WO2009123155A1 - ガスハイドレートの製造方法とその製造装置 - Google Patents

ガスハイドレートの製造方法とその製造装置 Download PDF

Info

Publication number
WO2009123155A1
WO2009123155A1 PCT/JP2009/056572 JP2009056572W WO2009123155A1 WO 2009123155 A1 WO2009123155 A1 WO 2009123155A1 JP 2009056572 W JP2009056572 W JP 2009056572W WO 2009123155 A1 WO2009123155 A1 WO 2009123155A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
gas hydrate
ions
water
gas
Prior art date
Application number
PCT/JP2009/056572
Other languages
English (en)
French (fr)
Inventor
正浩 高橋
博子 三町
Original Assignee
三井造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井造船株式会社 filed Critical 三井造船株式会社
Publication of WO2009123155A1 publication Critical patent/WO2009123155A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C9/00Aliphatic saturated hydrocarbons
    • C07C9/02Aliphatic saturated hydrocarbons with one to four carbon atoms
    • C07C9/04Methane
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/108Production of gas hydrates

Definitions

  • the present invention relates to a method and an apparatus for compression-molding a gas hydrate by bringing a gas hydrate into contact with raw water by using a natural gas such as methane gas or propane gas, or a mixed gas thereof, and the like.
  • the LNG has an extremely low boiling point of ⁇ 162 ° C. and has a property of rapidly vaporizing as the temperature rises. Therefore, it is necessary to keep the LNG in the extremely low temperature state during transportation. The operating power of the refrigerator for that purpose was applied.
  • This gas hydrate is produced by subjecting a raw material gas such as natural gas and raw water to a hydration reaction by bringing them into gas-liquid contact under a temperature of about 0-5 ° C. and a high pressure of about 3-5 MPa.
  • This gas hydrate is in a state where molecules such as natural gas are confined in a lattice formed by aggregating a plurality of water molecules.
  • This gas hydrate is a so-called “self-preserving effect” in which the water constituting the lattice freezes due to the latent heat of thawing at the time of decomposition, and this wraps the surface of the gas hydrate with an ice film, thereby suppressing decomposition.
  • This self-preserving effect makes it possible to store and transport over a long period of time in an atmosphere that is considerably milder than LNG at minus 20 ° C to minus 10 ° C under atmospheric pressure. is there.
  • NGH natural gas hydrate
  • the method for producing NGH proposed by the present applicant is a reaction between a raw material gas and raw material water in the presence of a substance having a gas hydrate decomposition inhibiting action.
  • substances having an action of inhibiting the decomposition of gas hydrate chlorine ions, fluorine ions, bromine ions, iodine ions, sodium ions, potassium ions, lithium ions, calcium ions, magnesium ions, ammonium ions, and the like have been proposed.
  • the source gas include methane gas, natural gas (a mixed gas containing methane as a main component and containing ethane, propane, butane, and the like), carbon dioxide gas, and the like.
  • the decomposition inhibitor is added to the raw material water in the production process, and the ions are not taken into the gas hydrate crystals, so that the gas hydrate is produced. Along with this, various ions were accumulated in the raw material water, and the concentration thereof increased.
  • the ion concentration in the raw material water inevitably increases with the generation of the gas hydrate, and a gas hydrate having inferior decomposition resistance is produced.
  • the method for producing a gas hydrate according to the present invention is configured as follows.
  • a production process for producing gas hydrate by hydrating a raw material gas and raw material water, a dehydration process for discharging water contained in the gas hydrate produced in this production process, and a water content in this dehydration process In a gas hydrate manufacturing method comprising compression molding of a gas hydrate that has been drained, the drainage of the dehydration step is discharged out of the system and pure water is added to the generation step. The ion concentration in the raw material water is adjusted to a decomposition inhibiting concentration of gas hydrate.
  • the decomposition suppression concentration of the gas hydrate is 1 ppm to 1000 ppm.
  • the ions are chlorine ion, fluorine ion, bromine ion, iodine ion, sodium ion, potassium ion, lithium ion, calcium ion, magnesium ion, ammonium ion, iron ion, chloride ion, sulfide ion, sulfate ion, It is characterized by being carbonate ion.
  • the gas hydrate manufacturing apparatus includes: 4) A generating device for generating a gas hydrate by hydrating a raw material gas and raw material water, a dehydrating device for discharging water contained in the gas hydrate generated by the generating device, and a water content in the dehydrating device
  • the dehydrating apparatus includes a reflux path for returning the water drained from the gas hydrate to the generator, and the outside of the system.
  • a discharge passage for discharging, and a measuring means for measuring the concentration of electrolyte ions contained in the water, and an adjustment valve that opens and closes according to a signal of the electrolyte ion concentration measured by the measuring means includes: And a supply path for supplying pure water to the generator.
  • the electrolyte ions are chlorine ions, fluorine ions, bromine ions, iodine ions, sodium ions, potassium ions, lithium ions, calcium ions, magnesium ions, ammonium ions, iron ions, chloride ions, sulfide ions, sulfate ions. It is characterized by being carbonate ion.
  • the concentration of the cation or anion contained in the water drained from the gas hydrate in the dehydration process is measured, and at least a part of the drainage is discharged out of the system based on the measured ion concentration.
  • pure water is added to the production process, and the cation or anion concentration in the raw material water in the production process is maintained at a predetermined concentration so that the ion concentration in the raw material water is maintained at the predetermined concentration. Therefore, the gas hydrate can be produced under conditions of an ion concentration that does not inhibit the formation of the gas hydrate and an ion concentration that does not reduce the self-preserving property. Further, a high quality (low decomposability) gas hydrate can be produced without reducing the production amount.
  • FIG. 1 is a schematic configuration diagram of a gas hydrate manufacturing apparatus according to the present invention.
  • FIG. 2 is a graph showing the relationship between the ion concentration in the raw water and the gas hydrate production rate.
  • a gas hydrate production apparatus includes a generator 1 that generates a gas hydrate h by hydrating a raw material gas g1 and a raw material water w1.
  • a dehydrator 2 that discharges the moisture of the gas hydrate slurry h1 containing the generated gas hydrate h, and a molding apparatus 3 that compresses the gas hydrate h2 dehydrated by the dehydrator 2 into a pellet body h3. It has.
  • the generator 1 includes a pressure vessel 1A in which a supply pipe L1 for a raw material gas g1 and a supply pipe L2 for a raw material water w1 are connected, and a stirring blade 1B for stirring the aqueous solution in the vessel 1A.
  • a spatterer 1C is provided at the bottom of the pressure vessel 1A to eject the source gas g1 into the aqueous solution.
  • a blower B for supplying the raw material gas g1 to the spatterer 1C is provided, and the raw material gas g1 is blown into the raw material water w1.
  • the dehydrator 2 includes a bowl-shaped cylindrical main body 2A into which a gas hydrate slurry h1 containing the gas hydrate h generated by the generator 1 is introduced, a dehydration chamber 2B in the middle of the main body 2A, A screw feeder 2C is provided at the top.
  • the dewatering chamber 2B is provided along the outer wall of the cylindrical main body 2A and is formed in a cylindrical shape, and a plurality of drain holes communicating with the inner side surface and the outer side surface of the cylindrical main body 2A are formed. Further, a pipe line L5 for returning the water w2 separated and discharged from the gas hydrate to the generator 1 is provided at the lower part of the dehydration chamber 2B.
  • the pipe L5 is provided with measuring means 7 for measuring the ion concentration in the water w2 separated from the gas hydrate.
  • measuring means 7 for measuring the ion concentration in the water w2 separated from the gas hydrate.
  • a device such as a chlorine ion meter or a sodium chloride concentration meter can be used as the measuring means 7.
  • the roll 3B has a plurality of molding recesses formed on its surface along the circumference of the roll surface, and presses the gas hydrate h2 filled in the molding recesses to form a pellet body h3. It is supposed to be.
  • the raw material gas g1 and the raw water w1 are supplied into the reaction vessel 1A of the production apparatus 1, and the temperature is maintained at 0 ° C. to 10 ° C. and the pressure is maintained at 3 to 5 MPa.
  • natural gas mainly composed of methane gas is used as the raw material gas g1, and this natural gas is obtained by removing impurities such as carbon dioxide and hydrogen sulfide.
  • the raw material water w1 is obtained by removing chlorine ions and the like in industrial water with an ion exchange resin or the like.
  • the natural gas g1 (raw material gas) supplied to the reaction vessel 1A is supplied into the raw material water w1 in the form of fine bubbles by a sparger 1C (aeration device), and the raw material water w1 is stirred by the stirring device 1B.
  • the gas-liquid contact between the natural gas g1 and the raw water w1 is promoted.
  • the gas hydrate h generated by the hydration reaction by the gas-liquid contact is diffused and dispersed in the raw water w1 by stirring and bubbling to form a gas hydrate slurry h1.
  • the hydration reaction is continued until the gas hydrate h content in the gas hydrate slurry h1 reaches about 10 to 20%.
  • the gas hydrate slurry h1 is pumped by a pump P1 through a transport pipe L4 that supplies the slurry h1 to the dehydrator 2, and is supplied from below the cylindrical main body 2A of the dehydrator 2. While the supplied slurry h1 rises upward in the cylindrical main body 2A, moisture in the slurry h1 is discharged.
  • the squeezed water w2 is drained into a dehydration chamber 2B provided in the middle part of the main body 2A, and returned to the generator 1 through a drain pipe L5 provided in the dehydration chamber 2B.
  • Water is drained through the dehydration chamber 2B to concentrate the gas hydrate, and the gas hydrate content is increased to about 40 to 60% in the upper part of the cylindrical main body 2A.
  • the dehydrated gas hydrate h2 is transferred to the molding apparatus 3 via a screw feeder 2C provided on the upper part of the cylindrical main body 2A.
  • the gas hydrate h2 transferred into the receiving chamber 3A of the molding device 3 is pushed downward by the screw-type pushing device 3C toward the lower side of the receiving chamber 3A, and is applied to a roll 3B disposed below the receiving chamber 3A.
  • the gas hydrate h2 is supplied so as to be pressed.
  • the gas hydrate h2 pressed against the roll 3B is filled in a molding recess (dimple) formed on the surface of the roll 3B, and the gas hydrate h2 is formed in the molding recess with the rotation of the pair of rolls 3B.
  • the pellet body h3 is formed by being confined and pressed.
  • the pellet body h3 molded by the molding apparatus 3 is cooled to about minus 20 ° C. by a cooler (not shown), then depressurized to atmospheric pressure by a depressurization apparatus, and stored in a storage tank or the like. .
  • an ion concentration measuring means 7 is provided in a drain pipe L5 for returning the water w2 drained from the gas hydrate h1 to the dehydrating chamber 2B of the dehydrating apparatus 2 to the generating apparatus 1, and is detected by this measuring means 7.
  • the ion concentration signal S1 is received by the control device 8 having an input terminal for the signal S1.
  • the control device 8 generates a control signal based on the determination by the comparison means, the rewritable storage device storing the upper limit value and the lower limit value of the ion concentration, the comparison means for comparing the upper limit value and the lower limit value.
  • the control means includes a control signal S2 for instructing opening / closing of the valve v1 provided in the supply pipe L2 for the raw water w1, a control signal S3 for instructing opening / closing of the valve v2 of the waste pipe L8 provided in the drain pipe L5, A control signal S4 for instructing opening / closing of the valve v3 of the return pipe L9 to the generating device provided in the pipe L5 is generated.
  • the gas hydrate production rate is increased in the range of 1 ppm to 1000 ppm as shown in FIG. 2, and if it exceeds 1000 ppm, the gas hydrate production rate decreases. start.
  • the chlorine ion concentration is in the range of 1 ppm to 1000 ppm.
  • Chlorine ions may be adjusted so that the chlorine ion concentration does not exceed 1000 ppm, assuming that a little remaining in industrial water deionized with an ion exchange resin or the like is accumulated.
  • a decomposition inhibitor charging device is provided in the generator so that chlorine ions are maintained at 1 ppm to 1000 ppm, and this charging device and the valves v1 to v3 are controlled. You may do it.
  • the measuring means 7 detects that the ion concentration in the waste water w2 discharged to the dehydration chamber 2B exceeds 1000 ppm, and transmits the detection signal S1 to the control device 8.
  • the control device 8 that has received the detection signal S1 transmits a control signal S3 for opening the valve v2 and a control signal S4 for closing the valve v3 so that the waste water w2 is not returned to the generation device 1.
  • a control signal S2 for opening the valve v1 is transmitted from the control device 8, and fresh raw water w1 is supplied to the generation device 1. Until the ion concentration in the wastewater w2 becomes 1000 ppm or less, the wastewater w2 is discarded out of the system, and fresh raw water w1 is supplied to the generator 1.
  • the detection signal S1 is transmitted to the control device 8 from the measuring means 7 that has detected that the ion concentration in the waste water w2 is 1000 ppm or less, and the control signal for closing the valve v2 is received from the control device 8 that has received this detection signal S1.
  • S3, a control signal S4 for opening the valve v3, and a control signal S2 for closing the valve v1 are transmitted, and the waste water w2 is returned to the generator 1.
  • a gas hydrate slurry is formed by hydration reaction between the raw material gas and the raw water in the generator to form a gas hydrate slurry, and the ion concentration in the slurry is accurately determined by an ion sensor or the like. Since it is difficult to measure and the ion concentration tends to fluctuate with the hydration reaction, the ions in the water separated from the gas hydrate dehydrated by the dehydrator where the hydration reaction has almost stopped. Since the concentration is measured, it can be measured to measure the ion concentration in normal water without being affected by temporary fluctuations in the ion concentration, and the ion concentration can be measured stably and accurately. It becomes like this.
  • the ion concentration is automatically adjusted within an appropriate range, so that there is no need for measurement and valve opening / closing operations, and production efficiency is reduced. It is possible to produce a high-quality gas hydrate having a high resistance to decomposition.
  • each valve is controlled by the upper limit and the lower limit of the ion concentration, but a flow meter, a regulating valve, and the like are provided to flexibly control the flow rate of the raw water and waste water.
  • the ion concentration may be adjusted in the vicinity of the center value a. Thereby, the quality of the gas hydrate produced becomes stable.
  • control of chlorine ions has been described as an example of ions in order to facilitate the description.
  • the present invention is not limited to this.
  • Typical ions include fluorine ion, bromine ion, iodine ion, sodium ion, potassium ion, lithium ion, calcium ion, magnesium ion, ammonium ion, iron ion, sulfide ion, sulfate ion, carbonate ion, etc. Hydrate production rate and decomposition rate can be controlled to be good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 ガスハイドレートの自己保存性を低下させないように、脱水工程で排水された水分を系外へ排出すると共に生成工程に純水を添加して原料水中のイオン濃度を調整しながらガスハイドレートを製造する方法とその装置を提供する。  原料水中のイオン濃度を、ガスハイドレートの生成速度を低下させることのない濃度範囲に保持する。

Description

ガスハイドレートの製造方法とその製造装置
 本発明は、メタンガスやプロパンガスなどの天然ガスやそれらの混合ガスなどを原料水と気液接触させてガスハイドレートを生成し、このガスハイドレートを圧縮成型する方法とその装置に関する。
 燃料ガスのなかでも特に、天然ガス(メタンガス、プロパンガスなどを主成分とする混合ガス)は、液化天然ガスのときの体積が気体状態のときの1/600にまで体積が減少することから、液化天然ガス(以下、LNG)の形態として産地から消費地などへ輸送されている。輸送には、周囲が断熱材で覆われたタンクを搭載するLNG船が使用されている。
 ところが、前記LNGは、その沸点が-162℃という極低温であり、温度の上昇に伴って急激に気化するという性質があるので、輸送時にはLNGを前記極低温状態に保持し続ける必要があり、そのための冷凍機の運転動力がかかっていた。
 近年、燃料ガスの形態として、前述のLNGよりもマイルドな冷却温度で安定的に輸送することのできるガスハイドレートというものが注目されている。このガスハイドレートは、天然ガスなどの原料ガスと原料水とを0~5℃程度の温度と3~5MPa程度の高圧の雰囲気下で気液接触させて水和反応させることで生成されており、このガスハイドレートは、複数の水分子が集合して形成された格子の中に天然ガス等の分子が閉じこめられた状態となっている。
 このガスハイドレートは、分解する際の解凍潜熱によって格子を構成していた水分が凍り、これがガスハイドレートの表面を氷の被膜で包み込むことにより、分解が抑制されるという所謂「自己保存効果」を有しており、この自己保存効果によって大気圧下でマイナス20℃~マイナス10℃程度というLNGよりもかなりマイルドな雰囲気下で長期間に亘って貯蔵・輸送することができるという優れた特徴がある。
 更に、例えば天然ガスハイドレート(以下、NGH)は、NGHのときの体積は気体のときの体積の1/170程度となっており、LNGよりは体積の減少量が少ないものの、前述のようにLNGを-162℃という極低温に保持し続けるための冷凍エネルギーを投入する必要がなく、また、大気圧下で比較的安定的に長期間の貯蔵・輸送ができる。
 しかしながら、大気圧、マイナス20℃のマイルドな雰囲気下でNGHを貯蔵した場合、従来のNGHは2週間で80%程度が分解してしまうことから、本出願人は、貯蔵性に優れたNGH、即ち分解が抑制されたNGHの製造方法を先に提案している(例えば、特許文献1参照。)。
特開2004-2754号公報
 本出願人が提案したNGHの製造方法は、ガスハイドレートの分解抑制作用を持つ物質の存在下で、原料ガスと原料水とを反応させるものである。前記ガスハイドレートの分解抑制作用を持つ物質として、塩素イオン、フッ素イオン、臭素イオン、ヨウ素イオン、ナトリウムイオン、カリウムイオン、リチウムイオン、カルシウムイオン、マグネシウムイオン、アンモニウムイオン等を提案している。また、原料ガスとして、メタンガス、天然ガス(メタンを主成分とする、エタン、プロパン、ブタンなどを含む混合ガス)、炭酸ガスなどが挙げられている。
 ところが、このようなNGHの製造方法では、分解抑制剤を生成工程の原料水中へ投入する一方であり、また、ガスハイドレートの結晶に前記イオンなどは取り込まれないので、ガスハイドレートの生成に伴って原料水中に各種イオンが蓄積され、その濃度が上昇していた。
 また、原料水として使用される水は、一般に、イオン交換樹脂により塩素イオンや鉄イオンやマンガンイオンなどを除去された工業用水が用いられているので、これらのイオンについても前記分解抑制剤を添加しなくとも次第に濃度が上昇する。
 本出願人は、イオン濃度とガスハイドレートの耐分解性について研究した結果、ハイドレートの自己保存性が良好となるイオン濃度は、1ppm~1000ppm程度であり、これが10000ppm(1重量%)を超える濃度になるとガスハイドレートの自己保存性が著しく低下することを見出している。
 即ち、従来の製造方法では、ガスハイドレートの生成に伴って原料水中のイオン濃度が必然的に上昇し、耐分解性に劣るガスハイドレートが生産されるようになってしまう。
 本発明は、上記従来技術の課題に鑑み、ガスハイドレートの自己保存性を低下させないように、脱水工程で排水された水分を系外へ排出すると共に生成工程に純水を添加して原料水中のイオン濃度を調整しながらガスハイドレートを製造する方法とその装置を提供することを目的とする。
 本発明に係るガスハイドレートの製造方法は、次のように構成されている。
 1)原料ガスと原料水とを水和反応させてガスハイドレートを生成する生成工程と、この生成工程で生成されたガスハイドレートに含まれる水分を排出する脱水工程と、この脱水工程で水分が排水されたガスハイドレートを圧縮成形する成形工程とを備えたガスハイドレートの製造方法において、前記脱水工程の排水を系外へ排出すると共に前記生成工程に純水を添加し、この生成工程の原料水中のイオン濃度をガスハイドレートの分解抑制濃度に調整することを特徴としている。
 2)前記ガスハイドレートの分解抑制濃度は、1ppm~1000ppmであることを特徴としている。
 3)前記イオンは、塩素イオン、フッ素イオン、臭素イオン、ヨウ素イオン、ナトリウムイオン、カリウムイオン、リチウムイオン、カルシウムイオン、マグネシウムイオン、アンモニウムイオン、鉄イオン、塩化物イオン、硫化物イオン、硫酸イオン、炭酸イオンであることを特徴としている。
 また、本発明に係るガスハイドレート製造装置は、
 4)原料ガスと原料水とを水和反応させてガスハイドレートを生成する生成装置と、この生成装置で生成されたガスハイドレートに含まれる水分を排出する脱水装置と、この脱水装置で水分が排水されたガスハイドレートを圧縮成形する成形装置とを備えたガスハイドレートの製造装置において、前記脱水装置は、ガスハイドレートから排水された水分を生成装置へ戻す還流路と、系外へ排出する排出路と、前記水分に含まれている電解質イオン濃度を計測する測定手段とを備えており、この測定手段により測定された電解質イオン濃度の信号により開閉する調整弁が、前記排出路と、前記生成装置に純水を供給する供給路とにそれぞれ設けられていることを特徴としている。
 5)前記電解質イオンは、塩素イオン、フッ素イオン、臭素イオン、ヨウ素イオン、ナトリウムイオン、カリウムイオン、リチウムイオン、カルシウムイオン、マグネシウムイオン、アンモニウムイオン、鉄イオン、塩化物イオン、硫化物イオン、硫酸イオン、炭酸イオンであることを特徴としている。
 1)脱水工程でガスハイドレートから排水される水分に含まれている陽イオン或いは陰イオンの濃度を測定し、この測定されたイオン濃度に基づいて前記排水の少なくとも一部を系外へ排出すると共に、生成工程に純水を添加し、この生成工程における原料水中の陽イオン或いは陰イオンの濃度を所定の濃度に保持することにより、原料水中のイオン濃度が所定の濃度に保持されるようになるので、ガスハイドレートの生成を阻害しないイオン濃度、自己保存性を低下させないイオン濃度の条件下でガスハイドレートを製造できるようになる。また、生産量が低下することなく高品質(低分解性)のガスハイドレートを製造することができる。
 2)また、生成工程から原料水の一部を廃棄し、その廃棄分を純水で補充する方法で原料水中のイオン濃度を調整する方法では、原料水中に含まれているガスハイドレートの結晶も廃棄されてしまうので、その結晶を回収したり、再ガス化して原料ガスに戻したりしなければならず、手間がかかっていたが、本発明により、脱水装置で排水された水の一部を廃棄するようにしたので、ハイドレートの結晶が廃棄されることが防止され、その結晶の回収等の手間がかからなくなる。
図1は本発明に係るガスハイドレートの製造装置の概略構成図である。 図2は原料水中のイオン濃度と、ガスハイドレートの生成速度との関係を示すグラフである。
符号の説明
 B ブロワ
 P1 スラリポンプ
 P2 ポンプ
 1 生成装置
 1A 耐圧容器
 1B 攪拌機
 1C スページャ(散気装置)
 2 脱水装置
 2A 筒状本体
 2B 脱水室
 2C スクリューコンベア
 3 成形装置
 3A 受入室
 3B 成形ロール
 3C 押込装置
 7 測定手段
 8 制御装置
 g1 原料ガス
 w1 原料水
 w2 排水
 v1,v2,v3 バルブ
 L1 原料ガス供給管
 L2 原料水供給管
 L3 原料ガス循環配管
 L4 スラリ供給管
 L5 排水管
 L6 ガスハイドレート供給管
 L8 廃棄管
 L9 還流管
 h ガスハイドレート結晶
 h1 ガスハイドレートスラリ
 h2 ガスハイドレート脱水体
 h3 ペレット体
 S1 検出信号
 S2,S3,S4 制御信号
 以下、本発明に係るガスハイドレートの製造装置について図示し説明する。
 図1に示すように、本発明に係るガスハイドレートの製造装置は、原料ガスg1と原料水w1とを水和反応させてガスハイドレートhを生成する生成装置1と、この生成装置1で生成されたガスハイドレートhを含有するガスハイドレートスラリh1の水分を排出する脱水装置2と、この脱水装置2で脱水されたガスハイドレートh2を圧縮してペレット体h3とする成形装置3とを備えている。
 前記生成装置1は、原料ガスg1の供給管L1と原料水w1の供給管L2とが連結された耐圧容器1Aと、この容器1A内の水溶液を攪拌する撹拌翼1Bとから構成されており、耐圧容器1A内の底部には原料ガスg1を水溶液中に噴出させるスページャ1Cが設けられている。また、このスページャ1Cへ原料ガスg1を供給するブロワBが設けられ、原料水w1中に原料ガスg1が吹き込まれている。
 前記脱水装置2は、前記生成装置1で生成したガスハイドレートhを含有するガスハイドレートスラリh1が導入される竪型の円筒状本体2Aと、この本体2Aの中間部に脱水室2Bと、上部にスクリューフィーダ2Cとが設けられている。脱水室2Bは、円筒状本体2Aの外壁に沿って設けられ円筒形状に形成されており、筒状本体2Aの内側面と外側面とに連通する排水孔が多数形成されている。また、脱水室2Bの下部には、ガスハイドレートより分離されて排出された水分w2を生成装置1へ戻す管路L5が設けられている。
 また、前記管路L5には、ガスハイドレートより分離された水分w2中のイオン濃度を測定する測定手段7が設けられている。この測定手段7は、本実施例においては、例えば、塩素イオン計、塩化ナトリウム濃度計などの装置を用いることができる。
 前記成形装置3は、前記脱水装置2で脱水されたガスハイドレートh2を受け入れる漏斗形状の受入室3Aと、この受入室3Aの下部に配設した一対のロール7とを備えている。前記受入室3Aは、この受入室3Aに供給されたガスハイドレートh2をロール7側へ押し込んで供給するスクリューを備えた押込装置3Cが設けられている。
 前記ロール3Bは、その表面に複数個の成型凹部がロール表面の円周に沿って形成されており、その成型凹部に充填されたガスハイドレートh2を押圧して圧密化してペレット体h3を形成するようになっている。
(ガスハイドレートの製造)
 次に、このように構成された本発明に係るガスハイドレートの製造装置によるガスハイドレートの製造について説明する。
 図1に示すように、生成装置1の反応容器1A内には、原料ガスg1と原料水w1とが供給され、温度が0℃~10℃、圧力が3~5MPaに保持されている。原料ガスg1として、本実施例においてはメタンガスを主成分とする天然ガスが使用され、この天然ガスは、二酸化炭素や硫化水素といった不純物が除去されたものである。原料水w1は、工業用水中の塩素イオンなどをイオン交換樹脂等によって除去したものが使用されている。
 反応容器1Aに供給された天然ガスg1(原料ガス)は、スページャ1C(散気装置)により細かい泡沫状となって原料水w1中へ供給され、その原料水w1は攪拌装置1Bによって攪拌されており、天然ガスg1と原料水w1との気液接触が促進されている。この気液接触によって水和反応して生成したガスハイドレートhが攪拌とバブリングとにより原料水w1中に拡散・分散し、ガスハイドレートスラリh1が形成される。このガスハイドレートスラリh1中のガスハイドレートhの含有率が10~20%程度となるまで水和反応が続けられている。
 ガスハイドレートスラリh1は、このスラリh1を脱水装置2へ供給する輸送管L4を介してポンプP1によって圧送され、脱水装置2の筒状本体2Aの下方より供給される。供給されたスラリh1は、筒状本体2A内を上方へ向かって上昇しながら、スラリh1中の水分が排出される。絞り出された水分w2は、本体2Aの中間部に設けた脱水室2B内に排水され、その脱水室2Bに設けられた排水管L5を介して生成装置1に戻されるようになっている。
 脱水室2Bを経て水分が排水されてガスハイドレートが濃縮され、筒状本体2Aの上部では、ガスハイドレートの含有率は40~60%程度に高められている。この脱水されたガスハイドレートh2は、筒状本体2Aの上部に設けたスクリューフィーダ2Cを介して成形装置3へ移送される。
 成形装置3の受入室3A内に移送されたガスハイドレートh2は、スクリュー型押込装置3Cによって、受入室3Aの下側に向かって押込まれ、その受入室3Aの下部に配設したロール3Bにガスハイドレートh2が押し付けられるようにして供給される。ロール3Bに押し付けられたガスハイドレートh2は、そのロール3Bの表面に形成された成形凹部(ディンプル)内に充填され、一対のロール3Bの回転に伴って前記成形凹部内にガスハイドレートh2が閉じこめられると共に押圧されてペレット体h3が形成される。
 ガスハイドレートh2が押圧されて圧密化する際に、そのガスハイドレートh2が圧搾されて水分が排出されており、ガスハイドレートペレット体h3のガスハイドレート率は98%以上となっている。
 成形装置3により成型されたペレット体h3は、図示しない冷却器によりマイナス20℃程度にまで冷却され、次いで脱圧装置によって大気圧にまで減圧され、貯留タンクなどに貯留されるようになっている。
(イオン濃度の調整)
 次に、本発明に係るガスハイドレートの製造装置における、原料水w1中のイオン濃度の調整について説明する。ガスハイドレートの製造の概略は、上述しているので、ここでは要部のみ説明する。
 図1に示すように、脱水装置2の脱水室2Bへガスハイドレートh1より排水された水分w2を生成装置1へ戻す排水管L5にイオン濃度測定手段7が設けられ、この測定手段7で検出したイオン濃度の信号S1が、この信号S1の入力端子を備えた制御装置8へ受信されるようになっている。
 前記制御装置8は、イオン濃度の上限値と下限値とを記憶させた書換可能な記憶装置と、その上限値と下限値とを比較する比較手段と、この比較手段の判定により制御信号を生成する制御手段とを備えている。前記制御手段は、原料水w1の供給管L2に設けたバルブv1の開閉を指示する制御信号S2と、排水管L5に設けた廃棄管L8のバルブv2の開閉を指示する制御信号S3と、排水管L5に設けた生成装置への戻り管L9のバルブv3の開閉を指示する制御信号S4とを生成するようになっている。
 イオン濃度は、例えば、塩素イオンの場合は、図2に示すように1ppm~1000ppmの範囲においてガスハイドレートの生成速度が高まっており、また、1000ppmを超えるとガスハイドレートの生成速度が低下し始める。本実施例においては、塩素イオン濃度は1ppm~1000ppmの範囲となるようにしている。また、塩素イオンは、イオン交換樹脂等により脱イオン処理した工業用水中に僅かに残存したものが蓄積したものとし、塩素イオン濃度が1000ppmを超えないように調整してもよい。
 塩素イオンを生ずる分解抑制剤を添加する場合は、塩素イオンが1ppm~1000ppmに保持されるように、分解抑制剤の投入装置を生成装置に設け、この投入装置と各バルブv1~v3を制御するようにしてもよい。
 ガスハイドレートの生産に伴って生成装置1内の原料水w1中の塩素イオンなどの濃度が上昇し、脱水装置2で排出された排水w2中のイオン濃度も上昇する。脱水室2Bに排出された排水w2中のイオン濃度が1000ppmを超えたのを測定手段7が検出し、制御装置8へその検出信号S1を送信する。この検出信号S1を受信した制御装置8は、バルブv2を開放させる制御信号S3と、バルブv3を閉止する制御信号S4とを送信し、排水w2が生成装置1に戻されないようにする。また、制御装置8よりバルブv1を開放させる制御信号S2が送信され、生成装置1へ新鮮な原料水w1が供給される。排水w2中のイオン濃度が1000ppm以下となるまで、排水w2は系外へ廃棄され、新鮮な原料水w1が生成装置1に供給される。
 排水w2中のイオン濃度が1000ppm以下となったことを検出した測定手段7より検出信号S1が制御装置8へ送信され、この検出信号S1を受信した制御装置8より、バルブv2を閉止する制御信号S3と、バルブv3を開放する制御信号S4と、バルブv1を閉止する制御信号S2とが送信され、排水w2が生成装置1へ戻される。
 本発明により、生成装置内では、原料ガスと原料水とが水和反応してガスハイドレートが生成してガスハイドレートスラリが形成されており、スラリ中のイオン濃度をイオンセンサ等により正確に測定するのは困難であり、また、水和反応に伴ってイオン濃度が変動しやすいことから、水和反応がほぼ停止した脱水装置で脱水されているガスハイドレートより分離された水分中のイオン濃度を測定するようにしたので、イオン濃度の一時的な変動の影響を受けることなく、また、通常の水分中のイオン濃度を測定するように計測でき、安定して正確にイオン濃度が測定できるようになる。
 更に、分解抑制剤を添加した場合には、イオン濃度が適正な範囲内に自動的に調整されるので、測定したりバルブの開閉操作をしたりする手間がかからない上に、生産効率が低下することなく耐分解性の高い高品質ガスハイドレートを生産することができる。
 更にまた、複数のイオン濃度を測定するようにし、また、分解抑制剤の添加装置を生成装置に設置してこの添加装置も制御するようにし、各種イオン濃度が適切な濃度範囲に保持されるようにすることもできる。
 本実施例においては、イオン濃度の上限と下限とで各バルブの開閉を制御するようにしているが、流量計や調整弁などを設けて原料水や排水の流量を柔軟に制御し、図2のセンター値aの近傍にイオン濃度を調整するようにしてもよい。これにより、生産されるガスハイドレートの品質が安定なものとなる。
 また、本実施例においては、説明を容易なものとするために、イオンの一例として塩素イオンの制御について説明したが、これに限定されるものではない。
 代表的なイオンとして、フッ素イオン、臭素イオン、ヨウ素イオン、ナトリウムイオン、カリウムイオン、リチウムイオン、カルシウムイオン、マグネシウムイオン、アンモニウムイオン、鉄イオン、硫化物イオン、硫酸イオン、炭酸イオンなどについても、ガスハイドレートの生成速度・分解速度とを良好なものとするように制御することができる。
 また、各種の分解抑制剤として、アンモニウムイオン、リチウムイオン、ルビジウムイオン、セシウムイオン、ベリリウムイオン、ストロンチウムイオン、バリウムイオン、フッ素イオン、臭素イオン、ヨウ素イオン、炭素イオン、硫黄イオン、窒素イオン、酸素イオン、ホウ素イオン、リンイオン、マンガンイオン、銅イオン、亜鉛イオン、カドミウムイオン、アルミニウムイオン、珪素イオン、スズイオン、鉛イオン、バナジウムイオン、クロムイオン、モリブデンイオン、コバルトイオンおよびニッケルイオンの調整をすることもできる。

Claims (5)

  1.  原料ガスと原料水とを水和反応させてガスハイドレートを生成する生成工程と、この生成工程で生成されたガスハイドレートに含まれる水分を排出する脱水工程と、この脱水工程で水分が排水されたガスハイドレートを圧縮成形する成形工程とを備えたガスハイドレートの製造方法において、
     前記脱水工程の排水を系外へ排出すると共に前記生成工程に純水を添加し、この生成工程の原料水中のイオン濃度をガスハイドレートの分解抑制濃度に調整することを特徴とするガスハイドレートの製造方法。
  2.  前記ガスハイドレートの分解抑制濃度は、1ppm~1000ppmであることを特徴とする請求項1記載のガスハイドレートの製造方法。
  3.  前記イオンは、塩素イオン、フッ素イオン、臭素イオン、ヨウ素イオン、ナトリウムイオン、カリウムイオン、リチウムイオン、カルシウムイオン、マグネシウムイオン、アンモニウムイオン、鉄イオン、塩化物イオン、硫化物イオン、硫酸イオン、炭酸イオンであることを特徴とする請求項2記載のガスハイドレートの製造方法。
  4.  原料ガスと原料水とを水和反応させてガスハイドレートを生成する生成装置と、この生成装置で生成されたガスハイドレートに含まれる水分を排出する脱水装置と、この脱水装置で水分が排水されたガスハイドレートを圧縮成形する成形装置とを備えたガスハイドレートの製造装置において、
     前記脱水装置は、ガスハイドレートから排水された水分を生成装置へ戻す還流路と、系外へ排出する排出路と、前記水分に含まれている電解質イオン濃度を計測する測定手段とを備えており、
     この測定手段により測定された電解質イオン濃度の信号により開閉する調整弁が、前記排出路と、前記生成装置に純水を供給する供給路とにそれぞれ設けられていることを特徴とするガスハイドレートの製造装置。
  5.  前記電解質イオンは、塩素イオン、フッ素イオン、臭素イオン、ヨウ素イオン、ナトリウムイオン、カリウムイオン、リチウムイオン、カルシウムイオン、マグネシウムイオン、アンモニウムイオン、鉄イオン、塩化物イオン、硫化物イオン、硫酸イオン、炭酸イオンであることを特徴とする請求項4記載のガスハイドレートの製造装置。
PCT/JP2009/056572 2008-03-31 2009-03-30 ガスハイドレートの製造方法とその製造装置 WO2009123155A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-094144 2008-03-31
JP2008094144A JP5033037B2 (ja) 2008-03-31 2008-03-31 ガスハイドレートの製造方法とその製造装置

Publications (1)

Publication Number Publication Date
WO2009123155A1 true WO2009123155A1 (ja) 2009-10-08

Family

ID=41135529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056572 WO2009123155A1 (ja) 2008-03-31 2009-03-30 ガスハイドレートの製造方法とその製造装置

Country Status (2)

Country Link
JP (1) JP5033037B2 (ja)
WO (1) WO2009123155A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012101740A1 (ja) * 2011-01-24 2012-08-02 三井造船株式会社 ガスハイドレートの製造方法および貯蔵方法
CN110564472A (zh) * 2019-08-22 2019-12-13 湘南学院 一种抑制水合物分解的方法及水合物储运方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8486340B2 (en) * 2009-09-15 2013-07-16 Korea Institute Of Industrial Technology Apparatus and method for continuously producing and pelletizing gas hydrates using dual cylinder
CN108758322A (zh) * 2018-05-24 2018-11-06 燕山大学 天然气的水合物态地下存储系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658904A (ja) * 1992-08-10 1994-03-04 Chubu Electric Power Co Inc クラスレート生成量測定装置
JP2004002754A (ja) * 2002-03-28 2004-01-08 Mitsui Eng & Shipbuild Co Ltd ガスハイドレート、およびその製造方法、並びにガスハイドレートの分解抑制剤
JP2007224249A (ja) * 2006-02-27 2007-09-06 Mitsui Eng & Shipbuild Co Ltd ガスハイドレートペレット冷却装置
JP2007238837A (ja) * 2006-03-10 2007-09-20 Mitsui Eng & Shipbuild Co Ltd 天然ガスハイドレート生成プラントにおける脱水装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658904A (ja) * 1992-08-10 1994-03-04 Chubu Electric Power Co Inc クラスレート生成量測定装置
JP2004002754A (ja) * 2002-03-28 2004-01-08 Mitsui Eng & Shipbuild Co Ltd ガスハイドレート、およびその製造方法、並びにガスハイドレートの分解抑制剤
JP2007224249A (ja) * 2006-02-27 2007-09-06 Mitsui Eng & Shipbuild Co Ltd ガスハイドレートペレット冷却装置
JP2007238837A (ja) * 2006-03-10 2007-09-20 Mitsui Eng & Shipbuild Co Ltd 天然ガスハイドレート生成プラントにおける脱水装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012101740A1 (ja) * 2011-01-24 2012-08-02 三井造船株式会社 ガスハイドレートの製造方法および貯蔵方法
CN110564472A (zh) * 2019-08-22 2019-12-13 湘南学院 一种抑制水合物分解的方法及水合物储运方法
CN110564472B (zh) * 2019-08-22 2020-10-16 湘南学院 一种抑制水合物分解的方法及水合物储运方法

Also Published As

Publication number Publication date
JP5033037B2 (ja) 2012-09-26
JP2009242750A (ja) 2009-10-22

Similar Documents

Publication Publication Date Title
JP5033037B2 (ja) ガスハイドレートの製造方法とその製造装置
JP5052386B2 (ja) ガスハイドレートの製造装置
JP2012162730A (ja) ガスハイドレートの冷却温度設定方法
US20140363361A1 (en) Gas hydrates with a high capacity and high formation rate promoted by biosurfactants
US7999141B2 (en) Process for producing gas hydrate pellet
JP2008248190A (ja) 混合ガスハイドレート製造方法
JP2003064385A (ja) ガスハイドレートの生成システムおよび生成方法
JP2022515032A (ja) ガスハイドレートを形成するための装置および方法
JP2019143172A (ja) 金属硫化物の加圧酸化浸出方法
JP2009221458A (ja) ガスハイドレートの精製方法
JP2004002754A (ja) ガスハイドレート、およびその製造方法、並びにガスハイドレートの分解抑制剤
JP2006241188A (ja) 天然ガスハイドレート生成システムおよびその生成方法
JP2019143173A (ja) 金属硫化物の加圧酸化浸出方法
JP2012046696A (ja) 混合ガスハイドレート生成装置、混合ガスハイドレート生成方法、および混合ガスハイドレートペレット製造装置
JP2007270065A (ja) ガスハイドレートペレットの製造方法および製造装置
JP2006143771A (ja) ガスハイドレートの製造方法および装置
JP4625355B2 (ja) ガスハイドレート製造時におけるパージガス発生防止方法
WO2012101740A1 (ja) ガスハイドレートの製造方法および貯蔵方法
JP2012202593A (ja) シャーベットアイスの塩水リサイクルシステム
JP2011052155A (ja) ガスハイドレートの製造方法および貯蔵方法
JP2017024953A (ja) オゾンハイドレート製造装置、および、オゾンハイドレート製造方法
JP2006111776A (ja) ガスハイドレート製造装置
JP2016087594A (ja) ガスハイドレートの塊製造装置、塊製造方法、及びガスハイドレートの塊
JP2006111784A (ja) ガスハイドレート製造方法
JP2006111816A (ja) ガスハイドレート製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09726651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09726651

Country of ref document: EP

Kind code of ref document: A1