WO2009116492A1 - 撮像レンズ、撮像装置、デジタル機器、及び撮像レンズの製造方法 - Google Patents

撮像レンズ、撮像装置、デジタル機器、及び撮像レンズの製造方法 Download PDF

Info

Publication number
WO2009116492A1
WO2009116492A1 PCT/JP2009/055046 JP2009055046W WO2009116492A1 WO 2009116492 A1 WO2009116492 A1 WO 2009116492A1 JP 2009055046 W JP2009055046 W JP 2009055046W WO 2009116492 A1 WO2009116492 A1 WO 2009116492A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging
refractive index
resin material
imaging lens
Prior art date
Application number
PCT/JP2009/055046
Other languages
English (en)
French (fr)
Inventor
泰成 福田
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2010503864A priority Critical patent/JP5267825B2/ja
Priority to US12/933,156 priority patent/US8368786B2/en
Publication of WO2009116492A1 publication Critical patent/WO2009116492A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0025Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having one lens only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0035Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing

Definitions

  • the present invention relates to an imaging lens of an imaging device using a solid-state imaging device such as a CCD (Charge Coupled Devices) type image sensor or a CMOS (Complementary Metal-Oxide Semiconductor) type image sensor, and more specifically for mass production.
  • a solid-state imaging device such as a CCD (Charge Coupled Devices) type image sensor or a CMOS (Complementary Metal-Oxide Semiconductor) type image sensor, and more specifically for mass production.
  • the present invention relates to an imaging lens in an optical system using a suitable wafer-scale lens, an imaging device using the imaging lens, a digital device, and a manufacturing method of the imaging lens.
  • Compact and thin imaging devices (hereinafter also referred to as camera modules) are now mounted on portable terminals that are compact and thin electronic devices such as mobile phones and PDAs (Personal Digital Assistants). It is possible to transmit not only audio information but also image information to each other.
  • portable terminals that are compact and thin electronic devices such as mobile phones and PDAs (Personal Digital Assistants). It is possible to transmit not only audio information but also image information to each other.
  • a solid-state image pickup element such as a CCD type image sensor or a CMOS type image sensor is used.
  • the number of pixels of an image sensor has been increased, and higher resolution and higher performance have been achieved.
  • a lens for forming a subject image on these image sensors a lens made of a resin material that can be mass-produced at low cost has been used for cost reduction.
  • a lens made of a resin material can accurately transfer and form a complicated aspherical shape despite having good processability, and therefore can be applied to a high-resolution and high-performance imaging device.
  • an imaging lens used in the imaging apparatus an optical system constituted by a resin material lens and an optical system constituted by a glass lens and a resin material lens are conventionally well known.
  • the conventional optical system is not sufficient particularly for use in an imaging device of a portable terminal, and there is a strong demand to achieve further ultra-compactness of these optical systems and mass productivity required for the portable terminal.
  • Patent Document 1 and Patent Document 2 disclose an imaging lens including a lens portion on a lens substrate.
  • a resin material used for a general optical element has a characteristic that when it is placed in a humid environment, it easily absorbs water as compared with a glass material, thereby causing a change in refractive index.
  • a wafer scale lens is generally formed from an energy curable resin material such as a thermosetting resin material or a UV curable resin material.
  • an energy curable resin material is also refracted by water absorption. Since the change in refractive index changes the power of the entire optical system due to such a change in refractive index, a change in the paraxial image point position (out of focus) occurs. Therefore, such a wafer scale lens is used as an imaging lens.
  • the present invention has been made in view of such a situation, and ensures low-cost imaging lenses, imaging apparatuses, digital devices, which ensure mass productivity and prevent image quality degradation due to fluctuations in paraxial image point positions due to water absorption. And it aims at providing the manufacturing method of an imaging lens.
  • the imaging lens according to claim 1 has at least one lens block in which a lens portion having a positive power is formed on at least one of an object side surface and an image side surface of a lens substrate that is a parallel plate.
  • the lens portion is formed of an energy curable resin material that is different from the lens substrate, and at least one of the lens portions having a positive power has a dimensional change rate due to water absorption of the lens substrate. It is larger than the rate of dimensional change due to water absorption and satisfies the following conditional expression (1).
  • dn is the difference between the refractive index dn1 measured for 3 days at 95 ° C. in an absolutely dry state at 95 ° C.
  • absolute dry state means a state in which no moisture is contained in the atmosphere
  • RH means relative humidity (relative humidity), which is a certain temperature (here, 60%). (° C.) divided by the amount of water vapor (mass absolute humidity) contained in the atmosphere by the amount of water vapor saturated at that temperature (mass absolute humidity) (unit:%).
  • the refractive index change due to water absorption becomes positive (increase). Therefore, when the lens unit has positive power, Even if the delivery rate is higher than the design value, the paraxial image point position changes in the object-side direction, so focusing is performed when it has a focusing function that moves the entire imaging lens in the optical axis direction. At this time, the imaging lens moves to the image side, so that it does not exceed the design total length, and it is possible to avoid a problem that the focus is not achieved.
  • the object position is in the range from infinity to the closest distance. It is possible to avoid the problem that the will not fit.
  • the “energy curable resin material” examples include, for example, UV curable resins including epoxy-based resins as long as UV curable resins are cured by applying ultraviolet energy, and UV curable resins including acrylic-based resins. If it is a thermosetting resin that is cured by applying thermal energy, there are a thermosetting resin including an epoxy system and a thermosetting resin including an acrylic system.
  • conditional expression (1 ′) is satisfied.
  • 0.0 ⁇ dn ⁇ 100 ⁇ 10 ⁇ 5 (1 ′) By setting the value of dn to be equal to or lower than the upper limit of the conditional expression (1 ′), it is possible to further reduce the change in paraxial image point position due to the refractive index by further suppressing the refractive index change due to water absorption.
  • conditional expression (1 ′′) is satisfied.
  • 0.0 ⁇ dn ⁇ 50 ⁇ 10 ⁇ 5 (1 ′′) By setting the value of dn to be equal to or lower than the upper limit of the conditional expression (1 ′′), the change in the refractive index due to water absorption can be suppressed more effectively, and the variation in the paraxial image point position due to the refractive index can be further reduced.
  • the imaging lens described in claim 2 is characterized in that, in the invention described in claim 1, at least one of the lens portions satisfies the following conditional expression (2). . 0.5 ⁇
  • f1 is a focal length when the object side and the image side of the lens unit are in contact with air
  • f is a combined focal length of the entire imaging lens system.
  • is set to be equal to or greater than the lower limit of the conditional expression (2). As a result, it is possible to prevent the problem that the power of the lens portion does not become too weak and the overall length becomes large.
  • conditional expression (2 ′) 0.5 ⁇
  • the imaging lens according to claim 3 is the invention according to claim 1, wherein the lens portion that satisfies the conditional expression (1) is disposed closest to the object side in the imaging lens. It is characterized by that.
  • the imaging lens according to claim 4 is the invention according to claim 2, wherein the lens portion that satisfies the conditional expression (2) is disposed closest to the object side in the imaging lens. It is characterized by that.
  • the lens part on the most object side mainly bears the power of the imaging lens for shortening the total length, and by reducing the fluctuation of the paraxial image point position caused by the refractive index change due to water absorption of this lens part, Variations in paraxial image point position due to water absorption of the entire imaging lens system can be effectively suppressed.
  • the imaging lens according to claim 5 is the imaging lens according to any one of claims 1 to 4, wherein at least one of the lens portions has the following conditional expression ( 3) is satisfied and has a concave shape.
  • l is the length in the radial direction from the outermost periphery of the optical surface portion of the lens portion to the outer diameter of the lens portion
  • h is the effective radius of the lens portion.
  • the volume of the resin material from the effective diameter of the lens portion to the outer diameter of the resin material within the effective diameter of the lens portion is reduced.
  • the resin material within the effective diameter is pushed out from the resin material outside the effective diameter of the lens portion due to the dimensional change accompanying water absorption without becoming too large compared to the volume, and the paraxial image point position due to the dimensional change accompanying water absorption It is possible to prevent the fluctuation from becoming too large.
  • the imaging lens according to claim 6 is the energy curable resin material used for at least one of the lens portions in the invention according to any one of claims 1 to 5.
  • the dimensional change rate ⁇ due to water absorption satisfies the following conditional expression (4).
  • the dimensional change rate ⁇ is the difference between the dimension w1 measured for 3 days at 95 ° C. in an absolutely dry state and the dimension w2 measured for 6 days at 60 ° C. and 90% RH (w2 ⁇ The ratio (w2-w1) / w1 ⁇ 100 [%] of the amount of change with respect to the dimension w1 in the dry state in w1).
  • the imaging lens according to claim 7 is the energy curable resin material used for at least one of the lens portions in the invention according to any one of claims 1 to 6. Satisfies the following conditional expression (5). ⁇ ⁇ 4.5% (5) However, ⁇ is a water absorption rate, and the difference between the weight m1 of the energy curable resin material measured at 95 ° C. in an absolutely dry state for 3 days and the weight m2 measured at 60 ° C. and 90% RH for 6 days (m 2 ⁇ The ratio (m2 ⁇ m1) / m1 ⁇ 100 [%] of the amount of change with respect to the completely dry weight m1 in m1).
  • the water absorption ⁇ By setting the water absorption ⁇ to be equal to or lower than the upper limit of the conditional expression (5), it is possible to prevent foaming or silver streak (silver stripes) or the like from occurring during the molding of the lens part. If these defects occur in the lens portion, the yield of the product is lowered, which is a very disadvantage for a wafer level lens for mass production.
  • the imaging lens according to claim 8 is the invention according to any one of claims 1 to 7, wherein the energy curable resin material is a UV curable resin material. It is characterized by that.
  • the lens part By constituting the lens part with a UV curable resin material, the curing time can be shortened and the mass productivity can be improved.
  • resins having excellent heat resistance and curable resin materials have been developed, and can withstand a so-called reflow treatment that is exposed to high temperatures for soldering of mounted electronic components.
  • the imaging lens according to claim 9 is the energy curable resin material used for at least one of the lens portions in the invention according to any one of claims 1 to 8. Further, inorganic fine particles having a maximum length of 30 nanometers or less are dispersed.
  • Dispersing inorganic fine particles of 30 nanometers or less in at least one lens part composed of a resin material can reduce performance deterioration and image point position fluctuations even when the temperature changes, and can transmit light.
  • An imaging lens having excellent optical characteristics regardless of environmental changes can be provided without reducing the rate.
  • the resin material has a disadvantage that the refractive index is lower than that of the glass material, but it has been found that the refractive index can be increased by dispersing inorganic particles having a high refractive index in the resin material as a base material.
  • inorganic particles of 30 nanometers or less in the resin material as the base material preferably 20 nanometers or less, more preferably 15 nanometers or less in the resin material as the base material.
  • a material having any temperature dependency can be provided.
  • the refractive index of the resin material decreases due to an increase in humidity, if inorganic particles whose refractive index increases as the temperature increases are dispersed in the resin material as the base material, these properties may be canceled out. It is also known that the refractive index change with respect to the temperature change can be reduced.
  • the refractive index change with respect to the temperature change can be increased. Specifically, by dispersing inorganic particles of 30 nanometers or less in the resin material as the base material, desirably 20 nanometers or less, more preferably 15 nanometers or less in the resin material as the base material. A material having any temperature dependency can be provided.
  • the imaging lens according to claim 10 is an image pickup lens according to any one of claims 1 to 9, wherein at least one of the lens portions is effective except for a lens center. In the region within the diameter, the sign of the inclination of the lens surface shape is the same.
  • the same sign of the inclination of the lens surface shape means that a cross section including the optical axis is taken in the imaging lens and the optical axis orthogonal direction is taken as the reference direction from the optical axis along the lens surface shape.
  • the direction of the tangent at each point of the lens surface shape is always directed to the same side (left side or right side toward the reference direction) with respect to the reference direction while moving toward the effective diameter side.
  • the shape of the lens portions L1a to L2b in FIG. 6 which is Example 1 described later is applicable, but the shape of the lens portions L3a and L3b is not applicable.
  • the imaging lens according to claim 11 is the invention according to any one of claims 1 to 10, wherein all surfaces of the lens portion that are in contact with air are aspherical. It is characterized by being. By doing so, the effect of the aspherical surface can be maximally utilized on the boundary surface between the surface in contact with the air and the lens portion with the largest refractive index difference. Further, by making the lens surfaces all aspherical, the occurrence of various aberrations can be minimized, and high performance can be easily achieved.
  • the imaging lens according to claim 12 is the imaging lens according to any one of claims 1 to 11, wherein the lens substrate and at least one of the lens portions are optical. It is formed indirectly through at least one of a thin film and an adhesive.
  • the optical member By arranging and forming an optical thin film having functions such as an aperture stop and an infrared cut filter between the lens portion and the lens substrate, the optical member can be simplified and the cost can be reduced.
  • the lens substrate and the lens part by fixing the lens substrate and the lens part with an adhesive or the like, it becomes possible to preferentially select the optical characteristics even if the resin material of the lens part is poor in adhesion, High performance and high functionality can be realized.
  • both the optical thin film and the adhesive are extremely thin, the dimensional change rate due to water absorption of the optical thin film and the adhesive is almost negligible, so there is a difference in dimensional change rate due to water absorption between the lens portion and the lens substrate. This is also an important factor in a lens block that is indirectly fixed through an optical thin film or an adhesive.
  • An imaging device includes the imaging lens according to any one of claims 1 to 12 and an imaging element that converts an optical image into an electrical signal.
  • An optical image of a subject is formed on the light receiving surface of the image sensor by the imaging lens.
  • a digital device includes the imaging device according to claim 13, and is provided with at least one function of still image shooting and moving image shooting of a subject. And Accordingly, it is possible to provide a digital device having an imaging function that can withstand use even in a low-cost and high-humidity environment.
  • the digital device described in claim 15 is a portable terminal in the invention described in claim 14, wherein the digital device is a mobile terminal. Accordingly, it is possible to provide a portable terminal having an imaging function that can withstand use even in a low-cost and high-humidity environment.
  • the imaging lens manufacturing method according to claim 16 is the imaging lens manufacturing method according to any one of claims 1 to 12, wherein a plurality of the lens blocks are arranged. Forming a connected lens block unit, a connecting step of connecting a plurality of the lens block units via an interval defining portion, and cutting the connected lens block units along the interval defining portion. And a cutting step of separating each lens block. As a result, the imaging lens can be mass-produced at a lower cost.
  • the present invention it is possible to provide a low-cost imaging lens, an imaging apparatus, a digital device, and a manufacturing method of an imaging lens that ensure mass productivity and prevent image quality deterioration due to a change in paraxial image point position due to water absorption. it can.
  • FIG. 2 is a cross-sectional view of the configuration of FIG. 1 taken along line II-II and viewed in the direction of the arrow. It is a figure which shows the state equipped with the imaging device 50 in the mobile telephone 100 as a portable terminal. 3 is a control block diagram of the mobile phone 100.
  • FIG. It is a figure which shows the process of manufacturing the imaging lens used for this Embodiment. 1 is a cross-sectional view of Example 1.
  • FIG. FIG. 6 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 1; 6 is a cross-sectional view of Example 2.
  • FIG. 6 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 2; 6 is a cross-sectional view of Example 3.
  • FIG. FIG. 6 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion aberration (c) of the imaging lens according to Example 3;
  • Imaging lens 50 Imaging device 51 Image sensor 51a Photoelectric conversion part 52 Board
  • FIG. 1 is a perspective view of an imaging apparatus 50 according to the present embodiment
  • FIG. 2 is a cross-sectional view of the configuration of FIG. 1 taken along the line II-II and viewed in the direction of the arrow.
  • the imaging device 50 includes a CMOS image sensor 51 as a solid-state imaging device having a photoelectric conversion unit 51 a, an imaging lens 10 that causes the photoelectric conversion unit 51 a of the image sensor 51 to capture a subject image, A substrate 52 having an external connection terminal (not shown) for holding the image sensor 51 and transmitting / receiving the electric signal is provided, and these are integrally formed.
  • the imaging lens 10 includes a first lens block BK1, a second lens block BK2, and a third lens block BK3.
  • a photoelectric conversion unit 51a as a light receiving unit in which pixels (photoelectric conversion elements) are two-dimensionally arranged is formed in the center of a plane on the light receiving side, and signal processing (not shown) is performed.
  • a signal processing circuit includes a drive circuit unit that sequentially drives each pixel to obtain a signal charge, an A / D conversion unit that converts each signal charge into a digital signal, and a signal that forms an image signal output using the digital signal. It consists of a processing unit and the like.
  • a number of pads (not shown) are arranged near the outer edge of the plane on the light receiving side of the image sensor 51, and are connected to the substrate 52 via wires (not shown).
  • the image sensor 51 converts the signal charge from the photoelectric conversion unit 51a into an image signal such as a digital YUV signal, and outputs the image signal to a predetermined circuit on the substrate 52 via a wire (not shown).
  • Y is a luminance signal
  • the solid-state imaging device is not limited to the CMOS image sensor, and other devices such as a CCD may be used.
  • the substrate 52 that supports the image sensor 51 is communicably connected to the image sensor 51 through a wiring (not shown).
  • the substrate 52 is connected to an external circuit (for example, a control circuit included in a host device of a portable terminal mounted with an imaging device) via an external connection terminal (not shown), and a voltage for driving the image sensor 51 from the external circuit. And a clock signal can be received, and a digital YUV signal can be output to an external circuit.
  • an external circuit for example, a control circuit included in a host device of a portable terminal mounted with an imaging device
  • an external connection terminal not shown
  • a clock signal can be received, and a digital YUV signal can be output to an external circuit.
  • the upper part of the image sensor 51 is sealed with a plate PT such as an infrared cut filter fixed on the upper surface of the substrate 52.
  • a plate PT such as an infrared cut filter fixed on the upper surface of the substrate 52.
  • the lower end of the spacer member B3, which is an interval defining portion is fixed.
  • the third lens block BK3 is fixed to the upper end of the spacer member B3, and the lower end of another spacer member B2 that is an interval defining portion is fixed to the upper surface of the third lens block BK3, and the upper end of the spacer member B2 is fixed.
  • the second lens block BK2 is fixed to the upper surface of the second lens block BK2, and the lower end of another spacer member B1, which is an interval defining portion, is fixed to the upper end of the spacer member B1.
  • the spacer members B1 to B3 are configured as separate members as the interval defining portion.
  • the present invention is not limited to this.
  • at least one of the lens portions L1b and L2a formed on the lens substrate is shown.
  • a shape corresponding to the function of the spacer member B1 may be integrally formed as the interval defining portion.
  • at least one of the lens portions L2b and L3a may be integrally formed with a shape corresponding to the function of the spacer member B2 as a space defining portion.
  • a shape corresponding to the spacer member B2 may be formed integrally with the lens portion L3a
  • the shape corresponding to the spacer member B3 may be formed integrally with the lens portion L3b.
  • the first lens block BK1 includes a lens substrate LS1 which is a parallel plate and lens portions L1a and L1b formed on the object side and the image plane side thereof.
  • the second lens block BK2 is a lens substrate LS2 which is a parallel plate. And the lens portions L2a and L2b formed on the object side and the image plane side.
  • the third lens block BK3 includes a lens substrate LS3 that is a parallel plate and lenses formed on the object side and the image plane side. It consists of parts L3a and L3b.
  • the dimensional change rate due to water absorption of the lens portions L1a, L2b and L3a is larger than the dimensional change rate due to water absorption of the lens substrate, and the lens portions L1a, L2b having positive power and L3a satisfies the following conditional expression (1).
  • dn is a refractive index dn1 measured by placing a UV curable resin material, which is a material of the lens portions L1a to L3a, in an absolutely dry state at 95 ° C. for 3 days, and a refractive index measured by placing it at 60 ° C. and 90% RH for 6 days. This is the difference (dn2-dn1) from dn2.
  • the lens portions L1a, L2a, and L3b satisfy the following conditional expression (2).
  • f1 is a focal length when the object side and the image side of the lens portions L1a, L2a, and L3b are in contact with air
  • f is a combined focal length of the entire imaging lens 10 system.
  • the lens portions L1b, L2a, and L3b satisfy the following conditional expression (3) and have a concave shape.
  • l is the length in the radial direction from the outermost circumference of the effective diameter portion of the lens portions L1b, L2a and L3b to the outer diameter of the lens portions L1b, L2a and L3b
  • h is the effective length of the lens portions L1b, L2a and L3b.
  • the dimensional change rate ⁇ due to water absorption of the UV curable resin material that is the material of the lens portions L1a to L3a satisfies the following conditional expression (4).
  • the dimensional change rate ⁇ is measured by placing the UV curable resin material, which is the material of the lens portions L1a to L3a, at 95 ° C. in an absolutely dry state for 3 days, and at 6 ° C. and 90% RH for 6 days.
  • the UV curable resin material that is the material of the lens portions L1a to L3a satisfies the following conditional expression (5).
  • is the water absorption rate, measured by placing the UV curable resin material, which is the material of the lens portions L1a to L3a, in a completely dry state at 95 ° C. for 3 days and at 60 ° C. and 90% RH for 6 days.
  • the lens portions L1a to L2b have the same sign of the inclination of the lens surface shape in the region within the effective diameter excluding the lens center.
  • the lens substrates LS1, LS2, and LS3 are made of a glass material
  • the lens portions L1a to L3b whose lens surfaces in contact with air are all aspheric are made of a resin material.
  • the lens portions L1a to L3a are preferably made of a UV curable resin material in which inorganic fine particles having a maximum length of 30 nanometers or less are dispersed.
  • FIG. 3 is a diagram illustrating a state in which the imaging device 50 is mounted on a mobile phone 100 as a mobile terminal that is a digital device.
  • FIG. 4 is a control block diagram of the mobile phone 100.
  • the imaging device 50 is provided, for example, such that the object-side end surface of the imaging lens is provided on the back surface of the mobile phone 100 (the liquid crystal display unit side is the front surface) and is located at a position corresponding to the lower side of the liquid crystal display unit.
  • the external connection terminal (not shown) of the imaging device 50 is connected to the control unit 101 of the mobile phone 100 and outputs an image signal such as a luminance signal or a color difference signal to the control unit 101 side.
  • the mobile phone 100 controls each unit in an integrated manner, and also supports a control unit (CPU) 101 that executes a program corresponding to each process, and inputs a number and the like with keys.
  • An input unit 60 a display unit 70 for displaying captured images and videos, a wireless communication unit 80 for realizing various information communications with an external server, a system program and various processing programs for the mobile phone 100,
  • a storage unit (ROM) 91 that stores necessary data such as a terminal ID, and various processing programs and data executed by the control unit 101, processing data, imaging data by the imaging device 50, and the like are temporarily stored.
  • a temporary storage unit (RAM) 92 used as a work area for storage.
  • an image signal of a still image or a moving image is captured by the image sensor 51.
  • the image signal input from the imaging device 50 is transmitted to the control system of the mobile phone 100 and stored in the storage unit 92 or displayed on the display unit 70, and further, video information is transmitted via the wireless communication unit 80. Will be transmitted to the outside.
  • FIG. 5 is a diagram illustrating a process of manufacturing the imaging lens according to the present embodiment.
  • a lens block unit UT including a plurality of lens blocks BK arranged two-dimensionally is manufactured.
  • Such a lens block unit UT can be manufactured by, for example, a replica method that can simultaneously produce a large number of lenses L and is low in cost (note that the number of lens blocks BK included in the lens block unit UT is one. May be more than one).
  • the replica method is a method in which a curable resin is transferred onto a lens wafer in a lens shape using a mold. That is, in the replica method, a large number of lenses are simultaneously manufactured on the lens wafer.
  • the imaging lens 10 is manufactured from the lens block unit UT manufactured by these methods.
  • An example of the manufacturing process of this imaging lens is shown in the schematic sectional view of FIG.
  • the first lens block unit UT1 includes a first lens substrate LS1 that is a parallel plate, a plurality of first lens portions L1a formed on one plane, and a plurality of second lens portions formed on the other plane. L1b.
  • the first lens substrate LS1 and the lens portion L1a are formed through a diaphragm formed of an optical thin film. It is preferable to provide a diaphragm or an infrared cut filter on the lens substrate because the number of constituent members can be reduced as compared with the case where it is provided separately. Furthermore, if a transparent thin film such as an antireflection coating is provided on the lens substrate, reflection between the lens portion and the lens substrate can be prevented, and flare and ghost can be reduced.
  • the second lens block unit UT2 includes a second lens substrate LS2 that is a parallel plate, a plurality of third lenses L2a formed on one plane, and a plurality of fourth lenses L2b formed on the other plane. , Composed of. Similarly, if an antireflection coating is provided on the lens substrate, reflection between the lens portion and the lens substrate can be prevented, and flare and ghost can be reduced. Although it is preferable to form the lens portions L2a and L2b directly on the lens substrate LS2, the lens portions L2a and L2b may be formed using an adhesive or the like.
  • the third lens block unit UT3 includes a third lens substrate LS3 that is a parallel plate, a plurality of fifth lenses L3a formed on one plane, and a plurality of sixth lenses L3b formed on the other plane. , Composed of. Similarly, if an antireflection coating is provided on the lens substrate, reflection between the lens portion and the lens substrate can be prevented, and flare and ghost can be reduced. Although it is preferable to form the lens portions L3a and L3b directly on the lens substrate LS3, the lens portions L3a and L3b may be formed using an adhesive or the like.
  • a grid-like spacer member (spacer) B1 as an interval defining portion is provided between the first lens block unit UT1 and the second lens block unit UT2 (specifically, the first lens substrate LS1 and the second lens substrate). The distance between the lens block units UT1 and UT2 is kept constant. Further, another spacer member B2 as an interval defining portion is interposed between the second lens block unit UT2 and the third lens block unit UT3, and the distance between the lens block units UT2 and UT3 is kept constant. . Further, another spacer member B3 as a space defining portion is interposed between the plate PT and the third lens block unit UT3, and the distance between the plate PT and the lens block unit UT3 is kept constant (that is, the spacer member). B1, B2, and B3 can be said to be a three-stage lattice). In such a state, the lens portions L1a to L3b are positioned in the lattice hole portions of the spacer members B1, B2, and B3.
  • the plate PT is a wafer level sensor chip size package including a microlens array, or a parallel flat plate such as a sensor cover glass or an infrared cut filter.
  • the spacer member B1 is interposed between the first lens block unit UT1 and the second lens block unit UT2, and the spacer member B2 is the second lens block unit UT2 and the third lens block unit UT3. Since the spacer member B3 is interposed between the third lens block unit UT3 and the plate PT, the lens substrates LS (second lens L1b to sixth lens L3b) are sealed. Integrate.
  • the integrated first lens substrate LS1, second lens substrate LS2, third lens substrate LS3, spacer members B1, B2, B3, and plate PT are arranged in the lattice frame of spacer members B1, B2, B3 (position of broken line Q).
  • a plurality of imaging lenses 10 each having a three-lens structure integrated with each lens block are obtained.
  • the plate PT is a parallel plane plate such as an infrared cut filter
  • the imaging lens 10 is attached to the substrate 52 so that the image sensor 51 is sandwiched between the plate PT and the substrate 52, although not shown in the figure.
  • the imaging device shown in FIG. 2 can be obtained.
  • the imaging lens 10 is manufactured by separating the members in which the plurality of lens blocks BK (the first lens block BK1, the second lens block BK2, and the third lens block BK3) are incorporated, the imaging lens It is not necessary to adjust and assemble every 10 lens intervals. Therefore, mass production of imaging devices that are expected to have high image quality is possible.
  • the spacer members B1, B2, and B3 that are the interval defining portions have a lattice shape
  • the spacer members B1, B2, and B3 are marks when the imaging lens 10 is separated from the members in which the plurality of lens blocks BK are incorporated. It also becomes. Therefore, the imaging lens 10 can be easily cut out from the members incorporated in the plurality of lens blocks BK, and it does not take time and effort. As a result, the imaging lens 10 can be mass-produced at a low cost.
  • the manufacturing method of the imaging lens 10 includes the step of forming the lens block unit UT in which a plurality of lens blocks BK are arranged, and the lens block unit UT intervening with a lattice-like spacer member that is an interval defining portion. It can be said that it includes a connecting step of connecting, and a cutting step of separating the connected lens block units UT for each lens block by cutting along the lattice frame of the interval defining portion.
  • Such a manufacturing method is suitable for mass production of an inexpensive lens system. It is also possible to connect only a single lens block unit to the plate.
  • lens block unit was demonstrated in the example adhere
  • a functional part corresponding to a spacer member may be integrally formed in the part as a space defining part.
  • the distance (sag amount) in the optical axis direction from the tangential plane of the surface vertex is X
  • the height from the optical axis is h
  • R is the paraxial radius of curvature
  • K is the conic constant
  • X can be expressed by the following formula [Equation 1].
  • Example 1 shows lens data in the first example.
  • a power of 10 for example, 2.5 ⁇ 10 ⁇ 3
  • e for example, 2.5 ⁇ e ⁇ 03
  • the F value, half angle of view, full length, and back focus described in the construction data table 1 of Example 1 below are all effective values for the total lens length, finite object distance, that is, the object distance in the table.
  • the back focus is the distance from the lens final surface to the paraxial image plane expressed in terms of air length.
  • the total lens length is the distance from the lens front surface to the lens final surface plus the back focus. .
  • FIG. 6 is a sectional view of the lens of Example 1.
  • FIG. 7 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to the first example.
  • the alternate long and short dash line represents the g-line
  • the solid line represents the d-line
  • the broken line represents the spherical aberration amount with respect to the C-line.
  • the solid line represents the sagittal surface
  • the broken line represents the meridional surface.
  • the photographic lens of Example 1 has three lens blocks. More specifically, in order from the object side, the first lens block BK1 is composed of the first lens portion L1a, the aperture stop S made of an optical thin film, the first lens substrate LS1, and the second lens portion L1b. The third lens portion L2a, the second lens substrate LS2, and the fourth lens portion L2b constitute a second lens block BK2. Finally, from the fifth lens portion L3a, the third lens substrate LS3, and the sixth lens portion L3b, A third lens block BK3 is configured. Further, the surfaces of the lens portions that are in contact with all air are aspherical.
  • Table 2 shows lens data in the second example.
  • FIG. 8 is a sectional view of the lens of Example 2.
  • FIG. 9 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to the second example.
  • the alternate long and short dash line represents the g-line
  • the solid line represents the d-line
  • the broken line represents the spherical aberration amount with respect to the C-line.
  • the solid line represents the sagittal surface
  • the broken line represents the meridional surface.
  • the photographic lens of Example 2 has two lens blocks. More specifically, in order from the object side, the first lens block BK1 is configured by the first lens unit L1a, the aperture stop S made of an optical thin film, the first lens substrate LS1, and the second lens unit L1b.
  • the third lens unit L2a, the second lens substrate LS2, and the fourth lens unit L2b constitute a second lens block BK2.
  • the surface of the lens part which contacts all the air is aspherical.
  • Table 2 shows lens data in the third example.
  • FIG. 10 is a sectional view of the lens of Example 3.
  • FIG. 11 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to the third example.
  • the alternate long and short dash line represents the g-line
  • the solid line represents the d-line
  • the broken line represents the spherical aberration amount with respect to the C-line.
  • the solid line represents the sagittal surface
  • the broken line represents the meridional surface.
  • the photographic lens of Example 3 has two lens blocks. More specifically, in order from the object side, the first lens block BK1 is composed of the first lens portion L1a, the aperture stop S made of an optical thin film, the first lens substrate LS1, and the second lens portion L1b.
  • the third lens unit L2a, the second lens substrate LS2, and the fourth lens unit L2b constitute a second lens block BK2. Further, the surfaces of the lens portions that are in contact with all air are aspherical.
  • Table 4 shows values corresponding to the conditional expressions of Examples 1 to 3.
  • the resin material of Example 1 is a low-dispersion resin material which is a UV curable resin containing an epoxy system with Nd of 1.52 and ⁇ d of 57, and a UV curable resin containing an epoxy system with Nd of 1.55 and ⁇ d of 32
  • the highly dispersed resin material is used.
  • two types of resin materials are used, but one type or three or more types of resin materials may be used.
  • the low-dispersion resin material of Example 1 was placed in an absolutely dry state at 95 ° C. for 3 days, the refractive index dn1L was measured, then placed in 60 ° C. and 90% RH for 6 days, and the refractive index dn2L was measured.
  • the difference dnL between the refractive index dn2L and the refractive index dn1L in the first completely dried state was 30 ⁇ 10 ⁇ 5 .
  • the highly dispersed resin material of Example 1 was placed in an absolutely dry state at 95 ° C. for 3 days to measure the refractive index dn1H, and then placed at 60 ° C. and 90% RH for 6 days to measure the refractive index dn2H.
  • the difference dnH between the refractive index dn2H and the refractive index dn1H in the first completely dried state was 260 ⁇ 10 ⁇ 5 . Assuming that only the refractive index has changed due to water absorption, the amount of change in the paraxial image point position is -0.001 [mm].
  • Comparative Example 1 an existing low-dispersion resin material whose refractive index change due to water absorption does not satisfy the conditional expression (1) is placed at 95 ° C. in an absolutely dry state for 3 days, and the refractive index dn1L ′ is measured.
  • the film was placed at 60 ° C. and 90% RH for 6 days, and the refractive index dn2L ′ was measured.
  • the difference dnL ′ between the refractive index dn1L ′ and the refractive index dn2L ′ in the first completely dried state was 200 ⁇ 10 ⁇ 5 .
  • the highly dispersed resin material was placed at 95 ° C.
  • the F value of the imaging lens of Example 1 is 2.88, and when the pixel pitch of the imaging device combined with the imaging lens is 1.70 ⁇ m or more, for example, 1.75 ⁇ m, the depth of focus is approximately 2 ⁇ F (where ⁇ is an allowable confusion). Circle, F is expressed by F value), and assuming that the permissible circle of confusion is 2 pixel pitch, the depth of focus is 20.2 ⁇ m. Since this value is a range in the optical axis direction with the image plane serving as the design value approximately at the center, the fluctuation amount of the paraxial image point position of the design value due to water absorption is within half of 10.1 ⁇ m.
  • the refractive index dn1H of the highly dispersed resin material of Example 1 was measured for 3 days in an absolutely dry state at 95 ° C. and then measured for 6 days at 60 ° C. and 90% RH, and the refractive index dn2H was measured.
  • the difference dnH from the refractive index dn1H in the completely dried state is 260 ⁇ 10 ⁇ 5
  • the low-dispersion resin material of Example 1 is placed in an absolutely dry state at 95 ° C. for 3 days to obtain a refractive index dn1L. After measurement, the refractive index dn2L is measured at 60 ° C.
  • the difference dnL between the refractive index dn2L and the refractive index dn1L in the first completely dried state is 30 ⁇
  • 70 ⁇ 10 ⁇ 5 , 110 ⁇ 10 ⁇ 5 , 150 ⁇ 10 ⁇ 5 , 190 ⁇ 10 ⁇ 5 , 200 ⁇ 10 ⁇ 5 , 220 ⁇ 10 ⁇ 5 only the refractive index changed due to water absorption. Assuming that the paraxial image point position changes The amount is shown in Table 5 below.
  • the pixel pitch will become narrower in the future. For example, even when the pixel pitch is 1.0 ⁇ m or more, if the difference dnL from the refractive index dn1L is 100 ⁇ 10 ⁇ 5 or less, the pixel pitch is reduced. There is no problem due to the influence of the fluctuation of the axial image point position.
  • the resin material of Example 2 is a low dispersion resin material that is a UV curable resin containing an epoxy system with Nd of 1.51 and ⁇ d of 57, and a UV curable resin containing an epoxy system with Nd of 1.57 and ⁇ d of 34.
  • the highly dispersed resin material is used. In this embodiment, two types of resin materials are used, but one type or three or more types of resin materials may be used.
  • the low-dispersion resin material of Example 2 was placed in an absolutely dry state at 95 ° C. for 3 days to measure the refractive index dn1L, then placed in 60 ° C. and 90% RH for 6 days, and the refractive index dn2L was measured.
  • the difference dnL between the refractive index dn2L and the refractive index dn1L in the first completely dried state was 100 ⁇ 10 ⁇ 5 .
  • the highly dispersed resin material of Example 2 was placed in an absolutely dry state at 95 ° C. for 3 days and the refractive index dn1H was measured, then placed at 60 ° C. and 90% RH for 6 days, and the refractive index dn2H was measured.
  • the difference dnH between the refractive index dn2H and the refractive index dn1H in the first completely dried state was 60 ⁇ 10 ⁇ 5 . Assuming that only the refractive index has changed due to water absorption, the amount of change in the paraxial image point position is -0.008 [mm].
  • Comparative Example 2 an existing low-dispersion resin material whose refractive index change due to water absorption does not satisfy the conditional expression (1) is placed at 95 ° C. in an absolutely dry state for 3 days, and the refractive index dn1L ′ is measured.
  • the film was placed at 60 ° C. and 90% RH for 6 days, and the refractive index dn2L ′ was measured.
  • the difference dnL ′ between the refractive index dn1L ′ and the refractive index dn2L ′ in the first completely dried state was 200 ⁇ 10 ⁇ 5 .
  • the highly dispersed resin material was placed in an absolutely dry state at 95 ° C.
  • Example 2 measured for refractive index dn1H, then placed at 60 ° C. and 90% RH for 6 days, and measured for refractive index dn2H.
  • the difference dnH between the refractive index dn2H and the refractive index dn1H in the first completely dried state was 60 ⁇ 10 ⁇ 5 .
  • the amount of change in the paraxial image point position is -0.016 [mm].
  • the resin material of Example 3 is a low dispersion resin material which is a UV curable resin containing an epoxy system with Nd of 1.52 and ⁇ d of 55, and a UV curable resin containing an epoxy system with Nd of 1.57 and ⁇ d of 34.
  • the highly dispersed resin material is used. In this embodiment, two types of resin materials are used, but one type or three or more types of resin materials may be used.
  • the low-dispersion resin material of Example 3 was placed in an absolutely dry state at 95 ° C. for 3 days, the refractive index dn1L was measured, then placed in 60 ° C. and 90% RH for 6 days, and the refractive index dn2L was measured.
  • the difference dnL between the refractive index dn2L and the refractive index dn1L in the first completely dried state was 140 ⁇ 10 ⁇ 5 .
  • the highly dispersed resin material of Example 3 was placed in an absolutely dry state at 95 ° C. for 3 days, the refractive index dn1H was measured, then placed at 60 ° C. and 90% RH for 6 days, and the refractive index dn2H was measured.
  • the difference dnH between the refractive index dn2H and the refractive index dn1H in the first completely dried state was 60 ⁇ 10 ⁇ 5 . Assuming that only the refractive index has changed due to water absorption, the amount of change in the paraxial image point position is -0.011 [mm].
  • Comparative Example 3 an existing low-dispersion resin material whose refractive index change due to water absorption does not satisfy the conditional expression (1) is placed at 95 ° C. in an absolutely dry state for 3 days, and the refractive index dn1L ′ is measured.
  • the film was placed at 60 ° C. and 90% RH for 6 days, and the refractive index dn2L ′ was measured.
  • the difference dnL ′ between the refractive index dn1L ′ and the refractive index dn2L ′ in the first completely dried state was 200 ⁇ 10 ⁇ 5 .
  • the highly dispersed resin material was placed in an absolutely dry state at 95 ° C.
  • Example 3 measured for the refractive index dn1H, then placed at 60 ° C. and 90% RH for 6 days, and the refractive index dn2H was measured.
  • the difference dnH between the refractive index dn2H and the refractive index dn1H in the first completely dried state was 60 ⁇ 10 ⁇ 5 .

