WO2012101740A1 - ガスハイドレートの製造方法および貯蔵方法 - Google Patents
ガスハイドレートの製造方法および貯蔵方法 Download PDFInfo
- Publication number
- WO2012101740A1 WO2012101740A1 PCT/JP2011/051229 JP2011051229W WO2012101740A1 WO 2012101740 A1 WO2012101740 A1 WO 2012101740A1 JP 2011051229 W JP2011051229 W JP 2011051229W WO 2012101740 A1 WO2012101740 A1 WO 2012101740A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas hydrate
- hydrate
- gas
- decomposition
- chloride
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/06—Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
- C10L3/10—Working-up natural gas or synthetic natural gas
- C10L3/108—Production of gas hydrates
Definitions
- the present invention relates to a method for producing and storing gas hydrate, which is a clathrate hydrate of a hydrate-forming substance such as methane gas, natural gas, carbon dioxide gas and water.
- Gas hydrate is generated by reacting water with a hydrate-forming substance such as methane gas, natural gas or carbon dioxide gas at a predetermined temperature and pressure at which phase equilibrium is a generation condition.
- the generated gas hydrate is decomposed by changing either the temperature or the pressure, or both the temperature and the pressure, so that the phase equilibrium is outside the generation conditions, and dissociates into the hydrate-forming substance and water. To do.
- the gas hydrate generation conditions vary depending on the type of hydrate forming substance, but are generally high pressure and low temperature conditions. For example, 4 to 8 MPa for methane (CH 4 ), 1 to 11 ° C., 5 to 6 MPa for natural gas (NG), 1 to 17 ° C., 2 to 6 MPa for carbon dioxide (CO 2 ), ⁇ 10 ° C.
- the gas hydrate When the produced gas hydrate is stored in a storage tank or the like, the gas hydrate can be stored without being decomposed if it is stored under the gas hydrate production conditions.
- the generation conditions are high pressure and low temperature, in view of economics and safety such as equipment costs and operation costs, the temperature is as close to 0 ° C. as possible at room temperature and atmospheric pressure (or leakage of outside air). It is desirable to store the product under a low pressure to prevent the above.
- gas hydrate is generally stored at about ⁇ 20 ° C. under atmospheric pressure.
- Such storage conditions are the are outside hydrate formation conditions, gas hydrate is stably stored its decomposition is suppressed by self-preserving by self-preservation effect.
- the decomposition rate ( ⁇ H / day) of the gas hydrate obtained by the calculation formula described later may be 1% or less. desired.
- the gas hydrate produced by the conventional production method has a decomposition rate higher than 1% and is not stored at a cost.
- the gas hydrate has a substance (hereinafter referred to as a decomposition-inhibiting substance) having an action of inhibiting the decomposition of the gas hydrate.
- a decomposition-inhibiting substance By containing ions generated by dissociation of the electrolyte in the solution in a range of 0.1 ppm to 10,000 ppm (1 ⁇ 10 ⁇ 5 wt% to 1 wt%) A self-preserving property under pressure and temperature (at atmospheric pressure, about ⁇ 20 ° C.) outside the hydrate generation conditions has been improved (Patent Document 1).
- the decomposition inhibitor of gas hydrate (ion generated when the electrolyte is dissociated in the solution), the content for each type of decomposition inhibitor has not been studied.
- the inventors of the present invention have further conducted intensive research on the relationship between the kind and content of the gas hydrate decomposition inhibitor and the self-preserving property of the gas hydrate, and used chloride ions as the decomposition inhibitor in a predetermined concentration range. It has been found that the contained gas hydrate exhibits a high decomposition inhibiting effect at about ⁇ 20 ° C. under atmospheric pressure.
- An object of the present invention is to provide a gas hydrate production method and storage method capable of highly suppressing decomposition of gas hydrate and performing long-term storage with practical cost performance based on such knowledge. It is in.
- the method for producing a gas hydrate according to the first aspect of the present invention includes a raw material water containing ions in which an electrolyte is dissociated in a solution as a substance having a gas hydrate decomposition inhibiting action.
- sodium chloride was added to the raw water, by generating a gas hydrate concentration of the chloride ion in the raw material in water as a 0.1mol / m 3 ⁇ 6.5mol / m 3,
- the gas hydrate has a high self-preserving property near ⁇ 20 ° C. (about ⁇ 23 ° C. to ⁇ 17 ° C.) under atmospheric pressure, and the decomposition thereof can be highly suppressed. Hydrates can be produced.
- “atmospheric pressure” means substantially atmospheric pressure, and includes low pressurization that prevents leakage of outside air into a container or the like for storing gas hydrate.
- the decomposition rate ( ⁇ H / day) of the gas hydrate produced by the gas hydrate production method of this embodiment is 2% or less.
- the decomposition rate is obtained by the following equation.
- Hydrate rate (H) ⁇ (W1-W2) + (W1-W2) /16 ⁇ 5.75 ⁇ 18 ⁇ / W1 (Formula 1)
- W1 Weight of gas hydrate
- W2 Weight of residual water when gas hydrate of W1 is completely decomposed
- the gas hydrate can be further compacted by compression molding into pellets, and the degradation rate can be reduced.
- the gas hydrate having a high self-preserving property (decomposition rate is 2% or less) manufactured by the manufacturing method according to this embodiment has a predetermined size, density and shape suitable for storage (spherical, cylindrical, lens-shaped, pillow)
- the decomposition rate in the vicinity of ⁇ 20 ° C. under atmospheric pressure can be reduced to 1% or less.
- highly economical storage can be performed in a storage period of about 1 to 2 weeks.
- the method for producing a gas hydrate according to the second aspect of the present invention includes a raw material water containing ions in which an electrolyte is dissociated in a solution as a substance having a gas hydrate decomposition-inhibiting action, a hydrate-forming substance, Is a method for producing a gas hydrate, wherein calcium chloride is added as the electrolyte, and the concentration of the chloride ion in the raw water is 0.1 mol / m 3 to 5.0 mol. / M 3 .
- the decomposition rate ( ⁇ H / day) of the gas hydrate produced by the method for producing gas hydrate of this embodiment is 2% or less.
- a gas hydrate pellet having a size, density, and shape suitable for storage is obtained by converting the gas hydrate having a high self-preserving property (decomposition rate is 2% or less) manufactured by the manufacturing method according to the present aspect into the pellet.
- high storage stability during storage about 1 to 2 weeks can be realized.
- the method for producing a gas hydrate according to the third aspect of the present invention includes a raw material water containing ions in which an electrolyte is dissociated in a solution, a hydrate forming substance, as a substance having a gas hydrate decomposition inhibiting action, Is a method for producing gas hydrate, wherein the ions contain at least chloride ions, and the concentration of the chloride ions in the raw material water is as follows for the produced gas hydrate:
- the decomposition rate ( ⁇ H / day) near ⁇ 20 ° C. under atmospheric pressure, which is obtained based on the equations (1) and (2), is set to be equal to or lower than the target predetermined decomposition rate. It is characterized by being.
- Hydrate rate (H) ⁇ (W1-W2) + (W1-W2) /16 ⁇ 5.75 ⁇ 18 ⁇ / W1 (Formula 1)
- W1 Weight of gas hydrate
- W2 Weight of residual water when gas hydrate of W1 is completely decomposed
- the target predetermined decomposition rate is set according to a period required when the gas hydrate is stored (when the gas hydrate is transferred or stored at a predetermined location). For example, if the storage period is about 1 week to 2 weeks, the generated gas hydrate, the decomposition rate of the target is less than 2%.
- the gas hydrate having a decomposition rate of 2% or less can be compressed into gas hydrate pellets having a decomposition rate of 1% or less by compression molding, and can be stored economically during the storage period.
- a gas hydrate having a high self-preserving property that is equal to or less than a target predetermined decomposition rate ( ⁇ H / day) at around ⁇ 20 ° C. (about ⁇ 23 ° C. to ⁇ 17 ° C.) under atmospheric pressure.
- the chloride ions are not limited to those derived from one type of electrolyte, but two or more types of electrolytes that generate chloride ions are added to adjust the concentration of chloride ions in the raw water to a predetermined concentration. May be.
- the chloride ion concentration is 0.1 mol / m 3 to 5.0 mol / m 3. is desirable, more preferably 0.5mol / m 3 ⁇ 2.5mol / m 3.
- the gas hydrate decomposition inhibitory effect is also affected by ions contained in addition to the chloride ions. However, if the chloride ion concentration is within the above range, the target is not greatly affected by the concentration of other ions. It is considered that a predetermined decomposition rate of 2% or less can be achieved.
- a gas hydrate storage method is a gas hydrate storage method for storing gas hydrate in a storage tank, wherein the pressure in the storage tank is atmospheric pressure, The temperature in the storage tank is in the range of ⁇ 23 ° C. or more and less than 0 ° C., and the gas hydrate is produced by the method for producing gas hydrate according to any one of the first to third aspects. It is characterized by being a gas hydrate manufactured by.
- the term “storage” includes the case of storing in a storage tank provided in the ship for transfer.
- the gas hydrate produced by the gas hydrate production method described in any one of the first to third aspects is self-preserving at ⁇ 20 ° C. under atmospheric pressure as described above. High nature. And the decomposition rate ((DELTA) H / day) can be made still lower by pelletizing the gas hydrate with high self-preservation property. According to this aspect, it is possible to realize storage with higher cost performance than the conventional one under the conditions for generating gas hydrate (in the range of ⁇ 23 ° C. or more and less than 0 ° C. under atmospheric pressure).
- the storage temperature is desirably around -20 ° C (about -23 ° C to -17 ° C).
- the decomposition rate at ⁇ 15 ° C. may be higher than the decomposition rate near ⁇ 20 ° C., but by setting the storage temperature higher.
- the operating energy of the gas hydrate storage facility (energy required for cooling the storage tank, etc.) is reduced, and the loss of cost due to the increase in the decomposition rate can be compensated.
- the gas as a hydrate forming substance of gas hydrate is a gas that can be used as a fuel (natural gas, methane, ethane, propane, butane, etc.), the gas hydrate is decomposed and generated.
- the gas can be used as fuel, and can be used as energy for operating a gas hydrate storage facility such as a transfer ship equipped with a storage tank (for example, electric power of a cooling device for cooling the storage tank).
- a gas hydrate storage facility such as a transfer ship equipped with a storage tank (for example, electric power of a cooling device for cooling the storage tank).
- the decomposition rate of the stored gas hydrate is about 1%, the gas generated by the decomposition is used as part of the energy for operating the gas hydrate storage facility or to cover almost all the energy. can be utilized, the consumed without waste gas generated by the decomposition, it is possible to further improve the cost performance according to storage of gas hydrate.
- a gas hydrate having a high self-preserving effect and excellent self-preserving properties can be produced.
- the self-preserving a high gas hydrate further suppress its degradation by molding into pellets or the like, it may be gas hydrate suitable for long term storage. Therefore, gas hydrate can be stored with practical cost performance.
- the method for producing a gas hydrate according to the present invention includes a raw material water containing ions obtained by dissociating an electrolyte in a solution as a substance having a gas hydrate decomposition inhibiting action (hereinafter referred to as a decomposition inhibiting substance), and a hydrate. Gas hydrate is produced by reacting with the forming material.
- the raw water contains at least chloride ions (Cl ⁇ ) as the decomposition inhibitor.
- Examples of the ions that act as the decomposition inhibitor include the chloride ions (Cl ⁇ ), alkali metal elements such as lithium (Li) and sodium (Na), and groups 2 such as magnesium (Mg) and calcium (Ca). Elements, halogen elements such as fluorine (F), bromine (Br), iodine (I), nonmetallic elements such as carbon (C), nitrogen (N), sulfur (S), oxygen (O), phosphorus (P) And ions containing metal elements (excluding the alkali metal elements and group 2 elements) such as manganese (Mn), iron (Fe), copper (Cu), and zinc (Zn) as constituent elements.
- chloride ions Cl ⁇
- alkali metal elements such as lithium (Li) and sodium (Na)
- groups 2 such as magnesium (Mg) and calcium (Ca).
- Elements halogen elements such as fluorine (F), bromine (Br), iodine (I), nonmetallic elements such as carbon (C), nitrogen (
- the raw water is prepared by adding an electrolyte that dissociates in solution and generates ions as the decomposition inhibitor to pure water or purified water that does not contain impurities that affect the formation of gas hydrate. can do.
- Examples of the electrolyte that generates chloride ions in the solution include chlorides such as sodium chloride, potassium chloride, magnesium chloride, calcium chloride, iron chloride, manganese chloride, and zinc chloride.
- chlorides such as sodium chloride, potassium chloride, magnesium chloride, calcium chloride, iron chloride, manganese chloride, and zinc chloride.
- sodium chloride and calcium chloride are preferable, and sodium chloride is more preferable.
- Sodium chloride and calcium chloride are relatively inexpensive and are excellent in terms of safety and ease of handling.
- the chloride ion is not limited to those derived from one of the electrolyte can be added to 2 or more electrolytes to produce a chloride ion.
- the electrolyte that generates chloride ions in the solution is preferably not an electrolyte that generates chloride ions as a result of adding the electrolyte to the raw water and generating a gaseous substance. Result of generating a gaseous substance is added to the water, as the electrolyte to produce a chloride ion, sodium hypochlorite, calcium hypochlorite, and the like.
- sodium hypochlorite, calcium hypochlorite, etc. are used as the electrolyte, for example, the raw water to which the electrolyte is added is heated to advance the decomposition reaction that generates the gas, so that the predetermined chloride ion concentration is maintained. Can be used.
- the water containing the decomposition inhibitor is lower than the desired chloride ion concentration, an electrolyte such as sodium chloride is added to prepare the desired chloride ion concentration for use. be able to.
- the chloride ion concentration contained in the water containing the decomposition inhibitor is higher than the desired chloride ion concentration, it should be adjusted to the desired chloride ion concentration by diluting with pure water or the like and used. Can do.
- the hydrate-forming material is not particularly limited in its kind, as long as it forms a gas hydrate at a predetermined pressure and temperature conditions.
- methane, ethane, natural gas mixed gas containing methane as the main component and containing ethane, propane, butane, etc.
- carbon dioxide carbon dioxide
- other substances that are gases (gases) at normal temperature and normal pressure for example, methane, ethane, natural gas (mixed gas containing methane as the main component and containing ethane, propane, butane, etc.), carbon dioxide (carbon dioxide), and other substances that are gases (gases) at normal temperature and normal pressure. .
- Gas hydrate production conditions vary depending on the hydrate-forming substance, but can be produced under known conditions. For example, 4 to 8 MPa for methane (CH 4 ), 1 to 11 ° C., 5 to 6 MPa for natural gas (NG), 1 to 17 ° C., 2 to 6 MPa for carbon dioxide (CO 2 ), ⁇ 10 ° C.
- CH 4 methane
- NG natural gas
- CO 2 carbon dioxide
- the reaction between the raw water and the hydrate-forming substance can be performed by a known method such as a bubbling method in which fine bubbles are blown into water or a spraying method in which water is sprayed into the hydrate-forming substance (gas).
- the initial hydrate rate H 0 of the gas hydrate is desirably 90% or more in view of economics such as storage and transfer efficiency.
- a gas hydrate having a high initial hydrate ratio H 0 increases the contact efficiency with the hydrate-forming substance, dehydrates the generated gas hydrate slurry, and makes it contact with the hydrate-forming substance (gas) again. It can be obtained by performing a step generation process.
- the gas hydrate obtained as described above is highly self-preserving due to the self-preserving effect of the gas hydrate at about ⁇ 20 ° C. ( ⁇ 23 ° C. to ⁇ 17 ° C.) under atmospheric pressure, and its decomposition is highly suppressed. can do.
- the gas hydrate can be further prevented from being decomposed by making it a size, density, and shape (spherical, cylindrical, lens-like, pillow-like, almond-like pellets) suitable for storage. Thus, long-term storage can be realized.
- FIG. 3 is a drawing schematically showing a cross section of the gas hydrate particles.
- the water film 2 on the surface of the gas hydrate becomes an ice film 3 and covers the surface of the gas hydrate [(c)].
- the ice film 3 grows to a certain thickness or more, mass transfer between the internal gas hydrate and the outside is suppressed, and the internal gas hydrate is stabilized even under decomposition conditions such as atmospheric pressure. That is, the ice film 3 has a mechanical strength that resists the pressure of the gas hydrate to be decomposed (gasified), so that the gas hydrate is stabilized and further decomposition is suppressed. Self-preserving effect is considered to occur.
- the gas hydrate produced by reacting the raw material water with the hydrate-forming substance is stored at a temperature lower than 0 ° C. under atmospheric pressure, the moisture is frozen with respect to the gas hydrate. After the temperature is lowered to a temperature that includes ice, the pressure is brought to atmospheric pressure. At this time, the surface of the gas hydrate is partially degraded, the film 3 of ice is formed, the gas hydrate is considered to produce a self-preserving.
- the gas hydrate produced by a method such as the bubbling method or the spraying method is obtained in a slurry state and contains a large amount of moisture.
- the gas hydrate content in the slurry is usually 10 wt% to 90 wt%.
- the slurry-like gas hydrate can be compression-molded while being dehydrated and processed into pellets by a known gas hydrate granulator such as a pelletizer composed of two rollers. Further, the slurry-like gas hydrate can be dehydrated by a dehydration apparatus such as a dehydration tower and then compressed into a pellet by the gas hydrate granulator. The dehydrated water obtained by dehydrating the slurry gas hydrate can be used as raw water for generating gas hydrate again.
- the step of processing the gas hydrate performed after the gas hydrate is formed into pellets is desirably performed under low temperature and high pressure conditions where the gas hydrate is generated.
- the gas hydrate pelletized by the granulation step is subjected to a step of lowering the temperature to a temperature at which moisture is frozen and containing ice, the gas hydrate pellet is obtained by bringing the pressure to atmospheric pressure. partially degraded, the gas hydrate pellets becomes conditions including ice, it can have a self-preserving in gas hydrate pellets.
- the size and shape of the gas hydrate pellets are arbitrary, as shown in Test 4 of the examples described later, generally, the larger the particle size of the gas hydrate, the higher the decomposition rate of the gas hydrate. Even when pelletized, the decomposition rate is considered to be smaller as the size of the pellet is larger.
- the gap between the pellets increases as the size of the gas hydrate pellets increases. It is desirable to improve the filling rate.
- the temperature, pressure, and the like in the storage tank are kept uniform, so that the decomposition rate of the gas hydrate pellets can be kept low.
- Test 1 Sodium chloride (NaCl) is dissolved in pure water, and the chloride ion concentration is 0, 0.17, 1.0, 1.7, 3.4, 5.1, 8.6 mol / m 3 (0, 6, 36, 61, 121, 182, and 303 ppm) were prepared.
- the case where the chloride ion concentration is 0 mol / m 3 is a case where no NaCl is added, that is, the product is formed using pure water.
- Each sodium chloride aqueous solution of each concentration was placed in a stainless steel reaction vessel and sealed, and then filled with methane gas (purity 99% or more) at a pressure of 5.4 MPa.
- the reaction vessel was kept at 2 ° C. to 4 ° C., and gas hydrate was generated while stirring with a stirrer. Since the gas pressure decreased with the generation of methane gas hydrate, methane gas was supplied so that the pressure was constant.
- the reaction vessel temperature is set to ⁇ 20 ° C., the internal excess water is frozen, the pressure inside the reaction vessel is reduced to atmospheric pressure, and the generated methane hydrate is cooled to an ambient temperature of ⁇ 20 ° C. Removed into the atmosphere.
- the methane hydrate was crushed and taken out from the reaction vessel, and the taken-out methane hydrate was classified by a sieve.
- the particle size of methane gas hydrate used for measuring the decomposition rate of methane gas hydrate described later was 4.0 mm to 6.7 mm. The particle size represents the minimum particle size (width) of each particle.
- the gas hydrate taken out as a sample was placed in a container with a small hole through which cracked gas escapes and stored for a predetermined period (14 days). After the predetermined period, the decomposition rate ( ⁇ H / day) (%) of the gas hydrate sample was determined by the following method.
- ⁇ Measurement of decomposition rate> (1) Put a methane hydrate sample in a container, measure the weight, and determine the methane hydrate sample weight (W1) by subtracting it from the empty weight of the container (hereinafter referred to as the tare weight). (2) Maintain the container at ⁇ 20 ° C. for a predetermined period. (3) After completion of the predetermined period, the methane hydrate sample is completely decomposed, the weight of the sample container is measured, and the weight (W2) of the residual water (ice) is obtained by subtraction from the tare weight. (4) The hydrate rate H and the decomposition rate ( ⁇ H / day) are determined according to the above-described formulas (1) and (2).
- the initial hydrate rate H 0 of the gas hydrate produced by the gas hydrate production method of this example was about 80 to 90%.
- Test 2 Calcium chloride (CaCl 2 ) is dissolved in pure water, and the chloride ion concentration is 0, 0.18, 1.1, 2.1, 9.0 mol / m 3 (0, 6, 38, 73, 319 ppm). Calcium chloride aqueous solutions having various concentrations were prepared. Methane hydrate was produced in the same manner as in Test 1 except that this solution was used as raw water. The decomposition rate ( ⁇ H / day) was determined for the gas hydrate samples of each chloride ion concentration produced. The initial hydrate rate H 0 of the gas hydrate of this example was about 80 to 90%.
- Test 3 Sodium chloride (NaCl) and calcium chloride (CaCl 2 ) were dissolved in pure water to prepare a mixed aqueous solution of sodium chloride and calcium chloride with chloride ion concentrations of 1.2 mol / m 3 and 2.5 mol / m 3 . . Table 1 shows the concentrations of sodium chloride and calcium chloride in the mixed aqueous solution of each chloride ion concentration.
- Methane hydrate was produced in the same manner as in Test 1 except that this mixed aqueous solution was used as raw material water.
- the decomposition rate ( ⁇ H / day) was determined for the gas hydrate samples of each chloride ion concentration produced.
- the initial hydrate rate H 0 of the gas hydrate of this example was about 70 to 90%.
- Test 4 Calcium chloride (CaCl 2 ) was dissolved in pure water and methane gas hydrate was produced by the same method as in Test 2 using raw water prepared with a chloride ion concentration of 2.8 mol / m 3 (100 ppm). The methane hydrate generated from the reaction vessel is crushed and taken out, and the crushed methane gas hydrate is screened to screen 0.5 mm to 1.0 mm, 1.0 mm to 4.0 mm, 4.0 mm to 6.7 mm, 6. The size was classified into 7 mm to 20.0 mm and exceeding 20 mm, and the decomposition rate was determined for each particle size. The results of Test 4 are shown in FIG.
- Test 1 and Test 2 As a result of Test 1 and Test 2, as shown in FIG. 1, when NaCl or CaCl 2 was added as an electrolyte for generating chloride ions in the solution, the chloride ion concentration was about 0.5 to 1. It was found that the decomposition rate of methane gas hydrate peaked at 5 mol / m 3 (about 40 ppm). Tests 1 and 2 were performed at ⁇ 20 ° C., but are considered to have substantially the same degree of self-preserving property in a temperature range of ⁇ 23 ° C. to ⁇ 17 ° C.
- FIG. 2 is a graph showing the change in decomposition rate due to the difference in particle size of the crushed gas hydrate.
- the gas hydrate has a shape suitable for storage (spherical, cylindrical, lenticular, pillow, etc.). And the like can be further suppressed.
- the decomposition rate of the stored gas hydrate is desirably 1% or less, and more desirably 0.1% or less.
- the particle size level (4 mm to 6.7 mm) of the gas hydrate produced in Test 1 and Test 2 if the decomposition rate is 2% or less, a granulation step is performed on the gas hydrate, and about It is considered that by making pellets having a diameter of 20 mm or more, the decomposition rate of 1% or less can be achieved, and high preservability during the storage period can be realized.
- the gas hydrate pelletized by the granulation step is subjected to a step of lowering the temperature to a temperature at which water is frozen and containing ice, and then the pressure is reduced to atmospheric pressure, thereby reducing the gas hydrate pellets. surface were partially degraded, ice film is formed on the gas hydrate pellet surface, it can have a self-preserving in gas hydrate pellets.
- the gas hydrate produced by this method can achieve a target predetermined decomposition rate (for example, 1% or less) without carrying out pelletization by the granulation step, the produced gas hydrate is It is also possible to store it as it is.
- the self-preserving property is high and the decomposition is highly suppressed.
- a gas hydrate that can be obtained can be obtained.
- the present invention can be used for a production method and a storage method of gas hydrate which is a clathrate hydrate of hydrate forming substances such as methane gas, natural gas, carbon dioxide gas and water.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
ガスハイドレートの自己保存性が高く、当該ガスハイドレートの分解を高度に抑制することができ、長期間の貯蔵に適したガスハイドレートの製造方法を提供することを課題として、ガスハイドレートの分解抑制作用を持つ物質として、電解質が溶液中で解離したイオンを含有する原料水と、ハイドレート形成物質と、を反応させてガスハイドレートを生成するガスハイドレートの製造方法であって、前記電解質として塩化ナトリウムを添加し、前記原料水中における前記塩化物イオンの濃度を0.1mol/m3~6.5mol/m3とすることを特徴とするガスハイドレートの製造方法。
Description
本発明は、メタンガス、天然ガス、炭酸ガス等のハイドレート形成物質と水との包接水和物であるガスハイドレートの製造方法および貯蔵方法に関するものである。
ガスハイドレートは、相平衡が生成条件となる所定の温度と圧力の下、メタンガス、天然ガス、炭酸ガス等のハイドレート形成物質と水とを反応させることにより生成する。そして、生成したガスハイドレートは、前記温度または圧力のどちらか一方、または温度と圧力の両方を変化させて相平衡を生成条件外とすることにより分解し、ハイドレート形成物質と水とに解離する。
前記ガスハイドレートの生成条件はハイドレート形成物質の種類によって異なるが、一般的に高圧、低温の条件である。例えば、メタン(CH4)の場合は4~8MPa、1~11℃、天然ガス(NG)の場合は5~6MPa、1~17℃、二酸化炭素(CO2)の場合は2~6MPa、1~10℃である。
生成したガスハイドレートを貯蔵槽等において貯蔵する場合には、前記ガスハイドレートの生成条件において貯蔵すればガスハイドレートを分解させることなく貯蔵することができる。しかし、前記生成条件は高圧、低温の条件であるので、設備費、運転費等の経済性や安全性に鑑み、できるだけ0℃以下の常温に近い温度、且つ大気圧下(若しくは外気の漏れ込みを防止する程度の弱加圧下)において貯蔵することが望ましい。したがって、ガスハイドレートは一般的に、大気圧下、約-20℃で貯蔵されている。このような貯蔵条件は前記ハイドレート生成条件外であるが、ガスハイドレートは自己保存効果による自己保存性によってその分解が抑えられ安定に貯蔵される。
ここで、前記貯蔵条件をガスハイドレートの生成条件外にすることによって削減することができる設備費、運転費等のコストと、前記ガスハイドレートの生成条件外において貯蔵してガスハイドレートが分解することによる損失のバランスを考慮すると、例えば1週間~2週間程度の貯蔵期間の場合、後述する計算式により求められるガスハイドレートの分解速度(△H/日)は1%以下であることが望まれる。しかしながら、従来の製造方法により製造されたガスハイドレートでは前記分解速度が1%より大きく、コストに見合う貯蔵が行われていないのが現状である。
また、前記ガスハイドレートの生成条件外の温度及び圧力の下においてガスハイドレートを安定して貯蔵するため、ガスハイドレートに、該ガスハイドレートの分解抑制作用を持つ物質(以下、分解抑制物質と称する場合がある)として電解質が溶液中で解離することによって生じるイオンを、原料水中に0.1ppm~10000ppm(1×10-5wt%~1wt%)の範囲で含有させることによって、前記ガスハイドレートの生成条件外の圧力及び温度(大気圧下、約-20℃)の下における自己保存性を高めることが行われている(特許文献1)。
しかし、前記ガスハイドレートの分解抑制物質(電解質が溶液中で解離することによって生じるイオン)について、該分解抑制物質の種類ごとの含有量の検討はされていなかった。本発明者らは、前記ガスハイドレートの分解抑制物質の種類及び含有量とガスハイドレートの自己保存性の関係について更に鋭意研究を行い、前記分解抑制物質として塩化物イオンを所定の濃度範囲で含有させたガスハイドレートは、大気圧下、約-20℃において高い分解抑制効果を奏することを見出した。
本発明の目的は、かかる知見に基づき、ガスハイドレートの分解を高度に抑制し、実用的なコストパフォーマンスで長期間の貯蔵を行うことができるガスハイドレートの製造方法および貯蔵方法を提供することにある。
上記目的を達成するため、本発明の第1の態様に係るガスハイドレートの製造方法は、ガスハイドレートの分解抑制作用を持つ物質として、電解質が溶液中で解離したイオンを含有する原料水と、ハイドレート形成物質と、を反応させてガスハイドレートを生成するガスハイドレートの製造方法であって、前記電解質として塩化ナトリウムを添加し、前記原料水中における前記塩化物イオンの濃度を0.1mol/m3~6.5mol/m3とすることを特徴とするものである。
本態様によれば、前記原料水に塩化ナトリウムを添加し、該原料水中における前記塩化物イオンの濃度を0.1mol/m3~6.5mol/m3としてガスハイドレートを生成させることによって、後述する実施例に示されるように、大気圧下、-20℃付近(-23℃~-17℃程度)におけるガスハイドレートの自己保存性が高く、その分解を高度に抑制することができるガスハイドレートを製造することができる。尚、本発明において「大気圧」とは、ほぼ大気圧であって、ガスハイドレートを貯蔵する容器等への外気の漏れ込みを防止する程度の弱加圧も含むものとする。
本態様のガスハイドレートの製造方法によって製造されたガスハイドレートの分解速度(△H/日)は2%以下である。前記分解速度は以下の式によって求められる。
ハイドレート率(H)
={(W1-W2)+(W1-W2)/16×5.75×18}/W1・・・(式1)
W1:ガスハイドレート重量
W2:W1のガスハイドレートを完全に分解したときの残水の重量
={(W1-W2)+(W1-W2)/16×5.75×18}/W1・・・(式1)
W1:ガスハイドレート重量
W2:W1のガスハイドレートを完全に分解したときの残水の重量
分解速度(△H/日)=(H0-Ht)/t・・・(式2)
H0:初期ハイドレート率
Ht:t日後のハイドレート率
t:貯蔵日数
H0:初期ハイドレート率
Ht:t日後のハイドレート率
t:貯蔵日数
ここで、ガスハイドレートは圧縮成形してペレット状にすることによってその分解を更に抑制し、その分解速度を小さくすることができる。
本態様にかかる製造方法によって製造された自己保存性の高いガスハイドレート(分解速度が2%以下)は、貯蔵に適した所定の大きさ、密度、形状(球状、円筒状、レンズ状、ピロー状、アーモンド状等)のペレットにすることによって、大気圧下、-20℃付近における分解速度を1%以下にすることができる。前記分解速度が1%以下である場合、1週間~2週間程度の貯蔵期間において経済性の高い貯蔵を行うことが可能となる。
本態様にかかる製造方法によって製造された自己保存性の高いガスハイドレート(分解速度が2%以下)は、貯蔵に適した所定の大きさ、密度、形状(球状、円筒状、レンズ状、ピロー状、アーモンド状等)のペレットにすることによって、大気圧下、-20℃付近における分解速度を1%以下にすることができる。前記分解速度が1%以下である場合、1週間~2週間程度の貯蔵期間において経済性の高い貯蔵を行うことが可能となる。
本発明の第2の態様に係るガスハイドレートの製造方法は、ガスハイドレートの分解抑制作用を持つ物質として、電解質が溶液中で解離したイオンを含有する原料水と、ハイドレート形成物質と、を反応させてガスハイドレートを生成するガスハイドレートの製造方法であって、前記電解質として塩化カルシウムを添加し、前記原料水中における前記塩化物イオンの濃度を0.1mol/m3~5.0mol/m3とすることを特徴とするものである。
本態様によれば、前記原料水に塩化カルシウムを添加し、該原料水中における前記塩化物イオンの濃度を0.1mol/m3~5.0mol/m3としてガスハイドレートを生成させることによって、後述する実施例に示されるように、大気圧下、-20℃付近におけるガスハイドレートの自己保存性が高く、その分解を高度に抑制することができるガスハイドレートを製造することができる。本態様のガスハイドレートの製造方法によって製造されたガスハイドレートの分解速度(△H/日)は2%以下である。
本態様にかかる製造方法によって製造された自己保存性の高いガスハイドレート(分解速度が2%以下)を、貯蔵に適した大きさ、密度、形状のペレットにすることによって、当該ガスハイドレートペレットの分解速度を1%以下に抑え、前記第1の態様の場合と同様、貯蔵期間中(1週間~2週間程度)における高い保存性を実現することができる。
本発明の第3の態様に係るガスハイドレートの製造方法は、ガスハイドレートの分解抑制作用を持つ物質として、電解質が溶液中で解離したイオンを含有する原料水と、ハイドレート形成物質と、を反応させてガスハイドレートを生成するガスハイドレートの製造方法であって、前記イオンは少なくとも塩化物イオンを含み、前記原料水中における前記塩化物イオンの濃度は、生成したガスハイドレートについて、以下の式(1)および式(2)に基づいて求められる、大気圧下、-20℃付近における分解速度(△H/日)が、目標とする所定の分解速度以下となるように設定されていることを特徴とするものである。
ハイドレート率(H)
={(W1-W2)+(W1-W2)/16×5.75×18}/W1・・・(式1)
W1:ガスハイドレート重量
W2:W1のガスハイドレートを完全に分解したときの残水の重量
={(W1-W2)+(W1-W2)/16×5.75×18}/W1・・・(式1)
W1:ガスハイドレート重量
W2:W1のガスハイドレートを完全に分解したときの残水の重量
分解速度(△H/日)=(H0-Ht)/t・・・(式2)
H0:初期ハイドレート率
Ht:t日後のハイドレート率
t:貯蔵日数
H0:初期ハイドレート率
Ht:t日後のハイドレート率
t:貯蔵日数
本態様において、前記目標とする所定の分解速度は、ガスハイドレートの貯蔵時(ガスハイドレートを移送する場合や所定の場所で貯蔵する場合)に求められる期間に応じて設定される。例えば、貯蔵期間が1週間~2週間程度である場合、生成したガスハイドレートについて、目標とする前記分解速度は2%以下である。分解速度が2%以下の前記ガスハイドレートは、圧縮成形することによって分解速度が1%以下のガスハイドレートペレットとすることができ、前記貯蔵期間において経済性の高い貯蔵を行うことができる。
本態様によれば、大気圧下、-20℃付近(-23℃~-17℃程度)において、目標とする所定の分解速度(△H/日)以下の、自己保存性の高いガスハイドレートを製造することができる。
尚、前記塩化物イオンは、1種の電解質に由来するものに限られず、塩化物イオンを生成する2種以上の電解質を添加し、原料水中の塩化物イオンの濃度を所定の濃度に調製してもよい。
尚、前記塩化物イオンは、1種の電解質に由来するものに限られず、塩化物イオンを生成する2種以上の電解質を添加し、原料水中の塩化物イオンの濃度を所定の濃度に調製してもよい。
本態様において、生成したガスハイドレートについての前記目標とする所定の分解速度が2%以下である場合、前記塩化物イオン濃度は、0.1mol/m3~5.0mol/m3であることが望ましく、より好ましくは0.5mol/m3~2.5mol/m3である。ガスハイドレートの分解抑制作用は、前記塩化物イオン以外に含まれるイオンの影響も受けるが、塩化物イオン濃度が上記範囲内であれば、他のイオンの濃度に大きく左右されることなく前記目標とする所定の分解速度2%以下を達成できると考えられる。尚、前記電解質として塩化ナトリウムを用いた場合には、5.0mol/m3を超える塩化物イオン濃度でも高い自己保存性を有することが実験により示されており、0.1mol/m3~5.0mol/m3の範囲を超えて塩化物イオンが含まれる原料水を用いることを妨げるものではない。
本発明の第4の態様に係るガスハイドレートの貯蔵方法は、ガスハイドレートを貯蔵槽内に貯蔵するガスハイドレートの貯蔵方法であって、前記貯蔵槽内の圧力は大気圧であり、前記貯蔵槽内の温度は-23℃以上0℃未満の範囲内であり、前記ガスハイドレートは、第1の態様から第3の態様のいずれか一つの態様に記載されたガスハイドレートの製造方法によって製造されたガスハイドレートであることを特徴とするものである。本態様において、貯蔵とは、移送のために船内に設けられた貯蔵槽に貯蔵する場合も含むものとする。
第1の態様から第3の態様のいずれか一つの態様に記載されたガスハイドレートの製造方法によって製造されたガスハイドレートは、既述の通り、大気圧下、-20℃付近における自己保存性が高い。そして、自己保存性の高いガスハイドレートをペレット化することによって、その分解速度(△H/日)を更に低くすることができる。本態様によれば、ガスハイドレート生成条件外(大気圧下、-23℃以上0℃未満の範囲内)において、従来よりも高コストパフォーマンスを奏する貯蔵を実現することができる。
尚、前記貯蔵温度は-20℃付近(-23℃~-17℃程度)であることが望ましい。より0℃に近い温度(例えば、-15℃)で貯蔵する場合には、-15℃における分解速度は-20℃付近における分解速度以上になる場合があるが、貯蔵温度を高く設定したことにより、ガスハイドレート貯蔵設備の運転エネルギー(貯蔵槽の冷却にかかるエネルギー等)が低減され、前記分解速度が大きくなったことによるコストの損失を補うことができる。
また、ガスハイドレートのハイドレート形成物質としてのガスが、燃料として利用可能であるガス(天然ガス、メタン、エタン、プロパン、ブタン等)である場合には、ガスハイドレートが分解して発生するガスを燃料として用い、貯蔵槽を備えた移送船等のガスハイドレート貯蔵設備を運転するためのエネルギー(例えば、前記貯蔵槽を冷却するための冷却装置の電力等)として利用することができる。その際、貯蔵するガスハイドレートの分解速度が1%程度であれば、その分解により生じたガスを該ガスハイドレート貯蔵設備を運転するエネルギーの一部として、またはほぼ全てのエネルギーを賄うために利用することができ、前記分解により生じたガスを無駄なく消費し、ガスハイドレートの貯蔵にかかるコストパフォーマンスを更に向上させることができる。
本発明によれば、自己保存効果が高く、優れた自己保存性を備えたガスハイドレートを製造することができる。該自己保存性の高いガスハイドレートをペレット等に成形することによって更にその分解を抑制し、長期間の貯蔵に適したガスハイドレートとすることができる。以って、実用的なコストパフォーマンスでガスハイドレートの貯蔵を行うことができる。
<ガスハイドレートの製造方法>
本発明に係るガスハイドレートの製造方法は、ガスハイドレートの分解抑制作用を持つ物質(以下、分解抑制物質と称する)として、電解質が溶液中で解離したイオンを含有する原料水と、ハイドレート形成物質とを反応させることによってガスハイドレートを生成させる。前記原料水は、前記分解抑制物質として少なくとも塩化物イオン(Cl-)を含んでいる。
本発明に係るガスハイドレートの製造方法は、ガスハイドレートの分解抑制作用を持つ物質(以下、分解抑制物質と称する)として、電解質が溶液中で解離したイオンを含有する原料水と、ハイドレート形成物質とを反応させることによってガスハイドレートを生成させる。前記原料水は、前記分解抑制物質として少なくとも塩化物イオン(Cl-)を含んでいる。
前記分解抑制物質として作用するイオンとしては、前記塩化物イオン(Cl-)のほか、リチウム(Li)、ナトリウム(Na)等のアルカリ金属元素、マグネシウム(Mg)、カルシウム(Ca)等の2族元素、フッ素(F)、臭素(Br)、ヨウ素(I)等のハロゲン元素、炭素(C)、窒素(N)、硫黄(S)、酸素(O)、リン(P)等の非金属元素、マンガン(Mn)、鉄(Fe)、銅(Cu)、亜鉛(Zn)等の金属元素(前記アルカリ金属元素および2族元素を除く)等を構成要素として含むイオンを挙げることができる。
より具体的には、フッ素イオン(F-)、臭素イオン(Br-)、ヨウ素イオン(I-)、ナトリウムイオン(Na+)、カリウムイオン(K+)、リチウムイオン(Li+)、カルシウムイオン(Ca2+)、マグネシウムイオン(Mg2+)、炭酸イオン(CO3
2-)、リン酸イオン(PO4
3-)、アンモニウムイオン(NH4
+)等が挙げられる。
前記原料水は、ガスハイドレートの生成に影響を与える夾雑物が含まれていない純水や精製水に、溶液中で解離して前記分解抑制物質としてのイオンを生成する電解質を添加して調製することができる。
溶液中で塩化物イオンを生成する電解質としては、塩化ナトリウム、塩化カリウム、塩化マグネシウム、塩化カルシウム、塩化鉄、塩化マンガン、塩化亜鉛等の塩化物が挙げられる。特に、塩化ナトリウムおよび塩化カルシウムが好ましく、塩化ナトリウムがより好ましい。塩化ナトリウムや塩化カルシウムは比較的安価であり、安全性や取り扱いの容易性の面で優れている。また、前記塩化物イオンは、1種の電解質に由来するものに限られず、塩化物イオンを生成する2種以上の電解質を添加することができる。
尚、前記溶液中で塩化物イオンを生成する電解質としては、当該電解質を原料水に添加してガス状物質を生成した結果、塩化物イオンを生成する電解質ではないことが望ましい。水中に添加してガス状物質を生成した結果、塩化物イオンを生成する電解質としては、次亜塩素酸ナトリウム、次亜塩素酸カルシウム等が挙げられる。次亜塩素酸ナトリウム、次亜塩素酸カルシウム等を電解質として用いる場合は例えば電解質を添加した原料水を加熱して前記ガスが発生する分解反応を進行させ、所定の塩化物イオン濃度にしておくことにより用いることができる。
また、水中にもともと分解抑制物質が含有されている場合(例えば水道水や海水)には、その水をそのまま原料水として用いることもできる。前記分解抑制物質が含有される水に含まれる塩化物イオン濃度が所望の塩化物イオン濃度よりも低い場合、塩化ナトリウム等の電解質を添加して、所望の塩化物イオン濃度に調製して使用することができる。前記分解抑制物質が含有される水に含まれる化物イオン濃度が所望の塩化物イオン濃度よりも高い場合には、純水等によって希釈することによって所望の塩化物イオン濃度に調製し、使用することができる。
また、前記ハイドレート形成物質としては、その種類に特に制限はなく、所定の圧力および温度条件においてガスハイドレートを形成するものであればよい。例えば、メタン、エタン、天然ガス(メタンを主成分とし、エタン、プロパン、ブタン等を含む混合ガス)、炭酸ガス(二酸化炭素)等の常温・常圧で気体(ガス)である物質が挙げられる。
ガスハイドレートの生成条件(温度および圧力)は、ハイドレート形成物質により異なるが、既知の条件で生成することができる。例えば、メタン(CH4)の場合は4~8MPa、1~11℃、天然ガス(NG)の場合は5~6MPa、1~17℃、二酸化炭素(CO2)の場合は2~6MPa、1~10℃である。
原料水とハイドレート形成物質との反応は、水中に微細な気泡を吹き込むバブリング法、ハイドレート形成物質(ガス)中に水を噴霧する噴霧法等の公知の方法によって行うことができる。尚、ガスハイドレートの初期ハイドレート率H0は、貯蔵および移送効率等の経済性に鑑み、90%以上であることが望ましい。高い初期ハイドレート率H0を有するガスハイドレートは、ハイドレート形成物質との接触効率を高めたり、生成したガスハイドレートスラリーを脱水し、再度ハイドレート形成物質(ガス)に接触させる等の多段階の生成工程を行うことによって得ることができる。
以上のようにして得られるガスハイドレートは、大気圧下、約-20℃(-23℃~-17℃)におけるガスハイドレートの自己保存効果による自己保存性が高く、その分解を高度に抑制することができる。当該ガスハイドレートは、貯蔵に適した大きさ、密度、および形状(球状、円筒状、レンズ状、ピロー状、アーモンド状等のペレット)にすることによって、更にその分解を抑制することができる。以って、長期間の貯蔵を実現することができる。
前記自己保存効果の作用機構については、未解明な点も多いが、以下のような説明がなされている(兼子弘、日本造船学会誌第842号、p.38-48)。
図3は、ガスハイドレート粒子の断面を模式的に示した図面である。低温高圧で生成したガスハイドレート1[図3(a)]を大気圧などの分解条件におくと、表面から部分的に分解が始まり、ガスハイドレート形成物質はガス化するとともに、水膜2がガスハイドレート表面を覆う[同図(b)]。表面でのガスハイドレートの分解により熱が奪われると、ガスハイドレート表面の水膜2は氷の膜3となってガスハイドレート表面を覆う[同図(c)]。この氷の膜3がある厚さ以上まで成長すると、内部のガスハイドレートと外部との物質移動が抑制され、大気圧などの分解条件でも内部のガスハイドレートは安定する。つまり、この氷の膜3が、分解(ガス化)しようとするガスハイドレートの圧力に抗するだけの機械的強度を持つことにより、ガスハイドレートが安定化して、それ以上の分解が抑制される自己保存効果が生ずると考えられている。
図3は、ガスハイドレート粒子の断面を模式的に示した図面である。低温高圧で生成したガスハイドレート1[図3(a)]を大気圧などの分解条件におくと、表面から部分的に分解が始まり、ガスハイドレート形成物質はガス化するとともに、水膜2がガスハイドレート表面を覆う[同図(b)]。表面でのガスハイドレートの分解により熱が奪われると、ガスハイドレート表面の水膜2は氷の膜3となってガスハイドレート表面を覆う[同図(c)]。この氷の膜3がある厚さ以上まで成長すると、内部のガスハイドレートと外部との物質移動が抑制され、大気圧などの分解条件でも内部のガスハイドレートは安定する。つまり、この氷の膜3が、分解(ガス化)しようとするガスハイドレートの圧力に抗するだけの機械的強度を持つことにより、ガスハイドレートが安定化して、それ以上の分解が抑制される自己保存効果が生ずると考えられている。
上記説明に基づき、原料水とハイドレート形成物質を反応させて生成されたガスハイドレートを大気圧下、0℃よりも低い温度で貯蔵する場合には、該ガスハイドレートに対して水分が凍結する温度に下げて氷を含む状態にする工程を行った後、圧力を大気圧下にする。このとき、ガスハイドレートの表面が部分的に分解し、前記氷の膜3が形成され、ガスハイドレートは自己保存性を生ずると考えられる。
<ペレットの製造方法>
前記バブリング法、噴霧法等の方法により生成されたガスハイドレートはスラリー状で得られ、水分を多く含む。当該スラリー中のガスハイドレート含有量は、通常10wt%~90wt%である。
前記バブリング法、噴霧法等の方法により生成されたガスハイドレートはスラリー状で得られ、水分を多く含む。当該スラリー中のガスハイドレート含有量は、通常10wt%~90wt%である。
前記スラリー状のガスハイドレートは、例えば2つのローラーによって構成されるペレタイザー等の公知のガスハイドレート造粒装置等により、脱水しつつ圧縮成形し、ペレット状に加工することができる。また、前記スラリー状のガスハイドレートを脱水塔等の脱水装置によって脱水後、前記ガスハイドレート造粒装置によりペレット状に圧縮成形することも可能である。前記スラリー状ガスハイドレートを脱水した脱水後の水は、再びガスハイドレートを生成するための原料水として用いることができる。
ガスハイドレートの生成後に行う前記ガスハイドレートをペレット状に加工する工程(以下、造粒工程と称する)は、当該ガスハイドレートが生成する低温及び高圧条件下において行うことが望ましい。前記造粒工程によってペレット化されたガスハイドレートに対して水分が凍結する温度に下げて氷を含む状態にする工程を行った後、圧力を大気圧下にすることによって、ガスハイドレートペレットが部分的に分解し、該ガスハイドレートペレットが氷を含む状態となり、ガスハイドレートペレットに自己保存性を持たせることができる。
ガスハイドレートペレットの大きさ、および形状は任意であるが、後述する実施例の試験4に示されるように、一般的にガスハイドレートの粒径が大きいほど、該ガスハイドレートの分解速度は小さくなり、ペレット化した場合もペレットの大きさが大きいほど、その分解速度は小さくなると考えられる。
貯蔵槽等にガスハイドレートペレットを充填する場合、ガスハイドレートペレットの大きさが大きくなると当該ペレット同士の間の空隙が大きくなるので、異径のガスハイドレートペレットを混合し、前記貯蔵槽への充填率を向上することが望ましい。貯蔵槽への充填率を高めることによって該貯蔵槽内の温度、圧力等の状態が均一に保たれるので、ガスハイドレートペレットの分解速度を低く抑えることができる。
[実施例]
以下、実施例に基づき本発明を更に詳細に説明するが、本発明はこれらに限られるものではない。
以下、実施例に基づき本発明を更に詳細に説明するが、本発明はこれらに限られるものではない。
試験1
純水に塩化ナトリウム(NaCl)を溶解させ、塩化物イオン濃度が0、0.17、1.0、1.7、3.4、5.1、8.6mol/m3(0、6、36、61、121、182、303ppm)の各濃度になる塩化ナトリウム水溶液を調製した。前記塩化物イオン濃度が0mol/m3の場合とは、NaCl無添加、すなわち純水を用いて生成した場合である。
純水に塩化ナトリウム(NaCl)を溶解させ、塩化物イオン濃度が0、0.17、1.0、1.7、3.4、5.1、8.6mol/m3(0、6、36、61、121、182、303ppm)の各濃度になる塩化ナトリウム水溶液を調製した。前記塩化物イオン濃度が0mol/m3の場合とは、NaCl無添加、すなわち純水を用いて生成した場合である。
各濃度の塩化ナトリウム水溶液をそれぞれステンレス製反応容器に入れ、密閉した後、メタンガス(純度99%以上)を5.4MPaの圧力で充填した。前記反応容器を2℃~4℃に保ち、撹拌機による撹拌を行いながら、ガスハイドレートを生成させた。メタンガスハイドレートの生成に伴いガス圧力が低下するので、圧力が一定となるようにメタンガスを供給した。
メタンハイドレート生成後、反応容器温度を-20℃とし、内部の余剰水分を凍結させた後、前記反応容器内圧力を大気圧まで減圧し、生成したメタンハイドレートを周囲温度-20℃にて大気中に取り出した。該メタンハイドレートは前記反応容器内から砕いて取り出し、取り出したメタンハイドレートは篩により大きさを分類した。後述するメタンガスハイドレートの分解速度測定のために用いたメタンガスハイドレートの粒径は4.0mm~6.7mmとした。尚、前記粒径は、それぞれの粒の最小粒径(幅)を表したものである。
分解ガスが抜けるための小穴付きの容器に、試料として前記取り出したガスハイドレートを入れて所定期間(14日間)貯蔵した。所定期間終了後、以下の方法によりガスハイドレート試料の分解速度(△H/日)(%)を求めた。
<分解速度の測定>
(1)メタンハイドレート試料を容器に入れて重量を測定し、該容器の空重量(以下、風袋重量と称す)との差し引きによりメタンハイドレート試料重量(W1)を求める。
(2)前記容器を-20℃に所定の期間維持する。
(3)所定期間終了後、メタンハイドレート試料を完全に分解して試料容器の重量を測定し、風袋重量との差し引きにより、残水(氷)の重量(W2)を求める。
(4)前述の式(1)および式(2)に従い、ハイドレート率Hおよび分解速度(△H/日)を求める。
(1)メタンハイドレート試料を容器に入れて重量を測定し、該容器の空重量(以下、風袋重量と称す)との差し引きによりメタンハイドレート試料重量(W1)を求める。
(2)前記容器を-20℃に所定の期間維持する。
(3)所定期間終了後、メタンハイドレート試料を完全に分解して試料容器の重量を測定し、風袋重量との差し引きにより、残水(氷)の重量(W2)を求める。
(4)前述の式(1)および式(2)に従い、ハイドレート率Hおよび分解速度(△H/日)を求める。
本実施例のガスハイドレート生成方法により生成したガスハイドレートの初期ハイドレート率H0は約80~90%であった。
試験2
純水に塩化カルシウム(CaCl2)を溶解させ、塩化物イオン濃度が0、0.18、1.1、2.1、9.0mol/m3(0、6、38、73、319ppm)の各濃度になる塩化カルシウム水溶液を調製した。この溶液を原料水として用いる以外は、試験1と同様にしてメタンハイドレートを製造した。製造した各塩化物イオン濃度のガスハイドレート試料について分解速度(△H/日)を求めた。本実施例のガスハイドレートの初期ハイドレート率H0は約80~90%であった。
純水に塩化カルシウム(CaCl2)を溶解させ、塩化物イオン濃度が0、0.18、1.1、2.1、9.0mol/m3(0、6、38、73、319ppm)の各濃度になる塩化カルシウム水溶液を調製した。この溶液を原料水として用いる以外は、試験1と同様にしてメタンハイドレートを製造した。製造した各塩化物イオン濃度のガスハイドレート試料について分解速度(△H/日)を求めた。本実施例のガスハイドレートの初期ハイドレート率H0は約80~90%であった。
試験3
純水に塩化ナトリウム(NaCl)と塩化カルシウム(CaCl2)を溶解させ、塩化物イオン濃度が1.2mol/m3および2.5mol/m3になる塩化ナトリウムと塩化カルシウムの混合水溶液を調製した。各塩化物イオン濃度の混合水溶液中の塩化ナトリウムと塩化カルシウムの濃度を表1に示す。
純水に塩化ナトリウム(NaCl)と塩化カルシウム(CaCl2)を溶解させ、塩化物イオン濃度が1.2mol/m3および2.5mol/m3になる塩化ナトリウムと塩化カルシウムの混合水溶液を調製した。各塩化物イオン濃度の混合水溶液中の塩化ナトリウムと塩化カルシウムの濃度を表1に示す。
この混合水溶液を原料水として用いる以外は、試験1と同様にしてメタンハイドレートを製造した。製造した各塩化物イオン濃度のガスハイドレート試料について分解速度(△H/日)を求めた。本実施例のガスハイドレートの初期ハイドレート率H0は約70~90%であった。
試験4
純水に塩化カルシウム(CaCl2)を溶解させ、塩化物イオン濃度を2.8mol/m3(100ppm)に調製した原料水を用い、試験2と同様の方法によってメタンガスハイドレートを生成した。反応容器から生成したメタンハイドレートを砕いて取り出し、砕かれたメタンガスハイドレートを篩がけにより、0.5mm~1.0mm、1.0mm~4.0mm、4.0mm~6.7mm、6.7mm~20.0mm、および20mmを超える大きさに分類し、それぞれの粒径について分解速度を求めた。試験4の結果を図2に示す。
純水に塩化カルシウム(CaCl2)を溶解させ、塩化物イオン濃度を2.8mol/m3(100ppm)に調製した原料水を用い、試験2と同様の方法によってメタンガスハイドレートを生成した。反応容器から生成したメタンハイドレートを砕いて取り出し、砕かれたメタンガスハイドレートを篩がけにより、0.5mm~1.0mm、1.0mm~4.0mm、4.0mm~6.7mm、6.7mm~20.0mm、および20mmを超える大きさに分類し、それぞれの粒径について分解速度を求めた。試験4の結果を図2に示す。
試験1及び試験2の結果、図1に示されるように、溶液中で塩化物イオンを生成する電解質としてNaClまたはCaCl2を添加した場合、いずれも塩化物イオン濃度が約0.5~1.5mol/m3(約40ppm)の時にピーク的にメタンガスハイドレートの分解速度が低くなることが分かった。尚、試験1および試験2は-20℃で行っているが、-23℃~-17℃の温度範囲においてほぼ同じ程度の自己保存性を有すると考えられる。
また、試験3のようにNaClとCaCl2を混合して添加した場合も、NaClまたはCaCl2を単独で添加した場合と同様、塩化物イオン濃度が1mol/m3前後の時にメタンガスハイドレートの分解速度が低くなることが判った。
また、図2に示されるように、ガスハイドレートの粒径は大きいほど該ガスハイドレートの分解速度は小さくなる。尚、図2(試験4)は砕いたガスハイドレートの粒径の違いによる分解速度の変化を示す図であるが、ガスハイドレートは貯蔵に適した形状(球状、円筒状、レンズ状、ピロー状、アーモンド状等)のペレットに成形することによって、更にその分解を抑制することができる。
ガスハイドレートを、1週間~2週間貯蔵するためには、貯蔵するガスハイドレートの分解速度としては1%以下であることが望ましく、より望ましくは0.1%以下である。
試験1および試験2で生成したガスハイドレートの粒径レベル(4mm~6.7mm)においては、その分解速度が2%以下であれば、該ガスハイドレートに対して造粒工程を行い、約20mm径以上のペレットにすることによって前記1%以下の分解速度を達成し、前記貯蔵期間における高い保存性を実現することができると考えられる。
試験1および試験2で生成したガスハイドレートの粒径レベル(4mm~6.7mm)においては、その分解速度が2%以下であれば、該ガスハイドレートに対して造粒工程を行い、約20mm径以上のペレットにすることによって前記1%以下の分解速度を達成し、前記貯蔵期間における高い保存性を実現することができると考えられる。
ガスハイドレートペレットの密度は高いほど、当該ペレット分解を抑制することができる。また、ガスハイドレートペレットの粒径は20mm以上、100mm以下であることが望ましく、より好ましくは20mm以上、80mm以下である。
更に、ガスハイドレートペレットを貯蔵する貯蔵設備の大きさや形状に合わせ、前記ペレットの形状を変えたり、異径のペレットを用いて貯蔵槽等の貯蔵設備への充填率を向上させることによって、より長期間の貯蔵を行うことができる。
尚、造粒工程によるペレット化を行う場合には、当該造粒工程は、ガスハイドレートの製造後、継続してガスハイドレートが生成する低温及び高圧条件下において行うことが望ましい。前記造粒工程によってペレット化されたガスハイドレートに対して水分が凍結する温度に下げて氷を含む状態にする工程を行った後、圧力を大気圧下にすることによって、ガスハイドレートペレットの表面が部分的に分解し、該ガスハイドレートペレット表面に氷の膜が形成され、ガスハイドレートペレットに自己保存性を持たせることができる。
また、本方法により製造されたガスハイドレートが造粒工程によるペレット化を行わなくても目標とする所定の分解速度(例えば1%以下)を達成できる場合には、製造されたガスハイドレートをそのまま貯蔵することも可能である。
以上のように、ガスハイドレートの分解抑制物質として前記塩化物イオンを所定の濃度で含む原料水を用いてガスハイドレートを製造することによって、自己保存性が高く、その分解を高度に抑制することができるガスハイドレートを得ることができる。当該自己保存性が高いガスハイドレートをペレットにすることによって、より実用的なコストパフォーマンスでガスハイドレートの貯蔵を行うことが可能となる。
本発明は、メタンガス、天然ガス、炭酸ガス等のハイドレート形成物質と水との包接水和物であるガスハイドレートの製造方法および貯蔵方法に利用可能である。
Claims (4)
- ガスハイドレートの分解抑制作用を持つ物質として、電解質が溶液中で解離したイオンを含有する原料水と、ハイドレート形成物質と、を反応させてガスハイドレートを生成するガスハイドレートの製造方法であって、
前記電解質として塩化ナトリウムを添加し、前記原料水中における前記塩化物イオンの濃度を0.1mol/m3~6.5mol/m3とすることを特徴とするガスハイドレートの製造方法。 - ガスハイドレートの分解抑制作用を持つ物質として、電解質が溶液中で解離したイオンを含有する原料水と、ハイドレート形成物質と、を反応させてガスハイドレートを生成するガスハイドレートの製造方法であって、
前記電解質として塩化カルシウムを添加し、前記原料水中における前記塩化物イオンの濃度を0.1mol/m3~5.0mol/m3とすることを特徴とするガスハイドレートの製造方法。 - ガスハイドレートの分解抑制作用を持つ物質として、電解質が溶液中で解離したイオンを含有する原料水と、ハイドレート形成物質と、を反応させてガスハイドレートを生成するガスハイドレートの製造方法であって、
前記イオンは少なくとも塩化物イオンを含み、
前記原料水中における前記塩化物イオンの濃度は、生成したガスハイドレートについて、以下の式(1)および式(2)に基づいて求められる、大気圧下、-20℃付近における分解速度(△H/日)が、目標とする所定の分解速度以下となるように設定されていることを特徴とするガスハイドレートの製造方法。
ハイドレート率(H)
={(W1-W2)+(W1-W2)/16×5.75×18}/W1・・・(式1)
W1:ガスハイドレート重量
W2:W1のガスハイドレートを完全に分解したときの残水の重量
分解速度(△H/日)=(H0-Ht)/t・・・(式2)
H0:初期ハイドレート率
Ht:t日後のハイドレート率
t:貯蔵日数 - ガスハイドレートを貯蔵槽内に貯蔵するガスハイドレートの貯蔵方法であって、
前記貯蔵槽内の圧力は大気圧であり、
前記貯蔵槽内の温度は-23℃以上0℃未満の範囲内であり、
前記ガスハイドレートは、請求項1から請求項3のいずれか1項に記載されたガスハイドレートの製造方法によって製造されたガスハイドレートであることを特徴とするガスハイドレートの貯蔵方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/051229 WO2012101740A1 (ja) | 2011-01-24 | 2011-01-24 | ガスハイドレートの製造方法および貯蔵方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/051229 WO2012101740A1 (ja) | 2011-01-24 | 2011-01-24 | ガスハイドレートの製造方法および貯蔵方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012101740A1 true WO2012101740A1 (ja) | 2012-08-02 |
Family
ID=46580351
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/051229 WO2012101740A1 (ja) | 2011-01-24 | 2011-01-24 | ガスハイドレートの製造方法および貯蔵方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012101740A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017008019A (ja) * | 2015-06-18 | 2017-01-12 | 宏祐 名倉 | メタンハイドレートの人工製造法 |
WO2024030435A1 (en) * | 2022-08-01 | 2024-02-08 | Board Of Regents, The University Of Texas System | Systems and methods for formation, compaction, sealing, and disposal of co2 hydrates on the seabed |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004002754A (ja) * | 2002-03-28 | 2004-01-08 | Mitsui Eng & Shipbuild Co Ltd | ガスハイドレート、およびその製造方法、並びにガスハイドレートの分解抑制剤 |
WO2009123155A1 (ja) * | 2008-03-31 | 2009-10-08 | 三井造船株式会社 | ガスハイドレートの製造方法とその製造装置 |
JP2011007291A (ja) * | 2009-06-26 | 2011-01-13 | Mitsui Eng & Shipbuild Co Ltd | ガスハイドレートの貯蔵方法 |
JP2011027144A (ja) * | 2009-07-22 | 2011-02-10 | Mitsui Eng & Shipbuild Co Ltd | ガスハイドレート貯蔵設備 |
-
2011
- 2011-01-24 WO PCT/JP2011/051229 patent/WO2012101740A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004002754A (ja) * | 2002-03-28 | 2004-01-08 | Mitsui Eng & Shipbuild Co Ltd | ガスハイドレート、およびその製造方法、並びにガスハイドレートの分解抑制剤 |
WO2009123155A1 (ja) * | 2008-03-31 | 2009-10-08 | 三井造船株式会社 | ガスハイドレートの製造方法とその製造装置 |
JP2011007291A (ja) * | 2009-06-26 | 2011-01-13 | Mitsui Eng & Shipbuild Co Ltd | ガスハイドレートの貯蔵方法 |
JP2011027144A (ja) * | 2009-07-22 | 2011-02-10 | Mitsui Eng & Shipbuild Co Ltd | ガスハイドレート貯蔵設備 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017008019A (ja) * | 2015-06-18 | 2017-01-12 | 宏祐 名倉 | メタンハイドレートの人工製造法 |
WO2024030435A1 (en) * | 2022-08-01 | 2024-02-08 | Board Of Regents, The University Of Texas System | Systems and methods for formation, compaction, sealing, and disposal of co2 hydrates on the seabed |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090035627A1 (en) | Method for gas storage, transport, and energy generation | |
WO2012101740A1 (ja) | ガスハイドレートの製造方法および貯蔵方法 | |
JP4392825B2 (ja) | ガスハイドレートの製造方法及びガスハイドレートの分解抑制剤 | |
Pandey et al. | Methane hydrate formation behavior in the presence of selected amino acids | |
JP2023116632A (ja) | 硫化リチウム粉体、及びその製造方法 | |
JP4837424B2 (ja) | ガスハイドレートペレットの製造方法および製造装置 | |
RU2404121C2 (ru) | Способ получения терморасширяющегося соединения на основе графита | |
JP2011052155A (ja) | ガスハイドレートの製造方法および貯蔵方法 | |
JP5033037B2 (ja) | ガスハイドレートの製造方法とその製造装置 | |
JP3173611B2 (ja) | 輸送及び貯蔵のためのガス水和物の製造方法 | |
JP2012046696A (ja) | 混合ガスハイドレート生成装置、混合ガスハイドレート生成方法、および混合ガスハイドレートペレット製造装置 | |
JP5612272B2 (ja) | ガスハイドレートの製造方法およびガスハイドレートの分解抑制剤 | |
US20140154171A1 (en) | Hydrogen Generation from Stabilized Alane | |
JP2014193799A (ja) | 金属硫化物の製造方法 | |
JP2002255865A (ja) | 炭化水素ガスの貯蔵及び輸送方法 | |
JP2011007291A (ja) | ガスハイドレートの貯蔵方法 | |
Kótai et al. | A review on the oldest known gas-hydrate-The chemistry of chlorine hydrate." | |
JP2012111734A (ja) | エタンハイドレートの貯蔵方法 | |
US2768877A (en) | Chlorine dioxide containing composition and process for manufacture thereof | |
JP5896469B2 (ja) | ガスハイドレートの貯蔵方法及びガスハイドレートの貯蔵装置 | |
JP2021001097A (ja) | 水素製造方法及び水素製造装置 | |
JP2011027144A (ja) | ガスハイドレート貯蔵設備 | |
JP6099091B2 (ja) | 重水を含むガスハイドレートの製造方法およびそれを用いたガスハイドレート貯蔵方法 | |
JP5173736B2 (ja) | ガスハイドレートの製造方法 | |
JP5973125B2 (ja) | 混合ガスハイドレートペレット |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11857134 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11857134 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |