WO2009119103A1 - 半導体基板、半導体装置、および半導体装置の製造方法 - Google Patents

半導体基板、半導体装置、および半導体装置の製造方法 Download PDF

Info

Publication number
WO2009119103A1
WO2009119103A1 PCT/JP2009/001375 JP2009001375W WO2009119103A1 WO 2009119103 A1 WO2009119103 A1 WO 2009119103A1 JP 2009001375 W JP2009001375 W JP 2009001375W WO 2009119103 A1 WO2009119103 A1 WO 2009119103A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
layer
semiconductor layer
lattice
matched
Prior art date
Application number
PCT/JP2009/001375
Other languages
English (en)
French (fr)
Inventor
竹中充
高木信一
秦雅彦
市川磨
Original Assignee
国立大学法人東京大学
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学, 住友化学株式会社 filed Critical 国立大学法人東京大学
Priority to CN2009801074122A priority Critical patent/CN101960605A/zh
Priority to US12/934,233 priority patent/US8431459B2/en
Priority to KR1020107019359A priority patent/KR101523409B1/ko
Publication of WO2009119103A1 publication Critical patent/WO2009119103A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28264Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being a III-V compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66522Unipolar field-effect transistors with an insulated gate, i.e. MISFET with an active layer made of a group 13/15 material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78681Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising AIIIBV or AIIBVI or AIVBVI semiconductor materials, or Se or Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel

Definitions

  • the present invention relates to a semiconductor substrate, a semiconductor device, and a method for manufacturing the semiconductor device.
  • the present invention particularly relates to a semiconductor substrate, a semiconductor device, and a method for manufacturing the semiconductor device, which are effective when applied to a compound semiconductor device capable of forming a MOS structure by a simple process.
  • Non-Patent Document 1 discloses an oxidation process of InAlAs and its application to a semiconductor substrate for manufacturing a semiconductor device. That is, assuming a gate insulating layer in an InAlAs / InGaAs MOS type HEMT (High Electron Mobility Transistor), an n-type InAlAs layer formed on a semiconductor substrate and functioning as a channel layer is oxidized. A semiconductor substrate is described.
  • a first semiconductor layer of a Group 3-5 compound that does not contain arsenic that lattice matches or pseudo-lattice matches with InP, and the first semiconductor layer is in contact with the first semiconductor layer.
  • a substrate is provided.
  • the first semiconductor layer may not contain aluminum.
  • a semiconductor of a Group 3-5 compound that is formed in contact with the first semiconductor layer, lattice-matched or pseudo-lattice-matched to InP, and has an electron affinity greater than InP may be provided.
  • the second semiconductor layer may include aluminum. Specifically, the second semiconductor layer may be In x Al 1-x As, and x may be a value between 0 and 1.
  • the first semiconductor layer of a Group 3-5 compound that does not contain arsenic that is lattice-matched or pseudo-lattice-matched to InP, and the InP formed in contact with the first semiconductor layer are latticed.
  • a control electrode that applies an electric field to the semiconductor device.
  • the oxide layer may be a control electrode insulating layer formed between the first semiconductor layer and the control electrode, or a buried oxide layer formed so as to be embedded on the substrate side from the first semiconductor layer.
  • a non-oxidized portion of the second semiconductor layer remains in the same layer as the oxide layer, and is an ohmic layer formed above the non-oxidized portion of the second semiconductor layer, wherein the oxide layer is formed
  • An ohmic layer having an opening at a portion thereof, and a pair of input / output electrodes formed in a layer above the ohmic layer and supplying a current flowing through the channel.
  • the control electrode may be formed on the insulating layer inside the opening.
  • the ohmic layer may be an aluminum-free group 3-5 compound semiconductor layer that lattice matches or pseudo-lattice matches with InP, and the ohmic layer may be doped p-type or n-type.
  • the first semiconductor layer of a Group 3-5 compound that does not contain arsenic that is lattice-matched or pseudo-lattice-matched to InP, and the InP formed in contact with the first semiconductor layer are latticed.
  • a method for manufacturing a semiconductor device comprising: an oxidation step for forming an oxide layer; and a control electrode formation step for forming a control electrode above the oxide layer formed in the oxidation step.
  • the oxidation step may be a step of oxidizing the second semiconductor layer exposed in the opening to selectively form the oxide layer in the opening.
  • the oxidizing step may be a step of forming the oxide layer in a self-aligned manner on the mask by exposing the second semiconductor layer exposed in the opening using the ohmic layer as a mask to an oxidizing atmosphere.
  • the ohmic layer may be a p-type semiconductor layer or an n-type semiconductor layer of a group 3-5 compound that does not contain aluminum and lattice matches or pseudo-lattice matches with InP.
  • the oxidation step may be a step of forming the oxide layer by a wet oxidation method.
  • the first semiconductor is made of a group 3-5 compound not containing arsenic and functions as a channel of a transistor, and is provided on the first semiconductor and is oxidized in an oxidizing atmosphere to be insulated.
  • a semiconductor substrate including a second semiconductor serving as a body is provided.
  • the first semiconductor and the second semiconductor may be lattice-matched or pseudo-lattice-matched to InP.
  • the first semiconductor may not be oxidized in an oxidizing atmosphere.
  • the second semiconductor may be selectively oxidized by disposing a mask covering the non-oxidized region and exposing the oxidized region on the surface of the second semiconductor.
  • An example of a cross section of the semiconductor device 100 of this embodiment is shown.
  • An example of a cross section in the manufacturing process of the semiconductor device 100 is shown.
  • An example of a cross section in the manufacturing process of the semiconductor device 100 is shown.
  • An example of a cross section in the manufacturing process of the semiconductor device 100 is shown.
  • the current voltage characteristic of an experimental sample is shown.
  • the capacitance-voltage characteristic of the sample which performed wet oxidation for 45 minutes is shown.
  • FIG. 1 shows a cross-sectional example of the semiconductor device 100 of the present embodiment.
  • the semiconductor device 100 includes a substrate 102, a buffer layer 104, a first semiconductor layer 106, a second semiconductor layer 108, an oxide layer 110, a control electrode 112, an ohmic layer 114, and an input / output electrode 116.
  • the substrate 102 can be made of any material as long as a compound semiconductor crystal layer can be formed on the surface thereof.
  • Examples of the substrate 102 include a single crystal silicon wafer, a sapphire substrate, and a single crystal InP substrate.
  • the buffer layer 104 may be a compound semiconductor layer that is lattice-matched or pseudo-lattice-matched with the first semiconductor layer 106, and is formed between the first semiconductor layer 106 and the substrate 102.
  • the buffer layer 104 may be formed for the purpose of increasing the crystallinity of the first semiconductor layer 106 or reducing the influence of impurities from the substrate 102.
  • Examples of the buffer layer 104 include an InP layer, an InGaAs layer, an InAlAs layer, or a stacked layer thereof, which are doped or not doped with impurities.
  • the InP layer, InGaAs layer, or InAlAs layer can be formed by using, for example, an MOCVD method (organic metal vapor deposition method) using an organic metal gas as a source gas.
  • the first semiconductor layer 106 may be a group 3-5 compound that does not contain arsenic that lattice matches or pseudo-lattice matches with InP.
  • the first semiconductor layer 106 may not contain aluminum. By not containing aluminum, the first semiconductor layer 106 can be prevented from being oxidized when the second semiconductor layer 108 is oxidized to form the oxide layer 110.
  • the first semiconductor layer 106 may have a higher electron affinity than InP. By increasing the electron affinity, the depth of the interface state formed at the interface between the first semiconductor layer 106 and the oxide layer 110 can be reduced. As a result, the performance of the device can be improved.
  • the first semiconductor layer 106 may function as a functional layer of an electronic device, and may be, for example, a channel layer in which a MISFET channel is formed.
  • An example of the first semiconductor layer 106 is an InP layer.
  • the first semiconductor layer 106 may be doped with impurities or may not be doped.
  • the first semiconductor layer 106 can be formed using, for example, an MOCVD method using an organometallic gas as a source gas.
  • another semiconductor layer may be formed between the buffer layer 104 and the first semiconductor layer 106.
  • Other semiconductor layers may include arsenic.
  • An example of the semiconductor layer containing arsenic is an InGaAs layer.
  • the other semiconductor layer may be a channel layer of MISFET, for example, and the other semiconductor layer and the first semiconductor layer 106 may be a channel layer.
  • the channel may be formed at the interface between the other semiconductor layer and the first semiconductor layer 106, and is away from the interface with the oxide layer 110 formed above the first semiconductor layer 106.
  • the second semiconductor layer 108 is formed in contact with the first semiconductor layer 106.
  • the second semiconductor layer 108 may be a group 3-5 compound semiconductor layer lattice-matched or pseudo-lattice-matched to InP.
  • the semiconductor layer 108 may be capable of being selectively oxidized with respect to the first semiconductor layer 106.
  • the second semiconductor layer 108 may contain aluminum, specifically, In x Al 1-x As (where 0 ⁇ x ⁇ 1). However, it is desirable that aluminum is 50% or more with respect to indium.
  • the oxide layer 110 is formed in contact with the first semiconductor layer 106 and is formed by selectively oxidizing at least part of the second semiconductor layer 108 with respect to the first semiconductor layer 106.
  • the selective oxidation of the second semiconductor layer 108 can be performed by, for example, forming a mask covering the other non-oxidized regions on the second semiconductor layer 108 by exposing an oxidized region that becomes the oxidized layer 110.
  • the oxide layer 110 may be an insulating layer that insulates the control electrode formed between the first semiconductor layer 106 and the control electrode 112, that is, a gate insulating layer in the case of a MOSFET. Alternatively, it may be a buried oxide layer formed by being buried closer to the substrate 102 than the first semiconductor layer 106. When the oxide layer 110 is formed as a buried oxide layer, a double-gate MOSFET can be formed.
  • the composition of the oxide layer 110 is formed by oxidizing the second semiconductor layer 108, it is determined according to the composition of the second semiconductor layer 108.
  • a wet method can be exemplified.
  • the oxide layer 110 is formed by oxidizing the second semiconductor layer 108 by a wet method under a processing condition of 500 ° C. or higher, the density of interface states can be reduced to 1012 units.
  • the control electrode 112 is formed on the oxide layer 110 and applies an electric field to the channel formed in the first semiconductor layer 106.
  • the control electrode 112 can function as a gate electrode of MISFET, for example. Examples of the control electrode 112 include any metal, polysilicon, metal silicide, and the like.
  • the control electrode 112 is formed in the opening region 118 where the oxide layer 110 obtained by oxidizing the second semiconductor layer 108 is formed.
  • the ohmic layer 114 is in ohmic contact with the input / output electrode 116.
  • the ohmic layer 114 is formed above the region 120 where the non-oxidized portion of the second semiconductor layer 108 that is the same layer as the oxide layer 110 remains.
  • the ohmic layer 114 has an opening region 118 in a portion where the oxide layer 110 is formed.
  • the ohmic layer 114 may be a group 3-5 compound semiconductor layer that does not contain aluminum and lattice matches or pseudo-lattice matches with InP.
  • the ohmic layer 114 may be doped p-type or n-type.
  • the input / output electrodes 116 are formed in a layer above the ohmic layer 114 as a pair of electrodes.
  • the input / output electrode 116 supplies a current flowing through the channel.
  • the input / output electrode 116 functions as, for example, a source or drain electrode of a MISFET.
  • Examples of the input / output electrodes 116 include metals such as nickel, platinum, and gold, heavy-doped polysilicon, and metal silicide.
  • the substrate 102, the buffer layer 104, the first semiconductor layer 106, and the second semiconductor layer 108 may be grasped as one semiconductor substrate.
  • a semiconductor substrate can arbitrarily oxidize the second semiconductor layer 108 to form a control electrode oxide layer, and can quickly manufacture a device such as a MOSFET.
  • the buffer layer 104 is not essential for the semiconductor substrate, and the first semiconductor layer 106 itself may be the substrate 102.
  • the MOSFET is exemplified as the semiconductor device 100, but another electronic device may be used.
  • the semiconductor device 100 may be a capacitor in which an oxide layer 110 formed by oxidizing the second semiconductor layer 108 is sandwiched between the control electrode 112 and the first semiconductor layer 106.
  • FIG. 2 to 5 show cross-sectional examples in the manufacturing process of the semiconductor device 100.
  • FIG. 2 a substrate 102 having a buffer layer 104 and a first semiconductor layer 106 is prepared.
  • the buffer layer 104 and the first semiconductor layer 106 can be formed by epitaxial growth using, for example, the MOCVD method.
  • the second semiconductor layer 108 is formed above the first semiconductor layer 106.
  • the second semiconductor layer 108 can be formed by, for example, the MOCVD method.
  • the second semiconductor layer 108 may be formed by p-type or n-type doping.
  • an opening is formed in the ohmic layer 114, and the second semiconductor layer 108 is exposed on the bottom surface of the opening.
  • the second semiconductor layer 108 exposed in the opening is oxidized using the ohmic layer 114 as a mask. Oxidation is performed on the second semiconductor layer 108 selectively with respect to the first semiconductor layer 106. In addition, oxidation is performed on the second semiconductor layer 108 selectively in the opening of the ohmic layer 114.
  • An oxide layer 110 is formed by oxidation of the second semiconductor layer 108.
  • the second semiconductor layer 108 contains aluminum, while the first semiconductor layer 106 and the ohmic layer 114 do not contain aluminum. For this reason, the first semiconductor layer 106 and the ohmic layer 114 are not oxidized, and the oxidation is performed selectively on the second semiconductor layer 108 and in a self-aligned manner with respect to the opening. Thereby, the oxide layer 110 can be easily formed.
  • the oxidation treatment in this case can be performed by exposing the second semiconductor layer 108 exposed in the opening to an oxidizing atmosphere.
  • control electrode 112 and the input / output electrode 116 are formed by forming and patterning a conductive film. Then, the semiconductor device 100 shown in FIG. 1 can be manufactured.
  • the oxide layer 110 is formed by selectively oxidizing the second semiconductor layer 108, the MOSFET can be easily manufactured.
  • a wet method can be used for the oxidation, the interface state can be reduced and a practical compound semiconductor MOSFET can be formed.
  • Example 10 nm of InAlAs was formed on the (100) plane of the InP substrate not doped with impurities. Thereafter, the InAlAs layer was selectively oxidized to form an insulating film. A wet method at a treatment temperature of 525 ° C. was used for the oxidation. An aluminum electrode was formed on the insulating film by vapor deposition to prepare an experimental sample.
  • Fig. 6 shows the current-voltage characteristics of the experimental sample. Good insulation was confirmed in the sample subjected to wet oxidation for 45 minutes. In the sample in which the wet oxidation shown as a comparison was performed for 30 minutes, a decrease in insulating property could be confirmed. Further, in the sample not subjected to the wet oxidation shown as a comparison, it was confirmed that the insulation was further lowered.
  • FIG. 7 shows the capacity-voltage characteristics of a sample subjected to wet oxidation for 45 minutes. Capacitance change with respect to voltage change was confirmed in the range of 5 kHz to 1 MHz. That is, it was confirmed that an inversion layer was formed in the InP layer below the insulating layer and operated as a MOS. As a result of evaluating the interface state by the conductance method, 1012 interface states could be measured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 実用的に簡単な手法で、良好な3-5族化合物半導体と酸化層との界面を形成する。  InPに格子整合または擬格子整合する砒素を含まない3-5族化合物の第1半導体層と、前記第1半導体層に接して形成された、InPに格子整合または擬格子整合する3-5族化合物の半導体層であって、前記第1半導体層に対し選択的に酸化が可能な第2半導体層と、を備えた半導体基板が提供される。また、InPに格子整合または擬格子整合する砒素を含まない3-5族化合物の第1半導体層と、第1半導体層に接して形成された、InPに格子整合または擬格子整合する3-5族化合物の第2半導体層の少なくとも一部を第1半導体層に対し選択的に酸化して形成した酸化層と、第1半導体層に形成されるチャネルに電界を加える制御電極とを備えた半導体装置が提供される。

Description

半導体基板、半導体装置、および半導体装置の製造方法
 本発明は、半導体基板、半導体装置および半導体装置の製造方法に関する。本発明は、特に、簡単な工程でMOS構造が形成できる化合物半導体装置に適用して有効な半導体基板、半導体装置および半導体装置の製造方法に関する。
 高い電子移動度を有するという特性から、化合物半導体によるMOSFET(金属酸化物半導体電界効果トランジスタ)の実用化が望まれている。たとえば、非特許文献1は、InAlAsの酸化処理、およびその半導体装置製造用の半導体基板への応用について開示している。すなわち、InAlAs/InGaAs系のMOS型HEMT(高電子移動度トランジスタ)におけるゲート絶縁層を想定して、半導体基板に形成され、チャネル層として機能しうるInGaAs層上のn形InAlAs層を酸化してなる半導体基板が記載されている。
N.C.Paul他著、Jpn.J.Appl.Phys.、第44巻(2005年)、No.3、1174から1180ページ
 しかしながら、化合物半導体たとえば3-5族化合物半導体を有する半導体基板において、良好なMOS界面(半導体層と酸化物層との界面)を形成することは難しく、半導体装置の製造の障害になっている。よって、実用的に簡単な手法で、3-5族化合物半導体と酸化層との良好な界面を形成した半導体基板が望まれている。
 上記課題を解決するために、本発明の第1の形態においては、InPに格子整合または擬格子整合する砒素を含まない3-5族化合物の第1半導体層と、前記第1半導体層に接して形成された、InPに格子整合または擬格子整合する3-5族化合物の半導体層であって、前記第1半導体層に対し選択的に酸化が可能な第2半導体層と、を備えた半導体基板が提供される。前記第1半導体層はアルミニウムを含まないものであってよい。前記第1半導体層に接して形成され、InPに格子整合または擬格子整合し、電子親和力がInPより大きい、3-5族化合物の半導体を備えてよい。前記第2半導体層は、アルミニウムを含んでよく、具体的には前記第2半導体層は、InAl1-xAsであり、xは、0と1との間の値であってよい。
 本発明の第2の形態においては、InPに格子整合または擬格子整合する砒素を含まない3-5族化合物の第1半導体層と、前記第1半導体層に接して形成された、InPに格子整合または擬格子整合する3-5族化合物の第2半導体層の少なくとも一部を前記第1半導体層に対し選択的に酸化して形成した酸化層と、前記第1半導体層に形成されるチャネルに電界を加える制御電極と、を備えた半導体装置が提供される。前記酸化層は、前記第1半導体層と前記制御電極との間に形成された制御電極絶縁層、または、前記第1半導体層より基板側に埋め込んで形成された埋め込み酸化層であってよい。前記酸化層と同一の層に、前記第2半導体層の非酸化部が残存し、前記第2半導体層の前記非酸化部より上層に形成されたオーミック層であって、前記酸化層が形成された部分に開口部を有するオーミック層と、前記オーミック層より上層に形成された、前記チャネルに流れる電流を供給する一対の入出力電極と、を備えてよい。前記制御電極は、前記開口部の内部の前記絶縁層の上に形成されてよい。前記オーミック層は、InPに格子整合または擬格子整合する、アルミニウムを含まない3-5族化合物半導体層であってよく、前記オーミック層は、p形またはn形にドープされてよい。
 本発明の第3の形態においては、InPに格子整合または擬格子整合する砒素を含まない3-5族化合物の第1半導体層と、前記第1半導体層に接して形成された、InPに格子整合または擬格子整合する3-5族化合物の第2半導体層と、を有する半導体基板を準備する基板準備段階と、前記第2半導体層を前記第1半導体層に対して選択的に酸化して酸化層を形成する酸化段階と、前記酸化段階で形成した前記酸化層より上層に制御電極を形成する制御電極形成段階と、を備えた半導体装置の製造方法が提供される。前記基板準備段階の後に、前記第2半導体層を覆うオーミック層を形成する段階と、前記オーミック層に開口部を形成して、前記開口部の底面に前記第2半導体層を露出する段階と、をさらに備えてよく、前記酸化段階は、前記開口部に露出した前記第2半導体層を酸化して、前記開口部に選択的に前記酸化層を形成する段階であってよい。前記酸化段階は、前記オーミック層をマスクとして前記開口部に露出した前記第2半導体層を酸化雰囲気に曝露することにより、前記酸化層を前記マスクに自己整合的に形成する段階であってよい。前記オーミック層は、InPに格子整合または擬格子整合する、アルミニウムを含まない3-5族化合物のp形半導体層またはn形半導体層であってよい。前記酸化段階は、ウェット酸化法により前記酸化層を形成する段階であってよい。
 本発明の第4の形態においては、砒素を含まない3-5族化合物からなり、トランジスタのチャネルとして機能する第1半導体と、前記第1半導体の上に設けられ、酸化雰囲気において酸化されて絶縁体となる第2半導体とを備えた半導体基板が提供される。前記第1半導体および前記第2半導体は、InPに格子整合または擬格子整合してよい。前記第1半導体は、酸化雰囲気において酸化されないものであってよい。前記第2半導体は、非酸化領域を覆うマスクであって酸化領域を露出するマスクを前記第2半導体の表面に配置することにより、選択的に酸化できるものであってよい。
本実施形態の半導体装置100の断面例を示す。 半導体装置100の製造過程における断面例を示す。 半導体装置100の製造過程における断面例を示す。 半導体装置100の製造過程における断面例を示す。 半導体装置100の製造過程における断面例を示す。 実験サンプルの電流電圧特性を示す。 ウェット酸化を45分間実施したサンプルの容量電圧特性を示す。
符号の説明
 100 半導体装置
 102 基板
 104 バッファ層
 106 第1半導体層
 108 第2半導体層
 110 酸化層
 112 制御電極
 114 オーミック層
 116 入出力電極
 118 開口領域
 120 領域
 図1は、本実施形態の半導体装置100の断面例を示す。半導体装置100は、基板102、バッファ層104、第1半導体層106、第2半導体層108、酸化層110、制御電極112、オーミック層114および入出力電極116を備える。
 基板102は、その表面に化合物半導体の結晶層が形成できる限り、任意の材質等が選択できる。基板102として、たとえば単結晶シリコンウェハ、サファイア基板、単結晶InP基板等が例示できる。
 バッファ層104は、第1半導体層106と格子整合または擬格子整合する化合物半導体層であってよく、第1半導体層106と基板102との間に形成される。バッファ層104は、第1半導体層106の結晶性を高める目的で、あるいは、基板102からの不純物の影響を低減する目的で形成されてよい。バッファ層104として、たとえば不純物がドープされたあるいはドープされないInP層、InGaAs層もしくはInAlAs層またはこれらの積層が例示できる。この場合、InP層、InGaAs層またはInAlAs層は、たとえば有機金属ガスを原料ガスとしたMOCVD法(有機金属気相成長法)を用いて形成できる。
 第1半導体層106は、InPに格子整合または擬格子整合する砒素を含まない3-5族化合物であってよい。また第1半導体層106は、アルミニウムを含まないものであってよい。アルミニウムを含まないことにより、第2半導体層108を酸化して酸化層110を形成するときに、第1半導体層106が酸化されないようにできる。さらに第1半導体層106は、電子親和力がInPより大きいものであってよい。電子親和力を大きくすることにより、第1半導体層106と酸化層110との界面に形成される界面準位の深さを小さくできる。その結果デバイスの性能を向上できる。
 第1半導体層106は、電子デバイスの機能層として機能してよく、たとえばMISFETのチャネルが形成されるチャネル層であってよい。第1半導体層106として、たとえばInP層が例示できる。第1半導体層106は、不純物がドープされていてもよく、ドープされていなくてもよい。第1半導体層106は、たとえば有機金属ガスを原料ガスとしたMOCVD法を用いて形成できる。
 なお、バッファ層104と第1半導体層106との間に、他の半導体層を形成してよい。他の半導体層は砒素を含んでよい。砒素を含む半導体層として、たとえばInGaAs層が例示できる。他の半導体層は、たとえばMISFETのチャネル層であってよく、他の半導体層と第1半導体層106とでチャネル層になってもよい。この場合、チャネルは、他の半導体層と第1半導体層106との界面に形成されてよく、第1半導体層106より上層に形成される酸化層110との界面から遠ざけられる。チャネルが酸化層110との界面から遠ざけられることにより、半導体-絶縁体界面に存在する界面準位の影響が回避でき、デバイスの性能を向上できる。
 第2半導体層108は、第1半導体層106に接して形成される、第2半導体層108は、InPに格子整合または擬格子整合する3-5族化合物の半導体層であってよい、第2半導体層108は、第1半導体層106に対し選択的に酸化が可能なものであってよい。第2半導体層108は、アルミニウムを含んでよく、具体的には、InAl1-xAs(ただし0<x<1)、であってよい。ただし、アルミニウムはインジュウムに対して50%以上であることが望ましい。
 酸化層110は、第1半導体層106に接して形成され、第2半導体層108の少なくとも一部を第1半導体層106に対し選択的に酸化して形成される。第2半導体層108の選択的な酸化は、たとえば第2半導体層108の上に、酸化層110となる酸化領域を露出し、その他の非酸化領域を覆うマスクを形成することで実施できる。また、酸化層110は、第1半導体層106と制御電極112との間に形成された制御電極を絶縁する絶縁層すなわち、MOSFETの場合のゲート絶縁層であってよい。あるいは、第1半導体層106より基板102の側に埋め込んで形成された埋め込み酸化層であってよい。埋め込み酸化層として酸化層110を形成する場合、ダブルゲート構造のMOSFETを形成できる。
 酸化層110の組成は、第2半導体層108を酸化して形成するので、第2半導体層108の組成に応じて定まる。第2半導体層108の酸化方法として、たとえばウェット法が例示できる。500℃以上の処理条件でのウェット法により第2半導体層108を酸化して酸化層110を形成した場合、界面準位の密度を1012台に減少できる。
 制御電極112は、酸化層110の上に形成され、第1半導体層106に形成されるチャネルに電界を加える。制御電極112は、たとえばMISFETのゲート電極として機能できる。制御電極112として、たとえば任意の金属、ポリシリコン、メタルシリサイド等が例示できる。制御電極112は、第2半導体層108が酸化された酸化層110が形成された開口領域118に形成される。
 オーミック層114は、入出力電極116をオーミック接合する。オーミック層114は、酸化層110と同一層の第2半導体層108の非酸化部が残存した領域120より上層に形成される。オーミック層114は、酸化層110が形成された部分に開口領域118を有する。オーミック層114は、InPに格子整合または擬格子整合する、アルミニウムを含まない3-5族化合物半導体層であってよい。オーミック層114は、p形またはn形にドープされてよい。
 入出力電極116は、一対の電極としてオーミック層114より上層に形成される。入出力電極116は、チャネルに流れる電流を供給する。入出力電極116は、たとえばMISFETのソースまたはドレイン電極として機能する。入出力電極116として、たとえばニッケル、白金、金等の金属、ヘビードープしたポリシリコン、メタルシリサイド等が例示できる。
 なお、上記説明では、半導体装置100を説明したが、基板102、バッファ層104、第1半導体層106および第2半導体層108を一つの半導体基板として把握してもよい。このような半導体基板は第2半導体層108を任意に酸化させて制御電極酸化層を形成でき、速やかにMOSFET等のデバイスを製造できる。半導体基板にはバッファ層104は必須でなく、第1半導体層106自体が基板102であってもよい。
 また上記説明では、半導体装置100として、MOSFETを例示して説明したが、他の電子デバイスであってもよい。たとえば半導体装置100は、第2半導体層108を酸化して形成した酸化層110を制御電極112および第1半導体層106で挟んだコンデンサであってもよい。
 図2から図5は、半導体装置100の製造過程における断面例を示す。図2に示すように、バッファ層104および第1半導体層106を有する基板102を準備する。バッファ層104および第1半導体層106は、たとえばMOCVD法を用いたエピタキシャル成長により形成できる。
 図3に示すように、第1半導体層106より上層に第2半導体層108を形成する。第2半導体層108は、たとえばMOCVD法により形成できる。第2半導体層108は、p形またはn形にドープして形成されてもよい。
 図4に示すように、第2半導体層108を覆うオーミック層114を形成した後、オーミック層114に開口部を形成して、開口部の底面に第2半導体層108を露出する。そして図5に示すように、オーミック層114をマスクにして、開口部に露出した第2半導体層108を酸化する。酸化は、第1半導体層106に対して選択的に第2半導体層108に実施される。また酸化は、オーミック層114の開口部に選択的に第2半導体層108に実施される。第2半導体層108の酸化により酸化層110が形成される。
 第2半導体層108にはアルミニウムが含まれる一方、第1半導体層106およびオーミック層114にはアルミニウムが含まれない。このため、第1半導体層106およびオーミック層114は酸化されず、酸化は第2半導体層108に選択的にかつ開口部に対して自己整合的に実施される。これにより、酸化層110が簡単に形成できる。この場合の酸化処理は、開口部に露出した第2半導体層108を酸化雰囲気に曝露することにより実施できる。
 その後、制御電極112および入出力電極116を導電膜の形成およびパターニングにより形成する。そして、図1に示す半導体装置100が製造できる。
 上記した半導体装置100によれば、第2半導体層108を選択的に酸化して酸化層110を形成するので、MOSFETが簡便に製造できる。また、酸化はウェット法が利用できるので、界面準位を低減でき、実用的な化合物半導体MOSFETが形成できる。
(実験例)
 不純物をドープしないInP基板の(100)面上にInAlAsを10nm形成した。その後、InAlAs層を選択的に酸化して絶縁膜を形成した。酸化には525℃の処理温度でのウェット法を用いた。絶縁膜上にアルミニウム電極を蒸着法により形成して実験サンプルとした。
 図6は、実験サンプルの電流電圧特性を示す。ウェット酸化を45分実施したサンプルでは良好な絶縁性が確認できた。比較として示したウェット酸化を30分実施したサンプルでは、絶縁性の低下が確認できた。さらに比較として示したウェット酸化を実施しないサンプルでは、絶縁性のさらなる低下が確認できた。
 図7は、ウェット酸化を45分間実施したサンプルの容量電圧特性を示す。電圧変化に対し容量変化が5kHzから1MHzの範囲で確認できた。すなわち、絶縁層の下部のInP層には反転層が形成され、MOSとして動作していることが確認された。コンダクタンス法により界面準位を評価した結果、1012台の界面準位が測定できた。

Claims (20)

  1.  InPに格子整合または擬格子整合し、砒素を含まない3-5族化合物の第1半導体層と、
     前記第1半導体層に接して形成され、InPに格子整合または擬格子整合する3-5族化合物の半導体層であって、前記第1半導体層に対し選択的に酸化が可能な第2半導体層と、
     を備えた半導体基板。
  2.  前記第1半導体層は、アルミニウムを含まない、
     請求項1に記載の半導体基板。
  3.  前記第1半導体層に接して形成され、InPに格子整合または擬格子整合し、電子親和力がInPより大きい、3-5族化合物の半導体を備えた、
     請求項1に記載の半導体基板。
  4.  前記第2半導体層は、アルミニウムを含む、
     請求項1から請求項3の何れか一項に記載の半導体基板。
  5.  前記第2半導体層は、InAl1-xAsであり、
     xは、0と1との間の値であること、
     を特徴とする請求項4に記載の半導体基板。
  6.  InPに格子整合または擬格子整合し、砒素を含まない3-5族化合物の第1半導体層と、
     前記第1半導体層に接して形成され、InPに格子整合または擬格子整合する3-5族化合物の第2半導体層の少なくとも一部を前記第1半導体層に対し選択的に酸化して形成した酸化層と、
     前記第1半導体層に形成されるチャネルに電界を加える制御電極と、
     を備えた半導体装置。
  7.  前記酸化層は、前記第1半導体層と前記制御電極との間に形成された制御電極絶縁層、または、前記第1半導体層より基板側に埋め込んで形成された埋め込み酸化層である、
     請求項6に記載の半導体装置。
  8.  前記酸化層と同一の層に、前記第2半導体層の非酸化部が残存し、
     前記第2半導体層の前記非酸化部より上層に形成されたオーミック層であって、前記酸化層が形成された部分に開口部を有するオーミック層と、
     前記オーミック層より上層に形成された、前記チャネルに流れる電流を供給する一対の入出力電極と、
     を備えた請求項6または請求項7に記載の半導体装置。
  9.  前記制御電極は、前記開口部の内部の前記酸化層の上に形成された、
     請求項8に記載の半導体装置。
  10.  前記オーミック層は、InPに格子整合または擬格子整合する、アルミニウムを含まない3-5族化合物半導体層である、
     請求項8または請求項9に記載の半導体装置。
  11.  前記オーミック層は、p形またはn形にドープされている、
     請求項10に記載の半導体装置。
  12.  InPに格子整合または擬格子整合し、砒素を含まない3-5族化合物の第1半導体層と、前記第1半導体層に接して形成され、InPに格子整合または擬格子整合する3-5族化合物の第2半導体層と、を有する半導体基板を準備する基板準備段階と、
     前記第2半導体層を前記第1半導体層に対して選択的に酸化して酸化層を形成する酸化段階と、
     前記酸化段階で形成した前記酸化層より上層に制御電極を形成する制御電極形成段階と、
     を備えた半導体装置の製造方法。
  13.  前記基板準備段階の後に、前記第2半導体層を覆うオーミック層を形成する段階と、
     前記オーミック層に開口部を形成して、前記開口部の底面に前記第2半導体層を露出する段階と、をさらに備え、
     前記酸化段階は、前記開口部に露出した前記第2半導体層を酸化して、前記開口部に選択的に前記酸化層を形成する段階である、
     請求項12に記載の半導体装置の製造方法。
  14.  前記酸化段階は、前記オーミック層をマスクとして前記開口部に露出した前記第2半導体層を酸化雰囲気に曝露することにより、前記酸化層を前記マスクに自己整合的に形成する段階である、
     請求項13に記載の半導体装置の製造方法。
  15.  前記オーミック層は、InPに格子整合または擬格子整合する、アルミニウムを含まない3-5族化合物のp形半導体層またはn形半導体層である、
     請求項13に記載の半導体装置の製造方法。
  16.  前記酸化段階は、ウェット酸化法により前記酸化層を形成する段階である、
     請求項12から請求項15の何れか一項に記載の半導体装置の製造方法。
  17.  砒素を含まない3-5族化合物からなり、トランジスタのチャネルとして機能する第1半導体と、
     前記第1半導体の上に設けられ、酸化雰囲気において酸化されて絶縁体となる第2半導体と
     を備えた半導体基板。
  18.  前記第1半導体および前記第2半導体は、InPに格子整合または擬格子整合する
     請求項17に記載の半導体基板。
  19.  前記第1半導体は、酸化雰囲気において酸化されない
     請求項17または請求項18に記載の半導体基板。
  20.  前記第2半導体は、非酸化領域を覆うマスクであって酸化領域を露出するマスクを前記第2半導体の表面に配置することにより、選択的に酸化できる
     請求項17から請求項19の何れかに記載の半導体基板。
PCT/JP2009/001375 2008-03-26 2009-03-26 半導体基板、半導体装置、および半導体装置の製造方法 WO2009119103A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801074122A CN101960605A (zh) 2008-03-26 2009-03-26 半导体基板、半导体装置、及半导体装置的制造方法
US12/934,233 US8431459B2 (en) 2008-03-26 2009-03-26 Semiconductor wafer, semiconductor device, and method of manufacturing a semiconductor device
KR1020107019359A KR101523409B1 (ko) 2008-03-26 2009-03-26 반도체 기판, 반도체 장치 및 반도체 장치의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008082081A JP5498662B2 (ja) 2008-03-26 2008-03-26 半導体装置および半導体装置の製造方法
JP2008-082081 2008-03-26

Publications (1)

Publication Number Publication Date
WO2009119103A1 true WO2009119103A1 (ja) 2009-10-01

Family

ID=41113314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001375 WO2009119103A1 (ja) 2008-03-26 2009-03-26 半導体基板、半導体装置、および半導体装置の製造方法

Country Status (6)

Country Link
US (1) US8431459B2 (ja)
JP (1) JP5498662B2 (ja)
KR (1) KR101523409B1 (ja)
CN (1) CN101960605A (ja)
TW (1) TWI449107B (ja)
WO (1) WO2009119103A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110018033A1 (en) * 2008-03-26 2011-01-27 Sumitomo Chemical Company, Limited Semiconductor wafer, semiconductor device, and method of manufacturing a semiconductor device
CN103548133A (zh) * 2011-06-10 2014-01-29 住友化学株式会社 半导体器件、半导体基板、半导体基板的制造方法及半导体器件的制造方法
JP2015135841A (ja) * 2014-01-16 2015-07-27 日本電信電話株式会社 酸化アルミニウム薄膜の形成方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101048987B1 (ko) * 2009-12-10 2011-07-12 삼성모바일디스플레이주식회사 평판 표시 장치 및 그의 제조 방법
KR101680767B1 (ko) * 2010-10-06 2016-11-30 삼성전자주식회사 불순물 주입을 이용한 고출력 고 전자 이동도 트랜지스터 제조방법
JP2012195579A (ja) 2011-03-02 2012-10-11 Sumitomo Chemical Co Ltd 半導体基板、電界効果トランジスタ、半導体基板の製造方法および電界効果トランジスタの製造方法
JP2013131650A (ja) * 2011-12-21 2013-07-04 Fujitsu Ltd 半導体装置及びその製造方法
GB201212878D0 (en) 2012-07-20 2012-09-05 Pike Justin Authentication method and system
CN103354243B (zh) * 2013-06-28 2016-01-06 京东方科技集团股份有限公司 一种薄膜晶体管、其制备方法及相关装置
US9865688B2 (en) 2014-03-14 2018-01-09 International Business Machines Corporation Device isolation using preferential oxidation of the bulk substrate
GB201520741D0 (en) 2015-05-27 2016-01-06 Mypinpad Ltd And Licentia Group Ltd Authentication methods and systems
US10424670B2 (en) * 2016-12-30 2019-09-24 Intel Corporation Display panel with reduced power consumption
US10431695B2 (en) 2017-12-20 2019-10-01 Micron Technology, Inc. Transistors comprising at lease one of GaP, GaN, and GaAs
US10825816B2 (en) 2017-12-28 2020-11-03 Micron Technology, Inc. Recessed access devices and DRAM constructions
US10319586B1 (en) 2018-01-02 2019-06-11 Micron Technology, Inc. Methods comprising an atomic layer deposition sequence
US10734527B2 (en) 2018-02-06 2020-08-04 Micron Technology, Inc. Transistors comprising a pair of source/drain regions having a channel there-between
US11038027B2 (en) 2019-03-06 2021-06-15 Micron Technology, Inc. Integrated assemblies having polycrystalline first semiconductor material adjacent conductively-doped second semiconductor material
CN116544315B (zh) * 2023-07-06 2023-09-15 苏州焜原光电有限公司 一种蓝宝石衬底分子束外延红外探测器材料制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102691A (ja) * 1999-10-01 2001-04-13 Nec Corp 半導体レーザ及び半導体層の酸化方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4622114A (en) * 1984-12-20 1986-11-11 At&T Bell Laboratories Process of producing devices with photoelectrochemically produced gratings
US6326650B1 (en) * 1995-08-03 2001-12-04 Jeremy Allam Method of forming a semiconductor structure
US5726462A (en) * 1996-02-07 1998-03-10 Sandia Corporation Semiconductor structures having electrically insulating and conducting portions formed from an AlSb-alloy layer
JP2000349393A (ja) * 1999-03-26 2000-12-15 Fuji Xerox Co Ltd 半導体デバイス、面発光型半導体レーザ、及び端面発光型半導体レーザ
US6407407B1 (en) * 1999-05-05 2002-06-18 The United States Of America As Represented By The Director Of The National Security Agency Ridge laser with oxidized strain-compensated superlattice of group III-V semiconductor
US6493366B1 (en) * 1999-05-05 2002-12-10 The United States Of America As Represented By The National Security Agency Vertical cavity surface emitting laser with oxidized strain-compensated superlattice of group III-V semiconductor
JP2001044417A (ja) * 1999-07-26 2001-02-16 Fujitsu Ltd 半導体装置
US6647041B1 (en) * 2000-05-26 2003-11-11 Finisar Corporation Electrically pumped vertical optical cavity with improved electrical performance
US6992319B2 (en) * 2000-07-18 2006-01-31 Epitaxial Technologies Ultra-linear multi-channel field effect transistor
US6610612B2 (en) * 2000-12-13 2003-08-26 The University Of Maryland Method of efficient controllable and repeatable wet oxidation in a phosphorous-rich III-V material system
JP2004031861A (ja) * 2002-06-28 2004-01-29 Matsushita Electric Ind Co Ltd 半導体装置
JP2004128415A (ja) * 2002-10-07 2004-04-22 Toshiba Corp トランジスタ、ウェーハ、トランジスタの製造方法、ウェーハの製造方法および半導体層の形成方法
US6831309B2 (en) * 2002-12-18 2004-12-14 Agilent Technologies, Inc. Unipolar photodiode having a schottky junction contact
US20050243889A1 (en) * 2004-04-30 2005-11-03 Honeywell International Inc. Digital alloy oxidation layers
US20050243881A1 (en) * 2004-04-30 2005-11-03 Hoki Kwon InAlAs having enhanced oxidation rate grown under very low V/III ratio
JP2008258563A (ja) * 2007-03-12 2008-10-23 Sony Corp 半導体装置の製造方法、半導体装置および電子機器
US8329541B2 (en) * 2007-06-15 2012-12-11 Taiwan Semiconductor Manufacturing Company, Ltd. InP-based transistor fabrication
JP5498662B2 (ja) * 2008-03-26 2014-05-21 国立大学法人 東京大学 半導体装置および半導体装置の製造方法
JP5233535B2 (ja) * 2008-09-11 2013-07-10 住友電気工業株式会社 撮像装置、視界支援装置、暗視装置、航海支援装置および監視装置
CN102498542B (zh) * 2009-09-04 2016-05-11 住友化学株式会社 半导体基板、场效应晶体管、集成电路和半导体基板的制造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102691A (ja) * 1999-10-01 2001-04-13 Nec Corp 半導体レーザ及び半導体層の酸化方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"2004 International Conference on Indium Phoshide and Related Materials Conference Proceedings", 2004, article K.NAKAMURA ET AL.: "Depletion/Enhancement Mode InAlAs/InGaAs-MOSHEMTs with nm-Thin Gate Insulating Layers Formed by Oxidation of the InAlAs Layer", pages: 191 - 194 *
"Conference Proceedings., Fifth International Conference on", April 1993, article A.FATHIMULLA ET AL.: "A Novel Insulated-Gate InP/InAlAs MODFET, Indium Phosphide and Related Materials", pages: 428 - 431 *
C.M.HANSON ET AL.: "InXAl1-XAs/InP Heterojunction Insulated Gate Field Effect Transistors (HIGFET's)", IEEE ELECTRON DEVICE LETTERS, vol. EDL-8, no. 2, 1987, pages 53 - 54 *
SEONG-JU BAE ET AL.: "Characteristics of InAlAs/InP and InAlP/GaAs native oxides", SOLID-STATE ELECTRONICS, vol. 50, 2006, pages 1625 - 1628 *
SHOTA NAKAGAWA ET AL.: "InAlAs Sentaku Sanka ni yoru III-V MOS Kaimen Kozo no Keisei", DAI 55 KAI EXTENDED ABSTRACTS, JAPAN SOCIETY OF APPLIED PHYSICS AND RELATED SOCIETIES (2008 HARU NIPPON DAIGAKU), 27 March 2008 (2008-03-27), pages 860 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110018033A1 (en) * 2008-03-26 2011-01-27 Sumitomo Chemical Company, Limited Semiconductor wafer, semiconductor device, and method of manufacturing a semiconductor device
US8431459B2 (en) * 2008-03-26 2013-04-30 The University Of Tokyo Semiconductor wafer, semiconductor device, and method of manufacturing a semiconductor device
CN103548133A (zh) * 2011-06-10 2014-01-29 住友化学株式会社 半导体器件、半导体基板、半导体基板的制造方法及半导体器件的制造方法
CN103548133B (zh) * 2011-06-10 2015-12-23 住友化学株式会社 半导体器件、半导体基板、半导体基板的制造方法及半导体器件的制造方法
JP2015135841A (ja) * 2014-01-16 2015-07-27 日本電信電話株式会社 酸化アルミニウム薄膜の形成方法

Also Published As

Publication number Publication date
KR101523409B1 (ko) 2015-05-27
TWI449107B (zh) 2014-08-11
JP2009238955A (ja) 2009-10-15
JP5498662B2 (ja) 2014-05-21
US20110018033A1 (en) 2011-01-27
CN101960605A (zh) 2011-01-26
US8431459B2 (en) 2013-04-30
TW200949945A (en) 2009-12-01
KR20100126719A (ko) 2010-12-02

Similar Documents

Publication Publication Date Title
JP5498662B2 (ja) 半導体装置および半導体装置の製造方法
US10854720B2 (en) Semiconductor device manufacturing method
US10074728B2 (en) Semiconductor device
JP5487615B2 (ja) 電界効果半導体装置及びその製造方法
US7700438B2 (en) MOS device with nano-crystal gate structure
JP6401053B2 (ja) 半導体装置および半導体装置の製造方法
KR101092467B1 (ko) 인헨스먼트 노말리 오프 질화물 반도체 소자 및 그 제조방법
JP2006245317A (ja) 半導体装置およびその製造方法
CN103930978B (zh) 场效应晶体管及其制造方法
US11233144B2 (en) Nitride semiconductor device and nitride semiconductor package
JP2018157177A (ja) 窒化物半導体デバイスおよび窒化物半導体パッケージ
CN111710650B (zh) 基于双沟道栅的GaN器件及其制备方法
KR20060062100A (ko) 쇼트키 장벽 관통 단전자 트랜지스터 및 그 제조방법
TW201115735A (en) Ohmic contact of III-V semiconductor device and manufacturing method
KR101172857B1 (ko) 인헨스먼트 노멀리 오프 질화물 반도체 소자 및 그 제조방법
JP2014229767A (ja) ヘテロ接合電界効果型トランジスタ及びその製造方法
TWI803770B (zh) 二極體、二極體的製造方法及電氣機器
US8350293B2 (en) Field effect transistor and method of manufacturing the same
CN104347697A (zh) 半导体器件和用于制造半导体器件的方法
US8105925B2 (en) Method for forming an insulated gate field effect device
JP3073685B2 (ja) 電界効果型トランジスタの製造方法
Abbaszadeh et al. 2011 Index IEEE Electron Device Letters Vol. 32

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980107412.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09725066

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107019359

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12934233

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09725066

Country of ref document: EP

Kind code of ref document: A1