WO2009128299A1 - ターボファンおよび空気調和機 - Google Patents

ターボファンおよび空気調和機 Download PDF

Info

Publication number
WO2009128299A1
WO2009128299A1 PCT/JP2009/054060 JP2009054060W WO2009128299A1 WO 2009128299 A1 WO2009128299 A1 WO 2009128299A1 JP 2009054060 W JP2009054060 W JP 2009054060W WO 2009128299 A1 WO2009128299 A1 WO 2009128299A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
side plate
plate
main plate
edge
Prior art date
Application number
PCT/JP2009/054060
Other languages
English (en)
French (fr)
Inventor
池田 尚史
慎悟 濱田
敦史 枝吉
一隆 鈴木
久保 和也
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to ES09731652.5T priority Critical patent/ES2686246T3/es
Priority to EP09731652.5A priority patent/EP2264320B1/en
Priority to CN200980106559.XA priority patent/CN101960150B/zh
Priority to AU2009237152A priority patent/AU2009237152B2/en
Priority to JP2010508146A priority patent/JP5283691B2/ja
Publication of WO2009128299A1 publication Critical patent/WO2009128299A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • F04D29/282Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0022Centrifugal or radial fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0035Indoor units, e.g. fan coil units characterised by introduction of outside air to the room
    • F24F1/0038Indoor units, e.g. fan coil units characterised by introduction of outside air to the room in combination with simultaneous exhaustion of inside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0047Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in the ceiling or at the ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • F24F2013/0616Outlets that have intake openings

Definitions

  • the present invention relates to a turbo fan and an air conditioner, and more particularly to a turbo fan used in an air conditioner such as air purifier, humidifying / dehumidifying, and air conditioning, and an air conditioner equipped with the turbo fan.
  • an air conditioner such as air purifier, humidifying / dehumidifying, and air conditioning
  • the inlet diameter of the blade is gradually increased from the main plate side to the side plate side, the inlet diameter of the side plate side end of the blade is made larger than the suction port diameter of the side plate, and the upper end of the blade is inclined in the rotation direction of the impeller.
  • the inclination angle formed by the rotation axis of the impeller and the upper end of the impeller on the cross section obtained by flattening the cross section when cut into a cylindrical shape that is concentric with the impeller shaft center from the inner peripheral side of the impeller is set to increase toward the side and set so that the inclination angle decreases in the vicinity of the side plate (see, for example, Patent Document 1).
  • turbo fan By forming the turbo fan in this way, it is possible to suppress the flow flowing in from the upper end portion of the blades from being separated at the blade negative pressure surface, and it is possible to suppress the deterioration of the blowing performance and the increase of turbulent noise.
  • the position of the side plate side coupling portion at the trailing edge of each blade is offset by a predetermined amount in the anti-impeller rotation direction from the main plate side coupling portion, and the front edge portion of each blade In which the position of the side plate side coupling portion is offset by a predetermined amount in the rotational direction of the impeller from the position of the main plate side coupling portion (see, for example, Patent Document 2).
  • the blade pressure surface inclines toward the side plate at the blade trailing edge, so that the force acting on the air by the pressure surface is in the direction closer to the side plate, so the separation at the outlet side on the side plate side Flow can be prevented. Furthermore, since the chord length on the side plate side of the blade having a large flow velocity at the blade leading edge becomes longer, the flow flowing into the blade leading edge near the main plate moves toward the side plate, and the separation flow on the side plate side outlet side of the blade. Therefore, the wind speed distribution on the front side of the heat exchanger arranged on the downstream side of the impeller is made uniform in the entire vertical direction.
  • the blades extend from the front edge to the rear edge, the position of the joint end with the side plate is shifted to the rotational direction side with respect to the joint end with the main plate, and the front of the blade
  • the edge of the side plate on the edge side is inclined to the rotation direction side, and the blade front edge is inclined inward in the radial direction in the rotation direction, and the inclination angle (inlet angle ⁇ ) is the main plate.
  • the center side is larger than the side plate and the side plate side, the side plate side is smaller than the main plate side, and further, the blade trailing edge is inclined in the counter-rotating direction radially outward, and the inclination angle (exit angle ⁇ )
  • the central side is larger than the main plate side and the side plate side, respectively (for example, see Patent Document 3).
  • the side plate side end portion on the front edge side of the blade where the velocity component in the axial direction of the inflowing air is particularly large, is inclined in the rotation direction and is aligned with the inflow direction of the inflowing air. Therefore, it is possible to reliably prevent peeling that tends to occur on the side opposite to the rotation direction of the blades, and to improve performance and reduce noise.
  • the leading edge side inclination angle ⁇ is large at the center portion, air can be taken in from the inner peripheral side very smoothly.
  • the inclination angle ⁇ is smaller on the side plate side than on the main plate side, air can be smoothly taken in due to the shape along the inflow angle.
  • the inclination angle (exit angle ⁇ ) is larger on the central side than on the main plate side and the side plate side, so that the air blown to the outer peripheral side can be made uniform.
  • Japanese Patent Laid-Open No. 10-30590 page 4, FIG. 8
  • Japanese Patent No. 2701604 page 4, FIG. 3
  • Japanese Patent No. 3861008 page 7, FIG. 4
  • the turbofan disclosed in Patent Document 1 has poor assemblability. That is, when the upper end of the blade is tilted in the direction of rotation of the impeller, at least the side plate and the blade are molded separately, and then the turbo fan in which the impeller is integrally formed by welding, fitting, etc., rotates the side plate on the blade. Since the side plate side at the upper end of the blade is inclined since a force is applied in the axial direction, stress is applied to the main plate side coupling portion of the blade, and further, it is difficult to apply the force well to the side plate side of the blade.
  • the side plate side coupling portion of the blade trailing edge portion is disposed on the downstream side of the impeller by offsetting a predetermined amount in the counter-rotating direction from the main plate side coupling portion.
  • the uniformity of the wind speed distribution on the front side of the heat exchanger is improved, the flow concentrates on the side plate side of the trailing edge of the blade at the exit of the impeller, which may cause noise deterioration.
  • the side plate side coupling portion of the blade leading edge portion is offset by a predetermined amount in the rotational direction from the main plate side coupling portion, so that peeling in the vicinity of the side plate side coupling portion is suppressed. There is still room for noise reduction because the separation from the part to the blade side plate side coupling portion still exists.
  • the blade side plate side coupling portion is inclined in the rotation direction with respect to the main plate side coupling portion, and the main plate surface and the blade pressure surface (counter rotation direction surface) form an acute angle smaller than 90 °. Therefore, the inflow flow from the front edge drifts to the main plate side, and a separation region remains on the side plate side of the blade trailing edge.
  • the blade main plate side coupling portion is inclined with respect to the side plate from the blade side plate side coupling portion that is welded to the side plate by offsetting the blade side plate side coupling portion in the reverse direction on the front edge side and the rear edge side, so that the patent Similar to the turbofan disclosed in Document 1, the assemblability is poor.
  • the present invention has been made to solve the above-described problems.
  • An object is to obtain a turbo fan and an air conditioner equipped with the turbo fan, which have good workability and can suppress the deterioration of performance to a minimum even when ventilation resistance is added.
  • a turbofan according to the present invention includes a main plate having a boss that is a fixed portion to which a rotation shaft of a motor is fixed, a side plate having a side plate opening at the center that forms a wind guide wall together with the main plate, A turbofan having a plurality of blades installed across a main plate and the side plate, wherein the blades move away from the rotating shaft as they move from the blade leading edge to the blade trailing edge in plan view.
  • the blade outer peripheral surface and the blade inner peripheral surface of the blade are arranged so that the central range in the height direction at the blade leading edge is substantially parallel to the rotation axis, and the closer to the main plate the closer to the main plate, It has a skirt part located in the direction, and has a skirt part located in the diameter direction outward, so that the range near the side plate approaches the side plate.
  • the air conditioner according to the present invention is characterized in that the turbo fan is mounted and a pressure loss body capable of passing air is provided on a suction port side of the turbo fan.
  • the turbo fan according to the present invention Since the turbo fan according to the present invention has the above-described configuration, when the wind speed distribution at the fan outlet is uniform and the heat exchanger is provided on the downstream side of the turbo fan, the height direction is at least in the vicinity of the fan outlet. Therefore, the flow through the surface without passing through the heat exchanger due to the difference in wind speed is suppressed, the pressure loss is reduced, and the noise can be reduced.
  • the air conditioner according to the present invention has a pressure loss body such as a filter that can ventilate the turbofan suction port, so that separation at the blade leading edge portion of the turbofan is suppressed and operation with low noise is performed. Is possible.
  • the side view which shows the XX cross section in FIG. The side view which shows the blade
  • FIG. 4 is a longitudinal sectional view showing a K1-K1 cross section in FIG. 3.
  • FIG. 4 is a longitudinal sectional view showing a K2-K2 cross section in FIG. 3.
  • FIG. 5 is a relationship diagram between a blade trailing edge inclination angle ⁇ and a noise value at the same air volume.
  • FIG. 5 is a relationship diagram between a circumferential bending angle ⁇ and a noise value at the same air volume.
  • FIG. 6 is a relationship diagram between the outlet angle difference ⁇ 2 and the noise value at the same air volume.
  • FIG. 5 is a relationship diagram between a bending angle ⁇ and a noise value at the same air volume.
  • the perspective view explaining the turbo fan which concerns on Embodiment 3 of this invention.
  • turbo fan (Embodiment 2), 1a: fan inlet, 1b: fan outlet, 2: main plate, 2a: boss, 2b: blade opening, 3: side plate, 4: blade, 4a: blade leading edge 4, 4a1: blade front edge side plate side end, 4a2: blade front edge inner peripheral side end, 4a3: blade front edge tip portion, 4ac1: blade front edge portion 4e and horizontal sled line C1 intersection, 4ac2 : Intersection of blade leading edge 4e and horizontal sled line C21, 4ac3: intersection of blade leading edge 4e and horizontal sled line C31, 4ac4: intersection of blade leading edge 4e and horizontal sled line C4, 4b: blade 4b1: blade inner peripheral surface, 4c: blade main plate side edge, 4e: blade trailing edge, 4ec1: blade trailing edge 4e and horizontal sled line C1 4ec2: intersection of the blade trailing edge 4e and the horizontal sled line C2, 4ec3: blade trail
  • Air conditioner 1 is a longitudinal sectional view for explaining an air conditioner according to Embodiment 1 of the present invention.
  • the air conditioner in Embodiment 1 which concerns on this invention mounts the turbo fan which concerns on Embodiment 2 mentioned later, and is demonstrated using figures below.
  • a ceiling-embedded air conditioner body (hereinafter referred to as “air conditioner body”) 10 is installed in a state of being embedded in a rectangular hole formed in a ceiling 21 of a room 20. That is, the air conditioner main body 10 is a box having an opening on the lower side, and includes an upper top plate 10a and a side plate 10b disposed on the lower side facing the top plate 10a. .
  • the side plate 10b has a side plate opening (communicating with the main body suction port 10c) in the center, and the lower end is located substantially on the same plane as the ceiling 21, so the opening of the air conditioner main body 10 is provided. Moreover, it is located on substantially the same plane as the ceiling 21.
  • a substantially rectangular decorative panel 11 in plan view is attached to the side plate 10b or the ceiling 21 so as to cover the lower end of the side plate 10b and the rectangular hole of the ceiling 21 in plan view.
  • a suction grill 11a that is an air inlet to the air conditioner main body 10
  • a filter 12 that removes air after passing through the suction grill 11a, and each side of the decorative panel 11 are formed.
  • the panel blower outlet 11b is provided, and each panel blower outlet 11b is provided with a wind vane 13.
  • the turbo fan 1 inside the air conditioner main body 10, the turbo fan 1, a bell mouth 14 that forms a suction air passage of the turbo fan, a fan motor 15 that rotationally drives the turbo fan 1, and the sucked indoor air (hereinafter “ And a heat exchanger 16 for exchanging heat with the intake air ”.
  • the heat exchanger 16 is formed in a substantially C shape in a plan view, is erected so as to surround the outer peripheral side of the turbofan 1, and is connected to an outdoor unit (not shown) by a connection pipe.
  • a main body inlet 10c is formed at the center of the air conditioner main body 10, and a main body outlet 10d is formed around the main body inlet 10c.
  • the main body suction port 10 c communicates with the suction grille 11 a of the decorative panel 11, and the main body outlet 10 d communicates with the panel outlet 11 b of the decorative panel 11.
  • the air in the room 20 passes through the suction grille 11a of the decorative panel 11, passes through the filter 12, and is removed, and further, the main body inlet 10c and the bell After passing through the mouse 14, it is sucked into the turbofan 1. Then, it blows out toward the heat exchanger 16. Then, air that has been subjected to heat exchange or dehumidification such as heating or cooling in the heat exchanger 16 is blown out from the panel blower outlet 11b toward the room 20 through the main body blower outlet 10d while being controlled by the wind direction vane 13. The Therefore, air conditioning of the room 20 (hereinafter sometimes referred to as “air conditioning”) is performed.
  • FIG. 2 is a perspective view
  • FIG. 3 is a partial plan view of a plane viewed from the fan inlet side
  • FIG. 5 is a side view showing a part
  • FIGS. 6 to 9 are sectional views showing the part in plan view
  • FIG. 10 is a plan view showing the part
  • FIGS. 11 and 12 are parts.
  • FIG. 13 to FIG. 17 are relationship diagrams showing the relationship between the noise value and the angle of each part. 2 corresponds to a perspective view when the ceiling 21 is looked up in FIG. Further, in FIG. 4 and FIG.
  • FIG. 13 is a relationship diagram between the blade trailing edge inclination angle ⁇ and the noise value at the same air volume
  • FIG. 14 is a relationship diagram between the circumferential curve angle ⁇ and the noise value at the same air volume
  • FIG. 15 is the exit angle difference ⁇ . It is a related figure with the noise value at the time of ⁇ 2 and the same air volume.
  • FIG. 16 is a graph showing the relationship between the bending angle ⁇ at the blade leading edge tip 4a3 and the noise value with respect to the ventilation resistance ratio when dust is accumulated on the filter disposed on the suction side when the air volume is the same. is there.
  • FIG. 16 is a graph showing the relationship between the bending angle ⁇ at the blade leading edge tip 4a3 and the noise value with respect to the ventilation resistance ratio when dust is accumulated on the filter disposed on the suction side when the air volume is the same. is there.
  • a turbofan 1 includes a main plate 2 that is a rotating body (disk) having a substantially mountain-shaped cross section, and a side plate 3 that is a ring having a substantially arc-shaped cross section that is disposed to face the peripheral edge of the main plate 2. And a plurality of blades 4 disposed across the main plate 2 and the side plate 3 are integrally formed.
  • the main plate 2 is formed with a boss 2a, which is a fixed portion to the rotation axis O of the fan motor 15, at the center (a convex portion having a substantially mountain-shaped cross section). Therefore, the rotation axis O is parallel to the height direction and perpendicular to the horizontal direction.
  • the side plate 3 that is a ring has a central side plate opening that forms a fan suction port 1a.
  • the peripheral part (substantially mountain-shaped base part of the cross section) of the main plate 2 and the side plate 3 serve as a wind guide wall, and a space surrounded by these forms a fan outlet 1b. That is, in FIG. 1, the cross-section of the peripheral portion of the main plate 2 and the cross-section of the side plate 3 are elevated because they are both higher toward the outer periphery (FIGS. 2 to 12 are turned upside down because they are upside down). After that, a wind flow toward the outer periphery is formed in the horizontal direction.
  • the blade 4 moves away from the rotation axis 0 as the blade leading edge portion 4a becomes the blade trailing edge portion 4e, and the edge near the side plate 3 of the blade 4 is close to the blade trailing edge portion 4e. It is joined to the side plate in the range (4ec4 to 4g1), and is located away from the side plate 3 in the side plate opening in the range (4g1 to 4a3) close to the blade leading edge 4a. As the blade 4 moves away from the main plate 2 and approaches the side plate 3, the thickness T (same as the distance between the blade outer peripheral surface and the blade inner peripheral surface) in the horizontal section orthogonal to the rotation axis O of the blade 4 gradually increases.
  • the hollow structure has a hollow inside and an opening outside the impeller of the main plate 2.
  • the blade trailing edge 4 e of the blade 4 is located on a virtual cylinder connecting the outer peripheral edge of the main plate 2 and the outer peripheral edge of the side plate 3, and has at least two or more inflection points on the virtual cylinder. It is wavy. That is, the intersection of the horizontal warp line C1 and the blade trailing edge 4e is in the height direction, and the rotation point is at a predetermined position on the main plate 2 side from the center of the fan outlet 1b with respect to the intersection 4ec1 which is the main plate side coupling point.
  • Intersection 4ec2 which is a main plate side bending point which is curved in the rotational direction in a convex manner
  • intersection 4ec3 which is a side plate side bending point which is curved in a concave shape on the side plate 3 side from the center of the fan outlet 1b
  • the intersection 4ec4 which is a side plate side coupling point is shown.
  • the straight line G connecting the main plate side coupling point 4ec1 and the side plate side coupling point 4ec4 has an upright shape in the vicinity of the main plate 2 and the side plate 3 parallel to the rotation axis O
  • the main plate 2 side is inclined in the rotation direction A with respect to the side plate 3 side
  • the blade trailing edge 4e is formed in a substantially S shape.
  • the blade trailing edge 4e is located on a virtual cylindrical surface connecting the outer peripheral edge of the main plate 2 and the outer peripheral edge of the side plate 3, and a straight line G connecting the main plate side coupling point 4ec1 and the side plate side coupling point 4ec4 is a rotation axis. Parallel to O and perpendicular to the surface of the outer edge of the main plate 2 (same as normal to the normal). Further, the blade trailing edge 4 e is shaped so as to be parallel to the normal line of the side plate 3 in the vicinity of the side plate 3.
  • the main plate side bending point 4ec2 which is the maximum protruding position of the main plate side bending portion in the rotation direction A side and the side plate side bending point 4ec3 which is the maximum protruding position of the side plate side bending portion in the direction opposite to the rotation direction A.
  • the side plate side bending point 4ec3 which is the maximum protruding position of the side plate side bending portion in the direction opposite to the rotation direction A.
  • it since it protrudes in the rotation direction A as it approaches the main plate 2, it is inclined in a side view and has a substantially S shape.
  • the intake air is divided into the height direction main plate 2 side and the central portion side of the blade outlet 1b by the main plate side curve point 4ec2 on the blade outer peripheral surface 4b, thereby preventing the concentration of the flow to the main plate 2 side. ing. Further, a force is applied in the direction of the side plate 3 by the inclined portion 4e5 between the main plate side bending point 4ec2 and the side plate side bending point 4ec3 to induce the flow. Further, the side plate-side bending point 4ec3 to the side plate-side coupling point 4ec4 are flows from the periphery of the side plate-side coupling portion 4g of the front edge side plate-side end portion 4a1 of the blade 4 on the blade inner peripheral surface 4c. The wind is guided to the side.
  • FIG. 6 to 10 show the L1-L1 cross section, the L2-L2 cross section, the L3-L3 cross section, the L4-L4 cross section, and the L5-L5 plane shown in FIG. 4, respectively. Further, the rotation direction is indicated by “arrow A”. That is, FIG. 6 shows the L1-L1 cross section at the main plate side end 4d, which is a joint with the main plate 2, FIG. 7 shows the L2-L2 cross section on the main plate 2 side from the center of the fan outlet 1b, and FIG. FIG.
  • FIG. 9 shows an L3-L3 cross section passing through the surface of the side plate 3 of the fan outlet 1b from the center of the outlet 1b, FIG. 9 shows an L4-L4 cross section passing through the surface of the side plate 3 of the fan outlet 1b, and FIG. L5-L5 planes are shown respectively.
  • the thickness center line in the cross section is indicated by “horizontal sled line C1”, and “horizontal sled line C1 and “Intersections between the blade leading edge 4a” and “intersections between the horizontal sled line C1 and the blade trailing edge 4e” are indicated by “4ac1” and “4ec1”.
  • the thickness center line in the cross section is indicated by “horizontal sled line C2”, “intersection of horizontal sled line C2 and blade leading edge 4a” and “horizontal sled line C2”.
  • the shape of the blade 4 in each cross section gradually increases in thickness from the blade inner peripheral front edge portion 4a2 toward the blade center portion, and toward the blade trailing edge portion 4e.
  • a wing that gradually decreases.
  • the main plate 2 side of the blade trailing edge 4e is opposite to the rotational direction A.
  • the blade trailing edge 4e is warped in the direction opposite to the rotation direction A than the main plate side coupling portion 4ec1.
  • the circumferential end 4a2 side is curved outward in the radial direction and exhibits a reversely warped shape.
  • the main plate side bending point 4ec2 and the side plate side bending point 4ec3 are disposed and formed so as to straddle the main plate side coupling portion 4ec1 and the side plate side coupling portion 4ec4 and to have a predetermined angle ⁇ . Yes.
  • FIG. 6 (L1-L1 cross section), a tangent line E1 of the horizontal sled line C1 and a tangent line of a circle concentric with the rotation axis O and passing through the intersecting point 4ec1 at an intersection point 4ec1 between the horizontal sled line C1 and the blade trailing edge 4e.
  • the angle (acute angle) formed with F1 is referred to as “exit angle ⁇ 21”.
  • the shape of the blade leading edge 4a on the air inlet side of the blade 4 is composed of a side plate side end 4a1 and an inner peripheral side end 4a2, and the leading edge tip 4a3 is a bending point. It is continuous.
  • the side plate side end 4a1 approaches the fan suction port 1a in the height direction as it approaches the "side plate coupling portion 4g (see FIG. 4) that is a close contact portion between the blade 4 and the side plate 3" from the front edge tip 4a3. It is inclined towards. That is, the side plate side end portion 4 a 1 approaches the side plate 3 while being inclined so as to approach the normal direction of the side plate 3.
  • intersection of the horizontal sled line C1 and the blade leading edge inner peripheral side end 4a2 is defined as “intersection point 4ac1”
  • intersection of the horizontal sled line C1 and the blade trailing edge side end portion 4e is defined as “intersection point 4ec1”.
  • a straight line connecting 4ac1 and the intersection 4ec1 is a “string line D”.
  • a vertical section perpendicular to the chord line D in the vicinity of the blade leading edge inner peripheral end 4a2 is referred to as “K1-K1 section”, and the blade 4 in the K1-K1 section is shown in FIG.
  • K2-K2 cross section perpendicular to the chord line D at the front end 4g1 in the rotation direction of the side plate coupling portion (same as the boundary between the joining range and the range located at the side plate opening) is referred to as “K2-K2 cross section”.
  • the blade 4 is shown in FIG. 11 and 12, the thickness center line in the height direction of the blade 4 in the K1-K1 cross section and the K2-K2 cross section (same as the center of the blade outer peripheral surface and the blade inner peripheral surface) is indicated as “vertical sled line”.
  • the blade 4 approaches the blade leading edge 4 a in plan view in a range away from the side plate 3 at the end edge close to the side plate 3 of the blade 4 (same as the range located in the side plate opening). It is curved so as to be located outward in the radial direction, and in a side view, the curved range is enlarged so as to be farther from the edge as it approaches the blade leading edge 4a. That is, on the side plate 3 side of the blade leading edge side plate side end 4a1 and the leading edge inner peripheral side end 4a2, the rotation direction tip 4g1 on the blade outer peripheral surface of the side plate coupling portion 4g is a fulcrum, and the blade leading edge tip 4a3 is a power point. As the angle of curvature ⁇ moves toward the inner peripheral side of the impeller (the same as approaching the blade leading edge 4a), the curve is curved outward in the radial direction.
  • the outer peripheral surface 4b of the blade 4 gradually approaches the main plate 2 side from the rotation direction front end portion 4g1 toward the blade leading edge inner peripheral end portion 4a2.
  • An oblique “folding line B” is generated.
  • the blade thickness T is gradually increased so that the blade outer peripheral surface 4b on the main plate 2 side of the blade leading edge 4a is curved outward in the radial direction, and the vertical sled line C12. Is also curved outward in the radial direction.
  • the blade outer peripheral surface 4b is substantially perpendicular to the surface of the outer edge portion of the main plate 2, and only the side plate 3 side of the blade inner peripheral surface 4c is curved outward in the radial direction.
  • the blades 4 as a whole have a substantially upright form with the thickness being reduced from the main plate 2 to the side plate 3 (as it becomes higher).
  • the acute entrance angles ⁇ 11, ⁇ 12, ⁇ 13, and ⁇ 14 shown in the cross sections of FIGS. 6 to 10 are “ ⁇ 14 ⁇ 11”, and ⁇ 12 and ⁇ 13 at the center in the height direction are at least ⁇ 11 and ⁇ 14.
  • the inlet angle ⁇ 1 gradually increases from the blade leading edge tip 4a3 to the side plate 3 radially inward, and the inlet angle ⁇ 14 of the blade leading edge tip 4a3. Is formed to be the smallest.
  • at least the blade leading edge 4a has a concave shape with respect to the rotation direction A on the blade outer plate 4a1 side and the main plate 2 side of the blade outer peripheral surface 4b in a side view from the inner peripheral side, and the blade inner peripheral surface 4c. Is formed in a shape curved radially outward.
  • the welding assembly since the vicinity of the main plate 2 and the side plate 3 of the blade trailing edge portion 4e is upright, compared with the conventional turbofan in which the rear edge portion 4e is inclined with respect to the main plate 2 and the side plate 3, the welding assembly Sometimes a force parallel to the rotation axis O is accurately applied, and welding defects due to escape of the blades 4 are suppressed.
  • a “rear edge inclination angle ⁇ 2”, which is an inclination angle formed by the inclined portion 4e5 between the main plate side bending point 4ec2 and the side plate side bending point 4ec3, and the parallel line G to the rotation axis O, is set to “10 ° to 30 ° ". Therefore, in the fan blower outlet 1b, the flow does not concentrate on the side plate 3 side of the blade outer peripheral surface 4b. Further, on the side plate 3 side of the blade inner peripheral surface 4c, the flow flowing in from the blade front edge side plate side 4a1 does not concentrate too much. Therefore, the noise becomes low as in the relationship between the trailing edge inclination angle ⁇ and the noise value at the same air volume (see FIG. 13).
  • the circumferential bending angle ⁇ formed by the straight line connecting the impeller rotation center O, the main plate side bending point 4ec2, and the side plate side bending point 4ec3 is set to “5 ° to 15 °”. Therefore, when the heat exchanger 16 is disposed on the downstream side of the fan outlet 1b, the turbo fan 1 rotates, the blade trailing edge 4e approaches the heat exchanger 16, and the ventilation resistance increases locally. However, the wind flow is dispersed.
  • the flow does not concentrate too much on the side surface 3 side of the blade outer peripheral surface 4b in the fan outlet 1b, and the front edge portion of the blade 4 on the side plate 3 side of the blade inner peripheral surface 4c. Since the flow flowing in from the side plate side 4a1 does not concentrate too much, the noise becomes low as in the relationship between the circumferential curve angle ⁇ and the noise value at the same air volume (see FIG. 14).
  • the blade trailing edge portion 4e is formed in a substantially S-shape that curves unevenly, the air flow is regulated by the substantially S-shape. For this reason, conventionally, in the region where the fan 1 and the heat exchanger 16 are close to each other, the flow is concentrated on the main plate 2 side of the fan outlet 1b, and the separation is large on the side plate 3 side and the noise deterioration is large. The change is small and the generation of noise is suppressed (refer to FIG. 15 showing “relationship between outlet angle difference ⁇ 2 and noise value at the same air flow”).
  • the rotational drive of the fan can be reduced in torque, and the power consumption of the motor can be reduced.
  • the side plate 3 side and the front edge side plate side end portion 4a1 of the front edge inner peripheral side end portion 4a2 of the blade 4 are directed toward the rotation direction surface 4b of the blade 4 (from the inner peripheral side end portion 4g1 of the side plate coupling portion).
  • the blade is bent outward in the radial direction so as to generate a fold line B (obliquely, see FIG. 2) toward the main plate 2 side. Therefore, compared to a conventional curved line starting from a horizontal line perpendicular to the rotation axis O, the inflow amount on the side plate 3 side of the front edge inner peripheral side end portion 4a2 of the blade 4 and the inflow amount on the front edge side plate side end portion 4a1. And the difference is reduced.
  • leading edge inner edge 4a2 and the leading edge side plate side edge 4a1 are connected in a substantially triangular shape with the leading edge tip 4a3 as a vertex, so that the blade leading edge tip 4a3
  • the vertical vortex generated at the blade leading edge inner peripheral side end 4a2 and the blade leading edge side plate side end 4a1 is made uniform, and the air is attracted to the blade inner peripheral surface 4c and stabilized. Accordingly, dust is deposited on the filter 12 (which is a pressure-dissipating body that can be ventilated disposed on the fan suction port 1a side) as when mounted on the air conditioner 10 (see FIG. 1), and the ventilation resistance is reduced. Even if it is increased, separation of the air flow hardly occurs, and noise deterioration can be suppressed to a small level.
  • the blade 4 has a hollow structure in which the wall thickness T decreases from the main plate 2 toward the side plate 3 in the fan height direction and the main plate 2 has an opening 2b outside the impeller.
  • the weight of the fan is reduced. Therefore, when the fan motor is started, the starting torque applied to the boss 2a can be reduced and the twist is suppressed, so that the durability of the turbo fan 1 is improved.
  • the blade 4 includes a longitudinal section K1-K1 shown in FIG. 6 (a longitudinal section including a rotational direction front end portion 4g1 of a side plate coupling portion of the blade 4 perpendicular to the chord line D in the horizontal section of the blade main plate side front end 4d. ) And the predetermined range toward the blade trailing edge 4e on the downstream side thereof is formed so as to be substantially upright with respect to the main plate 2 in parallel with the rotation axis O. Therefore, when the side plate 2 is pressed against the blade 4 in a direction parallel to the rotation axis O in order to weld and integrate the blade 4 and the side plate 2, the “blade main plate” is generated when the conventional blade is inclined with respect to the main plate 2. “Stress concentration at the side end 4d” is suppressed, buckling of the blades 4 is prevented, assembly is easy, and production reliability can be improved.
  • the entrance angle ⁇ 14 at the blade leading edge tip portion 4a3 is the smallest in the front edge portion 4a.
  • the entrance angle ⁇ 1 near the center of the impeller height direction at the blade leading edge inner peripheral end 4a2 is larger than at least the entrance angle ⁇ 11 at the main plate side and the entrance angle ⁇ 14 at the tip of the blade leading edge. It is formed radially inward. That is, the relation of “ ⁇ 1> ⁇ 11> ⁇ 14” is established.
  • the blade leading edge inner peripheral side end portion 4a2 is formed. It is possible to reduce the “incident angle ⁇ ” that is the angle difference between the “suction flow J” on the horizontal cross section orthogonal to the rotation axis O and the entrance angle ⁇ 1, and to attract the suction air smoothly with little separation. This can reduce noise.
  • the vertical sled line C12 on the blade outer peripheral surface 4b has the entrance angle ⁇ 12 at the front edge inner peripheral side end 4a2 (see FIGS. 7 and 11) at the height position at the concave bottom that is the most reverse rotation direction.
  • the angle difference from the inlet angle ⁇ 14 (see FIGS. 8 and 11) at the blade leading edge tip 4a3 is referred to as “angle difference ⁇ 1”.
  • the angle difference ⁇ 1 is “10 ° to 20 °”. If it forms so that it may become between, a low noise effect is acquired.
  • the turbofan according to the present invention has low noise and high manufacturing reliability and durability.
  • An air conditioner can be provided.
  • FIG. 18 and 19 illustrate a turbo fan according to Embodiment 3 of the present invention.
  • FIG. 18 is a perspective view
  • FIG. 19 is a sectional view showing the part (more precisely, the blade main plate shown in FIG. 18). It is a longitudinal cross-sectional view of the blade
  • the front edge inner periphery in the plan view in the range where the front edge side plate side end 4 a 1, which is the edge close to the side plate 3 of the blade 4, is separated from the side plate 3 (same as the range located in the side plate opening). As it approaches the side end 4a2, it is curved so as to be located radially outward, and in a side view, the curve range is enlarged so that it is farther from the end edge as it approaches the front edge inner peripheral side end 4a2.
  • the turbo fan 30 includes a side plate coupling portion on a front edge side plate side end portion 4a1 of the blade 4 curved outward in the radial direction and a blade outer peripheral surface 4b on the side plate 3 side of the front edge inner peripheral side end portion 4a2.
  • a fold line B is gradually generated from the front end 4g1 in the rotational direction of the 4g blade outer peripheral surface 4b toward the front edge inner peripheral side end 4a2 of the blade 4 toward the main plate 2 side.
  • a rectangular groove 5 that is substantially perpendicular to the bending line B and extends obliquely outward from the side plate 3 side to the main plate 2 side with respect to the rotation axis O is provided.
  • the depth of the concave groove 5 becomes shallower as it approaches the front edge side plate side end 4 a 1. That is, the blade 4 is formed of a member that forms a blade outer peripheral surface and a member that forms a blade inner peripheral surface, and has a double structure including a cavity therein, both of which are at the leading edge side plate side end 4a1. The distance between the two becomes wider as they are joined and away from the front edge side plate side end 4a1. And since the groove bottom part 5a of the ditch
  • the turbo fan 30 formed in this manner is rotated in the rotation direction A by the fan motor, so that air is sucked from the fan suction port 1a, passes through the blades 4, and then sucked air is rotated from the fan outlet 1b in the rotation direction. Blow out almost radially.
  • the leading edge side plate side end 4a1 is curved outward in the radial direction, so the air smoothly flows along the blade outer peripheral surface 4c to the blade trailing edge, Disturbance is suppressed.
  • the concave groove 5 is formed so as to extend obliquely while expanding from the side plate 3 side to the main plate 2 side with respect to the rotation axis O, the flow is rectified by the groove bottom portion 5a, so that the disturbance is further disturbed. It is suppressed and noise reduction can be promoted.
  • the groove bottom portion 5a of the concave groove 5 is formed along the outer peripheral surface 4b of the blade 4 so that the thickness of the blade 4 is thin, when the turbofan is molded with a thermoplastic resin, the thickness is increased. Since the curved portion is thin, sink marks can be prevented and molding reliability is improved.
  • the turbo fan 30 is mounted on the air conditioner 10 (see FIG. 1) in which a pressure loss body such as a filter is disposed in the fan suction port 1a, dust gradually accumulates on the filter and the ventilation resistance is reduced. Even if it increases, peeling can be suppressed and low noise can be maintained.
  • the present invention Since the present invention has the above-described configuration and low noise and high manufacturing reliability, it is used as various household and commercial turbofans, and as various domestic and commercial air conditioners equipped with such turbofans. Can be widely used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)

Abstract

 ターボファン10は、モータの回転軸との固定部であるボス2aを有する主板2と、複数枚の羽根4と、吸込み導風壁を形成する側板3とを有す。羽根後縁部4eは主板2側は凸状に回転方向に湾曲し、側板3側は凹状に回転方向と逆に湾曲する少なくとも2つの凹凸の湾曲点を有し、主板側湾曲部と側板側湾曲部との間は、主板2側が側板3側に対し回転方向に傾斜するように形成されている。

Description

ターボファンおよび空気調和機
 本発明はターボファンおよび空気調和機、特に、空気清浄、加除湿、冷暖房などの空気調和機に用いられるターボファンおよび当該ターボファンを搭載した空気調和機に関するものである。
 (あ)従来の天井埋込型空気調和機に搭載される送風ファンには、そのファンの羽根が3次元形状に形成されたターボファンが広く採用されている。
 たとえば、羽根の入口径を主板側から側板側にかけて漸次拡大し、かつ羽根の側板側端部の入口径を前記側板の吸込口径より大きくし、さらに羽根の上端を羽根車の回転方向に傾斜させたもの、また、羽根車軸心と同心となる円筒状に切断した時の断面を平面状に展開した断面上で羽根車の回転軸と羽根上端部とのなす傾斜角度を羽根車内周側から外周側にかけて大きくなるように設定し、側板近傍では前記傾斜角度が小さくなるように設定したものが、それぞれ開示されている(例えば、特許文献1参照)。
 このようにターボファンを形成することで、羽根の上端部から流入する流れが羽根負圧面で剥離することを抑制し、送風性能の低下および乱流騒音の増加を抑制することができる。
 (い)また、従来の別の例として、各羽根の後縁部における側板側結合部の位置を主板側結合部よりも反羽根車回転方向に所定量オフセットせしめるとともに、各羽根の前縁部における側板側結合部の位置を主板側結合部の位置よりも羽根車の回転方向に所定量オフセットせしめたものが開示されている(例えば、特許文献2参照)。
 このようにターボファンを形成することで、羽根後縁部において羽根圧力面が側板側へ傾斜することから圧力面により空気に作用する力が側板寄り方向となるため側板側の出口側での剥離流を防止することができる。さらに、羽根前縁部において流速の大きな羽根の側板側における翼弦長が長くなることで主板側寄りの羽根前縁部へ流入した流れが側板側へ向かい、羽根の側板側出口側の剥離流の発生が防止されるため、羽根車の下流側に配置された熱交換器の前面側における風速分布が上下方向の全域において均一化される。
 (う)さらに、従来の別の例として、羽根は前縁から後縁に渡り、主板との接合端部に対し側板との接合端部の位置が回転方向側へずらされ、前記羽根の前縁側における側板側の端部が回転方向側へ傾斜されているもの、また、羽根前縁部において径方向内方へ向かって回転方向へ傾斜されてなり、その傾斜角度(入口角α)が主板側及び側板側に対し中央側が大きいもの、主板側よりも側板側が小さいもの、さらに、羽根後縁部において、径方向外方へ向かって反回転方向へ傾斜され、その傾斜角度(出口角β)は主板側および側板側に対して中央側が大きくされているもの等が、それぞれ開示されている(例えば、特許文献3参照)。
 このようにターボファンを形成することで、流入空気の軸方向の速度成分が特に大きくなる羽根の前縁側における側板側端部が、回転方向へ傾斜されて流入する空気の流入方向に沿わされているため、羽根の反回転方向側に生じやすい剥離を確実に防ぎ、性能向上および騒音低減を図ることができる。また、前縁側傾斜角度αが中央部で大きいことにより、内周側からの空気の取り入れをきわめて円滑に行うことができる。さらに、主板側よりも側板側が傾斜角度αが小さい場合、流入角度に沿った形状のため円滑に空気を取り入れることができる。また、羽根後縁部において、傾斜角度(出口角β)は主板側、側板側に対し中央側が大きいことで外周側に送風される空気の均一化を図ることができる。
特開平10-30590号公報(第4頁、図8) 特許第2701604号公報(第4頁、図3) 特許第3861008号公報(第7頁、図4)
 しかしながら、特許文献1~3に開示されたターボファンおよび空気調和機は、以下のような問題を有する。
 (イ)特許文献1に開示されたターボファンは組立性が悪い。すなわち、羽根の上端を羽根車の回転方向に傾斜させた場合、少なくとも側板と羽根が別体に成形後、溶着、勘合等で羽根車を一体に形成されるターボファンでは、羽根に側板を回転軸方向に力を加え押さえ結合するため、羽根上端の側板側が傾斜形状であるから、羽根の主板側結合部に応力が付加され、さらに羽根の側板側にうまく力が加わりづらい。
 (ロ)また、熱可塑性樹脂で成形する場合、材料が増加して重量も増加し、加工性が悪い。すなわち、熱可塑性樹脂で成形する場合、ヒケが生じる恐れがあり、加工性が悪い羽根の肉厚は羽根車高さ方向の主板から側板へ向けて略同一なため、回転軸と直交する平面視において羽根の肉厚が羽根車内周から徐々に厚くなり、さらに、羽根車外周へ向けて薄肉となる翼型翼の場合、例えば、肉厚が厚くなる羽根の中央付近では、側面視における傾斜した羽根上端部で肉厚が厚くなり材料が増加し、重量も増加する。また熱可塑性樹脂で成形する場合、ヒケが生じる恐れがあり、加工性が悪い。
 (ハ)さらに、羽根の上端の傾斜角度が少なくとも羽根車内周から外周に向かい大きくなることで羽根の側板結合部での流入量が増加するため、羽根の羽根車内周側から流入してきた流れと干渉し、騒音や振動が発生し、周辺環境を悪化させる恐れ(以下「騒音悪化の恐れ」と称す)がある。
 (ニ)また、特許文献2に開示されたターボファンにおいて、羽根後縁部の側板側結合部が主板側結合部よりも反回転方向に所定量オフセットすることで羽根車下流側に配設された熱交換器の前面側における風速分布の均一化が向上されるが、羽根車出口での羽根後縁部の側板側に流れが集中し騒音悪化の恐れがある。
 (ホ)また、羽根前縁部の側板側結合部が主板側結合部よりも回転方向へ所定量オフセットすることで、側板側結合部付近の剥離は抑制されるが、羽根前縁部の中間部位から羽根側板側結合部までの剥離は依然として存在するため騒音低減の余地がある。
 (ヘ)さらに、羽根側板側結合部が主板側結合部に対し回転方向へ傾斜し、主板表面と羽根の圧力面(反回転方向面)とは90°より小さな鋭角をなす。そのため前縁からの流入流れが主板側へ偏流し羽根後縁部の側板側に剥離領域が残存する。
 (ト)さらに、羽根側板側結合部を前縁側と後縁側で逆方向にオフセットすることで側板と溶着する羽根側板側結合部から羽根主板側結合部は側板に対し傾斜形状となるため、特許文献1に開示されたターボファンと同様に、組立て性が悪い。
 (チ)一方、特許文献3に開示されたターボファンにおいて、羽根の前縁から後縁にわたり側板側結合部が主板側結合部に対し回転方向へずらされ、かつ、前縁側における側板側端部が回転方向側へ傾斜していることで、羽根の側板側端部および側板側結合部における吸込流れに対する剥離は抑制されるが、前縁からの流入流れが主板側へ偏流し羽根後縁部の側板側に剥離領域が残存する。
 (リ)また、羽根全体が回転方向へ傾斜しているため、少なくとも側板と羽根が別体に成形後、溶着や勘合等で羽根車を一体に形成されるターボファンでは、羽根に対して側板から回転軸方向に力を加え押さえて結合するため、羽根の主板側結合部に応力が付加され、さらに羽根の側板側にうまく力が加わりづらく不安定なため、組立て性が悪い。
 本発明は上述のような問題点を解消するためになされたもので、羽根の前縁および側板側端部、また後縁部における剥離域の抑制を図ることによって、低騒音で、組立て性や加工性が良く、通風抵抗が付加されても性能悪化を極小に抑えることができる、ターボファンおよび当該ターボファンを搭載した空気調和機を得ることを目的とする。
 (1)本発明に係るターボファンは、モータの回転軸が固定される固定部であるボスを有する主板と、該主板と共に導風壁を形成する中心に側板開口部を具備する側板と、前記主板と前記側板とに跨って設置された複数枚の羽根と、を有するターボファンにおいて、 前記羽根は、平面視において、前記羽根前縁部から前記羽根後縁部になるほど、前記回転軸から遠ざかるものであって、
 前記羽根の羽根外周面および羽根内周面は、羽根前縁部において高さ方向の中央範囲が前記回転軸に略平行であって、前記主板に近い範囲が前記主板に近づくほど、径方向外方に位置する裾野部を具備し、前記側板に近い範囲が前記側板に近づくほど、径方向外方に位置するような裾野部を具備することを特徴とする。
 (2)また、本発明に係る空気調和機は、前記ターボファンが搭載され、該ターボファンの吸込口側に通風可能な圧損体を有することを特徴とするものである。
 (i)本発明に係るターボファンは以上の構成であるから、ファン吹出口における風速分布が均一化され、ターボファンの下流側に熱交換器を有する場合、少なくともファン吹出口近傍では高さ方向で均一に流入するため、風速差による熱交換器を通過せず表面を流れる流れが抑制され圧損が低減され、低騒音化が図ることができる。
 (ii)また、本発明に係る空気調和機は、ターボファン吸込口に通風可能なフィルタなどの圧損体を有しても、ターボファンの羽根前縁部における剥離が抑制され、低騒音な運転が可能になる。
本発明の実施の形態1に係る空気調和機を説明する縦断面図。 本発明の実施の形態2に係るターボファンを説明する斜視図。 図2に示すターボファンをファン吸込口側から見た平面部分断面図。 図3におけるX-X断面を示す側面図。 図2に示すターボファンの羽根を示す側面図。 図5におけるL1-L1断面を示す断面図。 図5におけるL2-L2断面を示す断面図。 図5におけるL3-L3断面を示す断面図。 図5におけるL4-L4断面を示す断面図。 図5におけるL5-L5断面を示す平面図。 図3におけるK1-K1断面を示す縦断面図。 図3におけるK2-K2断面を示す縦断面図。 羽根後縁傾斜角度αと同一風量時の騒音値との関係図。 周方向湾曲角度γと同一風量時の騒音値との関係図。 出口角度差△β2と同一風量時の騒音値との関係図。 湾曲角度εと同一風量時の騒音値との関係図。 入口角度差△β1と同一風量時の騒音値の関係図。 本発明の実施の形態3に係るターボファンを説明する斜視図。 図18に示すターボファンの羽根の縦断面図。
符号の説明
 1:ターボファン(実施の形態2)、1a:ファン吸込口、1b:ファン吹出口、2:主板、2a:ボス、2b:羽根開口部、3:側板、4:羽根、4a:羽根前縁部、4a1:羽根の前縁側板側端部、4a2:羽根の前縁内周側端部、4a3:羽根前縁先端部、4ac1:羽根前縁部4eと水平そり線C1との交点、4ac2:羽根前縁部4eと水平そり線C21との交点、4ac3:羽根前縁部4eと水平そり線C31との交点、4ac4:羽根前縁部4eと水平そり線C4との交点、4b:羽根の外周面、4b1:側板側誘引部、4c:羽根の内周面、4d:羽根の主板側端部、4e:羽根後縁部、4ec1:羽根後縁部4eと水平そり線C1との交点、4ec2:羽根後縁部4eと水平そり線C2との交点、4ec3:羽根後縁部4eと水平そり線C3との交点、4ec4:羽根後縁部4eと水平そり線C4との交点、4g:羽根側板接合部、4g1:羽根側板結合部の羽根外周面における回転方向先端部、5:凹溝、5a:凹溝の溝底部、10:空気調和機本体(実施の形態1)、10a:本体天板、10b:本体側板、10c:本体吸込口、10d:本体吹出口、11:化粧パネル、11a:吸込グリル、11b:パネル吹出口、12:フィルタ、13:風向ベーン、14:ベルマウス、15:ファンモータ、16:熱交換器、17:部屋、30:ターボファン(実施の形態2)、A:回転方向、B:湾曲基準線、C1:水平そり線、C2:垂直そり線、D:弦線、E1:水平そり線C1と羽根前縁内周側端部4a2の交点における水平そり線C1の接線、E2:水平そり線C1と羽根後縁部4eの交点における水平そり線C1の接線、F1:水平そり線C1と羽根前縁内周側端部4a2との交点を通る円の接線、F2:水平そり線C1と羽根後縁部4eとの交点を通る円の接線、G:主板側結合点4ec1と側板側結合点4ec4を結ぶ直線、J:吸込流れ、T:羽根平面肉厚、t:羽根肉厚、O:回転軸。
 [実施の形態1:空気調和機]
 図1はこの発明の実施の形態1に係る空気調和機を説明する縦断面図である。本発明に係る実施の形態1における空気調和機は、後記する実施の形態2に係るターボファンを搭載するものであって、以下、図を用いて説明する。
 図1において、天井埋込形空気調和機本体(以下「空気調和機本体」と称す)10は、部屋20の天井21に形成された矩形孔に埋め込まれた状態で設置されるものである。すなわち、空気調和機本体10は、下方に開口部を具備する函体であって、上方の天板10aと、天板10aに対向して下方に配置された側板10bと、を有している。このとき、側板10bは中央に側板開口部(本体吸込口10cに連通している)を有し、下端部が天井21と略同一面に位置しているから、空気調和機本体10の開口部も又、天井21と略同一面に位置している。
 さらに、側板10bの下端部および天井21の矩形孔を覆うように、平面視で略四角形状の化粧パネル11が、部屋20に面して側板10bまたは天井21に取り付けられている。また、化粧パネル11の中央付近には空気調和機本体10への空気の吸込口である吸込グリル11aと吸込グリル11a通過後の空気を除塵するフィルタ12、化粧パネル11の各辺に沿って形成されたパネル吹出口11bを有し、さらに各パネル吹出口11bには風向ベーン13を備えられている。
 また、空気調和機本体10の内部にはターボファン1と、ターボファンの吸込風路を形成するベルマウス14と、ターボファン1を回転駆動するファンモータ15と、吸い込まれた室内空気(以下「吸込空気」と称す)との間で熱交換する熱交換器16と、がそれぞれ配置されている。このとき、熱交換器16は平面視で略C字形状に形成されたものであって、ターボファン1の外周側を囲むように立設され、接続配管によって図示しない室外機と接続されている。
 また、空気調和機本体10の中央部には本体吸込口10cが形成され、本体吸込口10cの周囲には本体吹出口10dが形成されている。このとき、本体吸込口10cは化粧パネル11の吸込グリル11aに連通し、本体吹出口10dは化粧パネル11のパネル吹出口11bに連通している。
 このように構成された空気調和機10により、ターボファン1が回転すると部屋20の空気が化粧パネル11の吸込グリル11aを通過し、フィルタ12を通過し除塵され、さらに、本体吸込口10cおよびベルマウス14を通過後ターボファン1に吸込まれる。その後、熱交換器16へ向け吹出される。そして熱交換器16において暖房、冷房等の熱交換や除湿がされた空気は、本体吹出口10dを経由してパネル吹出口11bから部屋20に向けて、風向ベーン13により風向制御されながら吹き出される。よって、部屋20の空気調和(以下「空調」と称する場合がある)が行われる。
 [実施の形態2:ターボファン]
 図2~図17はこの発明の実施の形態2に係るターボファンを説明するものであって、図2は斜視図、図3はファン吸込口側から見た平面部分断面図、図4は図3のX-X断面における側面図、図5は部分を示す側面図、図6~図9は部分を示す平面視の断面図、図10は部分を示す平面図、図11および図12は部分を示す断面図、図13~図17は騒音値と各部の角度との関係を示す関係図である。
 なお、図2は図1において天井21を見上げた際の斜視図に相当している。また、図4と図1(実施の形態1)とでは、上下が逆転しているため、吸込空気は、図4の上側から吸い込まれ、図4の左右方向に吹き出されることになる。そして、図4の紙面上下方向を「高さ方向」と、紙面の左右方向および表裏方向を「水平方向」と便宜上称す。また、図1(実施の形態1)および各図において、同じ部分にはこれと同じ符号を付し、一部の説明を省略する。
 また、図13は羽根後縁傾斜角度αと同一風量時の騒音値との関係図、図14は周方向湾曲角度γと同一風量時の騒音値との関係図、図15は出口角度差△β2と同一風量時の騒音値との関係図である。そして、図16は羽根前縁先端部4a3における湾曲角度εと同一風量時における吸込側へ配設されたフィルタへホコリが堆積した時のホコリ堆積なしに対する通風抵抗比に対する騒音値との関係図である。また、図17は羽根外周面において垂直そり線C12が最も逆回転方向となる凹状底部での高さ位置における、前縁内周側端部での入口角に対する羽根前縁先端部での入口角との角度差△β1と同一風量時の騒音値との関係図である。
 図2~図5において、ターボファン1は、断面略山形の回転体(円盤)である主板2と、主板2の周縁部に対向して配置された断面略円弧状の円環である側板3と、主板2と側板3とに跨って配置された複数枚の羽根4と、が一体的に成形されたものである。
 すなわち、主板2は中心(断面略山形の凸部)に、ファンモータ15の回転軸Oとの固定部であるボス2aが形成されている。したがって、回転軸Oは、高さ方向に平行で、水平方向に垂直である。
 円環である側板3は、中央の側板開口部がファン吸込口1aを形成している。また、主板2の周縁部(断面略山形の裾野部)と側板3とが導風壁となって、これらによって囲まれた空間がファン吹出口1bを形成している。すなわち、図1において、主板2の周縁部の断面および側板3の断面は、何れも外周に向かって高い位置になるため、上昇した(図2~図12は上下を反転しているから、下向きの矢印で示されている)後に、水平方向で外周に向かう風流れが形成されることになる。
 (羽根の配置)
 羽根4は、平面視において、羽根前縁部4aから羽根後縁部4eになるほど、回転軸0から遠ざかるものであって、羽根4の側板3に近い端縁が、羽根後縁部4eに近い範囲(4ec4~4g1)において前記側板に接合され、羽根前縁部4aに近い範囲(4g1~4a3)において側板3から離れて側板開口部に位置している。そして、羽根4は、主板2から離れて側板3に近づく程、羽根4の回転軸Oと直交する水平断面における肉厚T(羽根外周面と羽根内周面との距離に同じ)が、除々に薄くなり、内部に空洞を有し主板2の羽根車外方に開口をもつ中空構造になっている。
 (羽根後縁部)
 図5において、羽根4の羽根後縁部4eは、主板2の外周縁と側板3の外周縁とを結ぶ仮想円筒上に位置し、該仮想円筒上において少なくとも2以上の変曲点を具備する波状を呈している。すなわち、水平そり線C1と羽根後縁部4eとの交点は高さ方向で、主板側結合点である交点4ec1に対して、ファン吹出口1bの中央より主板2側の所定位置で回転方向に凸状に回転方向へ湾曲する主板側湾曲点である交点4ec2と、ファン吹出口1bの中央より側板3側の凹状に回転方向と逆へ湾曲する側板側湾曲点である交点4ec3と、側板3の側板側結合点である交点4ec4とを示している。
 換言すると、主板側結合点4ec1と側板側結合点4ec4を結ぶ直線Gは、回転軸Oと平行に主板2および側板3の近傍では直立形状を呈し、主板側湾曲点4ec2と側板側湾曲点4ec3との間では主板2側が側板3側に対し回転方向Aに傾斜し、羽根後縁部4eが略S字形状となるように形成されていることになる。
 このとき、羽根後縁部4eは、主板2の外周縁と側板3の外周縁とを結ぶ仮想円筒面に位置し、主板側結合点4ec1と側板側結合点4ec4を結ぶ直線Gは、回転軸Oと平行で、主板2の外縁部の面に垂直(法線に垂直の同じ)である。
 また、羽根後縁部4eは、側板3近傍では側板3の法線に平行になるような形状である。さらに、主板側湾曲部の回転方向A側への最大突出位置である主板側湾曲点4ec2と、側板側湾曲部の回転方向Aの反対方向への最大突出位置である側板側湾曲点4ec3との間では、主板2に近づくほど回転方向Aに突出するから、側面視において傾斜し、略S字形状になっている。
 したがって、吸込空気は、羽根外周面4bにおいては、主板側湾曲点4ec2により羽根吹出口1bの高さ方向主板2側と中央部側とに分流され、主板2側への流れの集中を防止している。また、主板側湾曲点4ec2と側板側湾曲点4ec3の間の傾斜部4e5により側板3方向へ力がかかり流れを誘導する。さらに、側板側湾曲点4ec3から側板側結合点4ec4は、羽根内周面4cにおいて羽根4の前縁側板側端部4a1の側板側結合部4g周辺から流入した流れをファン吹出口1bの側板3側へ導風している。
 (羽根の断面形状)
 次に、羽根4の高さ方向における水平方向の断面形状について説明する。
 図6~図10は、図4に示すL1-L1断面、L2-L2断面、L3-L3断面、L4-L4断面、L5-L5平面をそれぞれ示している。また、回転方向を「矢印A」にて付記する。
 すなわち、図6は主板2との接合部である主板側端部4dにおけるL1-L1断面を、図7はファン吹出口1bの中央より主板2側のL2-L2断面を、図8はファン吹出口1bの中央より側板3側のL3-L3断面を、図9は、ファン吹出口1bの側板3表面を通るL4-L4断面を、図10は、羽根4の1枚分の側板3を外した時のL5-L5平面を、それぞれ示している。
 そして、L1-L1断面(図6)については、断面における肉厚中心線(羽根内周面と羽根外周面との中央に同じ)を「水平そり線C1」で示し、「水平そり線C1と羽根前縁部4aとの交点」および「水平そり線C1と羽根後縁部4eとの交点」を、「4ac1」および「4ec1」にて示している。
 また、L2-L2断面(図7)については、断面における肉厚中心線を「水平そり線C2」で示し、「水平そり線C2と羽根前縁部4aとの交点」および「水平そり線C2と羽根後縁部4eとの交点」を、「4ac2」および「4ec2」にて示している。
 以下、同様に、L3-L3断面(図8)については、「水平そり線C3」を「4ac3」および「4ec3」にて示している。また、L4-L4断面(図9)については、「水平そり線C3」を「4ac4」および「4ec4」にて示している。なお、高さ方向の位相を明瞭にするため、各図に、「4ac1」および「4ec1」を付記している。
 さらに、図6~図9において、各断面における羽根4の形状は、羽根内周側前縁部4a2から羽根中央部へ向け徐々に肉厚が増加し、羽根後縁部4eへ向け肉厚が徐々に減少する翼型翼である。
 図6に示すL1-L1断面において、回転方向Aに対し後傾し径方向外方へ湾曲し、図7に示すL2-L2断面では羽根後縁部4eの主板2側は回転方向Aへ逆反り状に湾曲し、図8に示すL3-L3断面では羽根後縁部4eが前記主板側結合部4ec1よりも回転方向Aと逆方向に反り湾曲している。
 そして、図9に示すL4-L4断面では側板側結合点4ec4と図6に示すL1-L1断面における主板側結合点4ec1は、ファン吸込口1aから見た平面視で同一位相で、前縁内周側端部4a2側が径方向外方に湾曲し逆反りした形状を呈している。
 さらに、図10に示す平面視において、主板側結合部4ec1、側板側結合部4ec4をまたぎ、所定角度γを有す状態で主板側湾曲点4ec2、側板側湾曲点4ec3が配設され形成している。
 また、図6(L1-L1断面)において、水平そり線C1と羽根後縁部4eとの交点4ec1における、水平そり線C1の接線E1と、回転軸Oと同心で交点4ec1を通る円の接線F1とのなす角度(鋭角)を「出口角β21」と称す。
 図7(L2-L2断面)において、水平そり線C2と羽根後縁部4eとの交点4ec2における、水平そり線C2の接線E2と、回転軸Oと同心で交点4ec2を通る円の接線F2とのなす角度(鋭角)を「出口角β22」と称す。以下同様に、 図8(L3-L3断面)において「出口角β23」を、図9(L4-L4断面)において「出口角β24」を、それぞれ規定する。
 このとき、羽根4はそれぞれの出口角が、「β23<β21=β24<β22」の関係となるように形成されている。
 (羽根前縁部)
 図2および図3において、羽根4の空気の入口側となる羽根前縁部4aの形状は、側板側端部4a1と内周側端部4a2とで成り、前縁先端部4a3を屈曲点とし連続している。そして、側板側端部4a1は、高さ方向では、前縁先端部4a3から「羽根4と側板3の密着部である側板結合部4g(図4参照)」に近づくにつれ、ファン吸込口1aに向かって傾斜している。すなわち、側板側端部4a1は、側板3の法線方向に近づくように傾斜しながら側板3に近づいている。
 図3において、水平そり線C1と羽根前縁内周側端部4a2との交点を「交点4ac1」と、水平そり線C1と羽根後縁側端部4eとの交点を「交点4ec1」とし、交点4ac1と交点4ec1とを結ぶ直線を「弦線D」としている。
 そして、羽根前縁内周端部4a2近傍における弦線Dに垂直な縦断面を「K1-K1断面」とし、K1-K1断面における羽根4を図11に示している。また、側板結合部の回転方向先端部4g1(接合範囲と側板開口部に位置する範囲との境界に同じ)における弦線Dに垂直な縦断面を「K2-K2断面」とし、K2-K2断面における羽根4を図12に示している。
 また、図11および図12において、K1-K1断面およびK2-K2断面における羽根4の高さ方向における肉厚中心線(羽根外周面と羽根内周面との中央に同じ)を「垂直そり線C12」とし、羽根前縁先端部4a3(K1-K1断面)および羽根側板接合部4g1(K2-K2断面)における垂直そり線C12と回転軸Oとのなす角度を、それぞれ「湾曲角度ε1」および「湾曲角度ε2」としている。
 図2、図11および図12において、羽根4の側板3に近い端縁の側板3から離れている範囲(側板開口部に位置する範囲に同じ)において、平面視において羽根前縁部4aに近づくほど径方向外方に位置するように湾曲し、側面視において湾曲範囲が羽根前縁部4aに近づくほど端縁から遠ざかるように拡大している。
 すなわち、羽根前縁側板側端部4a1および前縁内周側端部4a2の側板3側は、側板結合部4gの羽根外周面における回転方向先端部4g1を支点、羽根前縁先端部4a3を力点として、湾曲角度εが羽根車内周側へ向かう(羽根前縁部4aに近づくに同じ)につれて、大きくなるように径方向外方へ湾曲している。
 そのため、側面視において、湾曲範囲が略三角形状に形成されるから、羽根4の外周面4bには回転方向先端部4g1から羽根前縁内周側端部4a2へ向けて、徐々に主板2側へ向かう斜め状の「折り曲げ線B」が生成されている。
 さらに、図4および図11のように、羽根前縁部4aの主板2側の羽根外周面4bが、径方向外方へ湾曲するように羽根肉厚Tが徐々に厚く、かつ垂直そり線C12も径方向外方へ湾曲している。
 また、図12に示すK2-K2断面では、羽根外周面4bは主板2の外縁部の面に対して略垂直であって、羽根内周面4cの側板3側のみが径方向外方へ湾曲し、羽根4は全体として主板2から側板3へむけて(高い位置になるにつれ)肉厚が薄くなりながら略直立した形態を呈している。
 そして、図6~図10の各断面に示す鋭角の入口角β11、β12、β13、β14は、「β14<β11」であって、さらに、高さ方向中央部のβ12、β13は少なくともβ11、β14より大きくなる(β12>β11、β13>β14)ように、径方向内方において羽根前縁先端部4a3から側板3にかけては徐々に入口角β1が拡大し、羽根前縁先端部4a3の入口角β14が最も小さくなるように形成されている。
 以上のように少なくとも羽根前縁部4aは内周側からの側面視において、羽根外周面4bの羽根側板4a1側および主板2側が、回転方向Aに対し凹形状を成し、羽根内周面4cは径方向外方へ湾曲した形状に形成されている。
 (作用・効果)
 ターボファン1は以上のような構成であるから、図2に示すように、ファンモータ15により回転方向Aに回転された際、ファン吸込口1aから吸い込んだ室内空気(吸込空気に同じ)を、羽根4を通過した後、ファン吹出口1bから略放射状に吹き出すことになる。このとき、以下の作用、効果を奏する。
 (i)ファン吹出口1bにおける風速分布は均一化される。その結果、ターボファン1の下流側に熱交換器16を有する場合、少なくともファン吹出口1b近傍では高さ方向で均一に流入するため、風速差による熱交換器16を通過せず表面を流れる2次流れが抑制され圧損が低減でき、低騒音化が図れる(図1参照)。
 また、羽根後縁部4eの主板2および側板3近傍は直立しているので、従来のターボファンのように主板2、側板3に対し後縁部4eが傾斜しているものに比べ、溶着組立て時に回転軸Oに平行した力が正確に加えられ、羽根4の逃げによる溶着不具合が抑制されることになる。
 (ii)さらに、主板側湾曲点4ec2と側板側湾曲点4ec3の間の傾斜部4e5と、回転軸Oとの平行線Gとのなす傾斜角度である「後縁傾斜角度α2」を、「10°~30°」にしている。そのため、ファン吹出口1bにおいて、羽根外周面4bの側板3側へ流れが集中し過ぎない。また、羽根内周面4cの側板3側では、羽根の前縁部側板側4a1から流入してきた流れも集中し過ぎない。よって、後縁傾斜角度αと同一風量時の騒音値との関係のように低騒音となる(図13参照)。
 (iii)また、図10の平面視で羽根車回転中心Oと主板側湾曲点4ec2、側板側湾曲点4ec3を結ぶ直線がなす周方向湾曲角度γを「5°~15°」にしている。したがって、ファン吹出口1bの下流側に熱交換器16が配設された場合、ターボファン1が回転し羽根後縁部4eが熱交換器16へ接近し、局所的に通風抵抗が増加しても、風流れは分散される。また、後縁傾斜角度αの効果と同様に、ファン吹出口1bにおける羽根外周面4bの側板3側へ流れが集中し過ぎず、羽根内周面4cの側板3側で羽根4の前縁部側板側4a1から流入してきた流れも集中し過ぎないことにより、周方向湾曲角度γと同一風量時の騒音値との関係のように低騒音となる(図14参照)。
 (iv)そして、回転軸に直交する平面における羽根の各断面図において、羽根後縁部の羽根車回転方向Aに対し、主板側湾曲点4ec2における出口角β22と、側板側湾曲点4ec3における出口角β23との差である「角度差△β2」は「20~35°」の間になっている。したがって、空気調和機10において、ファン吹出側に配設された熱交換器16(通風可能な圧損体である平面視で略C字形状)とファン吹出口1bとの距離が周方向で変化しても、羽根後縁部4eが凹凸に湾曲する略S字形状に形成されているため、該略S字形状よって空気流れが規制される。
 このため、従来ではファン1と熱交換器16が近い領域ではファン吹出口1bの主板2側に流れが集中し、側板3側で剥離が大きく騒音悪化が大きかったが、本発明では風速分布の変化が小さく騒音の発生が抑えられる(これについては、「出口角度差△β2と同一風量時の騒音値との関係」を示す図15参照)。
 (v)そして、羽根前縁部4aにおいて、空気が流入する際、中心側(回転軸O)からの側面視で外周面4bの羽根側板3側および主板2側が、回転方向Aに対し凹形状に湾曲しているため、羽根4の前縁内周側端部4a2の側板2側および羽根外周面4bの側板側誘引部4b1(前縁側板側端部4a1が径方向外方へ湾曲されている)では、吸込空気が外周面4bに衝突することなく乱れが抑制され、さらに、滑らかに導入される。
 したがって、ファン回転数が同一である時の送風量を増加することができ、空気調和機10の熱交換に必要な送風量に対し、ファン回転数を低下することができるため、低騒音化することができると共に、ファンの回転駆動を低トルク化することができ、モータの消費電力を低減することが可能である。 
 (vi)また、羽根前縁部4aの羽根外周面4bの主板2側が径方向外方に湾曲しているため、ボス2aより主板2の表面を通過してきた流れを、羽根高さ方向中央へ向け、羽根前縁内周側端部4a2から流入した流れと共に、主板2側への流れの集中を抑制する。
また、羽根4へ流れが衝突することなく滑らかに羽根外周面4bへ導入され乱れが抑制される。
 その結果、従来ファン吹出口の主板側へ集中していた風速分布に対し、側板側の剥離抑制と主板側への集中回避によって吹出風速分布が均一化され、かつ低騒音化を図ることができる。
 (vii)また、羽根前縁部4aの羽根内周面4cの側板3側が、径方向外方へ傾斜し、且つ、湾曲するように形成したものであるため、羽根内周面4cの吸込空気が、かかる傾斜した湾曲面に沿い、滑らかに羽根後縁部4eへ向け流れる。したがって、従来のターボファンにおいて側板3近傍で生じていた剥離が、抑制されるため低騒音化を図ることができる。
 (viii)そして、側板結合部4gの羽根外周面4bにおける回転方向先端部4g1を支点、羽根前縁先端部4a3を力点として、羽根主板側先端4dの水平断面での弦線Dに直交する縦断面図において、「湾曲角度ε(垂直そり線C12が回転軸Oと平行な直線とのなす角度に同じ)」が、羽根車内周側へ向かうにつれて大きくなるように、径方向外方へ湾曲している。つまり、羽根4の前縁内周側端部4a2の側板3側と前縁側板側端部4a1とが、羽根4の回転方向面4bに向けて(側板結合部の内周側端部4g1から羽根前縁内周側端部4a2へ向けて)、徐々に主板2側へ向かう折り曲げ線B(斜め状、図2参照)が生成されるように径方向外方へ湾曲している。
 そのため、従来の回転軸Oに直交する水平線を起点に湾曲したものに比べ、羽根4の前縁内周側端部4a2の側板3側における流入量と、前縁側板側端部4a1における流入量との差が縮小される。
 (ix)また、前縁先端部4a3を頂点にして、前縁内周側端部4a2および前縁側板側端部4a1が略三角状に連設していることで、羽根前縁先端部4a3を中心に羽根前縁内周側端部4a2および羽根前縁側板側端部4a1において生じる縦渦が均一化され、羽根内周面4c上へ空気が誘引されることで安定する。したがって、空気調和機10(図1参照)に搭載した時のように、フィルタ12(ファン吸込口1a側へ配設される通風可能な圧損体である)にホコリが堆積して、通風抵抗が増加した場合であっても、空気流れの剥離が生じ難く、騒音悪化を小さく抑えることができる。
 (x)図16は「通風抵抗比に対する騒音値」と湾曲角度εとの関係図であって、羽根前縁先端部4a3の湾曲角度εが、湾曲角度εにおける場合と同一風量時におけるものである。すなわち、吸込側へ配設されたフィルタへホコリが堆積した時の値に対する、ホコリが堆積していない時の値との比率である「通風抵抗比に対する騒音値」の関係図である。そして、図16に示すように、「ε1=25°~45°」の範囲であれば、ファン吸込口1aでの通風抵抗が変化しても剥離しづらく低騒音なターボファン、および空気調和機が得られる。
 (xi)さらに、図12のように、羽根4は主板2から側板3へ向けファン高さ方向で肉厚Tが薄くなり、主板2の羽根車外方に開口2bをもつ中空構造のため、ターボファンの軽量化が図られている。そのため、ファンモータ起動時に、ボス2aへかかる起動トルクを小さくすることができ、ねじれが抑制されるから、ターボファン1の耐久性が向上する。
 (xii)そして、羽根4は、図6に示す縦断面K1-K1(羽根主板側先端4dの水平断面における弦線Dに直交する羽根4の側板結合部の回転方向先端部4g1を含む縦断面)および、その下流側の羽根後縁部4eへ向かう所定範囲は、何れも主板2に対して回転軸Oと平行に略直立するように形成されている。そのため、羽根4と側板2を溶着し一体とするために回転軸Oと平行方向に、側板2を羽根4に押さえつける際、従来の羽根が主板2に対し傾斜している場合に生じる「羽根主板側端部4dにおける応力集中」が抑制され、羽根4の座屈が防止され、組上げがし易く生産信頼性を高めることが可能になる。
 (xiii)そして、回転軸Oに直交する平面における羽根4の各断面図における入口角β1について、羽根前縁先端部4a3における入口角β14が前縁部4aの中で最も小さくなっている。そして、羽根前縁内周端部4a2における羽根車高さ方向中央付近での入口角β1は、少なくとも前記主板側での入口角β11、羽根前縁先端部での入口角β14より大きくなるように径方向内方に形成されている。すなわち、「β1>β11>β14」の関係になっている。
 また、羽根4の側板側端部4a1において、羽根前縁先端部4a3から側板結合部4gにかけて徐々に入口角β1が拡大するように形成したものであるから、羽根前縁内周側端部4a2における回転軸Oと直交する水平断面上の「吸込流れJ」と入口角β1との角度差である「入射角δ」を小さくすることができ、吸引空気を剥離が小さく滑らかに誘引することができ、低騒音化を図ることができる。
 (xiv)また、羽根前縁先端部4a3から羽根前縁側板側端部4a1の側板結合部4gまでは、ファン吸込口1a側への傾斜部で径方向に吸込流れを径方向へ誘引し、入口角βを徐々に拡大させることで、さらに径方向へ誘引させ、側板3側の剥離を抑制し、ファン吹出口1bにおける風速分布を均一化することができる。
 (xv)また、羽根外周面4bにおいて垂直そり線C12が、最も逆回転方向となる凹状底部での高さ位置における前縁内周側端部4a2(図7および図11参照)における入口角β12に対する、羽根前縁先端部4a3における入口角β14(図8および図11参照)との角度差を「角度差△β1」とする。
 そうすると、図17に示すように、角度差△β1が大き過ぎると、羽根内周面4cの主板2側で剥離が生じ、騒音悪化が生じるものの、角度差△β1が「10°~20°」の間となるように形成すれば、低騒音効果が得られる。
 (xvi)なお、羽根後縁部4eを略S字状に湾曲した形状、および羽根前縁部4aを径方向外方へ湾曲した形状は、それぞれ単独でも従来に対し低騒音効果がある。
 さらに両形状を組み合わせることで、吸引空気は、羽根前縁部4a全体から滑らかに流入するため、羽根後縁部4eへ向け整流された流れが流入する。これにより、略S字形状の羽根表面に流れが沿い易く、かつ、乱れの少ない流れが流入するから、さらに風速分布も均一化され、かつ、相乗して騒音低減が促進される。
 以上より、本発明に係るターボファンは、低騒音で、製造信頼性や耐久性が高いものである。また、かかるターボファンを搭載することによって、ユーザーにとって耳障りな騒音が抑えられて快適な使用環境を保証することができると共に、長期間に渡って故障のない使用が可能となる安価で高品質な空気調和機を提供することが可能になる。
 [実施の形態3:ターボファン]
 図18および図19は本発明の実施の形態3に係るターボファンを説明するものであって、図18は斜視図、図19は部分を示す断面図(正確には、図18に示す羽根主板側端部4bにおける弦線Dに直交する平面における羽根4の縦断面図)である。なお、実施の形態2(図2~図12)と同じ部分または対応する部分にはこれと同じ符号を付し、一部の説明を省略する。
 図18において、羽根4の側板3に近い端縁である前縁側板側端部4a1が、側板3から離れた範囲(側板開口部に位置する範囲に同じ)において、平面視において前縁内周側端部4a2に近づくほど径方向外方に位置するように湾曲し、側面視において湾曲範囲が前縁内周側端部4a2に近づくほど前記端縁から遠ざかるように拡大している。
 すなわち、ターボファン30には、径方向外方へ湾曲する羽根4の前縁側板側端部4a1と、前縁内周側端部4a2の側板3側の羽根外周面4bとに、側板結合部4gの羽根外周面4bにおける回転方向先端部4g1から羽根4の前縁内周側端部4a2へ向け、徐々に主板2側へ向かう折り曲げ線Bが生成されている。
 そして、かかる湾曲範囲の羽根内周面4cには、折り曲げ線Bに略垂直となり、回転軸Oに対し側板3側から主板2側へ向け斜め外方に延出する長方形状の凹溝5を形成されている。
 図19において、凹溝5の深さは、前縁側板側端部4a1に近づくに伴って浅くなっている。
 すなわち、羽根4は、羽根外周面を形成する部材と羽根内周面を形成する部材とから形成され、内部に空洞を具備する二重構造であって、両者が前縁側板側端部4a1において接合され、前縁側板側端部4a1から遠ざかるほど両者の間隔が広くなっている。
 そして、凹溝5の溝底部5aが羽根外周面を形成する部材によって形成されているから、凹溝5の深さは、羽根外周面を形成する部材の内周側面と羽根内周面を形成する部材の内周側面との距離に相当している。
 このように形成されたターボファン30は、ファンモータにより回転方向Aに回転されることで、ファン吸込口1aから空気を吸い込み、羽根4を通過した後、吸引空気をファン吹出口1bから回転方向へ略放射状に吹き出す。
 このとき、羽根4に空気が流入する際、前縁側板側端部4a1は径方向外方へ湾曲しているため、羽根外周面4c上に空気が沿い滑らかに羽根後縁部へ流れるから、乱れが抑制される。また、凹溝5が回転軸Oに対し側板3側から主板2側へ拡大しながら斜め方向に延出するように形成されているため、溝底部5aにより流れが整流されるから、さらに乱れが抑制され低騒音化を促進することができる。
 また、前記凹溝5の溝底部5aは羽根外周面4bに沿い羽根4の肉厚が薄肉となるように形成されているので、熱可塑性樹脂でターボファンを成形する場合、肉厚が厚くなる湾曲部でも薄肉なためヒケの防止が可能で成形の信頼性が向上する。
 特に、ファン吸込口1aにフィルタ等の通風可能な圧損体が配設される空気調和機10(図1参照)にターボファン30が搭載されると、徐々にフィルタへホコリが堆積し通風抵抗が増加した場合であっても、剥離を抑制し低騒音を維持することができる。
 本発明は以上の構成であって、低騒音で製造信頼性が高いから、家庭用および事業用の各種ターボファンとして、さらに、かかるターボファンを搭載した家庭用および事業用の各種空気調和機として広く利用することができる。

Claims (18)

  1.  モータの回転軸が固定される固定部であるボスを有する主板と、該主板と共に導風壁を形成する中心に側板開口部を具備する側板と、前記主板と前記側板とに跨って設置された複数枚の羽根と、を有するターボファンにおいて、
     前記羽根は、平面視において、前記羽根前縁部から前記羽根後縁部になるほど、前記回転軸から遠ざかるものであって、
     前記羽根の羽根外周面および羽根内周面は、羽根前縁部において高さ方向の中央範囲が前記回転軸に略平行であって、前記主板に近い範囲が前記主板に近づくほど、径方向外方に位置する裾野部を具備し、前記側板に近い範囲が前記側板に近づくほど、径方向外方に位置するような裾野部を具備することを特徴とするターボファン。
  2.  前記羽根の側板に近い端縁が、前記側板開口部に位置する範囲において、平面視において前記羽根前縁部に近づくほど径方向外方に位置するように湾曲し、側面視において前記湾曲範囲が前記羽根前縁部に近づくほど前記端縁から遠ざかるように拡大することを特徴とする請求項1記載のターボファン。
  3.  モータの回転軸が固定される固定部であるボスを有する主板と、該主板と共に導風壁を形成する中心に側板開口部を具備する側板と、前記主板と前記側板とに跨って設置された複数枚の羽根と、を有するターボファンにおいて、
     前記羽根は、平面視において、前記羽根前縁部から前記羽根後縁部になるほど、前記回転軸から遠ざかるものであって、
     前記羽根の前記側板に近い端縁が、前記羽根後縁部に近い範囲において前記側板に接合され、前記羽根前縁部に近い範囲において前記側板から離れて前記側板開口部に位置し、 前記羽根の羽根後縁部は、前記主板の外周縁と前記側板の外周縁とを結ぶ仮想円筒上に位置する少なくとも2以上の変曲点を具備する波状であって、前記主板寄りの範囲において回転方向に向かって突出する主板側湾曲部と、前記側板寄りの範囲において回転方向と逆の方向に向かって突出する側板側湾曲部と、を有することを特徴とするターボファン。
  4.  前記羽根の羽根外周面および羽根内周面は、羽根前縁部において高さ方向の中央範囲が前記回転軸に略平行であって、前記主板に近い範囲が前記主板に近づくほど、径方向外方に位置する裾野部を具備し、前記側板に近い範囲が前記側板に近づくほど、径方向外方に位置するような裾野部を具備すると共に、前記羽根の側板に近い端縁が、前記側板開口部に位置する範囲において、平面視において前記羽根前縁部に近づくほど径方向外方に位置するように湾曲し、側面視において前記湾曲範囲が前記羽根前縁部に近づくほど前記端縁から遠ざかるように拡大することを特徴とする請求項3記載のターボファン。
  5.  前記羽根後縁部と前記主板との結合部と、前記羽根後縁部と前記側板側との結合部とを結ぶ直線は、前記回転軸と平行であることを特徴とする請求項1乃至4の何れかに記載のターボファン。
  6.  前記羽根は、前記羽根外周面と前記羽根内周面との間隔が、前記主板から前記側板へ向けて小さくなる先細り形状であって、内部に空洞を具備する中空構造であることを特徴とする請求項1乃至5の何れかに記載のターボファン。
  7.  前記羽根の羽根外周面と羽根内周面との中心線は、前記側板に接合した範囲において、前記回転軸と平行であることを特徴とする請求項1乃至6の何れかに記載のターボファン。
  8.  モータの回転軸が固定される固定部であるボスを有する主板と、該主板と共に導風壁を形成する中心に側板開口部を具備する側板と、前記主板と前記側板とに跨って設置された複数枚の羽根と、を有するターボファンにおいて、
     前記羽根は、平面視において、前記羽根前縁部から前記羽根後縁部になるほど、前記回転軸から遠ざかるものであって、
     前記羽根の前記側板に近い端縁が、前記羽根後縁部に近い範囲において前記側板に接合され、前記羽根前縁部に近い範囲において前記側板から離れて前記側板開口部に位置し、 前記羽根の羽根後縁部は、前記主板の外周縁と前記側板の外周縁とを結ぶ仮想円筒上に位置する少なくとも2以上の変曲点を具備する波状であって、前記主板寄りの範囲において回転方向に向かって突出する主板側湾曲部と、前記側板寄りの範囲において回転方向と逆の方向に向かって突出する側板側湾曲部と、を有し、
     前記羽根後縁部と前記主板との結合部と、前記羽根後縁部と前記側板側との結合部とを結ぶ直線は、前記回転軸と平行であり、
     前記羽根の羽根外周面および羽根内周面は、羽根前縁部において高さ方向の中央範囲が前記回転軸に略平行であって、前記主板に近い範囲が前記主板に近づくほど、径方向外方に位置する裾野部を具備し、前記側板に近い範囲が前記側板に近づくほど、径方向外方に位置するような裾野部を具備し、
     前記羽根の側板に近い端縁が、前記側板開口部に位置する範囲において、平面視において前記羽根前縁部に近づくほど径方向外方に位置するように湾曲し、側面視において前記湾曲範囲が前記羽根前縁部に近づくほど前記端縁から遠ざかるように拡大し、
     前記羽根は、前記羽根外周面と前記羽根内周面との間隔が、前記主板から前記側板へ向けて小さくなる先細り形状であって、内部に空洞を具備する中空構造で、前記羽根外周面と前記羽根内周面との中心線は、前記側板に接合した範囲において、前記回転軸と平行であることを特徴とするターボファン。
  9.  前記羽根後縁部の先端の側面視において、前記主板側湾曲部の回転方向の最大突出位置と前記側板側湾曲部の回転方向の反対方向の最大突出位置とを結ぶ傾斜線が、前記主板との結合部と前記板側との結合部とを結ぶ垂直線に対して、傾斜角度10°~30°の間で傾斜することを特徴とする請求項3、4、5または8記載のターボファン。
  10.  前記主板との接合部の平面視における、前記羽根外周面と前記羽根内周面との中央を示す水平そり線の前記主板の外周縁と交差する点と、前記回転軸の中心とを結ぶ線と、
     前記側板との接合部の平面視における、前記羽根外周面と前記羽根内周面との中央を示す水平そり線の前記側板の外周縁と交差する点と、前記回転軸の中心とを結ぶ線とが、平面視においてなす角度である周方向湾曲角度が、5°~15°の間であることを特徴とする請求項3、4、5または8記載のターボファン。
  11.  前記主板側湾曲部の平面視において、前記羽根外周面と前記羽根内周面との中央を示す水平そり線の前記羽根後縁部の先端における接線と、前記回転軸の中心を中心とする前記羽根後縁部の先端を通る円の前記羽根後縁部の先端における接線と、のなす主板側出口角と、
     前記側板側湾曲部の平面視において、前記羽根外周面と前記羽根内周面との中央を示す水平そり線の前記羽根後縁部の先端における接線と、前記回転軸の中心を中心とする前記羽根後縁部の先端を通る円の前記羽根後縁部の先端における接線と、のなす側板側出口角と、
    の角度差は、20°~35°の間であることを特徴とする請求項3、4、5または8記載のターボファン。
  12.  側面視における前記羽根外周面と前記羽根内周面との中央を示す垂直そり線の前記羽根前縁部の先端における接線と、前記回転軸とのなす角度である湾曲角度が、25°~45°の間であることを特徴とする請求項2または8記載のターボファン。
  13.  平面視における前記羽根前縁部の先端において、
     前記側板寄りの位置における入口角である羽根側板側入口角と、
     前記側板と前記主板との高さ方向の中央付近における入口角である羽根中央付近入口角と、
     前記主板寄りの位置における入口角である羽根主板側入口角と、
    の間に、「羽根中央付近入口角>羽根主板側入口角>羽根側板側入口角」の関係があることを特徴とする請求項1乃至12の何れかに記載のターボファン。
  14.  平面視における前記羽根前縁部の先端において、
     前記側板と前記主板との高さ方向の中央付近の前記内周側の端部における入口角である羽根中央内周入口角と、
     前記側板寄りの端部における入口角である羽根側板側入口角と、
    の平面視における角度差が、10°~20°の間であることを特徴とする請求項13記載のターボファン。
  15.  前記羽根の前記湾曲範囲における前記羽根内周部に、前記側板寄りの端部に至る凹溝が形成され、
     前記湾曲範囲とこれを除く前記羽根内周部との境界に折り曲げ線が形成され、
     前記凹溝が、前記折り曲げ線に略平行であることを特徴とする請求項2または8記載のターボファン。
  16.  前記凹溝は、断面矩形であって、前記側板寄りの端部に近づくほど浅くなることを特徴とする請求項15記載のターボファン。
  17.  請求項1乃至15の何れかに記載のターボファンを搭載し、該ターボファンの吸込口側に通風可能な圧損体を有することを特徴とする空気調和機。
  18.  請求項1乃至15の何れかに記載のターボファンを搭載し、該ターボファンの吹出口側に通風可能な圧損体を有することを特徴とする空気調和機。
PCT/JP2009/054060 2008-04-18 2009-03-04 ターボファンおよび空気調和機 WO2009128299A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES09731652.5T ES2686246T3 (es) 2008-04-18 2009-03-04 Turboventilador y aparato acondicionador de aire
EP09731652.5A EP2264320B1 (en) 2008-04-18 2009-03-04 Turbofan and air conditioner
CN200980106559.XA CN101960150B (zh) 2008-04-18 2009-03-04 涡轮风扇以及空调机
AU2009237152A AU2009237152B2 (en) 2008-04-18 2009-03-04 Turbofan and air conditioner
JP2010508146A JP5283691B2 (ja) 2008-04-18 2009-03-04 ターボファンおよび空気調和機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-109046 2008-04-18
JP2008109046 2008-04-18

Publications (1)

Publication Number Publication Date
WO2009128299A1 true WO2009128299A1 (ja) 2009-10-22

Family

ID=41198999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054060 WO2009128299A1 (ja) 2008-04-18 2009-03-04 ターボファンおよび空気調和機

Country Status (6)

Country Link
EP (1) EP2264320B1 (ja)
JP (2) JP5283691B2 (ja)
CN (1) CN101960150B (ja)
AU (1) AU2009237152B2 (ja)
ES (1) ES2686246T3 (ja)
WO (1) WO2009128299A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216486A (ja) * 2005-10-06 2010-09-30 Mitsubishi Electric Corp ターボファン、空気調和機
JP2011226448A (ja) * 2010-04-23 2011-11-10 Toshiba Carrier Corp 遠心ファン及び空気調和機
JP2013199870A (ja) * 2012-03-23 2013-10-03 Mitsubishi Heavy Ind Ltd インペラ及び流体機械
JP2015187449A (ja) * 2015-07-28 2015-10-29 三菱重工業株式会社 インペラ及び流体機械
JP2016050486A (ja) * 2014-08-29 2016-04-11 株式会社日立製作所 流体機械、及び流体機械の羽根車
JP2016065548A (ja) * 2016-02-04 2016-04-28 三菱重工業株式会社 インペラ及び流体機械
US20160223211A1 (en) * 2015-01-30 2016-08-04 Hitachi Appliances, Inc. Air Conditioning Unit
JP6056952B1 (ja) * 2015-12-28 2017-01-11 ダイキン工業株式会社 遠心ファンの羽根車及びその製造方法
WO2017056874A1 (ja) * 2015-10-02 2017-04-06 三菱重工業株式会社 ターボファンおよびそれを用いた空気調和機
WO2017115490A1 (ja) * 2015-12-28 2017-07-06 ダイキン工業株式会社 遠心ファンの羽根車、その製造方法及び製造装置
US9874219B2 (en) 2013-06-13 2018-01-23 Mitsubishi Heavy Industries, Ltd. Impeller and fluid machine
US20210324874A1 (en) * 2018-12-26 2021-10-21 Mitsubishi Electric Corporation Impeller, fan, and air-conditioning apparatus
WO2023199731A1 (ja) * 2022-04-12 2023-10-19 株式会社デンソー 遠心ファン

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013263811B2 (en) * 2012-12-03 2018-03-15 Angelo Lambrinos Notaras Motorised Portable Blower Apparatus
CN103174672B (zh) * 2013-04-02 2016-01-13 宁波朗迪叶轮机械有限公司 后倾式斜流送风叶轮
CN103174673B (zh) * 2013-04-02 2016-01-13 宁波朗迪叶轮机械有限公司 用于空调上的塑料送风装置
CN103174674A (zh) * 2013-04-02 2013-06-26 宁波朗迪叶轮机械有限公司 用于空调上的斜流离心叶轮
CN103185030B (zh) * 2013-04-03 2015-12-02 宁波朗迪叶轮机械有限公司 用于空调上的斜流离心叶轮
CN103195751B (zh) * 2013-04-03 2015-11-04 宁波朗迪叶轮机械有限公司 后倾式离心风叶
CN103195752B (zh) * 2013-04-03 2015-11-18 宁波朗迪叶轮机械有限公司 一种用于空调上的叶轮
CN103195753B (zh) * 2013-04-03 2015-12-02 宁波朗迪叶轮机械有限公司 后倾式叶轮
US9995311B2 (en) 2013-05-10 2018-06-12 Lg Electronics Inc. Centrifugal fan
KR101677030B1 (ko) * 2013-05-10 2016-11-17 엘지전자 주식회사 원심팬
CN104895835B (zh) * 2014-03-05 2017-11-28 海尔集团公司 一种离心风扇、离心风扇的制造方法及具有该离心风扇的空调
KR102227374B1 (ko) 2014-05-28 2021-03-11 엘지전자 주식회사 원심팬
TWI550237B (zh) * 2014-06-06 2016-09-21 張永富 排油煙機葉輪結構
CN105987015A (zh) * 2015-02-26 2016-10-05 廖泊康 三百六十度旋转式鼓风机
KR101906341B1 (ko) * 2015-04-09 2018-10-12 코웨이 주식회사 공기청정기
JP6621194B2 (ja) * 2015-06-03 2019-12-18 三星電子株式会社Samsung Electronics Co.,Ltd. ターボファン及びこのターボファンを用いた送風装置
CN105275875B (zh) * 2015-10-15 2017-12-26 珠海格力电器股份有限公司 离心风叶及离心风机
CN105864099B (zh) * 2016-05-24 2018-06-26 江苏大学 一种中高比转速离心泵叶轮出口端折边叶片结构的设计方法
JP6593538B2 (ja) * 2016-07-27 2019-10-23 株式会社デンソー 遠心送風機
US11015610B2 (en) 2016-07-27 2021-05-25 Denso Corporation Centrifugal blower
CN106286388B (zh) * 2016-08-31 2019-05-24 泛仕达机电股份有限公司 一种后向离心风机
JP6971662B2 (ja) * 2017-06-30 2021-11-24 株式会社川本製作所 インペラ
JP2019019759A (ja) * 2017-07-18 2019-02-07 日本電産株式会社 遠心ファンインペラおよび当該遠心ファンインペラを備える遠心ファン
JP6710337B2 (ja) * 2017-07-26 2020-06-17 三菱電機株式会社 空気調和機
JP7467025B2 (ja) * 2018-03-26 2024-04-15 東芝キヤリア株式会社 送風機および空気調和機の室内ユニット
CN109899318B (zh) * 2019-02-22 2021-03-30 宁波德业日用电器科技有限公司 新健康空气净化器的旋涡风扇
CN110725808B (zh) * 2019-10-31 2021-03-02 中国科学院工程热物理研究所 离心叶轮叶片及构型方法与离心压气机
CN111963478B (zh) * 2020-07-28 2021-10-01 宁波方太厨具有限公司 一种用于离心风机的叶片、离心风机及吸油烟机
KR20220033352A (ko) * 2020-09-09 2022-03-16 삼성전자주식회사 팬, 팬을 갖는 공기조화기 및 팬의 제조방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53144508U (ja) * 1977-04-20 1978-11-14
JPH08165998A (ja) * 1994-12-14 1996-06-25 Matsushita Refrig Co Ltd 遠心送風機
JP2701604B2 (ja) 1991-08-02 1998-01-21 ダイキン工業株式会社 空気調和装置
JPH1030590A (ja) 1996-07-16 1998-02-03 Matsushita Refrig Co Ltd 遠心送風機
JPH1122695A (ja) * 1997-06-30 1999-01-26 Ishikawajima Harima Heavy Ind Co Ltd 遠心圧縮機のインペラ翼構造
JP2001234888A (ja) * 2000-02-25 2001-08-31 Mitsubishi Heavy Ind Ltd 送風機
JP2003206892A (ja) * 2002-01-10 2003-07-25 Mitsubishi Heavy Ind Ltd ターボファン及びそれを備えた空気調和装置
WO2007040236A1 (ja) * 2005-10-06 2007-04-12 Mitsubishi Electric Corporation ターボファン、空気調和機

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53144508A (en) * 1977-05-20 1978-12-15 Neos Kk Process for preparing perfluoroolefin oligomer
DE3137554A1 (de) * 1981-09-22 1983-03-31 Wilhelm Gebhardt Gmbh, 7112 Waldenburg "radialventilator"
JP3757802B2 (ja) * 2001-02-09 2006-03-22 三菱電機株式会社 ターボファン、およびターボファンを用いた送風装置、空気調和機
JP4014887B2 (ja) * 2002-02-08 2007-11-28 シャープ株式会社 遠心ファンおよびその遠心ファンを備えた加熱調理器
CN1712736A (zh) * 2004-06-15 2005-12-28 松下电器产业株式会社 涡轮风扇及其制造方法
KR20070101642A (ko) * 2006-04-11 2007-10-17 삼성전자주식회사 터보팬
JP2008002379A (ja) * 2006-06-23 2008-01-10 Daikin Ind Ltd 遠心ファン
KR20080045568A (ko) * 2006-11-20 2008-05-23 삼성전자주식회사 터보팬 및 이를 갖춘 공기조화기

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53144508U (ja) * 1977-04-20 1978-11-14
JP2701604B2 (ja) 1991-08-02 1998-01-21 ダイキン工業株式会社 空気調和装置
JPH08165998A (ja) * 1994-12-14 1996-06-25 Matsushita Refrig Co Ltd 遠心送風機
JPH1030590A (ja) 1996-07-16 1998-02-03 Matsushita Refrig Co Ltd 遠心送風機
JPH1122695A (ja) * 1997-06-30 1999-01-26 Ishikawajima Harima Heavy Ind Co Ltd 遠心圧縮機のインペラ翼構造
JP2001234888A (ja) * 2000-02-25 2001-08-31 Mitsubishi Heavy Ind Ltd 送風機
JP2003206892A (ja) * 2002-01-10 2003-07-25 Mitsubishi Heavy Ind Ltd ターボファン及びそれを備えた空気調和装置
JP3861008B2 (ja) 2002-01-10 2006-12-20 三菱重工業株式会社 ターボファン及びそれを備えた空気調和装置
WO2007040236A1 (ja) * 2005-10-06 2007-04-12 Mitsubishi Electric Corporation ターボファン、空気調和機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2264320A4

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216486A (ja) * 2005-10-06 2010-09-30 Mitsubishi Electric Corp ターボファン、空気調和機
JP2011226448A (ja) * 2010-04-23 2011-11-10 Toshiba Carrier Corp 遠心ファン及び空気調和機
JP2013199870A (ja) * 2012-03-23 2013-10-03 Mitsubishi Heavy Ind Ltd インペラ及び流体機械
US9874219B2 (en) 2013-06-13 2018-01-23 Mitsubishi Heavy Industries, Ltd. Impeller and fluid machine
JP2016050486A (ja) * 2014-08-29 2016-04-11 株式会社日立製作所 流体機械、及び流体機械の羽根車
US20160223211A1 (en) * 2015-01-30 2016-08-04 Hitachi Appliances, Inc. Air Conditioning Unit
JP2016142431A (ja) * 2015-01-30 2016-08-08 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和機
CN105864885A (zh) * 2015-01-30 2016-08-17 日立空调·家用电器株式会社 空气调节单元
JP2015187449A (ja) * 2015-07-28 2015-10-29 三菱重工業株式会社 インペラ及び流体機械
CN107850081B (zh) * 2015-10-02 2019-10-01 三菱重工制冷空调系统株式会社 涡轮风扇及使用了该涡轮风扇的空调
WO2017056874A1 (ja) * 2015-10-02 2017-04-06 三菱重工業株式会社 ターボファンおよびそれを用いた空気調和機
CN107850081A (zh) * 2015-10-02 2018-03-27 三菱重工制冷空调系统株式会社 涡轮风扇及使用了该涡轮风扇的空调
WO2017115490A1 (ja) * 2015-12-28 2017-07-06 ダイキン工業株式会社 遠心ファンの羽根車、その製造方法及び製造装置
AU2016381760B2 (en) * 2015-12-28 2018-08-30 Daikin Industries, Ltd. Impeller of centrifugal fan and method and apparatus for manufacturing the same
JP6056952B1 (ja) * 2015-12-28 2017-01-11 ダイキン工業株式会社 遠心ファンの羽根車及びその製造方法
US10697474B2 (en) 2015-12-28 2020-06-30 Daikin Industries, Ltd. Impeller of centrifugal fan and method and apparatus for manufacturing the same
JP2016065548A (ja) * 2016-02-04 2016-04-28 三菱重工業株式会社 インペラ及び流体機械
US20210324874A1 (en) * 2018-12-26 2021-10-21 Mitsubishi Electric Corporation Impeller, fan, and air-conditioning apparatus
WO2023199731A1 (ja) * 2022-04-12 2023-10-19 株式会社デンソー 遠心ファン

Also Published As

Publication number Publication date
JPWO2009128299A1 (ja) 2011-08-04
EP2264320B1 (en) 2018-08-08
CN101960150A (zh) 2011-01-26
JP5669877B2 (ja) 2015-02-18
CN101960150B (zh) 2014-04-02
AU2009237152A1 (en) 2009-10-22
EP2264320A4 (en) 2015-04-15
ES2686246T3 (es) 2018-10-17
AU2009237152B2 (en) 2012-07-05
EP2264320A1 (en) 2010-12-22
JP5283691B2 (ja) 2013-09-04
JP2013117233A (ja) 2013-06-13

Similar Documents

Publication Publication Date Title
JP5283691B2 (ja) ターボファンおよび空気調和機
JP5955402B2 (ja) ターボファンおよび空気調和機
KR101210696B1 (ko) 원심팬
JP5143173B2 (ja) ターボファン及びこれを装備した空気調和機の室内機
JP5575332B2 (ja) ターボファン、および空気調和機
JP2010133254A (ja) 遠心送風機及びこれを備えた空気調和機
WO2009139422A1 (ja) 遠心送風機
US20150056910A1 (en) Indoor unit for air-conditioning apparatus
CN103671248B (zh) 离心送风机和具有该离心送风机的空调机
JPH01302045A (ja) 空気調和機
WO2014162552A1 (ja) プロペラファン、送風装置及び室外機
JP2007205268A (ja) 遠心ファン
JP3649157B2 (ja) 遠心ファン及び該遠心ファンを備えた空気調和機
JP6739656B2 (ja) 羽根車、送風機、及び空気調和装置
JP2001159396A (ja) 遠心ファン及び該遠心ファンを備えた空気調和機
JP4649972B2 (ja) 送風機と、それを備えた空気調和機
JP2009228499A (ja) 送風機及びこれを用いた空気調和機
WO2021172360A1 (ja) 遠心圧縮機
JP6625213B2 (ja) 多翼ファン及び空気調和機
JP2008095971A (ja) 空気調和装置の室内ユニット
JP2023140617A (ja) 遠心ファン及び空気調和機
JP2007255398A (ja) プロペラファンおよびパイプ用換気扇
NZ700985B2 (en) Indoor unit for air conditioning device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980106559.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09731652

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010508146

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009731652

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009237152

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2009237152

Country of ref document: AU

Date of ref document: 20090304

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 7339/CHENP/2010

Country of ref document: IN