WO2018124256A1 - 希土類蓄冷材並びにこれを備えた蓄冷器及び冷凍機 - Google Patents

希土類蓄冷材並びにこれを備えた蓄冷器及び冷凍機 Download PDF

Info

Publication number
WO2018124256A1
WO2018124256A1 PCT/JP2017/047150 JP2017047150W WO2018124256A1 WO 2018124256 A1 WO2018124256 A1 WO 2018124256A1 JP 2017047150 W JP2017047150 W JP 2017047150W WO 2018124256 A1 WO2018124256 A1 WO 2018124256A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
regenerator
specific heat
regenerator material
mol
Prior art date
Application number
PCT/JP2017/047150
Other languages
English (en)
French (fr)
Inventor
栗岩 貴寛
恭知 松本
英治 生木
Original Assignee
株式会社三徳
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三徳 filed Critical 株式会社三徳
Priority to EP17886855.0A priority Critical patent/EP3564337A4/en
Priority to JP2018502440A priority patent/JP6377880B1/ja
Priority to US16/471,147 priority patent/US20190316814A1/en
Priority to CN201780081077.8A priority patent/CN110168043B/zh
Publication of WO2018124256A1 publication Critical patent/WO2018124256A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/012Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials adapted for magnetic entropy change by magnetocaloric effect, e.g. used as magnetic refrigerating material
    • H01F1/015Metals or alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/003Gas cycle refrigeration machines characterised by construction or composition of the regenerator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present invention relates to a rare earth regenerator material, a regenerator and a refrigerator equipped with the rare earth regenerator material.
  • Known small refrigerators in practical use include, for example, Gibbford-McMahon type small helium refrigerators (so-called GM refrigerators) and pulse tube refrigerators.
  • GM refrigerators Gibbford-McMahon type small helium refrigerators
  • pulse tube refrigerators for example, when sending precooled compressed helium to a regenerator filled with a regenerator material, the compressed helium passes through the regenerator while expanding, so the regenerator is cooled.
  • the regenerator material is further cooled, and the regenerator is cooled and reaches the target temperature every time the cycle is repeated.
  • lead In conventional small refrigerators, lead (Pb) has been used as a regenerator material filled in a regenerator.
  • the regenerator material is required to have a high specific heat in a low temperature region.
  • the specific heat of lead rapidly decreases as the temperature decreases, it is generally used at a temperature of 20K or higher.
  • lead has been replaced by bismuth (Bi) in response to the RoHS directive (Restriction on the Use of Hazardous Substances), but bismuth has a lower specific heat than lead in most low-temperature regions, so the viewpoint of improving the performance of small refrigerators Therefore, development of a new cold storage material to replace bismuth is desired.
  • Non-Patent Document 1 discloses an antiferromagnetic regenerator material: holmium copper 2 (HoCu 2 ) that has excellent specific heat characteristics in a low temperature region of less than 10K.
  • Holmium copper 2 is a material that exhibits two large specific heat peaks accompanying two magnetic transitions in a low temperature region of less than 10K, and is an antiferromagnetic material, so it is less affected by magnetic fields and is suitably used for MRI and the like. ing.
  • Non-Patent Document 1 also shows the specific heat characteristics of other rare earth regenerator materials. For example, ErNi has a sharp specific heat peak near 10K, and Er 3 Ni has a specific heat that gradually decreases as the temperature rises. It is shown that it becomes higher (see FIG. 2 of Non-Patent Document 1).
  • Patent Document 1 in the rare earth regenerator material including holmium copper 2, the refrigerating capacity of the small refrigerator is improved by limiting the average particle diameter, particle shape, and the like of the rare earth regenerator particle group to a specific range.
  • the measures to make it disclosed are disclosed.
  • holmium copper 2 has a specific heat characteristic similar to that of bismuth in the temperature range of 10K or higher, it is a cold storage material having a high specific heat in a temperature range of 10K or higher (especially a temperature range of 10 to 20K). I can't say that.
  • the ErNi and Er 3 Ni have sharp specific heat peaks, but the peak temperature is lower than 15K, or the specific heat is low, the heat storage material is highly usable in the temperature range of 10 to 20K. No (see FIG. 1 for the relationship between the temperature and specific heat of each regenerator).
  • the main object of the present invention is to provide a regenerator material having a high specific heat in a temperature range of 10 K or higher (particularly a temperature range of 10 to 20 K), and a regenerator and refrigerator equipped with the regenerator.
  • the present inventors have found that the above object can be achieved by a material obtained by replacing a part of Er contained in ErNi with another specific rare earth element.
  • the headline and the present invention were completed.
  • the present invention relates to the following rare earth regenerator material, a regenerator and a refrigerator equipped with the same.
  • General formula (1) Er 1-x R x Ni 1 + ⁇ (1) [Wherein x represents 0 ⁇ x ⁇ 1, and ⁇ represents ⁇ 1 ⁇ ⁇ 1. R represents at least one selected from Y and lanthanoid elements (excluding Er). ]
  • R is Dy and is represented by the general formula (2) Er 1-x Dy x Ni 1 + ⁇ (2) [Wherein x represents 0 ⁇ x ⁇ 0.3, and ⁇ represents ⁇ 1 ⁇ ⁇ 1. ]
  • R is Gd and is represented by the general formula (3) Er 1-x Gd x Ni 1 + ⁇ (3) [Wherein x represents 0 ⁇ x ⁇ 0.25, and ⁇ represents ⁇ 1 ⁇ ⁇ 1. ]
  • R is Dy and Gd, and the general formula (4) Er 1-xy Dy x Gd y Ni 1 + ⁇ (4) [Wherein x represents 0 ⁇ x ⁇ 0.3, y represents 0 ⁇ y ⁇ 0.25, and ⁇ represents ⁇ 1 ⁇ ⁇ 1. ]
  • a part of the Ni 1 + ⁇ is substituted with M, and the general formula (5) Er 1-x R x Ni (1-z) + ⁇ M z (5) [Wherein x represents 0 ⁇ x ⁇ 1, z represents 0 ⁇ z ⁇ 0.5, and ⁇ represents ⁇ 1 ⁇ ⁇ 1.
  • R represents at least one selected from Y and lanthanoid elements (excluding Er).
  • M represents at least one selected from the group consisting of Co, Cu, Fe, Al, Mn, Si, Ag, and Ru.
  • a regenerator in which the rare earth regenerator material according to any one of the above items 1 to 5 is filled alone or in combination with another regenerator material. 7).
  • the regenerator according to Item 6 wherein the rare earth regenerator material is in a state of 1) a state of a spherical powder particle group or 2) a state of a sintered body of a spherical powder particle group. 8).
  • a refrigerator comprising the regenerator according to Item 7 or 8.
  • the rare earth regenerator material of the present invention is a regenerator material having a high specific heat in a temperature range of 10K or higher (particularly a temperature range of 10 to 20K), and is therefore suitable for refrigeration applications in a temperature range of 10K or higher.
  • the rare earth regenerator material of the present invention has a structure in which a part of Er (erbium) contained in ErNi is replaced with another specific rare earth element (R), and the following general formula (1) Er 1-x R x Ni 1 + ⁇ (1) [Wherein x represents 0 ⁇ x ⁇ 1, and ⁇ represents ⁇ 1 ⁇ ⁇ 1. R represents at least one selected from Y and lanthanoid elements (excluding Er). ] It is represented by.
  • R replacing a part of Er is at least one selected from Y (yttrium) and a lanthanoid element (excluding Er).
  • the lanthanoid element include La (lanthanum) and Ce (cerium). ), Pr (praseodymium), Nd (neodymium), Pm (promethium), Sm (samarium), Eu (europium), Gd (gadolinium), Tb (terbium), Dy (dysprosium), Ho (holmium), Tm (thulium) ), Yb (ytterbium) and Lu (lutetium).
  • R may be one of these elements or two or more complex substitutions.
  • R is preferably Dy, Gd, or a combined substitution of Dy and Gd.
  • x is preferably 0.01 ⁇ x ⁇ 0.9, more preferably 0.05 ⁇ x ⁇ 0.75, among 0 ⁇ x ⁇ 1.
  • is preferably ⁇ 0.9 ⁇ ⁇ ⁇ 0.8, more preferably ⁇ 0.75 ⁇ ⁇ ⁇ 0.5, even in the range of ⁇ 1 ⁇ ⁇ 1.
  • the general formula (1) is expressed as Er 1-xy R x R ′ y Ni 1 + ⁇ (1) ′ [Wherein x represents 0 ⁇ x ⁇ 1, y represents 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1, and ⁇ represents ⁇ 1 ⁇ ⁇ 1.
  • R and R ′ are different from each other and represent at least one selected from Y and a lanthanoid element (excluding Er). ]
  • the compound substitution amount x + y of R and R ′ is preferably 0.05 ⁇ x + y ⁇ 0.9.
  • is preferably ⁇ 0.9 ⁇ ⁇ ⁇ 0.8, more preferably ⁇ 0.75 ⁇ ⁇ ⁇ 0.5, even in the range of ⁇ 1 ⁇ ⁇ 1.
  • x may be 0 ⁇ x ⁇ 0.3, and preferably 0.1 ⁇ x ⁇ 0.25.
  • is preferably ⁇ 0.9 ⁇ ⁇ ⁇ 0.8, more preferably ⁇ 0.75 ⁇ ⁇ ⁇ 0.5, even in the range of ⁇ 1 ⁇ ⁇ 1.
  • FIG. 2 shows the relationship between the temperature and specific heat of the rare earth regenerator material in which part of Er of ErNi is substituted with Dy (5 mol substitution, 10 mol% substitution, 15 mol% substitution and 25 mol% substitution).
  • the rare earth regenerator material in which 10 mol%, 15 mol% and 25 mol% of Er are substituted with Dy shifts the specific heat peak to a high temperature side compared with ErNi (especially about 1.5 K with 10 mol% substitution). It can be seen that the temperature shifts to the high temperature side. It can also be seen that as the Dy substitution amount increases to 10 mol%, 15 mol%, and 25 mol%, the specific heat peak shifts to the high temperature side and the peak shape changes to a faceted shape. Note that the faceted shape indicates that the peaks are continuous and have a shape like a plateau.
  • a rare earth regenerator material in which 25 mol% of Er is replaced with Dy 1) having a faceted specific heat peak around 10-25K, 2) Specific heat greater than lead at 20K or less, 3) Large decrease in specific heat on the high temperature side (around 26K) from the specific heat peak, 4) The specific heat in the vicinity of 9K is smaller than the specific heat of HoCu 2 , In particular, the features 1) and 2) are more useful than conventional cold storage materials.
  • R Gd
  • the following general formula (3) Er 1-x Gd x Ni 1 + ⁇ (3) [Wherein x represents 0 ⁇ x ⁇ 0.25, and ⁇ represents ⁇ 1 ⁇ ⁇ 1. ] Can be expressed as
  • x may be 0 ⁇ x ⁇ 0.25, among which 0.01 ⁇ x ⁇ 0.25 is preferable, and 0.05 ⁇ x ⁇ 0.25 is more preferable.
  • is preferably ⁇ 0.9 ⁇ ⁇ ⁇ 0.8, more preferably ⁇ 0.75 ⁇ ⁇ ⁇ 0.5, even in the range of ⁇ 1 ⁇ ⁇ 1.
  • FIG. 3 shows the relationship between the temperature and specific heat of a rare earth regenerator material in which part of Er in ErNi is substituted with Gd (5 mol% substitution, 10 mol% substitution and 25 mol% substitution).
  • the rare earth regenerator material in which 5 mol%, 10 mol% and 25 mol% of Er are substituted with Gd shifts the specific heat peak to a high temperature side compared with ErNi (especially about 10 K high for 10 mol% substitution). It turns out that it shifts to the side).
  • a rare earth regenerator material in which 10 mol% of Er is replaced with Gd is 1) No clear faceted specific heat peak is observed, 2) Below 20K, the specific heat is larger than lead. 3) The specific heat drop on the higher temperature side than the specific heat peak is large. 4)
  • the specific heat in the vicinity of 9K is a specific heat substantially equal to the high-temperature side specific heat peak of HoCu 2 . Etc.
  • the specific heat peak is significantly shifted to the high temperature side compared to ErNi (the peak is a higher temperature side than 30K). 1) Thereby, no clear faceted specific heat peak is observed, 2) Specific heat is greater than lead below about 23K. 3) There is no extreme specific heat drop below 30K, 4) The specific heat in the vicinity of 9K is smaller than the high temperature side specific heat peak of HoCu 2 , Etc.
  • x indicating the molar amount of Dy may be 0 ⁇ x ⁇ 0.3, and among them, 0 ⁇ x ⁇ 0.25 is preferable, and 0 ⁇ x ⁇ 0.2 is more preferable.
  • the y indicating the molar amount of Gd may be 0 ⁇ y ⁇ 0.25, preferably 0 ⁇ y ⁇ 0.15, and more preferably 0.05 ⁇ y ⁇ 0.15.
  • the compound substitution amount x + y of Dy and Gd is preferably 0 ⁇ x + y ⁇ 0.5, and more preferably 0.05 ⁇ x + y ⁇ 0.35. Further, ⁇ is preferably ⁇ 0.9 ⁇ ⁇ ⁇ 0.8, more preferably ⁇ 0.75 ⁇ ⁇ ⁇ 0.5, even in the range of ⁇ 1 ⁇ ⁇ 1.
  • FIG. 4 shows the relationship between the temperature and specific heat of a rare earth regenerator material in which a part of Er in ErNi is combined with Dy and Gd (5 mol% substitution, 10 mol% substitution, and Dy 10 mol% and Gd 5 mol% substitution, respectively). Shown in
  • a rare earth regenerator material in which a part of Er is combined with Dy and Gd (5 mol% substitution, 10 mol% substitution, and Dy 10 mol% and Gd 5 mol% substitution, respectively) is more specific heat than ErNi. It can be seen that the peak shifts to the high temperature side.
  • the rare earth regenerator material in which Er is combined and substituted with Dy and Gd shifts the specific heat peak to a high temperature side as compared with ErNi, and the peak shape changes to a facet shape, thereby obtaining a high specific heat. It can be seen that the temperature range expands.
  • a rare earth regenerator material represented by The rare earth regenerator material represented by the general formulas (2) to (4) is included in the rare earth regenerator material represented by the general formula (1). Therefore, the present invention includes a rare earth regenerator material represented by the general formulas (2) to (4) in which a part of Ni 1 + ⁇ is replaced by M.
  • M is an element capable of adjusting the specific heat peak temperature of the rare earth regenerator material depending on the type and the substitution amount for Ni, and specifically, from Co, Cu, Fe, Al, Mn, Si, Ag, and Ru. At least one selected from the group consisting of: M can be used by single or multiple substitution. Among these M, at least one of Co, Cu, Fe, Al, Mn and the like is preferable.
  • the substitution amount (mol%) of M varies depending on the type and degree of adjustment of the specific heat peak, but z indicating the substitution amount of M may be in the range of 0 ⁇ z ⁇ 0.5, and 0 ⁇ z ⁇ 0. Within the range of .45 is preferred.
  • regenerator and refrigerator The rare earth regenerator material of the present invention can constitute a regenerator by filling it alone or in combination with other regenerator materials. It does not limit as another cold storage material, A well-known cold storage material can be combined suitably.
  • a refrigerator for example, a refrigerator for producing liquid hydrogen, a 10K specialized refrigerator, a 4KGM refrigerator
  • a refrigerator including the regenerator can be configured.
  • the properties of the rare earth regenerator material in the regenerator are not limited, but can be appropriately selected from 1) the state of the spherical powder particle group, or 2) the state of the sintered body of the spherical powder particle group, depending on the application. .
  • a rare earth regenerator material in the form of a spherical powder particle group For example, prepare raw materials blended so as to have a predetermined composition after melting and casting, and then vacuum high frequency melting the raw materials in an inert gas atmosphere After melting in a melting furnace such as a furnace, a spherical rare earth regenerator material can be obtained by an atomizing method such as gas atomization or disk atomization, or a rotating electrode method. Moreover, desired powder can be obtained by performing sieving and shape classification as necessary.
  • the particle size (D50) of the spherical powder is not limited, but is preferably in the range of 100 ⁇ m or more and 750 ⁇ m or less, and more preferably in the range of 100 ⁇ m or more and 300 ⁇ m or less.
  • the spherical rare earth regenerator material preferably has an aspect ratio of 10 or less, more preferably 5 or less, and most preferably 2 or less.
  • an aspect ratio is measured by measuring the aspect ratio of any 100 particles using an optical microscope for a sample collected by a quadrant method after thoroughly mixing spherical powders of rare earth regenerator material. The average value was calculated. This was repeated three times, and the average of the three times was defined as the aspect ratio.
  • the rare earth regenerator material of spherical powder When used in the form of a sintered body of spherical powder of rare earth regenerator material, the rare earth regenerator material of spherical powder is inserted into a mold, and then 700 ° C. or higher in an inert gas atmosphere such as Ar or nitrogen in an atmosphere furnace.
  • a sintered body can be obtained by heat treatment at 1200 ° C. or lower for 1 hour to 40 hours. By controlling the heat treatment temperature and time, the filling rate of the rare earth regenerator material in the obtained sintered body can be controlled.
  • the heat treatment can also be performed by an electric current sintering method, a hot press or the like.
  • the porosity contained in the sintered body is not limited, but is preferably in the range of 28 to 40%, more preferably in the range of 32 to 37%. When the porosity is within this range, the regenerator can be filled in the regenerator with a high filling rate.
  • the porosity in this specification is: ⁇ 1-actual weight / (apparent volume ⁇ specific gravity) ⁇ ⁇ 100 [However, the apparent volume indicates the volume obtained from the diameter and length in the case of a cylindrical sample, for example. ] Means the value obtained by
  • the shape and size of the sintered body are not particularly limited, and can be appropriately selected according to the shape of the regenerator.
  • examples of the shape of the sintered body include a cylinder and a prism.
  • a taper shape can also be mentioned in consideration of meshing.
  • the shape of the sintered body can be adjusted by filling the spherical powder into a container having a desired shape and sintering it when the spherical powder is sintered.
  • a container having a desired shape For example, if the shape of the sintered body is a cylinder, a cylindrical container may be filled with spherical powder and sintered.
  • the sintered body may have a multilayer structure.
  • the multilayer structure here refers to, for example, a structure in which one or two or more outer layers are formed outside the inner layer when a columnar shape is taken as an example. Examples of such a multilayer structure include a structure formed of a plurality of layers having different porosity. Alternatively, the multilayer structure may be a structure formed of a plurality of layers having different material types. Furthermore, as a multilayer structure, for example, a laminated body in which a plurality of layers having different specific heat characteristics are sequentially stacked may be used.
  • the rare earth-containing compounds represented by the general formulas (1) to (5) are each used as a rare earth regenerator, and as an invention using the rare earth regenerator, a regenerator filled with the rare earth regenerator, and A refrigerator equipped with the regenerator is provided.
  • the present invention includes the use of at least one rare earth-containing compound selected from the rare earth-containing compounds represented by the general formulas (1) to (5) as a cold storage material. Is also included.
  • the invention also includes a regenerator having a regenerator, wherein the regenerator is at least one rare earth-containing compound selected from the rare earth-containing compounds represented by the general formulas (1) to (5). It is.
  • raw materials blended so as to have the respective compositions shown in Table 1 after melting and casting were prepared and melted in an inert gas atmosphere in a high-frequency heating melting furnace to obtain an alloy melt.
  • This alloy was cast into a copper mold to obtain an alloy.

Abstract

本発明は、10K以上の温度範囲(特に10~20Kの温度範囲)で高い比熱を有する蓄冷材並びにこれを備えた蓄冷器及び冷凍機を提供する。 本発明は、具体的には、一般式(1) Er1-xNi1+α (1) 〔式中、xは0<x<1、αは-1<α<1を示す。RはY及びランタノイド元素(但しErを除く)から選ばれる少なくとも一種を示す。〕 で表されることを特徴とする希土類蓄冷材、並びにこれを備えた蓄冷器及び冷凍機を提供する。

Description

希土類蓄冷材並びにこれを備えた蓄冷器及び冷凍機
 本発明は、希土類蓄冷材並びにこれを備えた蓄冷器及び冷凍機に関する。
 現在、医療分野で断層写真を撮影する超電導MRI(核磁気共鳴イメージング)装置、磁気浮上列車、超電導電力貯蔵装置(SMES)等において超電導磁石が実用化され又は実用化への応用が進められている。ここで、超電導磁石は、液体ヘリウム(He)の沸点である4.2K(約-269℃)の極低温に冷却されなければならないところ、液体ヘリウムは高価であるとともに取扱いに高度な技術を必要とするため、液体ヘリウムに代わる冷却手段として、高性能な小型冷凍機の開発が行われている。実用化されている小型冷凍機としては、例えば、ギブフォード・マクマホン型の小型ヘリウム冷凍機(いわゆるGM冷凍機)やパルスチューブ冷凍機などが知られている。これらの冷凍機は、例えば、予冷された圧縮ヘリウムを蓄冷材が充填された蓄冷器に送る際に、圧縮ヘリウムは膨張しながら蓄冷器を通過するため、蓄冷器が冷却される。また、蓄冷器に送られたヘリウムを減圧により除去する際にも更に蓄冷材が冷却され、サイクルを重ねるごとに蓄冷器が冷却されて目的温度に到達する。
 従来の小型冷凍機では、蓄冷器に充填される蓄冷材として鉛(Pb)が使用されていた。ここで、蓄冷材は低温領域で高い比熱を有することが求められるが、鉛の比熱は温度低下に伴って急激に低下するため、一般に20K以上の温度で使用されていた。近年ではRoHS指令(有害物質使用制限指令)を受けて鉛はビスマス(Bi)に代替されているが、ビスマスは殆どの低温領域において鉛よりも比熱が低いため、小型冷凍機の性能を高める観点ではビスマスに代わる新たな蓄冷材の開発が望まれている。
 非特許文献1には、10K未満の低温領域の比熱特性に優れた、反強磁性体の蓄冷材:ホルミウム銅2(HoCu)について開示されている。ホルミウム銅2は、10K未満の低温領域で2回の磁気転移に伴う二つの大きな比熱ピークを示す材料であり、反強磁性体であるため、磁場から受ける影響が小さくMRIなどに好適に利用されている。また、非特許文献1には、他の希土類蓄冷材の比熱特性についても示されており、例えば、ErNiが10K付近に鋭い比熱ピークを有することやErNiが温度上昇に伴い比熱が緩やかに高くなることが示されている(非特許文献1の図2参照)。
 他方、特許文献1には、ホルミウム銅2をはじめとする希土類蓄冷材において、希土類蓄冷材粒子群の平均粒子径、粒子形状等を特定の範囲に限定することによって小型冷凍機の冷凍能力を向上させる方策について開示されている。
 しかしながら、ホルミウム銅2は、10K以上の温度範囲では、前記ビスマスと同様の比熱特性であるため、10K以上の温度範囲(特に10~20Kの温度範囲)で高い比熱を有する蓄冷材であるとはいえない。また、前記ErNiやErNiについても、比熱ピークは鋭いもののピーク温度が15Kよりも低温である、又は比熱が低い点で、10~20Kの温度範囲で利用性の高い蓄冷材であるとはいえない(各蓄冷材の温度と比熱との関係については図1参照)。
特許第5656842号公報
高性能磁性蓄冷材HoCu2「岡村正巳ほか、東芝レビューVol. 55, No. 1 (2000)」
 本発明は、10K以上の温度範囲(特に10~20Kの温度範囲)で高い比熱を有する蓄冷材並びにこれを備えた蓄冷器及び冷凍機を提供することを主な目的とする。
 本発明者らは上記目的を達成すべく鋭意研究を重ねた結果、ErNiに含まれるErの一部を他の特定の希土類元素と置換することにより得られる材料によれば上記目的を達成できることを見出し、本発明を完成するに至った。
 即ち、本発明は下記の希土類蓄冷材並びにこれを備えた蓄冷器及び冷凍機に関する。
1.一般式(1)
 Er1-xNi1+α  (1)
〔式中、xは0<x<1、αは-1<α<1を示す。RはY及びランタノイド元素(但しErを除く)から選ばれる少なくとも一種を示す。〕
で表されることを特徴とする希土類蓄冷材。
2.前記RがDyであり、一般式(2)
 Er1-xDyNi1+α  (2)
〔式中、xは0<x≦0.3、αは-1<α<1を示す。〕
で表される、上記項1に記載の希土類蓄冷材。
3.前記RがGdであり、一般式(3)
 Er1-xGdNi1+α  (3)
〔式中、xは0<x≦0.25、αは-1<α<1を示す。〕
で表される、上記項1に記載の希土類蓄冷材。
4.前記RがDy及びGdであり、一般式(4)
 Er1-x-yDyGdNi1+α  (4)
〔式中、xは0<x≦0.3、yは0<y≦0.25、αは-1<α<1を示す。〕
で表される、上記項1に記載の希土類蓄冷材。
5.前記Ni1+αの一部がMにより置換されており、一般式(5)
 Er1-xNi(1-z)+α  (5)
〔式中、xは0<x<1、zは0<z<0.5、αは-1<α<1を示す。RはY及びランタノイド元素(但しErを除く)から選ばれる少なくとも一種を示す。MはCo、Cu、Fe、Al、Mn、Si、Ag及びRuからなる群から選択される少なくとも一種を示す。〕
で表される、上記項1に記載の希土類蓄冷材。
6.上記項1~5のいずれかに記載の希土類蓄冷材が単独で又は他の蓄冷材と組み合わせて充填されている蓄冷器。
7.前記希土類蓄冷材は、1)球状粉の粒子群の状態、又は2)球状粉の粒子群の焼結体の状態である、上記項6に記載の蓄冷器。
8.上記項7又は8に記載の蓄冷器を備えた冷凍機。
 本発明の希土類蓄冷材は、10K以上の温度範囲(特に10~20Kの温度範囲)で高い比熱を有する蓄冷材であるため、10K以上の温度範囲での冷凍用途に適している。
従来公知の蓄冷材の温度と比熱との関係を示す図である。 本発明の希土類蓄冷材(Erの一部をDy置換)の温度と比熱との関係を示す図である。 本発明の希土類蓄冷材(Erの一部をGd置換)の温度と比熱との関係を示す図である。 本発明の希土類蓄冷材(Erの一部をDy、Gd複合置換)の温度と比熱との関係を示す図である。
 以下、本発明の希土類蓄冷材並びにこれを備えた蓄冷器及び冷凍機について説明する。
 1.希土類蓄冷材
 本発明の希土類蓄冷材は、ErNiに含まれるEr(エルビウム)の一部が他の特定の希土類元素(R)に置換された構造であり、下記一般式(1)
 Er1-xNi1+α  (1)
〔式中、xは0<x<1、αは-1<α<1を示す。RはY及びランタノイド元素(但しErを除く)から選ばれる少なくとも一種を示す。〕
で表されることを特徴とする。
 ここで、Erの一部を置換するRは、Y(イットリウム)及びランタノイド元素(但しErを除く)から選ばれる少なくとも一種であり、ランタノイド元素としては、具体的にLa(ランタン)、Ce(セリウム)、Pr(プラセオジム)、Nd(ネオジム)、Pm(プロメチウム)、Sm(サマリウム)、Eu(ユウロピウム)、Gd(ガドリニウム)、Tb(テルビウム)、Dy(ジスプロシウム)、Ho(ホルミウム)、Tm(ツリウム)、Yb(イッテルビウム)及びLu(ルテチウム)が挙げられる。Rは、これらの元素のうちの一種であってもよく、二種以上の複合置換であってもよい。本発明では、Rは、Dy、Gd、又はDy及びGdの複合置換が好ましい。
 Rが一種の元素である場合には、xは0<x<1の中でも、0.01≦x≦0.9が好ましく、0.05≦x≦0.75がより好ましい。αは-1<α<1の中でも、-0.9≦α≦0.8が好ましく、-0.75≦α≦0.5がより好ましい。
 Rが二種の元素である場合には、一般式(1)は
 Er1-x―yR’Ni1+α  (1)’
〔式中、xは0<x<1、yは0<y<1、0<x+y<1、αは-1<α<1を示す。R及びR’は相互に異なりY及びランタノイド元素(但しErを除く)から選ばれる少なくとも一種を示す。〕
と記載することができ、RとR’の複合置換量x+yとしては0.05≦x+y≦0.9が好ましい。また、αは-1<α<1の中でも、-0.9≦α≦0.8が好ましく、-0.75≦α≦0.5がより好ましい。
(R=Dyである場合)
 RがDyである場合には、下記一般式(2)
 Er1-xDyNi1+α  (2)
〔式中、xは0<x≦0.3、αは-1<α<1を示す。〕
で表すことができる。
 RがDyである場合には、xは0<x≦0.3であればよく、その中でも0.1≦x≦0.25が好ましい。αは-1<α<1の中でも、-0.9≦α≦0.8が好ましく、-0.75≦α≦0.5がより好ましい。
 ErNiのErの一部をDyに置換(5モル置換、10モル%置換、15モル%置換及び25モル%置換)した希土類蓄冷材の温度と比熱との関係を図2に示す。
 図2によると、Erの10モル%、15モル%及び25モル%をDyに置換した希土類蓄冷材は、ErNiと比べて比熱ピークが高温側にシフト(特に10モル%置換では約1.5K分高温側にシフト)することが分かる。また、Dyの置換量が10モル%、15モル%、25モル%と増加するにつれて比熱ピークが高温側にシフトするとともにピーク形状がファセット状に変化することが分かる。なお、ファセット状とはピークが連続して、台地のような形状となっていることを表す。
 特にErの25モル%をDyに置換した希土類蓄冷材は、
1)10~25K付近にファセット状の比熱ピークを有する、
2)20K以下で鉛より比熱が大きい、
3)比熱ピークより高温側(約26K付近)における比熱低下が大きい、
4)9K付近の比熱はHoCuの比熱に比べて小さい、
等の特徴を有し、特に1)、2)の特徴は従来品の蓄冷材に比して有用性がある。
(R=Gdである場合)
 RがGdである場合には、下記一般式(3)
 Er1-xGdNi1+α  (3)
〔式中、xは0<x≦0.25、αは-1<α<1を示す。〕
で表すことができる。
 RがGdである場合には、xは0<x≦0.25であればよく、その中でも0.01≦x≦0.25が好ましく、0.05≦x≦0.25がより好ましい。αは-1<α<1の中でも、-0.9≦α≦0.8が好ましく、-0.75≦α≦0.5がより好ましい。
 ErNiのErの一部をGdに置換(5モル%置換、10モル%置換及び25モル%置換)した希土類蓄冷材の温度と比熱との関係を図3に示す。
 図3によると、Erの5モル%、10モル%及び25モル%をGdに置換した希土類蓄冷材は、ErNiと比べて比熱ピークは高温側にシフト(特に10モル%置換では約8K分高温側にシフト)することが分かる。特にErの10モル%をGdに置換した希土類蓄冷材は、
1)明確なファセット状の比熱ピークは認められない、
2)20K以下では鉛より比熱が大きい、
3)比熱ピークより高温側での比熱低下が大きい、
4)9K付近における比熱はHoCuの高温側比熱ピークとほぼ同等の比熱である、
等の特徴を有する。
 前述のR=Dy(10モル%置換)と、R=Gd(10モル%置換)とを比較すると、Erに対する同じ置換量ではR=Gdの方が比熱ピークを高温化する効果が大きいことが分かる。他方、前述のR=Dy(15モル%置換)と、R=Gd(10モル%置換)とを比較すると、ほぼ同じ温度に比熱ピークがあるという点では比熱ピークがファセット状であるR=Dy(15モル%置換)の方が蓄冷材として好ましいともいえる。
 また、Erの25モル%をGdに置換した希土類蓄冷材は、ErNiと比べて比熱ピークは大幅に高温側にシフト(ピークは30Kよりも高温側)しているが、
1)それにより、明確なファセット状の比熱ピークは認められない、
2)約23K以下では鉛より比熱が大きい、
3)30K以下での極端な比熱低下は見られない、
4)9K付近における比熱はHoCuの高温側比熱ピークに比べ小さい、
等の特徴を有する。
(R=Dy及びGdの複合置換である場合)
 RがDy及びGdの複合置換である場合には、下記一般式(4)
 Er1-x-yDyGdNi1+α  (4)
〔式中、xは0<x≦0.3、yは0<y≦0.25、αは-1<α<1を示す。〕
で表すことができる。
 RがDy及びGdの複合置換である場合には、Dyのモル量を示すxは、0<x≦0.3であればよく、その中でも0<x≦0.25が好ましく、0<x≦0.2がより好ましい。Gdのモル量を示すyは、0<y≦0.25であればよく、その中でも0<y≦0.15が好ましく、0.05≦y≦0.15がより好ましい。
 DyとGdの複合置換量x+yとしては0<x+y≦0.5が好ましく、0.05≦x+y≦0.35がより好ましい。また、αは-1<α<1の中でも、-0.9≦α≦0.8が好ましく、-0.75≦α≦0.5がより好ましい。
 ErNiのErの一部をDy及びGdに複合置換(それぞれ5モル%置換、それぞれ10モル%置換、並びにDy10モル%及びGd5モル%置換)した希土類蓄冷材の温度と比熱との関係を図4に示す。
 図4によると、Erの一部をDy及びGdに複合置換(それぞれ5モル%置換、それぞれ10モル%置換、並びにDy10モル%及びGd5モル%置換)した希土類蓄冷材は、ErNiと比べて比熱ピークが高温側にシフトすることが分かる。また、特にErをDy及びGdに複合置換(それぞれ10モル%置換)した希土類蓄冷材は、ErNiと比べて比熱ピークが高温側にシフトするとともにピーク形状がファセット状に変化、高い比熱が得られる温度域が拡大することが分かる。具体的には、
1)10~25K付近にファセット状の比熱ピークを有する、
2)25K以下で鉛より比熱が大きい、
3)比熱ピークより高温側での比熱低下が僅かである、
4)9K付近の比熱はHoCuの比熱に近い、
等の特徴がある。つまり、一般式(2)及び一般式(3)で示される単独置換の希土類蓄冷材では達成できなかった上記2)、3)及び4)の項目を達成することが可能となる。これは、Erのうち20モル%をDy及びGdに複合置換することにより、Erの25モル%をDyに置換した希土類蓄冷材よりも比熱特性が向上していることを意味しており、複合置換により単独置換よりも効率的に比熱特性の改良がなされている。
(Niの一部がMに置換された場合)
 本発明には、上記一般式(1)で示される希土類蓄冷材のうち、Ni1+αの一部がMにより置換されており、一般式(5)
 Er1-xNi(1-z)+α  (5)
〔式中、xは0<x<1、zは0<z<0.5、αは-1<α<1を示す。RはY及びランタノイド元素(但しErを除く)から選ばれる少なくとも一種を示す。MはCo、Cu、Fe、Al、Mn、Si、Ag及びRuからなる群から選択される少なくとも一種を示す。〕
で表される希土類蓄冷材も包含される。なお、一般式(2)~(4)で示される希土類蓄冷材は一般式(1)で示される希土類蓄冷材に含まれる。よって、本発明には、一般式(2)~(4)の希土類蓄冷材のうち、Ni1+αの一部がMにより置換されているものも包含される。
 Mは、その種類及びNiに対する置換量によって希土類蓄冷材の比熱ピーク温度を調整することが可能な元素であり、具体的には、Co、Cu、Fe、Al、Mn、Si、Ag及びRuからなる群から選択される少なくとも一種が挙げられる。Mは、単独又は複数で複合置換することによって使用することができる。これらのMのうち、Co、Cu、Fe、Al、Mn等の少なくとも一種が好ましいものとして挙げられる。Mの置換量(モル%)はその種類や比熱ピークの調整の程度により異なるが、Mの置換量を示すzは0<z<0.5の範囲内であればよく、0<z≦0.45の範囲内が好ましい。
 2.蓄冷器及び冷凍機
 本発明の希土類蓄冷材は、それを単独又は他の蓄冷材と組み合わせて充填することにより蓄冷器を構成することができる。他の蓄冷材としては限定されず、公知の蓄冷材を適宜組み合わせることができる。また、当該蓄冷器を備えた冷凍機(例えば、液体水素製造用冷凍機、10K特化冷凍機、4KGM冷凍機)を構成することができる。
 希土類蓄冷材の蓄冷器内での性状は限定的ではないが、1)球状粉の粒子群の状態、又は2)球状粉の粒子群の焼結体の状態から用途などに応じて適宜選択できる。
 希土類蓄冷材を球状粉の粒子群の状態で用いる場合には、例えば、溶解・鋳造後に所定の組成となるように配合した原料を準備し、次いで不活性ガス雰囲気下、当該原料を真空高周波溶解炉などの溶解炉で溶解した後、ガスアトマイズ、ディスクアトマイズ等のアトマイズ法、回転電極法などで球状の希土類蓄冷材を得ることができる。また、必要に応じて篩い分け、形状分級を行うことで、所望の粉末を得ることができる。球状粉末の粒径(D50)は限定的ではないが、100μm以上750μm以下の範囲であることが好ましく、さらに好ましくは100μm以上300μm以下の範囲である。
 前記球状の希土類蓄冷材は、アスペクト比が好ましくは10以下、より好ましくは5以下、最も好ましくは2以下である。アスペクト比の小さい球状の希土類蓄冷材を用いることにより、蓄冷器内への充填性を高められるほか、球状粉の粒子群の焼結体を得る場合には均一な連通孔を有する焼結体が得られ易くなる。なお、本明細書におけるアスペクト比の測定は、希土類蓄冷材の球状粉をよく混合した後、四分法により採取した試料について、光学顕微鏡を用いて任意の100個の粒子のアスペクト比を計測し、それらの平均値を算出した。これを3回繰り返し、3回の平均値をアスペクト比とした。
 希土類蓄冷材の球状粉の焼結体の状態で用いる場合には、前記球状粉の希土類蓄冷材を金型に挿入し、次いで雰囲気炉においてArや窒素などの不活性ガス雰囲気中で700℃以上1200℃以下、1時間以上40時間以下熱処理することによって焼結体を得ることができる。熱処理温度、時間を制御することにより、得られる焼結体における希土類蓄冷材の充填率を制御することができる。また、熱処理は通電焼結法、ホットプレス等で行うこともできる。焼結体に含まれる空隙率は限定的ではないが、28~40%の範囲であることが好ましく、さらに好ましくは32~37%の範囲である。空隙率が当該範囲であることにより、希土類蓄冷材は高い充填率で蓄冷器に充填され得る。
 ここで、本明細書における空隙率は、
 {1-実測重量/(見かけ体積×比重)}×100
〔但し、見かけ体積は例えば円柱状の試料の場合、直径と長さから求めた体積を示す。〕により求められる値を意味する。
 焼結体の形状及び大きさは特に制限されず、蓄冷器の形状に応じて適宜選択することができる。例えば、焼結体の形状としては、円柱、角柱等を挙げることができる。その他、噛合などを考慮して、テーパー形状も挙げることができる。
 焼結体の形状は、球状粉の焼結時に、球状粉を所望形状の容器に充填して焼結することにより調節することができる。例えば、焼結体の形状が円柱であれば、筒状の容器に球状粉を充填して焼結を行えばよい。
 焼結体は、多層構造であってもよい。ここでいう多層構造とは、例えば、円柱状を例に挙げると内層の外側に一層又は二層以上の外層が形成された構造をいう。このような多層構造としては、例えば、空隙率が異なる複数の層で形成された構造が挙げられる。又は、多層構造としては、材料の種類が異なる複数の層で形成された構造であってもよい。更に、多層構造としては、例えば、比熱特性の異なる複数の層が順に積み重ねられた積層体であってもよい。
 上記の通り、一般式(1)~(5)で示される希土類含有化合物は、それぞれ希土類蓄冷材として用いられるものであり、それを利用した発明として、当該希土類蓄冷材を充填した蓄冷器、そして当該蓄冷器を備えた冷凍機が提供される。これまでの記載から明らかな通り、本発明には、一般式(1)~(5)で示される希土類含有化合物から選択される少なくとも一種の希土類含有化合物の蓄冷材としての使用(use)の発明も含まれている。また、蓄冷手段を備えた蓄冷器であって、当該蓄冷手段が一般式(1)~(5)で示される希土類含有化合物から選択される少なくとも一種の希土類含有化合物である蓄冷器の発明も含まれている。
 以下、実施例により本発明をより具体的に説明するが、本発明はこれら実施例の態様に限定されるものではない。
 実施例1~10(希土類蓄冷材の合金粉末の合成)
 表1に記載の本発明の希土類蓄冷材である各合金粉末は溶解・鋳造によって得られる。
 具体的には、次の通りである。
 先ず、溶解・鋳造後に表1に示す各組成となるように配合した原料を準備し、高周波加熱溶解炉にて不活性ガス雰囲気下で溶解し、合金溶融物を得た。
 この溶融物を銅鋳型に鋳造して合金を得た。
 その後、得られた合金鋳塊の組成の均質性を高めるために、状態図より求めた融点の95%の温度で0.01~40時間でそれぞれ均質化処理を行い、その後に粗粉砕を行い、平均粒径(D50)が50~300μmの各合金粉末を得た。
 各均質化温度及び各平均粒子径を表1に併せて示す。
 次に、上記で得られた該合金粉末の比熱を、PPMS(Physical Property Measurement System)を用いて、熱緩和法にて求めた。その結果を図2~4に示す。
Figure JPOXMLDOC01-appb-T000001

Claims (8)

  1.  一般式(1)
     Er1-xNi1+α  (1)
    〔式中、xは0<x<1、αは-1<α<1を示す。RはY及びランタノイド元素(但しErを除く)から選ばれる少なくとも一種を示す。〕
    で表されることを特徴とする希土類蓄冷材。
  2.  前記RがDyであり、一般式(2)
     Er1-xDyNi1+α  (2)
    〔式中、xは0<x≦0.3、αは-1<α<1を示す。〕
    で表される、請求項1に記載の希土類蓄冷材。
  3.  前記RがGdであり、一般式(3)
     Er1-xGdNi1+α  (3)
    〔式中、xは0<x≦0.25、αは-1<α<1を示す。〕
    で表される、請求項1に記載の希土類蓄冷材。
  4.  前記RがDy及びGdであり、一般式(4)
     Er1-x-yDyGdNi1+α  (4)
    〔式中、xは0<x≦0.3、yは0<y≦0.25、αは-1<α<1を示す。〕
    で表される、請求項1に記載の希土類蓄冷材。
  5.  前記Ni1+αの一部がMにより置換されており、一般式(5)
     Er1-xNi(1-z)+α  (5)
    〔式中、xは0<x<1、zは0<z<0.5、αは-1<α<1を示す。RはY及びランタノイド元素(但しErを除く)から選ばれる少なくとも一種を示す。MはCo、Cu、Fe、Al、Mn、Si、Ag及びRuからなる群から選択される少なくとも一種を示す。〕
    で表される、請求項1に記載の希土類蓄冷材。
  6.  請求項1~5のいずれかに記載の希土類蓄冷材が単独で又は他の蓄冷材と組み合わせて充填されている蓄冷器。
  7.  前記希土類蓄冷材は、1)球状粉の粒子群の状態、又は2)球状粉の粒子群の焼結体の状態である、請求項6に記載の蓄冷器。
  8.  請求項7又は8に記載の蓄冷器を備えた冷凍機。
PCT/JP2017/047150 2016-12-28 2017-12-28 希土類蓄冷材並びにこれを備えた蓄冷器及び冷凍機 WO2018124256A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17886855.0A EP3564337A4 (en) 2016-12-28 2017-12-28 RARE-EARTH REGENERATOR MATERIAL, REGENERATOR AND REFRIGERATOR PROVIDED WITH EACH OF THIS MATERIAL
JP2018502440A JP6377880B1 (ja) 2016-12-28 2017-12-28 希土類蓄冷材並びにこれを備えた蓄冷器及び冷凍機
US16/471,147 US20190316814A1 (en) 2016-12-28 2017-12-28 Rare earth regenerator material, and regenerator and refrigerator each provided with same
CN201780081077.8A CN110168043B (zh) 2016-12-28 2017-12-28 稀土蓄冷材料以及具有其的蓄冷器和制冷机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016256386 2016-12-28
JP2016-256386 2016-12-28

Publications (1)

Publication Number Publication Date
WO2018124256A1 true WO2018124256A1 (ja) 2018-07-05

Family

ID=62709551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/047150 WO2018124256A1 (ja) 2016-12-28 2017-12-28 希土類蓄冷材並びにこれを備えた蓄冷器及び冷凍機

Country Status (5)

Country Link
US (1) US20190316814A1 (ja)
EP (1) EP3564337A4 (ja)
JP (1) JP6377880B1 (ja)
CN (1) CN110168043B (ja)
WO (1) WO2018124256A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113578396A (zh) * 2021-08-18 2021-11-02 国能龙源催化剂江苏有限公司 适用于深度调峰的高抗硫耐磨脱硝催化剂及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3561021A4 (en) * 2016-12-22 2020-07-22 Santoku Corporation COOLING STORAGE MATERIAL AND METHOD FOR PRODUCING THE SAME, COOLING STORAGE DEVICE AND REFRIGERATOR

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046352A (ja) * 1990-04-24 1992-01-10 Takakuni Hashimoto 冷凍方法、蓄冷器および液化機
JPH04186802A (ja) * 1990-11-21 1992-07-03 Res Dev Corp Of Japan 4kから20kの温度範囲で高い熱容量を持つ磁性材料とこれを用いた蓄冷器及び磁気冷凍装置
JPH06240241A (ja) * 1993-02-12 1994-08-30 Toshiba Corp 極低温用蓄冷材およびそれを用いた極低温用蓄冷器
JP2000001670A (ja) * 1998-06-15 2000-01-07 Shin Etsu Chem Co Ltd 多孔質蓄冷材及びその製造方法
WO2006092871A1 (ja) * 2005-03-03 2006-09-08 Sumitomo Heavy Industries, Ltd. 蓄冷材、蓄冷器及び極低温蓄冷式冷凍機
CN103031501A (zh) * 2011-09-30 2013-04-10 中国科学院物理研究所 铒基非晶复合磁性蓄冷材料及其制备方法、低温制冷机
JP5656842B2 (ja) 2009-08-25 2015-01-21 株式会社東芝 希土類蓄冷材粒子、希土類蓄冷材粒子群およびそれを用いた冷凍機、測定装置並びにその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07101134B2 (ja) * 1988-02-02 1995-11-01 株式会社東芝 蓄熱材料および低温蓄熱器
DE69207801T2 (de) * 1991-04-11 1996-06-13 Toshiba Kawasaki Kk Tiefsttemperaturkälteanlage
US5447034A (en) * 1991-04-11 1995-09-05 Kabushiki Kaisha Toshiba Cryogenic refrigerator and regenerative heat exchange material
JP2835795B2 (ja) * 1991-11-21 1998-12-14 三菱マテリアル株式会社 蓄冷材とその製造方法
EP1457745B1 (en) * 2001-06-18 2016-06-01 Konoshima Chemical Co., Ltd. Rare earth metal oxysulfide cool storage material
CN102864356B (zh) * 2011-07-08 2014-11-26 中国科学院物理研究所 一种稀土-镍材料及其制备方法和用途
CN104559944B (zh) * 2014-12-24 2018-04-17 西安交通大学 一种含稀土氢氧化物的磁制冷材料及制备方法
CN104830284A (zh) * 2015-04-20 2015-08-12 杭州电子科技大学 稀土R2BaCuO5氧化物材料在低温磁制冷的应用
CN104946211A (zh) * 2015-06-09 2015-09-30 安徽普瑞普勒传热技术有限公司 一种ErNi换热材料
CN105063450B (zh) * 2015-07-24 2017-06-20 北京科技大学 高强度大比热多相磁性蓄冷材料及其制备方法
CN105086948B (zh) * 2015-08-18 2018-09-25 栗世芳 一种相变储热材料及其制备方法与应用以及相变储热装置
CN106085375A (zh) * 2016-06-22 2016-11-09 王斐芬 一种混合熔盐传热蓄热介质及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046352A (ja) * 1990-04-24 1992-01-10 Takakuni Hashimoto 冷凍方法、蓄冷器および液化機
JPH04186802A (ja) * 1990-11-21 1992-07-03 Res Dev Corp Of Japan 4kから20kの温度範囲で高い熱容量を持つ磁性材料とこれを用いた蓄冷器及び磁気冷凍装置
JPH06240241A (ja) * 1993-02-12 1994-08-30 Toshiba Corp 極低温用蓄冷材およびそれを用いた極低温用蓄冷器
JP2000001670A (ja) * 1998-06-15 2000-01-07 Shin Etsu Chem Co Ltd 多孔質蓄冷材及びその製造方法
WO2006092871A1 (ja) * 2005-03-03 2006-09-08 Sumitomo Heavy Industries, Ltd. 蓄冷材、蓄冷器及び極低温蓄冷式冷凍機
JP5656842B2 (ja) 2009-08-25 2015-01-21 株式会社東芝 希土類蓄冷材粒子、希土類蓄冷材粒子群およびそれを用いた冷凍機、測定装置並びにその製造方法
CN103031501A (zh) * 2011-09-30 2013-04-10 中国科学院物理研究所 铒基非晶复合磁性蓄冷材料及其制备方法、低温制冷机

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MASAMI OKAMURA ET AL.: "HoCu High-Performance Magnetic Regenerator Material", TOSHIBA REVIEW, vol. 55, no. 1, 2000
See also references of EP3564337A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113578396A (zh) * 2021-08-18 2021-11-02 国能龙源催化剂江苏有限公司 适用于深度调峰的高抗硫耐磨脱硝催化剂及其制备方法

Also Published As

Publication number Publication date
EP3564337A4 (en) 2020-07-22
JPWO2018124256A1 (ja) 2018-12-27
US20190316814A1 (en) 2019-10-17
CN110168043A (zh) 2019-08-23
CN110168043B (zh) 2021-05-28
JP6377880B1 (ja) 2018-08-22
EP3564337A1 (en) 2019-11-06

Similar Documents

Publication Publication Date Title
US6467277B2 (en) Cold accumulating material, method of manufacturing the same and refrigerator using the material
JP6918071B2 (ja) 希土類蓄冷材粒子、それを用いた冷凍機、超電導磁石、検査装置およびクライオポンプ
US20240068072A1 (en) Highly Tunable, Inexpensive and Easily Fabricated Magnetocaloric Materials
JP6377880B1 (ja) 希土類蓄冷材並びにこれを備えた蓄冷器及び冷凍機
JP2004100043A (ja) 磁性合金材料およびその製造方法
JP2020152769A (ja) 蓄冷材粒子、蓄冷器、冷凍機、超電導磁石、核磁気共鳴イメージング装置、核磁気共鳴装置、クライオポンプ、及び、磁界印加式単結晶引上げ装置
JP6495546B1 (ja) HoCu系蓄冷材並びにこれを備えた蓄冷器及び冷凍機
WO1999020956A1 (en) Cold-accumulating material and cold-accumulating refrigerator
JP6382470B1 (ja) 蓄冷材及びその製造方法、蓄冷器並びに冷凍機
JP2010077447A (ja) 蓄冷材およびその製造方法
CN112752824B (zh) 蓄冷材料、冷冻机、超导线圈内置装置以及蓄冷材料的制造方法
WO2021157735A1 (ja) 磁気冷凍材料、これを用いたamrベッド、および、磁気冷凍装置
JP5010071B2 (ja) 蓄冷材,その製造方法およびその蓄冷材を用いた冷凍機
JPH0765823B2 (ja) 冷凍方法
WO2023032867A1 (ja) 蓄冷材粒子用造粒粒子、蓄冷材粒子、蓄冷器、冷凍機、クライオポンプ、超電導磁石、核磁気共鳴イメージング装置、核磁気共鳴装置、磁界印加式単結晶引上げ装置、及び、ヘリウム再凝縮装置
RU2818411C1 (ru) Материал для сохранения холода, частица материала для сохранения холода, гранулированная частица, устройство для сохранения холода, холодильник, крионасос, сверхпроводящий магнит, аппарат для визуализации ядерного магнитного резонанса, аппарат ядерного магнитного резонанса, аппарат для вытягивания монокристалла с приложением магнитного поля и устройство для повторной конденсации гелия
JP2004099822A (ja) 蓄冷材およびこれを用いた蓄冷式冷凍機
JP6677864B2 (ja) 多結晶ユーロピウム硫化物の焼結体、並びに該焼結体を用いた磁気冷凍材料及び蓄冷材
JP2004161839A (ja) 希土類バナジウム酸化物セラミックスを用いた蓄冷材とその製造方法及び蓄冷器
JP7432769B2 (ja) 蓄冷材、蓄冷材粒子、造粒粒子、蓄冷器、冷凍機、クライオポンプ、超電導磁石、核磁気共鳴イメージング装置、核磁気共鳴装置、磁界印加式単結晶引上げ装置、及び、ヘリウム再凝縮装置
JP2004143341A (ja) 蓄冷材およびこれを用いた蓄冷式冷凍機
JPH10253183A (ja) 蓄熱材料および低温蓄熱器
WO2022224783A1 (ja) 磁性蓄冷材粒子、蓄冷器、冷凍機、クライオポンプ、超電導磁石、核磁気共鳴イメージング装置、核磁気共鳴装置、磁界印加式単結晶引上げ装置、及び、ヘリウム再凝縮装置
JPH11294882A (ja) 蓄冷材および蓄冷式冷凍機
JP2022148877A (ja) 磁気冷凍材料

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018502440

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017886855

Country of ref document: EP

Effective date: 20190729