03 天津大学 一种锡掺杂提高低温烧结铌三铝临界电流密度的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020179184A1 (en) * 2001-04-09 2002-12-05 Rudziak Mark K. Nb3Al superconductor and method of manufacture
CN101016158A (zh) * 2005-12-23 2007-08-15 上海大学 脉冲磁场作用下制备化学掺杂的MgB2系超导材料的方法
CN101224897A (zh) * 2007-12-04 2008-07-23 天津大学 Cu掺杂MgB2超导体及低温快速制备方法
CN103093899A (zh) * 2013-02-25 2013-05-08 西部超导材料科技股份有限公司 Nb3Al超导线材多芯线前驱体的制备方法
CN105976940A (zh) * 2016-05-05 2016-09-28 成都君禾天成科技有限公司 一种采用高能球磨法制备超导材料的方法
CN106024196A (zh) * 2016-06-24 2016-10-12 西南交通大学 Nb3Al超导材料的制备方法
CN107244921A (zh) * 2017-05-16 2017-10-13 天津大学 铜添加活化二硼化镁超导块体先位烧结的方法
CN108806880A (zh) * 2018-06-21 2018-11-13 西南交通大学 一种基于粉末装管的Nb3Al超导线材的制备方法
CN109702210A (zh) * 2019-01-11 2019-05-03 天津大学 一种锡掺杂提高低温烧结铌三铝临界电流密度的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李平原: "超导电工材料Nb3Al的制备工艺及性能研究", 《博士论文》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114540690A (zh) * 2022-02-24 2022-05-27 福建师范大学 一种制备高性能Nb3(Al,Ge) 超导体的方法
CN114927290A (zh) * 2022-05-26 2022-08-19 西北有色金属研究院 一种快热快冷工艺制备Fe(Se,Te)超导线材的方法

Also Published As

Publication number Publication date
CN111318713B (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
CN111318713B (zh) 一种铜掺杂制备铌三铝超导线材的方法
CN106024196B (zh) Nb3Al超导材料的制备方法
CN110534254B (zh) 一种高性能铁基超导带材的制备方法
CN104233121A (zh) 一种Fe基非晶纳米晶软磁材料及其制备方法
WO2007071163A1 (fr) Bande ou cable supraconducteur a base de mgb2 et de carbone et son procede de fabrication
CN111154994B (zh) 石墨烯铝复合材料及其制备方法
US4491560A (en) Large crystal grains or single crystals of molybdenum and process for production thereof
JP2005529832A (ja) 超伝導物質および合成方法
JP2005529832A5 (zh)
CN101728028B (zh) 原位法制备多芯TiC掺杂MgB2线带材的方法
CN110229005B (zh) 一种超导新材料及其制备方法
CN115641997B (zh) 一种掺杂纳米氧化物的Nb3Al超导线材及其制备方法
CN101872661B (zh) 一种萘掺杂MgB2超导单芯线材的制备方法
CN114974722B (zh) 一种金属间化合物超导体及其制备方法和应用
CN102615280A (zh) 一种sps技术制备铁基超导体的方法
CN102728845A (zh) 一种低铁钼粉的制备方法
CN114182123A (zh) 一种快速制备Nb3Al超导体的方法
CN102992771A (zh) 一种二硼化镁基超导块材的制造方法
CN114141427B (zh) 一种掺杂碳提高FeSeTe单晶超导性能的方法
CN109022895A (zh) 一种超细晶高致密高铜含量Cu-W合金的制备方法
CN116884700B (zh) 一种掺入碘单质的铌三铝超导线材及其制备方法和应用
CN114530291B (zh) 一种铜/石墨烯复合导线的制备方法
CN115558832B (zh) 一种半哈斯勒合金及其制备方法和应用
CN116895405B (zh) 一种Nb3Sn超导线材的分段式热处理方法
Müller et al. Critical temperature and critical current density of superconducting V-Ga-Al alloys with A 15 structure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant