WO2009133732A1 - 変倍光学系、撮像装置およびデジタル機器 - Google Patents

変倍光学系、撮像装置およびデジタル機器 Download PDF

Info

Publication number
WO2009133732A1
WO2009133732A1 PCT/JP2009/055614 JP2009055614W WO2009133732A1 WO 2009133732 A1 WO2009133732 A1 WO 2009133732A1 JP 2009055614 W JP2009055614 W JP 2009055614W WO 2009133732 A1 WO2009133732 A1 WO 2009133732A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
optical system
image
variable magnification
Prior art date
Application number
PCT/JP2009/055614
Other languages
English (en)
French (fr)
Inventor
慶二 松坂
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Publication of WO2009133732A1 publication Critical patent/WO2009133732A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/177Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1445Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative
    • G02B15/144505Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative arranged --+-
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1455Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being negative
    • G02B15/145521Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being negative arranged --+-+
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/69Control of means for changing angle of the field of view, e.g. optical zoom objectives or electronic zooming

Definitions

  • the present invention relates to a variable magnification optical system, and particularly to a variable magnification optical system that can be miniaturized.
  • the present invention relates to an image pickup apparatus including the zoom optical system and a digital device equipped with the image pickup apparatus.
  • variable magnification optical system examples include Patent Document 1 and Patent Document 2. These variable magnification optical systems described in Patent Document 1 and Patent Document 2 are negative, positive, and negative four-component optical systems that are miniaturized for so-called digital cameras. This is not sufficient in terms of downsizing.
  • the variable power optical system disclosed in Patent Document 1 is not sufficient in terms of correcting chromatic aberration and astigmatism.
  • the variable magnification optical system disclosed in Patent Document 2 is designed to reduce the incident angle to the image sensor, which is an angle formed by the normal of the imaging surface and the incident light beam, so that the size can be further reduced. If it is going to be, the incident angle to an image sensor will become large. As a result, shading becomes large. JP 2006-096962 A JP 2007-072921 A
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide a variable magnification optical system capable of reducing the incident angle to the image sensor while achieving compactness, and the same.
  • An imaging device and a digital device are provided.
  • a refractive index is a refractive index with respect to the wavelength (587.56 nm) of d line
  • B Abbe number ⁇ d is determined when the refractive indices for d-line, F-line (wavelength 486.13 nm), and C-line (wavelength 656.28 nm) are nd, nF, and nC, respectively.
  • ⁇ d (nd ⁇ 1) / (nF ⁇ nC) It shall be calculated
  • the notation “concave”, “convex” or “meniscus” represent the lens shape near the optical axis (near the center of the lens).
  • D The notation of optical power (reciprocal of focal length) in each single lens constituting the cemented lens is power when both sides of the lens surface of the single lens are air.
  • F Since the resin material used for the composite aspherical lens has only an additional function of the substrate glass material, it is not handled as a single optical member, but is treated as if the substrate glass material has an aspherical surface, and the number of lenses Shall be handled as one sheet.
  • the lens refractive index is also the refractive index of the glass material serving as the substrate.
  • the composite aspherical lens is a lens that is aspherical by applying a thin resin material on a glass material to be a substrate.
  • a variable magnification optical system includes, in order from the object side to the image side, a first lens group having negative optical power, a second lens group having negative optical power, and positive optical
  • the second lens group includes a third lens group having an optical power and a fourth lens group having a negative optical power, and at the telephoto end as compared with the wide-angle end during zooming from the wide-angle end to the telephoto end.
  • the third lens group move so as to decrease, and the third lens group and the fourth lens group move so that the distance increases.
  • a negative-negative-positive-negative four-component optical system is used, and in a zoom lens with a zoom ratio of about 2 to 4, a negative lead optical system that is advantageous in terms of the overall optical length, front lens diameter size, and error sensitivity. It is a system.
  • the third lens group and the fourth lens group are configured to bear zooming, and the zooming optical system as a whole by shortening the zooming movement amount by moving at a predetermined interval. (Unit) can be downsized (compact).
  • the effect of controlling the exit pupil position in the fourth lens group is increased by increasing the distance between the third lens group and the fourth lens group, and the light incident angle to the image sensor is increased while achieving compactness. It is possible to suppress the difference in the light incident angle to the image sensor at the wide angle end and the telephoto end.
  • the term “miniaturization” as used in the present invention refers to the distance on the optical axis from the lens surface closest to the object side to the image-side focal point at the wide angle end in all optical systems of the variable magnification optical system as TL.
  • the diagonal length of the imaging surface of the solid-state imaging device (diagonal length of the rectangular effective pixel region of the solid-state imaging device) is 2Y ′
  • the level satisfies “TL / 2Y ′ ⁇ 5.2”.
  • the entire zooming optical system (unit) can be reduced in size, and as a result, the entire imaging apparatus can be reduced in size and weight.
  • the fourth lens unit moves to the object side during zooming from the wide-angle end to the telephoto end, and satisfies the following conditional expression (A). . 0 ⁇ (Dt ⁇ Dw) / fw ⁇ 1 (A) Where Dt is the distance on the optical axis between the third lens group and the fourth lens group at the telephoto end, and Dw is between the third lens group and the fourth lens group at the wide angle end. It is the distance on the optical axis, and fw is the combined focal length of the entire optical system at the wide-angle end.
  • the height of the light beam passing through the fourth lens group can be increased when the aperture stop is disposed at a predetermined position to increase the group distance between the third lens group and the fourth lens group.
  • Astigmatism and coma can be satisfactorily corrected. If the upper limit of the conditional expression (B) is exceeded, correction of spherical aberration becomes difficult, and the lens outer diameter of the third lens group having the largest variable magnification becomes large, so that the lens driving device needs to be enlarged. This is not preferable. On the other hand, if the lower limit of conditional expression (B) is not reached, the front lens diameter increases, making it difficult to reduce the unit volume, which is not preferable.
  • variable power optical system preferably, at least one of a mechanical shutter and an ND filter disposed between the third lens group and the fourth lens group. And satisfying the following conditional expression (6).
  • ft is the combined focal length of the entire optical system at the telephoto end
  • fw is This is the combined focal length of the entire optical system at the wide angle end.
  • focusing from an infinitely distant object to a close object is performed by moving the fourth lens group, and the following conditional expression: (7) is satisfied.
  • f4 is the combined focal length of the fourth lens group
  • fw is the combined focal length of the entire optical system at the wide angle end.
  • the air space before and after the fourth lens group is relatively easy to secure compared to other movable groups. For this reason, it is possible to maintain the aberration performance at a close distance without causing interference between the movable groups.
  • the moving distance can be sufficiently secured, the shortest shooting distance can be relatively easily reduced as compared with other variable magnification type variable magnification optical systems.
  • the upper limit of conditional expression (7) is exceeded, the moving distance associated with the focus of the fourth lens group becomes too large, leading to an increase in the total optical length of the variable magnification optical system.
  • the incident angle to the image sensor at the wide-angle end is particularly large, leading to a decrease in ambient illuminance, which is not preferable.
  • the zoom lens system includes at least one positive lens
  • the third lens group includes the following conditional expressions (8) and (9): ). 1.25 ⁇ f3 / fw ⁇ 2 (8) v3p ⁇ 71 (9)
  • f3 is the combined focal length of the third lens group
  • v3p is the maximum Abbe number of the positive lens in the third lens group
  • fw is the combined focal length of the entire optical system at the wide angle end. is there.
  • the first lens group is fixed at the time of zooming.
  • the effective lens diameter of the first lens group can be suppressed by fixing the first lens group at the time of zooming. Further, when the first lens group is movable, it is necessary to dispose a driving device therefor on the outside of the first lens group, which leads to an increase in size in the outer diameter direction. Therefore, fixing the first lens group at the time of zooming is very effective for downsizing in the outer diameter direction.
  • the first lens group includes a reflecting member.
  • the first lens unit has the reflecting member, so that the variable magnification optical system is configured as a so-called bending optical system, and the variable magnification optical system is thinned in the direction from the object toward the incident surface of the variable magnification optical system. It becomes possible to plan. For this reason, it becomes possible to raise the freedom degree of the shape in the apparatus which mounts the variable magnification optical system concerning this invention.
  • the reflecting member is a prism and satisfies the following conditional expression (2).
  • Npr is the d-line refractive index of the prism.
  • variable magnification optical system is not sufficiently thinned and the front lens diameter is increased, which is not preferable.
  • the most object side in the first lens group is a negative lens having at least one aspheric surface, and the following conditional expression ( Satisfy 3). Nln ⁇ 1.7 (3) Nln is the d-line refractive index of the negative lens.
  • the front lens diameter can be suppressed small by making the most object side of the first lens group the negative lens, and by making at least one surface an aspherical surface, distortion can be achieved with a compact configuration. It becomes possible to correct well. And if it falls below the lower limit of the conditional expression (3), the front lens diameter is increased, which is not preferable.
  • the first lens group includes at least one positive lens and satisfies the following conditional expression (1): is there. 1 ⁇
  • f1 is the focal length of the first lens group
  • fw is the combined focal length of the entire optical system at the wide angle end.
  • conditional expression (1) if the upper limit of the conditional expression (1) is exceeded, the incident angle of light incident on the image sensor increases particularly at the wide-angle end, and the surrounding illuminance decreases due to shading, which is not preferable. On the other hand, if the lower limit of conditional expression (1) is not reached, astigmatism and lateral chromatic aberration generated in the first lens group become excessively large and correction becomes difficult, which is not preferable.
  • At least one positive lens in the first lens group satisfies the following conditional expression (4).
  • Nlp is the d-line refractive index of at least one positive lens in the first lens group.
  • the first lens group includes at least one positive lens, and the first lens group includes a reflective member. Only one of the positive lenses in the first lens group is disposed on the image side of the prism, and is joined to the prism.
  • conditional expression (1) and condition are satisfied
  • f1 is the focal length of the first lens group
  • fw is the combined focal length of the entire optical system at the wide angle end.
  • ⁇ N1 is the difference in the d-line refractive index between the prism and the positive lens joined to the prism.
  • conditional expression (1) if the upper limit of the conditional expression (1) is exceeded, the incident angle of light incident on the image sensor increases particularly at the wide-angle end, and the surrounding illuminance decreases due to shading, which is not preferable. On the other hand, if the lower limit of conditional expression (1) is not reached, astigmatism and lateral chromatic aberration generated in the first lens group become excessively large and correction becomes difficult, which is not preferable.
  • variable magnification optical system is configured as a so-called bending optical system, and the variable magnification optical system is thinned in the direction from the object toward the incident surface of the variable magnification optical system. It becomes possible to plan. For this reason, it becomes possible to raise the freedom degree of the shape in the apparatus which mounts the variable magnification optical system concerning this invention.
  • Y ′ is the maximum image height
  • TL is the distance on the optical axis from the surface vertex of the object side lens surface to the image surface (where the back focus is the air equivalent length).
  • An imaging apparatus includes the zoom optical system according to any one of 1 to 14 above, and an image sensor that converts an optical image into an electrical signal,
  • the optical system is capable of forming an optical image of an object on the light receiving surface of the image sensor.
  • the imaging apparatus includes a variable magnification optical system that can reduce the incident angle of the light beam to the imaging element while achieving miniaturization. Therefore, the imaging apparatus adopts a high-pixel imaging element while reducing the size. be able to.
  • a digital apparatus includes the imaging device according to 15, and a control unit that causes the imaging device to perform at least one of shooting a still image and a moving image of a subject,
  • a variable power optical system provided in the apparatus is assembled on the light receiving surface of the image sensor so that an optical image of the subject can be formed.
  • the digital device includes the imaging device according to 15 and a control unit that performs at least one of photographing a still image and a moving image of the subject. Therefore, at least one of still image shooting and moving image shooting can be performed.
  • the digital device described in 16 is preferably further including an image processing unit that performs predetermined image processing on the output of the imaging device.
  • the image processing unit since the image processing unit performs predetermined image processing, it is possible to provide a digital device that can output an image having a desired image quality. In particular, for example, it is possible to reduce aberrations and a decrease in peripheral light amount that could not be optically corrected by the variable magnification optical system.
  • the predetermined image processing includes a distortion correction process for correcting distortion in the optical image of the subject formed on the light receiving surface of the imaging element.
  • the image processing unit corrects image distortion, it is possible to provide a digital device that can output an image with distortion removed or reduced. Since the image processing unit corrects the distortion of the image, particularly the aberration burden due to the first lens group is reduced, the lens configuration of the first lens group can be simplified.
  • the digital device according to any one of 16 to 18 is preferably mounted on a mobile terminal.
  • variable magnification optical system an imaging apparatus, and a digital device that can achieve a reduction in size (compact size) and a smaller incident angle to the imaging element.
  • FIG. 2 is a lens cross-sectional view schematically showing the configuration for explaining the variable magnification optical system in the embodiment. It is a figure which shows the optical path at the time of zooming in the zooming optical system of embodiment. It is a schematic diagram which shows the definition of the image surface incident angle of a chief ray. It is a block diagram which shows the structure of the digital device in embodiment. It is an external appearance block diagram of the mobile phone with a camera which shows one Embodiment of a digital device. 3 is a cross-sectional view illustrating an arrangement of lens groups in a variable magnification optical system in Embodiment 1.
  • FIG. FIG. 6 is a diagram illustrating a state of movement of each lens unit in zooming of the zooming optical system of Example 1.
  • FIG. 6 is a cross-sectional view illustrating an arrangement of lens groups in a variable magnification optical system in Example 2.
  • FIG. FIG. 10 is a diagram illustrating a state of movement of each lens unit in zooming of the zooming optical system of Example 2.
  • 6 is a cross-sectional view illustrating an arrangement of lens groups in a variable magnification optical system in Example 3.
  • FIG. 10 is a diagram illustrating a state of movement of each lens unit in zooming of the zooming optical system of Example 3.
  • 6 is a cross-sectional view illustrating an arrangement of lens groups in a variable magnification optical system in Example 4.
  • FIG. 10 is a cross-sectional view illustrating an arrangement of lens groups in a variable magnification optical system according to Example 5.
  • FIG. 10 is a cross-sectional view illustrating an arrangement of lens groups in a variable magnification optical system in Example 6.
  • FIG. 10 is a cross-sectional view illustrating an arrangement of lens groups in a variable magnification optical system in Example 7.
  • FIG. 10 is a cross-sectional view illustrating an arrangement of lens groups in a variable magnification optical system in Example 8.
  • FIG. 10 is a cross-sectional view showing the arrangement of lens groups in a variable magnification optical system in Example 9.
  • FIG. 10 is a cross-sectional view illustrating an arrangement of lens groups in a variable magnification optical system according to Example 10.
  • FIG. 12 is a cross-sectional view illustrating an arrangement of lens groups in a variable magnification optical system in Example 11.
  • FIG. 14 is a cross-sectional view illustrating an arrangement of lens groups in a variable magnification optical system in Example 12.
  • FIG. 14 is a cross-sectional view illustrating an arrangement of lens groups in a variable magnification optical system according to Example 13.
  • FIG. FIG. 22 is a cross-sectional view illustrating the arrangement of lens groups in a variable magnification optical system in Example 14;
  • FIG. 25 is a cross-sectional view showing the arrangement of lens groups in a variable magnification optical system in Example 15.
  • FIG. 25 is a diagram illustrating a state of movement of each lens unit in zooming of the zooming optical system of Example 15.
  • 22 is a cross-sectional view illustrating an arrangement of lens groups in a variable magnification optical system in Example 16.
  • FIG. 22 is a cross-sectional view illustrating an arrangement of lens groups in a variable magnification optical system in Example 17.
  • FIG. 18 is a diagram illustrating a state of movement of each lens unit in zooming of the zooming optical system of Example 17.
  • FIG. 25 is a cross-sectional view showing the arrangement of lens groups in a variable magnification optical system in Example 18.
  • FIG. 18 is a diagram illustrating a state of movement of each lens unit in zooming of the zooming optical system of Example 18.
  • FIG. 6 is an aberration diagram (wide-angle end) of the variable magnification optical system in Example 1.
  • FIG. 6 is an aberration diagram (middle point) of the zoom optical system according to Example 1.
  • FIG. 4 is an aberration diagram (telephoto end) of the zoom optical system according to Example 1.
  • FIG. 6 is an aberration diagram (wide-angle end) of the variable magnification optical system in Example 2.
  • FIG. 6 is an aberration diagram (middle point) of the zoom optical system according to Example 2.
  • FIG. 10 is an aberration diagram (telephoto end) of the zoom optical system according to Example 2.
  • FIG. 10 is an aberration diagram (wide-angle end) of the zoom optical system according to Example 3.
  • FIG. 6 is an aberration diagram (middle point) of the zoom optical system according to Example 3.
  • FIG. 10 is an aberration diagram (telephoto end) of the zoom optical system according to Example 3.
  • FIG. 6 is an aberration diagram (wide-angle end) of the variable magnification optical system in Example 4.
  • FIG. 10 is an aberration diagram (middle point) of the zoom optical system according to Example 4.
  • FIG. 10 is an aberration diagram (telephoto end) of the zoom optical system according to Example 4.
  • FIG. 10 is an aberration diagram (wide-angle end) of the variable magnification optical system in the fifth example.
  • FIG. 12 is an aberration diagram (middle point) of the zoom optical system according to Example 5.
  • FIG. 10 is an aberration diagram (telephoto end) of the zoom optical system according to Example 5.
  • FIG. 10 is an aberration diagram (wide-angle end) of the zoom optical system according to Example 6.
  • FIG. 10 is an aberration diagram (middle point) of the zoom optical system according to Example 6.
  • FIG. 10 is an aberration diagram (telephoto end) of the zoom optical system according to Example 6.
  • FIG. 10 is an aberration diagram (wide-angle end) of the variable magnification optical system in Example 7.
  • FIG. 10 is an aberration diagram (middle point) of the zoom optical system according to Example 7.
  • FIG. 10 is an aberration diagram (telephoto end) of the zoom optical system according to Example 7.
  • FIG. 10 is an aberration diagram (wide-angle end) of the variable magnification optical system in Example 8.
  • FIG. 10 is an aberration diagram (middle point) of the variable magnification optical system according to Example 8.
  • FIG. 10 is an aberration diagram (telephoto end) of the zoom optical system according to Example 8.
  • FIG. 10 is an aberration diagram (wide-angle end) of the variable magnification optical system according to Example 9.
  • FIG. 10 is an aberration diagram (middle point) of the zoom optical system according to Example 9.
  • FIG. 10A is an aberration diagram (telephoto end) of the variable magnification optical system according to Example 9.
  • FIG. 10 is an aberration diagram (wide-angle end) of the variable magnification optical system according to Example 10.
  • FIG. 12 is an aberration diagram (middle point) of the zoom optical system according to Example 10.
  • FIG. 10A is an aberration diagram (telephoto end) of the variable magnification optical system according to Example 10.
  • FIG. 12A is an aberration diagram (wide-angle end) of the variable magnification optical system according to Example 11.
  • FIG. 12 is an aberration diagram (middle point) of the variable magnification optical system according to Example 11.
  • FIG. 10A is an aberration diagram (telephoto end) of the variable magnification optical system according to Example 11.
  • FIG. 14 is an aberration diagram (wide-angle end) of the variable magnification optical system in Example 12.
  • FIG. 10A is an aberration diagram (wide-angle end) of the variable magnification optical system according to Example 10.
  • FIG. 14 is an aberration diagram (middle point) of the zoom optical system according to Example 12;
  • FIG. 14 is an aberration diagram (telephoto end) of the variable magnification optical system in Example 12.
  • FIG. 14 is an aberration diagram (wide-angle end) of the variable magnification optical system in Example 13.
  • FIG. 14E is an aberration diagram (middle point) of the variable magnification optical system according to Example 13.
  • FIG. 14A is an aberration diagram (telephoto end) of the variable magnification optical system according to Example 13;
  • FIG. 14 is an aberration diagram (wide-angle end) of the variable magnification optical system in Example 14;
  • FIG. 14 is an aberration diagram (middle point) of the zoom optical system according to Example 14;
  • FIG. 18A is an aberration diagram (telephoto end) of the variable magnification optical system in Example 14; FIG. 18A is an aberration diagram (wide-angle end) of the variable magnification optical system in Example 15.
  • FIG. 16 is an aberration diagram (middle point) of the zoom optical system according to Example 15;
  • FIG. 18E is an aberration diagram (telephoto end) of the variable magnification optical system in Example 15.
  • FIG. 18E is an aberration diagram (wide-angle end) of the variable magnification optical system in Example 16.
  • FIG. 18E is an aberration diagram (middle point) of the zoom optical system according to Example 16;
  • FIG. 18E is an aberration diagram (telephoto end) of the variable magnification optical system in Example 16.
  • FIG. 18E is an aberration diagram (wide-angle end) of the variable magnification optical system in Example 17.
  • FIG. 18E is an aberration diagram (middle point) of the zoom optical system according to Example 17;
  • FIG. 18A is an aberration diagram (telephoto end) of the variable magnification optical system according to Example 17;
  • FIG. 18A is an aberration diagram (wide-angle end) of the variable magnification optical system in Example 18.
  • FIG. 18E is an aberration diagram (middle point) of the variable magnification optical system according to Example 18;
  • FIG. 18A is an aberration diagram (telephoto end) of the variable magnification optical system according to Example 18;
  • Digital device 5 Mobile phone 11, Gr1 first lens group 12, Gr2 second lens group 13, Gr3 third lens group 14, Gr4 fourth lens group Gr5 Fifth lens group 17, SR imaging element 21 imaging device
  • FIG. 1 is a lens cross-sectional view schematically illustrating the configuration of the variable magnification optical system in the embodiment.
  • FIGS. 2A, 2B, and 2C are respectively a wide angle end (W: WIDE), an intermediate point (M: MIDDLE), and a telephoto end (T: TELE) variable magnification in the variable magnification optical system of the embodiment. It is a figure which shows the optical path of time.
  • variable magnification optical system 1 includes an optical image of an object (subject) on a light receiving surface (image surface) of an image sensor 17 such as a CCD (Charge Coupled Device) that converts an optical image into an electrical signal.
  • an image sensor 17 such as a CCD (Charge Coupled Device) that converts an optical image into an electrical signal.
  • a first lens group 11 having a negative optical power
  • a second lens group 12 having a negative optical power
  • a positive optical power The third lens group 13 and the fourth lens group 14 having negative optical power, and at the time of zooming from the wide-angle end to the telephoto end, the second lens group at the telephoto end compared to the wide-angle end.
  • variable magnification optical system 1 illustrated in FIG. 1 has the same configuration as the variable magnification optical system 1A (FIG. 5) of Example 1 described later.
  • the first lens group 11 is fixed at zooming, and in order from the object side to the image side, a negative meniscus lens 111 convex to the object side, a prism 112, and a single positive lens on the image side.
  • the second lens group 12 includes a biconvex negative lens 121 and a biconvex positive lens 122 in order from the object side to the image side.
  • the third lens group 13 moves during zooming, and in order from the object side to the image side, a biconvex positive lens 131, a biconvex positive lens 132, a biconcave negative lens 133, and both
  • the fourth lens group 14 is configured by a convex positive lens 134, and the fourth lens group 14 moves by zooming and is configured by a negative meniscus lens 141 convex to the image side.
  • the negative meniscus lens 111, the positive lens 131, the positive lens 132, and the negative meniscus lens 141 are both aspheric.
  • the negative meniscus lens 111, the positive lens 131, the positive lens 132, and the negative meniscus lens 141 may be glass molded lenses, for example, or may be lenses made of a resin material such as plastic. In particular, when mounted on a portable terminal as an example of a digital device, a lens made of a resin material is preferable from the viewpoint of weight reduction.
  • the prism 112, the plano-convex lens 113, the negative lens 121 and the positive lens 122, and the negative lens 133 and the positive lens 134 are cemented lenses, respectively.
  • an aperture stop 15 as an example of an optical stop is disposed on the object side of the positive lens 131, and moves together with the third lens group 13.
  • the aperture stop 15 may be a mechanical shutter.
  • a filter 16 and an image sensor 17 are disposed on the image side of the variable magnification optical system 1.
  • the filter 16 is an optical element having a parallel plate shape, and schematically represents various optical filters, a cover glass of the imaging element, and the like.
  • An optical filter such as a low-pass filter or an infrared cut filter can be appropriately arranged depending on the usage, imaging device, camera configuration, and the like.
  • the image sensor 17 performs photoelectric conversion to image signals of R (red), G (green), and B (blue) components in accordance with the amount of light in the optical image of the subject imaged by the variable magnification optical system 1. This element outputs to a predetermined image processing circuit (not shown).
  • an optical image of the object on the object side is guided to the light receiving surface of the image sensor 17 at an appropriate zoom ratio along the optical axis AX by the zoom optical system 1, and the optical image of the subject is captured by the image sensor 17. It is converted into an electrical signal.
  • Such a zoom optical system 1 is a so-called negative lead optical system having four components of “negative, negative, positive, negative” in order from the object side, and a zoom lens having a zoom ratio of about 2 to 4 times.
  • the arrangement is advantageous in terms of the optical total length, the size of the front lens diameter, and error sensitivity.
  • the third lens group 13 and the fourth lens group 14 are configured to bear the variable magnification. From the wide angle end (WIDE, W) to the intermediate point (MIDDLE, M) When zooming to the end (TELE, T), by moving in a predetermined direction as shown in FIG. 2, the unit can be downsized (compact) by shortening the zooming movement amount.
  • the effect of controlling the exit pupil position in the fourth lens group 14 is increased by increasing the distance between the third lens group 13 and the fourth lens group 14 during zooming from the wide-angle end to the telephoto end. Accordingly, it is possible to suppress the light incident angle to the image sensor 17 and to reduce the difference in the light incident angle to the image sensor 17 at the wide angle end and the telephoto end while achieving compactness.
  • the distance on the optical axis between the third lens group 13 and the fourth lens group 14 at the telephoto end is Dt
  • the third lens group 13 and the fourth lens at the wide-angle end are Dt.
  • the distance on the optical axis to the lens group 14 is Dw
  • the combined focal length of the entire optical system at the wide angle end is fw
  • the following conditional expression (A) is satisfied. 0 ⁇ (Dt ⁇ Dw) / fw ⁇ 1 (A)
  • the fourth lens group 14 moves to the object side, so that it is possible to share the magnification change burden with the third lens group 13.
  • conditional expression (A) If the upper limit of conditional expression (A) is exceeded, the difference in the light incident angle to the image sensor 17 at the wide-angle end and the telephoto end becomes too large, resulting in a decrease in ambient illuminance due to shading, or the fourth lens. The optical power of the group 14 becomes weak and the optical total length increases, which is not preferable. On the other hand, if the lower limit of conditional expression (A) is not reached, the degree of freedom of aberration correction in the fourth lens group 14 decreases, resulting in a substantially three-component zoom, achieving both compactness and high image quality. It is difficult to do so.
  • variable magnification optical system 1 having such a configuration, it is preferable that the following conditional expression (A ′) is satisfied. 0.1 ⁇ (Dt ⁇ Dw) / fw ⁇ 0.7 (A ′) If the upper limit of the conditional expression (A ′) is satisfied in addition to the above-described operation and effect, the zooming burden of the fourth lens group 14 is reduced and the manufacturing error sensitivity of the third lens group 13 is increased. The fear can be preferably avoided. If the lower limit of conditional expression (A ′) is satisfied, the third lens group 13 and the fourth lens group 14 cannot properly share the variable magnification burden, leading to an increase in the total optical length and an increase in manufacturing error sensitivity. It is possible to avoid the risk of being lost.
  • variable magnification optical system 1 further includes the aperture stop 15 disposed in the vicinity of the third lens group 13, and most of the aperture stop 15 and the third lens group 13 at the wide angle end.
  • the distance on the optical axis from the object side surface vertex of the object side lens 131 is Ds3w, and at the telephoto end, the distance on the optical axis between the aperture stop 15 and the object side surface vertex of the object side lens 131 of the third lens group 13 is the optical axis distance.
  • Ds3t is set, and the distance on the optical axis between the second lens group 12 and the third lens group 13 at the telephoto end is T23, the following conditional expression (B) is satisfied.
  • the aperture stop 15 may be disposed in the third lens group 13.
  • conditional expression (1) is satisfied when the focal length of the first lens group 11 is f1 and the combined focal length of the entire optical system at the wide-angle end is fw. Is. 1 ⁇
  • the upper limit of conditional expression (1) is exceeded, the angle of incidence of light incident on the image sensor 17 becomes large, particularly at the wide-angle end, and a decrease in ambient illuminance due to shading occurs, which is not preferable.
  • the lower limit of conditional expression (1) is not reached, astigmatism and lateral chromatic aberration generated in the first lens group 11 become excessively large and correction becomes difficult, which is not preferable.
  • variable magnification optical system 1 having such a configuration, it is more preferable that the following conditional expression (1 ′) is satisfied. 2 ⁇
  • the conditional power (1) is satisfied by keeping the optical power of the first lens group 11 within a relatively strong predetermined range.
  • the incident angle to the image sensor 17 can be reduced, and the difference in the incident angle to the image sensor 17 at the wide angle end and the telephoto end can be reduced.
  • exceeding the upper limit of the conditional expression (1) is not preferable because the incident angle to the image sensor 17 becomes large, particularly at the wide-angle end, and a decrease in ambient illuminance due to shading occurs. If the lower limit of conditional expression (1) is not reached, astigmatism and lateral chromatic aberration that occur in the first lens group 11 will become too large unless a positive lens is arranged in the first lens group 11, and correction is difficult. This is not preferable.
  • the first lens group 11 has at least one positive lens, and in the example shown in FIG. Astigmatism and lateral chromatic aberration can be effectively corrected by the first lens group 11. For this reason, it is possible to greatly increase the degree of freedom of aberration correction in the other zooming groups of the second to fourth lens groups 12-14.
  • variable magnification optical system 1 having such a configuration, it is even more preferable that the following conditional expression (1 ′′) is satisfied. 3 ⁇
  • conditional expression (1 ′′) is satisfied.
  • the prism 112 that bends the optical path is included in the first lens group 11, which is a fixed group, in the optical system, so that the position of the light beam incident on the first lens group 11 can be freely adjusted. Since the degree is reduced, the optical power of the first lens group 11 is particularly important with respect to the incident angle to the image sensor 17.
  • the first lens group 11 is fixed at the time of zooming. With such a configuration, the effective lens diameter of the first lens group 11 can be suppressed. Further, when the first lens group 11 is movable, it is necessary to dispose a driving device for driving the first lens group 11 outside the first lens group 11, which leads to an increase in size in the outer diameter direction. . Therefore, fixing the first lens group 11 at the time of zooming is very effective for downsizing in the outer diameter direction.
  • the first lens group 11 has a prism 112 as a reflecting member.
  • the prism 112 is a declination prism that changes the direction of the light beam, and is a polygonal column of a transparent medium having a plane in which the light incident surface and the light exit surface are not parallel to each other.
  • the prism 112 is, for example, a triangular prism whose bottom surface is a right isosceles triangle, and the optical path is bent by the slope of the prism. The slope is provided with a reflective film as necessary.
  • the variable magnification optical system 1 is configured as a so-called bending optical system.
  • variable magnification optical system 1 it is possible to reduce the thickness of the variable magnification optical system 1 in the direction from the object toward the incident surface of the variable magnification optical system 1. Therefore, it becomes possible to increase the degree of freedom of the shape in the device equipped with the variable magnification optical system 1 according to the present embodiment.
  • the first lens group 11 includes a prism 112 as a reflecting member, and the positive lens of the first lens group 11 is the reflecting member (prism 112. ) Is only one plano-convex positive lens 113 on the image side.
  • the positive lens of the first lens group 11 is effective for correcting astigmatism. However, if there are two or more lenses, the negative optical power of the first lens group is weakened, and the telecentricity with respect to the image plane is deteriorated. The total optical length of the variable magnification optical system 1 increases, which is not preferable.
  • the first lens group 11 has a prism 112 as a reflecting member therein, and the negative lens of the first lens group 11 is the reflecting member (prism 112).
  • the thickness of the lens unit can be reduced when the lens is disposed on the object side of the reflecting member (prism 112), and the lens is disposed on the image side of the reflecting member (prism 112). In this case, the distance between the first lens group 11 and the second lens group 12 can be made closer, which is effective in shortening the optical total length.
  • the first lens group 11 has at least one aspheric surface, and in the example shown in FIG. 1, the negative meniscus lens 111 has both aspheric surfaces.
  • the first lens group 11 has at least one aspheric surface, and in the example shown in FIG. 1, the negative meniscus lens 111 has both aspheric surfaces.
  • zoom optical system 1 when zooming from the wide angle end to the telephoto end, as shown in FIG. 2, more specifically, as shown in FIG. Gr2) moves along a locus convex toward the image side.
  • the second lens group 12 draws such a locus, it is possible to keep the focal position shift caused by the movement of the other zooming group constant.
  • the second lens group 12 is composed of a cemented lens in which a biconcave negative lens 121 and a biconvex positive lens 122 are cemented. With this configuration, it is possible to suppress the manufacturing error sensitivity of each lens of the second lens group 12, particularly the error sensitivity at the time of decentering.
  • an aperture stop 15 is disposed on the object side of the third lens group 13 as an example of an optical stop.
  • the aperture stop 15 moves together with the third lens group 13 during zooming. To do.
  • an increase in the front lens diameter can be prevented.
  • the lens barrel configuration can be simplified, and the distance between the second lens group 12 and the third lens group 13 can be made very close. Since the distance between the second lens group 12 and the third lens group 13 has a great influence on the optical total length, shortening the distance between the second lens group 12 and the third lens group 13 is effective for miniaturization. Is.
  • the third lens group 13 has at least one aspheric surface.
  • both surfaces of the positive lens 131 and both surfaces of the positive lens 132 are aspheric.
  • spherical aberration and astigmatism can be favorably corrected by having an aspheric surface in the third lens group 13.
  • the positive lenses 131 and 132 of the third lens group 13 are provided with aspheric surfaces. With this configuration, it is possible to satisfactorily correct spherical aberration and coma generated by the increase in the optical power of the third lens group 13 due to downsizing.
  • the second lens counted from the object side of the third lens group 13 is a biconvex positive lens 132.
  • the second lens counted from the object side of the third lens group 13 in this shape, it is possible to suppress the aberration caused by the relative decentration of the front and rear surfaces of the biconvex positive lens.
  • the third lens group 13 has a cemented lens in which a biconcave negative lens 133 and a biconvex positive lens 134 are cemented.
  • the fourth lens group 14 includes at least one aspheric surface, and in the example shown in FIG. 1, both surfaces of the negative meniscus lens 141 are aspheric.
  • the fourth lens group 14 by providing the fourth lens group 14 with an aspherical surface, it is possible to maintain good correction of off-axis coma and telecentricity with respect to the image plane.
  • the variable magnification optical system 1 includes, in order from the object side to the image side, a negative meniscus lens 111 convex to the object side, and a cemented lens of a prism 112 and a plano-convex lens 113 convex to the image side.
  • a first lens group 11, a second lens group 12 composed of a cemented lens of a biconcave negative lens 121 and a biconvex positive lens 122, a biconvex positive lens 131, and a biconvex positive lens 132.
  • a third lens group 13 composed of a cemented lens of a biconcave negative lens 133 and a biconvex positive lens 134, and a fourth lens composed of a negative meniscus lens 141 convex on the image side.
  • a group 14 As described above, by configuring the first lens group 11 to be negative and positive, astigmatism and lateral chromatic aberration can be sufficiently corrected. By using the second lens group 12 as a cemented lens, it is possible to correct the lateral chromatic aberration and reduce the eccentricity error sensitivity. In addition, by configuring the third lens group 13 with four lenses, error sensitivity can be reduced by using three positive lenses, and axial chromatic aberration can be sufficiently corrected by using a cemented lens. be able to. By using the fourth lens group 14 as a negative meniscus lens, the telecentricity of the light incident angle on the image plane can be ensured.
  • each lens of the first lens group 11 preferably has a relatively high refractive index.
  • the refractive index of the lens is low, there is a trade-off between the light incident angle on the image sensor 17 and the miniaturization, and the optical power of the first lens group 11 is kept within a predetermined range and the miniaturization is achieved. And imaging performance are difficult to achieve, which is not preferable.
  • variable magnification optical system 1 having such a configuration, it is preferable that the optical power of the fourth lens group 14 arranged closest to the image side falls within a relatively weak predetermined range. Even if the first lens group 11 refracts the incident light greatly, if it is refracted again by the fourth lens group 14 again, the light incident angle to the image sensor 17 at the wide-angle end becomes large as a result. This is not preferable.
  • the prism 112 preferably satisfies the following conditional expression (2) when the d-line refractive index of the prism 112 is Npr. Npr ⁇ 1.8 (2) If the lower limit of the conditional expression (2) is not reached, the variable magnification optical system 1 will be insufficiently thinned and the front lens diameter will increase, which is not preferable.
  • the prism 112 of the variable magnification optical system 1 more preferably satisfies the following conditional expression (2 ′). Npr ⁇ 1.9 (2 ′)
  • the variable magnification optical system 1 can be further reduced in thickness. For this reason, the degree of freedom of the shape of the mounted device is further increased, and for example, it can be mounted on a terminal that is required to be thin, such as a folding portable terminal.
  • the most object side in the first lens group 11 is a negative lens having at least one aspheric surface, and in the example shown in FIG. 1, a negative meniscus having both surfaces aspheric.
  • the d-line refractive index of the negative lens (negative meniscus lens 111) is Nln, it is preferable that the following conditional expression (3) is satisfied. Nln ⁇ 1.7 (3)
  • the front lens diameter can be suppressed small by making the most object side of the first lens group 11 a negative lens, and at least one surface is aspherical, thereby making a compact configuration. It becomes possible to correct distortion well. And if it falls below the lower limit of the conditional expression (3), the front lens diameter is increased, which is not preferable.
  • variable magnification optical system 1 having such a configuration, it is more preferable that the following conditional expression (3 ′) is satisfied. Nln ⁇ 1.8 (3 ′) If the lower limit of the conditional expression (3 ′) is not reached, the prism 112 becomes larger, which makes it difficult to reduce the thickness of the lens unit in the thickness direction.
  • variable magnification optical system 1 having such a configuration, it is even more preferable that the following conditional expression (3 ′′) is satisfied. Nln ⁇ 1.9 (3 ′′) By satisfying the conditional expression (3 ′′), the field angle of view can be widened without increasing the thickness of the lens unit.
  • variable magnification optical system 1 having such a configuration, at least one positive lens of the first lens group 11, in the example shown in FIG. 1, the plano-convex positive lens 113 has the d-line refractive index of the positive lens.
  • Nlp it is preferable that the following conditional expression (4) is satisfied. Nlp ⁇ 1.9 (4)
  • the conditional expression (4) is satisfied, the Petzval sum in the first lens group 11 can be effectively reduced, and astigmatism generated in the negative lens can be corrected well.
  • variable magnification optical system 1 having such a configuration, only one positive lens of the first lens group 11, in the example shown in FIG.
  • the difference in the d-line refractive index between the prism 112 and the positive lens (plano-convex positive lens 113) of the first lens group 11 is ⁇ Nl
  • the following condition is satisfied. It is preferable to satisfy Formula (5).
  • the positive lens (plano-convex positive lens 113) of the first lens group 11 and the prism 112 it is possible to suppress the manufacturing error sensitivity of the positive lens and improve the productivity. . This also makes it possible to simplify the lens barrel configuration.
  • the upper limit of conditional expression (5) is exceeded, the reflectance at the joint surface becomes high, which is not preferable because it causes unnecessary light.
  • variable magnification optical system 1 having such a configuration, it is more preferable that the following conditional expression (5 ′) is satisfied.
  • ⁇ 0.12 5 ′
  • the effect of suppressing unnecessary light can be greatly enhanced.
  • the value exceeds the upper limit of the conditional expression (5 ′) the contrast decreases due to unnecessary light due to the increase in reflectance at the joint surface due to the difference in refractive index, which is not preferable.
  • variable magnification optical system 1 having such a configuration, at least one of a mechanical shutter and an ND filter is disposed between the third lens group 13 and the fourth lens group 14, and the third lens at the telephoto end.
  • T34 the distance on the optical axis between the lens group 13 and the fourth lens group 14
  • ft the combined focal length of the entire optical system at the telephoto end
  • T34 / (fw ⁇ ft) 1/2 0.45 (6)
  • variable magnification optical system 1 having such a configuration, it is more preferable that the following conditional expression (6 ′) is satisfied.
  • the conditional expression (6 ′) it is possible to dispose both a general mechanical shutter and an ND filter.
  • the fourth lens group 14 is moved to perform focusing from an infinitely distant object to a short-distance object, and the combined focal length of the fourth lens group 14 is set to f4.
  • the following conditional expression (7) is satisfied. 1.4 ⁇
  • the air space before and after the fourth lens group 14 is relatively easy to secure as compared with other movable groups. For this reason, it is possible to maintain aberration performance at a close distance without causing interference between movable groups.
  • the moving distance can be sufficiently secured, the shortest shooting distance can be relatively easily reduced as compared with other variable magnification type variable magnification optical systems.
  • the upper limit of conditional expression (7) is exceeded, the moving distance accompanying the focus of the fourth lens group 14 becomes too large, leading to an increase in the total optical length of the variable magnification optical system 1, which is not preferable.
  • the lower limit of conditional expression (7) is not reached, the incident angle to the image sensor 17 at the wide-angle end is particularly large, leading to a decrease in ambient illuminance, which is not preferable.
  • variable magnification optical system 1 having such a configuration, it is more preferable that the following conditional expression (7 ′) is satisfied. 1.7 ⁇
  • conditional expression (7 ′) By satisfying the conditional expression (7 ′), the decentering error sensitivity of the third lens group 13 can be suppressed, and the oblique incidence angle to the lens array can be relaxed, so that color shading is also suppressed. Is possible.
  • the third lens group 13 has at least one positive lens, the combined focal length of the third lens group 13 is f3, and the third lens group 13
  • the maximum Abbe number of the positive lenses 131 and 132 is v3p
  • Exceeding the upper limit of the conditional expression (8) is not preferable because an increase in the amount of zoom movement leads to an increase in the total optical length of the zoom optical system 1.
  • variable magnification optical system 1 having such a configuration, it is more preferable that the following conditional expression (8 ′) is satisfied. 1.3 ⁇ f3 / fw ⁇ 1.5 (8 ′) By satisfying the conditional expression (8 ′), sufficient compactness can be achieved while maintaining good productivity.
  • variable magnification optical system 1 having such a configuration, it is more preferable that the following conditional expression (9 ′) is satisfied.
  • v3p ⁇ 75 (9 ′) Satisfying the conditional expression (9 ′) is preferable because the longitudinal chromatic aberration is more sufficiently corrected.
  • variable magnification optical system 1 having such a configuration, the maximum image height is Y ′, and the distance on the optical axis from the surface apex of the object side lens surface to the image plane (however, the back focus is the air conversion length).
  • TL TL
  • variable magnification optical system 1 having such a configuration, it is more preferable that the following conditional expression (10 ′) is satisfied.
  • satisfying the conditional expression (10 ′) it is possible to achieve a compact enough to be mounted without impairing the degree of freedom of shape of a device that is required to be ultra-compact, such as a mobile phone or a portable information terminal. Become.
  • the first lens group 11 has a combined focal length of the first lens group 11 as f1 and a combined focal length of the entire optical system at the telephoto end as ft.
  • the following conditional expression (11) is satisfied. 0.4 ⁇
  • Exceeding the upper limit of conditional expression (11) is not preferable because the incident angle of light incident on the image sensor 17 becomes large, particularly at the wide-angle end, and a decrease in peripheral illuminance due to shading occurs. If the lower limit of conditional expression (11) is not reached, astigmatism and lateral chromatic aberration that occur in the first lens group 11 become excessively large and correction becomes difficult, which is not preferable.
  • variable magnification optical system 1 having such a configuration, it is more preferable that the following conditional expression (11 ′) is satisfied. 1 ⁇
  • conditional expression (11 ′) it is possible to suppress a decrease in peripheral illuminance due to shading, and to satisfactorily correct astigmatism and lateral chromatic aberration with a simple configuration.
  • variable magnification optical system 1 having such a configuration, it is even more preferable that the following conditional expression (11 ′′) is satisfied. 1.1 ⁇
  • the second lens group 12 has the combined focal length of the second lens group 12 as f2 and the combined focal length of the entire optical system at the wide angle end as fw.
  • the following conditional expression (12) is satisfied. 1.5 ⁇
  • the second lens group 12 has the combined focal length of the second lens group 12 as f2, and the combined focal length of the entire optical system at the telephoto end as ft.
  • conditional expression (13) it is preferable that the following conditional expression (13) is satisfied. 0.7 ⁇
  • the third lens group 13 has a combined focal length of the third lens group 13 as f3 and a combined focal length of the entire optical system at the telephoto end as ft.
  • conditional expression (14) it is preferable that the following conditional expression (14) is satisfied. 0.2 ⁇ f3 / ft ⁇ 0.9 (14) If the lower limit of conditional expression (14) is not reached, the decentration error sensitivity of the third lens group 13 becomes very high, which makes it difficult to manufacture, which is not preferable.
  • variable magnification optical system 1 having such a configuration, it is more preferable that the following conditional expression (14 ′) is satisfied. 0.42 ⁇ f3 / ft ⁇ 0.6 (14 ′) By satisfying the conditional expression (14 ′), lens adjustment in the third lens group 13 becomes unnecessary, and the cost can be reduced.
  • the most image side surface of the most image side lens of the fourth lens group 14 is an aspherical surface, and is a schematic diagram illustrating the definition of the image plane incident angle of the principal ray. As shown in FIG.
  • the angle (deg, degree) of the principal ray Cr having the maximum field angle among the incident rays to the imaging surface with respect to the perpendicular P standing on the image plane is ⁇ w
  • the angle (deg, degree) of the principal ray Cr having the maximum angle of view with respect to the perpendicular line P standing on the image plane is ⁇ t
  • the following conditional expressions (15) and (16) ) Is preferably satisfied.
  • ⁇ w and ⁇ t have the principal ray angle when the exit pupil position is on the object side from the image plane as the positive direction.
  • conditional expression (15) By satisfying the conditional expression (15), it is possible to reduce the size while securing a wide angle of view, and to obtain a good image quality with less shading. If the upper limit of conditional expression (16) is exceeded, even if a lens array is arranged in front of the imaging surface, it is difficult to suppress a decrease in ambient illuminance at either the wide-angle end or the telephoto end, which is not preferable.
  • variable magnification optical system 1 having such a configuration has at least one lens made of a resin material.
  • mass production with stable quality becomes possible, and a significant cost reduction can be achieved.
  • variable magnification optical system 1 having such a configuration, it is preferable that the at least one lens made of a resin material is disposed in the fourth lens group 14.
  • a lens made of a resin material By disposing a lens made of a resin material in the fourth lens group 14, it is possible to reduce the cost while minimizing the influence on the optical performance.
  • the fourth lens group 14 has a combined focal length of the fourth lens group 14 as f4 and a combined focal length of the entire optical system at the telephoto end as ft.
  • Exceeding the upper limit of conditional expression (17) is not preferable because the movement distance accompanying the focus of the fourth lens group 14 becomes too large, leading to an increase in the total optical length.
  • the incident angle to the image sensor 17 at the wide-angle end is particularly large, leading to a decrease in ambient illuminance.
  • variable magnification optical system 1 having such a configuration, it is more preferable that the following conditional expression (17 ′) is satisfied. 0.55 ⁇
  • conditional expression (17 ′) By satisfying the conditional expression (17 ′), the decentering error sensitivity of the third lens group 13 can be suppressed, and the oblique incidence angle to the lens array can be relaxed, so that color shading is also suppressed. Is possible.
  • variable magnification optical system 1 having such a configuration
  • the back focus (air conversion length) at the telephoto end is Lb and the combined focal length of the entire optical system at the wide angle end is fw
  • the following conditional expression It is preferable to satisfy (18). 0.8 ⁇ Lb / fw ⁇ 1.6 (18)
  • Exceeding the upper limit of the conditional expression (18) is not preferable because it becomes difficult to dispose a mechanical shutter or an ND filter in the interval between the third lens group 13 and the fourth lens group 14.
  • variable magnification optical system 1 having such a configuration, a cam, a stepping motor, or the like may be used for driving each movable lens group, the optical aperture 15, the shutter (not shown), or the like.
  • a piezoelectric actuator may be used. In the case of using the piezoelectric actuator, it is possible to drive each group independently while suppressing an increase in the volume and power consumption of the driving device, and the imaging device can be further downsized.
  • variable magnification optical system 1 having such a configuration, it is preferable that all lens surfaces facing the air are aspherical surfaces. This configuration makes it possible to achieve both compactness and high image quality.
  • the glass lens having an aspheric surface is a glass molded aspheric lens, a ground aspheric glass lens, a composite aspheric lens (aspheric shape on a spherical glass lens).
  • a glass molded aspherical lens is preferable for mass production, and composite aspherical lenses have a high degree of design freedom because there are many types of glass materials that can serve as substrates.
  • an aspherical lens using a high refractive index material is not easy to mold, so a composite aspherical lens is preferable.
  • the advantages of the composite aspherical lens can be fully utilized.
  • the first lens group 11, the second lens group 12, and the fourth lens group 14 are each composed of three or less lenses, more preferably two or less lenses. It is preferable. With such a configuration, it is possible to achieve cost reduction by reducing the number of lenses. However, in the case where the reflecting member has a prism, the number of prisms is not included in the above number.
  • variable magnification optical system 1 when a plastic lens is used, it is a lens molded using a material in which particles having a maximum length of 30 nanometers or less are dispersed in plastic (resin material). It is preferable.
  • variable magnification optical system 1 For example, acrylic niobium dioxide (Nb 2 O 5 ) fine particles are dispersed.
  • a plastic material lens in which such inorganic fine particles are dispersed is used as at least one lens, so that the back focus accompanying the change in the environmental temperature of the variable magnification optical system 1 is achieved. It is possible to suppress the deviation of the distance.
  • Such a lens made of plastic material in which inorganic fine particles are dispersed is preferably molded as follows.
  • n (T) The temperature change n (T) of the refractive index is expressed by the following equation 19 by differentiating the refractive index n with respect to the temperature T based on the Lorentz-Lorentz equation.
  • n (T) ((n 2 +2) ⁇ (n 2 ⁇ 1)) / 6n ⁇ ( ⁇ 3 ⁇ + (1 / [R]) ⁇ ( ⁇ [R] / ⁇ T)) (19)
  • is a linear expansion coefficient
  • [R] molecular refraction.
  • the refractive index temperature change n (T) is about ⁇ 11 ⁇ 10 ⁇ 5 (/ ° C.)
  • the refractive index temperature change n (T) is about ⁇ 14 ⁇ 10 ⁇ 5 (/ ° C.)
  • the temperature change n (T) of the refractive index is about ⁇ 13 ⁇ 10 ⁇ 5 (/ ° C.).
  • the first lens group 11 including a negative meniscus lens and a prism convex toward the object side, a biconcave lens and a positive meniscus convex toward the object side
  • a second lens group 12 composed of a cemented lens, a biconvex lens, a third lens group 13 composed of a biconvex lens, a biconcave lens and a biconvex lens, and a negative meniscus lens convex on the image side.
  • the fourth lens group 14 is preferably configured.
  • the first lens group 11 is composed of a single negative lens, which is advantageous for downsizing.
  • the second lens group 12 is a cemented lens, it is possible to correct the lateral chromatic aberration and reduce the eccentric error sensitivity.
  • the reason why the third lens group 13 is composed of four lenses is to reduce error sensitivity by using three positive lenses, and to sufficiently correct axial chromatic aberration by using three cemented lenses. This is because the sensitivity of the lens interval error is reduced.
  • the reason why the fourth lens group 14 is a negative meniscus lens is to ensure the telecentricity of the light incident angle on the image plane.
  • FIG. 4 is a block diagram showing the configuration of the digital device in the embodiment.
  • the digital device 3 includes an imaging unit 30, an image generation unit 31, an image data buffer 32, an image processing unit 33, a driving unit 34, a control unit 35, a storage unit 36, and an I / F unit 37 for the imaging function. Composed.
  • Examples of the digital device 3 include a digital still camera, a video camera, a surveillance camera (monitor camera), a portable terminal such as a mobile phone or a personal digital assistant (PDA), a personal computer, and a mobile computer.
  • Equipment eg, a mouse, scanner, printer, etc.
  • the variable magnification optical system 1 of the present embodiment is sufficiently downsized to be mounted on a mobile terminal such as a mobile phone or a personal digital assistant (PDA), and is preferably mounted on this mobile terminal.
  • the imaging unit 30 includes an imaging device 21 and an imaging element 17.
  • the imaging device 21 includes a variable magnification optical system 1 as shown in FIGS. 1 and 2, and a lens drive device (not shown) for driving the lens in the optical axis direction to perform variable magnification and focusing. Is done.
  • the light beam from the subject is imaged on the light receiving surface of the image sensor 17 by the variable magnification optical system 1 and becomes an optical image of the subject.
  • the imaging device 17 converts the optical image of the subject formed by the variable magnification optical system 1 into an electrical signal (image signal) of R, G, B color components, and each color of R, G, B To the image generation unit 31 as an image signal.
  • the image sensor 17 is controlled by the control unit 35 for imaging operations such as imaging of either a still image or a moving image, or reading (horizontal synchronization, vertical synchronization, transfer) of an output signal of each pixel in the image sensor 17. .
  • the image generation unit 31 performs amplification processing, digital conversion processing, and the like on the analog output signal from the image sensor 17 and determines an appropriate black level, ⁇ correction, and white balance adjustment (WB adjustment) for the entire image.
  • the image data of each pixel is generated from the image signal by performing known image processing such as contour correction and color unevenness correction.
  • the image data generated by the image generation unit 31 is output to the image data buffer 32.
  • the image data buffer 32 is a memory that temporarily stores image data and is used as a work area for performing processing described later on the image data by the image processing unit 33.
  • the image data buffer 32 is a volatile storage element. It is composed of a certain RAM (Random Access Memory).
  • the image processing unit 33 is a circuit that performs predetermined image processing such as resolution conversion on the image data in the image data buffer 32. With this configuration, it is possible to provide the digital device 3 that can output an image having a desired image quality. In particular, for example, it is possible to reduce aberrations and a decrease in peripheral light amount that could not be optically corrected by the variable magnification optical system.
  • the image processing unit 33 corrects the wide-angle optical system 1 as necessary, such as a known distortion correction process for correcting distortion in the optical image of the subject formed on the light receiving surface of the image sensor 17 as necessary. It may be configured to correct an aberration that has not been reduced.
  • the distortion correction an image distorted by aberration is corrected to a natural image having a similar shape similar to a sight seen with the naked eye and having substantially no distortion.
  • the digital device 3 that can output an image with the distortion removed or reduced.
  • the digital apparatus 3 can generate a natural image with almost no distortion. Since the image processing unit corrects the distortion of the image, particularly the aberration burden due to the first lens group 11 is reduced, the lens configuration of the first lens group 11 can be simplified.
  • the driving unit 34 operates one or a plurality of zooming optical systems 1 to perform desired zooming and focusing by operating the lens driving device (not shown) based on a control signal output from the control unit 35. Drive the lens group.
  • the control unit 35 includes, for example, a microprocessor and its peripheral circuits, and includes an imaging unit 30, an image generation unit 31, an image data buffer 32, an image processing unit 33, a drive unit 34, a storage unit 36, and an I / F unit.
  • the operation of each part 37 is controlled according to its function.
  • the imaging device 21 is controlled by the control unit 35 to execute at least one of the still image shooting and the moving image shooting of the subject.
  • the storage unit 36 is a storage circuit that stores image data generated by still image shooting or moving image shooting of a subject.
  • a ROM Read Only Memory
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • the storage unit 36 has a function as a still image memory and a moving image memory.
  • the I / F unit 37 is an interface that transmits / receives image data to / from an external device.
  • the I / F unit 37 is an interface that conforms to a standard such as USB or IEEE1394.
  • the following describes the imaging operation of the digital device 3 having such a configuration.
  • the control unit 35 controls the imaging device 21 to shoot a still image and operates the lens driving device (not shown) of the imaging device 21 via the driving unit 34. , Do the focusing. As a result, the focused optical image is periodically and repeatedly formed on the light receiving surface of the image sensor 17, converted into image signals of R, G, and B color components, and then output to the image generation unit 31. .
  • the image signal is temporarily stored in the image data buffer 32, and after image processing is performed by the image processing unit 33, an image based on the image signal is displayed on a display (not shown). The photographer can adjust the main subject so as to be within a desired position on the screen by referring to the display.
  • a so-called shutter button (not shown) is pressed in this state, image data is stored in the storage unit 36 as a still image memory, and a still image is obtained.
  • the control unit 35 executes lens driving for zooming and zooming
  • the optical system 1 is continuously zoomed.
  • the control unit 35 controls the imaging device 21 to perform moving image shooting.
  • the photographer refers to the display (not shown) so that the image of the subject obtained through the imaging device 21 is placed at a desired position on the screen. Can be adjusted.
  • the enlargement ratio of the subject image can be adjusted, and moving image shooting is started by pressing the shutter button (not shown). It is also possible to change the magnification rate of the subject at any time during the photographing.
  • the control unit 35 controls the imaging device 21 to shoot a moving image and operates the lens driving device (not shown) of the imaging device 21 via the driving unit 34 to perform focusing.
  • a focused optical image is periodically and repeatedly formed on the light receiving surface of the image sensor 17, converted into image signals of R, G, and B color components, and then output to the image generation unit 31.
  • the image signal is temporarily stored in the image data buffer 32, and after image processing is performed by the image processing unit 33, an image based on the image signal is displayed on a display (not shown). Then, when the shutter button (not shown) is pressed again, the moving image shooting is completed.
  • the captured moving image is guided to and stored in the storage unit 36 as a moving image memory.
  • the imaging apparatus 21 and the digital apparatus 3 include the variable magnification optical system 1 that can reduce the light incident angle to the imaging element 17 while achieving downsizing, the high pixel size can be achieved while downsizing.
  • a simple imaging element 17 can be employed.
  • the variable magnification optical system 1 is small and can be applied to a high-pixel image pickup device, it is suitable for a mobile terminal that is increasing in pixel count and functionality. As an example, a case where the imaging device 21 is mounted on a mobile phone will be described below.
  • FIG. 5 is an external configuration diagram of a camera-equipped mobile phone showing an embodiment of a digital device.
  • 5A shows an operation surface of the mobile phone
  • FIG. 5B shows a back surface of the operation surface, that is, a back surface.
  • the cellular phone 5 is provided with an antenna 51 at the top, and on its operation surface, as shown in FIG. 5A, a rectangular display 52, activation of image shooting mode, still image shooting and moving image
  • An image shooting button 53 for switching to shooting, a zoom button 54 for controlling zooming (zooming), a shutter button 55, and a dial button 56 are provided.
  • the cellular phone 5 incorporates a circuit for realizing a telephone function using a cellular phone network, and includes the above-described imaging unit 30, image generating unit 31, image data buffer 32, image processing unit 33, and driving unit. 34, the control part 35, and the memory
  • the scaling button 54 is constituted by, for example, a two-contact switch, and the upper end portion thereof is printed with “T” representing telephoto and the lower end portion is printed with “W” representing wide angle.
  • T representing telephoto
  • W representing wide angle.
  • a control signal indicating each scaling operation is output to the control unit 35, and the control unit 35 executes an operation corresponding to the scaling operation.
  • the shutter button 55 is operated, a control signal indicating the operation content is output to the control unit 35, and the control unit 35 performs an operation corresponding to the operation content.
  • FIG. 6 is a cross-sectional view illustrating the arrangement of lens groups in the variable magnification optical system according to the first embodiment.
  • FIG. 6 shows the case of the wide-angle end (WIDE).
  • WIDE wide-angle end
  • 8 10, 12 to 23, 25, 26, and 28 are cross-sectional views showing the arrangement of lens groups of the variable magnification optical systems 1B to 1R in Examples 2 to 18 described later.
  • WIDE wide angle end
  • FIG. 7 is a diagram showing the movement of each lens unit during zooming of the zooming optical system of Example 1.
  • W indicates the case of the wide-angle end
  • M indicates the case of an intermediate point between the wide-angle end and the telephoto end
  • T indicates the case of the telephoto end.
  • it is a figure which shows the mode of the movement of each lens group in the variable magnification optical systems 1B, 1C, 1O, 1Q, and 1R in Example 2, Example 3, Example 15, Example 17 and Example 18 which will be described later. Similar cases are shown for “W”, “M” and “T” in FIGS. 9, 11, 24, 27 and 29.
  • Example 7 shows the zoom optical systems 1D, 1E, 1F, 1G, 1J, 1K, 1M of Examples 4 to 7, Example 10, Example 11, Example 13, and Example 14 described later. It is also a figure which shows the mode of a movement of each lens group in 1N zooming.
  • FIG. 30 to 32 are aberration diagrams of the variable magnification optical system in Example 1.
  • FIG. FIG. 30 shows the case of the wide angle end (WIDE)
  • FIG. 31 shows the case of the intermediate point (MIDDLE)
  • FIG. 32 shows the case of the telephoto end (TELE).
  • the variable magnification optical system 1 ⁇ / b> A of Example 1 includes a first optical unit in which each lens group (Gr1, Gr2, Gr3, Gr4) has negative optical power as a whole in order from the object side to the image side.
  • This is a negative / negative / positive / negative four-component zoom configuration comprising a fourth lens group (Gr4) having a negative optical power, and during zooming from the wide-angle end (W) to the telephoto end (T) 7), as shown in FIG.
  • the first lens group (Gr1) is fixed, and the distance between the second lens group (Gr1) and the third lens group (Gr3) decreases.
  • the fourth lens group (Gr2, Gr3, Gr4) Dynamic and, optical diaphragm ST is moved together with the third lens group (Gr3). Then, the third lens group Gr3 and the fourth lens group Gr4 move so that the distance between them increases.
  • each lens group (Gr1, Gr2, Gr3, Gr4) is configured as follows in order from the object side to the image side.
  • the first lens group (Gr1) includes a negative meniscus lens (first lens L1) convex to the object side, a prism (L2), and a single plano-convex lens (third lens L3) convex to the image side. ).
  • the first lens L1 has two aspheric surfaces.
  • the prism L2 and the third lens L3 are cemented lenses.
  • the second lens group (Gr2) is composed of a biconcave negative lens (fourth lens L4) and a biconvex positive lens (fifth lens L5).
  • the fourth lens L4 and the fifth lens L5 are cemented lenses.
  • the third lens group (Gr3) includes an optical aperture stop ST, a biconvex positive lens (sixth lens L6), a biconvex positive lens (seventh lens L7), and a biconcave negative lens (eighth lens L8). ) And a biconvex positive lens (the ninth lens L9).
  • the optical aperture stop ST is disposed on the object side of the sixth lens L6 and moves together with the third lens group (Gr3).
  • the optical aperture stop ST may be a mechanical shutter.
  • the sixth and seventh lenses L6 and L7 have two aspheric surfaces.
  • the eighth lens L8 and the ninth lens L9 are cemented lenses.
  • the fourth lens group (Gr4) is composed of a negative meniscus lens (tenth lens L10) convex toward the image side.
  • the tenth lens L10 has two aspheric surfaces.
  • the light receiving surface of the image sensor SR is arranged via a parallel plate FT as a filter.
  • the parallel plate FT is a cover glass of various optical filters or an image sensor.
  • the number ri (i 1, 2, 3,%) Given to each lens surface is the i-th lens surface when counted from the object side (however, the cemented surface of the lens is 1). It is assumed that a surface marked with “*” in ri is an aspherical surface.
  • the optical diaphragm ST, both surfaces of the parallel plate FT, and the light receiving surface of the image sensor SR are also handled as one surface. The meanings of such handling and symbols are the same for Examples 2 to 18 described later (FIGS. 8, 10, 12 to 23, 25, 26 and 28). However, it does not mean that they are exactly the same. For example, through the respective FIGS.
  • variable magnification optical system 1A of the first embodiment as shown in FIG. 7, at the time of zooming from the wide angle end (WIDE) to the telephoto end (TELE) through the intermediate point (MIDDLE), the first lens group (Gr1) Is fixed, the second lens group (Gr2) is moved so as to draw a curve that is convex toward the image side at a substantially middle point, and the third lens group (Gr3) is substantially linearly moved toward the object.
  • the fourth lens group (Gr4) is moved in a direction that is closer to the object and is moved substantially linearly in comparison with the amount of movement of the third lens group (Gr3), and the optical aperture stop ST is moved to the third lens group. Move with (Gr3).
  • the second to fourth lens groups move, and the first lens group (Gr1) and the third lens are moved.
  • Each of the group (Gr3) and the fourth lens group (Gr4) moves so that the interval between them is narrowed.
  • Construction data of each lens in the variable magnification optical system 1A of Example 1 is shown below.
  • r is the radius of curvature of each surface (unit is mm)
  • d is the distance between the lens surfaces on the optical axis in the infinite focus state (axis upper surface distance)
  • nd is The refractive index “ ⁇ d” of each lens with respect to the d-line (wavelength 587.56 nm) indicates the Abbe number. Since both surfaces of the prism, the object side surface of the third lens L3, the optical diaphragm ST, both surfaces of the plane parallel plate FT, and the light receiving surface of the image sensor SR are flat surfaces, their radii of curvature are ⁇ (infinity).
  • the aspheric shape of the optical surface is defined by the following equation using a local orthogonal coordinate system (x, y, z) in which the surface vertex is the origin and the direction from the object toward the image sensor is the positive z-axis direction. is doing.
  • z (h) c ⁇ h 2 / [1+ ⁇ 1 ⁇ (1 + K) ⁇ c 2 ⁇ h 2 ⁇ 1/2 ] + ⁇ Ai ⁇ h i
  • z (h) Amount of displacement in the z-axis direction at the position of height h (based on the surface vertex)
  • Ai i-th order aspheric coefficient
  • K quadratic surface parameter (cone coefficient)
  • en means “10 to the power of n”.
  • e + 001 means “10 to the power of +1”
  • e-003 means “10 to the power of ⁇ 3”.
  • BF of various data indicates back focus.
  • FIG. 30 shows aberration diagrams at the wide-angle end
  • FIG. 31 shows an intermediate point
  • FIG. 32 shows an aberration diagram at the telephoto end.
  • spherical aberration sine condition
  • astigmatism ASTIGMATISM FIELD CURVER
  • distortion aberration DISTORTION
  • the abscissa of the spherical aberration represents the focal position shift in mm
  • the ordinate represents the value normalized by the maximum incident height.
  • the horizontal axis of astigmatism represents the focal position shift in mm
  • the vertical axis represents the image height in mm
  • the horizontal axis of the distortion aberration represents the actual image height as a percentage (%) with respect to the ideal image height
  • the vertical axis represents the image height in mm.
  • the four-dot chain line (-...,9) Represents the result on the tangential (meridional) surface
  • the solid line represents the result on the sagittal (radial) surface.
  • FIG. 8 is a cross-sectional view illustrating the arrangement of lens groups in the variable magnification optical system according to the second embodiment.
  • FIG. 9 is a diagram illustrating a state of movement of each lens unit in zooming of the zooming optical system of Example 2.
  • 33 to 35 are aberration diagrams of the variable magnification optical system in the second embodiment.
  • the variable magnification optical system 1B includes a first lens unit (Gr1, Gr2, Gr3, Gr4) having negative optical power as a whole in order from the object side to the image side.
  • the first lens group (Gr1) moves to the image side, and the second lens group (Gr1) and the third lens group (Gr3) move so that their distance decreases.
  • the fourth lens group (Gr2, Gr3, Gr4) Moving, optical diaphragm ST is moved together with the third lens group (Gr3). Then, the third lens group Gr3 and the fourth lens group Gr4 move so that the distance between them increases.
  • each lens group (Gr1, Gr2, Gr3, Gr4) is configured as follows in order from the object side to the image side.
  • the first lens group (Gr1) includes a negative meniscus lens (first lens L1) convex toward the object side, and a positive meniscus lens (second lens L2) convex toward the image side as one positive lens. It consists of The first lens L1 has two aspheric surfaces, and the second lens L2 has one aspheric surface on the image side.
  • the second lens group (Gr2) is composed of a biconcave negative lens (third lens L3) and a positive meniscus lens (fourth lens L4) convex on the object side.
  • the third lens L3 and the fourth lens L4 are cemented lenses.
  • the third lens L3 has one aspheric surface on the object side
  • the fourth lens L4 has one aspheric surface on the image side.
  • the third lens group (Gr3) includes an optical aperture stop ST, a biconvex positive lens (fifth lens L5), a biconvex positive lens (sixth lens L6), and a biconcave negative lens (seventh lens L7). ) And a biconvex positive lens (eighth lens L8).
  • the optical aperture stop ST is disposed on the object side of the fifth lens L5 and moves together with the third lens group (Gr3).
  • the optical aperture stop ST may be a mechanical shutter.
  • the fifth and sixth lenses L6 have two aspheric surfaces.
  • the seventh lens L7 and the eighth lens L8 are cemented lenses.
  • the seventh lens L7 has one aspheric surface on the object side
  • the eighth lens L8 has one aspheric surface on the image side.
  • the fourth lens group (Gr4) is composed of a negative meniscus lens (ninth lens L9) convex toward the image side.
  • the ninth lens L9 has two aspheric surfaces.
  • the light receiving surface of the image sensor SR is arranged via a parallel plate FT as a filter.
  • the parallel plate FT is a cover glass of various optical filters or an image sensor.
  • the zoom optical system 1B of the second embodiment at the time of zooming from the wide angle end (WIDE) to the telephoto end (TELE) via the intermediate point (MIDDLE), the first lens group (Gr1) Is moved in a direction approaching the image sensor SR, the second lens group (Gr2) is moved so as to draw a curve that is convex toward the image side at a substantially intermediate point, and the third lens group (Gr3) is moved to the object.
  • the fourth lens group (Gr4) is moved substantially linearly in the direction approaching the object, and is moved substantially linearly in comparison with the amount of movement of the third lens group (Gr3) in the direction approaching the object. ST moves together with the third lens group (Gr3).
  • the first to fourth lens groups move, and the first lens group (Gr1) and the first lens group (Gr1)
  • Each of the three lens groups (Gr3) and the fourth lens group (Gr4) moves so that the interval between them becomes narrow.
  • Construction data of each lens in the variable magnification optical system 1B of Example 2 is shown below.
  • FIG. 10 is a cross-sectional view illustrating the arrangement of lens groups in the variable magnification optical system according to the third embodiment.
  • FIG. 11 is a diagram illustrating the movement of each lens unit during zooming of the zooming optical system according to Example 3.
  • FIG. 11 is also a diagram illustrating the movement of each lens unit in the zooming optical systems 1H, 1I, 1L, and 1P of the zooming optical systems 1H, 1I, 1L, and 1P of Examples 8, 9, 12, and 16 described later. is there.
  • 36 to 38 are aberration diagrams of the variable magnification optical system in the third embodiment.
  • the variable magnification optical system 1C includes a first lens unit (Gr1, Gr2, Gr3, Gr4) having negative optical power as a whole in order from the object side to the image side.
  • the first lens group (Gr1) is fixed, and the second lens group (Gr1) and the third lens group (Gr3) move so that the distance between them decreases.
  • the four lens groups (Gr2, Gr3, Gr4) Moving, optical diaphragm ST is moved together with the third lens group (Gr3). Then, the third lens group Gr3 and the fourth lens group Gr4 move so that the distance between them increases.
  • each lens group (Gr1, Gr2, Gr3, Gr4) is configured as follows in order from the object side to the image side.
  • the first lens group (Gr1) includes a negative meniscus lens (first lens L1) convex to the object side, a prism (L2), and a single plano-convex lens (third lens L3) convex to the image side. ).
  • the first lens L1 has two aspheric surfaces.
  • the prism L2 and the third lens L3 are cemented lenses.
  • the third lens L3 has one aspheric surface on the image side.
  • the second lens group (Gr2) is composed of a biconcave negative lens (fourth lens L4) and a positive meniscus lens (fifth lens L5) convex on the object side.
  • the fourth lens L4 and the fifth lens L5 are cemented lenses.
  • the fourth lens L4 has one aspheric surface on the object side
  • the fifth lens L5 has one aspheric surface on the image side.
  • the third lens group (Gr3) includes an optical stop ST, a positive meniscus lens convex to the object side (sixth lens L6), a biconvex positive lens (seventh lens L7), and a biconcave negative lens (first lens). 8 lens L8) and a biconvex positive lens (9th lens L9).
  • the optical aperture stop ST is disposed on the object side of the sixth lens L6 and moves together with the third lens group (Gr3).
  • the optical aperture stop ST may be a mechanical shutter.
  • the sixth and seventh lenses L6 and L7 have two aspheric surfaces.
  • the eighth lens L8 and the ninth lens L9 are cemented lenses.
  • the eighth lens L8 has one aspheric surface on the object side
  • the ninth lens L9 has one aspheric surface on the image side.
  • the fourth lens group (Gr4) is composed of a negative meniscus lens (tenth lens L10) convex toward the image side.
  • the tenth lens L10 has two aspheric surfaces.
  • the light receiving surface of the image sensor SR is arranged via a parallel plate FT as a filter.
  • the parallel plate FT is a cover glass of various optical filters or an image sensor.
  • variable magnification optical system 1C of Example 3 at the time of zooming from the wide angle end (WIDE) to the telephoto end (TELE) through the intermediate point (MIDDLE), the first lens group (Gr1) Is fixed, the second lens group (Gr2) is moved so as to draw a curve that is convex toward the image side at a substantially middle point, and the third lens group (Gr3) is substantially linearly moved toward the object.
  • the fourth lens group (Gr4) is moved in a curvilinear direction (curve convex toward the object side) in a direction approaching the object, and the optical aperture stop ST moves together with the third lens group (Gr3).
  • the second to fourth lens groups move, and the first lens group (Gr1) and the third lens are moved.
  • Each of the group (Gr3) and the fourth lens group (Gr4) moves so that the interval between them is narrowed.
  • Construction data of each lens in the variable magnification optical system 1C of Example 3 is shown below.
  • FIG. 12 is a cross-sectional view showing the arrangement of lens groups in the variable magnification optical system in the fourth embodiment. 39 to 41 are aberration diagrams of the variable magnification optical system in the fourth example.
  • the variable magnification optical system 1D of Example 4 includes a first optical unit in which each lens group (Gr1, Gr2, Gr3, Gr4) has negative optical power as a whole in order from the object side to the image side.
  • the first lens group (Gr1) is fixed, and the second lens group (Gr1) and the third lens group (Gr3) move so that the distance between them decreases.
  • the four lens groups (Gr2, Gr3, Gr4) Dynamic and, optical diaphragm ST is moved together with the third lens group (Gr3). Then, the third lens group Gr3 and the fourth lens group Gr4 move so that the distance between them increases.
  • each lens group (Gr1, Gr2, Gr3, Gr4) is configured as follows in order from the object side to the image side.
  • the first lens group (Gr1) includes a negative meniscus lens (first lens L1) convex to the object side, a prism (L2), and a positive biconvex lens (third lens L3) as one positive lens. Consists of.
  • the first lens L1 has two aspheric surfaces.
  • the second lens group (Gr2) is composed of a biconcave negative lens (fourth lens L4) and a positive meniscus lens (fifth lens L5) convex on the object side.
  • the fourth lens L4 and the fifth lens L5 are cemented lenses.
  • the third lens group (Gr3) includes an optical aperture stop ST, a biconvex positive lens (sixth lens L6), a biconvex positive lens (seventh lens L7), and a biconcave negative lens (eighth lens L8). ) And a biconvex positive lens (the ninth lens L9).
  • the optical aperture stop ST is disposed on the object side of the sixth lens L6 and moves together with the third lens group (Gr3).
  • the optical aperture stop ST may be a mechanical shutter.
  • the sixth and seventh lenses L6 and L7 have two aspheric surfaces.
  • the eighth lens L8 and the ninth lens L9 are cemented lenses.
  • the fourth lens group (Gr4) is composed of a negative meniscus lens (tenth lens L10) convex toward the image side.
  • the tenth lens L10 has two aspheric surfaces.
  • the light receiving surface of the image sensor SR is arranged via a parallel plate FT as a filter.
  • the parallel plate FT is a cover glass of various optical filters or an image sensor.
  • the zoom optical system 1D of the fourth embodiment as shown in FIG. 7, the first lens group (Gr1) at the time of zooming from the wide angle end (WIDE) to the telephoto end (TELE) through the intermediate point (MIDDLE). Is fixed, the second lens group (Gr2) is moved so as to draw a curve that is convex toward the image side at a substantially middle point, and the third lens group (Gr3) is substantially linearly moved toward the object.
  • the fourth lens group (Gr4) is moved in a direction that is closer to the object and is moved substantially linearly in comparison with the amount of movement of the third lens group (Gr3), and the optical aperture stop ST is moved to the third lens group. It is moved together with (Gr3).
  • the second to fourth lens groups move, and the first lens group (Gr1) and the third lens are moved.
  • Each of the group (Gr3) and the fourth lens group (Gr4) moves so that the interval between them is narrowed.
  • Construction data of each lens in the variable magnification optical system 1D of Example 4 is shown below.
  • FIG. 13 is a cross-sectional view showing the arrangement of lens groups in the variable magnification optical system in the fifth embodiment.
  • 42 to 44 are aberration diagrams of the variable magnification optical system in the fifth example.
  • the variable magnification optical system 1E of Example 5 includes a first optical unit in which each lens group (Gr1, Gr2, Gr3, Gr4) has negative optical power as a whole in order from the object side to the image side.
  • the first lens group (Gr1) is fixed, and the second lens group (Gr1) and the third lens group (Gr3) move so that the distance between them decreases.
  • the four lens groups (Gr2, Gr3, Gr4) Dynamic and, optical diaphragm ST is moved together with the third lens group (Gr3). Then, the third lens group Gr3 and the fourth lens group Gr4 move so that the distance between them increases.
  • each lens group (Gr1, Gr2, Gr3, Gr4) is configured as follows in order from the object side to the image side.
  • the first lens group (Gr1) includes a negative meniscus lens (first lens L1) convex to the object side, a prism (L2), and a positive meniscus lens (third lens) convex to the object side. L3).
  • the first lens L1 has two aspheric surfaces.
  • the second lens group (Gr2) is composed of a biconcave negative lens (fourth lens L4) and a positive meniscus lens (fifth lens L5) convex on the object side.
  • the fourth lens L4 and the fifth lens L5 are cemented lenses.
  • the third lens group (Gr3) includes an optical aperture stop ST, a biconvex positive lens (sixth lens L6), a biconvex positive lens (seventh lens L7), and a biconcave negative lens (eighth lens L8). ) And a biconvex positive lens (the ninth lens L9).
  • the optical aperture stop ST is disposed on the object side of the sixth lens L6 and moves together with the third lens group (Gr3).
  • the optical aperture stop ST may be a mechanical shutter.
  • the sixth and seventh lenses L6 and L7 have two aspheric surfaces.
  • the eighth lens L8 and the ninth lens L9 are cemented lenses.
  • the fourth lens group (Gr4) is composed of a negative meniscus lens (tenth lens L10) convex toward the image side.
  • the tenth lens L10 has two aspheric surfaces.
  • the light receiving surface of the image sensor SR is arranged via a parallel plate FT as a filter.
  • the parallel plate FT is a cover glass of various optical filters or an image sensor.
  • variable magnification optical system 1E of Example 5 at the time of zooming from the wide angle end (WIDE) to the telephoto end (TELE) through the intermediate point (MIDDLE), the first lens group (Gr1) Is fixed, the second lens group (Gr2) is moved so as to draw a curve that is convex toward the image side at a substantially middle point, and the third lens group (Gr3) is substantially linearly moved toward the object.
  • the fourth lens group (Gr4) is moved in a direction that is closer to the object and is moved substantially linearly in comparison with the amount of movement of the third lens group (Gr3), and the optical aperture stop ST is moved to the third lens group. Move with (Gr3).
  • the second to fourth lens groups move, and the first lens group (Gr1) and the third lens are moved.
  • Each of the group (Gr3) and the fourth lens group (Gr4) moves so that the interval between them is narrowed.
  • Construction data of each lens in the variable magnification optical system 1E of Example 5 is shown below.
  • FIG. 14 is a cross-sectional view showing the arrangement of lens groups in the variable magnification optical system in the sixth embodiment.
  • 45 to 47 are aberration diagrams of the variable magnification optical system in the sixth example.
  • the variable magnification optical system 1F of Example 6 includes a first optical unit in which each lens group (Gr1, Gr2, Gr3, Gr4) has negative optical power as a whole in order from the object side to the image side.
  • the first lens group (Gr1) is fixed, and the second lens group (Gr1) and the third lens group (Gr3) move so that the distance between them decreases.
  • the four lens groups (Gr2, Gr3, Gr4) Dynamic and, optical diaphragm ST is moved together with the third lens group (Gr3). Then, the third lens group Gr3 and the fourth lens group Gr4 move so that the distance between them increases.
  • each lens group (Gr1, Gr2, Gr3, Gr4) is configured as follows in order from the object side to the image side.
  • the first lens group (Gr1) includes a negative meniscus lens (first lens L1) convex toward the object side and a prism (L2).
  • the second lens group (Gr2) is composed of a biconcave negative lens (third lens L3) and a positive meniscus lens (fourth lens L4) convex on the object side.
  • the third lens L3 and the fourth lens L4 are cemented lenses.
  • the third lens group (Gr3) includes an optical aperture stop ST, a biconvex positive lens (fifth lens L5), a biconvex positive lens (sixth lens L6), and a biconcave negative lens (seventh lens L7). ) And a biconvex positive lens (eighth lens L8).
  • the optical aperture stop ST is disposed on the object side of the fifth lens L5 and moves together with the third lens group (Gr3).
  • the optical aperture stop ST may be a mechanical shutter.
  • the sixth lens L6, the seventh lens L7, and the eighth lens L8 are cemented lenses.
  • the fifth lens L5 has two aspheric surfaces.
  • the fourth lens group (Gr4) is composed of a negative meniscus lens (ninth lens L9) convex toward the image side.
  • the ninth lens L9 is a resin material lens having both aspheric surfaces.
  • the light receiving surface of the image sensor SR is arranged via a parallel plate FT as a filter.
  • the parallel plate FT is a cover glass of various optical filters or an image sensor.
  • the second lens group (Gr2) is moved so as to draw a curve that is convex toward the image side at a substantially middle point
  • the third lens group (Gr3) is substantially linearly moved toward the object.
  • the fourth lens group (Gr4) is moved in a direction that is closer to the object and is moved substantially linearly in comparison with the amount of movement of the third lens group (Gr3), and the optical aperture stop ST is moved to the third lens group. Move with (Gr3).
  • the second to fourth lens groups move, and the first lens group (Gr1) and the third lens are moved.
  • Each of the group (Gr3) and the fourth lens group (Gr4) moves so that the interval between them is narrowed.
  • Construction data of each lens in the variable magnification optical system 1F of Example 6 is shown below.
  • FIG. 15 is a cross-sectional view showing the arrangement of lens groups in the variable magnification optical system in the seventh embodiment.
  • 48 to 50 are aberration diagrams of the variable magnification optical system in the seventh embodiment.
  • the variable magnification optical system 1G of Example 7 includes a first optical unit in which each lens group (Gr1, Gr2, Gr3, Gr4) has negative optical power as a whole in order from the object side to the image side.
  • the first lens group (Gr1) is fixed, and the second lens group (Gr1) and the third lens group (Gr3) move so that the distance between them decreases.
  • the four lens groups (Gr2, Gr3, Gr4) Dynamic and, optical diaphragm ST is moved together with the third lens group (Gr3). Then, the third lens group Gr3 and the fourth lens group Gr4 move so that the distance between them increases.
  • each lens group (Gr1, Gr2, Gr3, Gr4) is configured as follows in order from the object side to the image side.
  • the first lens group (Gr1) includes a negative meniscus lens (first lens L1) convex toward the object side and a prism (L2).
  • the second lens group (Gr2) is composed of a biconcave negative lens (third lens L3) and a positive meniscus lens (fourth lens L4) convex on the object side.
  • the third lens L3 and the fourth lens L4 are cemented lenses.
  • the third lens group (Gr3) includes an optical aperture stop ST, a biconvex positive lens (fifth lens L5), a biconvex positive lens (sixth lens L6), and a biconcave negative lens (seventh lens L7). ), A biconvex positive lens (eighth lens L8), and a biconvex positive lens (ninth lens L9).
  • the optical aperture stop ST is disposed on the object side of the fifth lens L5 and moves together with the third lens group (Gr3).
  • the optical aperture stop ST may be a mechanical shutter.
  • the sixth lens L6, the seventh lens L7, and the eighth lens L8 are cemented lenses.
  • the fifth lens L5 and the ninth lens L9 have two aspheric surfaces.
  • the ninth lens L9 is a resin material lens.
  • the fourth lens group (Gr4) is composed of a negative meniscus lens (tenth lens L10) convex toward the image side.
  • the tenth lens L10 is a lens made of a resin material having both aspheric surfaces.
  • the light receiving surface of the image sensor SR is arranged via a parallel plate FT as a filter.
  • the parallel plate FT is a cover glass of various optical filters or an image sensor.
  • the zoom optical system 1G of Example 7 when zooming from the wide angle end (WIDE) to the telephoto end (TELE) through the intermediate point (MIDDLE), as shown in FIG. 7, the first lens group (Gr1) Is fixed, the second lens group (Gr2) is moved so as to draw a curve that is convex toward the image side at a substantially middle point, and the third lens group (Gr3) is substantially linearly moved toward the object.
  • the fourth lens group (Gr4) is moved in a direction that is closer to the object and is moved substantially linearly in comparison with the amount of movement of the third lens group (Gr3), and the optical aperture stop ST is moved to the third lens group. Move with (Gr3).
  • the second to fourth lens groups move, and the first lens group (Gr1) and the third lens are moved.
  • Each of the group (Gr3) and the fourth lens group (Gr4) moves so that the interval between them is narrowed.
  • Construction data for each lens in the variable magnification optical system 1G of Example 7 is shown below.
  • FIG. 16 is a cross-sectional view illustrating the arrangement of lens groups in the variable magnification optical system according to the eighth embodiment.
  • 51 to 53 are aberration diagrams of the variable magnification optical system in the eighth example.
  • the variable magnification optical system 1H includes a first optical unit in which each lens group (Gr1, Gr2, Gr3, Gr4) has negative optical power as a whole in order from the object side to the image side.
  • the first lens group (Gr1) is fixed, and the second lens group (Gr1) and the third lens group (Gr3) move so that the distance between them decreases.
  • the four lens groups (Gr2, Gr3, Gr4) are on the object side Moving, optical diaphragm ST is moved together with the third lens group (Gr3). Then, the third lens group Gr3 and the fourth lens group Gr4 move so that the distance between them increases.
  • each lens group (Gr1, Gr2, Gr3, Gr4) is configured as follows in order from the object side to the image side.
  • the first lens group (Gr1) includes a negative meniscus lens (first lens L1) convex toward the object side and a prism (L2).
  • the second lens group (Gr2) is composed of a biconcave negative lens (third lens L3) and a positive meniscus lens (fourth lens L4) convex on the object side.
  • the third lens L3 and the fourth lens L4 are cemented lenses.
  • the third lens group (Gr3) includes an optical aperture stop ST, a biconvex positive lens (fifth lens L5), a positive meniscus lens convex to the object side (sixth lens L6), and a biconcave negative lens (first lens). 7 lens L7).
  • the optical aperture stop ST is disposed on the object side of the fifth lens L5 and moves together with the third lens group (Gr3).
  • the optical aperture stop ST may be a mechanical shutter.
  • the sixth lens L6 and the seventh lens L7 are cemented lenses.
  • the fifth lens L5 has two aspheric surfaces.
  • the seventh lens L7 has one aspheric surface on the image side.
  • the fourth lens group (Gr4) is composed of a negative meniscus lens (eighth lens L8) convex toward the image side.
  • the eighth lens L8 is a resin material lens having both aspheric surfaces.
  • the light receiving surface of the image sensor SR is arranged via a parallel plate FT as a filter.
  • the parallel plate FT is a cover glass of various optical filters or an image sensor.
  • the zoom optical system 1H of the eighth embodiment when zooming from the wide angle end (WIDE) to the telephoto end (TELE) through the intermediate point (MIDDLE), as shown in FIG. 11, the first lens group (Gr1) Is fixed, the second lens group (Gr2) is moved so as to draw a curve that is convex toward the image side at a substantially middle point, and the third lens group (Gr3) is substantially linearly moved toward the object.
  • the fourth lens group (Gr4) is moved in a curvilinear direction (curve convex toward the object side) in a direction approaching the object, and the optical aperture stop ST moves together with the third lens group (Gr3).
  • the second to fourth lens groups move, and the first lens group (Gr1) and the third lens are moved.
  • Each of the group (Gr3) and the fourth lens group (Gr4) moves so that the interval between them is narrowed.
  • Construction data of each lens in the variable magnification optical system 1H of Example 8 is shown below.
  • FIG. 17 is a sectional view showing the arrangement of lens groups in the variable magnification optical system in the ninth embodiment.
  • 54 to 56 are aberration diagrams of the variable magnification optical system in the ninth example.
  • the variable magnification optical system 1I includes a first optical unit in which each lens group (Gr1, Gr2, Gr3, Gr4) has negative optical power as a whole in order from the object side to the image side.
  • the first lens group (Gr1) is fixed, and the second lens group (Gr1) and the third lens group (Gr3) move so that the distance between them decreases.
  • the four lens groups (Gr2, Gr3, Gr4) are on the object side Moving, optical diaphragm ST is moved together with the third lens group (Gr3). Then, the third lens group Gr3 and the fourth lens group Gr4 move so that the distance between them increases.
  • each lens group (Gr1, Gr2, Gr3, Gr4) is configured as follows in order from the object side to the image side.
  • the first lens group (Gr1) includes a negative meniscus lens (first lens L1) convex toward the object side and a prism (L2).
  • the second lens group (Gr2) is composed of a biconcave negative lens (third lens L3) and a positive meniscus lens (fourth lens L4) convex on the object side.
  • the third lens L3 and the fourth lens L4 are cemented lenses.
  • the third lens group (Gr3) is composed of an optical stop ST, a biconvex positive lens (fifth lens L5), and a negative meniscus lens (sixth lens L6) convex on the image side.
  • the optical aperture stop ST is disposed on the object side of the fifth lens L5 and moves together with the third lens group (Gr3).
  • the optical aperture stop ST may be a mechanical shutter.
  • the fifth and sixth lenses L5 and L6 have two aspheric surfaces.
  • the fourth lens group (Gr4) is composed of a biconcave negative lens (seventh lens L7).
  • the seventh lens L7 is a lens made of a resin material having both aspheric surfaces.
  • the light receiving surface of the image sensor SR is arranged via a parallel plate FT as a filter.
  • the parallel plate FT is a cover glass of various optical filters or an image sensor.
  • variable magnification optical system 1I of Example 9 at the time of zooming from the wide angle end (WIDE) to the telephoto end (TELE) through the intermediate point (MIDDLE), the first lens group (Gr1) Is fixed, the second lens group (Gr2) is moved so as to draw a curve that is convex toward the image side at a substantially middle point, and the third lens group (Gr3) is substantially linearly moved toward the object.
  • the fourth lens group (Gr4) is moved in a curvilinear direction (curve convex toward the object side) in a direction approaching the object, and the optical aperture stop ST moves together with the third lens group (Gr3).
  • the second to fourth lens groups move, and the first lens group (Gr1) and the third lens are moved.
  • Each of the group (Gr3) and the fourth lens group (Gr4) moves so that the interval between them is narrowed.
  • Construction data of each lens in the variable magnification optical system 1I of Example 9 is shown below.
  • FIG. 18 is a cross-sectional view illustrating the arrangement of lens groups in the variable magnification optical system in the tenth embodiment.
  • 57 to 59 are aberration diagrams of the variable magnification optical system in the tenth embodiment.
  • the variable magnification optical system 1J of Example 10 includes a first optical unit in which each lens group (Gr1, Gr2, Gr3, Gr4) has negative optical power as a whole in order from the object side to the image side.
  • the first lens group (Gr1) is fixed, and the second lens group (Gr1) and the third lens group (Gr3) move so that the distance between them decreases.
  • the four lens groups (Gr2, Gr3, Gr4) are on the object side Moving, optical diaphragm ST is moved together with the third lens group (Gr3). Then, the third lens group Gr3 and the fourth lens group Gr4 move so that the distance between them increases.
  • each lens group (Gr1, Gr2, Gr3, Gr4) is configured as follows in order from the object side to the image side.
  • the first lens group (Gr1) includes a negative meniscus lens (first lens L1) convex toward the object side and a prism (L2).
  • the second lens group (Gr2) is composed of a biconcave negative lens (third lens L3) and a positive meniscus lens (fourth lens L4) convex on the object side.
  • the third lens L3 and the fourth lens L4 are cemented lenses.
  • the third lens group (Gr3) includes an optical aperture stop ST, a biconvex positive lens (fifth lens L5), a biconvex positive lens (sixth lens L6), and a biconcave negative lens (seventh lens L7). ) And a biconvex positive lens (eighth lens L8).
  • the optical aperture stop ST is disposed on the object side of the fifth lens L5 and moves together with the third lens group (Gr3).
  • the optical aperture stop ST may be a mechanical shutter.
  • the sixth lens L6, the seventh lens L7, and the eighth lens L8 are cemented lenses.
  • the fifth lens L5 has two aspheric surfaces.
  • the fourth lens group (Gr4) is composed of a negative meniscus lens (ninth lens L9) convex toward the image side.
  • the ninth lens L9 is a resin material lens having both aspheric surfaces.
  • the light receiving surface of the image sensor SR is arranged via a parallel plate FT as a filter.
  • the parallel plate FT is a cover glass of various optical filters or an image sensor.
  • the second lens group (Gr2) is moved so as to draw a curve that is convex toward the image side at a substantially middle point
  • the third lens group (Gr3) is substantially linearly moved toward the object.
  • the fourth lens group (Gr4) is moved in a direction that is closer to the object and is moved substantially linearly in comparison with the amount of movement of the third lens group (Gr3), and the optical aperture stop ST is moved to the third lens group. Move with (Gr3).
  • the second to fourth lens groups move, and the first lens group (Gr1) and the third lens are moved.
  • Each of the group (Gr3) and the fourth lens group (Gr4) moves so that the interval between them is narrowed.
  • Construction data of each lens in the variable magnification optical system 1J of Example 10 is shown below.
  • FIG. 19 is a cross-sectional view illustrating the arrangement of lens groups in the variable magnification optical system according to the eleventh embodiment.
  • 60 to 62 are aberration diagrams of the variable magnification optical system in the eleventh embodiment.
  • each lens group (Gr1, Gr2, Gr3, Gr4) has a negative optical power as a whole in order from the object side to the image side.
  • a lens group (Gr1), a second lens group (Gr2) having negative optical power as a whole, a third lens group (Gr3) having positive optical power as a whole, including the optical aperture stop ST, as a whole This is a negative / negative / positive / negative four-component zoom configuration comprising a fourth lens group (Gr4) having a negative optical power.
  • the first lens group (Gr1) is fixed, and the second lens group (Gr1) and the third lens group (Gr3) move so that the distance between them decreases.
  • the four lens groups (Gr2, Gr3, Gr4) are on the object side Moving, optical diaphragm ST is moved together with the third lens group (Gr3). Then, the third lens group Gr3 and the fourth lens group Gr4 move so that the distance between them increases.
  • each lens group (Gr1, Gr2, Gr3, Gr4) is configured as follows in order from the object side to the image side.
  • the first lens group (Gr1) includes a negative meniscus lens (first lens L1) convex toward the object side and a prism (L2).
  • the second lens group (Gr2) is composed of a biconcave negative lens (third lens L3) and a positive meniscus lens (fourth lens L4) convex on the object side.
  • the third lens L3 and the fourth lens L4 are cemented lenses.
  • the third lens group (Gr3) includes an optical aperture stop ST, a biconvex positive lens (fifth lens L5), a biconvex positive lens (sixth lens L6), and a biconcave negative lens (seventh lens L7). ) And a biconvex positive lens (eighth lens L8).
  • the optical aperture stop ST is disposed on the object side of the fifth lens L5 and moves together with the third lens group (Gr3).
  • the optical aperture stop ST may be a mechanical shutter.
  • the sixth lens L6, the seventh lens L7, and the eighth lens L8 are cemented lenses.
  • the fifth lens L5 has two aspheric surfaces.
  • the fourth lens group (Gr4) is composed of a negative meniscus lens (ninth lens L9) convex toward the image side.
  • the ninth lens L9 is a resin material lens having both aspheric surfaces.
  • the light receiving surface of the image sensor SR is arranged via a parallel plate FT as a filter.
  • the parallel plate FT is a cover glass of various optical filters or an image sensor.
  • the zoom optical system 1K of Example 11 when zooming from the wide angle end (WIDE) to the telephoto end (TELE) through the intermediate point (MIDDLE), as shown in FIG. 7, the first lens group (Gr1) Is fixed, the second lens group (Gr2) is moved so as to draw a curve that is convex toward the image side at a substantially middle point, and the third lens group (Gr3) is substantially linearly moved toward the object.
  • the fourth lens group (Gr4) is moved in a direction that is closer to the object and is moved substantially linearly in comparison with the amount of movement of the third lens group (Gr3), and the optical aperture stop ST is moved to the third lens group. Move with (Gr3).
  • the second to fourth lens groups move, and the first lens group (Gr1) and the third lens are moved.
  • Each of the group (Gr3) and the fourth lens group (Gr4) moves so that the interval between them is narrowed.
  • Construction data of each lens in the variable magnification optical system 1K of Example 11 is shown below.
  • FIG. 20 is a cross-sectional view showing the arrangement of lens groups in the variable magnification optical system in the twelfth embodiment.
  • 63 to 65 are aberration diagrams of the variable magnification optical system in the twelfth embodiment.
  • the variable magnification optical system 1L of the twelfth embodiment includes a first optical unit in which each lens group (Gr1, Gr2, Gr3, Gr4) has negative optical power as a whole in order from the object side to the image side.
  • This is a negative / negative / positive / negative four-component zoom configuration comprising a fourth lens group (Gr4) having a negative optical power.
  • the first lens group (Gr1) is fixed, and the second lens group (Gr1) and the third lens group (Gr3) move so that the distance between them decreases.
  • the four lens groups (Gr2, Gr3, Gr4) Go to, optical diaphragm ST is moved together with the third lens group (Gr3). Then, the third lens group Gr3 and the fourth lens group Gr4 move so that the distance between them increases.
  • each lens group (Gr1, Gr2, Gr3, Gr4) is configured as follows in order from the object side to the image side.
  • the first lens group (Gr1) is composed of a biconcave negative lens (first lens L1) and a prism (L2).
  • the first lens L1 has two aspheric surfaces.
  • the second lens group (Gr2) is composed of a biconcave negative lens (third lens L3) and a biconvex positive lens (fourth lens L4).
  • the third lens L3 and the fourth lens L4 are cemented lenses.
  • the third lens group (Gr3) includes an optical aperture stop ST, a biconvex positive lens (fifth lens L5), a biconvex positive lens (sixth lens L6), and a biconcave negative lens (seventh lens L7). ) And a biconvex positive lens (eighth lens L8).
  • the optical aperture stop ST is disposed on the object side of the fifth lens L5 and moves together with the third lens group (Gr3).
  • the optical aperture stop ST may be a mechanical shutter.
  • the sixth lens L6, the seventh lens L7, and the eighth lens L8 are cemented lenses.
  • the fifth lens L5 has two aspheric surfaces.
  • the eighth lens L8 has an aspheric image side surface.
  • the fourth lens group (Gr4) is composed of a biconcave negative lens (ninth lens L9).
  • the ninth lens L9 has two aspheric surfaces.
  • the light receiving surface of the image sensor SR is arranged via a parallel plate FT as a filter.
  • the parallel plate FT is a cover glass of various optical filters or an image sensor.
  • variable magnification optical system 1L of Example 12 at the time of zooming from the wide angle end (WIDE) to the telephoto end (TELE) through the intermediate point (MIDDLE), the first lens group (Gr1) Is fixed, the second lens group (Gr2) is moved so as to draw a curve that is convex toward the image side at a substantially middle point, and the third lens group (Gr3) is substantially linearly moved toward the object.
  • the fourth lens group (Gr4) is moved in a curvilinear direction (curve convex toward the object side) in a direction approaching the object, and the optical aperture stop ST moves together with the third lens group (Gr3).
  • the second to fourth lens groups move, and the first lens group (Gr1) and the third lens are moved.
  • Each of the group (Gr3) and the fourth lens group (Gr4) moves so that the interval between them is narrowed.
  • Construction data of each lens in the variable magnification optical system 1L of Example 12 is shown below.
  • FIG. 21 is a sectional view showing the arrangement of lens groups in the variable magnification optical system in the thirteenth embodiment.
  • 66 to 68 are aberration diagrams of the variable magnification optical system in the thirteenth embodiment.
  • the first lens group (Gr1, Gr2, Gr3, Gr4) has negative optical power as a whole in order from the object side to the image side.
  • a lens group (Gr1), a second lens group (Gr2) having negative optical power as a whole, a third lens group (Gr3) having positive optical power as a whole, including the optical aperture stop ST, as a whole This is a negative / negative / positive / negative four-component zoom configuration comprising a fourth lens group (Gr4) having a negative optical power.
  • the first lens group (Gr1) is fixed, and the second lens group (Gr1) and the third lens group (Gr3) move so that the distance between them decreases.
  • the four lens groups (Gr2, Gr3, Gr4) are on the object side Moving, optical diaphragm ST is moved together with the third lens group (Gr3). Then, the third lens group Gr3 and the fourth lens group Gr4 move so that the distance between them increases.
  • each lens group (Gr1, Gr2, Gr3, Gr4) is configured as follows in order from the object side to the image side.
  • the first lens group (Gr1) includes a negative meniscus lens (first lens L1) convex toward the object side and a prism (L2).
  • the second lens group (Gr2) is composed of a biconcave negative lens (third lens L3) and a positive meniscus lens (fourth lens L4) convex on the object side.
  • the third lens L3 and the fourth lens L4 are cemented lenses.
  • the third lens group (Gr3) includes an optical aperture stop ST, a biconvex positive lens (fifth lens L5), a biconvex positive lens (sixth lens L6), and a biconcave negative lens (seventh lens L7). ) And a biconvex positive lens (eighth lens L8).
  • the optical aperture stop ST is disposed on the object side of the fifth lens L5 and moves together with the third lens group (Gr3).
  • the optical aperture stop ST is disposed on the object side lens surface of the fifth lens L5.
  • the sixth lens L6, the seventh lens L7, and the eighth lens L8 are cemented lenses.
  • the fifth lens L5 has two aspheric surfaces.
  • the fourth lens group (Gr4) is composed of a negative meniscus lens (ninth lens L9) convex toward the image side.
  • the ninth lens L9 is a resin material lens having both aspheric surfaces.
  • the light receiving surface of the image sensor SR is arranged via a parallel plate FT as a filter.
  • the parallel plate FT is a cover glass of various optical filters or an image sensor.
  • variable magnification optical system 1M of Example 21 at the time of zooming from the wide angle end (WIDE) through the intermediate point (MIDDLE) to the telephoto end (TELE), as shown in FIG. 7, the first lens group (Gr1) Is fixed, the second lens group (Gr2) is moved so as to draw a curve that is convex toward the image side at a substantially middle point, and the third lens group (Gr3) is substantially linearly moved toward the object.
  • the fourth lens group (Gr4) is moved in a direction that is closer to the object and is moved substantially linearly in comparison with the amount of movement of the third lens group (Gr3), and the optical aperture stop ST is moved to the third lens group. Move with (Gr3).
  • the second to fourth lens groups move, and the first lens group (Gr1) and the third lens are moved.
  • Each of the group (Gr3) and the fourth lens group (Gr4) moves so that the interval between them is narrowed.
  • Construction data of each lens in the variable magnification optical system 1M of Example 13 is shown below.
  • FIG. 22 is a sectional view showing the arrangement of lens groups in the variable magnification optical system in the fourteenth embodiment.
  • 69 to 71 are aberration diagrams of the variable magnification optical system in the fourteenth example.
  • the zoom optical system 1N includes a first optical unit in which each lens group (Gr1, Gr2, Gr3, Gr4) has negative optical power as a whole in order from the object side to the image side.
  • the first lens group (Gr1) is fixed, and the second lens group (Gr1) and the third lens group (Gr3) move so that the distance between them decreases.
  • the four lens groups (Gr2, Gr3, Gr4) are on the object side Moving, optical diaphragm ST is moved together with the third lens group (Gr3). Then, the third lens group Gr3 and the fourth lens group Gr4 move so that the distance between them increases.
  • each lens group (Gr1, Gr2, Gr3, Gr4) is configured as follows in order from the object side to the image side.
  • the first lens group (Gr1) includes a negative meniscus lens (first lens L1) convex toward the object side, a prism (L2), and a plano-convex lens (third lens L3) convex toward the image side. .
  • the prism L2 and the third lens L3 are cemented lenses.
  • the first lens L1 has two aspheric surfaces.
  • the second lens group (Gr2) is composed of a biconcave negative lens (fourth lens L4) and a biconvex positive lens (fifth lens L5).
  • the fourth lens L4 and the fifth lens L5 are cemented lenses.
  • the third lens group (Gr3) includes an optical aperture stop ST, a biconvex positive lens (sixth lens L6), a biconvex positive lens (seventh lens L7), and a biconcave negative lens (eighth lens L8). ) And a biconvex positive lens (the ninth lens L9).
  • the optical aperture stop ST is disposed on the object side of the sixth lens L6 and moves together with the third lens group (Gr3).
  • the optical aperture stop ST may be a mechanical shutter.
  • the eighth lens L8 and the ninth lens L9 are cemented lenses.
  • the sixth and seventh lenses L6 and L7 have two aspheric surfaces.
  • the ninth lens L9 is a resin material lens.
  • the fourth lens group (Gr4) is composed of a negative meniscus lens (tenth lens L10) convex toward the image side.
  • the tenth lens L10 is a lens made of a resin material having both aspheric surfaces.
  • the light receiving surface of the image sensor SR is arranged via a parallel plate FT as a filter.
  • the parallel plate FT is a cover glass of various optical filters or an image sensor.
  • variable magnification optical system 1N of the fourteenth embodiment as shown in FIG. 7, at the time of zooming from the wide angle end (WIDE) to the telephoto end (TELE) through the intermediate point (MIDDLE), the first lens group (Gr1) Is fixed, the second lens group (Gr2) is moved so as to draw a curve that is convex toward the image side at a substantially middle point, and the third lens group (Gr3) is substantially linearly moved toward the object.
  • the fourth lens group (Gr4) is moved in a direction that is closer to the object and is moved substantially linearly in comparison with the amount of movement of the third lens group (Gr3), and the optical aperture stop ST is moved to the third lens group. Move with (Gr3).
  • the second to fourth lens groups move, and the first lens group (Gr1) and the third lens are moved.
  • the group (Gr3) and the fourth lens group (Gr3) move so that the distance between them is narrow.
  • Construction data for each lens in the variable magnification optical system 1N of Example 14 is shown below.
  • FIG. 23 is a sectional view showing the arrangement of lens groups in the variable magnification optical system in the fifteenth embodiment.
  • FIG. 24 is a diagram illustrating the movement of each lens unit during zooming of the zooming optical system according to Example 15.
  • 72 to 74 are aberration diagrams of the variable magnification optical system in the fifteenth embodiment.
  • the variable magnification optical system 1O of the fifteenth embodiment includes a first optical unit in which each lens group (Gr1, Gr2, Gr3, Gr4) has negative optical power as a whole in order from the object side to the image side.
  • a lens group (Gr1), a second lens group (Gr2) having negative optical power as a whole, an optical stop ST, a third lens group (Gr3) having positive optical power as a whole, and as a whole This is a negative / negative / positive / negative four-component zoom configuration comprising a fourth lens group (Gr4) having a negative optical power.
  • the first lens group (Gr1) is fixed, and the second lens group (Gr1) and the third lens group (Gr3) move so that the distance between them decreases.
  • the four lens groups (Gr2, Gr3, Gr4) are on the object side Moving the optical aperture stop ST, and the third lens group moves toward the object side independently. Then, the third lens group Gr3 and the fourth lens group Gr4 move so that the distance between them increases.
  • each lens group (Gr1, Gr2, Gr3, Gr4) is configured as follows in order from the object side to the image side.
  • the first lens group (Gr1) includes a negative meniscus lens (first lens L1) convex toward the object side and a prism (L2).
  • the second lens group (Gr2) is composed of a biconcave negative lens (third lens L3) and a positive meniscus lens (fourth lens L4) convex on the object side.
  • the third lens L3 and the fourth lens L4 are cemented lenses.
  • the third lens group (Gr3) includes a positive meniscus lens (fifth lens L5) convex toward the object side, a biconvex positive lens (sixth lens L6), and a biconcave negative lens (seventh lens L7). And a biconvex positive lens (eighth lens L8).
  • an optical aperture stop ST On the object side of the fifth lens L5, an optical aperture stop ST that operates independently during zooming is disposed.
  • the optical aperture stop ST may be a mechanical shutter.
  • the sixth lens L6, the seventh lens L7, and the eighth lens L8 are cemented lenses.
  • the fifth lens L5 has two aspheric surfaces.
  • the eighth lens L8 has an aspheric image side surface.
  • the fourth lens group (Gr4) is composed of a biconcave negative lens (ninth lens L9).
  • the ninth lens L9 is a resin material lens having both aspheric surfaces.
  • the light receiving surface of the image sensor SR is arranged via a parallel plate FT as a filter.
  • the parallel plate FT is a cover glass of various optical filters or an image sensor.
  • the zoom optical system 1O of the fifteenth embodiment when zooming from the wide angle end (WIDE) to the telephoto end (TELE) through the intermediate point (MIDDLE), as shown in FIG. 24, the first lens group (Gr1) Is fixed, the second lens group (Gr2) is moved so as to draw a curve which is convex toward the image side at a substantially middle point, and the optical aperture stop ST is moved substantially linearly in a direction approaching the object side.
  • the third lens group (Gr3) is suddenly moved substantially linearly in the direction approaching the object compared to the amount of movement of the optical aperture stop ST, and the fourth lens group (Gr4) is the third lens in the direction approaching the object. Compared with the movement amount of the group (Gr3), it is moved gently and substantially linearly.
  • the second to fourth lens groups (Gr2, Gr3, Gr4) and the optical aperture stop ST move, and the first lens group (Gr1) And the optical aperture stop ST, the third lens group (Gr3), and the fourth lens group (Gr4) move so that their intervals are narrowed.
  • the optical aperture stop ST and the third lens group (Gr3) move so that the distance between them is narrow, and the third lens group (Gr3) and the fourth lens group (Gr4) are apart from each other. Move to increase.
  • Construction data of each lens in the variable magnification optical system 1O of Example 15 is shown below.
  • the variable magnification optical system 1P of Example 16 includes a first optical unit in which each lens group (Gr1, Gr2, Gr3, Gr4) has negative optical power as a whole in order from the object side to the image side.
  • the first lens group (Gr1) is fixed, and the second lens group (Gr1) and the third lens group (Gr3) move so that the distance between them decreases.
  • the four lens groups (Gr2, Gr3, Gr4) Go to, optical diaphragm ST is moved together with the third lens group (Gr3). Then, the third lens group Gr3 and the fourth lens group Gr4 move so that the distance between them increases.
  • each lens group (Gr1, Gr2, Gr3, Gr4) is configured as follows in order from the object side to the image side.
  • the first lens group (Gr1) includes a negative meniscus lens (first lens L1) convex toward the object side and a prism (L2).
  • the second lens group (Gr2) is composed of a biconcave negative lens (third lens L3) and a positive meniscus lens (fourth lens L4) convex on the object side.
  • the third lens L3 and the fourth lens L4 are cemented lenses.
  • the third lens group (Gr3) includes an optical aperture stop ST, a biconvex positive lens (fifth lens L5), a biconvex positive lens (sixth lens L6), and a biconcave negative lens (seventh lens L7). ) And a biconvex positive lens (eighth lens L8).
  • the optical aperture stop ST is disposed on the object side of the fifth lens L5 and moves together with the third lens group (Gr3).
  • the optical aperture stop ST may be a mechanical shutter.
  • the sixth lens L6, the seventh lens L7, and the eighth lens L8 are cemented lenses.
  • the fifth lens L5 has two aspheric surfaces.
  • the fourth lens group (Gr4) is composed of a negative meniscus lens (ninth lens L9) convex toward the image side.
  • the ninth lens L9 is a resin material lens having both aspheric surfaces.
  • the light receiving surface of the image sensor SR is arranged via a parallel plate FT as a filter.
  • the parallel plate FT is a cover glass of various optical filters or an image sensor.
  • the zoom optical system 1P As shown in FIG. 11, at the time of zooming from the wide angle end (WIDE) to the telephoto end (TELE) through the intermediate point (MIDDLE), the first lens group (Gr1) Is fixed, the second lens group (Gr2) is moved so as to draw a curve that is convex toward the image side at a substantially middle point, and the third lens group (Gr3) is substantially linearly moved toward the object.
  • the fourth lens group (Gr4) is moved in a curvilinear direction (curve convex toward the object side) in the direction approaching the object, and the optical aperture stop ST moves with the third lens group (Gr2).
  • the second to fourth lens groups move, and the first lens group (Gr1) and the third lens are moved.
  • Each of the group (Gr3) and the fourth lens group (Gr4) moves so that the interval between them is narrowed.
  • Construction data for each lens in the variable magnification optical system 1P of Example 16 is shown below.
  • FIG. 75 to FIG. 77 show spherical aberration (sine condition), astigmatism, and distortion in the imaging lens 1P of Example 16 under the lens arrangement and configuration as described above.
  • FIG. 26 is a sectional view showing the arrangement of lens groups in the variable magnification optical system in the seventeenth embodiment.
  • FIG. 27 is a diagram illustrating the movement of each lens unit in zooming of the zooming optical system of Example 17.
  • 78 to 80 are aberration diagrams of the variable magnification optical system in the seventeenth embodiment.
  • each lens group has a negative optical power as a whole in order from the object side to the image side.
  • the first lens group (Gr1) is fixed, and the second lens group (Gr1).
  • the third lens group (Gr3) is between them .
  • the fourth lens group (Gr2, Gr3, Gr4) moves to the object side, the fifth lens group (Gr5) is fixed, the optical aperture stop ST is It moves together with the three lens group (Gr3). Then, the third lens group Gr3 and the fourth lens group Gr4 move so that the distance between them increases.
  • each lens group (Gr1, Gr2, Gr3, Gr4, Gr5) is configured in the following order from the object side to the image side.
  • the first lens group (Gr1) includes a negative meniscus lens (first lens L1) convex toward the object side and a prism (L2).
  • the second lens group (Gr2) is composed of a biconcave negative lens (third lens L3) and a positive meniscus lens (fourth lens L4) convex on the object side.
  • the third lens L3 and the fourth lens L4 are cemented lenses.
  • the third lens group includes a biconvex positive lens (fifth lens L5), an optical aperture stop ST, a biconvex positive lens (sixth lens L6), and a biconcave negative lens (seventh lens L7). ) And a biconvex positive lens (eighth lens L8).
  • the optical aperture stop ST is disposed on the image side lens surface of the fifth lens L5.
  • the optical aperture stop ST may be a mechanical shutter.
  • the sixth lens L6, the seventh lens L7, and the eighth lens L8 are cemented lenses.
  • the fifth lens L5 has two aspheric surfaces.
  • the eighth lens L8 has an aspheric image side surface.
  • the fourth lens group (Gr4) is composed of a biconcave negative lens (ninth lens L9).
  • the ninth lens L9 is a resin material lens having both aspheric surfaces.
  • the fifth lens group (Gr5) is composed of a positive meniscus lens (tenth lens L10) convex toward the object side.
  • the tenth lens L10 is a lens made of a resin material having both aspheric surfaces.
  • the light receiving surface of the image sensor SR is disposed via a parallel plate FT as a filter.
  • the parallel plate FT is a cover glass of various optical filters or an image sensor.
  • the zoom optical system 1Q of Example 17 when zooming from the wide angle end (WIDE) to the telephoto end (TELE) through the intermediate point (MIDDLE), as shown in FIG. 27, the first lens group (Gr1) Is fixed, the second lens group (Gr2) is moved so as to draw a curve that is convex toward the image side at a substantially middle point, and the third lens group (Gr3) is substantially linearly moved toward the object.
  • the fourth lens group (Gr4) is moved and is moved substantially linearly in a direction approaching the object in comparison with the amount of movement of the third lens group (Gr3), and the fifth lens group (Gr5) is fixed.
  • the optical aperture stop ST moves together with the third lens group (Gr3).
  • the second to fourth lens groups move, and the first lens group (Gr1) and the third lens are moved.
  • Each of the group (Gr3) and the fourth lens group (Gr4) moves so that the interval between them is narrowed.
  • Construction data of each lens in the variable magnification optical system 1Q of Example 17 is shown below.
  • FIG. 28 is a sectional view showing the arrangement of lens groups in the variable magnification optical system in the eighteenth embodiment.
  • FIG. 29 is a diagram illustrating the movement of each lens unit in zooming of the zooming optical system of Example 18.
  • FIG. 81 to 83 are aberration diagrams of the variable magnification optical system in the eighteenth example.
  • each lens group has a negative optical power as a whole in order from the object side to the image side.
  • Negative / negative / positive / negative / positive five-component zoom comprising a fourth lens group (Gr4) having negative optical power as a whole and a fifth lens group (Gr5) having positive optical power as a whole
  • W wide-angle end
  • T telephoto end
  • the first lens group (Gr1) is fixed, and the second lens group (Gr1).
  • the third lens group (Gr3) is between them .
  • the fourth lens group (Gr2, Gr3, Gr4) moves to the object side, the fifth lens group (Gr5) moves, the optical aperture stop ST, the optical aperture stop ST It moves together with the three lens group (Gr3). Then, the third lens group Gr3 and the fourth lens group Gr4 move so that the distance between them increases.
  • the lens groups (Gr1, Gr2, Gr3, Gr4, Gr5) are configured as follows in order from the object side to the image side.
  • the first lens group (Gr1) includes a negative meniscus lens (first lens L1) convex toward the object side, a prism (L2), and a plano-convex lens (third lens L3) convex toward the image side. .
  • the prism L2 and the third lens L3 are cemented lenses.
  • the first lens L1 has two aspheric surfaces.
  • the second lens group (Gr2) is composed of a biconcave negative lens (fourth lens L4) and a biconvex positive lens (fifth lens L5).
  • the fourth lens L4 and the fifth lens L5 are cemented lenses.
  • the third lens group (Gr3) includes an optical stop ST, a positive meniscus lens convex to the object side (sixth lens L6), a biconvex positive lens (seventh lens L7), and a biconcave negative lens (first lens). 8 lens L8) and a biconvex positive lens (9th lens L9).
  • the optical aperture stop ST is disposed on the object side of the sixth lens L6 and moves together with the third lens group (Gr3).
  • the optical aperture stop ST may be a mechanical shutter.
  • the eighth lens L8 and the ninth lens L9 are cemented lenses.
  • the sixth and seventh lenses L6 and L7 have two aspheric surfaces.
  • the fourth lens group (Gr4) is composed of a negative meniscus lens (tenth lens L10) convex toward the image side.
  • the tenth lens L10 is a lens made of a resin material having both aspheric surfaces.
  • the fifth lens group (Gr5) is composed of a biconvex positive lens (eleventh lens L11).
  • the light receiving surface of the image sensor SR is disposed via a parallel plate FT as a filter.
  • the parallel plate FT is a cover glass of various optical filters or an image sensor.
  • the first lens group (Gr1) as shown in FIG. 29 at the time of zooming from the wide angle end (WIDE) to the telephoto end (TELE) through the intermediate point (MIDDLE).
  • the second lens group (Gr2) is moved so as to draw a curve that is convex toward the image side at a substantially middle point, and the third lens group (Gr3) is substantially linearly moved toward the object.
  • the fourth lens group (Gr4) is moved substantially linearly in a direction approaching the object in comparison with the amount of movement of the third lens group (Gr3), and the fifth lens group (Gr5) is substantially intermediate.
  • the optical aperture stop ST is moved together with the third lens group (Gr3).
  • the second to fifth lens groups move, and the first lens group (Gr1) and the first lens group (Gr1).
  • Each of the three lens groups (Gr3) and the fourth lens group (Gr3) moves so that the distance between them becomes narrow.
  • Construction data of each lens in the variable magnification optical system 1R of Example 18 is shown below.
  • variable magnification optical systems 1A to 1R in Examples 1 to 18 satisfy the requirements according to the present invention, and as a result, have a relatively high variable magnification ratio of about 2 to 3 times and a small size.
  • the light incident angle to the image sensor can be further reduced while achieving the above.
  • the variable magnification optical systems 1A to 1R in Examples 1 to 18 are sufficiently reduced in size when mounted on a digital device, particularly when mounted on a portable terminal, and the high-pixel imaging device 17 is used. Can be adopted.
  • variable magnification optical systems 1A to 1R that continuously change the magnification are shown.
  • variable focal length optical system that switches between two focal points in the same optical configuration. 1 may be sufficient.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lenses (AREA)

Abstract

 本発明は、コンパクト化を達成しつつ、撮像素子への入射角もより小さくすることができる変倍光学系を提供する。この変倍光学系は、物体側より像側へ順に、負の光学的パワーを有する第1レンズ群と、負の光学的パワーを有する第2レンズ群と、正の光学的パワーを有する第3レンズ群と、負の光学的パワーを有する第4レンズ群とを含み、広角端から望遠端への変倍時に、広角端に較べて望遠端で、前記第2レンズ群と前記第3レンズ群との間隔が減少するように移動し、かつ、前記第3レンズ群と前記第4レンズ群との間隔が増大するように移動することを特徴とする。

Description

変倍光学系、撮像装置およびデジタル機器
 本発明は、変倍光学系に関し、特に、小型化の可能な変倍光学系に関する。そして、本発明は、この変倍光学系を備える撮像装置およびこの撮像装置を搭載したデジタル機器に関する。
  近年、携帯電話機やPDA(Personal Digital Assistants)等の携帯可能な通信機能を備えた携帯端末の普及が目覚ましく、これらの機器にコンパクトな例えばデジタルスチルカメラやデジタルビデオカメラ等の静止画撮影や動画撮影可能な撮像装置が内蔵されることが多い。これらの機器に搭載される撮像装置は、通常、サイズ(大きさ)やコストの制約が厳しい。このため、単体のいわゆるデジタルカメラに較べて、低画素で小型の撮像素子を用い、1~3枚程度のプラスチックレンズから構成される単焦点光学系を備えた撮像装置が一般的に採用されている。しかしながら、これらの機器に搭載される撮像装置も高画素化や高機能化が進展してきており、このため、高画素撮像素子に対応可能で、かつ約2.5倍程度を超える変倍比で撮影者から離れた被写体も撮影可能であって、これらの機器に搭載することができるコンパクトな変倍光学系が要求されている。
 この変倍光学系としては、例えば、特許文献1および特許文献2が挙げられる。これら特許文献1および特許文献2に記載の変倍光学系は、いわゆるデジタルカメラ用に小型化を図った負負正負の4成分の光学系であるが、上記携帯端末等の機器に搭載する上で小型化の点で充分ではない。そして、特許文献1に開示の変倍光学系では、さらに、色収差や非点収差の補正の点でも充分ではない。一方、特許文献2に開示の変倍光学系では、撮像面の法線と入射光線とが成す角度である撮像素子への入射角の緩和が図られた設計であるため、さらに小型化を図ろうとすると、撮像素子への入射角が大きくなってしまう。この結果、シェーディングが大きくなってしまう。
特開2006-098962号公報 特開2007-072291号公報
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、コンパクト化を達成しつつ、撮像素子への入射角もより小さくすることができる変倍光学系、これを備えた撮像装置およびデジタル機器を提供することである。
 本発明は、上記技術的課題を解決するために、以下のような構成を有する変倍光学系、撮像装置およびデジタル機器を提供するものである。なお、以下の説明において使用されている用語は、本明細書においては、次の通り定義されているものとする。
(a)屈折率は、d線の波長(587.56nm)に対する屈折率である。
(b)アッベ数νdは、d線、F線(波長486.13nm)、C線(波長656.28nm)に対する屈折率を各々nd、nF、nCとした場合に、
  νd=(nd-1)/(nF-nC)
の定義式で求められるものとする。
(c)レンズについて、「凹」、「凸」または「メニスカス」という表記を用いた場合、これらは光軸近傍(レンズの中心付近)でのレンズ形状を表しているものとする。
(d)接合レンズを構成している各単レンズにおける光学的パワー(焦点距離の逆数)の表記は、単レンズのレンズ面の両側が空気である場合におけるパワーである。
(f)複合型非球面レンズに用いる樹脂材料は、基板ガラス材料の付加的機能しかないため、単独の光学部材として扱わず、基板ガラス材料が非球面を有する場合と同等の扱いとし、レンズ枚数も1枚として取り扱うものとする。そして、レンズ屈折率も基板となっているガラス材料の屈折率とする。複合型非球面レンズは、基板となるガラス材料の上に薄い樹脂材料を塗布して非球面形状としたレンズである。
 1.本発明の一態様に係る変倍光学系は、物体側より像側へ順に、負の光学的パワーを有する第1レンズ群と、負の光学的パワーを有する第2レンズ群と、正の光学的パワーを有する第3レンズ群と、負の光学的パワーを有する第4レンズ群とを含み、広角端から望遠端への変倍時に、広角端に較べて望遠端で、前記第2レンズ群と前記第3レンズ群との間隔が減少するように移動し、かつ、前記第3レンズ群と前記第4レンズ群との間隔が増大するように移動することを特徴とする。
 この構成では、負負正負の4成分の光学系であり、変倍比が2~4倍程度のズームレンズにおいて、光学全長、前玉径のサイズおよび誤差感度の面から有利な負リードの光学系である。そして、本変倍光学系では、第3レンズ群および第4レンズ群が変倍を負担する構成と成っており、所定の間隔で移動することによって変倍移動量の短縮による変倍光学系全体(ユニット)の小型化(コンパクト化)が可能となる。また、第3レンズ群と第4レンズ群との間隔が増大することによって第4レンズ群での射出瞳位置を制御する効果も高められ、コンパクト化を図りつつ、撮像素子への光線入射角を抑えると共に、広角端および望遠端での撮像素子への光線入射角の差を小さく抑えることが可能となる。
 ここで、本発明で言う小型化(コンパクト化)とは、変倍光学系の全光学系において、広角端での最も物体側のレンズ面から像側焦点までの光軸上の距離をTLとし、そして、固体撮像素子の撮像面対角線長(固体撮像素子の矩形実効画素領域の対角線長)を2Y’とする場合に、“TL/2Y’<5.2”を満たすレベルを言う。これによって変倍光学系全体(ユニット)の小型化が可能となり、この結果、撮像装置全体の小型軽量化も可能となる。
 2.前記1に記載の変倍光学系において、好ましくは、広角端から望遠端への変倍時に、前記第4レンズ群は物体側に移動し、下記の条件式(A)を満足することである。
0<(Dt-Dw)/fw<1   ・・・(A)
ただし、Dtは、望遠端での第3レンズ群と第4レンズ群との間における光軸上の距離であり、Dwは、広角端での第3レンズ群と第4レンズ群との間における光軸上の距離であり、fwは、広角端での全光学系の合成焦点距離である。
 この構成では、広角端から望遠端への変倍時に、第4レンズ群が物体側に移動することによって第3レンズ群との変倍負担を分担することが可能となる。そして、前記条件式(A)の上限を上回ると、広角端および望遠端での撮像素子への光線入射角の差が大きくなり過ぎ、シェーディングによる周辺照度の低下が発生するか、または第4レンズ群の光学的パワーが弱くなって光学全長が増加してしまい、好ましくない。一方、条件式(A)の下限を下回ると、第4レンズ群における収差補正の自由度が減少し、実質的に3成分のズームとなってしまい、コンパクト化と高画質化とを両立することが困難となって、好ましくない。
 3.前記1又は2に記載の変倍光学系において、好ましくは、前記第3レンズ群に、または前記第3レンズ群の近傍に配置される開口絞りをさらに備え、下記の条件式(B)を満足することである。
0≦(|Ds3w|-|Ds3t|)/T23≦1   ・・・(B)
ただし、Ds3wは、広角端において、開口絞りと第3レンズ群の最も物体側レンズの物体側面頂点との光軸上の距離であり、Ds3tは、望遠端において、開口絞りと第3レンズ群の最も物体側レンズの物体側面頂点との光軸上の距離であり、T23は、望遠端での第2レンズ群と第3レンズ群との間の光軸上の距離である。
 この構成では、所定の位置に開口絞りを配置することによって第3レンズ群と第4レンズ群との群間隔が増大した際に、第4レンズ群を通過する光線高さを高めることが可能となり、非点収差およびコマ収差を良好に補正することが可能となる。そして、前記条件式(B)の上限を上回ると、球面収差の補正が困難となり、また最も変倍負担の大きい第3レンズ群のレンズ外径が大きくなるため、レンズ駆動装置の大型化が必要となってしまい、好ましくない。一方、条件式(B)の下限を下回ると、前玉径が増大し、ユニット体積をコンパクト化することが困難となって、好ましくない。
 4.前記1から3の何れか一項に記載の変倍光学系において、好ましくは、前記第3レンズ群と前記第4レンズ群との間に配置される、少なくともメカニカルシャッタまたはNDフィルタのいずれか一方をさらに備え、下記の条件式(6)を満たすことである。
T34/(fw×ft)1/2>0.45   ・・・(6)
ただし、T34は、望遠端での第3レンズ群と第4レンズ群との間の光軸上の距離であり、ftは、望遠端での全光学系の合成焦点距離であり、fwは、広角端での全光学系の合成焦点距離である。
 この構成では、メカニカルシャッタまたはNDフィルタの何れか一方を配置することによって、高輝度被写体を撮影する場合にもスミアが発生することなく、電荷の飽和による光量オーバとなることを防ぐことが可能となる。また、前記条件式(6)の下限を下回ると、一般的なメカニカルシャッタまたはNDフィルタのいずれか一方のみも配置することが困難となって、好ましくない。
 5.前記1から4の何れか一項に記載の変倍光学系において、好ましくは、無限遠物体から近距離物体へのフォーカシングは、前記第4レンズ群を移動することによって行われ、下記の条件式(7)を満足することである。
1.4<|f4/fw|<4   ・・・(7)
ただし、f4は、第4レンズ群の合成焦点距離であり、fwは、広角端での全光学系の合成焦点距離である。
 この構成では、他の可動群に比べて、第4レンズ群の前後の空気間隔は、比較的確保しやすい。このため、可動群同士の干渉を生じることなく、近接距離での収差性能を維持することが可能となる。また、移動距離を充分に確保できるため、他の変倍タイプの変倍光学系に較べて最短撮影距離を比較的容易に縮めることができる。また、前記条件式(7)の上限を上回ると、第4レンズ群のフォーカスに伴う移動距離が大きくなり過ぎ、変倍光学系の光学全長の増加に繋がってしまい、好ましくなく、一方、前記条件式(7)の下限を下回ると、特に、広角端での撮像素子への入射角が大きくなって周辺照度低下を招いてしまい、好ましくない。
 6.前記1から5の何れか一項に記載の変倍光学系において、好ましくは、少なくとも1枚の正レンズを有し、前記第3レンズ群は、下記の条件式(8)および条件式(9)を満たすことである。
1.25<f3/fw<2   ・・・(8)
v3p≧71   ・・・(9)
ただし、f3は、第3レンズ群の合成焦点距離であり、v3pは、第3レンズ群の正レンズのアッベ数の最大値であり、fwは、広角端での全光学系の合成焦点距離である。
 この構成では、前記条件式(8)の上限を上回ると、変倍移動量の増加によって変倍光学系の光学全長の増加に繋がってしまい、好ましくない。一方、前記条件式(8)の下限を下回ると、第3レンズ群のレンズの製造誤差感度が高くなりすぎ、レンズ間の調整が困難となって、生産性が低下してしまい、好ましくない。また、前記条件式(9)の下限を下回ると、軸上色収差の補正が不充分となって、好ましくない。
 7.前記1から6の何れか一項に記載の変倍光学系において、好ましくは、前記第1レンズ群は、変倍時に固定であることである。
 この構成では、第1レンズ群を変倍時に固定することによって、第1レンズ群のレンズ有効径を抑えることが可能となる。また、第1レンズ群が可動する場合には、第1レンズ群の外側にそのための駆動装置を配置する必要が生じるため、外径方向のサイズアップに繋がる。したがって、第1レンズ群を変倍時に固定することは、外径方向の小型化に対しても非常に効果的である。
 8.前記1から7の何れか一項に記載の変倍光学系において、好ましくは、前記第1レンズ群に、反射部材を有することである。
 この構成では、第1レンズ群に反射部材を有することによって、変倍光学系がいわゆる屈曲光学系として構成され、物体から変倍光学系の入射面に向かう方向における変倍光学系の薄型化を図ることが可能となる。このため、本発明にかかる変倍光学系を搭載する機器における形状の自由度を高めることが可能となる。
 9.前記8に記載の変倍光学系において、好ましくは、前記反射部材は、プリズムであり、下記の条件式(2)を満足することである。
Npr≧1.8   ・・・(2)
ただし、Nprは、プリズムのd線屈折率である。
 この構成において、前記条件式(2)の下限を下回ると、変倍光学系の薄型化が不充分となるとともに、前玉径の増大に繋がって、好ましくない。
 10.前記1から9の何れか一項に記載の変倍光学系において、好ましくは、前記第1レンズ群における最も物体側は、少なくとも1面が非球面である負レンズであり、下記の条件式(3)を満足することである。
Nln≧1.7   ・・・(3)
ただし、Nlnは、負レンズのd線屈折率である。
 この構成では、第1レンズ群の最も物体側を負レンズとすることによって、前玉径を小さく抑えることが可能となり、少なくとも1面を非球面とすることによって、コンパクトな構成としつつ歪曲収差を良好に補正することが可能となる。そして、前記条件式(3)の下限を下回ると、前玉径が大型化してしまい、好ましくない。
 11.前記1から10の何れか一項に記載の変倍光学系において、好ましくは、前記第1レンズ群は、少なくとも1枚の正レンズを有し、下記の条件式(1)を満足することである。
1<|f1/fw|<35   ・・・(1)
ただし、f1は、第1レンズ群の焦点距離であり、fwは、広角端での全光学系の合成焦点距離である。
 この構成では、前記条件式(1)の上限を上回ると、撮像素子へ入射する光線入射角が特に広角端で大きくなり、シェーディングによる周辺照度低下が発生してしまい、好ましくない。一方、条件式(1)の下限を下回ると、第1レンズ群で発生する非点収差および倍率色収差が大きくなり過ぎてしまい、補正が困難となり、好ましくない。
 12.前記11に記載の変倍光学系において、好ましくは、前記第1レンズ群の少なくとも1枚の正レンズは、下記の条件式(4)を満足することである。
Nlp≧1.9   ・・・(4)
ただし、Nlpは、第1レンズ群の少なくとも1枚の正レンズのd線屈折率である。
 この構成では、前記条件式(4)を満足することによって、第1レンズ群でのペッツバール和を効果的に減少させることができ、負レンズで発生する非点収差を良好に補正することが可能となる。
 13.前記1から7及び10の何れか一項に記載の変倍光学系において、好ましくは、前記第1レンズ群は、少なくとも1枚の正レンズを有し、前記第1レンズ群に、反射部材としてプリズムを有し、前記第1レンズ群の1枚の正レンズの内の1枚のみは、前記プリズムより像側に配置され、かつ、前記プリズムと接合され、下記の条件式(1)及び条件式(5)を満足することを特徴とする請求の範囲第1項から第7項及び第10項の何れか一項に記載の変倍光学系。
 1<|f1/fw|<35   ・・・(1)
 ただし、f1は、第1レンズ群の焦点距離であり、fwは、広角端での全光学系の合成焦点距離である。
 |△N1|≦0.2   ・・・(5)
 ただし、△N1は、プリズムとプリズムと接合されている正レンズとのd線屈折率の差である。
 この構成では、前記条件式(1)の上限を上回ると、撮像素子へ入射する光線入射角が特に広角端で大きくなり、シェーディングによる周辺照度低下が発生してしまい、好ましくない。一方、条件式(1)の下限を下回ると、第1レンズ群で発生する非点収差および倍率色収差が大きくなり過ぎてしまい、補正が困難となり、好ましくない。
 また、第1レンズ群に反射部材としてプリズムを有することによって、変倍光学系がいわゆる屈曲光学系として構成され、物体から変倍光学系の入射面に向かう方向における変倍光学系の薄型化を図ることが可能となる。このため、本発明にかかる変倍光学系を搭載する機器における形状の自由度を高めることが可能となる。
 さらに、第1レンズ群の正レンズとプリズムとを接合することによって、正レンズの製造誤差感度を抑えて生産性を向上することが可能となる。また、これによって鏡筒構成も簡略化することが可能となる。また、前記条件式(5)の上限を上回ると、接合面での反射率が高くなり、不要光の発生要因となって好ましくない。
 14.前記1から13の何れか一項に記載の変倍光学系において、好ましくは、下記の条件式(10)を満足することである。
Y’/TL>0.095   ・・・(10)
ただし、Y’は、最大像高であり、TLは、最も物体側レンズ面の面頂点から像面までの光軸上の距離(但し、バックフォーカスは空気換算長)である。
 この構成では、前記条件式(10)を満たすことにより、比較的コンパクトな変倍光学系を達成することが可能となる。
 15.本発明の他の一態様にかかる撮像装置は、前記1から14の何れか一項に記載の変倍光学系と、光学像を電気的な信号に変換する撮像素子とを備え、前記変倍光学系が前記撮像素子の受光面上に物体の光学像を形成可能とされていることを特徴とする。
 この構成では、撮像装置は、小型化を達成しつつ、撮像素子への光線入射角もより小さくすることができる変倍光学系を備えるので、小型化を図りつつ高画素な撮像素子を採用することができる。
 16.本発明の他の一態様にかかるデジタル機器は、前記15に記載の撮像装置と、前記撮像装置に被写体の静止画撮影および動画撮影の少なくとも一方の撮影を行わせる制御部とを備え、前記撮像装置が備える変倍光学系が、前記撮像素子の受光面上に前記被写体の光学像を形成可能に組み付けられていることを特徴とする。
 この構成では、デジタル機器は、前記15に記載の撮像装置と、被写体の静止画撮影および動画撮影の少なくとも一方の撮影を行わせる制御部とを備えるので、小型化を図りつつ高画素な撮像素子でもって、静止画撮影および動画撮影の少なくとも一方の撮影を行うことができる。
 17.前記16に記載のデジタル機器において、好ましくは、前記撮像素子の出力に対し所定の画像処理を行う画像処理部をさらに有することである。
 この構成では、画像処理部が所定の画像処理を行うので、所望の画質を備えた画像を出力することができるデジタル機器の提供が可能となる。特に、例えば、変倍光学系では光学的に補正しきれなかった収差や周辺光量低下等を軽減することが可能となる。
 18.前記17に記載のデジタル機器において、好ましくは、前記所定の画像処理は、前記撮像素子の受光面上に形成される前記被写体の光学像における歪みを補正する歪補正処理を含むことである。
 この構成では、画像処理部が画像の歪みを補正するので、歪みを除去または軽減した画像を出力することができるデジタル機器の提供が可能となる。そして、画像処理部が画像の歪みを補正することによって、特に第1レンズ群による収差負担が軽減されるため、第1レンズ群のレンズ構成を簡易にすることが可能となる。
 19.前記16から18の何れか一項に記載のデジタル機器は、好ましくは、携帯端末に搭載される。
 この携帯端末にあっては、小型化が充分に達成され、また、高画素な撮像素子を採用することができる。
 本発明によれば、小型化(コンパクト化)を達成しつつ、撮像素子への光線入射角もより小さくすることができる変倍光学系、撮像装置およびデジタル機器の提供が可能となる。
実施形態における変倍光学系の説明のための、その構成を模式的に示したレンズ断面図である。 実施形態の変倍光学系における変倍時の光路を示す図である。 主光線の像面入射角の定義を示す模式図である。 実施形態におけるデジタル機器の構成を示すブロック図である。 デジタル機器の一実施形態を示すカメラ付携帯電話機の外観構成図である。 実施例1における変倍光学系におけるレンズ群の配列を示す断面図である。 実施例1の変倍光学系の変倍における各レンズ群の移動の様子を示す図である。 実施例2における変倍光学系におけるレンズ群の配列を示す断面図である。 実施例2の変倍光学系の変倍における各レンズ群の移動の様子を示す図である。 実施例3における変倍光学系におけるレンズ群の配列を示す断面図である。 実施例3の変倍光学系の変倍における各レンズ群の移動の様子を示す図である。 実施例4における変倍光学系におけるレンズ群の配列を示す断面図である。 実施例5における変倍光学系におけるレンズ群の配列を示す断面図である。 実施例6における変倍光学系におけるレンズ群の配列を示す断面図である。 実施例7における変倍光学系におけるレンズ群の配列を示す断面図である。 実施例8における変倍光学系におけるレンズ群の配列を示す断面図である。 実施例9における変倍光学系におけるレンズ群の配列を示す断面図である。 実施例10における変倍光学系におけるレンズ群の配列を示す断面図である。 実施例11における変倍光学系におけるレンズ群の配列を示す断面図である。 実施例12における変倍光学系におけるレンズ群の配列を示す断面図である。 実施例13における変倍光学系におけるレンズ群の配列を示す断面図である。 実施例14における変倍光学系におけるレンズ群の配列を示す断面図である。 実施例15における変倍光学系におけるレンズ群の配列を示す断面図である。 実施例15の変倍光学系の変倍における各レンズ群の移動の様子を示す図である。 実施例16における変倍光学系におけるレンズ群の配列を示す断面図である。 実施例17における変倍光学系におけるレンズ群の配列を示す断面図である。 実施例17の変倍光学系の変倍における各レンズ群の移動の様子を示す図である。 実施例18における変倍光学系におけるレンズ群の配列を示す断面図である。 実施例18の変倍光学系の変倍における各レンズ群の移動の様子を示す図である。 実施例1における変倍光学系の収差図(広角端)である。 実施例1における変倍光学系の収差図(中間点)である。 実施例1における変倍光学系の収差図(望遠端)である。 実施例2における変倍光学系の収差図(広角端)である。 実施例2における変倍光学系の収差図(中間点)である。 実施例2における変倍光学系の収差図(望遠端)である。 実施例3における変倍光学系の収差図(広角端)である。 実施例3における変倍光学系の収差図(中間点)である。 実施例3における変倍光学系の収差図(望遠端)である。 実施例4における変倍光学系の収差図(広角端)である。 実施例4における変倍光学系の収差図(中間点)である。 実施例4における変倍光学系の収差図(望遠端)である。 実施例5における変倍光学系の収差図(広角端)である。 実施例5における変倍光学系の収差図(中間点)である。 実施例5における変倍光学系の収差図(望遠端)である。 実施例6における変倍光学系の収差図(広角端)である。 実施例6における変倍光学系の収差図(中間点)である。 実施例6における変倍光学系の収差図(望遠端)である。 実施例7における変倍光学系の収差図(広角端)である。 実施例7における変倍光学系の収差図(中間点)である。 実施例7における変倍光学系の収差図(望遠端)である。 実施例8における変倍光学系の収差図(広角端)である。 実施例8における変倍光学系の収差図(中間点)である。 実施例8における変倍光学系の収差図(望遠端)である。 実施例9における変倍光学系の収差図(広角端)である。 実施例9における変倍光学系の収差図(中間点)である。 実施例9における変倍光学系の収差図(望遠端)である。 実施例10における変倍光学系の収差図(広角端)である。 実施例10における変倍光学系の収差図(中間点)である。 実施例10における変倍光学系の収差図(望遠端)である。 実施例11における変倍光学系の収差図(広角端)である。 実施例11における変倍光学系の収差図(中間点)である。 実施例11における変倍光学系の収差図(望遠端)である。 実施例12における変倍光学系の収差図(広角端)である。 実施例12における変倍光学系の収差図(中間点)である。 実施例12における変倍光学系の収差図(望遠端)である。 実施例13における変倍光学系の収差図(広角端)である。 実施例13における変倍光学系の収差図(中間点)である。 実施例13における変倍光学系の収差図(望遠端)である。 実施例14における変倍光学系の収差図(広角端)である。 実施例14における変倍光学系の収差図(中間点)である。 実施例14における変倍光学系の収差図(望遠端)である。 実施例15における変倍光学系の収差図(広角端)である。 実施例15における変倍光学系の収差図(中間点)である。 実施例15における変倍光学系の収差図(望遠端)である。 実施例16における変倍光学系の収差図(広角端)である。 実施例16における変倍光学系の収差図(中間点)である。 実施例16における変倍光学系の収差図(望遠端)である。 実施例17における変倍光学系の収差図(広角端)である。 実施例17における変倍光学系の収差図(中間点)である。 実施例17における変倍光学系の収差図(望遠端)である。 実施例18における変倍光学系の収差図(広角端)である。 実施例18における変倍光学系の収差図(中間点)である。 実施例18における変倍光学系の収差図(望遠端)である。
符号の説明
 AX 光軸
 ST 開口絞り
 1、1A~1R 変倍光学系
 3 デジタル機器
 5 携帯電話機
 11、Gr1 第1レンズ群
 12、Gr2 第2レンズ群
 13、Gr3 第3レンズ群
 14、Gr4 第4レンズ群
 Gr5 第5レンズ群
 17、SR 撮像素子
 21 撮像装置
 以下、本発明に係る実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。また、接合レンズにおけるレンズ枚数は、接合レンズ全体で1枚ではなく、接合レンズを構成する単レンズの枚数で表すこととする。
 <変倍光学系の説明>
 図1は、実施形態における変倍光学系の説明のための、その構成を模式的に示したレンズ断面図である。図2(A)、(B)、(C)は、実施形態の変倍光学系における、それぞれ広角端(W:WIDE)、中間点(M:MIDDLE)、望遠端(T:TELE)変倍時の光路を示す図である。
 図1において、この変倍光学系1は、光学像を電気的な信号に変換するCCD(Charge Coupled Device)等の撮像素子17の受光面(像面)上に、物体(被写体)の光学像を形成するものであって、物体側より像側へ順に、負の光学的パワーを有する第1レンズ群11と、負の光学的パワーを有する第2レンズ群12と、正の光学的パワーを有する第3レンズ群13と、負の光学的パワーを有する第4レンズ群14とを含み、広角端から望遠端への変倍の際に、広角端に較べて望遠端で、第2レンズ群12と第3レンズ群13との間隔が減少するように移動し、かつ、第3レンズ群13と第4レンズ群14との間隔が増大するように移動してなる光学系である。なお、図1で例示した変倍光学系1は、後述する実施例1の変倍光学系1A(図5)と同じ構成である。
 図1では、第1レンズ群11は、変倍において固定し、物体側より像側へ順に、物体側に凸の負メニスカスレンズ111と、プリズム112と、1枚の正レンズとして、像側に凸の平凸レンズ113とから構成されて成り、第2レンズ群12は、変倍において移動し、物体側より像側へ順に、両凹の負レンズ121と、両凸の正レンズ122とから構成されて成り、第3レンズ群13は、変倍において移動し、物体側より像側へ順に、両凸の正レンズ131と、両凸の正レンズ132と、両凹の負レンズ133と、両凸の正レンズ134とから構成されて成り、第4レンズ群14は、変倍において移動し、像側に凸の負メニスカスレンズ141から構成されて成る例を示している。
 負メニスカスレンズ111、正レンズ131、正レンズ132および負メニスカスレンズ141は、両面が非球面である。これら負メニスカスレンズ111、正レンズ131、正レンズ132および負メニスカスレンズ141は、例えばガラスモールドレンズであってもよく、また例えば、プラスチック等の樹脂材料製レンズであってもよい。特に、デジタル機器の一例としての携帯端末に搭載する場合には軽量化の観点から、樹脂材料製レンズが好ましい。プリズム112と平凸レンズ113と、負レンズ121と正レンズ122と、および、負レンズ133と正レンズ134とは、それぞれ、接合レンズである。
 そして、変倍光学系1には、光学絞りの一例としての開口絞り15が正レンズ131の物体側に配置されており、第3レンズ群13と共に移動する。開口絞り15は、メカニカルシャッタであってもよい。
 さらに、この変倍光学系1の像側には、フィルタ16や撮像素子17が配置される。フィルタ16は、平行平板状の光学素子であり、各種光学フィルタや、撮像素子のカバーガラス等を模式的に表したものである。使用用途、撮像素子、カメラの構成等に応じて、ローパスフィルタ、赤外線カットフィルタ等の光学フィルタを適宜に配置することが可能である。撮像素子17は、この変倍光学系1によって結像された被写体の光学像における光量に応じてR(赤)、G(緑)、B(青)の各成分の画像信号に光電変換して所定の画像処理回路(不図示)へ出力する素子である。これらによって物体側の被写体の光学像が、変倍光学系1によりその光軸AXに沿って適宜な変倍比で撮像素子17の受光面まで導かれ、撮像素子17によって前記被写体の光学像が電気的な信号に変換される。
 このような変倍光学系1では、物体側から順に「負・負・正・負」の4成分を有する、いわゆる負リードの光学系であり、変倍比が2~4倍程度のズームレンズにおいて、光学全長、前玉径のサイズおよび誤差感度の面から有利な配置である。そして、変倍光学系1では、第3レンズ群13および第4レンズ群14が変倍を負担する構成と成っており、広角端(WIDE、W)から中間点を経て(MIDDLE、M)望遠端(TELE、T)への変倍の際に、図2に示すように所定の方向へ移動することによって、変倍移動量の短縮によるユニットの小型化(コンパクト化)が可能となる。また、広角端から望遠端への変倍の際に、第3レンズ群13と第4レンズ群14との間隔が増大することによって第4レンズ群14での射出瞳位置を制御する効果も高められ、コンパクト化を図りつつ、撮像素子17への光線入射角を抑えると共に、広角端および望遠端での撮像素子17への光線入射角の差を小さく抑えることが可能となる。
 そして、この変倍光学系1では、望遠端での第3レンズ群13と第4レンズ群14との間における光軸上の距離をDtとし、広角端での第3レンズ群13と第4レンズ群14との間における光軸上の距離をDwとし、そして、広角端での全光学系の合成焦点距離をfwとする場合に、下記の条件式(A)を満足するものである。
0<(Dt-Dw)/fw<1   ・・・(A)
 この構成では、広角端から望遠端への変倍時に、第4レンズ群14が物体側に移動することによって第3レンズ群13との変倍負担を分担することが可能となる。そして、条件式(A)の上限を上回ると、広角端および望遠端での撮像素子17への光線入射角の差が大きくなり過ぎ、シェーディングによる周辺照度の低下が発生するか、または第4レンズ群14の光学的パワーが弱くなって光学全長が増加してしまい、好ましくない。一方、条件式(A)の下限を下回ると、第4レンズ群14における収差補正の自由度が減少し、実質的に3成分のズームとなってしまい、コンパクト化と高画質化とを両立することが困難となって、好ましくない。
 また、このような構成の変倍光学系1において、下記の条件式(A’)を満足することが好ましい。
0.1<(Dt-Dw)/fw<0.7   ・・・(A’)
 上述の作用効果に加えて、この条件式(A’)の上限を満たすと、第4レンズ群14の変倍負担が減少してしまって第3レンズ群13の製造誤差感度が高くなってしまう虞を好適に回避することができる。また条件式(A’)の下限を満たすと、第3レンズ群13および第4レンズ群14で変倍負担を適切に分担することができなくて光学全長の増加や製造誤差感度の上昇につながってしまう虞を好適に回避することができる。
 また、この変倍光学系1は、上述のように、第3レンズ群13の近傍に配置される開口絞り15をさらに備えており、広角端において、開口絞り15と第3レンズ群13の最も物体側レンズ131の物体側面頂点との光軸上の距離をDs3wとし、望遠端において、開口絞り15と第3レンズ群13の最も物体側レンズ131の物体側面頂点との光軸上の距離をDs3tとし、そして、望遠端での第2レンズ群12と第3レンズ群13との間の光軸上の距離をT23とした場合に、下記の条件式(B)を満足するものである。なお、開口絞り15は、第3レンズ群13内に配置されてもよい。
0≦(|Ds3w|-|Ds3t|)/T23≦1   ・・・(B)
 この構成では、所定の位置に開口絞り15を配置することによって第3レンズ群13と第4レンズ群14との群間隔が増大した際に、第4レンズ群14を通過する光線高さを高めることが可能となり、非点収差およびコマ収差を良好に補正することが可能となる。そして、条件式(B)の上限を上回ると、球面収差の補正が困難となり、また最も変倍負担の大きい第3レンズ群13のレンズ外径が大きくなるため、レンズ駆動装置を備えた場合に、このレンズ駆動装置の大型化が必要となってしまい、好ましくない。一方、条件式(B)の下限を下回ると、前玉径が増大し、ユニット体積をコンパクト化することが困難となって、好ましくない。
 また、この変倍光学系1では、第1レンズ群11の焦点距離をf1とし、広角端での全光学系の合成焦点距離をfwとする場合に、下記の条件式(1)を満足するものである。
1<|f1/fw|<35   ・・・(1)
 この構成では、条件式(1)の上限を上回ると、撮像素子17へ入射する光線入射角が特に広角端で大きくなり、シェーディングによる周辺照度低下が発生してしまい、好ましくない。一方、条件式(1)の下限を下回ると、第1レンズ群11で発生する非点収差および倍率色収差が大きくなり過ぎてしまい、補正が困難となり、好ましくない。
 また、このような構成の変倍光学系1において、下記の条件式(1’)を満足することがより好ましい。
2<|f1/fw|<35   ・・・(1’)
 最も像側に負の光学的パワーのレンズ群が配置されると、特に、広角端での撮像素子(イメージセンサ)への入射角が大きくなり、いわゆるシェーディングが顕著となってしまう。しかしながら、図1に示す本実施形態の構成の変倍光学系1では、第1レンズ群11の光学的パワーを比較的強い所定の範囲に収めることによって、すなわち、前記条件式(1)を満たすように構成することによって、かつ、第4レンズ群14が変倍時に物体側へ移動することによって、図2に示すように、広角端において第1レンズ群14に入射した光線を比較的大きく屈折させることができ、撮像素子17への入射角を小さくすることが可能となるとともに、広角端と望遠端とにおける撮像素子17への入射角の差を小さくすることが可能となる。言い換えれば、前記条件式(1)の上限を上回ると、撮像素子17への入射角が特に広角端で大きくなってしまい、シェーディングによる周辺照度の低下が発生し、好ましくない。また前記条件式(1)の下限を下回ると、第1レンズ群11に正レンズを配置しないと、第1レンズ群11で発生する非点収差および倍率色収差が大きくなり過ぎてしまい、補正が困難となり、好ましくない。
 前記観点から、図1に示す本実施形態の構成の変倍光学系1では、第1レンズ群11に少なくとも1枚の正レンズ、図2に示す例では平凸の正レンズ113を有することによって、非点収差および倍率色収差を第1レンズ群11で効果的に補正することが可能となる。このため、第2ないし第4レンズ群12~14の他の変倍群における収差補正の自由度を大幅に高めることが可能となる。
 また、このような構成の変倍光学系1において、下記の条件式(1”)を満足することがさらにより好ましい。
3<|f1/fw|<25   ・・・(1”)
 前記条件式(1”)を満たすことにより、第1レンズ群11の偏芯誤差感度を抑制したまま、歪曲収差の補正効果が高められる。
 また、この変倍光学系1では、光学系内に光路を曲げるプリズム112が固定群である第1レンズ群11に含まれているので、第1レンズ群11に入射する光線位置を調整する自由度が減少してしまうから、第1レンズ群11の光学的パワーは、撮像素子17への入射角に対して特に重要である。
 また、この変倍光学系1では、第1レンズ群11が変倍時に固定とされている。このような構成では、第1レンズ群11のレンズ有効径を抑えることが可能となる。また、第1レンズ群11が可動する場合には、第1レンズ群11の外側に第1レンズ群11を駆動するための駆動装置を配置する必要が生じるため、外径方向のサイズアップに繋がる。したがって、第1レンズ群11を変倍時に固定することは、外径方向の小型化に対しても非常に効果的である。
 また、この変倍光学系1では、第1レンズ群11に、反射部材として、プリズム112を有している。プリズム112は、光線の方向を変える偏角プリズムであって、光線の入射面と射出面とが互いに平行でない平面よりなる透明媒質の多角柱体である。プリズム112は、例えば、底面が直角二等辺三角形の三角柱であって、プリズムの斜面によって光路が折り曲げられる。斜面には、必要に応じて反射膜が備えられている。このように変倍光学系1は、いわゆる屈曲光学系として構成されている。このため、物体から変倍光学系1の入射面に向かう方向における変倍光学系1の薄型化を図ることが可能となる。よって、本実施形態にかかる変倍光学系1を搭載する機器における形状の自由度を高めることが可能となる。
 そして、この変倍光学系1では、第1レンズ群11は、その内に、反射部材として、プリズム112を有しており、かつ第1レンズ群11の正レンズは、前記反射部材(プリズム112)の像側に平凸の正レンズ113の1枚のみである。第1レンズ群11の正レンズは、非点収差補正に効果的であるが、2枚以上を有すると、第1レンズ群の負の光学的パワーが弱まり、像面に対するテレセントリック性が悪くなるとともに、変倍光学系1の光学全長が増加してしまい、好ましくない。
 さらに、この変倍光学系1では、第1レンズ群11は、その内に、反射部材として、プリズム112を有しており、かつ第1レンズ群11の負レンズは、前記反射部材(プリズム112)の物体側に負メニスカスレンズ111の1枚のみである。負レンズを1枚のみとすることによって、前記反射部材(プリズム112)よりも物体側に配置する場合には、レンズユニットの厚みを抑えることができ、反射部材(プリズム112)の像側に配置する場合には、第1レンズ群11と第2レンズ群12との間隔を接近させることができるため、光学全長の短縮に効果がある。
 そして、この変倍光学系1では、第1レンズ群11に少なくとも1面の非球面、図1に示す例では負メニスカスレンズ111の両面に非球面を有している。第1レンズ群11に非球面を有することによって、歪曲収差を良好に補正することができる。
 また、この変倍光学系1では、広角端から望遠端への変倍の際に、図2に示すように、より具体的には後述の図7に示すように、第2レンズ群12(Gr2)は、像側に凸の軌跡を描いて移動する。第2レンズ群12がこのような軌跡を描くことによって、他の変倍群の移動により生じる焦点位置ズレを一定に保つことが可能となる。
 また、この変倍光学系1では、第2レンズ群12は、両凹の負レンズ121と両凸の正レンズ122とを接合した接合レンズから構成されて成る。この構成によって、第2レンズ群12の各レンズの製造誤差感度、特に、偏芯時の誤差感度を抑えることが可能となる。
 また、この変倍光学系1では、第3レンズ群13の物体側に光学絞りの一例として例えば開口絞り15が配置されており、この開口絞り15は、変倍時に第3レンズ群13と共に移動する。このように第3レンズ群13の物体側に例えば開口絞り15を配置することによって、前玉径の増大を防ぐことができる。また第3レンズ群13と一体的に移動することによって、鏡筒構成を簡略化することができ、第2レンズ群12と第3レンズ群13との間隔を非常に接近させることができる。この第2レンズ群12と第3レンズ群13の間隔は、光学全長に対する影響が非常に大きいため、第2レンズ群12と第3レンズ群13との間隔を短縮することは、小型化に効果的である。
 また、この変倍光学系1では、第3レンズ群13に少なくとも1面の非球面、図1に示す例では正レンズ131の両面および正レンズ132の両面が非球面である。このように、第3レンズ群13に非球面を有することによって、球面収差と非点収差を良好に補正することができる。そして、第3レンズ群13の正レンズ131、132に非球面が設けられている。この構成によって、小型化に伴う第3レンズ群13の光学的パワーの増大によって発生する球面収差とコマ収差を良好に補正することができる。
 また、この変倍光学系1では、第3レンズ群13の物体側から数えて2枚目のレンズは、両凸形状の正レンズ132である。第3レンズ群13の物体側から数えて2枚目のレンズをこの形状にすることによって、両凸の正レンズの前後面の相対偏芯により発生する収差を抑えることができる。
 また、この変倍光学系1では、第3レンズ群13は、その内に、両凹の負レンズ133と両凸の正レンズ134とを接合した接合レンズを有している。この構成によって、小型化に伴って増大する軸上色収差を良好に補正することができ、特に、望遠端で顕著となるコントラストの低下を防ぐことができる。また、小型化と誤差感度の低減を両立することも可能となる。
 また、この変倍光学系1では、第4レンズ群14は、その内に、少なくとも1面の非球面、図1に示す例では負メニスカスレンズ141の両面が非球面である。このように、第4レンズ群14に非球面を有することによって、軸外コマ収差の補正と像面に対するテレセントリック性とを良好に保つことができる。
 また、この変倍光学系1は、物体側から像側へ順に、物体側に凸の負メニスカスレンズ111、および、プリズム112と像側に凸の平凸レンズ113との接合レンズ、から構成されて成る第1レンズ群11と、両凹の負レンズ121と両凸の正レンズ122との接合レンズから構成されて成る第2レンズ群12と、両凸の正レンズ131、両凸の正レンズ132、および、両凹の負レンズ133と両凸の正レンズ134との接合レンズ、から構成されて成る第3レンズ群13と、像側に凸の負メニスカスレンズ141から構成されて成る第4レンズ群14とを備えて構成されている。このように第1レンズ群11を負正で構成することによって非点収差と倍率色収差を十分に補正することが可能となる。第2レンズ群12を接合レンズとすることによって、倍率色収差の補正と偏芯誤差感度を低減することが可能となる。また、第3レンズ群13を4枚で構成することによって、3枚の正レンズを用いることで誤差感度を低減することができ、接合レンズを使用することによって軸上色収差の補正を充分に行うことができる。そして、第4レンズ群14を負メニスカスレンズとすることによって、像面への光線入射角のテレセントリック性を確保することができる。
 また、このような構成の変倍光学系1において、第1レンズ郡11の各レンズは、比較的高い屈折率であることが好ましい。レンズの屈折率が低いと、撮像素子17への光線入射角と小型化とがトレードオフの関係となってしまい、第1レンズ群11の光学的パワーを所定の範囲内に収めつつ、小型化と結像性能とを両立することが難しくなってしまい、好ましくない。
 また、このような構成の変倍光学系1において、最も像側に配置されている第4レンズ群14の光学的パワーは、比較的弱い所定の範囲内に収めることが好ましい。仮に、第1レンズ群11で入射光線を大きく屈折させたとしても、第4レンズ群14で再び大きく屈折させてしまうと、結果的に、広角端での撮像素子17への光線入射角が大きくなってしまい、好ましくない。
 また、このような構成の変倍光学系1において、プリズム112は、このプリズム112のd線屈折率をNprとする場合に、下記の条件式(2)を満足することが好ましい。
Npr≧1.8   ・・・(2)
 前記条件式(2)の下限を下回ると、変倍光学系1の薄型化が不充分となるとともに、前玉径の増大に繋がって、好ましくない。
 そして、変倍光学系1のプリズム112は、下記の条件式(2’)を満足することがより好ましい。
Npr≧1.9   ・・・(2’)
 前記条件式(2’)を満足することによって、変倍光学系1のさらなる薄型化を図ることが可能となる。このため、搭載される機器の形状自由度が一層高まり、例えば折畳み型の携帯端末のように特に薄型化が要求される端末への搭載も可能となる。
 また、このような構成の変倍光学系1において、第1レンズ群11における最も物体側は、少なくとも1面が非球面である負レンズ、図1に示す例では両面が非球面である負メニスカスレンズ111であり、前記負レンズ(負メニスカスレンズ111)のd線屈折率をNlnとする場合に、下記の条件式(3)を満足することであることが好ましい。
Nln≧1.7   ・・・(3)
 このような構成では、第1レンズ群11の最も物体側を負レンズとすることによって、前玉径を小さく抑えることが可能となり、少なくとも1面を非球面とすることによって、コンパクトな構成としつつ歪曲収差を良好に補正することが可能となる。そして、前記条件式(3)の下限を下回ると、前玉径が大型化してしまい、好ましくない。
 そして、このような構成の変倍光学系1において、下記の条件式(3’)を満足することがより好ましい。
Nln≧1.8   ・・・(3’)
 前記条件式(3’)の下限を下回ると、プリズム112が大型化するため、レンズユニットの厚み方向の薄型化が困難となって、好ましくない。
 さらに、このような構成の変倍光学系1において、下記の条件式(3”)を満足することがさらにより好ましい。
Nln≧1.9   ・・・(3”)
 前記条件式(3”)を満足することによって、レンズユニットの厚みを増すことなく、撮影画角を広画角化することができる。
 また、このような構成の変倍光学系1において、第1レンズ群11の少なくとも1枚の正レンズ、図1に示す例では平凸の正レンズ113は、前記正レンズのd線屈折率をNlpとする場合に、下記の条件式(4)を満足することが好ましい。
Nlp≧1.9   ・・・(4)
 前記条件式(4)を満足することによって、第1レンズ群11でのペッツバール和を効果的に減少させることができ、負レンズで発生する非点収差を良好に補正することが可能となる。
 また、このような構成の変倍光学系1において、第1レンズ群11の正レンズ、図1に示す例では平凸の正レンズ113は、プリズム112より像側に1枚のみ配置され、かつ、プリズム112と接合されており、そして、プリズム112と第1レンズ群11の前記正レンズ(平凸の正レンズ113)とのd線屈折率の差を△Nlとする場合に、下記の条件式(5)を満足することが好ましい。
|△N1|≦0.2   ・・・(5)
 このように第1レンズ群11の前記正レンズ(平凸の正レンズ113)とプリズム112とを接合することによって、前記正レンズの製造誤差感度を抑えて生産性を向上することが可能となる。また、これによって鏡筒構成も簡略化することが可能となる。また、前記条件式(5)の上限を上回ると、接合面での反射率が高くなり、不要光の発生要因となって好ましくない。
 そして、このような構成の変倍光学系1において、下記の条件式(5’)を満足することがより好ましい。
|△N1|≦0.12   ・・・(5’)
 前記条件式(5’)を満足することによって、不要光の抑制効果を大幅に高めることが可能となる。また、前記条件式(5’)の上限を上回ると、屈折率差に伴う接合面での反射率の上昇から、不要光によるコントラスト低下が発生してしまい、好ましくない。
 また、このような構成の変倍光学系1において、第3レンズ群13と第4レンズ群14との間に、少なくともメカニカルシャッタまたはNDフィルタのいずれか一方が配置され、望遠端での第3レンズ群13と第4レンズ群14との間の光軸上の距離をT34とし、望遠端での全光学系の合成焦点距離をftとする場合に、下記の条件式(6)を満足することが好ましい。
T34/(fw×ft)1/2>0.45   ・・・(6)
 このような構成では、メカニカルシャッタまたはNDフィルタのいずれか一方を配置することによって、高輝度被写体を撮影する場合にもスミアが発生することなく、電荷の飽和による光量オーバとなることを防ぐことが可能となる。また、前記条件式(6)の下限を下回ると、一般的なメカニカルシャッタまたはNDフィルタのいずれか一方のみも配置することが困難となって好ましくない。
 そして、このような構成の変倍光学系1において、下記の条件式(6’)を満足することがより好ましい。
T34/(fw×ft)1/2>0.55   ・・・(6’)
 前記条件式(6’)を満たすことにより、一般的なメカニカルシャッタとNDフィルタとの両方を配置することが可能となる。
 また、このような構成の変倍光学系1において、第4レンズ群14を移動することによって無限遠物体から近距離物体へのフォーカシングを行い、第4レンズ群14の合成焦点距離をf4とする場合に、下記の条件式(7)を満足することが好ましい。
1.4<|f4/fw|<4   ・・・(7)
 このような構成では、他の可動群に比べて、第4レンズ群14の前後の空気間隔は、比較的確保しやすい。このため、可動群同士の干渉を生じることなく、近接距離での収差性能を維持することが可能となる。また、移動距離を充分に確保できるため、他の変倍タイプの変倍光学系に較べて最短撮影距離を比較的容易に縮めることができる。また、前記条件式(7)の上限を上回ると、第4レンズ群14のフォーカスに伴う移動距離が大きくなり過ぎ、変倍光学系1の光学全長の増加に繋がってしまい、好ましくなく、一方、前記条件式(7)の下限を下回ると、特に、広角端での撮像素子17への入射角が大きくなって周辺照度低下を招いてしまい、好ましくない。
 そして、このような構成の変倍光学系1において、下記の条件式(7’)を満足することがより好ましい。
1.7<|f4/fw|<3   ・・・(7’)
 前記条件式(7’)を満たすことにより、第3レンズ群13の偏芯誤差感度を抑制することができ、またレンズアレイへの斜入射角を緩和することができるため、色シェーディングも抑えることが可能となる。
 また、このような構成の変倍光学系1において、第3レンズ群13は、少なくとも1枚の正のレンズを有し、第3レンズ群13の合成焦点距離をf3とし、第3レンズ群13の正レンズ131、132のアッベ数の最大値をv3pとする場合に、下記の条件式(8)および条件式(9)を満たすことが好ましい。
1.25<f3/fw<2   ・・・(8)
v3p≧71   ・・・(9)
 前記条件式(8)の上限を上回ると、変倍移動量の増加によって変倍光学系1の光学全長の増加に繋がってしまい、好ましくない。一方、前記条件式(8)の下限を下回ると、第3レンズ群13のレンズの製造誤差感度が高くなりすぎ、レンズ間の調整が困難となって、生産性が低下してしまい、好ましくない。また、前記条件式(9)の下限を下回ると、軸上色収差の補正が不充分となって好ましくない。
 そして、このような構成の変倍光学系1において、下記の条件式(8’)を満足することがより好ましい。
1.3<f3/fw<1.5   ・・・(8’)
 前記条件式(8’)を満たすことにより、良好な生産性を維持したまま、十分なコンパクト化を図ることができる。
 また、このような構成の変倍光学系1において、下記の条件式(9’)を満足することがより好ましい。
v3p≧75   ・・・(9’)
 前記条件式(9’)を満足することによって、軸上色収差の補正がより充分となって、好ましい。
 また、このような構成の変倍光学系1において、最大像高をY’とし、最も物体側レンズ面の面頂点から像面までの光軸上の距離(但し、バックフォーカスは空気換算長)をTLとする場合に、下記の条件式(10)を満足することが好ましい。
Y’/TL>0.095   ・・・(10)
 前記条件式(10)を満たすことにより、比較的コンパクトな変倍光学系1を達成することが可能となる。
 そして、このような構成の変倍光学系1において、下記の条件式(10’)を満足することがより好ましい。
Y’/TL>0.1   ・・・(10’)
 前記条件式(10’)を満足することによって、携帯電話機や携帯情報端末等といった超コンパクト性が求められる機器の形状自由度を損なうことなく搭載するのに充分なコンパクト化を図ることが可能となる。
 また、このような構成の変倍光学系1において、第1レンズ群11は、第1レンズ群11の合成焦点距離をf1とし、望遠端での全光学系の合成焦点距離をftとする場合に、下記の条件式(11)を満たすことが好ましい。
0.4<|f1/ft|<19   ・・・(11)
 前記条件式(11)の上限を上回ると、撮像素子17へ入射する光線入射角が特に広角端で大きくなり、シェーディングによる周辺照度低下が発生してしまい、好ましくない。また条件式(11)の下限を下回ると、第1レンズ群11で発生する非点収差および倍率色収差が大きくなりすぎ、補正が困難となって、好ましくない。
 そして、このような構成の変倍光学系1において、下記の条件式(11’)を満足することがより好ましい。
1<|f1/ft|<19   ・・・(11’)
 前記条件式(11’)を満たすことにより、シェーディングによる周辺照度低下を抑え、かつ、簡易な構成で非点収差や倍率色収差を良好に補正することができる。
 さらに、このような構成の変倍光学系1において、下記の条件式(11”)を満足することがさらにより好ましい。
1.1<|f1/ft|<9   ・・・(11”)
 前記条件式(11”)を満たすことにより、良好な生産性を維持したまま、十分なコンパクト化を図ることができ、かつ歪曲収差を良好に補正することができる。
 また、このような構成の変倍光学系1において、第2レンズ群12は、第2レンズ群12の合成焦点距離をf2とし、広角端での全光学系の合成焦点距離をfwとする場合に、下記の条件式(12)を満たすことが好ましい。
1.5<|f2/fw|<6   ・・・(12)
 前記条件式(12)の上限を上回ると、変倍時に必要な第2レンズ群12の移動量が増加し、第1レンズ群11と第2レンズ群12との間隔や第2レンズ群12と第3レンズ群13との間隔を確保することが困難となるため、結果として光学全長が増加してしまい、好ましくない。一方、前記条件式(12)の下限を下回ると、第2レンズ群12内の誤差感度が高くなり、レンズ間の調整作業が必要となって、コスト高となってしまい、好ましくない。
 また、このような構成の変倍光学系1において、第2レンズ群12は、第2レンズ群12の合成焦点距離をf2とし、望遠端での全光学系の合成焦点距離をftとする場合に、下記の条件式(13)を満たすことが好ましい。
0.7<|f2/ft|<2   ・・・(13)
 前記条件式(13)の上限を上回ると、変倍時に必要な第2レンズ群12の移動量が増加し、第1レンズ群11と第2レンズ群12との間隔や第2レンズ群12と第3レンズ群13との間隔を確保することが困難となるため、結果として光学全長が増加してしまい、好ましくない。一方、前記条件式(13)の下限を下回ると、第2レンズ群12内の誤差感度が高くなり、レンズ間の調整作業が必要となって、コスト高となってしまい、好ましくない。
 また、このような構成の変倍光学系1において、第3レンズ群13は、第3レンズ群13の合成焦点距離をf3とし、望遠端での全光学系の合成焦点距離をftとする場合に、下記の条件式(14)を満たすことが好ましい。
0.2<f3/ft<0.9   ・・・(14)
 前記条件式(14)の下限を下回ると、第3レンズ群13の偏芯誤差感度が非常に高くなり、製造が困難となってしまい、好ましくない。
 そして、このような構成の変倍光学系1において、下記の条件式(14’)を満足することがより好ましい。
0.42<f3/ft<0.6   ・・・(14’)
 前記条件式(14’)を満たすことにより、第3レンズ群13内でのレンズ調整が不要となり、低コスト化を図ることができる。
 また、このような構成の変倍光学系1において、第4レンズ群14の最も像側レンズの最も像側面は、非球面であり、主光線の像面入射角の定義を示す模式図である図3に示すように、広角端において、撮像面への入射光線のうち最大画角の主光線Crの、像面に立てた垂線Pに対する角度(deg、度)をαwとし、望遠端において、撮像面への入射光線のうち最大画角の主光線Crの、像面に立てた垂線Pに対する角度(deg、度)をαtとする場合に、下記の条件式(15)および条件式(16)を満たすことが好ましい。なお、条件式(15)および条件式(16)におけるαwおよびαtは、射出瞳位置が像面より物体側にある場合の主光線角度を正方向とする。
αw<28(度)   ・・・(15)
|αw-αt|<13(度)   ・・・(16)
 前記条件式(15)を満たすことによって、広画角を確保しつつ、小型化を図ることができ、またシェーディングの少ない良好な画質を得ることが可能となる。前記条件式(16)の上限を上回ると、撮像面手前にレンズアレイを配置したとしても、広角端または望遠端のいずれか一方で、周辺照度低下を抑えることが困難となって、好ましくない。
 また、このような構成の変倍光学系1において、少なくとも1枚の樹脂材料製レンズを有することが好ましい。このように樹脂材料製レンズを用いることで、安定した品質での大量生産が可能となり、大幅なコストダウンを図ることができる。
 そして、このような構成の変倍光学系1において、前記少なくとも1枚の樹脂材料製レンズは、第4レンズ群14に配置されることが好ましい。第4レンズ群14に樹脂材料製レンズを配置することによって、光学性能への影響を最小限に抑えつつ、コストダウンを図ることができる。
 また、このような構成の変倍光学系1において、第4レンズ群14は、第4レンズ群14の合成焦点距離をf4とし、望遠端での全光学系の合成焦点距離をftとする場合に、下記の条件式(17)を満たすことが好ましい。
0.4<|f4/ft|<1.2   ・・・(17)
 前記条件式(17)の上限を上回ると、第4レンズ群14のフォーカスに伴う移動距離が大きくなり過ぎ、光学全長の増加につながってしまい、好ましくない。一方、前記条件式(17)の下限を下回ると、特に、広角端での撮像素子17への光線入射角が大きくなって周辺照度低下を招いてしまい、好ましくない。
 そして、このような構成の変倍光学系1において、下記の条件式(17’)を満足することがより好ましい。
0.55<|f4/ft|<0.95   ・・・(17’)
 前記条件式(17’)を満たすことにより、第3レンズ群13の偏芯誤差感度を抑制することができ、またレンズアレイへの斜入射角を緩和することができるため、色シェーディングも抑えることが可能となる。
 また、このような構成の変倍光学系1において、望遠端におけるバックフォーカス(空気換算長)をLbとし、広角端での全光学系の合成焦点距離をfwとする場合に、下記の条件式(18)を満たすことが好ましい。
0.8<Lb/fw<1.6   ・・・(18)
 前記条件式(18)の上限を上回ると、第3レンズ群13と第4レンズ群14との間隔にメカニカルシャッタやNDフィルタを配置することが困難となってしまい、好ましくない。一方、前記条件式(18)の下限を下回ると、広角端と望遠端における像面への光線入射角の隔差が大きくなりすぎ、撮像面手前にレンズアレイを配置したとしても、広角端または望遠端のいずれか一方で、周辺照度低下を抑えることが困難となってしまい、好ましくない。
 また、このような構成の変倍光学系1において、可動する各レンズ群や光学絞り15やシャッター(不図示)等の駆動には、カムやステッピングモータ等が用いられても良いし、あるいは、圧電アクチュエータが用いられても良い。圧電アクチュエータを用いる場合では、駆動装置の体積および消費電力の増加を抑制しつつ、各群を独立に駆動させることも可能で、撮像装置の更なるコンパクト化を図ることができる。
 また、このような構成の変倍光学系1において、空気と面している全てのレンズ面が非球面であることが好ましい。この構成によってコンパクト化と高画質化との両立が可能となる。
 また、このような構成の変倍光学系1において、非球面を有するガラスレンズは、ガラスモールド非球面レンズや、研削非球面ガラスレンズや、複合型非球面レンズ(球面ガラスレンズ上に非球面形状の樹脂を形成したもの)であってもよい。ガラスモールド非球面レンズは、大量生産に向き好ましく、複合型非球面レンズは、基板となり得るガラス材料の種類が多いため、設計の自由度が高くなる。特に、高屈折率材料を用いた非球面レンズでは、モールド形成が容易ではないため、複合型非球面レンズが好ましい。また、片面非球面の場合には、複合型非球面レンズの利点を最大限に活用することが可能となる。
 また、このような構成の変倍光学系1において、第1レンズ群11、第2レンズ群12、第4レンズ群14は、各3枚以下、より好ましくは各2枚以下のレンズで構成することが好ましい。このような構成によって、レンズ枚数削減によるコスト低減を達成することができる。ただし、反射部材としてプリズムを有する場合は、上記枚数にプリズムは、含まないものとする。
 また、このような構成の変倍光学系1において、プラスチックレンズを用いる場合では、プラスチック(樹脂材料)中に最大長が30ナノメートル以下の粒子を分散させた素材を用いて成形したレンズであることが好ましい。
 一般に透明な樹脂材料に微粒子を混合させると、光が散乱し透過率が低下するので、光学材料として使用することが困難であったが、微粒子の大きさを透過光束の波長よりも小さくすることによって、光は、実質的に散乱しない。そして、樹脂材料は、温度上昇に伴って屈折率が低下してしまうが、無機粒子は、逆に、温度上昇に伴って屈折率が上昇する。このため、このような温度依存性を利用して互いに打ち消し合うように作用させることで、温度変化に対して屈折率変化がほとんど生じないようにすることができる。より具体的には、母材となる樹脂材料に最大長で30ナノメートル以下の無機微粒子を分散させることによって、屈折率の温度依存性を低減した樹脂材料となる。例えば、アクリル二酸化ニオブ(Nb)の微粒子を分散させる。このような構成の変倍光学系1において、少なくとも1枚のレンズに、このような無機微粒子を分散させたプラスチック材料製レンズを用いることによって、変倍光学系1の環境温度変化に伴うバックフォーカスのずれを小さく抑えることが可能となる。
 このような無機微粒子を分散させたプラスチック材料製レンズは、以下のように成形されることが好ましい。
 屈折率の温度変化について説明すると、屈折率の温度変化n(T)は、ローレンツ・ローレンツの式に基づいて、屈折率nを温度Tで微分することによって下記の式19で表される。n(T)=((n+2)×(n-1))/6n×(-3α+(1/[R])×(∂[R]/∂T))   ・・・(19)
ただし、αは、線膨張係数であり、[R]は、分子屈折である。
 樹脂材料の場合では、一般に、屈折率の温度依存性に対する寄与は、式19中の第1項に較べて第2項が小さく、ほぼ無視することができる。例えば、PMMA樹脂の場合では、線膨張係数αは、7×10-5であって、式19に代入すると、n(T)=-12×10-5(/℃)となり、実測値と略一致する。
 具体的には、従来は、-12×10-5[/℃]程度であった屈折率の温度変化n(T)を、絶対値で8×10-5[/℃]未満に抑えることが好ましい。さらに好ましくは、絶対値で6×10-5[/℃]未満にすることである。
 よって、このような樹脂材料としては、ポリオレフィン系の樹脂材料やポリカーボネイト系の樹脂材料やポリエステル系の樹脂材料が好ましい。ポリオレフィン系の樹脂材料では、屈折率の温度変化n(T)は、約-11×10-5(/℃)となり、ポリカーボネイト系の樹脂材料では、屈折率の温度変化n(T)は、約-14×10-5(/℃)となり、そして、ポリエステル系の樹脂材料では、屈折率の温度変化n(T)は、約-13×10-5(/℃)となる。
 また、このような構成の変倍光学系1において、物体側から順に、物体側に凸の負メニスカスレンズ、および、プリズム、から成る第1レンズ群11、両凹レンズと物体側に凸の正メニスカスレンズとの接合レンズ、から成る第2レンズ群12、両凸レンズ、両凸レンズと両凹レンズと両凸レンズとの3枚接合レンズ、から成る第3レンズ群13、像側に凸の負メニスカスレンズ、から成る第4レンズ群14、で構成することが好ましい。
 このような構成では、第1レンズ群11を負レンズ1枚で構成することによって、コンパクト化に有利である。第2レンズ群12を接合レンズとすることによって、倍率色収差の補正および偏芯誤差感度の低減を実現することが可能となる。第3レンズ群13を4枚構成としたのは、3枚の正レンズを用いることで誤差感度を低減するため、3枚接合レンズを使用することにより軸上色収差の補正を十分に行うため、および、レンズ間隔誤差の敏感度を低減するためである。第4レンズ群14を負メニスカスレンズとしたのは、像面への光線入射角のテレセントリック性を確保するためである。
 <変倍光学系を組み込んだデジタル機器の説明>
 次に、上述の変倍光学系1が組み込まれたデジタル機器について説明する。
 図4は、実施形態におけるデジタル機器の構成を示すブロック図である。デジタル機器3は、撮像機能のために、撮像部30、画像生成部31、画像データバッファ32、画像処理部33、駆動部34、制御部35、記憶部36およびI/F部37を備えて構成される。デジタル機器3としては、例えば、デジタルスチルカメラ、ビデオカメラ、監視カメラ(モニタカメラ)、携帯電話機や携帯情報端末(PDA)等の携帯端末、パーソナルコンピュータおよびモバイルコンピュータを挙げることができ、これらの周辺機器(例えば、マウス、スキャナおよびプリンタなど)を含んでよい。特に、本実施形態の変倍光学系1は、携帯電話機や携帯情報端末(PDA)等の携帯端末に搭載する上で充分に小型化されており、この携帯端末に好適に搭載される。
 撮像部30は、撮像装置21と撮像素子17とを備えて構成される。撮像装置21は、図1および図2に示したような変倍光学系1と、光軸方向にレンズを駆動し変倍およびフォーカシングを行うための図略のレンズ駆動装置等とを備えて構成される。被写体からの光線は、変倍光学系1によって撮像素子17の受光面上に結像され、被写体の光学像となる。
 撮像素子17は、上述したように、変倍光学系1により結像された被写体の光学像をR,G,Bの色成分の電気信号(画像信号)に変換し、R,G,B各色の画像信号として画像生成部31に出力する。撮像素子17は、制御部35によって静止画あるいは動画のいずれか一方の撮像、または、撮像素子17における各画素の出力信号の読出し(水平同期、垂直同期、転送)などの撮像動作が制御される。
 画像生成部31は、撮像素子17からのアナログ出力信号に対し、増幅処理、デジタル変換処理等を行うと共に、画像全体に対して適正な黒レベルの決定、γ補正、ホワイトバランス調整(WB調整)、輪郭補正および色ムラ補正等の周知の画像処理を行って、画像信号から各画素の画像データを生成する。画像生成部31で生成された画像データは、画像データバッファ32に出力される。
 画像データバッファ32は、画像データを一時的に記憶するとともに、この画像データに対し画像処理部33によって後述の処理を行うための作業領域として用いられるメモリであり、例えば、揮発性の記憶素子であるRAM(Random Access Memory)などで構成される。
 画像処理部33は、画像データバッファ32の画像データに対し、解像度変換等の所定の画像処理を行う回路である。このように構成することによって、所望の画質を備えた画像を出力することができるデジタル機器3の提供が可能となる。特に、例えば、変倍光学系では光学的に補正しきれなかった収差や周辺光量低下等を軽減することが可能となる。
 また、この観点から、必要に応じて画像処理部33は、撮像素子17の受光面上に形成される被写体の光学像における歪みを補正する公知の歪み補正処理等の、広角光学系1では補正しきれなかった収差を補正するように構成されてもよい。歪み補正は、収差によって歪んだ画像を肉眼で見える光景と同様な相似形の略歪みのない自然な画像に補正するものである。このように構成することによって、変倍光学系1によって撮像素子17へ導かれた被写体の光学像に歪みが生じていたとしても、歪みを除去または軽減した画像を出力することができるデジタル機器3の提供が可能となり、このデジタル機器3は、略歪みのない自然な画像を生成することが可能となる。そして、画像処理部が画像の歪みを補正することによって、特に第1レンズ群11による収差負担が軽減されるため、第1レンズ群11のレンズ構成を簡易にすることが可能となる。
 駆動部34は、制御部35から出力される制御信号に基づいて図略の前記レンズ駆動装置を動作させることによって、所望の変倍およびフォーカシングを行わせるように変倍光学系1における1または複数のレンズ群を駆動する。
 制御部35は、例えばマイクロプロセッサおよびその周辺回路などを備えて構成され、撮像部30、画像生成部31、画像データバッファ32、画像処理部33、駆動部34、記憶部36およびI/F部37の各部の動作をその機能に従って制御する。すなわち、この制御部35によって、撮像装置21は、被写体の静止画撮影および動画撮影の少なくとも一方の撮影を実行するよう制御される。
 記憶部36は、被写体の静止画撮影または動画撮影によって生成された画像データを記憶する記憶回路であり、例えば、不揮発性の記憶素子であるROM(Read Only Memory)や、書き換え可能な不揮発性の記憶素子であるEEPROM(Electrically Erasable Programmable Read Only Memory)や、RAMなどを備えて構成される。つまり、記憶部36は、静止画用および動画用のメモリとしての機能を有する。
 I/F部37は、外部機器と画像データを送受信するインターフェースであり、例えば、USBやIEEE1394などの規格に準拠したインターフェースである。
 このような構成のデジタル機器3の撮像動作に次について説明する。
 静止画を撮影する場合は、制御部35は、撮像装置21に静止画の撮影を行わせるように制御すると共に、駆動部34を介して撮像装置21の図略の前記レンズ駆動装置を動作させ、フォーカシングを行う。これにより、ピントの合った光学像が撮像素子17の受光面に周期的に繰り返し結像され、R、G、Bの色成分の画像信号に変換された後、画像生成部31に出力される。その画像信号は、画像データバッファ32に一時的に記憶され、画像処理部33により画像処理が行われた後、その画像信号に基づく画像がディスプレイ(不図示)に表示される。そして、撮影者は、前記ディスプレイを参照することで、主被写体をその画面中の所望の位置に収まるように調整することが可能となる。この状態でいわゆるシャッターボタン(不図示)が押されることによって、静止画用のメモリとしての記憶部36に画像データが格納され、静止画像が得られる。
 この場合において、被写体が撮像装置21から離れた位置にある、あるいは近くの被写体を拡大したいためズーム撮影を行う場合には、制御部35は、変倍のためのレンズ駆動を実行し、変倍光学系1に連続的にズーミングを行わせる。これによって、撮影者から離れた被写体であっても拡大率を調節することによって、通常の等倍撮影と同様、主被写体がその画面中の所望の位置に収まるように調整し、拡大された静止画像を得ることができる。
 また、動画撮影を行う場合は、制御部35は、撮像装置21に動画の撮影を行わせるように制御する。後は、静止画撮影の場合と同様にして、撮影者は、前記ディスプレイ(不図示)を参照することで、撮像装置21を通して得た被写体の像が、その画面中の所望の位置に収まるように調整することができる。この場合において、静止画撮影と同様に、被写体像の拡大率を調節することができ、前記シャッターボタン(不図示)を押すことによって、動画撮影が開始される。この撮影中において被写体の拡大率を随時変えることも可能である。
 動画撮影時、制御部35は、撮像装置21に動画の撮影を行わせるように制御すると共に、駆動部34を介して撮像装置21の図略の前記レンズ駆動装置を動作させ、フォーカシングを行う。これによって、ピントの合った光学像が撮像素子17の受光面に周期的に繰り返し結像され、R、G、Bの色成分の画像信号に変換された後、画像生成部31に出力される。その画像信号は、画像データバッファ32に一時的に記憶され、画像処理部33により画像処理が行われた後、その画像信号に基づく画像がディスプレイ(不図示)に表示される。そして、もう一度前記シャッターボタン(不図示)を押すことで、動画撮影が終了する。撮影された動画像は、動画用のメモリとしての記憶部36に導かれて格納される。
 このような撮像装置21およびデジタル機器3では、小型化を達成しつつ、撮像素子17への光線入射角もより小さくすることができる変倍光学系1を備えるので、小型化を図りつつ高画素な撮像素子17を採用することができる。特に、変倍光学系1が小型で高画素撮像素子に適用可能であるので、高画素化や高機能化が進む携帯端末に好適である。その一例として、携帯電話機に撮像装置21を搭載した場合について、以下に説明する。
 図5は、デジタル機器の一実施形態を示すカメラ付携帯電話機の外観構成図である。図5(A)は、携帯電話機の操作面を示し、図5(B)は、操作面の裏面、つまり背面を示す。
 図5において、携帯電話機5には、上部にアンテナ51が備えられ、その操作面には、図5(A)に示すように、長方形のディスプレイ52、画像撮影モードの起動および静止画撮影と動画撮影との切り替えを行う画像撮影ボタン53、変倍(ズーミング)を制御する変倍ボタン54、シャッタボタン55およびダイヤルボタン56が備えられている。
 そして、この携帯電話機5には、携帯電話網を用いた電話機能を実現する回路が内蔵されると共に、上述した撮像部30、画像生成部31、画像データバッファ32、画像処理部33、駆動部34、制御部35および記憶部36が内蔵されており、撮像部30の撮像装置21が背面に臨んでいる。
 画像撮影ボタン53が操作されると、その操作内容を表す制御信号が制御部35へ出力され、制御部35は、その操作内容に応じた動作を実行する。変倍ボタン54は、例えば、2接点式のスイッチ等で構成され、その上端部分に望遠を表す「T」の印字がされ、下端部分に広角を表す「W」の印字がされている。そして、変倍ボタン54の印字位置が押下されることによって、それぞれの変倍動作を表す制御信号が制御部35へ出力され、制御部35は、その変倍動作に応じた動作を実行する。そして、シャッタボタン55が操作されると、その操作内容を表す制御信号が制御部35へ出力され、制御部35は、その操作内容に応じた動作を実行する。
 <変倍光学系のより具体的な実施形態の説明>
 以下、図1および図2に示したような変倍光学系1、すなわち図4に示したようなデジタル機器3に搭載される撮像装置21に備えられる変倍光学系1の具体的な構成を、図面を参照しつつ説明する。
[実施例1]
 図6は、実施例1における変倍光学系におけるレンズ群の配列を示す断面図である。図6は、広角端(WIDE)の場合を示している。なお、後述の実施例2ないし実施例18における変倍光学系1B~1Rのレンズ群の配列を示す断面図である図8、図10、図12ないし図23、図25、図26および図28についても同様に広角端(WIDE)の場合を示している。
 図7は、実施例1の変倍光学系の変倍における各レンズ群の移動の様子を示す図である。“W”は、広角端の場合を示し、“M”は、広角端と望遠端との中間点の場合を示し、そして、“T”は、望遠端の場合を示している。なお、後述の実施例2、実施例3、実施例15、実施例17および実施例18における変倍光学系1B、1C、1O、1Q、1Rにおける各レンズ群の移動の様子を示す図である図9、図11、図24、図27および図29における“W”、“M”および“T”についても同様の場合を示している。なお、図7は、後述の実施例4ないし実施例7、実施例10、実施例11、実施例13および実施例14の変倍光学系1D、1E、1F、1G、1J、1K、1M、1Nの変倍における各レンズ群の移動の様子を示す図でもある。
 図30ないし図32は、実施例1における変倍光学系の収差図である。図30は、広角端(WIDE)の場合を示し、図31は、中間点(MIDDLE)の場合を示し、そして、図32は、望遠端(TELE)の場合を示す。
 実施例1の変倍光学系1Aは、図6に示すように、各レンズ群(Gr1、Gr2、Gr3、Gr4)が物体側から像側へ順に、全体として負の光学的パワーを有する第1レンズ群(Gr1)と、全体として負の光学的パワーを有する第2レンズ群(Gr2)と、光学絞りSTを含む全体として正の光学的パワーを有する第3レンズ群(Gr3)と、全体として負の光学的パワーを有する第4レンズ群(Gr4)とからなる負・負・正・負の4成分ズーム構成であり、広角端(W)から望遠端(T)へのズーミングの際(変倍時)には、図7に示すように、第1レンズ群(Gr1)は、固定され、第2レンズ群(Gr1)と第3レンズ群(Gr3)とは、それらの間隔が減少するように移動し、第4レンズ群(Gr2、Gr3、Gr4)は、移動し、光学絞りSTは、第3レンズ群(Gr3)と共に移動する。そして、第3レンズ群Gr3と第4レンズ群Gr4とは、それら間隔が増大するように移動する。
 より詳しくは、実施例1の変倍光学系1Aは、各レンズ群(Gr1、Gr2、Gr3、Gr4)が物体側から像側へ順に、次のように構成されている。
 第1レンズ群(Gr1)は、物体側に凸の負メニスカスレンズ(第1レンズL1)と、プリズム(L2)と、1枚の正レンズとして、像側に凸の平凸レンズ(第3レンズL3)とから構成されて成る。第1レンズL1は、両面が非球面である。プリズムL2と第3レンズL3とは、接合レンズである。
 第2レンズ群(Gr2)は、両凹の負レンズ(第4レンズL4)と、両凸の正レンズ(第5レンズL5)とから構成されて成る。第4レンズL4と第5レンズL5とは、接合レンズである。
 第3レンズ群(Gr3)は、光学絞りSTと、両凸の正レンズ(第6レンズL6)と、両凸の正レンズ(第7レンズL7)と、両凹の負レンズ(第8レンズL8)と、両凸の正レンズ(第9レンズL9)とから構成されて成る。光学絞りSTは、第6レンズL6の物体側に配置され、第3レンズ群(Gr3)と共に移動する。光学絞りSTは、メカニカルシャッタであってもよい。第6および第7レンズL6、L7は、両面が非球面である。第8レンズL8と第9レンズL9とは、接合レンズである。
 第4レンズ群(Gr4)は、像側に凸の負メニスカスレンズ(第10レンズL10)から構成されて成る。第10レンズL10は、両面が非球面である。
 そして、第4レンズ群(Gr4)の像側には、フィルタとしての平行平板FTを介して撮像素子SRの受光面が配置されている。平行平板FTは、各種光学フィルタや撮像素子のカバーガラス等である。
 図6において、各レンズ面に付されている番号ri(i=1,2,3,・・・)は、物体側から数えた場合のi番目のレンズ面(ただし、レンズの接合面は1つの面として数えるものとする。)であり、riに「*」印が付されている面は、非球面であることを示す。なお、光学絞りST、平行平板FTの両面および撮像素子SRの受光面も1つの面として扱っている。このような取り扱いおよび符号の意義は、後述の実施例2ないし実施例18についても同様である(図8、図10、図12ないし図23、図25、図26および図28)。ただし、全く同一のものであるという意味ではなく、例えば、各実施例1~18の各図6、図8、図10、図12ないし図23、図25、図26および図28を通じて、最も物体側に配置されるレンズ面には、同じ符号(r1)が付されているが、これらの曲率などが各実施例1~18を通じて同一であるという意味ではない。
 このような構成の下で、物体側から入射した光線は、光軸AXに沿って、順に第1レンズ群(Gr1)、第2レンズ群(Gr2)、第3レンズ群(Gr3)(途中、光学絞りSTを含む)、第4レンズ群(Gr3)および平行平板FTを通過し、撮像素子SRの受光面に物体の光学像を形成する。そして、撮像素子SRでは、光学像が電気的な信号に変換される。この電気信号は、必要に応じて所定のデジタル画像処理などが施され、デジタル映像信号として例えばデジタルカメラ等のデジタル機器のメモリに記録されたり、有線あるいは無線の通信によって他のデジタル機器に伝送されたりする。
 この実施例1の変倍光学系1Aでは、広角端(WIDE)から中間点(MIDDLE)を経て望遠端(TELE)への変倍時に、図7に示すように、第1レンズ群(Gr1)は、固定され、第2レンズ群(Gr2)は、略中間点で像側に凸となる曲線を描くように移動され、第3レンズ群(Gr3)は、物体に近づく方向に略直線的に移動され、第4レンズ群(Gr4)は、物体に近づく方向に第3レンズ群(Gr3)の移動量に較べて緩やかに略直線的に移動され、そして、光学絞りSTは、第3レンズ群(Gr3)と共に移動する。このように広角端(WIDE)から望遠端(TELE)への変倍において、第2ないし第4レンズ群(Gr2、Gr3、Gr4)は、移動し、第1レンズ群(Gr1)と第3レンズ群(Gr3)および第4レンズ群(Gr4)のぞれぞれとは、互いの間隔が狭くなるように移動する。
 実施例1の変倍光学系1Aにおける、各レンズのコンストラクションデータを以下に示す。
 数値実施例1
単位 mm
面データ
面番号      r    d    nd    νd
物面       ∞    ∞
1*     22.443   0.600   2.00170   20.64
2*      6.654   1.917
3        ∞   6.383   1.90366   31.31
4        ∞   0.000
5        ∞   0.793   1.92286   20.88
6      -19.469   可変
7      -7.727   0.600   1.75500   52.32
8      15.089   0.878   1.92286   20.88
9      -87.221   可変
10(絞り)   ∞   0.000
11*     5.855   1.506   1.58913   61.24
12*   -244.797   0.100
13*     4.383   2.380   1.49700   81.61
14*    -4.859   0.100
15     -7.367   0.600   1.83400   37.35
16      3.000   2.259   1.48749   70.45
17     -11.076   可変
18*    -3.828   0.601   1.80139   45.46
19*    -8.282   可変
20       ∞   0.500   1.51680   64.20
21       ∞   0.500
像面       ∞
 非球面データ
第1面
K=0.0000e+000,A4=2.4272e-004,A6=3.9926e-006,A8=3.5267e-008,A10=-4.1878e-009,A12=4.3079e-010,A14=-6.0471e-012
第2面
K=0.0000e+000,A4=2.7868e-005,A6=2.3772e-005,A8=-2.8267e-006,A10=3.4895e-007,A12=-2.0142e-008,A14=5.5308e-010
第11面
K=0.0000e+000,A4=-8.7970e-006,A6=-1.3447e-004,A8=3.4347e-005,A10=-4.2063e-006,A12=3.7022e-007,A14=-4.1260e-008
第12面
K=0.0000e+000,A4=-2.2105e-004,A6=6.7499e-005,A8=4.6946e-005,A10=-3.3974e-006,A12=-3.7527e-007,A14=1.4145e-009
第13面
K=0.0000e+000,A4=-1.1363e-003,A6=1.0174e-004,A8=6.0418e-005,A10=-7.5133e-006,A12=4.7657e-007,A14=-1.1063e-008
第14面
K=0.0000e+000,A4=4.0107e-003,A6=-3.0846e-004,A8=7.5183e-005,A10=-1.6276e-006,A12=-1.5683e-007,A14=-4.9941e-009
第18面
K=0.0000e+000,A4=-5.3838e-003,A6=3.8045e-004,A8=-2.8687e-004,A10=2.8836e-005,A12=-3.1490e-007,A14=-6.4895e-017
第19面
K=0.0000e+000,A4=-4.7950e-003,A6=2.1559e-004,A8=-1.0307e-004,A10=9.9749e-006,A12=-8.2258e-008,A14=-4.1980e-009
 可変間距離(Variable Distance)
             広角端   中間点   望遠端
第6面と第7面間     0.70426   1.66824   0.60000
第9面と第10面間    6.32090   2.83179   0.50000
第17面と第18面間   3.46384   3.87041   5.18343
第19面と第20面間   1.06100   3.17955   5.26656
 各種データ
ズームデータ
ズーム比ft/fw 2.75  
         広角   中間   望遠
焦点距離     4.752   7.889  13.066
Fナンバ     2.880   3.938   5.391
画角      38.730   25.328  15.771
像高       3.650   3.650   3.650
レンズ全長   31.097   31.097  31.097
BF       1.891   4.009   6.096
 ズームレンズ群データ
群   始面   終面   光学的パワー 焦点距離
1   1    6    -0.02914   -34.3121
2   7    9    -0.07486   -13.3586
3   10   17    0.15707    6.3666
4   18   19   -0.10585    -9.4475
 上記の面データにおいて、面番号は、図6に示した各レンズ面に付した符号ri(i=1,2,3,…)の番号iが対応する。番号iに*が付された面は、非球面(非球面形状の屈折光学面または非球面と等価な屈折作用を有する面)であることを示す。
 また、“r”は、各面の曲率半径(単位はmm)、“d”は、無限遠合焦状態での光軸上の各レンズ面の間隔(軸上面間隔)、“nd”は、各レンズのd線(波長587.56nm)に対する屈折率、“νd”は、アッベ数をそれぞれ示している。なお、プリズムの両面、第3レンズL3の物体側の面、光学絞りST、平行平面板FTの両面、撮像素子SRの受光面の各面は、平面であるために、それらの曲率半径は、∞(無限大)である。
 上記の非球面データは、非球面とされている面(面データにおいて番号iに*が付された面)の2次曲面パラメータ(円錐係数K)と非球面係数Ai(i=4,6,8,10,12,14)の値とを示すものである。なお、光学面の非球面形状は、面頂点を原点、物体から撮像素子に向かう向きをz軸の正の方向とするローカルな直交座標系(x,y,z)を用い、次式により定義している。
z(h)=c×h/[1+{1-(1+K)×c×h}1/2]+ΣAi×h
 ただし、z(h):高さhの位置でのz軸方向の変位量(面頂点基準)
 h:z軸に対して垂直な方向の高さ(h=x+y
 c:近軸曲率(=1/曲率半径)
 Ai:i次の非球面係数
 K:2次曲面パラメータ(円錐係数)
 そして、上記非球面データにおいて、「en」は、「10のn乗」を意味する。例えば、「e+001」は、「10の+1乗」を意味し、「e-003」は、「10の-3乗」を意味する。また、各種データのBFは、バックフォーカスを示す。
 以上のようなレンズ配置、構成のもとでの、実施例1の撮像レンズ1Aにおける各収差を図30ないし図32に示す。図30は広角端、図31は中間点および図32は望遠端での収差図を示す。図30、図31および図32において左から順に、球面収差(正弦条件)(LONGITUDINAL SPHERICAL ABERRATION)、非点収差(ASTIGMATISM FIELD CURVER)および歪曲収差(DISTORTION)をそれぞれ示す。球面収差の横軸は、焦点位置のずれをmm単位で表しており、その縦軸は、最大入射高で規格化した値で表している。非点収差の横軸は、焦点位置のずれをmm単位で表しており、その縦軸は、像高をmm単位で表している。歪曲収差の横軸は、実際の像高を理想像高に対する割合(%)で表しており、縦軸は、その像高をmm単位で表している。また、非点収差の図中、四点鎖線(-・・・・-・・・・-)は、タンジェンシャル(メリディオナル)面、実線は、サジタル(ラディアル)面における結果をそれぞれ表している。
 球面収差の図には、実線でd線(波長587.56nm)、破線(- - -)でg線(波長435.84nm)、一点鎖線(-・-・-)でC線(波長656.28nm)の3つの光の収差をそれぞれ示してある。非点収差および歪曲収差の図は、上記d線(波長587.56nm)を用いた場合の結果である。
 以上のような扱いは、以下に示す実施例2~18にかかるコンストラクションデータ、各収差を示す図33ないし図83においても同様である。
[実施例2]
 図8は、実施例2における変倍光学系におけるレンズ群の配列を示す断面図である。図9は、実施例2の変倍光学系の変倍における各レンズ群の移動の様子を示す図である。図33ないし図35は、実施例2における変倍光学系の収差図である。
 実施例2の変倍光学系1Bは、図8に示すように、各レンズ群(Gr1、Gr2、Gr3、Gr4)が物体側から像側へ順に、全体として負の光学的パワーを有する第1レンズ群(Gr1)と、全体として負の光学的パワーを有する第2レンズ群(Gr2)と、光学絞りSTを含む全体として正の光学的パワーを有する第3レンズ群(Gr3)と、全体として負の光学的パワーを有する第4レンズ群(Gr4)とからなる負・負・正・負の4成分ズーム構成であり、広角端(W)から望遠端(T)へのズーミングの際には、図9に示すように、第1レンズ群(Gr1)は、像側に移動し、第2レンズ群(Gr1)と第3レンズ群(Gr3)とは、それらの間隔が減少するように移動し、第4レンズ群(Gr2、Gr3、Gr4)は、物体側に移動し、光学絞りSTは、第3レンズ群(Gr3)と共に移動する。そして、第3レンズ群Gr3と第4レンズ群Gr4とは、それら間隔が増大するように移動する。
 より詳しくは、実施例2の変倍光学系1Bは、各レンズ群(Gr1、Gr2、Gr3、Gr4)が物体側から像側へ順に、次のように構成されている。
 第1レンズ群(Gr1)は、物体側に凸の負メニスカスレンズ(第1レンズL1)と、1枚の正レンズとして、像側に凸の正メニスカスレンズ(第2レンズL2)とから構成されて成る。第1レンズL1は、両面が非球面であり、第2レンズL2は、像側の片面が非球面である。
 第2レンズ群(Gr2)は、両凹の負レンズ(第3レンズL3)と、物体側に凸の正メニスカスレンズ(第4レンズL4)とから構成されて成る。第3レンズL3と第4レンズL4とは、接合レンズである。第3レンズL3は、物体側の片面が非球面であり、第4レンズL4は、像側の片面が非球面である。
 第3レンズ群(Gr3)は、光学絞りSTと、両凸の正レンズ(第5レンズL5)と、両凸の正レンズ(第6レンズL6)と、両凹の負レンズ(第7レンズL7)と、両凸の正レンズ(第8レンズL8)とから構成されて成る。光学絞りSTは、第5レンズL5の物体側に配置され、第3レンズ群(Gr3)と共に移動する。光学絞りSTは、メカニカルシャッタであってもよい。第5および第6レンズL6は、両面が非球面である。第7レンズL7と第8レンズL8とは、接合レンズである。第7レンズL7は、物体側の片面が非球面であり、第8レンズL8は、像側の片面が非球面である。
 第4レンズ群(Gr4)は、像側に凸の負メニスカスレンズ(第9レンズL9)から構成されて成る。第9レンズL9は、両面が非球面である。
 そして、第4レンズ群(Gr4)の像側には、フィルタとしての平行平板FTを介して撮像素子SRの受光面が配置されている。平行平板FTは、各種光学フィルタや撮像素子のカバーガラス等である。
 この実施例2の変倍光学系1Bでは、広角端(WIDE)から中間点(MIDDLE)を経て望遠端(TELE)への変倍時に、図9に示すように、第1レンズ群(Gr1)は、撮像素子SRに近づく方向に移動され、第2レンズ群(Gr2)は、略中間点で像側に凸となる曲線を描くように移動され、第3レンズ群(Gr3)は、物体に近づく方向に略直線的に移動され、第4レンズ群(Gr4)は、物体に近づく方向に第3レンズ群(Gr3)の移動量に較べて緩やかに略直線的に移動され、そして、光学絞りSTは、第3レンズ群(Gr3)と共に移動する。このように広角端(WIDE)から望遠端(TELE)への変倍において、第1ないし第4レンズ群(Gr1、Gr2、Gr3、Gr4)は、移動し、第1レンズ群(Gr1)と第3レンズ群(Gr3)および第4レンズ群(Gr4)のぞれぞれとは、互いの間隔が狭くなるように移動する。
 実施例2の変倍光学系1Bにおける、各レンズのコンストラクションデータを以下に示す。
 数値実施例2
単位 mm
面データ
面番号      r    d    nd    νd
物面       ∞    ∞
1*      15.004   1.227   1.97321   20.81
2*      5.961   3.770
3      -73.474   0.738   1.95613   22.25
4*     -26.054   可変
5*     -29.153   0.894   1.75375   51.61
6       6.581   1.089   1.97490   20.91
7*      17.885   可変
8(絞り)    ∞    0.000
9*      5.866   1.410   1.57663   61.73
10*    -139.064   0.100
11*     4.395   2.392   1.49813   80.35
12*     -5.544   0.100
13*     -8.592   0.600   1.83778   36.30
14      3.005   2.172   1.50432   74.17
15*    -12.129   可変
16*     -4.417   0.838   1.58468   64.98
17*    -13.359   可変
18       ∞    0.500   1.51680   64.20
19       ∞    0.500
像面       ∞
 非球面データ
第1面
K=0.0000e+000,A4=3.0879e-004,A6=2.1183e-005,A8=-3.5810e-007,A10=-1.2002e-008,A12=5.1790e-010,A14=-4.9529e-012
第2面
K=0.0000e+000,A4=2.2570e-004,A6=6.3890e-005,A8=-1.4026e-006,A10=2.6995e-007,A12=-2.0074e-008,A14=4.8251e-01
第4面
K=0.0000e+000,A4=8.1356e-004,A6=-2.5658e-005,A8=2.5502e-006,A10=8.2531e-008
第5面
K=0.0000e+000,A4=4.0491e-004,A6=-5.7184e-006,A8=6.0160e-006,A10=-1.0022e-007
第7面
K=0.0000e+000,A4=-4.4080e-004,A6=3.5214e-005,A8=-1.6823e-006,A10=1.2103e-007
第9面
K=0.0000e+000,A4=-1.0850e-004,A6=-1.6159e-004,A8=2.2191e-005,A10=-4.2330e-006,A12=5.4112e-007,A14=-5.2812e-008
第10面
K=0.0000e+000,A4=-3.6629e-004,A6=5.5695e-005,A8=3.7319e-005,A10=-5.0402e-006,A12=-2.0797e-007,A14=6.4213e-009
第11面
K=0.0000e+000,A4=-1.0850e-003,A6=2.3754e-004,A8=7.3304e-005,A10=-8.7659e-006,A12=4.0562e-007,A14=3.4504e-009
第12面
K=0.0000e+000,A4=4.5402e-003,A6=-2.8567e-004,A8=6.8204e-005,A10=-4.4005e-006,A12=-9.2912e-007,A14=2.8198e-008
第13面
K=0.0000e+000,A4=4.8885e-004,A6=-1.8333e-004,A8=-2.1425e-005,A10=-5.1484e-006
第15面
K=0.0000e+000,A4=3.5097e-004,A6=-3.8089e-005,A8=-2.2322e-005,A10=7.8679e-007
第16面
K=0.0000e+000,A4=-3.6592e-003,A6=3.7536e-004,A8=-2.5897e-004,A10=3.6289e-005,A12=-1.4260e-006,A14=-8.5300e-008
第17面
K=0.0000e+000,A4=-3.3157e-003,A6=1.9779e-004,A8=-9.8355e-005,A10=1.2992e-005,A12=-6.4201e-007,A14=4.6046e-009
 可変間距離(Variable Distance)
             広角端   中間点   望遠端
第4面と第5面間     1.17960   1.42804   0.88781
第7面と第8面間     6.91273   3.29185   0.50000
第15面と第16面間   3.39572   3.23162   4.94378
第17面と第18面間   0.45660   2.93151   4.26320
 各種データ
ズームデータ
ズーム比ft/fw  2.75
         広角   中間   望遠
焦点距離    4.749   7.892   13.080
Fナンバ    2.880   3.904   5.169
画角      39.143   25.369   15.623
像高      3.650   3.650   3.650
レンズ全長   28.103   27.042   26.753
BF      1.286   3.761   5.093
 ズームレンズ群データ
群   始面   終面   光学的パワー 焦点距離
1   1    4    -0.05939   -16.8379
2   5    7    -0.04679   -21.3714
3   8   15     0.15989    6.2541
4   16  17    -0.08555   -11.6889
 以上のようなレンズ配置、構成のもとでの、実施例2の撮像レンズ1Bにおける球面収差(正弦条件)、非点収差および歪曲収差を図33ないし図35に示す。
[実施例3]
 図10は、実施例3における変倍光学系におけるレンズ群の配列を示す断面図である。図11は、実施例3の変倍光学系の変倍における各レンズ群の移動の様子を示す図である。なお、図11は、後述の実施例8、実施例9、実施例12および実施例16の変倍光学系1H、1I、1L、1Pの変倍における各レンズ群の移動の様子を示す図でもある。図36ないし図38は、実施例3における変倍光学系の収差図である。
 実施例3の変倍光学系1Cは、図10に示すように、各レンズ群(Gr1、Gr2、Gr3、Gr4)が物体側から像側へ順に、全体として負の光学的パワーを有する第1レンズ群(Gr1)と、全体として負の光学的パワーを有する第2レンズ群(Gr2)と、光学絞りSTを含む全体として正の光学的パワーを有する第3レンズ群(Gr3)と、全体として負の光学的パワーを有する第4レンズ群(Gr4)とからなる負・負・正・負の4成分ズーム構成であり、広角端(W)から望遠端(T)へのズーミングの際には、図11に示すように、第1レンズ群(Gr1)は、固定され、第2レンズ群(Gr1)と第3レンズ群(Gr3)とは、それらの間隔が減少するように移動し、第4レンズ群(Gr2、Gr3、Gr4)は、物体側に移動し、光学絞りSTは、第3レンズ群(Gr3)と共に移動する。そして、第3レンズ群Gr3と第4レンズ群Gr4とは、それら間隔が増大するように移動する。
 より詳しくは、実施例3の変倍光学系1Cは、各レンズ群(Gr1、Gr2、Gr3、Gr4)が物体側から像側へ順に、次のように構成されている。
 第1レンズ群(Gr1)は、物体側に凸の負メニスカスレンズ(第1レンズL1)と、プリズム(L2)と、1枚の正レンズとして、像側に凸の平凸レンズ(第3レンズL3)とから構成されて成る。第1レンズL1は、両面が非球面である。プリズムL2と第3レンズL3とは、接合レンズである。第3レンズL3は、像側の片面が非球面である。
 第2レンズ群(Gr2)は、両凹の負レンズ(第4レンズL4)と、物体側に凸の正メニスカスレンズ(第5レンズL5)とから構成されて成る。第4レンズL4と第5レンズL5とは、接合レンズである。第4レンズL4は、物体側の片面が非球面であり、第5レンズL5は、像側の片面が非球面である。
 第3レンズ群(Gr3)は、光学絞りSTと、物体側に凸の正メニスカスレンズ(第6レンズL6)と、両凸の正レンズ(第7レンズL7)と、両凹の負レンズ(第8レンズL8)と、両凸の正レンズ(第9レンズL9)とから構成されて成る。光学絞りSTは、第6レンズL6の物体側に配置され、第3レンズ群(Gr3)と共に移動する。光学絞りSTは、メカニカルシャッタであってもよい。第6および第7レンズL6、L7は、両面が非球面である。第8レンズL8と第9レンズL9とは、接合レンズである。第8レンズL8は、物体側の片面が非球面であり、第9レンズL9は、像側の片面が非球面である。
 第4レンズ群(Gr4)は、像側に凸の負メニスカスレンズ(第10レンズL10)から構成されて成る。第10レンズL10は、両面が非球面である。
 そして、第4レンズ群(Gr4)の像側には、フィルタとしての平行平板FTを介して撮像素子SRの受光面が配置されている。平行平板FTは、各種光学フィルタや撮像素子のカバーガラス等である。
 この実施例3の変倍光学系1Cでは、広角端(WIDE)から中間点(MIDDLE)を経て望遠端(TELE)への変倍時に、図11に示すように、第1レンズ群(Gr1)は、固定され、第2レンズ群(Gr2)は、略中間点で像側に凸となる曲線を描くように移動され、第3レンズ群(Gr3)は、物体に近づく方向に略直線的に移動され、第4レンズ群(Gr4)は、物体に近づく方向に曲線的(物体側に凸となる曲線)に移動され、そして、光学絞りSTは、第3レンズ群(Gr3)と共に移動する。このように広角端(WIDE)から望遠端(TELE)への変倍において、第2ないし第4レンズ群(Gr2、Gr3、Gr4)は、移動し、第1レンズ群(Gr1)と第3レンズ群(Gr3)および第4レンズ群(Gr4)のぞれぞれとは、互いの間隔が狭くなるように移動する。
 実施例3の変倍光学系1Cにおける、各レンズのコンストラクションデータを以下に示す。
 数値実施例3
単位 mm
面データ
面番号      r    d    nd    νd
物面       ∞    ∞
1*      28.751   0.480   2.00170   20.60
2*       6.061   1.460
3        ∞    5.180   1.90366   31.31
4        ∞    0.000
5        ∞    0.442   1.95656   20.94
6*      -29.821   可変
7*      -17.485   0.480   1.75450   51.57
8        5.507   0.869   1.97300   20.81
9*      16.688   可変
10(絞り)   ∞    0.000
11*      4.570   1.183   1.57879   56.91
12*     180.116   0.080
13*      3.400   1.889   1.49700   81.61
14*     -4.326   0.080
15*     -6.832   0.480   1.83934   35.99
16       2.400   1.773   1.49873   79.70
17*     -9.928   可変
18*     -3.285   0.561   1.73701   52.45
19*     -7.411   可変
20       ∞    0.400   1.51680   64.20
21       ∞    0.400
像面       ∞
 非球面データ
第1面
K=0.0000e+000,A4=7.5385e-004,A6=5.5391e-005,A8=-1.4162e-006,A10=-7.5380e-008,A12=6.2208e-009,A14=-1.0114e-010
第2面
K=0.0000e+000,A4=1.4744e-004,A6=1.5110e-004,A8=-1.3134e-005,A10=2.5832e-006,A12=-2.2630e-007,A14=8.4371e-009
第6面
K=0.0000e+000,A4=1.8228e-003,A6=-1.0590e-004,A8=5.5939e-006,A10=3.6640e-007
第7面
K=0.0000e+000,A4=-3.6068e-004,A6=-1.1418e-004,A8=2.1578e-005,A10=-1.4056e-007
第9面
K=0.0000e+000,A4=-1.6182e-003,A6=9.0208e-005,A8=-1.0087e-006,A10=2.0302e-007
第11面
K=0.0000e+000,A4=5.1421e-004,A6=-4.8091e-004,A8=1.3530e-004,A10=-3.1654e-005,A12=5.5074e-006,A14=-8.8634e-007
第12面
K=0.0000e+000,A4=-1.1647e-004,A6=2.4649e-004,A8=1.8696e-004,A10=-3.0081e-005,A12=-2.8557e-006,A14=-1.0055e-007
第13面
K=0.0000e+000,A4=-2.7152e-003,A6=6.1277e-004,A8=3.5961e-004,A10=-6.4207e-005,A12=5.1058e-006,A14=7.5989e-008
第14面
K=0.0000e+000,A4=8.2479e-003,A6=-1.0678e-003,A8=3.2693e-004,A10=2.5945e-006,A12=-6.9550e-006,A14=-9.0821e-008
第15面
K=0.0000e+000,A4=7.2702e-004,A6=-6.4847e-004,A8=-9.6845e-005,A10=-2.2622e-006
第17面
K=0.0000e+000,A4=9.9158e-004,A6=-6.8550e-005,A8=-2.0790e-004,A10=5.5490e-005
第18面
K=0.0000e+000,A4=-8.3386e-003,A6=1.0367e-003,A8=-1.3723e-003,A10=2.8245e-004,A12=-3.9491e-006,A14=7.6352e-014
第19面
K=0.0000e+000,A4=-7.3149e-003,A6=5.0431e-004,A8=-4.8063e-004,A10=9.4595e-005,A12=-3.0437e-006,A14=-7.6361e-008
 可変間距離(Variable Distance)
             広角端   中間点   望遠端
第6面と第7面間     0.48000   0.97849   0.48000
第9面と第10面間    5.17492   2.52063   0.40000
第17面と第18面間   2.65146   2.51423   3.95637
第19面と第20面間   0.87647   3.16950   4.34648
 各種データ
ズームデータ
ズーム比ft/fw  2.75
         広角   中間   望遠
焦点距離    3.802   6.311   10.452
Fナンバ    2.873   4.000   5.330
画角      38.720   25.370   15.606
像高      2.900   2.900   2.900
レンズ全長   24.804   24.804   24.804
BF      1.540   3.833   5.010
 ズームレンズ群データ
群   始面   終面   光学的パワー 焦点距離
1   1    6    -0.02914   -34.3121
2   7    9    -0.07486   -13.3586
3   10  17     0.15707    6.3666
4   18  19    -0.10585    -9.4475
 以上のようなレンズ配置、構成のもとでの、実施例3の撮像レンズ1Cにおける球面収差(正弦条件)、非点収差および歪曲収差を図36ないし図38に示す。
[実施例4]
 図12は、実施例4における変倍光学系におけるレンズ群の配列を示す断面図である。図39ないし図41は、実施例4における変倍光学系の収差図である。
 実施例4の変倍光学系1Dは、図12に示すように、各レンズ群(Gr1、Gr2、Gr3、Gr4)が物体側から像側へ順に、全体として負の光学的パワーを有する第1レンズ群(Gr1)と、全体として負の光学的パワーを有する第2レンズ群(Gr2)と、光学絞りSTを含む全体として正の光学的パワーを有する第3レンズ群(Gr3)と、全体として負の光学的パワーを有する第4レンズ群(Gr4)とからなる負・負・正・負の4成分ズーム構成であり、広角端(W)から望遠端(T)へのズーミングの際には、図7に示すように、第1レンズ群(Gr1)は、固定され、第2レンズ群(Gr1)と第3レンズ群(Gr3)とは、それらの間隔が減少するように移動し、第4レンズ群(Gr2、Gr3、Gr4)は、物体側に移動し、光学絞りSTは、第3レンズ群(Gr3)と共に移動する。そして、第3レンズ群Gr3と第4レンズ群Gr4とは、それら間隔が増大するように移動する。
 より詳しくは、実施例4の変倍光学系1Dは、各レンズ群(Gr1、Gr2、Gr3、Gr4)が物体側から像側へ順に、次のように構成されている。
 第1レンズ群(Gr1)は、物体側に凸の負メニスカスレンズ(第1レンズL1)と、プリズム(L2)と、1枚の正レンズとして、両凸の正レンズ(第3レンズL3)とから構成されて成る。第1レンズL1は、両面が非球面である。
 第2レンズ群(Gr2)は、両凹の負レンズ(第4レンズL4)と、物体側に凸の正メニスカスレンズ(第5レンズL5)とから構成されて成る。第4レンズL4と第5レンズL5とは、接合レンズである。
 第3レンズ群(Gr3)は、光学絞りSTと、両凸の正レンズ(第6レンズL6)と、両凸の正レンズ(第7レンズL7)と、両凹の負レンズ(第8レンズL8)と、両凸の正レンズ(第9レンズL9)とから構成されて成る。光学絞りSTは、第6レンズL6の物体側に配置され、第3レンズ群(Gr3)と共に移動する。光学絞りSTは、メカニカルシャッタであってもよい。第6および第7レンズL6、L7は、両面が非球面である。第8レンズL8と第9レンズL9とは、接合レンズである。
 第4レンズ群(Gr4)は、像側に凸の負メニスカスレンズ(第10レンズL10)から構成されて成る。第10レンズL10は、両面が非球面である。
 そして、第4レンズ群(Gr4)の像側には、フィルタとしての平行平板FTを介して撮像素子SRの受光面が配置されている。平行平板FTは、各種光学フィルタや撮像素子のカバーガラス等である。
 この実施例4の変倍光学系1Dでは、広角端(WIDE)から中間点(MIDDLE)を経て望遠端(TELE)への変倍時に、図7に示すように、第1レンズ群(Gr1)は、固定され、第2レンズ群(Gr2)は、略中間点で像側に凸となる曲線を描くように移動され、第3レンズ群(Gr3)は、物体に近づく方向に略直線的に移動され、第4レンズ群(Gr4)は、物体に近づく方向に第3レンズ群(Gr3)の移動量に較べて緩やかに略直線的に移動され、そして、光学絞りSTは、第3レンズ群(Gr3)と共に移動される。このように広角端(WIDE)から望遠端(TELE)への変倍において、第2ないし第4レンズ群(Gr2、Gr3、Gr4)は、移動し、第1レンズ群(Gr1)と第3レンズ群(Gr3)および第4レンズ群(Gr4)のぞれぞれとは、互いの間隔が狭くなるように移動する。
 実施例4の変倍光学系1Dにおける、各レンズのコンストラクションデータを以下に示す。
 数値実施例4
単位 mm
面データ
面番号      r    d    nd    νd
物面       ∞    ∞
1*     17.513   0.983   2.00170   20.60
2*      6.592   2.721
3        ∞   7.105   1.80518   25.43
4        ∞   0.100
5      18.272   0.900   1.92286   20.88
6     -764.424   可変
7      -10.877   0.600   1.75500   52.32
8       9.782   0.881   1.92286   20.88
9      28.934   可変
10(絞り)   ∞   0.000
11*     6.048   1.540   1.58913   61.24
12*   -104.126   0.100
13*     4.566   2.363   1.49700   81.61
14*    -5.133   0.100
15     -7.208   0.600   1.83400   37.35
16      3.164   2.813   1.48749   70.45
17     -8.568   可変
18*    -4.251   0.684   1.80139   45.46
19*    -9.028   可変
20       ∞   0.500   1.51680   64.20
21       ∞   0.500
像面       ∞
 非球面データ
第1面
K=0.0000e+000,A4=2.1972e-004,A6=8.3947e-006,A8=-1.4758e-007,A10=-1.0121e-008,A12=4.1504e-010,A14=-3.6817e-012
第2面
K=0.0000e+000,A4=5.9467e-005,A6=4.1057e-005,A8=-4.5977e-006,A10=4.0075e-007,A12=-1.8830e-008,A14=3.5638e-010
第11面
K=0.0000e+000,A4=3.9769e-005,A6=-1.5717e-004,A8=3.3683e-005,A10=-4.1351e-006,A12=4.4184e-007,A14=-4.3613e-008
第12面
K=0.0000e+000,A4=-6.2309e-004,A6=3.6933e-005,A8=4.7606e-005,A10=-3.1212e-006,A12=-3.1552e-007,A14=5.8208e-010
第13面
K=0.0000e+000,A4=-1.4211e-003,A6=9.7632e-005,A8=6.2757e-005,A10=-7.3690e-006,A12=4.8385e-007,A14=-1.3669e-008
第14面
K=0.0000e+000,A4=3.4978e-003,A6=-3.1939e-004,A8=7.5047e-005,A10=-1.7890e-006,A12=-4.8484e-008,A14=-1.3398e-008
第18面
K=0.0000e+000,A4=-4.5611e-003,A6=5.3546e-004,A8=-2.8064e-004,A10=3.8727e-005,A12=-5.0654e-007,A14=-6.3629e-008
第19面
K=0.0000e+000,A4=-4.2022e-003,A6=2.4226e-004,A8=-9.0981e-005,A10=1.0011e-005,A12=-5.3091e-008,A14=-8.7947e-009
 可変間距離(Variable Distance)
             広角端   中間点   望遠端
第6面と第7面間     0.86080   1.98112   1.14496
第9面と第10面間    6.95603   3.22861   0.50000
第17面と第18面間   3.09647   3.46849   5.06779
第19面と第20面間   1.39574   3.63082   5.59632
 各種データ
ズームデータ
ズーム比ft/fw  2.75
         広角   中間   望遠
焦点距離    4.753   7.887   13.065
Fナンバ    2.875   3.843   5.183
画角      38.169   25.285   15.825
像高      3.650   3.650   3.650
レンズ全長   34.630   34.630   34.630
BF      2.225   4.460   6.426
 ズームレンズ群データ
群   始面   終面   光学的パワー 焦点距離
1   1    6    -0.00860   -116.2825
2   7    9    -0.08526    -11.7295
3   10  17     0.15130     6.6094
4   18  19    -0.09341    -10.7058
 以上のようなレンズ配置、構成のもとでの、実施例4の撮像レンズ1Dにおける球面収差(正弦条件)、非点収差および歪曲収差を図39ないし図41に示す。
[実施例5]
 図13は、実施例5における変倍光学系におけるレンズ群の配列を示す断面図である。図42ないし図44は、実施例5における変倍光学系の収差図である。
 実施例5の変倍光学系1Eは、図13に示すように、各レンズ群(Gr1、Gr2、Gr3、Gr4)が物体側から像側へ順に、全体として負の光学的パワーを有する第1レンズ群(Gr1)と、全体として負の光学的パワーを有する第2レンズ群(Gr2)と、光学絞りSTを含む全体として正の光学的パワーを有する第3レンズ群(Gr3)と、全体として負の光学的パワーを有する第4レンズ群(Gr4)とからなる負・負・正・負の4成分ズーム構成であり、広角端(W)から望遠端(T)へのズーミングの際には、図7に示すように、第1レンズ群(Gr1)は、固定され、第2レンズ群(Gr1)と第3レンズ群(Gr3)とは、それらの間隔が減少するように移動し、第4レンズ群(Gr2、Gr3、Gr4)は、物体側に移動し、光学絞りSTは、第3レンズ群(Gr3)と共に移動する。そして、第3レンズ群Gr3と第4レンズ群Gr4とは、それら間隔が増大するように移動する。
 より詳しくは、実施例5の変倍光学系1Eは、各レンズ群(Gr1、Gr2、Gr3、Gr4)が物体側から像側へ順に、次のように構成されている。
 第1レンズ群(Gr1)は、物体側に凸の負メニスカスレンズ(第1レンズL1)と、プリズム(L2)と、1枚の正レンズとして、物体側に凸の正メニスカスレンズ(第3レンズL3)とから構成されて成る。第1レンズL1は、両面が非球面である。
 第2レンズ群(Gr2)は、両凹の負レンズ(第4レンズL4)と、物体側に凸の正メニスカスレンズ(第5レンズL5)とから構成されて成る。第4レンズL4と第5レンズL5とは、接合レンズである。
 第3レンズ群(Gr3)は、光学絞りSTと、両凸の正レンズ(第6レンズL6)と、両凸の正レンズ(第7レンズL7)と、両凹の負レンズ(第8レンズL8)と、両凸の正レンズ(第9レンズL9)とから構成されて成る。光学絞りSTは、第6レンズL6の物体側に配置され、第3レンズ群(Gr3)と共に移動する。光学絞りSTは、メカニカルシャッタであってもよい。第6および第7レンズL6、L7は、両面が非球面である。第8レンズL8と第9レンズL9とは、接合レンズである。
 第4レンズ群(Gr4)は、像側に凸の負メニスカスレンズ(第10レンズL10)から構成されて成る。第10レンズL10は、両面が非球面である。
 そして、第4レンズ群(Gr4)の像側には、フィルタとしての平行平板FTを介して撮像素子SRの受光面が配置されている。平行平板FTは、各種光学フィルタや撮像素子のカバーガラス等である。
 この実施例5の変倍光学系1Eでは、広角端(WIDE)から中間点(MIDDLE)を経て望遠端(TELE)への変倍時に、図7に示すように、第1レンズ群(Gr1)は、固定され、第2レンズ群(Gr2)は、略中間点で像側に凸となる曲線を描くように移動され、第3レンズ群(Gr3)は、物体に近づく方向に略直線的に移動され、第4レンズ群(Gr4)は、物体に近づく方向に第3レンズ群(Gr3)の移動量に較べて緩やかに略直線的に移動され、そして、光学絞りSTは、第3レンズ群(Gr3)と共に移動する。このように広角端(WIDE)から望遠端(TELE)への変倍において、第2ないし第4レンズ群(Gr2、Gr3、Gr4)は、移動し、第1レンズ群(Gr1)と第3レンズ群(Gr3)および第4レンズ群(Gr4)のぞれぞれとは、互いの間隔が狭くなるように移動する。
 実施例5の変倍光学系1Eにおける、各レンズのコンストラクションデータを以下に示す。
 数値実施例5
単位 mm
面データ
面番号      r    d    nd    νd
物面       ∞    ∞
1*      14.284   0.828   2.00170   20.60
2*      5.396   2.257
3        ∞    5.828   1.80518   25.43
4        ∞    0.080
5       12.011   0.737   1.92286   20.88
6       65.324   可変
7      -10.209   0.480   1.75500   52.32
8       7.178   0.713   1.92286   20.88
9       17.085   可変
10(絞り)   ∞    0.000
11*     4.814   1.291   1.58913   61.24
12*    -87.101   0.080
13*     3.625   1.897   1.49700   81.61
14*     -4.150   0.080
15      -5.975   0.480   1.83400   37.35
16      2.491   2.469   1.48749   70.45
17      -7.851   可変
18*     -3.676   0.601   1.80139   45.46
19*     -9.581   可変
20       ∞    0.400   1.51680   64.20
21       ∞    0.400
像面       ∞
 非球面データ
第1面
K=0.0000e+000,A4=3.8545e-004,A6=2.6066e-005,A8=-6.8754e-007,A10=-7.8459e-008,A12=4.8239e-009,A14=-6.5778e-011
第2面
K=0.0000e+000,A4=1.8376e-004,A6=1.1801e-004,A8=-2.0932e-005,A10=2.9388e-006,A12=-2.1722e-007,A14=6.3468e-009
第11面
K=0.0000e+000,A4=2.1504e-004,A6=-4.8405e-004,A8=1.5628e-004,A10=-3.0274e-005,A12=5.5408e-006,A14=-8.0007e-007
第12面
K=0.0000e+000,A4=-1.2126e-003,A6=8.6946e-005,A8=2.2682e-004,A10=-2.1632e-005,A12=-3.2880e-006,A14=-9.6066e-009
第13面
K=0.0000e+000,A4=-3.0956e-003,A6=2.6923e-004,A8=2.9544e-004,A10=-5.5887e-005,A12=5.6881e-006,A14=-2.1833e-007
第14面
K=0.0000e+000,A4=6.6295e-003,A6=-9.6880e-004,A8=3.5489e-004,A10=-2.1213e-005,A12=1.0166e-006,A14=-2.4370e-007
第18面
K=0.0000e+000,A4=-8.4454e-003,A6=1.6796e-003,A8=-1.2391e-003,A10=2.8521e-004,A12=-5.8969e-006,A14=-1.1574e-006
第19面
K=0.0000e+000,A4=-7.7507e-003,A6=8.7590e-004,A8=-4.0806e-004,A10=6.7326e-005,A12=8.7418e-007,A14=-1.5997e-007
 可変間距離(Variable Distance)
             広角端   中間点   望遠端
第6面と第7面間     0.71750   1.56830   0.48000
第9面と第10面間    6.09528   2.22400   0.40000
第17面と第18面間   2.25782   2.80860   4.12740
第19面と第20面間   1.09845   3.56814   5.16164
 各種データ
ズームデータ
ズーム比ft/fw  3.2
         広角   中間   望遠
焦点距離    3.802   7.600   12.160
Fナンバ    2.874   4.332   5.798
画角      38.252   21.257   13.553
像高      2.900   2.900   2.900
レンズ全長   28.653   28.653   28.653
BF      1.762   4.232   5.825
 ズームレンズ群データ
群   始面   終面   光学的パワー 焦点距離
1   1    6    -0.01074    -93.0788
2   7    9    -0.10621    -9.4157
3   10  17     0.18739     5.3364
4   18  19    -0.12825    -7.7974
 以上のようなレンズ配置、構成のもとでの、実施例5の撮像レンズ1Eにおける球面収差(正弦条件)、非点収差および歪曲収差を図42ないし図44に示す。
[実施例6]
 図14は、実施例6における変倍光学系におけるレンズ群の配列を示す断面図である。図45ないし図47は、実施例6における変倍光学系の収差図である。
 実施例6の変倍光学系1Fは、図14に示すように、各レンズ群(Gr1、Gr2、Gr3、Gr4)が物体側から像側へ順に、全体として負の光学的パワーを有する第1レンズ群(Gr1)と、全体として負の光学的パワーを有する第2レンズ群(Gr2)と、光学絞りSTを含む全体として正の光学的パワーを有する第3レンズ群(Gr3)と、全体として負の光学的パワーを有する第4レンズ群(Gr4)とからなる負・負・正・負の4成分ズーム構成であり、広角端(W)から望遠端(T)へのズーミングの際には、図7に示すように、第1レンズ群(Gr1)は、固定され、第2レンズ群(Gr1)と第3レンズ群(Gr3)とは、それらの間隔が減少するように移動し、第4レンズ群(Gr2、Gr3、Gr4)は、物体側に移動し、光学絞りSTは、第3レンズ群(Gr3)と共に移動する。そして、第3レンズ群Gr3と第4レンズ群Gr4とは、それら間隔が増大するように移動する。
 より詳しくは、実施例6の変倍光学系1Fは、各レンズ群(Gr1、Gr2、Gr3、Gr4)が物体側から像側へ順に、次のように構成されている。
 第1レンズ群(Gr1)は、物体側に凸の負メニスカスレンズ(第1レンズL1)と、プリズム(L2)とから構成されて成る。
 第2レンズ群(Gr2)は、両凹の負レンズ(第3レンズL3)と、物体側に凸の正メニスカスレンズ(第4レンズL4)とから構成されて成る。第3レンズL3と第4レンズL4とは、接合レンズである。
 第3レンズ群(Gr3)は、光学絞りSTと、両凸の正レンズ(第5レンズL5)と、両凸の正レンズ(第6レンズL6)と、両凹の負レンズ(第7レンズL7)と、両凸の正レンズ(第8レンズL8)とから構成されて成る。光学絞りSTは、第5レンズL5の物体側に配置され、第3レンズ群(Gr3)と共に移動する。光学絞りSTは、メカニカルシャッタであってもよい。第6レンズL6と第7レンズL7と第8レンズL8とは、接合レンズである。第5レンズL5は、両面が非球面である。
 第4レンズ群(Gr4)は、像側に凸の負メニスカスレンズ(第9レンズL9)から構成されて成る。第9レンズL9は、両面が非球面であり、樹脂材料製レンズである。
 そして、第4レンズ群(Gr4)の像側には、フィルタとしての平行平板FTを介して撮像素子SRの受光面が配置されている。平行平板FTは、各種光学フィルタや撮像素子のカバーガラス等である。
 この実施例6の変倍光学系1Fでは、広角端(WIDE)から中間点(MIDDLE)を経て望遠端(TELE)への変倍時に、図7に示すように、第1レンズ群(Gr1)は、固定され、第2レンズ群(Gr2)は、略中間点で像側に凸となる曲線を描くように移動され、第3レンズ群(Gr3)は、物体に近づく方向に略直線的に移動され、第4レンズ群(Gr4)は、物体に近づく方向に第3レンズ群(Gr3)の移動量に較べて緩やかに略直線的に移動され、そして、光学絞りSTは、第3レンズ群(Gr3)と共に移動する。このように広角端(WIDE)から望遠端(TELE)への変倍において、第2ないし第4レンズ群(Gr2、Gr3、Gr4)は、移動し、第1レンズ群(Gr1)と第3レンズ群(Gr3)および第4レンズ群(Gr4)のぞれぞれとは、互いの間隔が狭くなるように移動する。
 実施例6の変倍光学系1Fにおける、各レンズのコンストラクションデータを以下に示す。
 数値実施例6
単位 mm
面データ
面番号      r    d    nd    νd
物面       ∞    ∞
1       6.721   0.600   1.94595   17.98
2       3.949   1.433
3        ∞    5.452   1.84666   23.78
4        ∞    可変
5      -16.659   0.600   1.77250   49.65
6       4.547   0.918   1.92286   20.88
7       17.317    可変
8(絞り)   ∞     0.000
9*      4.715   1.695   1.58311   59.46
10*     -6.965   0.100
11      12.801   1.391   1.49700   81.61
12      -6.327   0.600   1.83400   37.35
13      3.667   2.148   1.49700   81.61
14      -4.136    可変
15*     -2.786   0.600   1.53048   55.72
16*     -9.115    可変
17       ∞    0.500   1.51680   64.20
18       ∞    0.500
像面       ∞
 非球面データ
第9面
K=0.0000e+000,A4=-1.0044e-003,A6=-1.2825e-003,A8=9.2072e-004,A10=-3.6873e-004,A12=7.6630e-005,A14=-6.5788e-006
第10面
K=0.0000e+000,A4=2.8567e-003,A6=-1.5447e-003,A8=1.1243e-003,A10=-4.3896e-004,A12=8.6612e-005,A14=-6.9291e-006
第15面
K=0.0000e+000,A4=6.3242e-003,A6=5.0424e-004,A8=-1.0047e-004,A10=6.9088e-005,A12=-1.3025e-005,A14=3.6981e-007
第16面
K=0.0000e+000,A4=8.2108e-004,A6=2.5420e-006,A8=-9.3843e-006,A10=-3.4472e-006,A12=2.8546e-006,A14=-4.5345e-007
 可変間距離(Variable Distance)
             広角端   中間点   望遠端
第4面と第5面間     0.600    1.386    0.600
第7面と第8面間     5.503    2.461    0.500
第14面と第15面間   3.258    3.421    4.693
第16面と第17面間   0.902    2.994    4.470
 各種データ
ズームデータ
ズーム比ft/fw  2.75
         広角   中間   望遠
焦点距離    3.805   6.317   10.460
Fナンバ    2.875   3.872   5.013
画角      38.254   25.404   16.003
像高      3.000   3.000   3.000
レンズ全長   26.630   26.630   26.630
BF      1.732   3.824   5.299
 ズームレンズ群データ
群   始面   終面   焦点距離
1   1    4    -11.314
2   5    7    -14.871
3   8   14     5.351
4   15  16     -7.821
 以上のようなレンズ配置、構成のもとでの、実施例6の撮像レンズ1Fにおける球面収差(正弦条件)、非点収差および歪曲収差を図45ないし図47に示す。
[実施例7]
 図15は、実施例7における変倍光学系におけるレンズ群の配列を示す断面図である。図48ないし図50は、実施例7における変倍光学系の収差図である。
 実施例7の変倍光学系1Gは、図15に示すように、各レンズ群(Gr1、Gr2、Gr3、Gr4)が物体側から像側へ順に、全体として負の光学的パワーを有する第1レンズ群(Gr1)と、全体として負の光学的パワーを有する第2レンズ群(Gr2)と、光学絞りSTを含む全体として正の光学的パワーを有する第3レンズ群(Gr3)と、全体として負の光学的パワーを有する第4レンズ群(Gr4)とからなる負・負・正・負の4成分ズーム構成であり、広角端(W)から望遠端(T)へのズーミングの際には、図7に示すように、第1レンズ群(Gr1)は、固定され、第2レンズ群(Gr1)と第3レンズ群(Gr3)とは、それらの間隔が減少するように移動し、第4レンズ群(Gr2、Gr3、Gr4)は、物体側に移動し、光学絞りSTは、第3レンズ群(Gr3)と共に移動する。そして、第3レンズ群Gr3と第4レンズ群Gr4とは、それら間隔が増大するように移動する。
 より詳しくは、実施例7の変倍光学系1Gは、各レンズ群(Gr1、Gr2、Gr3、Gr4)が物体側から像側へ順に、次のように構成されている。
 第1レンズ群(Gr1)は、物体側に凸の負メニスカスレンズ(第1レンズL1)と、プリズム(L2)とから構成されて成る。
 第2レンズ群(Gr2)は、両凹の負レンズ(第3レンズL3)と、物体側に凸の正メニスカスレンズ(第4レンズL4)とから構成されて成る。第3レンズL3と第4レンズL4とは、接合レンズである。
 第3レンズ群(Gr3)は、光学絞りSTと、両凸の正レンズ(第5レンズL5)と、両凸の正レンズ(第6レンズL6)と、両凹の負レンズ(第7レンズL7)と、両凸の正レンズ(第8レンズL8)と、両凸の正レンズ(第9レンズL9)とから構成されて成る。光学絞りSTは、第5レンズL5の物体側に配置され、第3レンズ群(Gr3)と共に移動する。光学絞りSTは、メカニカルシャッタであってもよい。第6レンズL6と第7レンズL7と第8レンズL8とは、接合レンズである。第5レンズL5および第9レンズL9は、両面が非球面である。第9レンズL9は、樹脂材料製レンズである。
 第4レンズ群(Gr4)は、像側に凸の負メニスカスレンズ(第10レンズL10)から構成されて成る。第10レンズL10は、両面が非球面であり、樹脂材料製レンズである。
 そして、第4レンズ群(Gr4)の像側には、フィルタとしての平行平板FTを介して撮像素子SRの受光面が配置されている。平行平板FTは、各種光学フィルタや撮像素子のカバーガラス等である。
 この実施例7の変倍光学系1Gでは、広角端(WIDE)から中間点(MIDDLE)を経て望遠端(TELE)への変倍時に、図7に示すように、第1レンズ群(Gr1)は、固定され、第2レンズ群(Gr2)は、略中間点で像側に凸となる曲線を描くように移動され、第3レンズ群(Gr3)は、物体に近づく方向に略直線的に移動され、第4レンズ群(Gr4)は、物体に近づく方向に第3レンズ群(Gr3)の移動量に較べて緩やかに略直線的に移動され、そして、光学絞りSTは、第3レンズ群(Gr3)と共に移動する。このように広角端(WIDE)から望遠端(TELE)への変倍において、第2ないし第4レンズ群(Gr2、Gr3、Gr4)は、移動し、第1レンズ群(Gr1)と第3レンズ群(Gr3)および第4レンズ群(Gr4)のぞれぞれとは、互いの間隔が狭くなるように移動する。
 実施例7の変倍光学系1Gにおける、各レンズのコンストラクションデータを以下に示す。
 数値実施例7
単位 mm
面データ
面番号      r    d    nd    νd
物面       ∞    ∞
1       7.304   0.670   1.98959   21.17
2       4.082   1.340
3        ∞    5.367   1.84666   23.78
4        ∞    可変
5      -14.849   0.600   1.75450   51.57
6       5.114   0.872   1.93187   21.15
7       19.758    可変
8(絞り)    ∞    0.000
9*      4.258   1.529   1.58311   59.46
10*    -14.877   0.100
11      6.652   1.498   1.49700   81.61
12      -6.991   0.600   1.83797   36.26
13      3.354   1.751   1.49928   79.11
14     -20.555   0.100
15*     14.299   0.860   1.53048   55.72
16*    -10.295    可変
17*     -3.069   0.600   1.53048   55.72
18*    -10.575    可変
19       ∞    0.500   1.51680   64.20
20       ∞    0.500
像面       ∞
 非球面データ
第9面
K=0.0000e+000,A4=-2.6253e-004,A6=-1.0823e-003,A8=9.2455e-004,A10=-3.9021e-004,A12=8.0870e-005,A14=-6.5788e-006
第10面
K=0.0000e+000,A4=1.7692e-003,A6=-1.1201e-003,A8=9.6580e-004,A10=-4.0981e-004,A12=8.5162e-005,A14=-6.9291e-006
第15面
K=0.0000e+000,A4=-2.4645e-004,A6=-5.7983e-004,A8=-3.7534e-005,A10=-1.2560e-005
第16面
K=0.0000e+000,A4=5.1213e-004,A6=-4.3529e-004,A8=-7.3927e-005,A10=-6.2700e-007
第17面
K=0.0000e+000,A4=4.9310e-003,A6=-2.0820e-004,A8=-1.7118e-004,A10=1.0396e-004,A12=-1.3025e-005,A14=3.6981e-007
第18面
K=0.0000e+000,A4=1.0164e-003,A6=-4.0033e-004,A8=-5.2341e-006,A10=9.2486e-006,A12=2.8546e-006,A14=-4.5345e-007
 可変間距離(Variable Distance)
             広角端   中間点   望遠端
第4面と第5面間     0.600    1.431    0.600
第7面と第8面間     5.578    2.453    0.500
第16面と第17面間   2.813    3.107    4.734
第18面と第19面間   0.921    2.921    4.078
 各種データ
ズームデータ
ズーム比ft/fw  2.75
         広角   中間   望遠
焦点距離    3.804   6.316   10.459
Fナンバ    2.876   3.867   4.988
画角      37.791   25.037   15.751
像高      2.950   2.950   2.950
レンズ全長   26.630   26.630   26.630
BF      1.750   3.751   4.907
 ズームレンズ群データ
群   始面   終面   焦点距離
1   1    4    -10.428
2   5    7    -15.664
3   8   16     5.405
4   17  18     -8.382
 以上のようなレンズ配置、構成のもとでの、実施例7の撮像レンズ1Gにおける球面収差(正弦条件)、非点収差および歪曲収差を図48ないし図50に示す。
[実施例8]
 図16は、実施例8における変倍光学系におけるレンズ群の配列を示す断面図である。図51ないし図53は、実施例8における変倍光学系の収差図である。
 実施例8の変倍光学系1Hは、図16に示すように、各レンズ群(Gr1、Gr2、Gr3、Gr4)が物体側から像側へ順に、全体として負の光学的パワーを有する第1レンズ群(Gr1)と、全体として負の光学的パワーを有する第2レンズ群(Gr2)と、光学絞りSTを含む全体として正の光学的パワーを有する第3レンズ群(Gr3)と、全体として負の光学的パワーを有する第4レンズ群(Gr4)とからなる負・負・正・負の4成分ズーム構成であり、広角端(W)から望遠端(T)へのズーミングの際には、図11に示すように、第1レンズ群(Gr1)は、固定され、第2レンズ群(Gr1)と第3レンズ群(Gr3)とは、それらの間隔が減少するように移動し、第4レンズ群(Gr2、Gr3、Gr4)は、物体側に移動し、光学絞りSTは、第3レンズ群(Gr3)と共に移動する。そして、第3レンズ群Gr3と第4レンズ群Gr4とは、それら間隔が増大するように移動する。
 より詳しくは、実施例8の変倍光学系1Hは、各レンズ群(Gr1、Gr2、Gr3、Gr4)が物体側から像側へ順に、次のように構成されている。
 第1レンズ群(Gr1)は、物体側に凸の負メニスカスレンズ(第1レンズL1)と、プリズム(L2)とから構成されて成る。
 第2レンズ群(Gr2)は、両凹の負レンズ(第3レンズL3)と、物体側に凸の正メニスカスレンズ(第4レンズL4)とから構成されて成る。第3レンズL3と第4レンズL4とは、接合レンズである。
 第3レンズ群(Gr3)は、光学絞りSTと、両凸の正レンズ(第5レンズL5)と、物体側に凸の正メニスカスレンズ(第6レンズL6)と、両凹の負レンズ(第7レンズL7)とから構成されて成る。光学絞りSTは、第5レンズL5の物体側に配置され、第3レンズ群(Gr3)と共に移動する。光学絞りSTは、メカニカルシャッタであってもよい。第6レンズL6と第7レンズL7とは、接合レンズである。第5レンズL5は、両面が非球面である。第7レンズL7は、像側の片面が非球面である。
 第4レンズ群(Gr4)は、像側に凸の負メニスカスレンズ(第8レンズL8)から構成されて成る。第8レンズL8は、両面が非球面であり、樹脂材料製レンズである。
 そして、第4レンズ群(Gr4)の像側には、フィルタとしての平行平板FTを介して撮像素子SRの受光面が配置されている。平行平板FTは、各種光学フィルタや撮像素子のカバーガラス等である。
 この実施例8の変倍光学系1Hでは、広角端(WIDE)から中間点(MIDDLE)を経て望遠端(TELE)への変倍時に、図11に示すように、第1レンズ群(Gr1)は、固定され、第2レンズ群(Gr2)は、略中間点で像側に凸となる曲線を描くように移動され、第3レンズ群(Gr3)は、物体に近づく方向に略直線的に移動され、第4レンズ群(Gr4)は、物体に近づく方向に曲線的(物体側に凸となる曲線)に移動され、そして、光学絞りSTは、第3レンズ群(Gr3)と共に移動する。このように広角端(WIDE)から望遠端(TELE)への変倍において、第2ないし第4レンズ群(Gr2、Gr3、Gr4)は、移動し、第1レンズ群(Gr1)と第3レンズ群(Gr3)および第4レンズ群(Gr4)のぞれぞれとは、互いの間隔が狭くなるように移動する。
 実施例8の変倍光学系1Hにおける、各レンズのコンストラクションデータを以下に示す。
 数値実施例8
単位 mm
面データ
面番号      r    d    nd    νd
物面       ∞    ∞
1       9.395   0.600   1.93755   23.80
2       4.142   1.310
3        ∞    5.153   1.84666   23.78
4        ∞    可変
5      -18.943   0.600   1.72364   47.58
6       5.683   0.857   2.00170   20.60
7       21.138    可変
8(絞り)    ∞    0.000
9*      3.772   1.685   1.58311   59.46
10*    -10.142   0.498
11     106.601   1.067   1.87254   28.95
12      3.000   2.193   1.58311   59.46
13*     -8.420    可変
14*     -3.684   0.600   1.53048   55.72
15*    -10.407    可変
16       ∞    0.500   1.51680   64.20
17       ∞    0.500
像面       ∞
 非球面データ
第9面
K=0.0000e+000,A4=-7.0686e-004,A6=-1.4195e-003,A8=1.0492e-003,A10=-3.9987e-004,A12=7.5284e-005,A14=-5.5970e-006
第10面
K=0.0000e+000,A4=3.2708e-003,A6=-1.3975e-003,A8=1.0920e-003,A10=-4.3907e-004,A12=8.6928e-005,A14=-6.7744e-006
第13面
K=0.0000e+000,A4=3.0074e-004,A6=1.7234e-004,A8=6.1177e-006,A10=4.0308e-006
第14面
K=0.0000e+000,A4=1.1139e-003,A6=-1.2713e-004,A8=2.5909e-004,A10=3.9583e-006,A12=-1.3025e-005,A14=3.6982e-007
第15面
K=0.0000e+000,A4=-6.0157e-004,A6=-2.0635e-004,A8=2.0617e-004,A10=-3.4752e-005,A12=2.8546e-006,A14=-4.5344e-007
 可変間距離(Variable Distance)
             広角端   中間点   望遠端
第4面と第5面間     0.600    1.635    0.600
第7面と第8面間     5.915    2.402    0.500
第13面と第14面間   3.605    3.473    5.087
第15面と第16面間   1.027    3.638    4.961
 各種データ
ズームデータ
ズーム比ft/fw  2.75
         広角   中間   望遠
焦点距離    3.804   6.316   10.458
Fナンバ    2.876   3.920   5.109
画角      37.791   25.036   15.752
像高      2.950   2.950   2.950
レンズ全長   26.539   26.540   26.540
BF      1.857   4.468   5.791
 ズームレンズ群データ
群   始面   終面   焦点距離
1   1    4    -8.365
2   5    7    -27.465
3   8   13     5.632
4   14  15    -11.095
 以上のようなレンズ配置、構成のもとでの、実施例8の撮像レンズ1Hにおける球面収差(正弦条件)、非点収差および歪曲収差を図51ないし図53に示す。
[実施例9]
 図17は、実施例9における変倍光学系におけるレンズ群の配列を示す断面図である。図54ないし図56は、実施例9における変倍光学系の収差図である。
 実施例9の変倍光学系1Iは、図17に示すように、各レンズ群(Gr1、Gr2、Gr3、Gr4)が物体側から像側へ順に、全体として負の光学的パワーを有する第1レンズ群(Gr1)と、全体として負の光学的パワーを有する第2レンズ群(Gr2)と、光学絞りSTを含む全体として正の光学的パワーを有する第3レンズ群(Gr3)と、全体として負の光学的パワーを有する第4レンズ群(Gr4)とからなる負・負・正・負の4成分ズーム構成であり、広角端(W)から望遠端(T)へのズーミングの際には、図11に示すように、第1レンズ群(Gr1)は、固定され、第2レンズ群(Gr1)と第3レンズ群(Gr3)とは、それらの間隔が減少するように移動し、第4レンズ群(Gr2、Gr3、Gr4)は、物体側に移動し、光学絞りSTは、第3レンズ群(Gr3)と共に移動する。そして、第3レンズ群Gr3と第4レンズ群Gr4とは、それら間隔が増大するように移動する。
 より詳しくは、実施例9の変倍光学系1Iは、各レンズ群(Gr1、Gr2、Gr3、Gr4)が物体側から像側へ順に、次のように構成されている。
 第1レンズ群(Gr1)は、物体側に凸の負メニスカスレンズ(第1レンズL1)と、プリズム(L2)とから構成されて成る。
 第2レンズ群(Gr2)は、両凹の負レンズ(第3レンズL3)と、物体側に凸の正メニスカスレンズ(第4レンズL4)とから構成されて成る。第3レンズL3と第4レンズL4とは、接合レンズである。
 第3レンズ群(Gr3)は、光学絞りSTと、両凸の正レンズ(第5レンズL5)と、像側に凸の負メニスカスレンズ(第6レンズL6)とから構成されて成る。光学絞りSTは、第5レンズL5の物体側に配置され、第3レンズ群(Gr3)と共に移動する。光学絞りSTは、メカニカルシャッタであってもよい。第5および第6レンズL5、L6は、両面が非球面である。
 第4レンズ群(Gr4)は、両凹負レンズ(第7レンズL7)から構成されて成る。第7レンズL7は、両面が非球面であり、樹脂材料製レンズである。
 そして、第4レンズ群(Gr4)の像側には、フィルタとしての平行平板FTを介して撮像素子SRの受光面が配置されている。平行平板FTは、各種光学フィルタや撮像素子のカバーガラス等である。
 この実施例9の変倍光学系1Iでは、広角端(WIDE)から中間点(MIDDLE)を経て望遠端(TELE)への変倍時に、図11に示すように、第1レンズ群(Gr1)は、固定され、第2レンズ群(Gr2)は、略中間点で像側に凸となる曲線を描くように移動され、第3レンズ群(Gr3)は、物体に近づく方向に略直線的に移動され、第4レンズ群(Gr4)は、物体に近づく方向に曲線的(物体側に凸となる曲線)に移動され、そして、光学絞りSTは、第3レンズ群(Gr3)と共に移動する。このように広角端(WIDE)から望遠端(TELE)への変倍において、第2ないし第4レンズ群(Gr2、Gr3、Gr4)は、移動し、第1レンズ群(Gr1)と第3レンズ群(Gr3)および第4レンズ群(Gr4)のぞれぞれとは、互いの間隔が狭くなるように移動する。
 実施例9の変倍光学系1Iにおける、各レンズのコンストラクションデータを以下に示す。
 数値実施例9
単位 mm
面データ
面番号      r    d    nd    νd
物面       ∞    ∞
1       12.669   0.600   1.80958   40.41
2       4.374   1.215
3        ∞    5.317   1.84666   23.78
4        ∞    可変
5      -24.560   0.600   1.70986   34.56
6       5.962   0.848   2.00170   20.60
7       19.523    可変
8(絞り)    ∞    0.000
9*      3.084   2.075   1.58311   59.46
10*     -4.254   0.100
11*     -4.404   0.971   1.80542   26.13
12*    -39.174    可変
13*    -19.330   1.402   1.53048   55.72
14*     47.041    可変
15       ∞    0.500   1.51680   64.20
16       ∞    0.500
像面       ∞
 非球面データ
第9面
K=0.0000e+000,A4=-1.0156e-005,A6=-1.3311e-003,A8=9.3195e-004,A10=-3.7651e-004,A12=7.1993e-005,A14=-5.4617e-006
第10面
K=0.0000e+000,A4=5.3824e-003,A6=-1.6516e-004,A8=1.0221e-003,A10=-4.1301e-004,A12=7.9565e-005,A14=-6.9753e-006
第11面
K=0.0000e+000,A4=4.5913e-003,A6=1.4999e-003,A8=3.0809e-004,A10=-7.8389e-005
第12面
K=0.0000e+000,A4=6.9369e-003,A6=1.2281e-003,A8=2.8508e-004,A10=-7.3909e-006
第13面
K=0.0000e+000,A4=-9.4339e-003,A6=-1.7534e-004,A8=1.8831e-004,A10=7.7955e-006,A12=-1.2145e-005,A14=4.0258e-007
第14面
K=0.0000e+000,A4=-8.5347e-003,A6=7.2150e-005,A8=1.8312e-004,A10=-4.5277e-005,A12=5.2398e-006,A14=-4.4296e-007
 可変間距離(Variable Distance)
             広角端   中間点   望遠端
第4面と第5面間     0.600    2.553    0.600
第7面と第8面間     6.362    1.765    0.500
第12面と第13面間   4.199    3.976    5.730
第14面と第15面間   1.327    4.194    5.658
 各種データ
ズームデータ
ズーム比ft/fw  2.75
         広角   中間   望遠
焦点距離    3.802   6.315   10.454
Fナンバ    2.877   3.856   5.049
画角      37.805   25.039   15.758
像高      2.950   2.950   2.950
レンズ全長   26.444   26.444   26.444
BF      2.156   5.024   6.487
 ズームレンズ群データ
群   始面   終面   焦点距離
1   1    4    -8.528
2   5    7    -32.422
3   8   12     5.778
4   13  14    -25.639
 以上のようなレンズ配置、構成のもとでの、実施例9の撮像レンズ1Iにおける球面収差(正弦条件)、非点収差および歪曲収差を図54ないし図56に示す。
[実施例10]
 図18は、実施例10における変倍光学系におけるレンズ群の配列を示す断面図である。図57ないし図59は、実施例10における変倍光学系の収差図である。
 実施例10の変倍光学系1Jは、図18に示すように、各レンズ群(Gr1、Gr2、Gr3、Gr4)が物体側から像側へ順に、全体として負の光学的パワーを有する第1レンズ群(Gr1)と、全体として負の光学的パワーを有する第2レンズ群(Gr2)と、光学絞りSTを含む全体として正の光学的パワーを有する第3レンズ群(Gr3)と、全体として負の光学的パワーを有する第4レンズ群(Gr4)とからなる負・負・正・負の4成分ズーム構成であり、広角端(W)から望遠端(T)へのズーミングの際には、図7に示すように、第1レンズ群(Gr1)は、固定され、第2レンズ群(Gr1)と第3レンズ群(Gr3)とは、それらの間隔が減少するように移動し、第4レンズ群(Gr2、Gr3、Gr4)は、物体側に移動し、光学絞りSTは、第3レンズ群(Gr3)と共に移動する。そして、第3レンズ群Gr3と第4レンズ群Gr4とは、それら間隔が増大するように移動する。
 より詳しくは、実施例10の変倍光学系1Jは、各レンズ群(Gr1、Gr2、Gr3、Gr4)が物体側から像側へ順に、次のように構成されている。
 第1レンズ群(Gr1)は、物体側に凸の負メニスカスレンズ(第1レンズL1)と、プリズム(L2)とから構成されて成る。
 第2レンズ群(Gr2)は、両凹の負レンズ(第3レンズL3)と、物体側に凸の正メニスカスレンズ(第4レンズL4)とから構成されて成る。第3レンズL3と第4レンズL4とは、接合レンズである。
 第3レンズ群(Gr3)は、光学絞りSTと、両凸の正レンズ(第5レンズL5)と、両凸の正レンズ(第6レンズL6)と、両凹の負レンズ(第7レンズL7)と、両凸の正レンズ(第8レンズL8)とから構成されて成る。光学絞りSTは、第5レンズL5の物体側に配置され、第3レンズ群(Gr3)と共に移動する。光学絞りSTは、メカニカルシャッタであってもよい。第6レンズL6と第7レンズL7と第8レンズL8とは、接合レンズである。第5レンズL5は、両面が非球面である。
 第4レンズ群(Gr4)は、像側に凸の負メニスカスレンズ(第9レンズL9)から構成されて成る。第9レンズL9は、両面が非球面であり、樹脂材料製レンズである。
 そして、第4レンズ群(Gr4)の像側には、フィルタとしての平行平板FTを介して撮像素子SRの受光面が配置されている。平行平板FTは、各種光学フィルタや撮像素子のカバーガラス等である。
 この実施例10の変倍光学系1Jでは、広角端(WIDE)から中間点(MIDDLE)を経て望遠端(TELE)への変倍時に、図7に示すように、第1レンズ群(Gr1)は、固定され、第2レンズ群(Gr2)は、略中間点で像側に凸となる曲線を描くように移動され、第3レンズ群(Gr3)は、物体に近づく方向に略直線的に移動され、第4レンズ群(Gr4)は、物体に近づく方向に第3レンズ群(Gr3)の移動量に較べて緩やかに略直線的に移動され、そして、光学絞りSTは、第3レンズ群(Gr3)と共に移動する。このように広角端(WIDE)から望遠端(TELE)への変倍において、第2ないし第4レンズ群(Gr2、Gr3、Gr4)は、移動し、第1レンズ群(Gr1)と第3レンズ群(Gr3)および第4レンズ群(Gr4)のぞれぞれとは、互いの間隔が狭くなるように移動する。
 実施例10の変倍光学系1Jにおける、各レンズのコンストラクションデータを以下に示す。
 数値実施例10
単位 mm
面データ
面番号      r    d    nd    νd
物面       ∞    ∞
1       6.714   0.635   1.94595   17.98
2       3.955   1.415
3        ∞    5.468   1.84666   23.78
4        ∞    可変
5      -16.384   0.600   1.77250   49.65
6       4.606   0.911   1.92286   20.88
7       17.472    可変
8(絞り)    ∞    0.000
9*      4.620   1.600   1.58311   59.46
10*     -6.632   0.100
11      14.580   1.391   1.48749   70.45
12      -5.825   0.600   1.83400   37.35
13      3.645   2.171   1.49700   81.61
14      -3.987    可変
15*     -2.710   0.600   1.53048   55.72
16*     -8.172    可変
17       ∞    0.500   1.51680   64.20
18       ∞    0.500
像面       ∞
 非球面データ
第9面
K=0.0000e+000,A4=-1.0042e-003,A6=-1.3530e-003,A8=9.4547e-004,A10=-3.7128e-004,A12=7.6462e-005,A14=-6.5788e-006
第10面
K=0.0000e+000,A4=3.0978e-003,A6=-1.5630e-003,A8=1.1148e-003,A10=-4.3162e-004,A12=8.5384e-005,A14=-6.9291e-006
第15面
K=0.0000e+000,A4=6.7923e-003,A6=5.9300e-004,A8=-9.4708e-005,A10=6.2272e-005,A12=-1.0587e-005,A14=3.6981e-007
第16面
K=0.0000e+000,A4=8.5225e-004,A6=2.3866e-005,A8=-1.2788e-005,A10=-4.9293e-006,A12=3.2924e-006,A14=-4.5345e-007
 可変間距離(Variable Distance)
             広角端   中間点   望遠端
第4面と第5面間     0.600    1.380    0.600
第7面と第8面間     5.524    2.477    0.500
第14面と第15面間   3.283    3.441    4.736
第16面と第17面間   0.902    3.010    4.473
 各種データ
ズームデータ
ズーム比ft/fw  2.75
         広角   中間   望遠
焦点距離    3.818   6.339   10.497
Fナンバ    2.875   3.868   5.001
画角      37.691   24.955   15.697
像高      2.950   2.950   2.950
レンズ全長   26.630   26.630   26.630
BF      1.732   3.840   5.303
 ズームレンズ群データ
群   始面   終面   焦点距離
1   1    4    -11.454
2   5    7    -14.707
3   8   14     5.359
4   15  16     -7.945
 以上のようなレンズ配置、構成のもとでの、実施例10の撮像レンズ1Jにおける球面収差(正弦条件)、非点収差および歪曲収差を図57ないし図59に示す。
[実施例11]
 図19は、実施例11における変倍光学系におけるレンズ群の配列を示す断面図である。図60ないし図62は、実施例11における変倍光学系の収差図である。
 実施例11の変倍光学系1Kは、図19に示すように、各レンズ群(Gr1、Gr2、Gr3、Gr4)が物体側から像側へ順に、全体として負の光学的パワーを有する第1レンズ群(Gr1)と、全体として負の光学的パワーを有する第2レンズ群(Gr2)と、光学絞りSTを含む全体として正の光学的パワーを有する第3レンズ群(Gr3)と、全体として負の光学的パワーを有する第4レンズ群(Gr4)とからなる負・負・正・負の4成分ズーム構成であり、広角端(W)から望遠端(T)へのズーミングの際には、図7に示すように、第1レンズ群(Gr1)は、固定され、第2レンズ群(Gr1)と第3レンズ群(Gr3)とは、それらの間隔が減少するように移動し、第4レンズ群(Gr2、Gr3、Gr4)は、物体側に移動し、光学絞りSTは、第3レンズ群(Gr3)と共に移動する。そして、第3レンズ群Gr3と第4レンズ群Gr4とは、それら間隔が増大するように移動する。
 より詳しくは、実施例11の変倍光学系1Kは、各レンズ群(Gr1、Gr2、Gr3、Gr4)が物体側から像側へ順に、次のように構成されている。
 第1レンズ群(Gr1)は、物体側に凸の負メニスカスレンズ(第1レンズL1)と、プリズム(L2)とから構成されて成る。
 第2レンズ群(Gr2)は、両凹の負レンズ(第3レンズL3)と、物体側に凸の正メニスカスレンズ(第4レンズL4)とから構成されて成る。第3レンズL3と第4レンズL4とは、接合レンズである。
 第3レンズ群(Gr3)は、光学絞りSTと、両凸の正レンズ(第5レンズL5)と、両凸の正レンズ(第6レンズL6)と、両凹の負レンズ(第7レンズL7)と、両凸の正レンズ(第8レンズL8)とから構成されて成る。光学絞りSTは、第5レンズL5の物体側に配置され、第3レンズ群(Gr3)と共に移動する。光学絞りSTは、メカニカルシャッタであってもよい。第6レンズL6と第7レンズL7と第8レンズL8とは、接合レンズである。第5レンズL5は、両面が非球面である。
 第4レンズ群(Gr4)は、像側に凸の負メニスカスレンズ(第9レンズL9)から構成されて成る。第9レンズL9は、両面が非球面であり、樹脂材料製レンズである。
 そして、第4レンズ群(Gr4)の像側には、フィルタとしての平行平板FTを介して撮像素子SRの受光面が配置されている。平行平板FTは、各種光学フィルタや撮像素子のカバーガラス等である。
 この実施例11の変倍光学系1Kでは、広角端(WIDE)から中間点(MIDDLE)を経て望遠端(TELE)への変倍時に、図7に示すように、第1レンズ群(Gr1)は、固定され、第2レンズ群(Gr2)は、略中間点で像側に凸となる曲線を描くように移動され、第3レンズ群(Gr3)は、物体に近づく方向に略直線的に移動され、第4レンズ群(Gr4)は、物体に近づく方向に第3レンズ群(Gr3)の移動量に較べて緩やかに略直線的に移動され、そして、光学絞りSTは、第3レンズ群(Gr3)と共に移動する。このように広角端(WIDE)から望遠端(TELE)への変倍において、第2ないし第4レンズ群(Gr2、Gr3、Gr4)は、移動し、第1レンズ群(Gr1)と第3レンズ群(Gr3)および第4レンズ群(Gr4)のぞれぞれとは、互いの間隔が狭くなるように移動する。
 実施例11の変倍光学系1Kにおける、各レンズのコンストラクションデータを以下に示す。
 数値実施例11
単位 mm
面データ
面番号      r    d    nd    νd
物面       ∞    ∞
1       6.556   0.600   1.94595   17.98
2       4.105   1.412
3        ∞    5.536   1.84666   23.78
4        ∞    可変
5      -14.518   0.600   1.77250   49.65
6       5.141   0.875   1.92286   20.88
7       20.333    可変
8(絞り)    ∞    0.000
9*      4.614   1.608   1.58311   59.46
10*     -6.878   0.100
11      12.150   1.439   1.48749   70.45
12      -5.583   0.600   1.83400   37.35
13      3.566   2.194   1.48749   70.45
14      -3.896    可変
15*     -2.569   0.600   1.53048   55.72
16*     -8.134    可変
17       ∞    0.500   1.51680   64.20
18       ∞    0.500
像面       ∞
 非球面データ
第9面
K=0.0000e+000,A4=-8.4639e-004,A6=-1.4187e-003,A8=9.8164e-004,A10=-3.7988e-004,A12=7.6940e-005,A14=-6.4648e-006
第10面
K=0.0000e+000,A4=2.9861e-003,A6=-1.6327e-003,A8=1.1524e-003,A10=-4.3849e-004,A12=8.5304e-005,A14=-6.7900e-006
第15面
K=0.0000e+000,A4=7.8069e-003,A6=7.8259e-004,A8=-9.5094e-005,A10=6.0600e-005,A12=-7.6162e-006,A14=3.6981e-007
第16面
K=0.0000e+000,A4=1.0540e-003,A6=5.7727e-005,A8=-2.8773e-005,A10=-3.6698e-006,A12=3.7330e-006,A14=-4.5310e-007
 可変間距離(Variable Distance)
             広角端   中間点   望遠端
第4面と第5面間     0.600    1.347    0.600
第7面と第8面間     5.516    2.516    0.500
第14面と第15面間   3.208    3.355    4.532
第16面と第17面間   0.911    3.017    4.604
 各種データ
ズームデータ
ズーム比ft/fw  2.75
         広角   中間   望遠
焦点距離    4.113   6.830   11.309
Fナンバ    2.875   3.868   5.060
画角      36.105   23.713   14.856
像高      3.000   3.000   3.000
レンズ全長   26.630   26.630   26.630
BF      1.741   3.847   5.434
 ズームレンズ群データ
群   始面   終面   焦点距離
1   1    4    -13.175
2   5    7    -14.261
3   8   14     5.397
4   15  16     -7.354
 以上のようなレンズ配置、構成のもとでの、実施例11の撮像レンズ1Kにおける球面収差(正弦条件)、非点収差および歪曲収差を図60ないし図62に示す。
[実施例12]
 図20は、実施例12における変倍光学系におけるレンズ群の配列を示す断面図である。図63ないし図65は、実施例12における変倍光学系の収差図である。
 実施例12の変倍光学系1Lは、図20に示すように、各レンズ群(Gr1、Gr2、Gr3、Gr4)が物体側から像側へ順に、全体として負の光学的パワーを有する第1レンズ群(Gr1)と、全体として負の光学的パワーを有する第2レンズ群(Gr2)と、光学絞りSTを含む全体として正の光学的パワーを有する第3レンズ群(Gr3)と、全体として負の光学的パワーを有する第4レンズ群(Gr4)とからなる負・負・正・負の4成分ズーム構成であり、広角端(W)から望遠端(T)へのズーミングの際には、図11に示すように、第1レンズ群(Gr1)は、固定され、第2レンズ群(Gr1)と第3レンズ群(Gr3)とは、それらの間隔が減少するように移動し、第4レンズ群(Gr2、Gr3、Gr4)は、物体側に移動し、光学絞りSTは、第3レンズ群(Gr3)と共に移動する。そして、第3レンズ群Gr3と第4レンズ群Gr4とは、それら間隔が増大するように移動する。
 より詳しくは、実施例12の変倍光学系1Lは、各レンズ群(Gr1、Gr2、Gr3、Gr4)が物体側から像側へ順に、次のように構成されている。
 第1レンズ群(Gr1)は、両凹負レンズ(第1レンズL1)と、プリズム(L2)とから構成されて成る。第1レンズL1は、両面が非球面である。
 第2レンズ群(Gr2)は、両凹の負レンズ(第3レンズL3)と、両凸の正レンズ(第4レンズL4)とから構成されて成る。第3レンズL3と第4レンズL4とは、接合レンズである。
 第3レンズ群(Gr3)は、光学絞りSTと、両凸の正レンズ(第5レンズL5)と、両凸の正レンズ(第6レンズL6)と、両凹の負レンズ(第7レンズL7)と、両凸の正レンズ(第8レンズL8)とから構成されて成る。光学絞りSTは、第5レンズL5の物体側に配置され、第3レンズ群(Gr3)と共に移動する。光学絞りSTは、メカニカルシャッタであってもよい。第6レンズL6と第7レンズL7と第8レンズL8とは、接合レンズである。第5レンズL5は、両面が非球面である。第8レンズL8は、像側の面が非球面である。
 第4レンズ群(Gr4)は、両凹負レンズ(第9レンズL9)から構成されて成る。第9レンズL9は、両面が非球面である。
 そして、第4レンズ群(Gr4)の像側には、フィルタとしての平行平板FTを介して撮像素子SRの受光面が配置されている。平行平板FTは、各種光学フィルタや撮像素子のカバーガラス等である。
 この実施例12の変倍光学系1Lでは、広角端(WIDE)から中間点(MIDDLE)を経て望遠端(TELE)への変倍時に、図11に示すように、第1レンズ群(Gr1)は、固定され、第2レンズ群(Gr2)は、略中間点で像側に凸となる曲線を描くように移動され、第3レンズ群(Gr3)は、物体に近づく方向に略直線的に移動され、第4レンズ群(Gr4)は、物体に近づく方向に曲線的(物体側に凸となる曲線)に移動され、そして、光学絞りSTは、第3レンズ群(Gr3)と共に移動する。このように広角端(WIDE)から望遠端(TELE)への変倍において、第2ないし第4レンズ群(Gr2、Gr3、Gr4)は、移動し、第1レンズ群(Gr1)と第3レンズ群(Gr3)および第4レンズ群(Gr4)のぞれぞれとは、互いの間隔が狭くなるように移動する。
 実施例12の変倍光学系1Lにおける、各レンズのコンストラクションデータを以下に示す。
 数値実施例12
単位 mm
面データ
面番号      r    d    nd    νd
物面       ∞    ∞
1*     -49.349   0.600   2.00170   20.60
2*      7.047   0.623
3        ∞    4.577   1.90366   31.31
4        ∞    可変
5      -10.199   0.600   1.75108   51.74
6       7.571   0.946   1.93116   21.25
7      -25.026    可変
8(絞り)    ∞    0.000
9*      4.353   2.964   1.52328   75.17
10*     -5.632   0.100
11      28.150   1.279   1.53243   73.28
12      -9.757   0.600   1.85634   32.97
13      3.022   2.293   1.54776   51.69
14*     -5.619    可変
15*     -5.949   0.600   1.83300   37.30
16*    168.560    可変
17       ∞    0.500   1.51680   64.20
18       ∞    0.500
像面       ∞
 非球面データ
第1面
K=0.0000e+000,A4=3.8795e-003,A6=-4.4174e-004,A8=4.2557e-005,A10=-1.3452e-006
第2面
K=0.0000e+000,A4=4.6087e-003,A6=-3.1818e-004,A8=2.0676e-005,A10=3.3597e-006
第9面
K=0.0000e+000,A4=-1.7079e-003,A6=-7.9026e-004,A8=5.4668e-004,A10=-2.0447e-004,A12=3.7139e-005,A14=-2.6386e-006
第10面
K=0.0000e+000,A4=3.4784e-003,A6=-7.9376e-004,A8=4.5710e-004,A10=-1.5745e-004,A12=2.6853e-005,A14=-1.7985e-006
第14面
K=0.0000e+000,A4=-1.5118e-003,A6=9.4054e-005,A8=-4.1334e-006,A10=-4.1633e-006
第15面
K=0.0000e+000,A4=2.7199e-004,A6=2.3089e-004,A8=-2.2298e-004,A10=1.1298e-004,A12=-2.3869e-005,A14=3.0251e-007
第16面
K=0.0000e+000,A4=2.3722e-004,A6=1.0177e-004,A8=-1.4866e-004,A10=6.7275e-005,A12=-1.3722e-005,A14=7.0138e-007
 可変間距離(Variable Distance)
             広角端   中間点   望遠端
第4面と第5面間     0.600    1.461    0.600
第7面と第8面間     5.834    2.566    0.500
第14面と第15面間   3.412    2.938    4.074
第16面と第17面間   0.912    3.792    5.584
 各種データ
ズームデータ
ズーム比ft/fw  2.75
         広角   中間   望遠
焦点距離    3.805   6.314   10.456
Fナンバ    2.875   4.084   5.356
画角      39.168   26.150   16.514
像高      3.100   3.100   3.100
レンズ全長   26.770   26.770   26.770
BF      1.742   4.622   6.413
 ズームレンズ群データ
群   始面   終面   焦点距離
1   1    4    -6.123
2   5    7    -97.952
3   8   14     6.072
4   15  16    -6.888
 以上のようなレンズ配置、構成のもとでの、実施例12の撮像レンズ1Lにおける球面収差(正弦条件)、非点収差および歪曲収差を図63ないし図65に示す。
[実施例13]
 図21は、実施例13における変倍光学系におけるレンズ群の配列を示す断面図である。図66ないし図68は、実施例13における変倍光学系の収差図である。
 実施例13の変倍光学系1Mは、図21に示すように、各レンズ群(Gr1、Gr2、Gr3、Gr4)が物体側から像側へ順に、全体として負の光学的パワーを有する第1レンズ群(Gr1)と、全体として負の光学的パワーを有する第2レンズ群(Gr2)と、光学絞りSTを含む全体として正の光学的パワーを有する第3レンズ群(Gr3)と、全体として負の光学的パワーを有する第4レンズ群(Gr4)とからなる負・負・正・負の4成分ズーム構成であり、広角端(W)から望遠端(T)へのズーミングの際には、図7に示すように、第1レンズ群(Gr1)は、固定され、第2レンズ群(Gr1)と第3レンズ群(Gr3)とは、それらの間隔が減少するように移動し、第4レンズ群(Gr2、Gr3、Gr4)は、物体側に移動し、光学絞りSTは、第3レンズ群(Gr3)と共に移動する。そして、第3レンズ群Gr3と第4レンズ群Gr4とは、それら間隔が増大するように移動する。
 より詳しくは、実施例13の変倍光学系1Mは、各レンズ群(Gr1、Gr2、Gr3、Gr4)が物体側から像側へ順に、次のように構成されている。
 第1レンズ群(Gr1)は、物体側に凸の負メニスカスレンズ(第1レンズL1)と、プリズム(L2)とから構成されて成る。
 第2レンズ群(Gr2)は、両凹の負レンズ(第3レンズL3)と、物体側に凸の正メニスカスレンズ(第4レンズL4)とから構成されて成る。第3レンズL3と第4レンズL4とは、接合レンズである。
 第3レンズ群(Gr3)は、光学絞りSTと、両凸の正レンズ(第5レンズL5)と、両凸の正レンズ(第6レンズL6)と、両凹の負レンズ(第7レンズL7)と、両凸の正レンズ(第8レンズL8)とから構成されて成る。光学絞りSTは、第5レンズL5の物体側に配置され、第3レンズ群(Gr3)と共に移動する。光学絞りSTは、第5レンズL5における物体側のレンズ面に配置されている。第6レンズL6と第7レンズL7と第8レンズL8とは、接合レンズである。第5レンズL5は、両面が非球面である。
 第4レンズ群(Gr4)は、像側に凸の負メニスカスレンズ(第9レンズL9)から構成されて成る。第9レンズL9は、両面が非球面であり、樹脂材料製レンズである。
 そして、第4レンズ群(Gr4)の像側には、フィルタとしての平行平板FTを介して撮像素子SRの受光面が配置されている。平行平板FTは、各種光学フィルタや撮像素子のカバーガラス等である。
 この実施例21の変倍光学系1Mでは、広角端(WIDE)から中間点(MIDDLE)を経て望遠端(TELE)への変倍時に、図7に示すように、第1レンズ群(Gr1)は、固定され、第2レンズ群(Gr2)は、略中間点で像側に凸となる曲線を描くように移動され、第3レンズ群(Gr3)は、物体に近づく方向に略直線的に移動され、第4レンズ群(Gr4)は、物体に近づく方向に第3レンズ群(Gr3)の移動量に較べて緩やかに略直線的に移動され、そして、光学絞りSTは、第3レンズ群(Gr3)と共に移動する。このように広角端(WIDE)から望遠端(TELE)への変倍において、第2ないし第4レンズ群(Gr2、Gr3、Gr4)は、移動し、第1レンズ群(Gr1)と第3レンズ群(Gr3)および第4レンズ群(Gr4)のぞれぞれとは、互いの間隔が狭くなるように移動する。
 実施例13の変倍光学系1Mにおける、各レンズのコンストラクションデータを以下に示す。
 数値実施例13
単位 mm
面データ
面番号      r    d    nd    νd
物面       ∞    ∞
1       7.395   0.600   1.94595   17.98
2       3.902   1.467
3        ∞    5.256   1.84666   23.78
4        ∞    可変
5      -23.542   0.600   1.77250   49.65
6       4.404   0.954   1.92286   20.88
7       16.808    可変
8*(絞り)  4.542   2.019   1.58311   59.46
9*      -6.814   0.100
10      13.804   1.379   1.48749   70.45
11      -4.533   0.600   1.83400   37.35
12      3.841   1.886   1.49700   81.61
13      -3.648    可変
14*     -2.866   0.663   1.53048   55.72
15*    -16.761    可変
16       ∞    0.500   1.51680   64.20
17       ∞    0.500
像面       ∞
 非球面データ
第8面
K=0.0000e+000、A4=-7.3532e-004,A6=-9.2831e-004,A8=6.6891e-004,A10=-2.3898e-004,A12=4.3303e-005,A14=-3.1119e-006
第9面
K=0.0000e+000,A4=3.3520e-003,A6=-9.9724e-004,A8=8.2758e-004,A10=-3.3539e-004,A12=6.8770e-005,A14=-5.5550e-006
第14面
K=0.0000e+000,A4=5.7776e-003,A6=4.6291e-004,A8=3.4948e-005,A10=-3.6599e-005,A12=9.5771e-006,A14=3.6981e-007
第15面
K=0.0000e+000,A4=8.7199e-004,A6=7.9339e-005,A8=-3.1943e-005,A10=3.9834e-006,A12=-1.7621e-006,A14=5.1061e-007
 可変間距離(Variable Distance)
             広角端   中間点   望遠端
第4面と第5面間     0.600    1.417    0.600
第7面と第8面間     5.471    2.405    0.500
第13面と第14面間   3.186    3.342    4.435
第15面と第16面間   1.019    3.113    4.741
 各種データ
ズームデータ
ズーム比ft/fw  2.75
         広角   中間   望遠
焦点距離    3.805   6.317   10.460
Fナンバ    2.875   3.931   5.163
画角      39.171   26.140   16.508
像高      3.100   3.100   3.100
レンズ全長   26.630   26.630   26.630
BF      1.849   3.942   5.571
 ズームレンズ群データ
群   始面   終面   焦点距離
1   1    4     -9.528
2   5    7    -18.601
3   8   13     5.381
4   14  15     -6.626
 以上のようなレンズ配置、構成のもとでの、実施例13の撮像レンズ1Mにおける球面収差(正弦条件)、非点収差および歪曲収差を図66ないし図68に示す。
[実施例14]
 図22は、実施例14における変倍光学系におけるレンズ群の配列を示す断面図である。図69ないし図71は、実施例14における変倍光学系の収差図である。
 実施例14の変倍光学系1Nは、図22に示すように、各レンズ群(Gr1、Gr2、Gr3、Gr4)が物体側から像側へ順に、全体として負の光学的パワーを有する第1レンズ群(Gr1)と、全体として負の光学的パワーを有する第2レンズ群(Gr2)と、光学絞りSTを含む全体として正の光学的パワーを有する第3レンズ群(Gr3)と、全体として負の光学的パワーを有する第4レンズ群(Gr4)とからなる負・負・正・負の4成分ズーム構成であり、広角端(W)から望遠端(T)へのズーミングの際には、図7に示すように、第1レンズ群(Gr1)は、固定され、第2レンズ群(Gr1)と第3レンズ群(Gr3)とは、それらの間隔が減少するように移動し、第4レンズ群(Gr2、Gr3、Gr4)は、物体側に移動し、光学絞りSTは、第3レンズ群(Gr3)と共に移動する。そして、第3レンズ群Gr3と第4レンズ群Gr4とは、それら間隔が増大するように移動する。
 より詳しくは、実施例14の変倍光学系1Nは、各レンズ群(Gr1、Gr2、Gr3、Gr4)が物体側から像側へ順に、次のように構成されている。
 第1レンズ群(Gr1)は、物体側に凸の負メニスカスレンズ(第1レンズL1)と、プリズム(L2)と,像側に凸の平凸レンズ(第3レンズL3)とから構成されて成る。プリズムL2と第3レンズL3とは、接合レンズである。第1レンズL1は、両面が非球面である。
 第2レンズ群(Gr2)は、両凹の負レンズ(第4レンズL4)と、両凸の正レンズ(第5レンズL5)とから構成されて成る。第4レンズL4と第5レンズL5とは、接合レンズである。
 第3レンズ群(Gr3)は、光学絞りSTと、両凸の正レンズ(第6レンズL6)と、両凸の正レンズ(第7レンズL7)と、両凹の負レンズ(第8レンズL8)と、両凸の正レンズ(第9レンズL9)とから構成されて成る。光学絞りSTは、第6レンズL6の物体側に配置され、第3レンズ群(Gr3)と共に移動する。光学絞りSTは、メカニカルシャッタであってもよい。第8レンズL8と第9レンズL9とは、接合レンズである。第6および第7レンズL6、L7は、両面が非球面である。第9レンズL9は、樹脂材料製レンズである。
 第4レンズ群(Gr4)は、像側に凸の負メニスカスレンズ(第10レンズL10)から構成されて成る。第10レンズL10は、両面が非球面であり、樹脂材料製レンズである。
 そして、第4レンズ群(Gr4)の像側には、フィルタとしての平行平板FTを介して撮像素子SRの受光面が配置されている。平行平板FTは、各種光学フィルタや撮像素子のカバーガラス等である。
 この実施例14の変倍光学系1Nでは、広角端(WIDE)から中間点(MIDDLE)を経て望遠端(TELE)への変倍時に、図7に示すように、第1レンズ群(Gr1)は、固定され、第2レンズ群(Gr2)は、略中間点で像側に凸となる曲線を描くように移動され、第3レンズ群(Gr3)は、物体に近づく方向に略直線的に移動され、第4レンズ群(Gr4)は、物体に近づく方向に第3レンズ群(Gr3)の移動量に較べて緩やかに略直線的に移動され、そして、光学絞りSTは、第3レンズ群(Gr3)と共に移動する。このように広角端(WIDE)から望遠端(TELE)への変倍において、第2ないし第4レンズ群(Gr2、Gr3、Gr4)は、移動し、第1レンズ群(Gr1)と第3レンズ群(Gr3)および第4レンズ群(Gr3)のぞれぞれとは、互いの間隔が狭くなるように移動する。
 実施例14の変倍光学系1Nにおける、各レンズのコンストラクションデータを以下に示す。
 数値実施例14
単位 mm
面データ
面番号      r    d    nd    νd
物面       ∞    ∞
1*      12.656   0.600   2.00170   20.65
2*      5.221   1.417
3        ∞    5.583   1.84666   23.78
4        ∞    0.606   1.92286   20.88
5      -28.453    可変
6       -6.618   0.600   1.75500   52.32
7       12.770   0.946   1.92286   20.88
8      -35.126    可変
9(絞り)    ∞    0.000
10*     4.995   1.414   1.58913   61.24
11*    -113.298   0.100
12*     3.613   1.991   1.48749   70.45
13*     -4.258   0.100
14      -5.760   0.310   1.83400   37.35
15      2.415   2.924   1.48749   70.45
16      -6.632    可変
17*     -2.981   0.700   1.53048   55.72
18*     -8.704    可変
19       ∞    0.500   1.51680   64.20
20       ∞    0.500
像面       ∞
 非球面データ
第1面
K=0.0000e+000,A4=4.2584e-004,A6=-3.6064e-006,A8=2.2706e-007,A1
0=-1.4187e-008,A12=4.1614e-009,A14=-1.0353e-010
第2面
K=0.0000e+000,A4=2.4395e-004,A6=3.2727e-005,A8=-1.2306e-005,A10=2.0129e-006,A12=-1.4423e-007,A14=5.2002e-009
第10面
K=0.0000e+000,A4=5.5947e-005,A6=-4.3610e-004,A8=1.2049e-004,A10=-2.4058e-005,A12=4.9198e-006,A14=-6.6541e-007
第11面
K=0.0000e+000,A4=-1.7989e-003,A6=1.1464e-004,A8=2.0762e-004,A10=-2.2518e-005,A12=-2.0605e-006,A14=-5.3800e-008
第12面
K=0.0000e+000,A4=-3.2981e-003,A6=2.8524e-004,A8=3.3495e-004,A10=-5.4534e-005,A12=3.3467e-006,A14=-9.3442e-008
第13面
K=0.0000e+000,A4=5.9994e-003,A6=-6.4867e-004,A8=3.0894e-004,A10=-2.2102e-005,A12=-6.0791e-007,A14=-9.0842e-008
第17面
K=0.0000e+000,A4=3.3265e-003,A6=2.1167e-003,A8=-1.0049e-003,A10=2.7491e-004,A12=-2.7291e-005,A14=-2.0635e-013
第18面
K=0.0000e+000,A4=-5.1116e-004,A6=1.0918e-003,A8=-4.6726e-004,A10=9.1141e-005,A12=-6.2993e-006,A14=6.1504e-008
 可変間距離(Variable Distance)
             広角端   中間点   望遠端
第5面と第6面間     0.630    1.784    1.058
第8面と第9面間     6.140    2.723    0.500
第16面と第17面間   2.750    2.829    3.947
第18面と第19面間   0.402    2.587    4.418
 各種データ
ズームデータ
ズーム比ft/fw  2.75
         広角   中間   望遠
焦点距離    3.837   6.372   10.553
Fナンバ    2.873   3.946   5.302
画角      38.021   25.213   15.869
像高      3.000   3.000   3.000
レンズ全長   28.004   28.004   28.004
BF      1.232   3.417   5.247
 ズームレンズ群データ
群   始面   終面   焦点距離
1   1    5    -16.724
2   6    8    -13.923
3   9   16     5.816
4   17  18     -8.927
 以上のようなレンズ配置、構成のもとでの、実施例14の撮像レンズ1Nにおける球面収差(正弦条件)、非点収差および歪曲収差を図69ないし図71に示す。
[実施例15]
 図23は、実施例15における変倍光学系におけるレンズ群の配列を示す断面図である。図24は、実施例15の変倍光学系の変倍における各レンズ群の移動の様子を示す図である。図72ないし図74は、実施例15における変倍光学系の収差図である。
 実施例15の変倍光学系1Oは、図23に示すように、各レンズ群(Gr1、Gr2、Gr3、Gr4)が物体側から像側へ順に、全体として負の光学的パワーを有する第1レンズ群(Gr1)と、全体として負の光学的パワーを有する第2レンズ群(Gr2)と、光学絞りSTと、全体として正の光学的パワーを有する第3レンズ群(Gr3)と、全体として負の光学的パワーを有する第4レンズ群(Gr4)とからなる負・負・正・負の4成分ズーム構成であり、広角端(W)から望遠端(T)へのズーミングの際には、図24に示すように、第1レンズ群(Gr1)は、固定され、第2レンズ群(Gr1)と第3レンズ群(Gr3)とは、それらの間隔が減少するように移動し、第4レンズ群(Gr2、Gr3、Gr4)は、物体側に移動し、光学絞りSTは、第3レンズ群とは独立に物体側へ移動する。そして、第3レンズ群Gr3と第4レンズ群Gr4とは、それら間隔が増大するように移動する。
 より詳しくは、実施例15の変倍光学系1Oは、各レンズ群(Gr1、Gr2、Gr3、Gr4)が物体側から像側へ順に、次のように構成されている。
 第1レンズ群(Gr1)は、物体側に凸の負メニスカスレンズ(第1レンズL1)と、プリズム(L2)とから構成されて成る。
 第2レンズ群(Gr2)は、両凹の負レンズ(第3レンズL3)と、物体側に凸の正メニスカスレンズ(第4レンズL4)とから構成されて成る。第3レンズL3と第4レンズL4とは、接合レンズである。
 第3レンズ群(Gr3)は、物体側に凸の正メニスカスレンズ(第5レンズL5)と、両凸の正レンズ(第6レンズL6)と、両凹の負レンズ(第7レンズL7)と、両凸の正レンズ(第8レンズL8)とから構成されて成る。第5レンズL5の物体側には、変倍時に独立に稼動する光学絞りSTが配置されている。光学絞りSTは、メカニカルシャッタであってもよい。第6レンズL6と第7レンズL7と第8レンズL8とは、接合レンズである。第5レンズL5は、両面が非球面である。第8レンズL8は、像側の面が非球面である。
 第4レンズ群(Gr4)は、両凹の負レンズ(第9レンズL9)から構成されて成る。第9レンズL9は、両面が非球面であり、樹脂材料製レンズである。
 そして、第4レンズ群(Gr4)の像側には、フィルタとしての平行平板FTを介して撮像素子SRの受光面が配置されている。平行平板FTは、各種光学フィルタや撮像素子のカバーガラス等である。
 この実施例15の変倍光学系1Oでは、広角端(WIDE)から中間点(MIDDLE)を経て望遠端(TELE)への変倍時に、図24に示すように、第1レンズ群(Gr1)は、固定され、第2レンズ群(Gr2)は、略中間点で像側に凸となる曲線を描くように移動され、光学絞りSTは、物体側に近くづく方向に略直線的に移動され、第3レンズ群(Gr3)は、物体に近づく方向に光学絞りSTの移動量に較べて急に略直線的に移動され、第4レンズ群(Gr4)は、物体に近づく方向に第3レンズ群(Gr3)の移動量に較べて緩やかに略直線的に移動される。このように広角端(WIDE)から望遠端(TELE)への変倍において、第2ないし第4レンズ群(Gr2、Gr3、Gr4)および光学絞りSTは、移動し、第1レンズ群(Gr1)と光学絞りST、第3レンズ群(Gr3)および第4レンズ群(Gr4)のぞれぞれとは、互いの間隔が狭くなるように移動する。そして、光学絞りSTと第3レンズ群(Gr3)とは、互いの間隔が狭くなるように移動し、また、第3レンズ群(Gr3)と第4レンズ群(Gr4)とは、互いの間隔が増大するように移動する。
 実施例15の変倍光学系1Oにおける、各レンズのコンストラクションデータを以下に示す。
 数値実施例15
単位 mm
面データ
面番号      r    d    nd    νd
物面       ∞    ∞
1       9.649   0.600   1.94595   17.98
2       4.964   1.591
3        ∞    5.177   1.84666   23.78
4        ∞    可変
5      -16.407   0.600   1.80610   40.73
6       4.812   0.940   1.92286   20.88
7       93.567    可変
8(絞り)    ∞    可変
9*      4.108   1.357   1.49700   81.36
10*     32.658   0.436
11      4.393   1.555   1.56883   56.04
12     -16.498   0.767   1.90366   31.31
13      3.029   1.152   1.58313   59.46
14*    -10.065    可変
15*     -5.006   0.600   1.53048   55.72
16*    317.282    可変
17       ∞    0.500   1.51680   64.20
18       ∞    0.500
像面       ∞
 非球面データ
第9面
K=0.0000e+000,A4=-1.2757e-003,A6=3.7837e-004,A8=-2.6104e-004,A10=4.8339e-005,A12=9.9700e-007,A14=-1.2330e-006
第10面
K=0.0000e+000,A4=-1.4507e-004,A6=5.7765e-004,A8=-4.8633e-004,A10=1.4399e-004,A12=-2.0475e-005,A14=6.6314e-007
第14面
K=0.0000e+000,A4=4.4975e-003,A6=2.5486e-005,A8=2.8987e-004,A10=-9.1099e-005,A12=1.8387e-005,A14=-6.8066e-007
第15面
K=0.0000e+000,A4=1.6271e-004,A6=-7.8239e-005,A8=-2.3702e-004,A10=1.0493e-004,A12=-9.7374e-006,A14=4.1925e-008
第16面
K=0.0000e+000,A4=-6.7212e-004,A6=9.6635e-006,A8=-1.9218e-004,A10=9.0403e-005,A12=-1.4616e-005,A14=9.5536e-007
 可変間距離(Variable Distance)
             広角端   中間点   望遠端
第4面と第5面間     1.524    2.013    0.724
第7面と第8面間     4.847    2.073    0.500
第8面と第9面間     0.574    0.366    0.100
第14面と第15面間   3.693    3.087    3.722
第16面と第17面間   1.088    4.186    6.678
 各種データ
ズームデータ
ズーム比ft/fw  2.74
         広角   中間   望遠
焦点距離    4.619   7.670   12.676
Fナンバ    3.500   4.961   6.794
画角      32.563   21.036   13.101
像高      2.950   2.950   2.950
レンズ全長   27.331   27.334   27.313
BF      1.918   5.019   7.491
 ズームレンズ群データ
群   始面   終面   焦点距離
1   1    4    -11.528
2   5    7    -28.889
3   9   14     5.828
4   15  16     -9.285
 以上のようなレンズ配置、構成のもとでの、実施例15の撮像レンズ1Oにおける球面収差(正弦条件)、非点収差および歪曲収差を図72ないし図74に示す。
[実施例16]
 図25は、実施例16における変倍光学系におけるレンズ群の配列を示す断面図である。図75ないし図77は、実施例16における変倍光学系の収差図である。
 実施例16の変倍光学系1Pは、図25に示すように、各レンズ群(Gr1、Gr2、Gr3、Gr4)が物体側から像側へ順に、全体として負の光学的パワーを有する第1レンズ群(Gr1)と、全体として負の光学的パワーを有する第2レンズ群(Gr2)と、光学絞りSTを含む全体として正の光学的パワーを有する第3レンズ群(Gr3)と、全体として負の光学的パワーを有する第4レンズ群(Gr4)とからなる負・負・正・負の4成分ズーム構成であり、広角端(W)から望遠端(T)へのズーミングの際には、図11に示すように、第1レンズ群(Gr1)は、固定され、第2レンズ群(Gr1)と第3レンズ群(Gr3)とは、それらの間隔が減少するように移動し、第4レンズ群(Gr2、Gr3、Gr4)は、物体側に移動し、光学絞りSTは、第3レンズ群(Gr3)と共に移動する。そして、第3レンズ群Gr3と第4レンズ群Gr4とは、それら間隔が増大するように移動する。
 より詳しくは、実施例16の変倍光学系1Pは、各レンズ群(Gr1、Gr2、Gr3、Gr4)が物体側から像側へ順に、次のように構成されている。
 第1レンズ群(Gr1)は、物体側に凸の負メニスカスレンズ(第1レンズL1)と、プリズム(L2)とから構成されて成る。
 第2レンズ群(Gr2)は、両凹の負レンズ(第3レンズL3)と、物体側に凸の正メニスカスレンズ(第4レンズL4)とから構成されて成る。第3レンズL3と第4レンズL4とは、接合レンズである。
 第3レンズ群(Gr3)は、光学絞りSTと、両凸の正レンズ(第5レンズL5)と、両凸の正レンズ(第6レンズL6)と、両凹の負レンズ(第7レンズL7)と、両凸の正レンズ(第8レンズL8)とから構成されて成る。光学絞りSTは、第5レンズL5の物体側に配置され、第3レンズ群(Gr3)と共に移動する。光学絞りSTは、メカニカルシャッタであってもよい。第6レンズL6と第7レンズL7と第8レンズL8とは、接合レンズである。第5レンズL5は、両面が非球面である。
 第4レンズ群(Gr4)は、像側に凸の負メニスカスレンズ(第9レンズL9)から構成されて成る。第9レンズL9は、両面が非球面であり、樹脂材料製レンズである。
 そして、第4レンズ群(Gr4)の像側には、フィルタとしての平行平板FTを介して撮像素子SRの受光面が配置されている。平行平板FTは、各種光学フィルタや撮像素子のカバーガラス等である。
 この実施例16の変倍光学系1Pでは、広角端(WIDE)から中間点(MIDDLE)を経て望遠端(TELE)への変倍時に、図11に示すように、第1レンズ群(Gr1)は、固定され、第2レンズ群(Gr2)は、略中間点で像側に凸となる曲線を描くように移動され、第3レンズ群(Gr3)は、物体に近づく方向に略直線的に移動され、第4レンズ群(Gr4)は、物体に近づく方向に曲線的(物体側に凸となる曲線)に移動され、そして、光学絞りSTは、第3レンズ群(Gr2)と共に移動する。このように広角端(WIDE)から望遠端(TELE)への変倍において、第2ないし第4レンズ群(Gr2、Gr3、Gr4)は、移動し、第1レンズ群(Gr1)と第3レンズ群(Gr3)および第4レンズ群(Gr4)のぞれぞれとは、互いの間隔が狭くなるように移動する。
 実施例16の変倍光学系1Pにおける、各レンズのコンストラクションデータを以下に示す。
 数値実施例16
単位 mm
面データ
面番号      r    d    nd    νd
物面       ∞    ∞
1       7.471   0.670   1.94595   17.98
2       4.268   1.613
3        ∞    5.761   1.84666   23.78
4        ∞    可変
5      -17.119   0.600   1.77250   49.65
6       4.703   0.993   1.92286   20.88
7       18.795    可変
8(絞り)    ∞    0.000
9*      4.930   1.631   1.58311   59.46
10*     -7.700   0.100
11      23.452   1.328   1.49700   81.61
12      -7.613   0.992   1.83400   37.35
13      3.941   2.155   1.49700   81.61
14      -4.634    可変
15*     -3.654   0.600   1.53048   55.72
16*    -15.902    可変
17       ∞    0.500   1.51680   64.20
18       ∞    0.500
像面       ∞
 非球面データ
第9面
K=0.0000e+000,A4=-2.3753e-004,A6=-1.7313e-003,A8=1.1402e-003,A10=-3.9249e-004,A12=6.7619e-005,A14=-4.6683e-006
第10面
K=0.0000e+000,A4=2.9277e-003,A6=-1.8481e-003,A8=1.2048e-003,A10=-4.0835e-004,A12=6.8793e-005,A14=-4.6242e-006
第15面
K=0.0000e+000,A4=2.5542e-003,A6=3.5971e-004,A8=-2.1384e-004,A10=8.3478e-005,A12=-1.3025e-005,A14=3.6981e-007
第16面
K=0.0000e+000,A4=1.0286e-004,A6=1.4591e-004,A8=-8.2314e-005,A10=1.3598e-005,A12=1.6052e-006,A14=-4.5345e-007
 可変間距離(Variable Distance)
             広角端   中間点   望遠端
第4面と第5面間     0.600    1.496    0.600
第7面と第8面間     7.039    3.663    1.500
第14面と第15面間   3.968    3.949    5.166
第16面と第17面間   0.951    3.450    5.291
 各種データ
ズームデータ
ズーム比ft/fw  2.74
         広角   中間   望遠
焦点距離    3.819   6.338   10.477
Fナンバ    2.880   3.924   5.133
画角      37.682   24.960   15.725
像高      2.950   2.950   2.950
レンズ全長   29.833   29.833   29.816
BF      1.784   4.283   6.107
 ズームレンズ群データ
群   始面   終面   焦点距離
1   1    4    -11.717
2   5    7    -15.914
3   8   14     5.999
4   15  16    -9.097
 以上のようなレンズ配置、構成のもとでの、実施例16の撮像レンズ1Pにおける球面収差(正弦条件)、非点収差および歪曲収差を図75ないし図77に示す。
[実施例17]
 図26は、実施例17における変倍光学系におけるレンズ群の配列を示す断面図である。図27は、実施例17の変倍光学系の変倍における各レンズ群の移動の様子を示す図である。図78ないし図80は、実施例17における変倍光学系の収差図である。
 実施例17の変倍光学系1Qは、図26に示すように、各レンズ群(Gr1、Gr2、Gr3、Gr4、Gr5)が物体側から像側へ順に、全体として負の光学的パワーを有する第1レンズ群(Gr1)と、全体として負の光学的パワーを有する第2レンズ群(Gr2)と、光学絞りSTを含む全体として正の光学的パワーを有する第3レンズ群(Gr3)と、全体として負の光学的パワーを有する第4レンズ群(Gr4)と、全体として正の光学的パワーを有する第5レンズ群(Gr5)とからなる負・負・正・負・正の5成分ズーム構成であり、広角端(W)から望遠端(T)へのズーミングの際には、図27に示すように、第1レンズ群(Gr1)は、固定され、第2レンズ群(Gr1)と第3レンズ群(Gr3)とは、それらの間隔が減少するように移動し、第4レンズ群(Gr2、Gr3、Gr4)は、物体側に移動し、第5レンズ群(Gr5)は、固定され、光学絞りSTは、光学絞りSTは、第3レンズ群(Gr3)と共に移動する。そして、第3レンズ群Gr3と第4レンズ群Gr4とは、それら間隔が増大するように移動する。
 より詳しくは、実施例17の変倍光学系1Qは、各レンズ群(Gr1、Gr2、Gr3、Gr4、Gr5)が物体側から像側へ順に、次のように構成されている。
 第1レンズ群(Gr1)は、物体側に凸の負メニスカスレンズ(第1レンズL1)と、プリズム(L2)とから構成されて成る。
 第2レンズ群(Gr2)は、両凹の負レンズ(第3レンズL3)と、物体側に凸の正メニスカスレンズ(第4レンズL4)とから構成されて成る。第3レンズL3と第4レンズL4とは、接合レンズである。
 第3レンズ群(Gr3)は、両凸の正レンズ(第5レンズL5)と、光学絞りSTと、両凸の正レンズ(第6レンズL6)と、両凹の負レンズ(第7レンズL7)と、両凸の正レンズ(第8レンズL8)とから構成されて成る。光学絞りSTは、第5レンズL5における像側のレンズ面に配置されている。光学絞りSTは、メカニカルシャッタであってもよい。第6レンズL6と第7レンズL7と第8レンズL8とは、接合レンズである。第5レンズL5は、両面が非球面である。第8レンズL8は、像側の面が非球面である。
 第4レンズ群(Gr4)は、両凹の負レンズ(第9レンズL9)から構成されて成る。第9レンズL9は、両面が非球面であり、樹脂材料製レンズである。
 第5レンズ群(Gr5)は、物体側に凸の正メニスカスレンズ(第10レンズL10)から構成されて成る。第10レンズL10は、両面が非球面であり、樹脂材料製レンズである。
 そして、第5レンズ群(Gr5)の像側には、フィルタとしての平行平板FTを介して撮像素子SRの受光面が配置されている。平行平板FTは、各種光学フィルタや撮像素子のカバーガラス等である。
 この実施例17の変倍光学系1Qでは、広角端(WIDE)から中間点(MIDDLE)を経て望遠端(TELE)への変倍時に、図27に示すように、第1レンズ群(Gr1)は、固定され、第2レンズ群(Gr2)は、略中間点で像側に凸となる曲線を描くように移動され、第3レンズ群(Gr3)は、物体に近づく方向に略直線的に移動され、第4レンズ群(Gr4)は、物体に近づく方向に第3レンズ群(Gr3)の移動量に較べて緩やかに略直線的に移動され、第5レンズ群(Gr5)は、固定され、そして、光学絞りSTは、第3レンズ群(Gr3)と共に移動する。このように広角端(WIDE)から望遠端(TELE)への変倍において、第2ないし第4レンズ群(Gr2、Gr3、Gr4)は、移動し、第1レンズ群(Gr1)と第3レンズ群(Gr3)および第4レンズ群(Gr4)のぞれぞれとは、互いの間隔が狭くなるように移動する。
 実施例17の変倍光学系1Qにおける、各レンズのコンストラクションデータを以下に示す。
 数値実施例17
単位 mm
面データ
面番号      r    d    nd    νd
物面       ∞    ∞
1       9.820   0.656   1.94595   17.98
2       5.430   1.508
3        ∞    6.070   1.84666   23.78
4        ∞    可変
5      -23.740   0.600   1.80610   40.73
6       5.383   1.077   1.92286   20.88
7       33.539    可変
8*      7.393   1.533   1.49700   81.36
9*(絞り)  -9.298   2.005
10      6.078   1.855   1.49700   81.61
11     -11.756   0.499   1.83400   37.34
12      3.246   1.510   1.58913   61.25
13*     -5.782    可変
14*     -5.206   0.605   1.53048   55.72
15*     10.958    可変
16*     11.911   0.584   1.63219   23.42
17*     26.703   0.595
18       ∞    0.500   1.51680   64.20
19       ∞    0.500
像面       ∞
 非球面データ
第8面
K=0.0000e+000,A4=-3.9218e-003,A6=9.3476e-006,A8=-1.1874e-004,A10=-7.5621e-006,A12=6.6668e-006,A14=-9.3014e-007
第9面
K=0.0000e+000,A4=-3.2549e-003,A6=2.5446e-004,A8=-2.8406e-004,A10=6.6524e-005,A12=-8.4231e-006,A14=3.5031e-007
第13面
K=0.0000e+000,A4=2.3306e-003,A6=-2.1621e-004,A8=-2.1511e-006,A10=7.0489e-006,A12=-2.2819e-006,A14=1.8639e-007
第14面
K=0.0000e+000,A4=1.5789e-003,A6=-1.0449e-003,A8=-2.0428e-004,A10=9.5814e-005,A12=-1.0748e-005,A14=4.2392e-008
第15面
K=0.0000e+000,A4=-3.0669e-003,A6=-2.8863e-004,A8=-1.2917e-004,A10=2.2730e-005,A12=4.7379e-006,A14=-9.2321e-007
第16面
K=0.0000e+000,A4=-1.3816e-003,A6=-8.1028e-005,A8=-2.4204e-005,A10=2.0528e-006
第17面
K=0.0000e+000,A4=7.8893e-004,A6=-1.3041e-004,A8=-3.5725e-005,A10=3.2869e-006
 可変間距離(Variable Distance)
             広角端   中間点   望遠端
第4面と第5面間     0.600    2.556    1.588
第7面と第8面間     7.468    2.864    0.500
第13面と第14面間   2.342    2.351    2.842
第15面と第16面間   0.993    3.632    6.474
 各種データ
ズームデータ
ズーム比ft/fw  2.74
         広角   中間   望遠
焦点距離    4.550   7.553   12.487
Fナンバ    2.880   3.983   5.367
画角      32.960   21.334   13.292
像高      2.950   2.950   2.950
レンズ全長   31.332   31.334   31.334
BF      1.428   1.429   1.407
 ズームレンズ群データ
群   始面   終面   焦点距離
1   1    4    -13.843
2   5    7    -24.978
3   8   13     6.272
4   14  15     -6.568
5   16  17     33.501
 以上のようなレンズ配置、構成のもとでの、実施例17の撮像レンズ1Qにおける球面収差(正弦条件)、非点収差および歪曲収差を図78ないし図80に示す。
[実施例18]
 図28は、実施例18における変倍光学系におけるレンズ群の配列を示す断面図である。図29は、実施例18の変倍光学系の変倍における各レンズ群の移動の様子を示す図である。図81ないし図83は、実施例18における変倍光学系の収差図である。
 実施例18の変倍光学系1Rは、図28に示すように、各レンズ群(Gr1、Gr2、Gr3、Gr4、Gr5)が物体側から像側へ順に、全体として負の光学的パワーを有する第1レンズ群(Gr1)と、全体として負の光学的パワーを有する第2レンズ群(Gr2)と、光学絞りSTを含む全体として正の光学的パワーを有する第3レンズ群(Gr3)と、全体として負の光学的パワーを有する第4レンズ群(Gr4)と、全体として正の光学的パワーを有する第5レンズ群(Gr5)とからなる負・負・正・負・正の5成分ズーム構成であり、広角端(W)から望遠端(T)へのズーミングの際には、図29に示すように、第1レンズ群(Gr1)は、固定され、第2レンズ群(Gr1)と第3レンズ群(Gr3)とは、それらの間隔が減少するように移動し、第4レンズ群(Gr2、Gr3、Gr4)は、物体側に移動し、第5レンズ群(Gr5)は、移動し、光学絞りSTは、光学絞りSTは、第3レンズ群(Gr3)と共に移動する。そして、第3レンズ群Gr3と第4レンズ群Gr4とは、それら間隔が増大するように移動する。
 より詳しくは、実施例18の変倍光学系1Rは、各レンズ群(Gr1、Gr2、Gr3、Gr4、Gr5)が物体側から像側へ順に、次のように構成されている。
 第1レンズ群(Gr1)は、物体側に凸の負メニスカスレンズ(第1レンズL1)と、プリズム(L2)と、像側に凸の平凸レンズ(第3レンズL3)とから構成されて成る。プリズムL2と第3レンズL3とは、接合レンズである。第1レンズL1は、両面が非球面である。
 第2レンズ群(Gr2)は、両凹の負レンズ(第4レンズL4)と、両凸の正レンズ(第5レンズL5)とから構成されて成る。第4レンズL4と第5レンズL5とは、接合レンズである。
 第3レンズ群(Gr3)は、光学絞りSTと、物体側に凸の正メニスカスレンズ(第6レンズL6)と、両凸の正レンズ(第7レンズL7)と、両凹の負レンズ(第8レンズL8)と、両凸の正レンズ(第9レンズL9)とから構成されて成る。光学絞りSTは、第6レンズL6の物体側に配置され、第3レンズ群(Gr3)と共に移動する。光学絞りSTは、メカニカルシャッタであってもよい。第8レンズL8と第9レンズL9とは、接合レンズである。第6および第7レンズL6、L7は、両面が非球面である。
 第4レンズ群(Gr4)は、像側に凸の負メニスカスレンズ(第10レンズL10)から構成されて成る。第10レンズL10は、両面が非球面であり、樹脂材料製レンズである。
 第5レンズ群(Gr5)は、両凸の正レンズ(第11レンズL11)から構成されて成る。
 そして、第5レンズ群(Gr5)の像側には、フィルタとしての平行平板FTを介して撮像素子SRの受光面が配置されている。平行平板FTは、各種光学フィルタや撮像素子のカバーガラス等である。
 この実施例18の変倍光学系1Rでは、広角端(WIDE)から中間点(MIDDLE)を経て望遠端(TELE)への変倍時に、図29に示すように、第1レンズ群(Gr1)は、固定され、第2レンズ群(Gr2)は、略中間点で像側に凸となる曲線を描くように移動され、第3レンズ群(Gr3)は、物体に近づく方向に略直線的に移動され、第4レンズ群(Gr4)は、物体に近づく方向に第3レンズ群(Gr3)の移動量に較べて緩やかに略直線的に移動され、第5レンズ群(Gr5)は、略中間点で物体側に凸となる曲線を描くように移動され、そして、光学絞りSTは、第3レンズ群(Gr3)と共に移動する。このように広角端(WIDE)から望遠端(TELE)への変倍において、第2ないし第5レンズ群(Gr2、Gr3、Gr4、Gr5)は、移動し、第1レンズ群(Gr1)と第3レンズ群(Gr3)および第4レンズ群(Gr3)のぞれぞれとは、互いの間隔が狭くなるように移動する。
 実施例18の変倍光学系1Rにおける、各レンズのコンストラクションデータを以下に示す。
 数値実施例18
単位 mm
面データ
面番号      r    d    nd    νd
物面       ∞    ∞
1*      27.117   0.600   2.00170   20.65
2*      6.390   1.296
3        ∞    5.704   1.90366   31.31
4        ∞    0.706   1.92286   20.88
5      -17.608    可変
6       -5.519   0.600   1.75500   52.32
7       15.444   0.826   1.92286   20.88
8      -25.147    可変
9(絞り)    ∞    0.000
10*     5.376   1.475   1.58913   61.24
11*    197.234   0.100
12*     3.656   2.249   1.49700   81.61
13*     -4.389   0.109
14      -5.062   0.500   1.83400   37.35
15      2.724   1.515   1.48749   70.45
16      -4.764    可変
17*     -3.514   0.720   1.53048   55.72
18*    -33.244    可変
19      16.213   0.753   1.74627   51.98
20     -484.897    可変
20       ∞    0.500   1.51680   64.20
21       ∞    0.500
像面       ∞
 非球面データ
第1面
K=0.0000e+000、A4=6.0931e-004,A6=-6.7279e-006,A8=1.2032e-006,A10=-8.3873e-008,A12=1.3980e-009,A14=2.7138e-011
第2面
K=0.0000e+000,A4=2.5586e-004,A6=3.2291e-005,A8=-9.1390e-006,A10=1.6027e-006,A12=-1.3044e-007,A14=3.8739e-009
第10面
K=0.0000e+000,A4=-2.2572e-005,A6=-3.3662e-004,A8=7.1640e-005,A10=-2.5772e-005,A12=5.4286e-006,A14=-5.1851e-007
第11面
K=0.0000e+000,A4=-2.7361e-003,A6=-8.0169e-005,A8=1.6346e-004,A10=-2.3212e-005,A12=-3.7946e-007,A14=5.4805e-008
第12面
K=0.0000e+000,A4=-3.8510e-003,A6=-6.8365e-005,A8=3.2071e-004,A10=-5.2340e-005,A12=3.0389e-006,A14=1.5889e-008
第13面
K=0.0000e+000,A4=6.0345e-003,A6=-8.0781e-004,A8=2.8390e-004,A10=-3.2987e-005,A12=1.6186e-006,A14=-9.0842e-008
第17面
K=0.0000e+000,A4=1.2742e-003,A6=4.7690e-004,A8=-5.3100e-004,A10=1.9659e-004,A12=-2.7291e-005,A14=-2.0601e-013
第18面
K=0.0000e+000,A4=-4.0224e-004,A6=1.5261e-004,A8=-1.8958e-004,A10=5.5868e-005,A12=-6.1543e-006,A14=6.1504e-008
 可変間距離(Variable Distance)
             広角端   中間点   望遠端
第5面と第6面間     0.704    1.889    0.600
第8面と第9面間     5.766    2.217    0.500
第16面と第17面間   2.673    3.019    3.741
第18面と第19面間   0.294    1.189    4.596
第20面と第21面間   0.500    1.623    0.500
 各種データ
ズームデータ
ズーム比ft/fw  2.75
         広角   中間   望遠
焦点距離    3.806   6.318   10.461
Fナンバ    2.600   3.481   4.852
画角      37.779   25.030   15.748
像高      2.950   2.950   2.950
レンズ全長   27.925   27.925   27.925
BF      1.335   2.459   1.338
 ズームレンズ群データ
群   始面   終面   焦点距離
1   1    5    -26.729
2   6    8    -11.761
3   9   16     5.620
4   17  18     -7.469
5   19  20     21.036
 以上のようなレンズ配置、構成のもとでの、実施例18の撮像レンズ1Rにおける球面収差(正弦条件)、非点収差および歪曲収差を図81ないし図83に示す。
 上記に列挙した実施例1~18の変倍光学系1A~1Rに、上述した条件式(A)、条件式(B)および条件式(1)~(18)を当てはめた場合のそれぞれの数値を、表1~表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 以上、説明したように、上記実施例1~18における変倍光学系1A~1Rは、本発明に係る要件を満足している結果、約2~3倍程度の比較的高い変倍比と小型化とを達成しつつ、撮像素子への光線入射角もより小さくすることができる。そして、上記実施例1~18における変倍光学系1A~1Rは、デジタル機器に搭載する上で、特に携帯端末に搭載する上で小型化が充分に達成され、また、高画素な撮像素子17を採用することができる。
 なお、上記実施例1~18では、連続的に変倍する変倍光学系1A~1Rを示しているが、より小型化するために、同一の光学構成での2焦点切り換えの変倍光学系1であってもよい。
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。

Claims (19)

  1.  物体側より像側へ順に、負の光学的パワーを有する第1レンズ群と、負の光学的パワーを有する第2レンズ群と、正の光学的パワーを有する第3レンズ群と、負の光学的パワーを有する第4レンズ群とを含み、
     広角端から望遠端への変倍時に、広角端に較べて望遠端で、前記第2レンズ群と前記第3レンズ群との間隔が減少するように移動し、かつ、前記第3レンズ群と前記第4レンズ群との間隔が増大するように移動することを特徴とする変倍光学系。
  2.  広角端から望遠端への変倍時に、前記第4レンズ群は物体側に移動し、下記の条件式(A)を満足することを特徴とする請求の範囲第1項に記載の変倍光学系。
     0<(Dt-Dw)/fw<1   ・・・(A)
     ただし、
     Dt:望遠端での第3レンズ群と第4レンズ群との間における光軸上の距離
     Dw:広角端での第3レンズ群と第4レンズ群との間における光軸上の距離
     fw:広角端での全光学系の合成焦点距離
  3.  前記第3レンズ群に、または前記第3レンズ群の近傍に配置される開口絞りを備え、下記の条件式(B)を満足することを特徴とする請求の範囲第1項または第2項に記載の変倍光学系。
     0≦(|Ds3w|-|Ds3t|)/T23≦1   ・・・(B)
     ただし、
     Ds3w:広角端において、開口絞りと第3レンズ群の最も物体側レンズの物体側面頂点との光軸上の距離
     Ds3t:望遠端において、開口絞りと第3レンズ群の最も物体側レンズの物体側面頂点との光軸上の距離
     T23:望遠端での第2レンズ群と第3レンズ群との間の光軸上の距離
  4.  前記第3レンズ群と前記第4レンズ群との間に配置される、少なくともメカニカルシャッタまたはNDフィルタのいずれか一方を備え、下記の条件式(6)を満たすことを特徴とする請求の範囲第1項から第3項の何れか一項に記載の変倍光学系。
     T34/(fw×ft)1/2>0.45   ・・・(6)
     ただし、
     T34:望遠端での第3レンズ群と第4レンズ群との間の光軸上の距離
     ft:望遠端での全光学系の合成焦点距離
     fw:広角端での全光学系の合成焦点距離
  5.  無限遠物体から近距離物体へのフォーカシングは、前記第4レンズ群を移動することによって行われ、下記の条件式(7)を満足することを特徴とする請求の範囲第1項から第4項の何れか一項に記載の変倍光学系。
     1.4<|f4/fw|<4   ・・・(7)
     ただし、
     f4:第4レンズ群の合成焦点距離
     fw:広角端での全光学系の合成焦点距離
  6.  前記第3レンズ群は、少なくとも1枚の正レンズを有し、下記の条件式(8)および条件式(9)を満たすことを特徴とする請求の範囲第1項から第5項の何れか一項に記載の変倍光学系。
     1.25<f3/fw<2   ・・・(8)
     v3p≧71   ・・・(9)
     ただし、
     f3:第3レンズ群の合成焦点距離
     v3p:第3レンズ群の正レンズのアッベ数の最大値
     fw:広角端での全光学系の合成焦点距離
  7.  前記第1レンズ群は、変倍時に固定であることを特徴とする請求の範囲第1項から第6項の何れか一項に記載の変倍光学系。
  8.  前記第1レンズ群に、反射部材を有することを特徴とする請求の範囲第1項から第7項の何れか一項に記載の変倍光学系。
  9.  前記反射部材は、プリズムであり、下記の条件式(2)を満足することを特徴とする請求の範囲第8項に記載の変倍光学系。
     Npr≧1.8   ・・・(2)
     ただし、
     Npr:プリズムのd線屈折率
  10.  前記第1レンズ群における最も物体側は、少なくとも1面が非球面である負レンズであり、下記の条件式(3)を満足することを特徴とする請求の範囲第1項から第9項の何れか一項に記載の変倍光学系。
     Nln≧1.7   ・・・(3)
     ただし、
     Nln:負レンズのd線屈折率
  11.  前記第1レンズ群は、少なくとも1枚の正レンズを有し、下記の条件式(1)を満足することを特徴とする請求の範囲第1項から第10項の何れか一項に記載の変倍光学系。
     1<|f1/fw|<35   ・・・(1)
     ただし、
     f1:第1レンズ群の焦点距離
     fw:広角端での全光学系の合成焦点距離
  12.  前記第1レンズ群の少なくとも1枚の正レンズは、下記の条件式(4)を満足することを特徴とする請求の範囲第11項に記載の変倍光学系。
     Nlp≧1.9   ・・・(4)
     ただし、
     Nlp:第1レンズ群の少なくとも1枚の正レンズのd線屈折率
  13.  前記第1レンズ群は、少なくとも1枚の正レンズを有し、前記第1レンズ群に、反射部材としてプリズムを有し、前記第1レンズ群の正レンズの内の1枚のみは、前記プリズムより像側に配置され、かつ、前記プリズムと接合され、下記の条件式(1)及び条件式(5)を満足することを特徴とする請求の範囲第1項から第7項及び第10項の何れか一項に記載の変倍光学系。
     1<|f1/fw|<35   ・・・(1)
     ただし、
     f1:第1レンズ群の焦点距離
     fw:広角端での全光学系の合成焦点距離
     |△N1|≦0.2   ・・・(5)
     ただし、
     △N1:プリズムとプリズムと接合されている正レンズとのd線屈折率の差
  14.  下記の条件式(10)を満足することを特徴とする請求の範囲第1項から第13項の何れか一項に記載の変倍光学系。
     Y’/TL>0.095   ・・・(10)
     ただし、
     Y’:最大像高
     TL:最も物体側レンズ面の面頂点から像面までの光軸上の距離(但し、バックフォーカスは空気換算長)
  15.  請求の範囲第1項から第14項の何れか1項に記載の変倍光学系と、
     光学像を電気的な信号に変換する撮像素子とを備え、
     前記変倍光学系が前記撮像素子の受光面上に物体の光学像を形成可能とされていることを特徴とする撮像装置。
  16.  請求の範囲第15項に記載の撮像装置と、
     前記撮像装置に被写体の静止画撮影および動画撮影の少なくとも一方の撮影を行わせる制御部とを備え、
     前記撮像装置が備える変倍光学系が、前記撮像素子の受光面上に前記被写体の光学像を形成可能に組み付けられていることを特徴とするデジタル機器。
  17.  前記撮像素子の出力に対し所定の画像処理を行う画像処理部を有することを特徴とする請求の範囲第16項に記載のデジタル機器。
  18.  前記所定の画像処理は、前記撮像素子の受光面上に形成される前記被写体の光学像における歪みを補正する歪補正処理を含むことを特徴とする請求の範囲第17項に記載のデジタル機器。
  19.  携帯端末に搭載されることを特徴とする請求の範囲第16項から第18項の何れか一項に記載のデジタル機器。
PCT/JP2009/055614 2008-05-02 2009-03-23 変倍光学系、撮像装置およびデジタル機器 WO2009133732A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-120416 2008-05-02
JP2008120416 2008-05-02
JP2008294909 2008-11-18
JP2008-294909 2008-11-18

Publications (1)

Publication Number Publication Date
WO2009133732A1 true WO2009133732A1 (ja) 2009-11-05

Family

ID=41254955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055614 WO2009133732A1 (ja) 2008-05-02 2009-03-23 変倍光学系、撮像装置およびデジタル機器

Country Status (1)

Country Link
WO (1) WO2009133732A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014219540A (ja) * 2013-05-08 2014-11-20 株式会社リコー 投射用ズームレンズおよび画像表示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886964A (ja) * 1994-09-19 1996-04-02 Canon Inc ズームレンズ
JPH08110470A (ja) * 1994-10-11 1996-04-30 Canon Inc 広角ズームレンズ
JP2004037924A (ja) * 2002-07-04 2004-02-05 Minolta Co Ltd 撮像装置
JP2006098961A (ja) * 2004-09-30 2006-04-13 Canon Inc ズームレンズ及びそれを有する撮像装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886964A (ja) * 1994-09-19 1996-04-02 Canon Inc ズームレンズ
JPH08110470A (ja) * 1994-10-11 1996-04-30 Canon Inc 広角ズームレンズ
JP2004037924A (ja) * 2002-07-04 2004-02-05 Minolta Co Ltd 撮像装置
JP2006098961A (ja) * 2004-09-30 2006-04-13 Canon Inc ズームレンズ及びそれを有する撮像装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014219540A (ja) * 2013-05-08 2014-11-20 株式会社リコー 投射用ズームレンズおよび画像表示装置

Similar Documents

Publication Publication Date Title
JP5445307B2 (ja) 変倍光学系、撮像装置およびデジタル機器
JP5321670B2 (ja) 変倍光学系及びデジタル機器
JP6237106B2 (ja) ズームレンズ及び撮像装置
JP5251884B2 (ja) 変倍光学系、撮像装置およびデジタル機器
JP5083219B2 (ja) 変倍光学系、撮像装置及びデジタル機器
JP5050700B2 (ja) 変倍光学系、撮像装置およびデジタル機器
JP5029185B2 (ja) 変倍光学系、撮像装置およびデジタル機器
JP5082604B2 (ja) 変倍光学系、撮像装置及びデジタル機器
JP4802658B2 (ja) 変倍光学系、撮像レンズ装置及びデジタル機器
JP4661085B2 (ja) 変倍光学系、撮像レンズ装置及びデジタル機器
JPWO2008072466A1 (ja) 変倍光学系、撮像装置及びデジタル機器
JPWO2008075566A1 (ja) 変倍光学系、撮像装置及びデジタル機器
JP2005292403A (ja) 変倍光学系、撮像レンズ装置及びデジタル機器
JP2008310133A (ja) 変倍光学系、撮像装置およびデジタル機器
WO2012077338A1 (ja) ズームレンズおよび撮像装置
JP2007072263A (ja) 変倍光学系
JP2009047722A (ja) 変倍光学系、撮像装置およびデジタル機器
JP2006113404A (ja) 変倍光学系、撮像レンズ装置及びデジタル機器
JP2009217167A (ja) ズーム光学系及び撮像装置
JP2011022191A (ja) ズームレンズ及び撮像装置
JP4569155B2 (ja) 変倍光学系、撮像レンズ装置及びデジタル機器
JP5362528B2 (ja) 2焦点レンズ、ならびに、これを用いたカメラモジュール、および携帯情報機器
JP2004133058A (ja) 撮像レンズ
JP2008310035A (ja) 変倍光学系、撮像装置およびデジタル機器
JP2013003384A (ja) 大口径変倍光学系および撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09738669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09738669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP