WO2021172360A1 - 遠心圧縮機 - Google Patents
遠心圧縮機 Download PDFInfo
- Publication number
- WO2021172360A1 WO2021172360A1 PCT/JP2021/006874 JP2021006874W WO2021172360A1 WO 2021172360 A1 WO2021172360 A1 WO 2021172360A1 JP 2021006874 W JP2021006874 W JP 2021006874W WO 2021172360 A1 WO2021172360 A1 WO 2021172360A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shroud
- main
- main wing
- centrifugal compressor
- leading edge
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
- F04D29/30—Vanes
Definitions
- the present disclosure relates to a centrifugal compressor.
- the present application claims priority over Japanese Patent Application No. 2020-209452 filed on February 25, 2020, the contents of which are incorporated herein by reference.
- the ceiling-embedded air conditioner includes a casing embedded in the indoor ceiling, a motor having an output shaft that rotates around an axis extending in the vertical direction, a turbofan, a main plate that fixes the turbofan to the output shaft, and a turbo. It mainly has a heat exchanger that surrounds the fan and a bell mouth.
- the turbofan has a tubular shroud that surrounds the axis, and a plurality of main wings that are arranged at intervals in the circumferential direction on one surface of the shroud. Further, on the inner peripheral side of the shroud, a bell mouth is provided for guiding the air taken into the casing toward the turbofan. A certain clearance is formed between the bell mouth and the shroud.
- the turbofan By rotating the turbofan, indoor air is taken into the casing from the center of the casing. After being pumped to the outer peripheral side by a turbofan, this air passes through a heat exchanger to become cold or warm air and is supplied indoors.
- the turbofan functions as a part (impeller) of the centrifugal compressor.
- some of the components of the air flow from the turbofan to the outer peripheral side flow into the shroud as a leak flow through the above clearance.
- This leak flow contains a swirling component due to being pumped by a turbofan. Losses occur when such leaks merge with the mainstream inside the shroud.
- the inflow angle with respect to the main wing may change by the amount of the swirling component of the leak flow, which may cause the flow to separate.
- the flow rate increases in the shroud side region of the main wing by the amount of the leak flow, and the load on the main wing may increase. As a result, the efficiency of the centrifugal compressor is reduced.
- the present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide a centrifugal compressor with further improved efficiency.
- the centrifugal compressor according to the present disclosure forms a clearance by surrounding a tubular bell mouth that surrounds an axis and one end of the bell mouth in the axial direction from the outer peripheral side.
- a shroud extending from the upstream side to the downstream side so as to go outward in the radial direction toward one side in the axial direction, a main plate facing the one side in the axial direction of the shroud, and the shroud and the main plate are provided over the shroud and the main plate in the circumferential direction.
- the main wing is provided with a main wing in which a plurality of wings are arranged at intervals, and the main wing is a main wing main body which is a part on the main plate side and a shroud side part connected to the main wing main body, and the leading edge is the main wing. It has a main wing base end portion that protrudes upstream of the shroud from the boundary with the main body.
- the ceiling-embedded air conditioner 100 as a centrifugal compressor according to the first embodiment of the present disclosure will be described with reference to FIGS. 1 to 4.
- the ceiling-embedded air conditioner 100 includes a casing 1, a motor 2, a main plate 3, a turbofan 4, a heat exchanger 5, and a bell mouth 6.
- the Casing 1 is embedded in the ceiling wall C of the building.
- the casing 1 has a rectangular shape when viewed from below, and is recessed upward to form a space inside.
- the casing 1 has a panel 1A exposed to the ceiling surface Ca and a box-shaped cabinet 1B provided above the panel 1A.
- the panel 1A has a panel main body 11 which is a rectangular frame body, and a grill 12 as a suction port 11A provided in the center of the lower part.
- the panel body 11 forms an air outlet 11B around the suction port 11A.
- the motor 2 is provided in the center of the bottom surface 1S facing downward inside the cabinet 1B.
- the motor 2 has a motor main body 21 that houses a coil, a magnet, and the like, and an output shaft 22 that projects vertically downward from the motor main body 21.
- the output shaft 22 is rotationally driven around an axis line Ac extending in the vertical direction.
- a main plate 3 extending radially outward from the output shaft 22 is fixed to the output shaft 22.
- the main plate 3 has a conical cross-sectional shape extending from the lower side to the upper side from the inner side to the outer side in the radial direction.
- a turbofan 4 is attached to a portion of the lower surface of the main plate 3 including the outer edge in the radial direction.
- the turbofan 4 has a plurality of main wings 41 and rib wings 41R (see FIG. 2) arranged at intervals in the circumferential direction, and an annular shroud 42 that covers the main wings 41 and rib wings 41R from below. doing. The detailed configuration of the turbofan 4 will be described later.
- the main plate 3 and the turbofan 4 rotate with the rotation of the output shaft 22, and the air sucked from the suction port 11A is sent outward in the radial direction.
- An annular heat exchanger 5 surrounding the turbofan 4 is provided on the outer side in the radial direction of the turbofan 4.
- the heat exchanger 5 is a part of a refrigerant circuit having a refrigeration cycle.
- the air (mainstream Fm) sent to the heat exchanger 5 by the turbofan 4 exchanges heat with the refrigerant when passing through the heat exchanger 5.
- the air flowing out to the outer peripheral side of the heat exchanger 5 becomes cold air or warm air. This air flows downward along the side surface of the cabinet 1B and is supplied into the room from the outlet 11B.
- a bell mouth 6 fixed to the upper part of the panel body 11 is arranged below the turbofan 4.
- the bell mouth 6 is provided to guide the air introduced from the suction port 11A and send it to the turbofan 4.
- the bell mouth 6 has a conical shape by gradually reducing its diameter from the bottom to the top.
- the end on one side (upper side) of the bell mouth 6 in the Ac direction is surrounded by the shroud 42 described above from the outer peripheral side.
- a clearance CL extending in the radial direction is formed between the outer peripheral surface 6S of the bell mouth 6 and the shroud 42 (the inner peripheral surface of the shroud 42S described later).
- the shroud 42 is curved so as to go outward in the radial direction from the other side in the axis Ac direction to one side.
- the inside in the radial direction is referred to as "upstream side”
- the outside in the radial direction is referred to as "downstream side”.
- the direction connecting the upstream side and the downstream side along the curved surface formed by the shroud 42 is called the shroud direction Ds.
- the surface facing the inner peripheral side is the shroud inner peripheral surface 42S.
- a plurality of main wings 41 arranged at intervals in the circumferential direction with respect to the axis Ac and a plurality of rib wings 41R are provided on the inner peripheral surface 42S of the shroud. More specifically, a plurality of (two as an example) rib blades 41R are provided between the pair of main blades 41 adjacent to each other. It is also possible to adopt a configuration in which only one rib blade 41R is provided between the pair of main blades 41.
- the main wing 41 and the rib wing 41R have an airfoil-shaped cross-sectional shape when viewed from the axis Ac direction.
- the main wing 41 extends from the lower surface of the main plate 3 over the inner peripheral surface of the shroud 42S.
- the main wing 41 has a main wing main body 41A which is a part on the main plate 3 side and a main wing base end portion 41B which is a part on the shroud 42 side.
- the leading edge of the main wing body 41A (that is, the inner edge in the radial direction) is the main body leading edge vertical portion E1a extending in the axial direction Ac and the main body leading edge inclined portion E1b connected to the lower end of the main body leading edge vertical portion E1a. And have.
- the main body leading edge inclined portion E1b extends from the inner side to the outer side in the radial direction from one side to the other side in the axial direction Ac.
- the trailing edge E3 (that is, the radial outer edge) of the main wing body 41A extends in the axial direction Ac.
- the main wing base end portion 41B extends from the lower end of the main wing main body 41A to the inner peripheral surface of the shroud 42S. That is, the main wing base end portion 41B is connected to (integrally formed) with the main wing main body 41A.
- the upper edge of the main wing base end portion 41B (the portion shown by the broken line in FIG. 3) extends in the same direction as the inner peripheral surface of the shroud 42S.
- the protruding height of the main wing base end portion 41B in the axial direction Ac direction from the shroud 42 is within a range of 1 to 2 times the radial dimension of the clearance CL described above.
- the leading edge (leading edge E2 of the base end) of the wing base end 41B extends in the axial direction Ac.
- the base end leading edge E2 extends from the connection portion with the shroud 42 (the inner peripheral surface of the shroud 42S) so as to rise from the shroud 42 toward the downstream side in the shroud direction Ds.
- the leading edge E2 of the base end portion protrudes to the upstream side in the shroud direction Ds when the boundary with the leading edge of the main wing main body 41A (the leading edge inclined portion E1b of the main body) is used as a reference.
- the angle formed by the base end leading edge E2 and the portion of the shroud inner peripheral surface 42S to which the base end leading edge E2 is connected is 30 to 90 °. More preferably, this angle is 40-60 °. Most preferably, this angle is 45 °.
- the rib blade 41R extends from the inner peripheral surface of the shroud 42S so as to rise toward one side in the axis Ac direction.
- the protruding height of the rib blade 41R from the shroud 42 is the same as the protruding height of the main wing base end portion 41B from the shroud 42 described above. (Note that "identical” here means substantially the same, and design tolerances and manufacturing errors are allowed.) That is, the upper edge of the rib blade 41R (rib blade).
- the upper end Ra) extends in the shroud direction Ds along the inner peripheral surface 42S of the shroud, similarly to the upper edge of the wing base end portion 41B. Therefore, the protruding height of the rib blade 41R from the shroud 42 in the axial direction Ac direction is within the range of 1 to 2 times the radial dimension of the clearance CL described above.
- the end edge (leading edge E2r of the rib blade) on the inner peripheral side of the rib blade 41R extends from the connection portion with the shroud 42 so as to rise from the shroud 42 toward the downstream side in the shroud direction Ds.
- the rib blade leading edge E2r has the same shape as the base end leading edge E2, and is based on the leading edge of the main wing main body 41A (main body leading edge inclined portion E1b) in the shroud direction Ds.
- the rib blade leading edge E2r projects upstream in the shroud direction Ds.
- the portion including the end portion of the rib blade leading edge E2r on the shroud 42 side protrudes to the upstream side in the shroud direction Ds.
- the motor 2 When operating the ceiling-embedded air conditioner 100, the motor 2 is first driven. By driving the motor 2, the output shaft 22, the main plate 3, and the turbofan 4 rotate around the axis Ac. As the turbofan 4 rotates, indoor air is taken in from the suction port 11A. This air is sent to the turbofan 4 via the bell mouth 6 and then pumped outward in the radial direction to form a mainstream Fm (see FIG. 1 or 2).
- the mainstream Fm flows along the lower surface of the main plate 3. That is, the mainstream Fm flows from the inside to the outside in the radial direction from the bottom to the top. Most of this mainstream Fm exchanges heat with the refrigerant by passing through the heat exchanger 5, becomes cold air or warm air, and is supplied to the room from the outlet 11B.
- a part of the mainstream Fm from the turbofan 4 toward the outer peripheral side flows into the inside of the shroud 42 as a leak flow Fl through the clearance CL described above (see FIG. 3).
- This leak flow Fl contains a swirling component (swivel component around the axis Ac) due to being pumped by the turbofan 4.
- a leak flow Fl joins the mainstream Fm inside the shroud 42, a loss occurs.
- the inflow angle with respect to the main wing 41 may change by the amount of the swirling component of the leak flow Fl, and the flow may be separated.
- the flow rate increases in the region of the main wing 41 on the shroud 42 side by the amount of the leak flow Fl, and the load on the main wing 41 may increase. As a result, the efficiency of the ceiling-embedded air conditioner 100 is lowered.
- the leading edge E2 of the main wing base end portion 41B protrudes to the upstream side of the shroud 42 from the main wing main body 41A.
- the leak flow Fl that passes through the clearance CL between the bell mouth 6 and the shroud 42 and flows into the inside of the shroud 42 can be captured in the inner region in the radial direction. Therefore, the turning component contained in the leak flow Fl is reduced by being guided by the main wing base end portion 41B.
- the flow inflow angle with respect to the main wing 41 is optimized, and the possibility of flow separation can be reduced.
- the leading edge E2 of the main wing base end portion 41B extends so as to rise from the shroud 42 and is connected to the leading edge E1b of the main wing main body 41A.
- the leak flow Fl captured by the main wing base end portion 41B can be smoothly guided to the main wing main body 41A side, so that the flow velocity and flow rate distribution can be leveled over the entire main wing 41.
- the loss generated in the main wing 41 can be further reduced.
- the protruding height of the wing base end portion 41B is set to 1 to 2 times the clearance CL.
- the rib blade 41R since the rib blade 41R is provided, the increase in the flow rate on the shroud 42 side due to the leak flow Fl is dispersed by the rib blade 41R and stably guided to the main blade 41. Can be done. As a result, the fluid force applied to the main wing 41 itself is reduced, and air can be pumped more efficiently.
- the leading edge E2r of the rib blade 41R projects to the upstream side of the shroud 42 from the main blade main body 41A.
- the leak flow Fl that passes through the clearance CL between the bell mouth 6 and the shroud 42 and flows into the inside of the shroud 42 can be captured in the inner region in the radial direction. Therefore, the turning component contained in the leak flow Fl is reduced by being guided by the rib blade 41R.
- the inflow angle of the flow from the rib blade 41R toward the main blade 41 is optimized, and the possibility of flow separation can be reduced.
- the leading edge E2r of the rib blade 41R extends so as to rise from the shroud 42. As a result, the flow direction of the leak flow Fl captured by the rib blade 41R can be stably guided by the rib blade 41R.
- the protruding height of the rib blade 41R is 1 to 2 times that of the clearance CL.
- the obstruction to the mainstream Fm that occurs when the rib blade 41R is extremely large is suppressed, and the flow direction can be stably optimized only for the leak flow Fl.
- the rib blade 41R extends over the same length as the main blade base end portion 41B in the shroud direction Ds.
- the configuration of the rib blade 41R is not limited to the above, and as shown in FIG. 5, the rib blade 41R'has a length of 50 to 90% of the main blade base end portion 41B in the shroud direction Ds. Is also possible. More specifically, the position of the leading edge E2r of the rib blade 41R'is the same as the position of the rib blade 41R described above.
- the trailing edge E4r'of the rib blade 41R' is located on the upstream side in the shroud direction Ds with respect to the trailing edge E4 of the proximal end portion.
- the viscous dissipation generated by the rib blade 41R' is suppressed, and the viscous distribution of the air flow pumped by the turbofan 4 can be made uniform.
- the efficiency of the turbofan 4 can be further improved, and the operating efficiency of the ceiling-embedded air conditioner 100 can be further improved.
- the ceiling-embedded air conditioner 100 (centrifugal compressor) described in each embodiment is grasped as follows, for example.
- the ceiling-embedded air conditioner 100 comprises a tubular bell mouth 6 surrounding the axis Ac and an end portion of the bell mouth 6 on one side in the axis Ac direction from the outer peripheral side.
- a shroud 42 that forms a clearance CL and extends from the upstream side to the downstream side so as to go outward in the radial direction toward one side in the axis Ac direction, a main plate 3 facing the one side in the axis Ac direction of the shroud 42, and the above.
- the main wing 41 is provided over the shroud 42 and the main plate 3 and is provided with a plurality of main wings 41 arranged at intervals in the circumferential direction. It has a main wing base end portion 41B which is a portion on the shroud 42 side connected to 41A and whose leading edge E2 projects to the upstream side of the shroud 42 from the boundary with the main wing main body 41A.
- the leak flow Fl that passes through the clearance CL and flows into the inside of the shroud 42 can be captured in the inner region in the radial direction. Therefore, the turning component contained in the leak flow Fl is reduced by being guided by the main wing base end portion 41B. As a result, the flow inflow angle with respect to the main wing 41 is optimized, and the possibility of flow separation can be reduced.
- the leading edge E2 of the main wing base end portion 41B is directed toward the downstream side of the shroud 42 from the connection portion with the shroud 42. It extends from the main wing body 41A and is connected to the leading edge E1b of the main wing body 41A.
- the leak flow Fl captured by the main wing base end portion 41B can be smoothly guided to the main wing main body 41A side, so that the flow velocity and the flow rate distribution can be leveled over the entire main wing 41.
- the protruding height of the main wing base end portion 41B from the shroud 42 in the axial direction Ac direction is once the dimension of the clearance CL in the radial direction. Is twice as much.
- the obstruction to the mainstream Fm that occurs when the main wing base end portion 41B is extremely large is suppressed, and the flow direction can be stably optimized only for the leak flow Fl.
- the ceiling-embedded air conditioner 100 according to the fourth aspect further has rib blades 41R provided between the main wings 41 adjacent to each other in the circumferential direction and rising from the shroud 42.
- the increase in the flow rate on the shroud 42 side due to the leak flow Fl can be dispersed by the rib blade 41R and stably guided to the main blade 41.
- the leading edge E2r of the rib blade 41R extends upstream of the shroud 42 to a position similar to that of the main blade base end portion 41B.
- the leak flow Fl that passes through the clearance CL and flows into the inside of the shroud 42 can be captured in the inner region in the radial direction. Therefore, the turning component contained in the leak flow Fl is reduced by being guided by the rib blade 41R. As a result, the inflow angle of the flow from the rib blade 41R toward the main blade 41 is optimized, and the possibility of flow separation can be reduced.
- the leading edge E2r of the rib blade 41R rises from the shroud 42 from the connection portion with the shroud 42 toward the downstream side of the shroud 42. Extends to.
- the flow direction of the leak flow Fl captured by the rib blade 41R can be stably guided by the rib blade 41R.
- the protruding height of the rib blade 41R from the shroud 42 in the axial direction Ac direction is 1 to 2 times the dimension of the clearance CL in the radial direction. It is double.
- the obstruction to the mainstream Fm that occurs when the rib blade 41R is extremely large is suppressed, and the flow direction can be stably optimized only for the leak flow Fl.
- the rib blade 41R' is 50 to 90% of the length from the leading edge E2r to the main blade base end portion 41B in the extending direction of the shroud 42. Extends over.
- the viscous dissipation generated by the rib blade 41R' is suppressed, and the viscous distribution of the air flow pumped by the turbofan 4 can be made uniform.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
遠心圧縮機は、軸線を囲う筒状をなすベルマウス(6)と、ベルマウス(6)の軸線方向一方側の端部を外周側から囲うことでクリアランス(CL)を形成するとともに、軸線方向一方側に向かうに従って径方向外側に向かうように上流側から下流側に延びるシュラウド(42)と、シュラウド(42)の軸線方向一方側に対向する主板(3)と、シュラウド(42)と主板(3)にわたって設けられて、周方向に間隔をあけて複数が配列された主翼(41)と、を備え、主翼(41)は、主板(3)側の部分である主翼本体(41A)と、主翼本体(41A)に連なるシュラウド(42)側の部分であって、前縁が主翼本体(41A)との境界よりもシュラウド(42)の上流側に突出する主翼基端部(41B)と、を有する。
Description
本開示は、遠心圧縮機に関する。
本願は、2020年2月25日に出願された特願2020-029452号に対して優先権を主張し、その内容をここに援用する。
本願は、2020年2月25日に出願された特願2020-029452号に対して優先権を主張し、その内容をここに援用する。
空調装置の一例として、下記特許文献1に示されるような天井埋込型空調が広く用いられている。天井埋込型空調は、屋内の天井に埋設されたケーシングと、上下方向に延びる軸線回りに回転する出力軸を有するモータ、及びターボファンと、このターボファンを出力軸に固定する主板と、ターボファンを囲む熱交換器と、ベルマウスと、を主に備えている。ターボファンは、軸線を囲う筒状のシュラウドと、シュラウドの一方側の面上で周方向に間隔をあけて配列された複数の主翼と、を有している。また、シュラウドの内周側には、ケーシング内に取り込まれた空気をターボファンに向かって案内するためのベルマウスが設けられている。ベルマウスとシュラウドとの間には一定のクリアランスが形成されている。
ターボファンが回転することによって、ケーシングの中央部から屋内の空気がケーシング内に取り込まれる。この空気はターボファンによって外周側に圧送された後、熱交換器を通過することで冷気、又は暖気となって屋内に供給される。つまり、ターボファンは遠心圧縮機の一部(インペラ)として機能している。
ここで、ターボファンから外周側に向かう空気の流れのうち、一部の成分は、上述のクリアランスを通じてシュラウドの内側に漏れ流れとして流入する。この漏れ流れは、ターボファンによって圧送されたことによる旋回成分を含んでいる。このような漏れ流れがシュラウドの内側で主流と合流する際に、損失が生じてしまう。具体的には、漏れ流れの旋回成分の分だけ、主翼に対する流入角が変化し、流れの剥離を生じる虞がある。また、漏れ流れの分だけ、主翼のシュラウド側の領域では流量が増加し、当該主翼に対する負荷が増加する虞もある。その結果、遠心圧縮機としての効率が低下してしまう。
本開示は上記課題を解決するためになされたものであって、より一層効率が向上した遠心圧縮機を提供することを目的とする。
上記課題を解決するために、本開示に係る遠心圧縮機は、軸線を囲う筒状をなすベルマウスと、該ベルマウスの軸線方向一方側の端部を外周側から囲うことでクリアランスを形成するとともに、軸線方向一方側に向かうに従って径方向外側に向かうように上流側から下流側に延びるシュラウドと、該シュラウドの軸線方向一方側に対向する主板と、前記シュラウドと主板にわたって設けられて、周方向に間隔をあけて複数が配列された主翼と、を備え、前記主翼は、前記主板側の部分である主翼本体と、該主翼本体に連なる前記シュラウド側の部分であって、前縁が前記主翼本体との境界よりも前記シュラウドの上流側に突出する主翼基端部と、を有する。
本開示によれば、より一層効率が向上した遠心圧縮機を提供することができる。
(天井埋込型空調の構成)
以下、本開示の第一実施形態に係る遠心圧縮機としての天井埋込型空調100について、図1から図4を参照して説明する。図1に示すように、天井埋込型空調100は、ケーシング1と、モータ2と、主板3と、ターボファン4と、熱交換器5と、ベルマウス6と、を備えている。
ケーシング1は、建物の天井壁Cに埋め込まれている。ケーシング1は、下方から見て矩形をなすとともに、上方に向かって凹没することで内部に空間を形成している。具体的には、ケーシング1は、天井面Caに露出するパネル1Aと、パネル1Aの上方に設けられた箱状のキャビネット1Bと、を有している。パネル1Aは、矩形の枠体であるパネル本体11と、下部中央に設けられた吸込口11Aとしてのグリル12と、を有している。パネル本体11は、この吸込口11Aの周囲に吹出口11Bを形成する。
モータ2は、キャビネット1B内部で下方を向く底面1Sの中央部に設けられている。モータ2は、コイルや磁石等を収容するモータ本体21と、モータ本体21から鉛直下方に突出する出力軸22と、を有している。出力軸22は、鉛直方向に延びる軸線Ac回りに回転駆動される。
出力軸22には、当該出力軸22から径方向外側に広がる主板3が固定されている。主板3は、径方向内側から外側に向かうに従って、下方から上方に向かって延びる円錐面状の断面形状を有している。主板3の下面における径方向外側の端縁を含む部分には、ターボファン4が取り付けられている。ターボファン4は、周方向に間隔をあけて配列された複数の主翼41及びリブ翼41R(図2参照)と、これら主翼41及びリブ翼41Rを下方から覆う円環状のシュラウド42と、を有している。ターボファン4の詳細な構成については後述する。出力軸22の回転に伴って主板3、及びターボファン4が回転して、吸込口11Aから吸い込まれた空気が径方向外側に送られる。
ターボファン4の径方向外側には、当該ターボファン4を囲む環状の熱交換器5が設けられている。熱交換器5は、冷凍サイクルを有する冷媒回路の一部である。ターボファン4によって熱交換器5に送られた空気(主流Fm)は、当該熱交換器5を通過する際に冷媒と熱交換する。これにより、熱交換器5の外周側に流れ出た空気は冷気、又は暖気となる。この空気は、キャビネット1Bの側面に沿って下方に流れ、吹出口11Bから室内に供給される。
ターボファン4の下方には、パネル本体11の上部に固定されたベルマウス6が配置されている。ベルマウス6は、吸込口11Aから導入された空気を案内してターボファン4に送るために設けられている。ベルマウス6は、下方から上方に向かうに従って次第に縮径することで円錐形状をなしている。ベルマウス6の軸線Ac方向一方側(上側)の端部は、上述のシュラウド42によって外周側から囲まれている。図3又は図4に示すように、ベルマウス6の外周面6Sと、シュラウド42(後述するシュラウド内周面42S)との間には、径方向に広がるクリアランスCLが形成されている。
(ターボファンの構成)
次いで、ターボファン4の構成について詳述する。図1,図3,及び図4に示すように、シュラウド42は、軸線Ac方向他方側から一方側に向かうに従って、径方向外側に向かうように湾曲している。なお、以降の説明では、このシュラウド42の延びる曲線方向において、径方向内側を「上流側」と呼び、径方向外側を「下流側」と呼ぶ。また、シュラウド42の形成する曲面に沿って上流側と下流側とを結ぶ方向をシュラウド方向Dsと呼ぶ。シュラウド42の厚さ方向の両面のうち、内周側を向く面はシュラウド内周面42Sとされている。
図2に示すように、シュラウド内周面42S上には、軸線Acに対する周方向に間隔をあけて配列された複数の主翼41と、複数のリブ翼41Rとが設けられている。より具体的には、互いに隣り合う一対の主翼41同士の間に、複数(一例として2つ)のリブ翼41Rが設けられている。なお、一対の主翼41同士の間に、1つのみのリブ翼41Rが設けられている構成を採ることも可能である。主翼41、及びリブ翼41Rは、軸線Ac方向から見て、翼型の断面形状を有している。
図3に示すように、主翼41は、主板3の下面からシュラウド内周面42Sにわたって延びている。主翼41は、主板3側の部分である主翼本体41Aと、シュラウド42側の部分である主翼基端部41Bと、を有している。主翼本体41Aの前縁(つまり、径方向内側の端縁)は、軸線Ac方向に延びる本体前縁鉛直部E1aと、この本体前縁鉛直部E1aの下端に接続された本体前縁傾斜部E1bと、を有している。本体前縁傾斜部E1bは、軸線Ac方向の一方側から他方側に向かうに従って、径方向内側から外側に向かって延びている。主翼本体41Aの後縁E3(つまり、径方向外側の端縁)は、軸線Ac方向に延びている。
主翼基端部41Bは、主翼本体41Aの下端からシュラウド内周面42Sにかけて広がっている。つまり、主翼基端部41Bは、主翼本体41Aに連なっている(一体に形成されている。)。主翼基端部41Bの上側の端縁(図3中の破線で示す部分)は、シュラウド内周面42Sと同様の方向に延びている。軸線Ac方向における主翼基端部41Bのシュラウド42からの突出高さは、上述したクリアランスCLの径方向における寸法の1倍から2倍の範囲内とされている。
主翼基端部41Bの前縁(基端部前縁E2)は、軸線Ac方向に延びている。言い換えると、基端部前縁E2は、シュラウド42との接続部(シュラウド内周面42S)から、シュラウド方向Dsの下流側に向かうに従って、当該シュラウド42から立ち上がるように延びている。さらに言い換えれば、主翼本体41Aの前縁(本体前縁傾斜部E1b)との境界を基準とした場合、基端部前縁E2は、シュラウド方向Dsにおける上流側に突出している。この基端部前縁E2と、シュラウド内周面42Sにおける基端部前縁E2が接続されている部分とがなす角度は、30~90°であることが望ましい。より望ましくは、この角度は40~60°である。最も望ましくは、この角度は45°である。
図4に示すように、リブ翼41Rは、シュラウド内周面42Sから軸線Ac方向一方側に向かって立ち上がるように延びている。リブ翼41Rのシュラウド42からの突出高さは、上述の主翼基端部41Bのシュラウド42からの突出高さと同一である。(なお、ここでいう「同一」とは、実質的な同一を指すものであり、設計上の公差や製造上の誤差は許容される。)つまり、リブ翼41Rの上側の端縁(リブ翼上端Ra)は、主翼基端部41Bの上側の端縁と同様に、シュラウド内周面42Sに沿ってシュラウド方向Dsに延びている。したがって、軸線Ac方向におけるリブ翼41Rのシュラウド42からの突出高さは、上述したクリアランスCLの径方向における寸法の1倍から2倍の範囲内となる。
さらに、リブ翼41Rの内周側の端縁(リブ翼前縁E2r)は、シュラウド42との接続部からシュラウド方向Dsの下流側に向かうに従って、当該シュラウド42から立ち上がるように延びている。より具体的には、リブ翼前縁E2rは基端部前縁E2と同様の形状をなしており、シュラウド方向Dsにおいて、主翼本体41Aの前縁(本体前縁傾斜部E1b)を基準とした場合、リブ翼前縁E2rは、シュラウド方向Dsにおける上流側に突出している。また、リブ翼前縁E2rのシュラウド42側の端部を含む部分は、シュラウド方向Dsにおける上流側に突出している。
(作用効果)
次に、上記の天井埋込型空調100の動作について説明する。天井埋込型空調100を運転するに当たっては、まずモータ2を駆動する。モータ2を駆動することで出力軸22、主板3、及びターボファン4が軸線Ac回りに回転する。ターボファン4が回転することで、吸込口11Aから室内の空気が取り込まれる。この空気は、ベルマウス6を経てターボファン4に送られた後、径方向外側に向かって圧送されることで主流Fmを形成する(図1又は図2参照)。主流Fmは、主板3の下面に沿って流れる。つまり、主流Fmは、下方から上方に向かうに従って径方向内側から外側に向かって流れる。この主流Fmの大部分は、熱交換器5を通過することで冷媒と熱交換し、冷気、又は暖気となって吹出口11Bから室内に供給される。
ここで、ターボファン4から外周側に向かう主流Fmのうち、一部の成分は、上述のクリアランスCLを通じてシュラウド42の内側に漏れ流れFlとして流入する(図3参照)。この漏れ流れFlは、ターボファン4によって圧送されたことによる旋回成分(軸線Ac回りの旋回成分)を含んでいる。このような漏れ流れFlがシュラウド42の内側で主流Fmと合流する際に、損失が生じてしまう。具体的には、漏れ流れFlの旋回成分の分だけ、主翼41に対する流入角が変化し、流れの剥離を生じる虞がある。また、漏れ流れFlの分だけ、主翼41のシュラウド42側の領域では流量が増加し、当該主翼41に対する負荷が増加する虞もある。その結果、天井埋込型空調100としての効率が低下してしまう。
そこで、本実施形態では、主翼基端部41Bの前縁E2が主翼本体41Aよりもシュラウド42の上流側に突出する構成を採っている。これにより、ベルマウス6とシュラウド42との間のクリアランスCLを通過してシュラウド42の内側に流れ込む漏れ流れFlを、径方向のより内側の領域で捕捉することができる。このため、漏れ流れFlに含まれる旋回成分は当該主翼基端部41Bに案内されることで減少する。その結果、主翼41に対する流れの流入角が適正化され、流れの剥離を生じる可能性を低減することができる。
さらに、上記構成によれば、主翼基端部41Bの前縁E2がシュラウド42から立ち上がるように延びるとともに、主翼本体41Aの前縁E1bに接続されている。これにより、主翼基端部41Bで捕捉した漏れ流れFlを主翼本体41A側に円滑に導くことができるため、流速及び流量の分布を主翼41の全域にわたって平準化することができる。これにより、主翼41で生じる損失をさらに低減することができる。
加えて、上記構成によれば、主翼基端部41Bの突出高さが、クリアランスCLの1倍から2倍とされている。これにより、例えば主翼基端部41Bが極度に大きい場合に生じる主流Fmへの阻害が抑制され、漏れ流れFlのみに対して安定的に流れ方向の適正化を図ることができる。
さらに加えて、上記構成によれば、リブ翼41Rが設けられていることから、漏れ流れFlによるシュラウド42側の流量増加分を、当該リブ翼41Rによって分散させ、主翼41に安定的に導くことができる。これにより、主翼41自身に付加される流体力が減少し、より効率的に空気を圧送することが可能となる。
また、上記構成によれば、リブ翼41Rの前縁E2rが主翼本体41Aよりもシュラウド42の上流側に突出している。これにより、ベルマウス6とシュラウド42との間のクリアランスCLを通過してシュラウド42の内側に流れ込む漏れ流れFlを、径方向のより内側の領域で捕捉することができる。このため、漏れ流れFlに含まれる旋回成分はリブ翼41Rに案内されることで減少する。その結果、リブ翼41Rを経て主翼41に向かう流れの流入角が適正化され、流れの剥離を生じる可能性を低減することができる。
さらに、上記構成によれば、リブ翼41Rの前縁E2rがシュラウド42から立ち上がるように延びている。これにより、リブ翼41Rが捕捉した漏れ流れFlの流れ方向を当該リブ翼41Rによって安定的に案内することができる。
加えて、上記構成によれば、リブ翼41Rの突出高さが、クリアランスCLの1倍から2倍とされている。これにより、例えばリブ翼41Rが極度に大きい場合に生じる主流Fmへの阻害が抑制され、漏れ流れFlのみに対して安定的に流れ方向の適正化を図ることができる。
以上、本開示の実施形態について説明した。なお、本開示の要旨を逸脱しない限りにおいて、上記の構成に種々の変更や改修を施すことが可能である。例えば、上記実施形態では、リブ翼41Rが、シュラウド方向Dsにおいて、主翼基端部41Bと同一の長さにわたって延びている例について説明した。しかしながら、リブ翼41Rの構成は上記に限定されず、図5に示すように、リブ翼41R´がシュラウド方向Dsにおいて、主翼基端部41Bの50~90%の長さを有する構成を採ることも可能である。より具体的には、このリブ翼41R´の前縁E2rの位置は上記のリブ翼41Rの位置と同様である。一方で、リブ翼41R´の後縁E4r´は、基端部後縁E4よりもシュラウド方向Dsにおける上流側に位置している。
上記の構成によれば、リブ翼41R´が発生させる粘性散逸が抑制され、ターボファン4によって圧送される空気の流れの粘性分布を均一化することができる。その結果、ターボファン4の効率がさらに向上し、天井埋込型空調100の運転効率をより一層向上させることができる。
[付記]
各実施形態に記載の天井埋込型空調100(遠心圧縮機)は、例えば以下のように把握される。
(1)第1の態様に係る天井埋込型空調100は、軸線Acを囲う筒状をなすベルマウス6と、該ベルマウス6の軸線Ac方向一方側の端部を外周側から囲うことでクリアランスCLを形成するとともに、軸線Ac方向一方側に向かうに従って径方向外側に向かうように上流側から下流側に延びるシュラウド42と、該シュラウド42の軸線Ac方向一方側に対向する主板3と、前記シュラウド42と主板3にわたって設けられて、周方向に間隔をあけて複数が配列された主翼41と、を備え、前記主翼41は、前記主板3側の部分である主翼本体41Aと、該主翼本体41Aに連なる前記シュラウド42側の部分であって、前縁E2が前記主翼本体41Aとの境界よりも前記シュラウド42の上流側に突出する主翼基端部41Bと、を有する。
上記構成によれば、クリアランスCLを通過してシュラウド42の内側に流れ込む漏れ流れFlを、径方向のより内側の領域で捕捉することができる。このため、漏れ流れFlに含まれる旋回成分は当該主翼基端部41Bに案内されることで減少する。その結果、主翼41に対する流れの流入角が適正化され、流れの剥離を生じる可能性を低減することができる。
(2)第2の態様に係る天井埋込型空調100では、前記主翼基端部41Bの前記前縁E2は、前記シュラウド42との接続部から前記シュラウド42の下流側に向かうに従って該シュラウド42から立ち上がるように延びて、前記主翼本体41Aの前縁E1bに接続されている。
上記構成によれば、主翼基端部41Bで捕捉した漏れ流れFlを主翼本体41A側に円滑に導くことができるため、流速及び流量の分布を主翼41の全域にわたって平準化することができる。
(3)第3の態様に係る天井埋込型空調100では、前記軸線Ac方向における前記主翼基端部41Bの前記シュラウド42からの突出高さは、径方向における前記クリアランスCLの寸法の1倍から2倍である。
上記構成によれば、例えば主翼基端部41Bが極度に大きい場合に生じる主流Fmへの阻害が抑制され、漏れ流れFlのみに対して安定的に流れ方向の適正化を図ることができる。
(4)第4の態様に係る天井埋込型空調100は、周方向に隣り合う前記主翼41同士の間に設けられて、前記シュラウド42から立ち上がるリブ翼41Rをさらに有する。
上記構成によれば、漏れ流れFlによるシュラウド42側の流量増加分を、当該リブ翼41Rによって分散させ、主翼41に安定的に導くことができる。
(5)第5の態様に係る天井埋込型空調100では、前記リブ翼41Rの前縁E2rは、前記主翼基端部41Bと同様の位置まで前記シュラウド42の上流側に延びている。
上記構成によれば、クリアランスCLを通過してシュラウド42の内側に流れ込む漏れ流れFlを、径方向のより内側の領域で捕捉することができる。このため、漏れ流れFlに含まれる旋回成分はリブ翼41Rに案内されることで減少する。その結果、リブ翼41Rを経て主翼41に向かう流れの流入角が適正化され、流れの剥離を生じる可能性を低減することができる。
(6)第6の態様に係る天井埋込型空調100では、前記リブ翼41Rの前縁E2rは、前記シュラウド42との接続部から前記シュラウド42の下流側に向かうに従って該シュラウド42から立ち上がるように延びている。
上記構成によれば、リブ翼41Rが捕捉した漏れ流れFlの流れ方向を当該リブ翼41Rによって安定的に案内することができる。
(7)第7の態様に係る天井埋込型空調100では、前記軸線Ac方向における前記リブ翼41Rの前記シュラウド42からの突出高さは、径方向における前記クリアランスCLの寸法の1倍から2倍である。
上記構成によれば、例えばリブ翼41Rが極度に大きい場合に生じる主流Fmへの阻害が抑制され、漏れ流れFlのみに対して安定的に流れ方向の適正化を図ることができる。
(8)第8の態様に係る天井埋込型空調100では、前記リブ翼41R´は、前記シュラウド42の延びる方向において、前縁E2rから前記主翼基端部41Bの50~90%の長さにわたって延びている。
上記構成によれば、リブ翼41R´が発生させる粘性散逸が抑制され、ターボファン4によって圧送される空気の流れの粘性分布を均一化することができる。
本開示によれば、より一層効率が向上した遠心圧縮機を提供することができる。
100 天井埋込型空調
1 ケーシング
1A パネル
1B キャビネット
1S 底面
2 モータ
3 主板
4 ターボファン
5 熱交換器
6 ベルマウス
6S 外周面
11 パネル本体
11A 吸込口
11B 吹出口
12 グリル
21 モータ本体
22 出力軸
31 底板部
32 下部テーパ部
33 円筒板部
34 円盤板部
35 上部テーパ部
36 上板部
41 主翼
41A 主翼本体
41B 主翼基端部
41R リブ翼
42 シュラウド
42S シュラウド内周面
Ac 軸線
CL クリアランス
Ds シュラウド方向
E1a 本体前縁鉛直部
E1b 本体前縁傾斜部
E2 基端部前縁
E2r リブ翼前縁
E3 本体後縁
E4 基端部後縁
E4r リブ翼後縁
Fl 漏れ流れ
Fm 主流
Ra リブ翼上端
1 ケーシング
1A パネル
1B キャビネット
1S 底面
2 モータ
3 主板
4 ターボファン
5 熱交換器
6 ベルマウス
6S 外周面
11 パネル本体
11A 吸込口
11B 吹出口
12 グリル
21 モータ本体
22 出力軸
31 底板部
32 下部テーパ部
33 円筒板部
34 円盤板部
35 上部テーパ部
36 上板部
41 主翼
41A 主翼本体
41B 主翼基端部
41R リブ翼
42 シュラウド
42S シュラウド内周面
Ac 軸線
CL クリアランス
Ds シュラウド方向
E1a 本体前縁鉛直部
E1b 本体前縁傾斜部
E2 基端部前縁
E2r リブ翼前縁
E3 本体後縁
E4 基端部後縁
E4r リブ翼後縁
Fl 漏れ流れ
Fm 主流
Ra リブ翼上端
Claims (8)
- 軸線を囲う筒状をなすベルマウスと、
該ベルマウスの軸線方向一方側の端部を外周側から囲うことでクリアランスを形成するとともに、軸線方向一方側に向かうに従って径方向外側に向かうように上流側から下流側に延びるシュラウドと、
該シュラウドの軸線方向一方側に対向する主板と、
前記シュラウドと主板にわたって設けられて、周方向に間隔をあけて複数が配列された主翼と、
を備え、
前記主翼は、
前記主板側の部分である主翼本体と、
該主翼本体に連なる前記シュラウド側の部分であって、前縁が前記主翼本体との境界よりも前記シュラウドの上流側に突出する主翼基端部と、
を有する遠心圧縮機。 - 前記主翼基端部の前記前縁は、前記シュラウドとの接続部から前記シュラウドの下流側に向かうに従って該シュラウドから立ち上がるように延びて、前記主翼本体の前縁に接続されている請求項1に記載の遠心圧縮機。
- 前記軸線方向における前記主翼基端部の前記シュラウドからの突出高さは、径方向における前記クリアランスの寸法の1倍から2倍である請求項1又は2に記載の遠心圧縮機。
- 周方向に隣り合う前記主翼同士の間に設けられて、前記シュラウドから立ち上がるリブ翼をさらに有する請求項1から3のいずれか一項に記載の遠心圧縮機。
- 前記リブ翼の前縁は、前記主翼基端部と同様の位置まで前記シュラウドの上流側に延びている請求項4に記載の遠心圧縮機。
- 前記リブ翼の前縁は、前記シュラウドとの接続部から前記シュラウドの下流側に向かうに従って該シュラウドから立ち上がるように延びている請求項4又は5に記載の遠心圧縮機。
- 前記軸線方向における前記リブ翼の前記シュラウドからの突出高さは、径方向における前記クリアランスの寸法の1倍から2倍である請求項4から6のいずれか一項に記載の遠心圧縮機。
- 前記リブ翼は、前記シュラウドの延びる方向において、前縁から前記主翼基端部の50~90%の長さにわたって延びている請求項4から7のいずれか一項に記載の遠心圧縮機。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020029452A JP2021134678A (ja) | 2020-02-25 | 2020-02-25 | 遠心圧縮機 |
JP2020-029452 | 2020-02-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021172360A1 true WO2021172360A1 (ja) | 2021-09-02 |
Family
ID=77489996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/006874 WO2021172360A1 (ja) | 2020-02-25 | 2021-02-24 | 遠心圧縮機 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2021134678A (ja) |
WO (1) | WO2021172360A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01108395U (ja) * | 1988-01-12 | 1989-07-21 | ||
JP2005307868A (ja) * | 2004-04-22 | 2005-11-04 | Matsushita Electric Ind Co Ltd | 遠心送風機 |
JP2006077631A (ja) * | 2004-09-08 | 2006-03-23 | Matsushita Electric Ind Co Ltd | 遠心型送風機の羽根車 |
JP2010285925A (ja) * | 2009-06-11 | 2010-12-24 | Mitsubishi Electric Corp | ターボファンおよび空気調和機 |
JP2016121580A (ja) * | 2014-12-24 | 2016-07-07 | ダイキン工業株式会社 | 遠心型送風機 |
-
2020
- 2020-02-25 JP JP2020029452A patent/JP2021134678A/ja active Pending
-
2021
- 2021-02-24 WO PCT/JP2021/006874 patent/WO2021172360A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01108395U (ja) * | 1988-01-12 | 1989-07-21 | ||
JP2005307868A (ja) * | 2004-04-22 | 2005-11-04 | Matsushita Electric Ind Co Ltd | 遠心送風機 |
JP2006077631A (ja) * | 2004-09-08 | 2006-03-23 | Matsushita Electric Ind Co Ltd | 遠心型送風機の羽根車 |
JP2010285925A (ja) * | 2009-06-11 | 2010-12-24 | Mitsubishi Electric Corp | ターボファンおよび空気調和機 |
JP2016121580A (ja) * | 2014-12-24 | 2016-07-07 | ダイキン工業株式会社 | 遠心型送風機 |
Also Published As
Publication number | Publication date |
---|---|
JP2021134678A (ja) | 2021-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4865497B2 (ja) | 遠心式送風装置 | |
JP5669877B2 (ja) | ターボファンおよび空気調和機 | |
WO2009139422A1 (ja) | 遠心送風機 | |
EP3101280B1 (en) | Centrifugal fan and air conditioning device | |
JP5879363B2 (ja) | 多翼ファン及びこれを備えた空気調和機 | |
US20210148377A1 (en) | Centrifugal air-sending device, air-sending apparatus, air-conditioning apparatus, and refrigeration cycle apparatus | |
WO2014097627A1 (ja) | 遠心ファン | |
JP2009287427A (ja) | 遠心送風機 | |
JP6035508B2 (ja) | 送風機とそれを用いた室外ユニット | |
JP6739656B2 (ja) | 羽根車、送風機、及び空気調和装置 | |
JP2014020235A (ja) | 軸流送風機およびこれを用いた空気調和機の室内機 | |
WO2021172360A1 (ja) | 遠心圧縮機 | |
JPH0539930A (ja) | 空気調和装置 | |
JP6363033B2 (ja) | 空気調和機の室内機およびこれを備えた空気調和機 | |
EP4155554A1 (en) | Axial flow fan, blowing device, and refrigeration cycle device | |
JP2022025926A (ja) | 遠心圧縮機 | |
EP3916238A1 (en) | Fan blower, indoor unit, and air conditioner | |
JP2013053532A (ja) | 軸流送風機及び空気調和機 | |
WO2023047849A1 (ja) | 天井埋込型空調 | |
JP6430032B2 (ja) | 遠心ファン、空気調和装置および冷凍サイクル装置 | |
WO2024009466A1 (ja) | 軸流ファン、送風機、室外機、及び、空気調和機 | |
WO2024214327A1 (ja) | 遠心送風機、空気調和機及び冷凍サイクル装置 | |
EP3922860A1 (en) | Centrifugal air blower and air conditioner using same | |
JP7282215B2 (ja) | 送風機及び空気調和装置 | |
WO2023152802A1 (ja) | 室内機及びこれを備えた空気調和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21761438 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21761438 Country of ref document: EP Kind code of ref document: A1 |