Abstract

 量産性を確保し、吸水による近軸像点位置の変動による画質劣化を防止した低コストの撮像レンズ、撮像装置、デジタル機器、及び撮像レンズの製造方法を提供するために、平行平板であるレンズ基板の物体側面及び像側面のうち少なくとも一方に、正又は負のパワーを有するレンズ部が形成されたレンズブロックを少なくとも1つ有し、レンズ部は、レンズ基板と材質が異なるエネルギー硬化型樹脂材料で形成され、レンズ部のうち少なくとも1つは、吸水による寸法変化率が、レンズ基板の吸水による寸法変化率よりも大きく、且つ、以下の条件式を満足する撮像レンズとする。 0.0 ≦ dn ≦ 150×10-5 但し、dnはエネルギー硬化型樹脂材料を95°C絶乾状態に3日間置き測定した屈折率dn1と、60°C90%RHに6日間置き測定した屈折率dn2との差

Description

撮像レンズ、撮像装置、デジタル機器、及び撮像レンズの製造方法
 本発明は、CCD(Charge Coupled Devices)型イメージセンサやCMOS(Complementary Metal-Oxide Semiconductor)型イメージセンサ等の固体撮像素子を用いた撮像装置の撮像レンズに関するものであり、より詳しくは、大量生産に適するウェハスケールのレンズを用いた光学系における撮像レンズ、撮像レンズを用いた撮像装置、デジタル機器、並びに撮像レンズの製造方法に関するものである。
 コンパクトで薄型の撮像装置(以下、カメラモジュールとも称す)が、携帯電話機やPDA(Personal Digital Assistant)等のコンパクトで、薄型の電子機器である携帯端末に搭載されるようになり、これにより遠隔地へ音声情報だけでなく画像情報も相互に伝送することが可能となっている。
 これらの撮像装置に使用される撮像素子としては、CCD型イメージセンサやCMOS型イメージセンサ等の固体撮像素子が使用されている。近年では撮像素子の高画素化が進んでおり、高解像・高性能化が図られてきている。また、これら撮像素子上に被写体像を形成するためのレンズは、低コスト化のために、安価に大量生産できる樹脂材料で形成されるレンズが用いられるようになってきた。樹脂材料によって構成されるレンズは、加工性が良いにも関わらず複雑な非球面形状を精度良く転写形成できるため、高解像・高性能化された撮像素子にも対応できる。
 ここで、撮像装置に用いる撮像レンズとして、樹脂材料レンズで構成される光学系や、ガラスレンズと樹脂材料レンズで構成される光学系が従来からよく知られている。しかるに、特に携帯端末の撮像装置に用いるためには、従来の光学系では不十分であり、これらの光学系の更なる超コンパクト化と携帯端末に求められる量産性を両立することが強く求められているが、かかる両立を低コストで実現することは困難であった。
 このような問題点を克服するため、数インチのウェハ上にレプリカ法によってレンズ要素を同時に大量に並べて成形し、それらのウェハをセンサウェハと組み合わせた後、切り離すことにより、カメラモジュールを大量生産する手法が提案されている。こうした製法によって製造されたレンズはウェハスケールレンズ、また、カメラモジュールはウェハスケールカメラモジュールと呼ばれることもある。このような技術に関して、特許文献1、特許文献2にレンズ基板上にレンズ部を備えた撮像レンズが開示されている。
特開2006-323365号公報 特許第3929479号公報
 ここで、一般的な光学素子に用いられる樹脂材料は、湿気のある環境下に置かれた場合にガラス材料と比べて吸水しやすく、それにより屈折率変化が生じるという特性がある。一方、ウェハスケールレンズは、熱硬化型樹脂材料やUV硬化型樹脂材料などのエネルギー硬化型樹脂材料から形成されるのが一般的であるが、エネルギー硬化型樹脂材料においても同様に、吸水によって屈折率が変化するという特性があり、かかる屈折率変化によって光学系全体のパワーが変化すると、近軸像点位置の変化(ピントずれ)が生じてしまうため、このようなウェハスケールレンズを撮像レンズとして用いた結果、画質劣化を招くという問題があった。また、ウェハスケールレンズを吸水しやすい樹脂材料を用いて成形をしようとすると、成形品の発泡や、シルバーストリーク(銀条)等が発生してしまい、収率が悪化することによるコストの増大や生産性の低下等を招いていた。さらに、製品に組み込まれたウェハスケールレンズの使用時にも、吸水によって白濁が生じるといった問題もあった。
 本発明は、このような状況に鑑みてなされたものであり、量産性を確保し、吸水による近軸像点位置の変動による画質劣化を防止した低コストの撮像レンズ、撮像装置、デジタル機器、及び撮像レンズの製造方法を提供することを目的とする。
 請求の範囲第1項に記載の撮像レンズは、平行平板であるレンズ基板の物体側面及び像側面のうち少なくとも一方に、正のパワーを有するレンズ部が形成されたレンズブロックを少なくとも1つ有し、前記レンズ部は、前記レンズ基板と材質が異なるエネルギー硬化型樹脂材料で形成され、前記レンズ部のうち少なくとも1つの正のパワーを持つレンズ部は、吸水による寸法変化率が、前記レンズ基板の吸水による寸法変化率よりも大きく、且つ、以下の条件式(1)を満足する。
0.0 ≦ dn ≦ 150×10-5      (1)
但し、dnとは、前記エネルギー硬化型樹脂材料を95℃絶乾状態に3日間置き測定した屈折率dn1と、60℃90%RHに6日間置き測定した屈折率dn2との差(dn2-dn1)をいう。尚、本明細書中において、「絶乾状態」とは、雰囲気中に水分を含まない状態をいい、「RH」とは、相対湿度(relative humidity)のことであり、ある温度(ここでは60℃)で雰囲気中に含まれる水蒸気の量(質量絶対湿度)を、その温度の飽和水蒸気量(質量絶対湿度)で割ったもの(単位:%)である。
 dnの値を条件式(1)の下限以上とすることで、吸水による屈折率変化が正(上昇)になるので、前記レンズ部が正のパワーを有している場合は、使用時に吸水によって届折率が設計値よりも高くなっていたとしても、近軸像点位置は物体側方向に変化するため、撮像レンズ全体を光軸方向に移動させるフォーカシング機能を有する場合では、フォーカシングを行った際に、撮像レンズが像側に移動することなり、設計全長を超えることが無く、ピントが合わないといった不具合を避けることができる。また、フォーカシング機能を有さず、撮像レンズ全体と固体撮像素子を固定した揚合(固定焦点レンズ)でも、物体距離が無限遠から至近距離の範囲内にピント位置が存在するため、吸水により全くピントが合わなくなるという不具合を避けることができる。
 これに対し、吸水による屈折率変化が負(減少)の場合(dn<0)は、吸水によってバックフォーカスが増大してしまうため、予め吸水の影響を考慮し、フォーカシングのための繰り出し余裕量を確保する必要性があり、これにより撮像装置が大きくなってしまうという問題がある。また、フォーカシング機能を有さず、撮像レンズ全体と固体撮像素子を固定した場合は、吸水によりピントの合う物体距離を確保できなくなり、常に画面がボケた状態になってしまう恐れがある。本発明によれば、かかる不具合を解消できる。
 尚、「エネルギー硬化型樹脂材料」としては、例えば、紫外線エネルギーを加えることで硬化するUV硬化型樹脂であれば、エポキシ系を含むUV硬化型樹脂などがあり、またアクリル系を含むUV硬化樹脂など、熱エネルギーを加えることで硬化する熱硬化型樹脂であれば、エポキシ系を含む熱硬化型樹脂あるいはアクリル系を含む熱硬化型樹脂などがある。
 以下の条件式(1’)を満足すると望ましい。
0.0 ≦ dn ≦ 100×10-5   (1’)
dnの値を条件式(1’)の上限以下とすることで、吸水による屈折率変化をより抑えることで、屈折率による近軸像点位置の変動を更に低減することができる。
 以下の条件式(1”)を満足すると更に望ましい。
0.0 ≦ dn ≦ 50×10-5    (1”)
dnの値を条件式(1”)の上限以下とすることで、吸水による屈折率変化をより有効に抑えることで、屈折率による近軸像点位置の変動を一層低減することができる。
 請求の範囲第2項に記載の撮像レンズは、請求の範囲第1項に記載の発明において、前記レンズ部のうち少なくとも1つは、以下の条件式(2)を満足することを特徴とする。
0.5 ≦ |f1/f| ≦ 1.1   (2)
但し、f1は前記レンズ部の物体側と像側が空気に接しているとしたときの焦点距離であり、fは前記撮像レンズ全系の合成焦点距離である。
 |f1/f|の値を条件式(2)の下限以上となるようにすることで、前記レンズ部のパワーが強くなりすぎず、吸水に伴う屈折率変化による近軸像点位置の変化が大きくなりすぎることを防止することができる。一方で、前記レンズ部のパワーが小さければ、吸水に伴う屈折率変化による近軸像点位置を小さくできるから、|f1/f|の値を条件式(2)の上限以下となるようにすることで、前記レンズ部のパワーが弱くなりすぎず、全長が大きくなってしまうという不具合を防止できる。
 以下の条件式(2’)を満足すると、より望ましい。
0.5 ≦ |f1/f| ≦ 0.7    (2’)
条件式(2’)を満足することにより、吸水に伴う屈折率変化による近軸像点位置の変動を、より効果的に低減することができる。
 請求の範囲第3項に記載の撮像レンズは、請求の範囲第1項に記載の発明において、前記条件式(1)を満足するレンズ部は、前記撮像レンズにおいて最も物体側に配置されていることを特徴とする。
 請求の範囲第4項に記載の撮像レンズは、請求の範囲第2項に記載の発明において、前記条件式(2)を満足するレンズ部は、前記撮像レンズにおいて最も物体側に配置されていることを特徴とする。
 最も物体側のレンズ部が全長短縮のために、撮像レンズのパワーを主に負担しており、このレンズ部の吸水にともなう屈折率変化で生じる近軸像点位置の変動を低減することで、撮像レンズ系全体の吸水に伴う近軸像点位置の変動を効果的に抑制できる。
 請求の範囲第5項に記載の撮像レンズは、請求の範囲第1項から第4項までのいずれか一項に記載の発明において、前記レンズ部のうち少なくとも1つは、以下の条件式(3)を満足し、凹面形状を有することを特徴とする。
l/h ≦ 3.5            (3)
但し、lは前記レンズ部の光学面部最外周から前記レンズ部の外径までの半径方向の長さであり、hは前記レンズ部の有効半径である。
 l/hの値が条件式(3)の上限以下となるようにすることで、前記レンズ部の有効径から外径までの樹脂材料の体積が、前記レンズ部の有効径内の樹脂材料の体積に比べて大きくなりすぎず、吸水に伴う寸法変化によって、レンズ部の有効径外の樹脂材料から有効径内の樹脂材料が押し出されることにより、吸水に伴う寸法変化による近軸像点位置の変動が大きくなりすぎることを防止することができる。
 以下の条件式(3’)を満足すると、より望ましい。
l/h ≦ 1.5            (3’)
条件式(3’)を満足することで、吸水に伴う寸法変化による近軸像点位置の変動が大きくなりすぎることを、より効果的に防止することができる。
 請求の範囲第6項に記載の撮像レンズは、請求の範囲第1項から第5項までのいずれか一項に記載の発明において、前記レンズ部の少なくとも1つに用いる前記エネルギー硬化型樹脂材料の吸水による寸法変化率αは、以下の条件式(4)を満足することを特徴とする。
|α| ≦ 3.0%           (4)
但し、寸法変化率αとは、前記エネルギー硬化型樹脂材料を95℃絶乾状態に3日間置き測定した寸法w1と、60℃90%RHに6日間置き測定した寸法w2との差(w2-w1)における、絶乾時寸法w1に対する変化量の割合(w2-w1)/w1×100[%]をいう。
 寸法変化率の絶対値|α|を条件式(4)の上限以下とすることで、前記レンズ部が吸水によって寸法変化を繰り返した結果、前記レンズ基板部から剥離してしまうという不具合を防ぐことができる。
 以下の条件式(4’)を満足すると、より望ましい。
|α| ≦ 1.5%           (4’)
寸法変化率の絶対値|α|を条件式(4’)の上限以下とすることで、前記レンズ部の吸水による寸法変化がより小さくなり、前記レンズ部の曲率が変化することによる近軸像点位置の変化を低減できる。
 以下の条件式(4”)を満足すると、更に望ましい。
|α| ≦ 1.0%           (4”)
寸法変化率の絶対値|α|を条件式(4”)の上限以下とすることで、前記レンズ部の吸水による寸法変化が一層小さくなり、前記レンズ部の曲率が変化することによる近軸像点位置の変化をより有効に低減できる。
 請求の範囲第7項に記載の撮像レンズは、請求の範囲第1項から第6項までのいずれか一項に記載の発明において、前記レンズ部の少なくとも1つに用いる前記エネルギー硬化型樹脂材料は、以下の条件式(5)を満足することを特徴とする。
ρ ≦ 4.5%             (5)
但し、ρは吸水率であり、前記エネルギー硬化型樹脂材料を95℃絶乾状態に3日間置き測定した重量m1と、60℃90%RHに6日間置き測定した重量m2との差(m2-m1)における、絶乾時重量m1に対する変化量の割合(m2-m1)/m1×100[%]をいう。
 吸水率ρを条件式(5)の上限以下とすることで、前記レンズ部の成形時に発泡したり、シルバーストリーク(銀条)等が発生したりすることを防ぐことができる。これらの欠陥が前記レンズ部に発生してしまうと、製品の収率を低下させることとなり、これは大量生産を目的とするウェハレベルレンズにとって、非常に大きなデメリットとなるからである。
 以下の条件式(5’)を満足すると、より望ましい。
ρ ≦ 3.5%             (5’)
吸水率ρを条件式(5’)の上限以下とすることで、前記レンズ部の成形時に発泡したり、シルバーストリーク(銀条)等が発生したりすることを、より効果的に防ぐことができる。
 以下の条件式(5”)を満足すると、更に望ましい
ρ ≦ 2.0%             (5”)
吸水率ρを条件式(5”)の上限以下とすることで、前記レンズ部の成形時に発泡したり、シルバーストリーク(銀条)等が発生したりすることを、一層効果的に防ぐことができる。
 請求の範囲第8項に記載の撮像レンズは、請求の範囲第1項から第7項までのいずれか一項に記載の発明において、前記エネルギー硬化型樹脂材料は、UV硬化型樹脂材料であることを特徴とする。
 前記レンズ部をUV硬化型の樹脂材料で構成することにより、硬化時間を短くでき量産性を改善できる。また、近年では耐熱性に優れた樹脂および硬化型の樹脂材料が開発されており、実装電子部品のハンダ付けのために高温下に曝される、いわゆるリフロー処理にも耐えることができる。
 請求の範囲第9項に記載の撮像レンズは、請求の範囲第1項から第8項までのいずれか一項に記載の発明において、前記レンズ部の少なくとも1つに用いる前記エネルギー硬化型樹脂材料に最大長30ナノメートル以下の無機微粒子を分散させたことを特徴とする。
 樹脂材料にて構成される少なくとも1つの前記レンズ部に、30ナノメートル以下の無機微粒子を分散させることで、温度が変化しても性能の劣化や、像点位置変動を低減でき、しかも光透過率を低下させることなく、環境変化に関わらず優れた光学特性を有する撮像レンズを提供できる。
 一般に、透明な樹脂材料に微粒子を混合させると、光の散乱が生じ透過率が低下するため、光学材料として使用することは困難であったが、微粒子の大きさを透過光束の波長より小さくすることにより、散乱が実質的に発生しないようにできる。また、樹脂材料はガラス材料に比べて屈折率が低いことが欠点であったが、屈折率の高い無機粒子を母材となる樹脂材料に分散させると、屈折率を高くできることがわかってきた。
 具体的には、母材となる樹脂材料に30ナノメートル以下、なお、望ましくは、母材となる樹脂材料に20ナノメートル以下、さらに望ましくは15ナノメートル以下の無機粒子を分散させることにより、任意の温度依存性を有する材料を提供できる。さらに、樹脂材料は湿度が上昇することにより屈折率が低下してしまうが、温度が上昇すると屈折率が上昇する無機粒子を母材となる樹脂材料に分散させると、これらの性質を打ち消しあうように作用するので、温度変化に対する屈折率変化を小さくできることも知られている。また、逆に、温度が上昇すると屈折率が低下する無機粒子を母材となる樹脂材料に分散させると、温度変化に対する屈折率変化を大きくできることも知られている。具体的には、母材となる樹脂材料に30ナノメートル以下、なお、望ましくは、母材となる樹脂材料に20ナノメートル以下、さらに、望ましくは15ナノメートル以下の無機粒子を分散させることにより、任意の温度依存性を有する材料を提供できる。
 例えば、樹脂に酸化アルミニウム(Al)やニオブ酸リチウム(LiNbO)の微粒子を分散させることにより、高い屈折率の樹脂材料が得られるとともに、温度に対する屈折率変化を小さくすることができる。
 請求の範囲第10項に記載の撮像レンズは、請求の範囲第1項から第9項までのいずれか一項に記載の発明において、前記レンズ部の少なくとも1つは、レンズ中心を除く、有効径内の領域において、レンズ面形状の傾きの符号が同じであることを特徴とする。
 吸水による寸法変化が生じると、レンズ中心を除く有効径内の面形状において、特に、凸形状及び凹形状といった箇所に内部応力が生じ易い。ところが、内部応力が発生してしまうと、複屈折や屈折率分布が生じ、光学性能劣化を引き起こしてしまう恐れがある。ここで、レンズ面形状の傾きの符号を同じにすることにより、吸水による寸法変化が生じた際にも、内部応力が少なく性能劣化を抑えた光学系を実現できる。尚、「レンズ面形状の傾きの符号を同じにする」とは、撮像レンズにおいて光軸を含む断面をとり、光軸直交方向を基準方向としたときに、レンズ面形状に沿って光軸から有効径側に向かう間に、レンズ面形状の各点における接線の方向が、基準方向に対して常に同じ側(基準方向に向かって左側もしくは右側)を向いていることをいうものとする。例えば、後述の実施例1である図6のレンズ部L1a~L2bの形状は該当するが、レンズ部L3a、L3bの形状は該当しない。
 請求の範囲第11項に記載の撮像レンズは、請求の範囲第1項から第10項までのいずれか一項に記載の発明において、前記レンズ部の空気と接する全ての面が非球面形状であることを特徴とする。このようにすることで、空気と接している面と前記レンズ部の境界面において、最も屈折率差が大きく非球面の効果を最大限活用できる。また、レンズ面をすべて非球面形状とすることで、諸収差の発生を最小限に押さえることができ、高性能化が容易に可能となる。
 請求の範囲第12項に記載の撮像レンズは、請求の範囲第1項から第11項までのいずれか一項に記載の発明において、前記レンズ基板と、少なくとも1つの前記レンズ部とが、光学薄膜及び接着剤のうち少なくとも一方を介して間接的に形成されていることを特徴とする。
 前記レンズ部と前記レンズ基板との間に、開口絞りや赤外線カットフィルタといった機能を有する光学薄膜を配置して形成することにより、光学部材の簡略化が可能となり、低コスト化が実現できる。また、接着剤等で前記レンズ基板と前記レンズ部を固着することによって、前記レンズ部の樹脂材料のみでは密着性の悪い素材であっても、光学特性を優先して選択することが可能となり、高性能化、高機能化が実現できる。更に、光学薄膜及び接着剤のいずれの場合においても極めて薄いため、光学薄膜及び接着の吸水による寸法変化率はほぼ無視できることから、前記レンズ部と前記レンズ基板との吸水による寸法変化率の差が、光学薄膜や接着剤などを介して間接的に固着されるレンズブロックにおいても、重要なファクターとなる。
 請求の範囲第13項に記載の撮像装置は、請求の範囲第1項から第12項までのいずれか一項に記載の撮像レンズと、光学像を電気的な信号に変換する撮像素子を有し、前記撮像レンズにより前記撮像素子の受光面上に被写体の光学像を形成することを特徴とする。これにより、低コストかつ湿度の高い環境でも使用に耐えうる撮像装置を提供することができる。
 請求の範囲第14項に記載のデジタル機器は、請求の範囲第13項に記載の撮像装置を含み、被写体の静止画撮影、動画撮影の内の少なくとも一方の機能が付加されていることを特徴とする。これにより、低コストかつ湿度の高い環境でも使用に耐えうる、撮像機能を有したデジタル機器を提供することができる。
 請求の範囲第15項に記載のデジタル機器は、請求の範囲第14項に記載の発明において、携帯端末であることを特徴とする。これにより、低コストかつ湿度の高い環境においても使用に耐えうる撮像機能を有した携帯端未を提供することができる。
 請求の範囲第16項に記載の撮像レンズの製造方法は、請求の範囲第1項から第12項までのいずれか一項に記載の撮像レンズの製造方法であって、前記レンズブロックが複数並べられたレンズブロックユニットを形成する工程と、複数の前記レンズブロックユニットを、間隔規定部を介在させてつなげる連結工程と、連結された前記レンズブロックユニットを前記間隔規定部に沿って切断することにより、前記レンズブロック毎に分離する切断工程と、を含むことを特徴とする。これにより、撮像レンズをより低コストで大量生産できるようになる。
 本発明によれば、量産性を確保し、吸水による近軸像点位置の変動による画質劣化を防止した低コストの撮像レンズ、撮像装置、デジタル機器、及び撮像レンズの製造方法を提供することができる。
本実施の形態にかかる撮像装置50の斜視図である。 図1の構成を矢印II-II線で切断して矢印方向に見た断面図である。 撮像装置50を携帯端末としての携帯電話機100に装備した状態を示す図である。 携帯電話機100の制御ブロック図である。 本実施の形態に用いる撮像レンズを製造する工程を示す図である。 実施例1の断面図である。 実施例1にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。 実施例2の断面図である。 実施例2にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。 実施例3の断面図である。 実施例3にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。
符号の説明
 10 撮像レンズ
 50 撮像装置
 51 イメージセンサ
 51a 光電変換部
 52 基板
 60 入力部
 70 表示部
 80 無線通信部
 92 記憶部
 100 携帯電話機
 101 制御部
 LS1、LS2、LS3 レンズ基板
 L1a、L1b、L2a、L2b、L3a、L3b レンズ部
 以下、本発明の実施の形態を図面に基づいて説明する。図1は、本実施の形態にかかる撮像装置50の斜視図であり、図2は、図1の構成を矢印II-II線で切断して矢印方向に見た断面図である。図2に示すように、撮像装置50は、光電変換部51aを有する固体撮像素子としてのCMOS型イメージセンサ51と、このイメージセンサ51の光電変換部51aに被写体像を撮像させる撮像レンズ10と、イメージセンサ51を保持すると共にその電気信号の送受を行う外部接続用端子(不図示)を有する基板52とを備え、これらが一体的に形成されている。尚、撮像レンズ10は、第1レンズブロックBK1と、第2レンズブロックBK2と、第3レンズブロックBK3とを有する。
 上記イメージセンサ51は、その受光側の平面の中央部に、画素(光電変換素子)が2次元的に配置された、受光部としての光電変換部51aが形成されており、不図示の信号処理回路に接続されている。かかる信号処理回路は、各画素を順次駆動し信号電荷を得る駆動回路部と、各信号電荷をデジタル信号に変換するA/D変換部と、このデジタル信号を用いて画像信号出力を形成する信号処理部等から構成されている。また、イメージセンサ51の受光側の平面の外縁近傍には、多数のパッド(図示略)が配置されており、不図示のワイヤを介して基板52に接続されている。イメージセンサ51は、光電変換部51aからの信号電荷をデジタルYUV信号等の画像信号等に変換し、ワイヤ(不図示)を介して基板52上の所定の回路に出力する。ここで、Yは輝度信号、U(=R-Y)は赤と輝度信号との色差信号、V(=B-Y)は青と輝度信号との色差信号である。なお、固体撮像素子は上記CMOS型のイメージセンサに限定されるものではなく、CCD等の他のものを使用しても良い。
 イメージセンサ51を支持する基板52は、不図示の配線により、イメージセンサ51に対して通信可能に接続されている。
 基板52は、不図示の外部接続用端子を介して外部回路(例えば、撮像装置を実装した携帯端末の上位装置が有する制御回路)と接続し、外部回路からイメージセンサ51を駆動するための電圧やクロック信号の供給を受けたり、また、デジタルYUV信号を外部回路へ出力したりすることを可能とする。
 イメージセンサ51の上部は、基板52の上面に固定された赤外線カットフィルタなどのプレートPTにより封止されている。プレートPTの上面には、間隔規定部であるスペーサ部材B3の下端が固定されている。更に、スペーサ部材B3の上端には、第3レンズブロックBK3が固定され、第3レンズブロックBK3の上面には、間隔規定部である別のスペーサ部材B2の下端が固定され、スペーサ部材B2の上端には、第2レンズブロックBK2が固定され、第2レンズブロックBK2の上面には、間隔規定部である別のスペーサ部材B1の下端が固定され、スペーサ部材B1の上端には、第1レンズブロックBK1が固定されている。なお、図示では、間隔規定部としてスペーサ部材B1~B3を別部材で構成した例を示しているが、これに限るものでなく、例えばレンズ基板上に形成されるレンズ部L1b、L2aの少なくとも一方に、間隔規定部としてスペーサ部材B1の機能に相当する形状を一体で形成してもよい。また、レンズ部L2b、L3aの少なくとも一方に、間隔規定部としてスペーサ部材B2の機能に相当する形状を一体で形成してもよい。また、レンズ部L3aに一体で、間隔規定部としてスペーサ部材B2に相当する形状を形成し、レンズ部L3bに一体で、間隔規定部としてスペーサ部材B3に相当する形状を形成してもよい。
 第1レンズブロックBK1は、平行平板であるレンズ基板LS1と、その物体側及び像面側に形成されたレンズ部L1a、L1bとからなり、第2レンズブロックBK2は、平行平板であるレンズ基板LS2と、その物体側及び像面側に形成されたレンズ部L2a、L2bとからなり、第3レンズブロックBK3は、平行平板であるレンズ基板LS3と、その物体側及び像面側に形成されたレンズ部L3a、L3bとからなる。尚、第1レンズ部L1aとレンズ基板LS1との間に、絞りを構成する開口を有する光学薄膜を形成すると好ましい。
 例えば、後述の実施例1の場合、レンズ部L1a、L2b及びL3aの吸水による寸法変化率は、レンズ基板の吸水による寸法変化率よりも大きく、且つ、正のパワーを有するレンズ部L1a、L2b及びL3aが以下の条件式(1)を満足するものである。
0.0 ≦ dn ≦ 150×10-5    (1)
但し、dnとは、レンズ部L1a~L3aの素材であるUV硬化型樹脂材料を95℃絶乾状態に3日間置き測定した屈折率dn1と、60℃90%RHに6日間置き測定した屈折率dn2との差(dn2-dn1)をいう。
 また、後述の実施例1の場合、レンズ部L1a、L2a及びL3bは、以下の条件式(2)を満足する。
0.5 ≦ |f1/f| ≦ 1.1   (2)
但し、f1はレンズ部L1a、L2a及びL3bの物体側と像側が空気に接しているとしたときの焦点距離であり、fは撮像レンズ10全系の合成焦点距離である。
 更に、後述の実施例1の場合、レンズ部L1b、L2a及びL3bは、以下の条件式(3)を満足し、凹面形状を有する。
l/h ≦ 3.5            (3)
但し、lはレンズ部L1b、L2a及びL3bの有効径部最外周からレンズ部L1b、L2a及びL3bの外径までのそれぞれ半径方向の長さであり、hはレンズ部L1b、L2a及びL3bの有効半径である。
 更に、後述の実施例1の場合、レンズ部L1a~L3aの素材であるUV硬化型樹脂材料の吸水による寸法変化率αは以下の条件式(4)を満足する。
|α| ≦ 3.0%           (4)
但し、寸法変化率αとは、レンズ部L1a~L3aの素材であるUV硬化型樹脂材料を95℃絶乾状態に3日間置き測定した寸法w1と、60℃90%RHに6日間置き測定した寸法w2との差(w2-w1)における、絶乾時寸法w1に対する変化量の割合(w2-w1)/w1×100[%]をいう。
 更に、後述の実施例1の場合、レンズ部L1a~L3aの素材であるUV硬化型樹脂材料は以下の条件式(5)を満足する。
ρ ≦ 4.5%             (5)
但し、ρは吸水率であり、レンズ部L1a~L3aの素材であるUV硬化型樹脂材料を95℃絶乾状態に3日間置き測定した重量m1と、60℃90%RHに6日間置き測定した重量m2との差(m2-m1)における、絶乾時重量m1に対する変化量の割合(m2-m1)/m1×100「%]をいう。
 更に、後述の実施例1の場合、レンズ部L1a~L2bは、レンズ中心を除く有効径内の領域において、レンズ面形状の傾きの符号が同じである。レンズブロックBK1、BK2、BK3において、レンズ基板LS1、LS2、LS3がガラス材料からなり、空気に接するレンズ面が全て非球面であるレンズ部L1a~L3bは樹脂材料からなる。尚、レンズ部L1a~L3aは、最大長30ナノメートル以下の無機微粒子を分散させたUV硬化型樹脂材料からなると好ましい。
 上述した撮像装置50の使用態様について説明する。図3は、撮像装置50をデジタル機器である携帯端末としての携帯電話機100に装備した状態を示す図である。また、図4は携帯電話機100の制御ブロック図である。
 撮像装置50は、例えば、撮像レンズの物体側端面が携帯電話機100の背面(液晶表示部側を正面とする)に設けられ、液晶表示部の下方に相当する位置になるよう配設される。
 撮像装置50の外部接続用端子(不図示)は、携帯電話機100の制御部101と接続され、輝度信号や色差信号等の画像信号を制御部101側に出力する。
 一方、携帯電話機100は、図4に示すように、各部を統括的に制御すると共に、各処理に応じたプログラムを実行する制御部(CPU)101と、番号等をキーにより支持入力するための入力部60と、撮像した画像や映像等を表示する表示部70と、外部サーバとの間の各種情報通信を実現するための無線通信部80と、携帯電話機100のシステムプログラムや各種処理プログラム及び端末ID等の必要な諸データを記憶している記憶部(ROM)91と、制御部101によって実行される各種処理プログラムやデータ、若しくは処理データ、或いは撮像装置50による撮像データ等を一時的に格納する作業領域として用いられる一時記憶部(RAM)92とを備えている。
 携帯電話機100を把持する撮影者が、被写体に対して撮像装置50の撮像レンズ10を向けると、イメージセンサ51に静止画又は動画の画像信号が取り込まれる。所望のシャッタチャンスで、図3に示すボタンBTを撮影者が押すことでレリーズが行われ、画像信号が撮像装置50に取り込まれることとなる。撮像装置50から入力された画像信号は、上記携帯電話機100の制御系に送信され、記憶部92に記憶されたり、或いは表示部70で表示され、さらには、無線通信部80を介して映像情報として外部に送信されることとなる。
 本実施の形態にかかる撮像レンズの製造方法について説明する。図5は、本実施の形態にかかる撮像レンズを製造する工程を示す図である。まず、図5(a)の断面図に示すような、複数のレンズブロックBKを二次元的に並べて含むレンズブロックユニットUTを製造する。かかるレンズブロックユニットUTは、例えば、多数のレンズLを同時に作製できるとともに低コストであるレプリカ法で製造することができる(なお、レンズブロックユニットUTに含まれるレンズブロックBKの数は単数であっても複数であってもよい)。
 また、レプリカ法とは、レンズウェハ上に、金型を用いて硬化性の樹脂をレンズ形状にして転写するものである。つまり、レプリカ法では、レンズウェハ上に、多数のレンズが同時に作製されることとなる。
 そして、これらのような方法によって製造されたレンズブロックユニットUTから、撮像レンズ10が製造される。この撮像レンズの製造工程の一例を、図5(b)の概略断面図で示す。
 第1のレンズブロックユニットUT1は、平行平板である第1レンズ基板LS1と、その一方の平面に形成された複数の第1レンズ部L1aと、他方の平面に形成された複数の第2レンズ部L1bと、で構成される。このとき、第1レンズ基板LS1とレンズ部L1aとは、光学薄膜で形成された絞りを介して形成されている。絞りや赤外線カットフィルタをレンズ基板上に設けると、別に設ける場合よりも、構成部材を削減できるので好ましい。更に、レンズ基板上に透明薄膜、例えば、反射防止コートを設ければ、レンズ部とレンズ基板での反射を防止でき、フレアやゴーストを低減できる。尚、レンズ基板LS1上に、レンズ部L1aおよびL1bを直接形成することが好ましいが、接着剤等を用いて形成されたものでもよい。
 第2のレンズブロックユニットUT2は、平行平板である第2レンズ基板LS2と、その一方の平面に形成された複数の第3レンズL2aと、他方の平面に形成された複数の第4レンズL2bと、で構成される。同様に、レンズ基板上に反射防止コートを設ければ、レンズ部とレンズ基板での反射を防止でき、フレアやゴーストを低減できる。尚、レンズ基板LS2上に、レンズ部L2aおよびL2bを直接形成することが好ましいが、接着剤等を用いて形成されたものでもよい。
 第3のレンズブロックユニットUT3は、平行平板である第3レンズ基板LS3と、その一方の平面に形成された複数の第5レンズL3aと、他方の平面に形成された複数の第6レンズL3bと、で構成される。同様に、レンズ基板上に反射防止コートを設ければ、レンズ部とレンズ基板での反射を防止でき、フレアやゴーストを低減できる。尚、レンズ基板LS3上に、レンズ部L3aおよびL3bを直接形成することが好ましいが、接着剤等を用いて形成されたものでもよい。
 間隔規定部としての格子状のスペーサ部材(スペーサ)B1を、第1のレンズブロックユニットUT1と第2のレンズブロックユニットUT2との間(具体的には、第1レンズ基板LS1と第2レンズ基板LS2との間)に介在させ、両レンズブロックユニットUT1、UT2の間隔を一定に保つ。さらに、間隔規定部としての別のスペーサ部材B2を、第2のレンズブロックユニットUT2と第3のレンズブロックユニットUT3との間に介在させ、両レンズブロックユニットUT2、UT3との間隔を一定に保つ。さらに、間隔規定部としての別のスペーサ部材B3を、プレートPTと第3のレンズブロックユニットUT3との間に介在させ、プレートPTとレンズブロックユニットUT3との間隔を一定に保つ(つまり、スペーサ部材B1、B2、B3は3段格子といえる)。かかる状態で、スペーサ部材B1、B2、B3の格子の穴の部分に、各レンズ部L1a~L3bが位置する。
 なお、プレートPTは、マイクロレンズアレイを含むウェハレベルのセンサーチップサイズパッケージ、あるいはセンサーカバーガラスまたは赤外線カットフィルタ等の平行平面板である。
 ここで、スペーサ部材B1が、第1のレンズブロックユニットUT1と第2のレンズブロックユニットUT2との間に介在し、スペーサ部材B2が、第2のレンズブロックユニットUT2と第3のレンズブロックユニットUT3との間に介在し、スペーサ部材B3が、第3のレンズブロックユニットUT3とプレートPTとの間に介在することで、レンズ基板LS同士(第2レンズL1b~第6レンズL3b)が封止され一体化する。
 そして、一体化した第1レンズ基板LS1、第2レンズ基板LS2、第3レンズ基板LS3、スペーサ部材B1、B2、B3及びプレートPTが、スペーサ部材B1、B2、B3の格子枠(破線Qの位置)に沿って切断されると、図5(c)に示すように、レンズブロック毎にそれぞれ一体化した3枚玉構成の撮像レンズ10が複数得られることとなる。プレートPTが赤外線カットフィルタ等の平行平面板の場合は、その後、図示していないが、イメージセンサ51をプレートPTと基板52との間に挟持するようにして、撮像レンズ10を基板52に取り付けることで、図2に示す撮像装置を得ることができる。
 このように、複数のレンズブロックBK(第1レンズブロックBK1、第2レンズブロックBK2および第3レンズブロックBK3)の組み込まれた部材が切り離されることで、撮像レンズ10が製造されると、撮像レンズ10毎のレンズ間隔の調整および組み立てが不要になる。そのため、高画質が期待される撮像装置の大量生産が可能となる。
 しかも、間隔規定部であるスペーサ部材B1、B2、B3が格子形状であるため、このスペーサ部材B1、B2、B3が、複数のレンズブロックBKの組み込まれた部材から撮像レンズ10を切り離す場合の印にもなる。したがって、複数のレンズブロックBKに組み込まれた部材から撮像レンズ10を容易に切り出すことができ、手間がかからない。その結果、撮像レンズ10を安価に大量生産できる。
 以上を踏まえると、撮像レンズ10の製造方法は、レンズブロックBKが複数並べられたレンズブロックユニットUTを形成する工程と、レンズブロックユニットUTを間隔規定部である格子状のスペーサ部材を介在させてつなげる連結工程と、連結されたレンズブロックユニットUTを間隔規定部の格子枠に沿って切断することにより、レンズブロック毎に分離する切断工程と、を含むものといえる。このような製造方法は、安価なレンズ系の量産に向いている。尚、単一のレンズブロックユニットをプレートにつなげるのみでも良い。
 尚、レンズブロックユニットを、間隔規定部であるスペーサ部材を介して接着する例で説明したが、これに限るものでなく、レンズ基板上に形成されるレンズ部の少なくとも一方の光学有効面以外の部位に、間隔規定部として、スペーサ部材に相当する機能部を一体で形成したものであってもよい。
 次に、上述した実施の形態に好適な実施例について説明する。但し、以下に示す実施例により本発明が限定されるものではない。実施例における各符号の意味は以下の通りである。
Fl  :撮像レンズ全系の焦点距離
BF  :バックフォーカス
Fno :Fナンバー
Ymax:像面の対角長さ
r   :レンズ面の近軸曲率半径
d   :レンズの面間隔
Nd  :レンズのd線における屈折率
νd  :レンズのd線におけるアッベ数
w   :半画角
TL  :レンズ全長
*   :非球面位置
stop:絞り位置
 また、本発明における非球面形状は以下のように定義する。すなわち、面頂点の接平面からの光軸方向の距離(サグ量)をX、光軸からの高さをhとして、Rを近軸曲率半径、Kを円錐定数、A(=4、6、8、…、14)を第n次の非球面係数としたとき、Xは以下の数式[数1]で表せるものとする。
Figure JPOXMLDOC01-appb-M000001
 (実施例1)
 第1実施例におけるレンズデータを表1に示す。尚、以降の表中では、10のべき乗数(例えば、2.5×10-3)を、e(例えば、2.5×e-03)を用いて表すものとする。以下の実施例1のコンストラクションデータ表1内に記載したF値、半画角、全長、バックフォーカスはすべて、レンズ全長、有限の物体距離、つまり表内の物体距離における実効値である。また、バックフォーカスとは、レンズ最終面から近軸像面までの距離を空気換算長により表記し、レンズ全長とは、レンズ最前面からレンズ最終面までの距離にバックフォーカスを加えたものである。
Figure JPOXMLDOC01-appb-T000002
 図6は実施例1のレンズの断面図である。図7は、実施例1にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。ここで、球面収差図において、一点鎖線はg線、実線はd線、破線はC線に対する球面収差量をそれぞれ表す。また、非点収差図において、実線はサジタル面、破線はメリディオナル面をそれぞれ表す。
 実施例1の撮影レンズは、3つのレンズブロックを有する。より具体的には、物体側から順に、第1レンズ部L1a、光学薄膜からなる開口絞りS、第1レンズ基板LS1、第2レンズ部L1bより、第1レンズブロックBK1が構成され、次に、第3レンズ部L2a、第2レンズ基板LS2、第4レンズ部L2bより、第2レンズブロックBK2が構成され、最後に、第5レンズ部L3a、第3レンズ基板LS3、第6レンズ部L3bより、第3レンズブロックBK3が構成される。また、全ての空気と接するレンズ部の面は非球面形状である。
 (実施例2)
 第2実施例におけるレンズデータを表2に示す。
Figure JPOXMLDOC01-appb-T000003
 図8は実施例2のレンズの断面図である。図9は、実施例2にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。ここで、球面収差図において、一点鎖線はg線、実線はd線、破線はC線に対する球面収差量をそれぞれ表す。また、非点収差図において、実線はサジタル面、破線はメリディオナル面をそれぞれ表す。
 実施例2の撮影レンズは、2つのレンズブロックを有する。より具体的には、物体側から順に、第1レンズ部L1a、光学薄膜からなる開口絞りS、第1レンズ基板LS1、第2レンズ部L1bより、第1レンズブロックBK1が構成され、次に、第3レンズ部L2a、第2レンズ基板LS2、第4レンズ部L2bより、第2レンズブロックBK2が構成される。また、全ての空気と接するレンズ部の面は非球面形状である。
 (実施例3)
 第3実施例におけるレンズデータを表2に示す。
Figure JPOXMLDOC01-appb-T000004
 図10は実施例3のレンズの断面図である。図11は、実施例3にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。ここで、球面収差図において、一点鎖線はg線、実線はd線、破線はC線に対する球面収差量をそれぞれ表す。また、非点収差図において、実線はサジタル面、破線はメリディオナル面をそれぞれ表す。
 実施例3の撮影レンズは、2つのレンズブロックを有する。より具体的には、物体側から順に、第1レンズ部L1a、光学薄膜からなる開口絞りS、第1レンズ基板LS1、第2レンズ部L1bより、第1レンズブロックBK1が構成され、次に、第3レンズ部L2a、第2レンズ基板LS2、第4レンズ部L2bより、第2レンズブロックBK2が構成される。また、全ての空気と接するレンズ部の面は非球面形状である。
 実施例1~3の各条件式に対応する値を表4に示す。
Figure JPOXMLDOC01-appb-T000005
 ここで、実施例1の撮像レンズを例にとり、本発明における、吸水による近軸像点位置の変動を補正する効果のあるレンズ部を有する場合と、有さない場合の吸水時の近軸像点位置の変動量の違いを示す。実施例1の樹脂材料は、Ndが1.52、νdが57のエポキシ系を含むUV硬化樹脂である低分散樹脂材料と、Ndが1.55、νdが32のエポキシ系を含むUV硬化樹脂である高分散樹脂材料を使用している。本実施例では、2種類の樹脂材料を使用しているが、1種類もしくは、3種類以上の樹脂材料を使用しても構わない。
 実施例1の低分散樹脂材料を、95℃絶乾状態で3日間置き、屈折率dn1Lを測定してから、60℃90%RHに6日間置き、屈折率dn2Lを測定した。その屈折率dn2Lと、初めの完全に乾燥させた状態での屈折率dn1Lとの差dnLは、30×10-5であった。又、実施例1の高分散樹脂材料を95℃絶乾状態で3日間置き、屈折率dn1Hを測定してから、60℃90%RHに6日間置き、屈折率dn2Hを測定した。その屈折率dn2Hと、初めの完全に乾燥させた状態での屈折率dn1Hとの差dnHは、260×10-5であった。吸水によって屈折率のみが変化したと仮定すると、近軸像点位置の変動量は-0.001[mm]となる。
 一方、比較例1として、吸水による屈折率変化が条件式(1)を満足しないような既存の低分散樹脂材料を95℃絶乾状態で3日間置き、屈折率dn1L’を測定してから、60℃90%RHに6日間置き、屈折率dn2L’を測定した。その屈折率dn1L’と、初めの完全に乾燥させた状態での屈折率dn2L’との差dnL’は、200×10-5であった。又、高分散樹脂材料は、実施例1と同じ95℃絶乾状態で3日間置き、屈折率dn1H’を測定してから、60℃90%RHに6日間置き、屈折率dn2H’を測定した。その屈折率dn2H’と、初めの完全に乾燥させた状態での屈折率dn1H’との差dnH’は、260×10-5であるものを使用した。かかる比較例を使用した場合、吸水によって屈折率のみが変化したと仮定すると、近軸像点位置の変動量は-0.017[mm]となる。
 実施例1の撮像レンズのF値は2.88で、撮像レンズと組み合わされる撮像素子の画素ピッチが1.70μm以上の例えば1.75μmの場合、焦点深度はおよそ2εF(但し、εは許容錯乱円、FはF値)で表されることから、許容錯乱円を2画素ピッチと仮定すると、焦点深度は20.2μmとなる。この値は、設計値となる像面を略中心とした、光軸方向での範囲であるため、吸水による設計値の近軸像点位置の変動量としては半分の10.1μm以下に納まっていることが望ましい。実施例1の高分散樹脂材料を95℃絶乾状態で3日間置き屈折率dn1Hを測定してから、60℃90%RHに6日間置き屈折率dn2Hを測定し、その屈折率dn2Hと、初めの完全に乾燥させた状態での屈折率dn1Hとの差dnHが260×10-5である場合において、実施例1の低分散樹脂材料を、95℃絶乾状態で3日間置き屈折率dn1Lを測定してから、60℃90%RHに6日間置き屈折率dn2Lを測定し、その屈折率dn2Lと、初めの完全に乾燥させた状態での屈折率dn1Lとの差dnLの値が、30×10-5、70×10-5、110×10-5、150×10-5、190×10-5、200×10-5、220×10-5のとき、吸水によって屈折率のみが変化したと仮定すると、近軸像点位置の変動量は以下の表5の通りである。
Figure JPOXMLDOC01-appb-T000006
 以上のように、吸水後の屈折率dn2Lと完全に乾燥させた状態での屈折率dn1Lとの差dnLが150×10-5以下であれば、吸湿による近軸像点位置の変動があっても実用上問題ないことがわかる。
 なお、今後画素ピッチが狭くなっていくことが予想されるが、例えば画素ピッチが1.0μm以上の場合においても、屈折率dn1Lとの差dnLが100×10-5以下であれば吸湿による近軸像点位置の変動による影響による問題は発生しない。
 次に、実施例2の撮像レンズを例にとり、本発明における、吸水による近軸像点位置の変動を補正する効果のあるレンズ部を有する場合と、有さない場合の吸水時の近軸像点位置の変動量の違いを示す。
 実施例2の樹脂材料は、Ndが1.51、νdが57のエポキシ系を含むUV硬化樹脂である低分散樹脂材料と、Ndが1.57、νdが34のエポキシ系を含むUV硬化樹脂である高分散樹脂材料を使用している。本実施例では、2種類の樹脂材料を使用しているが、1種類もしくは、3種類以上の樹脂材料を使用しても構わない。
 実施例2の低分散樹脂材料を、95℃絶乾状態で3日間置き屈折率dn1Lを測定してから、60℃90%RHに6日間置き、屈折率dn2Lを測定した。その屈折率dn2Lと、初めの完全に乾燥させた状態での屈折率dn1Lとの差dnLは、100×10-5であった。又、実施例2の高分散樹脂材料を95℃絶乾状態で3日間置き、屈折率dn1Hを測定してから、60℃90%RHに6日間置き、屈折率dn2Hを測定した。その屈折率dn2Hと、初めの完全に乾燥させた状態での屈折率dn1Hとの差dnHは、60×10-5であった。吸水によって屈折率のみが変化したと仮定すると、近軸像点位置の変動量は-0.008[mm]となる。
 一方、比較例2として、吸水による屈折率変化が条件式(1)を満足しないような既存の低分散樹脂材料を95℃絶乾状態で3日間置き、屈折率dn1L’を測定してから、60℃90%RHに6日間置き、屈折率dn2L’を測定した。その屈折率dn1L’と、初めの完全に乾燥させた状態での屈折率dn2L’との差dnL’は、200×10-5であった。又、高分散樹脂材料は、実施例2と同じ95℃絶乾状態で3日間置き、屈折率dn1Hを測定してから、60℃90%RHに6日間置き、屈折率dn2Hを測定した。その屈折率dn2Hと、初めの完全に乾燥させた状態での屈折率dn1Hとの差dnHは、60×10-5であるものを使用した。かかる比較例を使用した場合、吸水によって屈折率のみが変化したと仮定すると、近軸像点位置の変動量は-0.016[mm]となる。
 次に、実施例3の撮像レンズを例にとり、本発明における、吸水による近軸像点位置の変動を補正する効果のあるレンズ部を有する場合と、有さない場合の吸水時の近軸像点位置の変動量の違いを示す。
 実施例3の樹脂材料は、Ndが1.52、νdが55のエポキシ系を含むUV硬化樹脂である低分散樹脂材料と、Ndが1.57、νdが34のエポキシ系を含むUV硬化樹脂である高分散樹脂材料を使用している。本実施例では、2種類の樹脂材料を使用しているが、1種類もしくは、3種類以上の樹脂材料を使用しても構わない。
 実施例3の低分散樹脂材料を、95℃絶乾状態で3日間置き、屈折率dn1Lを測定してから、60℃90%RHに6日間置き、屈折率dn2Lを測定した。その屈折率dn2Lと、初めの完全に乾燥させた状態での屈折率dn1Lとの差dnLは、140×10-5であった。又、実施例3の高分散樹脂材料を95℃絶乾状態で3日間置き、屈折率dn1Hを測定してから、60℃90%RHに6日間置き、屈折率dn2Hを測定した。その屈折率dn2Hと、初めの完全に乾燥させた状態での屈折率dn1Hとの差dnHは、60×10-5であった。吸水によって屈折率のみが変化したと仮定すると、近軸像点位置の変動量は-0.011[mm]となる。
 一方、比較例3として、吸水による屈折率変化が条件式(1)を満足しないような既存の低分散樹脂材料を95℃絶乾状態で3日間置き、屈折率dn1L’を測定してから、60℃90%RHに6日間置き、屈折率dn2L’を測定した。その屈折率dn1L’と、初めの完全に乾燥させた状態での屈折率dn2L’との差dnL’は、200×10-5であった。又、高分散樹脂材料は、実施例3と同じ95℃絶乾状態で3日間置き、屈折率dn1Hを測定してから、60℃90%RHに6日間置き、屈折率dn2Hを測定した。その屈折率dn2Hと、初めの完全に乾燥させた状態での屈折率dn1Hとの差dnHは、60×10-5であるものを使用した。かかる比較例を使用した場合、吸水によって屈折率のみが変化したと仮定すると、近軸像点位置の変動量は-0.017[mm]となる。
 本発明に係るレンズ部を含まない比較例と比較すると、吸水時の屈折率の変化による近軸像点位置の変動量が小さく抑えられていることが分かる。また、各レンズ部に異なった寸法変化率αと屈折率変化dnを有する樹脂材料を使用してもよく、その場合は、それぞれのレンズの吸水時の近軸像点位置の変動の寄与の大きさを考慮して、設計をすることで、撮像レンズ全体で吸水による近軸像点位置の変動をほとんど生じないようにすることも可能となる。

Claims (16)

  1.  平行平板であるレンズ基板の物体側面及び像側面のうち少なくとも一方に、正のパワーを有するレンズ部が形成されたレンズブロックを少なくとも1つ有し、前記レンズ部は、前記レンズ基板と材質が異なるエネルギー硬化型樹脂材料で形成され、前記レンズ部のうち少なくとも1つの正のパワーを持つレンズ部は、吸水による寸法変化率が、前記レンズ基板の吸水による寸法変化率よりも大きく、且つ、以下の条件式(1)を満足することを特徴とする撮像レンズ。
     0.0 ≦ dn ≦ 150×10-5    (1)
    但し、dnとは、前記エネルギー硬化型樹脂材料を95℃絶乾状態に3日間置き測定した屈折率dn1と、60℃90%RHに6日間置き測定した屈折率dn2との差(dn2-dn1)をいう。
  2.  前記レンズ部のうち少なくとも1つは、以下の条件式(2)を満足することを特徴とする請求の範囲第1項に記載の撮像レンズ。
     0.5 ≦ |f1/f| ≦ 1.1     (2)
    但し、f1は前記レンズ部の物体側と像側が空気に接しているとしたときの焦点距離であり、fは前記撮像レンズ全系の合成焦点距離である。
  3.  前記条件式(1)を満足するレンズ部は、前記撮像レンズにおいて最も物体側に配置されていることを特徴とする請求の範囲第1項に記載の撮像レンズ。
  4.  前記条件式(2)を満足するレンズ部は、前記撮像レンズにおいて最も物体側に配置されていることを特徴とする請求の範囲第2項に記載の撮像レンズ。
  5.  前記レンズ部のうち少なくとも1つは、以下の条件式(3)を満足し、凹面形状を有することを特徴とする請求の範囲第1項から第4項までのいずれか一項に記載の撮像レンズ。
     l/h ≦ 3.5               (3)
    但し、lは前記レンズ部の光学面部最外周から前記レンズ部の外径までの半径方向の長さであり、hは前記レンズ部の有効半径である。
  6.  前記レンズ部の少なくとも1つに用いる前記エネルギー硬化型樹脂材料の吸水による寸法変化率αは、以下の条件式(4)を満足することを特徴とする請求の範囲第1項から第5項までのいずれか一項に記載の撮像レンズ。
     |α| ≦ 3.0%           (4)
    但し、寸法変化率αとは、前記エネルギー硬化型樹脂材料を95℃絶乾状態に3日間置き測定した寸法w1と、60℃90%RHに6日間置き測定した寸法w2との差(w2-w1)における、絶乾時寸法w1に対する変化量の割合(w2-w1)/w1×100[%]をいう。
  7.  前記レンズ部の少なくとも1つに用いる前記エネルギー硬化型樹脂材料は、以下の条件式(5)を満足することを特徴とする請求の範囲第1項から第6項までのいずれか一項に記載の撮像レンズ。
     ρ ≦ 4.5%             (5)
    但し、ρは吸水率であり、前記エネルギー硬化型樹脂材料を95℃絶乾状態に3日間置き測定した重量m1と、60℃90%RHに6日間置き測定した重量m2との差(m2-m1)における、絶乾時重量m1に対する変化量の割合(m2-m1)/m1×100[%]をいう。
  8.  前記エネルギー硬化型樹脂材料は、UV硬化型樹脂材料であることを特徴とする請求の範囲第1項から第7項までのいずれか一項に記載の撮像レンズ。
  9.  前記レンズ部の少なくとも1つに用いる前記エネルギー硬化型樹脂材料に最大長30ナノメートル以下の無機微粒子を分散させたことを特徴とする請求の範囲第1項から第8項までのいずれか一項に記載の撮像レンズ。
  10.  前記レンズ部の少なくとも1つは、レンズ中心を除く、有効径内の領域において、レンズ面形状の傾きの符号が同じであることを特徴とする請求の範囲第1項から第9項までのいずれか一項に記載の撮像レンズ。
  11.  前記レンズ部の空気と接する全ての面が非球面形状であることを特徴とする請求の範囲第1項から第10項までのいずれか一項に記載の撮像レンズ。
  12.  前記レンズ基板と、少なくとも1つの前記レンズ部とが、光学薄膜及び接着剤のうち少なくとも一方を介して間接的に形成されていることを特徴とする請求の範囲第1項から第11項までのいずれか一項に記載の撮像レンズ。
  13.  請求の範囲第1項から第12項までのいずれか一項に記載の撮像レンズと光学像を電気的な信号に変換する撮像素子を有し、前記撮像レンズにより前記撮像素子の受光面上に被写体の光学像を形成することを特徴とする撮像装置。
  14.  請求の範囲第13項に記載の撮像装置を含み、被写体の静止画撮影、動画撮影のうちの少なくとも一方の機能が付加されていることを特徴とするデジタル機器。
  15.  前記デジタル機器は、携帯端末であることを特徴とする請求の範囲第14項に記載のデジタル機器。
  16.  請求の範囲第1項から第12項までのいずれか1項に記載の撮像レンズの製造方法であって、
     前記レンズブロックが複数並べられたレンズブロックユニットを形成する工程と、
     複数の前記レンズブロックユニットを、間隔規定部を介在させてつなげる連結工程と、
     連結された前記レンズブロックユニットを前記間隔規定部に沿って切断することにより、前記レンズブロック毎に分離する切断工程と、を含むことを特徴とする撮像レンズの製造方法。
PCT/JP2009/055046 2008-03-21 2009-03-16 撮像レンズ、撮像装置、デジタル機器、及び撮像レンズの製造方法 WO2009116492A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010503864A JP5267825B2 (ja) 2008-03-21 2009-03-16 撮像レンズ、撮像装置、デジタル機器、及び撮像レンズの製造方法
US12/933,156 US8368786B2 (en) 2008-03-21 2009-03-16 Image pickup lens including at least one lens block wherein a lens portion or lens portions are formed on a lens substrate, image pickup device, digital apparatus and manufacturing method of image pickup lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-073348 2008-03-21
JP2008073348 2008-03-21

Publications (1)

Publication Number Publication Date
WO2009116492A1 true WO2009116492A1 (ja) 2009-09-24

Family

ID=41090894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055046 WO2009116492A1 (ja) 2008-03-21 2009-03-16 撮像レンズ、撮像装置、デジタル機器、及び撮像レンズの製造方法

Country Status (3)

Country Link
US (1) US8368786B2 (ja)
JP (1) JP5267825B2 (ja)
WO (1) WO2009116492A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100188759A1 (en) * 2009-01-27 2010-07-29 Konica Minolta Opto, Inc. Image Pickup Lens, Image Pickup Apparatus, Mobile Terminal, and Manufacturing Method of Image Pickup Lens
WO2011040226A1 (ja) * 2009-09-30 2011-04-07 コニカミノルタオプト株式会社 撮像用レンズ
JP2011097144A (ja) * 2009-10-27 2011-05-12 Toppan Printing Co Ltd カメラモジュール及びその製造方法
WO2011055623A1 (ja) * 2009-11-09 2011-05-12 コニカミノルタオプト株式会社 撮像用レンズ、撮像装置及び電子機器の製造方法
JP2011145491A (ja) * 2010-01-14 2011-07-28 Sharp Corp 撮像レンズ、撮像モジュール、および、携帯情報機器
US8054564B1 (en) 2010-05-07 2011-11-08 Digitaloptics Corporation East Optical device and associated methods
US8373936B2 (en) 2010-04-12 2013-02-12 Sharp Kabushiki Kaisha Image sensing lens and image sensing module
US8400718B2 (en) 2009-07-14 2013-03-19 Sharp Kabushiki Kaisha Image pickup lens and image pickup module
US8462448B2 (en) 2009-08-07 2013-06-11 Sharp Kabushiki Kaisha Image sensing module, imaging lens and code reading method
US8520127B2 (en) 2009-10-08 2013-08-27 Sharp Kabushiki Kaisha Image pickup lens comprising aperture stop and single lens, image pickup module comprising image pickup lens including aperture stop and single lens, method for manufacturing image pickup lens comprising aperture stop and single lens, and method for manufacturing image pickup module comprising image pickup lens including aperture stop and single lens

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9419032B2 (en) * 2009-08-14 2016-08-16 Nanchang O-Film Optoelectronics Technology Ltd Wafer level camera module with molded housing and method of manufacturing
JP2011090018A (ja) * 2009-09-24 2011-05-06 Sharp Corp 撮像レンズ、撮像モジュール、撮像レンズの製造方法、および、撮像モジュールの製造方法
JP2012220590A (ja) 2011-04-05 2012-11-12 Sharp Corp 撮像レンズおよび撮像モジュール
JP5794032B2 (ja) * 2011-08-12 2015-10-14 ソニー株式会社 光学ユニット、光学ユニットの製造方法、および撮像装置
US10191255B2 (en) * 2016-09-22 2019-01-29 Omnivision Technologies, Inc. Four-element athermal lens
US10288854B2 (en) 2016-11-30 2019-05-14 Omnivision Technologies, Inc. Athermal compound lens
KR20180135734A (ko) * 2017-06-13 2018-12-21 엘지전자 주식회사 카메라 장치를 포함하는 전자장치 및 카메라 장치의 제조방법
DE102019008226A1 (de) * 2019-11-26 2021-05-27 Karl Storz Se & Co. Kg Linsensystem für ein Videoendoskop, Endoskop-Objektiv, Videoendoskop, und Montageverfahren

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0229408A (ja) * 1988-07-20 1990-01-31 Hitachi Ltd 低吸水性透明プラスチツク
JPH07281089A (ja) * 1994-04-12 1995-10-27 Olympus Optical Co Ltd 撮影レンズ
JP2000281725A (ja) * 1999-03-31 2000-10-10 Dainippon Ink & Chem Inc 光学レンズ用紫外線硬化型樹脂組成物およびこれを用いた光学素子
JP2005338109A (ja) * 2004-05-24 2005-12-08 Mitsui Chemicals Inc 硫黄原子含有樹脂光学材料
JP2005539276A (ja) * 2002-09-17 2005-12-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ カメラ・デバイス、ならびに、カメラ・デバイスおよびウェハスケールパッケージの製造方法
JP2006323365A (ja) * 2005-05-18 2006-11-30 Samsung Electro-Mechanics Co Ltd ウェーハスケールレンズ及びこれを具備する光学系
JP2007127953A (ja) * 2005-11-07 2007-05-24 Konica Minolta Opto Inc 撮像光学系、撮像レンズ装置及びデジタル機器
JP2007126636A (ja) * 2005-10-03 2007-05-24 Canon Inc 光学用複合材料及び光学素子
JP3926380B1 (ja) * 2006-12-07 2007-06-06 マイルストーン株式会社 撮像レンズ
JP3926479B2 (ja) * 1998-05-29 2007-06-06 カヤバ工業株式会社 オイルダンパ
JP2007137984A (ja) * 2005-11-17 2007-06-07 Konica Minolta Opto Inc 複合材料及び光学素子
JP3946245B1 (ja) * 2007-03-08 2007-07-18 マイルストーン株式会社 撮像レンズ
JP2007231237A (ja) * 2006-03-03 2007-09-13 Konica Minolta Opto Inc 有機無機複合材料及び光学素子並びに有機無機複合材料の製造方法
WO2007116721A1 (ja) * 2006-04-07 2007-10-18 Konica Minolta Opto, Inc. 光学用有機無機複合材料及び光学素子
WO2007119512A1 (ja) * 2006-04-05 2007-10-25 Konica Minolta Opto, Inc. 光学素子及び光学用樹脂レンズ
JP2007284650A (ja) * 2006-03-24 2007-11-01 Mitsubishi Chemicals Corp 硬化性組成物
JP4022246B1 (ja) * 2007-05-09 2007-12-12 マイルストーン株式会社 撮像レンズ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4327987B2 (ja) * 2000-04-24 2009-09-09 オリンパス株式会社 ズーム光学系
EP1357414B1 (en) * 2002-04-16 2005-07-27 Konica Corporation Miniature lens for image capturing and mobile device provided therewith
JP3717486B2 (ja) * 2003-03-10 2005-11-16 フジノン株式会社 撮像レンズ
JP4765822B2 (ja) * 2006-08-04 2011-09-07 大日本印刷株式会社 熱転写受像シートの製造方法
JP3929479B1 (ja) * 2006-12-21 2007-06-13 マイルストーン株式会社 撮像レンズ
JP5212354B2 (ja) * 2007-02-19 2013-06-19 コニカミノルタアドバンストレイヤー株式会社 撮像レンズ、撮像装置、携帯端末、および撮像レンズの製造方法
JP4293291B2 (ja) * 2007-02-19 2009-07-08 コニカミノルタオプト株式会社 撮像レンズ及び撮像装置並びに携帯端末
JP5267773B2 (ja) * 2008-02-22 2013-08-21 コニカミノルタアドバンストレイヤー株式会社 撮像レンズ、撮像装置、デジタル機器、及び撮像レンズの製造方法

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0229408A (ja) * 1988-07-20 1990-01-31 Hitachi Ltd 低吸水性透明プラスチツク
JPH07281089A (ja) * 1994-04-12 1995-10-27 Olympus Optical Co Ltd 撮影レンズ
JP3926479B2 (ja) * 1998-05-29 2007-06-06 カヤバ工業株式会社 オイルダンパ
JP2000281725A (ja) * 1999-03-31 2000-10-10 Dainippon Ink & Chem Inc 光学レンズ用紫外線硬化型樹脂組成物およびこれを用いた光学素子
JP2005539276A (ja) * 2002-09-17 2005-12-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ カメラ・デバイス、ならびに、カメラ・デバイスおよびウェハスケールパッケージの製造方法
JP2005338109A (ja) * 2004-05-24 2005-12-08 Mitsui Chemicals Inc 硫黄原子含有樹脂光学材料
JP2006323365A (ja) * 2005-05-18 2006-11-30 Samsung Electro-Mechanics Co Ltd ウェーハスケールレンズ及びこれを具備する光学系
JP2007126636A (ja) * 2005-10-03 2007-05-24 Canon Inc 光学用複合材料及び光学素子
JP2007127953A (ja) * 2005-11-07 2007-05-24 Konica Minolta Opto Inc 撮像光学系、撮像レンズ装置及びデジタル機器
JP2007137984A (ja) * 2005-11-17 2007-06-07 Konica Minolta Opto Inc 複合材料及び光学素子
JP2007231237A (ja) * 2006-03-03 2007-09-13 Konica Minolta Opto Inc 有機無機複合材料及び光学素子並びに有機無機複合材料の製造方法
JP2007284650A (ja) * 2006-03-24 2007-11-01 Mitsubishi Chemicals Corp 硬化性組成物
WO2007119512A1 (ja) * 2006-04-05 2007-10-25 Konica Minolta Opto, Inc. 光学素子及び光学用樹脂レンズ
WO2007116721A1 (ja) * 2006-04-07 2007-10-18 Konica Minolta Opto, Inc. 光学用有機無機複合材料及び光学素子
JP3926380B1 (ja) * 2006-12-07 2007-06-06 マイルストーン株式会社 撮像レンズ
JP3946245B1 (ja) * 2007-03-08 2007-07-18 マイルストーン株式会社 撮像レンズ
JP4022246B1 (ja) * 2007-05-09 2007-12-12 マイルストーン株式会社 撮像レンズ

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100188759A1 (en) * 2009-01-27 2010-07-29 Konica Minolta Opto, Inc. Image Pickup Lens, Image Pickup Apparatus, Mobile Terminal, and Manufacturing Method of Image Pickup Lens
US8385011B2 (en) * 2009-01-27 2013-02-26 Konica Minolta Opto, Inc. Image pickup lens, image pickup apparatus, mobile terminal, and manufacturing method of image pickup lens
US8400718B2 (en) 2009-07-14 2013-03-19 Sharp Kabushiki Kaisha Image pickup lens and image pickup module
US8462448B2 (en) 2009-08-07 2013-06-11 Sharp Kabushiki Kaisha Image sensing module, imaging lens and code reading method
WO2011040226A1 (ja) * 2009-09-30 2011-04-07 コニカミノルタオプト株式会社 撮像用レンズ
US8520127B2 (en) 2009-10-08 2013-08-27 Sharp Kabushiki Kaisha Image pickup lens comprising aperture stop and single lens, image pickup module comprising image pickup lens including aperture stop and single lens, method for manufacturing image pickup lens comprising aperture stop and single lens, and method for manufacturing image pickup module comprising image pickup lens including aperture stop and single lens
JP2011097144A (ja) * 2009-10-27 2011-05-12 Toppan Printing Co Ltd カメラモジュール及びその製造方法
WO2011055623A1 (ja) * 2009-11-09 2011-05-12 コニカミノルタオプト株式会社 撮像用レンズ、撮像装置及び電子機器の製造方法
JP2011145491A (ja) * 2010-01-14 2011-07-28 Sharp Corp 撮像レンズ、撮像モジュール、および、携帯情報機器
US8373936B2 (en) 2010-04-12 2013-02-12 Sharp Kabushiki Kaisha Image sensing lens and image sensing module
WO2011140495A1 (en) * 2010-05-07 2011-11-10 Digitaloptics Corporation East Optical device with replicated refractive surfaces and associated methods
US8411379B2 (en) 2010-05-07 2013-04-02 Digitaloptics Corporation East Optical device and associated methods
CN102971138A (zh) * 2010-05-07 2013-03-13 数字光学东方公司 具有复制折射表面的光学器件及相关方法
US8054564B1 (en) 2010-05-07 2011-11-08 Digitaloptics Corporation East Optical device and associated methods

Also Published As

Publication number Publication date
JP5267825B2 (ja) 2013-08-21
JPWO2009116492A1 (ja) 2011-07-21
US20110007195A1 (en) 2011-01-13
US8368786B2 (en) 2013-02-05

Similar Documents

Publication Publication Date Title
JP5267825B2 (ja) 撮像レンズ、撮像装置、デジタル機器、及び撮像レンズの製造方法
JP5321954B2 (ja) 撮像レンズ、撮像装置及び携帯端末
JP4831222B2 (ja) 撮像レンズ、撮像装置、携帯端末、および撮像レンズの製造方法
JP5348563B2 (ja) 撮像レンズ、撮像装置及び携帯端末
JP5434093B2 (ja) 撮像レンズ、撮像装置及び携帯端末
JP5413738B2 (ja) 撮像レンズ、撮像装置及び携帯端末
JP5311043B2 (ja) 撮像レンズ、撮像装置、携帯端末、撮像レンズの製造方法及び撮像装置の製造方法。
WO2009104669A1 (ja) 撮像レンズ、撮像装置、携帯端末、および撮像レンズの製造方法
WO2010010891A1 (ja) 撮像レンズ、撮像装置及び携帯端末
JP2011017764A (ja) 撮像レンズ,撮像装置及び携帯端末
JP5648689B2 (ja) 撮像レンズ及び撮像装置
JP2009251367A (ja) 撮像レンズ、撮像レンズの製造方法及び撮像装置
WO2012160983A1 (ja) 撮像レンズ、撮像装置及び携帯端末
JPWO2009069467A1 (ja) 撮像レンズ、撮像装置及び携帯端末
WO2009125654A1 (ja) レンズブロックの製造方法、レンズブロック、撮像レンズ、撮像装置及び携帯端末
JP5267773B2 (ja) 撮像レンズ、撮像装置、デジタル機器、及び撮像レンズの製造方法
JP2009251368A (ja) 撮像レンズ及び撮像装置
WO2010140415A1 (ja) 撮像レンズ、撮像装置及び携帯端末
WO2010146899A1 (ja) 撮像レンズ、撮像装置及び携帯端末
WO2010087084A1 (ja) 撮像レンズ、撮像装置及び携帯端末
WO2010134376A1 (ja) 撮像レンズ、撮像装置及び携帯端末
JP2013218353A (ja) 撮像レンズ、撮像装置及び携帯端末
JP2012163670A (ja) 撮像レンズ及び撮像装置
JP2008299271A (ja) 撮像レンズ、これを備えた撮像装置および携帯型情報端末
WO2009110311A1 (ja) 撮像レンズ、撮像装置及び撮像レンズの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09722785

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010503864

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12933156

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09722785

Country of ref document: EP

Kind code of ref document: A1