WO2009119772A1 - ガラス基板の加工方法及びその装置 - Google Patents

ガラス基板の加工方法及びその装置 Download PDF

Info

Publication number
WO2009119772A1
WO2009119772A1 PCT/JP2009/056194 JP2009056194W WO2009119772A1 WO 2009119772 A1 WO2009119772 A1 WO 2009119772A1 JP 2009056194 W JP2009056194 W JP 2009056194W WO 2009119772 A1 WO2009119772 A1 WO 2009119772A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
chamfering
dimension
processing apparatus
positioning
Prior art date
Application number
PCT/JP2009/056194
Other languages
English (en)
French (fr)
Inventor
聡 金子
豊 大坪
潤 大川
孝信 水野
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN2009801107681A priority Critical patent/CN101980833A/zh
Priority to JP2010505803A priority patent/JPWO2009119772A1/ja
Publication of WO2009119772A1 publication Critical patent/WO2009119772A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • B24B9/10Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of plate glass
    • B24B9/102Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of plate glass for travelling sheets

Definitions

  • the present invention relates to a glass substrate processing method and apparatus, and more particularly to a glass substrate processing method and apparatus for chamfering a rectangular glass substrate used in FPD (Flat Panel Display).
  • FPD Full Panel Display
  • FPD glass substrates such as liquid crystal displays and plasma displays are manufactured by cutting and folding plate glass into a predetermined rectangular size in the cutting process, and chamfering the edge part in the chamfering process. Manufactured on a glass substrate. Then, the glass substrate is transferred to the surface polishing step through a cleaning step and an inspection step arranged after the chamfering step, and is manufactured into a glass substrate having a product thickness here.
  • These processes are often performed in one line from the viewpoint of production efficiency, but in the case of one-piece production, a glass substrate may be brought into each apparatus for processing.
  • the size of the glass substrate after processing is determined when searching for the conditions of the cutting device or the chamfering processing apparatus accompanying the job change or the replacement of the cutter or the chamfering grindstone. Measurement is performed, and a condition search of the processing apparatus is performed based on the dimensions. Moreover, the dimension measurement of the glass substrate after a process is implemented also in the periodic sampling inspection.
  • Patent Document 1 discloses a dimension measuring device that solves the above-mentioned problems.
  • the dimension measuring apparatus includes a light source that irradiates the glass substrate surface on a glass inspection table that supports the glass substrate in an inclined posture, and an imaging unit that includes a camera that images a region irradiated by the light source. Yes. Further, a head moving unit that allows the head having the imaging unit to move in both directions of the XY axes, a head position detecting unit that can detect the XY coordinates of the head, and an image of the peripheral edge portion of the glass substrate imaged by the camera are processed.
  • An image processing device and an arithmetic processing device for calculating and measuring the dimensions of the glass substrate based on the position information of the XY axes by the head position detecting means and the peripheral edge position coordinate information of a plurality of locations of the glass substrate calculated by the image processing device. ing.
  • the present invention has been made in view of such circumstances, and provides a glass substrate processing method and apparatus capable of reducing the time spent measuring the dimensions of the glass substrate and improving the operating efficiency of the processing apparatus. For the purpose.
  • the present invention comprises a step of measuring an external dimension of a rectangular glass substrate processed by a glass substrate processing apparatus using a dimension measuring apparatus disposed in the processing apparatus.
  • a method for processing a substrate is provided.
  • the present invention provides a glass substrate processing apparatus that is a rectangular glass substrate processing apparatus and includes a dimension measuring device that measures the external dimensions of the glass substrate.
  • the dimension measuring device was arranged in the glass substrate processing apparatus, and the glass substrate processed by the processing apparatus was measured by the dimension measuring apparatus. That is, since the external dimensions of the glass substrate are measured in the machine of the processing apparatus without taking out the glass substrate from the processing apparatus, it is possible to eliminate the above-described problems of Patent Document 1. Therefore, the time spent for measuring the dimensions of the glass substrate can be greatly shortened, and the operating efficiency of the processing apparatus is improved.
  • the processing apparatus of a glass substrate has a chamfering means and a positioning means, and a glass substrate and the said chamfering means are moved relatively to the direction of the 2 sides which the said glass substrate opposes. It is preferable that the chamfering apparatus chamfers the glass substrate.
  • the external dimension of the glass substrate before chamfering positioned by the positioning means arranged on the upstream side of the chamfering processing apparatus or the positioning means provided in the chamfering processing apparatus is measured by the dimension measuring apparatus. Is displayed. Thereby, the operation
  • the external dimensions of the glass substrate after chamfering may be measured by the dimension measuring device.
  • the external dimensions of the glass substrate after chamfering are different.
  • the work of measuring with the measuring device can be omitted, and the operation efficiency of the chamfering device is further improved. Further, it is possible to reduce the occurrence of a problem that the glass substrate is wrinkled.
  • the dimensions of the cut product and the product after chamfering may be measured at the same point, and the respective dimensions may be displayed, or the difference may be calculated to display the grinding allowance that is the chamfering amount. Accordingly, the condition search can be completed in the chamfering apparatus without taking out the glass substrate from the processing apparatus and measuring the dimensions. Moreover, when the dimension of the displayed post-chamfered product is measured, the additional processing amount of the chamfering grindstone of the chamfering means with respect to the glass substrate can be adjusted based on the measurement result.
  • the chamfering apparatus includes a deviation amount calculating unit, and the positional deviation amount of the glass substrate from the position of the glass substrate set based on the dimension measured by the deviation amount calculating unit. It is preferable to perform chamfering by the chamfering means after calculating and positioning the glass substrate at the set position of the glass substrate based on the positional deviation amount by the positioning means.
  • the amount of positional deviation from a preset position of the glass substrate is calculated by the amount of deviation calculating means, and the calculated positional deviation is calculated.
  • the positioning means positions the glass substrate at the set position based on the amount, the additional adjustment amount of the positioning roller can be easily changed (automatic adjustment by servo), and the chamfering means Chamfering can be performed after position correction.
  • the present invention is such that the dimension measuring device is attached so as to be movable integrally with the chamfering means, and the dimension measuring device is arranged in the direction of two sides of the glass substrate facing the glass substrate. It is preferable that the dimension of the glass substrate is measured by relatively moving the chamfering means integrally.
  • the dimension measuring device is attached so as to be able to move integrally with the chamfering means that is relatively moved in the directions of the two opposing sides of the glass substrate,
  • the dimension of a glass substrate is measured by moving relatively.
  • the moving means of the chamfering means can also be used as the moving means of the dimension measuring device, thus simplifying the overall apparatus configuration. it can.
  • the dimension measuring device is arranged in the glass substrate processing device, and the external dimensions of the glass substrate processed by this processing device are set in the processing device. Since it measured with the apparatus, the time spent measuring the dimension of a glass substrate can be reduced significantly and the operating efficiency of a processing apparatus can be improved.
  • DESCRIPTION OF SYMBOLS 10 ... Dimension measuring apparatus, 12 ... Chamfering processing apparatus, 13 ... Processing part, 14, 16 ... Chamfering grindstone, 18, 20 ... Length measuring sensor, 22 ... Spindle, 24 ... Dolly, 26 ... Piston, 28 ... Spindle, DESCRIPTION OF SYMBOLS 30 ... Carriage, 46 ... Air cylinder, 48 ... Drive part, 50 ... Air supply mechanism, 52 ... Control means, 54 ... Air cylinder, 56 ... Drive part, 58 ... Air supply mechanism, 60 ... Suction table, 62 ... For positioning Roller, 64 ... arithmetic unit, 66 ... display means, 68 ... suction table drive unit, 69 ... positioning roller drive unit, 80 ... dimension measuring device, 82 ... positioning device, 84, 86 ... length measuring sensor.
  • FIG. 1 shows a plan view in which the dimension measuring device 10 of the first embodiment is arranged in the chamfering device 12.
  • This dimension measuring device 10 is a device that measures the vertical and horizontal width dimensions of a glass substrate G that is cut into a rectangular shape and flows through the chamfering processing device 12 before and after the chamfering processing. It is installed in the machine of a chamfering machine 12 that chamfers the edges of the four sides of G.
  • embodiment demonstrates the dimension measuring apparatus 10 installed in the chamfering apparatus 12, it is not limited to this, The glass substrate G folding apparatus, The washing
  • the dimension measuring apparatus 10 may be installed in the inspection apparatus and the surface polishing apparatus following the inspection apparatus.
  • the dimension measuring apparatus 10 can be installed in any processing apparatus.
  • the glass substrate G that flows through the processing apparatus may be a glass substrate G that is flowing in the processing apparatus along a processing step, or may be a glass substrate G that is separately charged into the processing apparatus.
  • the long side direction of the glass substrate G is defined as vertical, and the short side direction is defined as horizontal.
  • the glass substrate G shown in FIG. 1 has a regular position, that is, two sides of the glass substrate G are chamfered grindstones 14 and 16 by the positioning roller 62 of the positioning means 82 disposed in the processing unit 13 of the chamfering processing device 12. Is positioned at a position that is parallel to the chamfering movement paths A and B without being inclined, and is sucked by the suction table 60 and fixed to the suction table 60.
  • the positioning roller 62 is placed on a carriage 24, 30, 38, 44 on which the spindles 22, 28, 36, 42 of the chamfering grindstones 14, 16, 34, 40 are mounted via a positioning roller driving unit 69 (see FIG. 2). Installed.
  • the installation location of the positioning roller 62 is not limited to the carriages 24, 30, 38, and 44.
  • the positioning roller 62 may be lowered below the suction table after the glass substrate G is sucked by the suction table 60 after being lifted to a position where it can be positioned.
  • the vertical and horizontal dimensions before chamfering and the vertical and horizontal dimensions after chamfering are measured by a pair of length measuring sensors arranged oppositely across the glass substrate G, for example, contact type length measuring sensors 18 and 20. Measured.
  • a non-contact type length measuring sensor such as a laser meter may be used instead of the contact type length measuring sensor.
  • the length measuring sensors 18 and 20 are installed on the carriages 24 and 30 on which the spindles 22 and 28 of the chamfering grindstones 14 and 16 are mounted via the air cylinders 46 and 54, respectively. It is attached to the tip of pistons 26 and 32.
  • the carriages 24 and 30 have their home positions at the positions indicated by two-dot chain lines in FIG. 1, and are linearly moved from the positions along the movement paths A and B to the positions indicated by the solid lines by the drive units 48 and 56 in FIG.
  • The By this moving operation, the positions of the two vertical sides of the glass substrate G are measured by measuring the four points (P1, P1 ′, P2, P2 ′) of the length measuring sensors 18 and 20, and the dimensions of the horizontal sides are measured based on the measurement data. Is calculated.
  • the chamfering grindstone 14 can also chamfer the first vertical side of the glass substrate G by this moving operation.
  • the air cylinder 46 to which the length measuring sensor 18 is attached is connected to an air supply mechanism 50, and the air supply to the air cylinder 46 by the air supply mechanism 50 is controlled by the control means 52.
  • the control means 52 controls the air supply mechanism 50 so that air is supplied to the air cylinder 46 at the home position in FIG.
  • the piston 26 is extended, and the length measurement sensor 18 is brought into contact with the first measurement point P1 (upper side-right side in FIG. 1) of the first long side portion of the glass substrate G.
  • the control unit 52 controls the air supply mechanism 50 to contract the piston 26.
  • control means 52 controls the drive unit 48 to move the carriage 24 along the movement path A, and when the carriage 24 reaches the second measurement point P2 (upper side-left side in FIG. 1), the movement of the carriage 24 is reached. Stop. Thereafter, the control means 52 controls the air supply mechanism 50 so as to supply air to the air cylinder 46. Accordingly, the piston 26 is extended, and the length measurement sensor 18 is brought into contact with the second measurement point P2 on the first vertical side of the glass substrate G.
  • the measurement operation of the length measurement sensor 20 is the same as that of the length measurement sensor 18 and is therefore omitted.
  • 2 is an air supply mechanism of the air cylinder 54
  • 56 is a drive unit of the carriage 30.
  • the first measurement point of the length measuring sensor 20 is P1 '
  • the second measurement point is P2'.
  • the glass substrate G is rotated 90 degrees in FIG.
  • Numerals 34 and 40 are corner chamfering wheels.
  • the spindles 36 and 42 of the grindstones 34 and 40 are mounted on the carriages 38 and 44, and the carriages 38 and 44 are moved along the corners of the glass substrate G, whereby the corner portions of the glass substrate G are chamfered.
  • the four measurement data from the length measuring sensors 18 and 20 are output to the control means 52 shown in FIG. 2, and the control means 52 calculates the dimension of the horizontal side of the glass substrate G by the calculation unit 64 based on these measurement data. The result is displayed on the display means 66.
  • control unit 52 controls the suction table driving unit 68 to rotate the suction table 60 by 90 degrees, and acquires the dimension of the vertical side of the glass substrate G by the method described above. Display. Thereby, the vertical and horizontal dimensions of the glass substrate G before chamfering are measured.
  • chamfering of the vertical and horizontal sides of the glass substrate G is performed by the chamfering grindstones 14 and 16.
  • This chamfering may be performed by a known chamfering method.
  • one chamfering grindstone is described per side.
  • two or more chamfering grindstones may be provided on one side to improve the surface roughness.
  • the vertical and horizontal dimensions of the glass substrate G after the chamfering are obtained by the method described above. Then, the vertical and horizontal dimensions of the glass substrate G after the chamfering process are divided from the vertical and horizontal dimensions of the glass substrate G before the chamfering process, a grinding allowance as a chamfering amount is calculated, and this is displayed on the display means 66. Thereby, the measured value of the grinding allowance can be confirmed.
  • the control means 52 controls the additional processing amount of the chamfering grindstones 14 and 16 with respect to the glass substrate G so as to approach the target value. Moreover, the additional processing amount with respect to the glass substrate G of the chamfering grindstones 14 and 16 can be adjusted in real time based on the vertical and horizontal dimensions after the chamfering.
  • the dimension measuring apparatus 10 is installed in the machine of the chamfering apparatus 12, and the vertical and horizontal dimensions of the glass substrate G before the chamfering process are measured, and the chamfering process is performed.
  • the subsequent vertical and horizontal dimensions were measured, and those dimensions were displayed. Therefore, it is possible to omit the work of taking out the glass substrate for dimension measurement from the chamfering processing line and measuring the dimension of the glass substrate with another dimension measuring device as before, so that the time spent for measuring the dimension of the glass substrate G is shortened.
  • the operating efficiency of the chamfering apparatus can be improved.
  • the dimension measuring apparatus 10 can complete the condition search in the chamfering apparatus without taking out the glass substrate G from the chamfering apparatus 12 and measuring the dimensions repeatedly until the condition can be obtained. .
  • the length measuring sensors 18 and 20 of the dimension measuring apparatus 10 are attached to the carriages 24 and 30 of the chamfering grindstones 14 and 16 that are moved with respect to the edge of the glass substrate G, the chamfering is performed.
  • the carriages 24 and 30 of the grindstones 14 and 16 can also be used as moving means for the length measuring sensors 18 and 20. Therefore, the overall configuration of the dimension measuring apparatus 10 is simplified.
  • the vertical and horizontal dimensions of the glass substrate G before chamfering are measured, then chamfering on four sides is performed, and finally the vertical and horizontal dimensions of the glass substrate G after chamfering are calculated.
  • measuring it is not limited to this procedure.
  • the length measuring sensors 18 and 20 are brought into contact with the vertical sides of the glass substrate G before chamfering processing to acquire the horizontal side dimensions, and then the vertical chamfering processing of the vertical sides of the glass substrate G is performed on the chamfering grindstone 14. , 16, and then the length measuring sensors 18 and 20 are brought into contact with the vertical side after the chamfering process to acquire the horizontal side dimension, thereby obtaining the grinding allowance of the vertical side. Then, the glass substrate G is rotated by 90 degrees, and according to the above procedure, the length measuring sensors 18 and 20 are brought into contact with the horizontal sides of the glass substrate G before chamfering processing, and the dimensions of the vertical sides are obtained.
  • vertical and horizontal dimension measurement and chamfering may be carried out with one chamfering machine 12, but another chamfering machine is provided at two positions. It is efficient to perform vertical and horizontal dimension measurement and chamfering.
  • a length measuring sensor may be attached to the carriages 38 and 44 on which the corner-exclusive chamfering stones 34 and 40 are mounted. Although the number of length measuring sensors is increased, the sensing operation can be performed once, so that the sensing tact can be shortened.
  • the case of measuring the dimensions of both the chamfered glass substrate before and after chamfering is described.
  • the dimensions of only the glass substrate before chamfering are measured.
  • only the dimension of the glass substrate after chamfering may be measured in order to adjust the processing accuracy of the chamfering apparatus.
  • FIG. 3 is a plan view showing a dimension measuring apparatus 80 according to the second embodiment.
  • This dimension measuring device 80 is provided with a positioning means 82 on the upstream side of the processing portion 13 of the chamfering processing device 12 with respect to the dimension measuring device 10 shown in FIG. 1, and between the chamfering processing device 12 and the positioning means 82. 1 is structurally different in that a pair of length measuring sensors 84 and 86 are provided facing each other.
  • the glass substrate G is positioned by the positioning rollers 62, 62... Of the positioning means 82 on the upstream side of the processing unit 13 of the chamfering processing device 12, is suction fixed by the suction table 60, and then moves the suction table 60. Thus, the glass substrate G is conveyed to the processing unit 13. While the glass substrate G is being transported, the dimension measuring device 80 is positioned at the upstream side in the transport direction of the glass substrate G indicated by the two-dot chain line in FIG. (Not shown), the length measuring sensor 84 is brought into contact, and the length measuring sensor 86 is brought into contact with the second measurement point P2 ′ (not shown) on the second vertical side.
  • the glass substrate G is further conveyed, and the length measurement sensor 84 is brought into contact with the second measurement point P2 on the first vertical side at the position downstream of the conveyance direction of the glass substrate G indicated by the solid line, and the second The length measurement sensor 86 is brought into contact with the first measurement point P1 ′ on the vertical side of the dimension to measure the dimension.
  • the glass substrate G is conveyed to the process part 13, and a chamfering process is performed by moving the glass substrate G relatively with respect to the chamfering grindstones 14 and 16.
  • the glass substrate G is conveyed again to the positioning device side, that is, upstream, the length measuring sensor 84 is brought into contact with the second measurement point P2 on the first vertical side, and the second vertical
  • the length measurement sensor 86 is brought into contact with the first measurement point P1 ′ on the side
  • the glass substrate G is further conveyed upstream, the length measurement sensor 84 is brought into contact with the first measurement point P1 on the first vertical side
  • the length measurement sensor 86 is brought into contact with the second measurement point P2 ′ on the second vertical side to perform dimension measurement.
  • the glass substrate G may be transported but stopped.
  • one chamfering grindstone is described for one side, but two or more chamfering grindstones may be provided on one side to improve the surface roughness.
  • the vertical and horizontal dimension measurement and chamfering may be performed by rotating the glass substrate G 90 degrees with one chamfering processing device 12, but another chamfering processing device is provided, and two positions are provided. It is efficient to perform vertical and horizontal dimension measurement and chamfering.
  • the corner-specific chamfering grindstone may be provided downstream of each chamfering device, but a position for performing only corner chamfering processing may be provided downstream of each of the vertical and horizontal chamfering devices.
  • a pair of length measuring sensors are provided opposite to each other, and the four length measuring sensors are simultaneously brought into contact with all four measurement points to measure the dimensions. You may make it do.
  • the positioning operation of the glass substrate G by the positioning means 82 will be described.
  • air is ejected from the air ejection holes of the suction table 60 to float the glass substrate G on the suction table 60.
  • the glass substrate positioning roller 62 provided in the previous stage of the chamfering process is moved to the glass substrate.
  • the glass substrate G is moved in contact with the edge of G, and the glass substrate G is positioned at a preset position.
  • the positioning roller 62 is retracted from the glass substrate G at the same time or after the suction. The above is the positioning operation. Thereafter, the glass substrate G is chamfered.
  • two positioning rollers 62 are arranged in parallel with each other in the conveying direction. However, even if one side is pressed at one point and the other side is pressed at two points, positioning is performed at a total of three points. Good.
  • positioning rollers may be arranged before and after the transport direction. As long as the glass substrate G can be positioned, the number of positioning rollers and the arrangement position are not limited.
  • the material of the positioning roller 62 that constitutes the positioning means is resin, metal, or rubber, but even if any material is selected, it will be worn out by long-term use.
  • the wear amount increases, the positioned glass substrate G is inclined (inclined from the normal position) by the wear amount, although the positioning roller 62 attempts to position the normal position.
  • the traveling paths A and B of the chamfering grindstones 14 and 16 with respect to the edge of the glass substrate G are inclined, so that the chamfering allowance is small in some parts and the chamfering allowance is large in other parts. As a result, there arises a problem that the chamfering quality deteriorates.
  • the calculation unit (deviation amount calculation means) 64 shown in FIG. 2 calculates the positional deviation amount from the preset position of the glass substrate G based on the positional information of the length measurement sensor, Based on the amount of displacement, the control means 52 changes the additional adjustment amount of the positioning roller 62 and positions the glass substrate G at the set position. That is, since the inclination amount of the glass substrate G is calculated by measuring two edges of one side of the glass substrate G (two-side four-point measurement), the inclination amount is corrected when the inclination amount exceeds the threshold value. Thus, the additional adjustment amount of the positioning roller 62 is changed. Specifically, the control means 52 controls the positioning roller drive unit (servo motor) 69 to perform automatic adjustment. As a result, the chamfer allowance becomes uniform and the processing quality is improved. Thus, even when the positioning roller 62 is worn, the position after positioning can be grasped and adjusted in the apparatus, so that the production efficiency is improved.
  • the control means 52 controls the positioning roller drive unit (servo motor) 69 to perform automatic adjustment.
  • chamfering and dimension measurement may be performed one side at a time, or two sides may be performed simultaneously, but it is preferable to perform two sides at the same time because processing efficiency is better. Furthermore, when a glass substrate is fixed and a chamfering grindstone is conveyed, four sides may be simultaneously used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

 本発明は、ガラス基板の寸法測定に費やす時間を短縮でき、加工装置の稼働効率を向上させることができるガラス基板の加工方法及びその装置を提供する。本発明では、面取加工装置12の機内に寸法測定装置10を設置し、面取り加工前のガラス基板Gの縦横寸法を測定するとともに、面取り加工後の縦横寸法を測定し、それを表示する。よって、従来のように、前工程の切折装置や面取り加工装置で加工されたガラス基板Gを、別の寸法測定装置で測定する作業を省くことができるので、ガラス基板Gの寸法測定に費やす時間を短縮でき、面取加工装置12の稼働効率を向上させることができる。

Description

ガラス基板の加工方法及びその装置
 本発明はガラス基板の加工方法及びその装置に係り、特にFPD(Flat Panel Display)に用いられる矩形状ガラス基板の面取加工を行うガラス基板の加工方法及びその装置に関する。
 液晶ディスプレイやプラズマディスプレイ等のFPD用ガラス基板は、切折工程で板ガラスを所定の矩形状サイズに切り折り加工し、これを面取工程でエッジ部を面取加工することにより、製品外形寸法のガラス基板に製造される。そして、このガラス基板は、面取工程の後段に配された洗浄工程、及び検査工程を経て表面研磨工程に移送され、ここで製品厚さのガラス基板に製造される。なお、これらの工程は生産効率の観点より1ラインで行われることが多いが、一品生産の場合は、各装置にガラス基板を持ち込んで加工することもある。
 ところで、上記ガラス基板の切折工程または面取工程では、ジョブチェンジやカッタまたは面取砥石の交換に伴う切折装置または面取加工装置の条件探索の際に、加工後のガラス基板の寸法が測定され、その寸法に基づいて加工装置の条件探索が行われる。また、加工後のガラス基板の寸法測定は、定期的な抜き取り検査においても実施されている。
 従来、ガラス基板の寸法測定は、加工後のガラス基板を加工装置から取り出し、ノギスやダイヤルゲージを用いて人手により実施されていたが、このような人手による測定方法では、近年のガラス基板の大型化に伴い作業性が悪くなり、測定に長時間費やすため、加工の稼働効率が下がる、また測定誤差も大きくなるという問題があった。また、特にジョブチェンジやカッタまたは面取砥石の交換に伴う切折装置または面取加工装置の条件探索の際は、一度の寸法測定で終わることは少なく、数回の測定が必要となるためガラス基板の大型化に伴う作業効率の低下は顕著となっている。更に、寸法測定されるガラス基板は、加工装置からの搬出時や寸法装置での測定時に、表面に瑕が付くことは否めず、瑕が付いたガラス基板は、瑕の度合いにもよるが廃棄せざるを得ない場合があった。
 特許文献1には、上記不具合を解消する寸法測定装置が開示されている。この寸法測定装置は、ガラス基板を傾斜姿勢にして支持するガラス検査台上で、ガラス基板面を照射する光源と、この光源によって照射された領域を撮像するカメラとからなる撮像手段とを備えている。また、この撮像手段を有するヘッドをXY軸両方向に移動自在とするヘッド移動手段と、ヘッドのXY座標を検出自在なヘッド位置検出手段と、カメラで撮像したガラス基板周辺エッジ部の画像を処理する画像処理装置と、ヘッド位置検出手段によるXY軸の位置情報、及び画像処理装置によって算出したガラス基板の複数箇所の周辺エッジ位置座標情報により、ガラス基板の寸法を演算測定する演算処理装置とを備えている。
特開2007-205724号公報
 しかしながら、特許文献1のガラス基板の寸法測定装置は、精度の向上は図られるが、条件探索のために加工されたガラス基板を加工装置から取り出し、これを特許文献1の寸法測定装置まで搬送して測定するものなので、その寸法を測定するまでに数時間かかる。したがって、寸法を測定する間、加工装置は停止されるため、加工装置の稼働効率が悪いという問題は解決されていない。
 本発明は、このような事情に鑑みてなされたもので、ガラス基板の寸法測定に費やす時間を短縮でき、加工装置の稼働効率を向上させることができるガラス基板の加工方法及びその装置を提供することを目的とする。
 本発明は、前記目的を達成するために、ガラス基板の加工装置によって加工される矩形状のガラス基板の外形寸法を、前記加工装置に配置された寸法測定装置によって測定する工程を具備する、ガラス基板の加工方法を提供する。
 本発明は、前記目的を達成するために、矩形状のガラス基板の加工装置であって、前記ガラス基板の外形寸法を測定する寸法測定装置を具備するガラス基板の加工装置を提供する。
 本発明によれば、寸法測定装置を、ガラス基板の加工装置に配置し、この加工装置で加工されるガラス基板を前記寸法測定装置によって測定した。すなわち、加工装置からガラス基板を取り出すことなく、加工装置の機内でガラス基板の外形寸法を測定するので、特許文献1が持つ前述した不具合を解消することができる。よって、ガラス基板の寸法測定に費やす時間を大幅に短縮でき、加工装置の稼働効率が向上する。
 また、本発明において、ガラス基板の加工装置が、面取手段と位置決め手段を有し、ガラス基板と前記面取手段とが前記ガラス基板の対向する2辺の方向に相対的に移動されることによりガラス基板を面取りする面取加工装置であることが好ましい。面取加工装置の上流側に配置された位置決め手段、または面取加工装置に備えられた位置決め手段で位置決めされた面取加工前のガラス基板の外形寸法が、前記寸法測定装置によって測定され、それが表示される。これにより、前工程である切折装置で加工されたガラス基板を、別の測定装置で測定する作業を省くことができ、ガラス基板加工装置の稼働効率がより向上する。また、ガラス基板に瑕が付くという不具合発生を減少できる。
 また、本発明において、面取加工後のガラス基板の外形寸法を前記寸法測定装置によって測定してもよい。
 面取加工装置の機内に寸法測定装置を設置し、面取加工後のガラス基板の外形寸法を測定し、それを表示するようにした場合、面取加工後のガラス基板の外形寸法を別の測定装置で測定する作業を省くことができ、面取加工装置の稼働効率がより向上する。また、ガラス基板に瑕が付くという不具合発生を減少できる。
 要するに、同じポイントで切折品、面取後品の寸法を測定し、それぞれの寸法を表示してもよく、その差分を計算して面取量である研削代を表示してもよい。よって、ガラス基板を加工装置から取り出して寸法測定することなく、面取加工装置内で条件探索を済ませることもできる。また、表示された面取後品の寸法を測定した場合、測定結果に基づいて、面取手段の面取砥石のガラス基板に対する追加加工量を調整することもできる。
 更に、本発明において、前記面取加工装置がズレ量算出手段を具備し、前記ズレ量算出手段が測定された前記寸法に基づいて設定されたガラス基板の位置からのガラス基板の位置ズレ量を算出し、前記位置決め手段により該位置ズレ量に基づいてガラス基板を前記設定されたガラス基板の位置に位置決めした後、前記面取手段による面取加工を行うことが好ましい。
 上記の本発明の好ましい態様において、寸法測定装置によって測定されたガラス基板の寸法に基づいて、ガラス基板の予め設定した位置からの位置ズレ量をズレ量算出手段によって算出し、算出された位置ズレ量に基づいて位置決め手段がガラス基板を設定位置に位置決めする場合、位置決め用ローラの追加調整量を簡単に変更(サーボによる自動アジャスト)することができ、面取手段は、位置決め手段によるガラス基板の位置修正後に面取加工を行うことができる。
 また、本発明は、前記寸法測定装置は、前記面取手段と一体的に移動可能となるように取り付けられ、ガラス基板に対してガラス基板の対向する2辺の方向に、前記寸法測定装置と前記面取手段が一体となって相対的に移動されることによりガラス基板の寸法を測定することが好ましい。
 上記の本発明の好ましい態様において、ガラス基板の対向する2辺の方向に相対的に移動される面取手段と一体的な移動が可能となるように寸法測定装置を取り付け、ガラス基板に対して相対的に移動されることによりガラス基板の寸法を測定する。例えば、ガラス基板に対して面取手段を移動させて面取加工を行う形態の場合、面取手段の移動手段を寸法測定装置の移動手段として兼用することができるため、装置全体構成を簡素化できる。
 本発明に係るガラス基板の加工方法及びその装置によれば、寸法測定装置をガラス基板の加工装置に配置し、この加工装置で加工されるガラス基板の外形寸法を加工装置に設置された寸法測定装置によって測定したので、ガラス基板の寸法測定に費やす時間を大幅に短縮でき、加工装置の稼働効率を向上させることができる。
第1の実施の形態の寸法測定装置が配置された面取加工装置の動作説明図 図1の寸法測定装置の構成を示したブロック図 第2の実施の形態の寸法測定装置が配置された面取加工装置の動作説明図
符号の説明
 10…寸法測定装置、12…面取加工装置、13…加工部、14、16…面取砥石、18、20…測長センサ、22…スピンドル、24…台車、26…ピストン、28…スピンドル、30…台車、46…エアシリンダ、48…駆動部、50…エア供給機構、52…制御手段、54…エアシリンダ、56…駆動部、58…エア供給機構、60…吸着テーブル、62…位置決め用ローラ、64…演算部、66…表示手段、68…吸着テーブル駆動部、69…位置決め用ローラ駆動部、80…寸法測定装置、82…位置決め装置、84、86…測長センサ。
 以下、添付図面に従って本発明の実施の形態に係るガラス基板の加工方法及びその装置の好ましい形態について詳説する。
 図1は、面取加工装置12に第1の実施の形態の寸法測定装置10が配置された平面図が示されている。この寸法測定装置10は、矩形状に切折加工されて面取加工装置12を流れるガラス基板Gの面取加工前、および面取加工後の縦横の幅寸法を測定する装置であり、ガラス基板Gの縦横4辺のエッジを面取加工する面取加工装置12の機内に設置されている。なお、実施の形態では面取加工装置12に設置される寸法測定装置10について述べるが、これに限定されるものではなく、ガラス基板Gの切折加工装置、面取加工装置の後段の洗浄装置、検査装置、検査装置の後段の表面研磨装置にこの寸法測定装置10を設置してもよい。すなわち、ガラス基板Gの加工装置であれば、どの加工装置の機内においても実施の形態の寸法測定装置10を設置できる。ここで加工装置を流れるガラス基板Gとは、加工装置に加工工程に沿って流れている状態のガラス基板Gであってもよく、別途加工装置に投入されるガラス基板Gであってもよい。また、実施の形態では、ガラス基板Gの長辺方向を縦と規定し、短辺方向を横と規定する。
 図1に示すガラス基板Gは、面取加工装置12の加工部13に配置された位置決め手段82の位置決め用ローラ62によって正規の位置、つまり、ガラス基板Gの2辺が面取砥石14、16による面取りの移動経路A、Bに対して傾斜せず平行となる位置に位置決めされ、吸着テーブル60により吸着され、吸着テーブル60に固定される。位置決め用ローラ62は面取り砥石14、16、34、40のスピンドル22、28、36、42が搭載された台車24、30、38、44に、位置決め用ローラ駆動部69(図2参照)を介してそれぞれ設置される。なお、位置決め用ローラ62の設置場所は台車24、30、38、44に限定されず、ガラス基板Gを位置決めできる所定の位置の吸着テーブル60の下方に設置し、位置決めする際、ガラス基板Gを位置決めできる位置に上昇させ、位置決めを行い、その後吸着テーブル60によりガラス基板Gを吸着後、位置決め用ローラ62を吸着テーブル下方へ下降させてもよい。その後、加工部13において、ガラス基板Gを挟んで対向配置された一対の測長センサ、例えば接触式の測長センサ18、20によって面取加工前の縦横寸法、面取加工後の縦横寸法が測定される。なお、接触式の測長センサに代えて、レーザー計等の非接触式の測長センサを用いてもよい。
 測長センサ18、20は、面取砥石14、16のスピンドル22、28が搭載された台車24、30に、エアシリンダ46、54を介してそれぞれ設置されるとともに、このエアシリンダ46、54のピストン26、32の先端に取り付けられている。台車24、30は、図1上二点鎖線で示す位置をホームポジションとしており、その位置から移動経路A、Bに沿ってそれぞれ図2の駆動部48、56により実線で示す位置に直線移動される。この移動動作によって、測長センサ18、20の4点(P1、P1’、P2、P2’)測定によりガラス基板Gの2つの縦辺の位置が測定され、この測定データに基づき横辺の寸法が算出される。また、この測定動作とは別に、この移動動作によって面取砥石14がガラス基板Gの第1の縦辺を面取りすることもできる。
 図2に示すように、測長センサ18が取り付けられたエアシリンダ46はエア供給機構50に接続されており、このエア供給機構50によるエアシリンダ46に対するエア供給が制御手段52によって制御されている。制御手段52は、面取加工位置にガラス基板Gが位置決め、吸着されると、図1のホームポジション位置でエアをエアシリンダ46に供給するようにエア供給機構50を制御する。これにより、ピストン26が伸長され、測長センサ18がガラス基板Gの第1の長辺部の第1測定ポイントP1(図1上辺-右側部)に当接される。次に、第1測定ポイントP1でのセンシングが終了すると、制御手段52は、エア供給機構50を制御してピストン26を収縮させる。この後、制御手段52は駆動部48を制御し、台車24を移動経路Aに沿って移動させ、実線で示す第2測定ポイントP2(図1上辺-左側部)に到達したところで台車24の移動を停止させる。この後、制御手段52は、エアをエアシリンダ46に供給するようにエア供給機構50を制御する。これにより、ピストン26が伸長され、測長センサ18がガラス基板Gの第1の縦辺の第2測定ポイントP2に当接される。
 なお、測長センサ20の測定動作は測長センサ18と同様なので省略する。また、図2の符号58は、エアシリンダ54のエア供給機構であり、符号56は台車30の駆動部である。測長センサ20の第1測定ポイントはP1’であり、第2測定ポイントはP2’である。
 一方、ガラス基板Gの縦辺の寸法測定、及び横辺の面取り加工を行う場合には、図1においてガラス基板Gを90度回動させ、前述した動作を繰り返し実施すればよい。
 符号34、40はコーナー専用の面取砥石である。この砥石34、40のスピンドル36、42が台車38、44に搭載され、この台車38、44がガラス基板Gのコーナーに沿って移動されることにより、ガラス基板Gのコーナー部が面取りされる。
 次に、前記の如く構成された寸法測定装置10の作用について説明する。
 図1に示したように、ガラス基板Gが面取加工装置12の加工部13で位置決め用ローラ62、62…によって位置決めされると、測長センサ18、20による第1測定ポイントP1、P1’でのセンシングが行われる。この後、測長センサ18、20が面取砥石14、16とともに駆動部48、56によって第2測定ポイントP2、P2’に向けて移動されて第2測定ポイントP2、P2’でのセンシングが行われる。
 測長センサ18、20からの4つの測定データは図2に示す制御手段52に出力され、制御手段52は、これらの測定データに基づき演算部64によってガラス基板Gの横辺の寸法を算出させ、この結果を表示手段66に表示させる。
 このような横辺寸法の測定が終了すると、制御手段52は吸着テーブル駆動部68を制御して吸着テーブル60を90度回動させ、ガラス基板Gの縦辺の寸法を前述した手法で取得し表示させる。これにより、面取加工前のガラス基板Gの縦横寸法が測定される。
 次に、ガラス基板Gの縦横辺部の面取りを面取砥石14、16によって実施する。この面取りについては周知の面取り方法で実施されればよい。なお本実施の形態では面取り砥石を1辺に1個として説明したが、1辺に2個以上設置して表面粗さを向上させてもよい。
 面取りが終了すると、面取り終了したガラス基板Gの縦横寸法を前述した手法により取得する。そして、面取加工前のガラス基板Gの縦横寸法から、面取加工後のガラス基板Gの縦横寸法を除算し、面取量である研削代を算出し、これを表示手段66に表示させる。これにより、研削代の実測値を確認できる。なお、実測値が目標値から離れた場合には、目標値に近づくように面取砥石14、16のガラス基板Gに対する追加加工量を制御手段52が制御する。また、面取加工後の縦横寸法に基づいて、面取砥石14、16のガラス基板Gに対する追加加工量をリアルタイムに調整することもできる。
 このように実施の形態の寸法測定装置10によれば、面取加工装置12の機内に寸法測定装置10が設置され、面取加工前のガラス基板Gの縦横寸法を測定するとともに、面取加工後の縦横寸法を測定し、それらの寸法を表示するようにした。よって、従来のように、面取加工ラインから寸法測定用のガラス基板を取り出して別の寸法測定装置でガラス基板の寸法を測定する作業を省けるので、ガラス基板Gの寸法測定に費やす時間を短縮することができ、面取加工装置の稼働効率を向上させることができる。また、寸法測定されたガラス基板Gに瑕が付くという不具合発生も減少させることができ、生産ロスを減らすことができる。
 要するに実施の形態の寸法測定装置10は、ガラス基板Gを面取加工装置12から条件だしが出来るまで何度も取り出して寸法測定することなく、面取加工装置内で条件探索を済ませることができる。
 また、実施の形態の寸法測定装置10の測長センサ18、20は、ガラス基板Gのエッジに対して移動される面取砥石14、16の台車24、30に取り付けられているため、面取砥石14、16の台車24、30を測長センサ18、20の移動手段として兼用することができる。したがって、寸法測定装置10の全体構成が簡素化される。
 なお、上記実施の形態の手順では、面取加工前のガラス基板Gの縦横寸法を測定し、次に4辺の面取加工を行い、最後に面取加工後のガラス基板Gの縦横寸法を測定すると説明したが、この手順に限定されるものではない。
 例えば、面取加工前のガラス基板Gの縦辺に測長センサ18、20を当接させて横辺の寸法を取得し、次にガラス基板Gの縦辺の面取加工を面取砥石14、16にて行い、次いで面取加工後の縦辺に測長センサ18、20を当接させて横辺の寸法を取得することにより縦辺の研削代を取得する。そして、ガラス基板Gを90度回動させて上記の手順に従い、面取加工前のガラス基板Gの横辺に測長センサ18、20を当接させて縦辺の寸法を取得し、次にガラス基板Gの横辺の面取加工を面取砥石14、16にて行い、次いで面取加工後の横辺に測長センサ18、20を当接させて縦辺の寸法を取得することにより横辺の研削代を取得するようにしてもよい。また本実施の形態に記したように、面取加工装置12、1台で縦横の寸法測定、および面取加工を実施してもよいが、もう一台面取加工装置を設け、2つのポジションで縦横の寸法測定、および面取加工をそれぞれ行うと効率が良い。
 更に、コーナー専用の面取砥石34、40が搭載された台車38、44にも、測長センサを取り付けてもよい。測長センサが増えるが、センシング動作は1回で済むため、センシングタクトを短縮することができる。
 また、上記実施の形態では面取り前、面取り後の両方のガラス基板の寸法測定を行う場合について記載したが、切折機の加工精度調整のために、面取り前のガラス基板のみの寸法を測定してもよいし、面取加工装置の加工精度調整のために、面取り後のガラス基板の寸法のみを測定してもよい。
 図3は、第2の実施の形態の寸法測定装置80を示した平面図である。
 第1の実施の形態では面取砥石14、16を移動させることにより面取加工を行う場合の構成及び動作について詳説したが、第2の実施の形態では面取砥石14、16は固定で、ガラス基板Gをガラス基板Gの対向する2辺の方向に面取砥石14、16と相対的に移動させることにより面取加工を行う場合について詳説する。この寸法測定装置80は、図1に示した寸法測定装置10に対し、面取加工装置12の加工部13の上流側に位置決め手段82を設置し、面取加工装置12と位置決め手段82の間に一対の測長センサ84、86を対向して設けている点が構成的に相違している。
 ガラス基板Gは、面取加工装置12の加工部13の上流側の位置決め手段82の位置決め用ローラ62、62…によって位置決めされ、吸着テーブル60によって吸着固定され、次に吸着テーブル60を移動させることによってガラス基板Gは加工部13へ搬送される。ガラス基板Gが搬送される途中において、寸法測定装置80は、図3の二点鎖線で示したガラス基板Gの搬送方向上流側の位置で、第1の縦辺の第1測定ポイントP1(図示省略)に測長センサ84を当接させるとともに、第2の縦辺の第2測定ポイントP2’(図示省略)に測長センサ86を当接させる。そして、さらにガラス基板Gを搬送し、実線で示したガラス基板Gの搬送方向下流側の位置で、第1の縦辺の第2測定ポイントP2に測長センサ84を当接させるとともに、第2の縦辺の第1測定ポイントP1’に測長センサ86を当接させて寸法測定を行う。その後、加工部13へガラス基板Gを搬送し、ガラス基板Gを面取砥石14,16に対して相対的に移動させることにより面取加工を行う。ガラス基板Gの面取加工後、再びガラス基板Gを位置決め装置側、すなわち上流へ搬送し、第1の縦辺の第2測定ポイントP2に測長センサ84を当接させるとともに、第2の縦辺の第1測定ポイントP1’に測長センサ86を当接させ、さらにガラス基板Gを上流に搬送し、第1の縦辺の第1測定ポイントP1に測長センサ84を当接させるとともに、第2の縦辺の第2測定ポイントP2’に測長センサ86を当接させて寸法測定を行う。なお、第1の縦辺の第2測定ポイントP2と第2の縦辺の第1測定ポイントP1’に測長センサを当接させる際、ガラス基板Gは搬送されていてもよいが、停止している方が精度が良いので好ましい。なお、第2の実施の形態では面取り砥石を1辺に1個として説明したが、1辺に2個以上設置して表面粗さを向上させてもよい。また、面取加工装置12、1台でガラス基板Gを90度回転させることによって縦横の寸法測定、および面取加工を実施してもよいが、もう一台面取加工装置を設け、2つのポジションで縦横の寸法測定、および面取加工をそれぞれ行うと効率が良い。その場合、コーナー専用の面取砥石はそれぞれの面取り装置の下流に設けてもよいが、コーナー面取加工のみを行うポジションを縦横それぞれの面取加工装置の下流に設けてもよい。
 また、一対の測長センサ84、86の他、さらに一対の測長センサを対向して設け、測定ポイント4点の全てに対して4台の測長センサをそれぞれ同時に当接させて寸法を測定するようにしてもよい。
 ここで、位置決め手段82によるガラス基板Gの位置決め動作について説明する。まず、吸着テーブル60のエア噴射孔からエアを噴射して、ガラス基板Gを吸着テーブル60上でフローティングさせ、この状態で面取工程の前段に設けられたガラス基板の位置決め用ローラ62をガラス基板Gのエッジに当接させてガラス基板Gを移動させ、ガラス基板Gを予め設定した位置に位置決めする。次に、位置決めされたガラス基板Gを吸着テーブル60によって吸着すると同時もしくは吸着後に位置決め用ローラ62をガラス基板Gから退避させる。以上が位置決め動作である。この後ガラス基板Gは面取加工される。
 実施の形態では、位置決め用ローラ62を搬送方向に平行してそれぞれ2台ずつ配置したが、一方の片側を1点で押さえ、他方の片側を2点で押さえて計3点で位置決めしてもよい。また、搬送方向の位置決めのため、搬送方向の前後に位置決め用ローラを配置してもよい。なお、ガラス基板Gの位置決めができるのであれば、位置決め用ローラの台数、配置位置は限定されない。
 位置決め手段を構成する位置決め用ローラ62の材質は、樹脂製、金属製、ゴム製であるが、いずれの材質を選択した場合でも、長時間の使用により摩耗していく。その摩耗量が多くなると、位置決め用ローラ62で正規の位置に位置決めしようとしているのにもかかわらず、摩耗量分だけ、位置決めされたガラス基板Gに傾き(正規の位置から傾く)が生じる。この傾いた状態で面取加工を行うと、ガラス基板Gのエッジに対する面取砥石14、16の走行経路A、Bが傾くため、ある部分では面取代が小さく、他の部分では面取代が大きくなることから、面取りの品質が悪化するという不具合が生じる。
 そこで、実施の形態では、図2に示した演算部(ズレ量算出手段)64が測長センサの位置情報に基づいて、ガラス基板Gの予め設定した位置からの位置ズレ量を算出し、その位置ズレ量に基づいて、制御手段52が位置決め用ローラ62の追加調整量を変更し、ガラス基板Gを設定した位置に位置決めする。すなわち、ガラス基板Gの一辺のエッジを2点測定(二辺4点測定)することによりガラス基板Gの傾き量が演算されるので、傾き量がその閾値を超えた時点で傾き量を補正するように位置決め用ローラ62の追加調整量を変更する。具体的には、制御手段52が位置決め用ローラ駆動部(サーボモータ)69を制御して自動アジャストさせる。これにより、面取代が均一になり、加工品質が向上する。このように、位置決め用ローラ62が摩耗した場合でも、位置決め後の位置を装置内で把握し、調整できるので、生産効率が向上する。
 また、他の実施の形態として、面取加工および寸法測定は、1辺ずつ実施してもよく、2辺同時に行ってもよいが、2辺同時に行う方が加工効率がよいので好ましい。
さらにガラス基板が固定で、面取砥石が搬送される場合、4辺同時でも良い。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2008年3月26日出願の日本特許出願2008-080269に基づくものであり、その内容はここに参照として取り込まれる。

Claims (9)

  1.  ガラス基板の加工装置によって加工される矩形状のガラス基板の外形寸法を、前記加工装置に配置された寸法測定装置によって測定する工程を具備する、ガラス基板の加工方法。
  2.  前記ガラス基板の加工装置が、面取手段と位置決め手段を有し、前記ガラス基板と前記面取手段とが前記ガラス基板の対向する2辺の方向に相対的に移動されることにより前記ガラス基板を面取りする面取加工装置であって、前記ガラス基板が前記位置決め手段で位置決めされた面取加工前のガラス基板である請求項1に記載のガラス基板の加工方法。
  3.  前記面取加工装置がズレ量算出手段を具備し、前記ズレ量算出手段が測定された前記寸法に基づいて設定されたガラス基板の位置からのガラス基板の位置ズレ量を算出し、前記位置決め手段により該位置ズレ量に基づいてガラス基板を前記設定されたガラス基板の位置に位置決めした後、前記面取手段による面取加工を行う請求項2に記載のガラス基板の加工方法。
  4.  前記ガラス基板の加工装置が、面取手段を有し、ガラス基板と前記面取手段とが前記ガラス基板の対向する2辺の方向に相対的に移動されることにより前記ガラス基板を面取りする面取加工装置であって、前記寸法測定装置によって測定されるガラス基板が面取加工後のガラス基板である請求項1に記載のガラス基板の加工方法。
  5.  ガラス基板に対してガラス基板の対向する2辺の方向に、前記寸法測定装置と前記面取手段が一体となって相対的に移動されることによりガラス基板の寸法を測定する請求項2~4のいずれかに記載のガラス基板の加工方法。
  6.  矩形状のガラス基板の加工装置であって、
     前記ガラス基板の外形寸法を測定する寸法測定装置を具備するガラス基板の加工装置。
  7.  前記ガラス基板の加工装置が、面取手段を有し、前記ガラス基板と前記面取手段とが前記ガラス基板の対向する2辺の方向に相対的に移動されることにより前記ガラス基板を面取りする面取加工装置である請求項6に記載のガラス基板の加工装置。
  8.  前記寸法測定装置によって測定されたガラス基板の寸法に基づいて、設定されたガラス基板の位置からの位置ズレ量を算出するズレ量算出手段と、
     前記ズレ量算出手段によって算出された位置ズレ量に基づいてガラス基板を前記位置に位置決めする位置決め手段と、を備え
     前記面取手段は、前記位置決め手段によるガラス基板の位置決め後に、前記面取加工を行う請求項7に記載のガラス基板の加工装置。
  9.  前記寸法測定装置が、前記面取手段と一体的に移動可能となるように取り付けられている請求項7、又は8に記載のガラス基板の加工装置。
PCT/JP2009/056194 2008-03-26 2009-03-26 ガラス基板の加工方法及びその装置 WO2009119772A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801107681A CN101980833A (zh) 2008-03-26 2009-03-26 玻璃基板的加工方法及其装置
JP2010505803A JPWO2009119772A1 (ja) 2008-03-26 2009-03-26 ガラス基板の加工方法及びその装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-080269 2008-03-26
JP2008080269 2008-03-26

Publications (1)

Publication Number Publication Date
WO2009119772A1 true WO2009119772A1 (ja) 2009-10-01

Family

ID=41113959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056194 WO2009119772A1 (ja) 2008-03-26 2009-03-26 ガラス基板の加工方法及びその装置

Country Status (5)

Country Link
JP (1) JPWO2009119772A1 (ja)
KR (1) KR20110009090A (ja)
CN (1) CN101980833A (ja)
TW (1) TW200948536A (ja)
WO (1) WO2009119772A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102079057A (zh) * 2009-11-26 2011-06-01 旭硝子株式会社 玻璃基板的加工方法及其装置
JP2015003858A (ja) * 2014-07-11 2015-01-08 坂東機工株式会社 ガラス板の加工寸法自動測定、自動修正方法及びガラス板加工装置
JPWO2015083530A1 (ja) * 2013-12-04 2017-03-16 旭硝子株式会社 ガラス板製造装置及び方法
WO2019003403A1 (ja) 2017-06-30 2019-01-03 東芝三菱電機産業システム株式会社 基板位置決め装置及び基板位置決め方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5682819B2 (ja) * 2011-03-08 2015-03-11 旭硝子株式会社 ガラス板の面取り方法及び面取り装置並びにガラス板
CN103009206A (zh) * 2011-09-28 2013-04-03 上海双明光学科技有限公司 一种超薄超小高精度芯片玻璃基板的制作方法
CN103376079B (zh) * 2012-04-27 2016-08-17 上海福耀客车玻璃有限公司 一种在线检测玻璃尺寸的装置
CN105290912B (zh) * 2014-06-03 2019-01-22 安瀚视特控股株式会社 玻璃板制造方法及玻璃板制造装置
DE102016001995A1 (de) * 2016-02-19 2017-08-24 Siempelkamp Logistics & Service GmbH Vorrichtung und Verfahren zum Beschneiden und Vermessen einer Platte
JP6973237B2 (ja) * 2018-03-29 2021-11-24 日本電気硝子株式会社 板ガラスの製造方法
CN109108736B (zh) * 2018-07-25 2020-05-29 郑州旭飞光电科技有限公司 基板玻璃研磨设备的校正方法
KR102200216B1 (ko) * 2018-12-14 2021-01-07 주식회사 포스코 빌렛 자동 연마 장치 및 방법
CN114161262B (zh) * 2021-12-03 2023-07-14 四川兴事发木业有限公司 打磨用木门磨边系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS618268A (ja) * 1984-06-25 1986-01-14 Nippon Sheet Glass Co Ltd エツジ研磨装置
JP2000233351A (ja) * 1999-02-10 2000-08-29 Shirai Tekkosho:Kk 板ガラスの研磨装置
JP2003311612A (ja) * 2002-02-19 2003-11-05 Nippon Sheet Glass Co Ltd 板状体周縁部の研削加工方法及び研削装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS618268A (ja) * 1984-06-25 1986-01-14 Nippon Sheet Glass Co Ltd エツジ研磨装置
JP2000233351A (ja) * 1999-02-10 2000-08-29 Shirai Tekkosho:Kk 板ガラスの研磨装置
JP2003311612A (ja) * 2002-02-19 2003-11-05 Nippon Sheet Glass Co Ltd 板状体周縁部の研削加工方法及び研削装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102079057A (zh) * 2009-11-26 2011-06-01 旭硝子株式会社 玻璃基板的加工方法及其装置
JP2011110648A (ja) * 2009-11-26 2011-06-09 Asahi Glass Co Ltd ガラス基板の加工方法及びその装置
JPWO2015083530A1 (ja) * 2013-12-04 2017-03-16 旭硝子株式会社 ガラス板製造装置及び方法
JP2015003858A (ja) * 2014-07-11 2015-01-08 坂東機工株式会社 ガラス板の加工寸法自動測定、自動修正方法及びガラス板加工装置
WO2019003403A1 (ja) 2017-06-30 2019-01-03 東芝三菱電機産業システム株式会社 基板位置決め装置及び基板位置決め方法
CN110832633A (zh) * 2017-06-30 2020-02-21 东芝三菱电机产业系统株式会社 基板定位装置及基板定位方法
EP3648153A4 (en) * 2017-06-30 2021-02-24 Toshiba Mitsubishi-Electric Industrial Systems Corporation SUBSTRATE POSITIONING DEVICE AND SUBSTRATE POSITIONING METHOD
CN110832633B (zh) * 2017-06-30 2023-06-02 东芝三菱电机产业系统株式会社 基板定位装置及基板定位方法

Also Published As

Publication number Publication date
TW200948536A (en) 2009-12-01
KR20110009090A (ko) 2011-01-27
JPWO2009119772A1 (ja) 2011-07-28
CN101980833A (zh) 2011-02-23

Similar Documents

Publication Publication Date Title
WO2009119772A1 (ja) ガラス基板の加工方法及びその装置
JP4621605B2 (ja) 板材の面取装置における加工寸法の計測方法及び補正方法
TWI402225B (zh) Crossed method
CN100540217C (zh) 基片的修理装置及其方法
KR102166641B1 (ko) 기계의 자기 진단 및 기계 정밀도의 보정 방법
JP2011110648A (ja) ガラス基板の加工方法及びその装置
TWI586489B (zh) Method for manufacturing glass substrates
KR20150140561A (ko) 판재의 둘레가장자리 가공장치 및 곡면판의 둘레가장자리 가공방법
US9283652B2 (en) Edge grinding apparatus and method for grinding glass substrate
KR101953659B1 (ko) 유리판 가공 장치 및 그 가공 방법
TWM452037U (zh) 硬質脆性板的周緣加工裝置
CN104070613A (zh) 工件的外周加工装置
CN104339241B (zh) 切削余量的均匀化方法和板材的周缘磨削装置
JP6128977B2 (ja) 板材の周縁加工装置並びに加工精度の計測及び補正方法
JP4907467B2 (ja) スラブの研削方法、熱間圧延用スラブ及びそれらを用いた鋼板の製造方法
JP5348275B2 (ja) スラブの研削方法及び研削装置
JP5301919B2 (ja) 硬質脆性板の面取装置
JP5679171B2 (ja) ダイシング装置及びダイシング方法
JP2009196037A (ja) 研削装置及び研削制御方法
KR102065190B1 (ko) 경질 취성판의 연삭장치와 가공 정밀도의 계측 및 보정 방법
KR101743290B1 (ko) 경질 취성판의 모따기 장치
TWI600499B (zh) Hard brittle plate grinding device and processing precision measurement and correction method
TWM641828U (zh) 基材邊緣研磨系統

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980110768.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09724019

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010505803

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20107021232

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09724019

Country of ref document: EP

Kind code of ref document: A1