WO2009116239A1 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
WO2009116239A1
WO2009116239A1 PCT/JP2009/001006 JP2009001006W WO2009116239A1 WO 2009116239 A1 WO2009116239 A1 WO 2009116239A1 JP 2009001006 W JP2009001006 W JP 2009001006W WO 2009116239 A1 WO2009116239 A1 WO 2009116239A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
refrigerating machine
machine oil
rubber
less
Prior art date
Application number
PCT/JP2009/001006
Other languages
English (en)
French (fr)
Inventor
松浦秀樹
田中勝
原日出樹
芝池幸治
大沼洋一
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41090654&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2009116239(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to EP09721969.5A priority Critical patent/EP2267309B1/en
Priority to PL18188884T priority patent/PL3421794T3/pl
Priority to BR122019017129-7A priority patent/BR122019017129B1/pt
Priority to PL18188887T priority patent/PL3421796T3/pl
Priority to DK09721969.5T priority patent/DK2267309T3/en
Priority to US12/920,595 priority patent/US20110011123A1/en
Priority to PL18188883T priority patent/PL3421793T3/pl
Priority to ES09721969T priority patent/ES2697529T3/es
Priority to EP18188887.6A priority patent/EP3421796B1/en
Priority to PL18188885T priority patent/PL3421795T3/pl
Priority to EP18188883.5A priority patent/EP3421793B1/en
Priority to BRPI0906185-1A priority patent/BRPI0906185B1/pt
Priority to EP18188889.2A priority patent/EP3421797A1/en
Priority to EP18188885.0A priority patent/EP3421795B1/en
Priority to CN2009801093617A priority patent/CN101978164A/zh
Priority to EP18188884.3A priority patent/EP3421794B1/en
Priority to PL09721969T priority patent/PL2267309T3/pl
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2009116239A1 publication Critical patent/WO2009116239A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/008Lubricant compositions compatible with refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0223Lubrication characterised by the compressor type
    • F04B39/023Hermetic compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • C10M2207/2835Esters of polyhydroxy compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol or ester thereof; bound to an aldehyde, ketonic, ether, ketal or acetal radical
    • C10M2209/043Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol or ester thereof; bound to an aldehyde, ketonic, ether, ketal or acetal radical used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/1033Polyethers, i.e. containing di- or higher polyoxyalkylene groups used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/09Characteristics associated with water
    • C10N2020/097Refrigerants
    • C10N2020/101Containing Hydrofluorocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/41Chlorine free or low chlorine content compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/43Sulfur free or low sulfur content compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/10Fluid working
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/10Fluid working
    • F04C2210/1022C3HmFn
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • F04C2210/263HFO1234YF
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber
    • F05C2225/02Rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber
    • F05C2225/04PTFE [PolyTetraFluorEthylene]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber
    • F05C2225/06Polyamides, e.g. NYLON
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant

Definitions

  • the present invention relates to a refrigeration apparatus including a refrigerant circuit that performs a refrigeration cycle by compressing refrigerant with a compressor.
  • Patent Document 1 discloses this type of refrigeration apparatus.
  • This refrigeration apparatus includes a refrigerant circuit in which a compressor, a condenser, an expansion valve, and a condenser are connected to perform a refrigeration cycle.
  • the refrigerant compressed by the compressor dissipates heat to the air and condenses.
  • the refrigerant condensed in the condenser is depressurized by the expansion valve and then evaporated by the evaporator. The evaporated refrigerant is sucked into the compressor and compressed again.
  • a refrigerant having one double bond in the structure is used. It is known that this refrigerant does not contain chlorine atoms or bromine atoms and has little influence on the destruction of the ozone layer.
  • JP-A-4-110388 JP-A-4-110388
  • the refrigerant disclosed in Patent Document 1 since the refrigerant disclosed in Patent Document 1 has a relatively unstable molecular structure such as having a double bond, the refrigerant may deteriorate with a long-term refrigeration cycle to generate impurities and the like.
  • impurities for example, resin functional parts such as a sliding member and a seal member of a movable scroll of a compressor are easily deteriorated due to the influence of the impurities. As a result, the durability and reliability of such functional parts may be impaired.
  • a refrigeration system is assumed.
  • the predetermined resin functional parts (61, 62, 63, 64, 65) disposed so as to be in contact with the refrigerant of the refrigerant circuit (10) are polytetrafluoroethylene, polyphenylene sulfide, It is composed of any one of phenol resin, polyamide resin, chlorobrene rubber, silicon rubber, hydrogenated nitrile rubber, fluorine rubber, and hydrin rubber.
  • the refrigerant represented by the molecular formula 1 and having one double bond in the molecular structure or a mixed refrigerant containing the refrigerant is used as the refrigerant in the refrigerant circuit (10).
  • This refrigerant is compressed by the compressor (30), and a refrigeration cycle is performed in the refrigerant circuit (10).
  • Predetermined resin functional parts are disposed so as to be in contact with the refrigerant of the refrigerant circuit (10).
  • the functional parts made of resin (61, 62, 63, 64, 65) are polytetrafluoroethylene, polyphenylene sulfide, phenol resin, polyamide resin, chlorobrene rubber, silicon rubber, hydrogenated nitrile rubber, fluorine rubber, hydrin rubber. Consists of either. These resin materials have a relatively high stability against impurities generated from the refrigerant. As a result, the deterioration of the resin functional component accompanying the generation of the impurities is suppressed.
  • the resin functional component includes a sliding member (65) provided at a predetermined sliding portion, and the sliding member (65) It is composed of any one of tetrafluoroethylene, polyphenylene sulfide, and polyamide resin.
  • the sliding member (65) provided in the sliding portion constitutes a resin functional part.
  • the sliding member (65) is made of any of polytetrafluoroethylene, polyphenylene sulfide, and polyamide resin. For this reason, it is suppressed that a sliding member (65) denatures / deteriorates under the influence of the impurity produced
  • the resin functional component includes a seal member (65) for preventing leakage of the refrigerant in a predetermined gap
  • the seal member (65) Is characterized by being composed of any of polytetrafluoroethylene, polyphenylene sulfide, chlorobrene rubber, silicon rubber, hydrogenated nitrile rubber, fluorinated rubber, and hydrin rubber.
  • the sealing member (65) for preventing the leakage of the refrigerant in the predetermined gap constitutes the resin functional component.
  • the seal member (65) is composed of any one of polyphenylene sulfide, chlorobrene rubber, silicon rubber, hydrogenated nitrile rubber, fluorinated rubber, and hydrin rubber. For this reason, it is suppressed that a sealing member (65) denatures / deteriorates under the influence of the impurity produced
  • the compressor (30) uses a refrigeration oil having a saturated water content of 2000 ppm or more at a temperature of 30 ° C. and a relative humidity of 90%. It is characterized by that.
  • the refrigerating machine oil of the compressor (30) a refrigerating machine oil having a saturated water content of 2000 ppm or more under the conditions of a temperature of 30 ° C. and a relative humidity of 90% is used. That is, in the present invention, refrigerating machine oil having a relatively high hygroscopic property is used. Thereby, the water
  • the fifth invention is characterized in that, in the refrigeration apparatus of the fourth invention, the refrigerating machine oil contains at least one of polyalkylene glycol, polyol ester, and polyvinyl ether as a main component.
  • a refrigerating machine oil containing at least one of polyalkylene glycol, polyol ester, and polyvinyl ether as a main component is used as the refrigerating machine oil. Since these refrigerating machine oils are compatible with the refrigerant represented by the above molecular formula 1 and having one double bond in the molecular structure, the refrigerant is easily dissolved in the refrigerating machine oil.
  • the refrigerating machine oil of the present invention may be deteriorated by the influence of the impurities.
  • impurities are further generated due to the deterioration of the refrigerating machine oil, and the resin functional parts (61, 62, 63, 64, 65) are easily deteriorated due to the influence of the impurities derived from the refrigerating machine oil.
  • the resin functional parts (61, 62, 63, 64, 65) polytetrafluoroethylene, polyphenylene sulfide, phenol resin, polyamide resin, chlorobrene rubber, silicon rubber, hydrogenated nitrile rubber, fluorine Since either rubber or hydrin rubber is used, it is possible to avoid deterioration of the resin functional parts (61, 62, 63, 64, 65) due to impurities generated from the refrigerating machine oil.
  • a sixth invention is the refrigeration apparatus of the fourth or fifth invention, characterized in that the refrigerating machine oil has a kinematic viscosity of 30 cSt or more and 400 cSt or less at 40 ° C. and a pour point of ⁇ 30 ° C. or less. It is.
  • the kinematic viscosity of the refrigerating machine oil is 30 cSt or more at 40 ° C., the oil film strength does not become insufficient due to insufficient kinematic viscosity, and the lubrication performance of the sliding portion is ensured. Further, since the pour point of the refrigerating machine oil is ⁇ 30 ° C. or lower, the flowability of the refrigerating machine oil can be secured even at a low temperature portion in the refrigerant circuit (10).
  • a seventh invention is the refrigeration apparatus according to any one of the first to sixth inventions, wherein the refrigerating machine oil has a surface tension of 0.02 N / m or more and 0.04 N / m or less at 20 ° C. It is what.
  • the surface tension of the refrigerating machine oil is 0.02 N / m or more and 0.04 N / m or less at 20 ° C.
  • the refrigerating machine oil tends to become small oil droplets in the gas refrigerant in the compressor (30), and a relatively large amount of refrigerating machine oil is discharged from the compressor (30) together with the refrigerant. Will be. Therefore, there is a possibility that oil rises in the compressor (30).
  • the surface tension of the refrigeration oil is too large, the refrigeration oil discharged from the compressor (30) tends to be large oil droplets in the refrigerant circuit (10). For this reason, the refrigerating machine oil discharged from the compressor (30) is not easily pushed away by the refrigerant, and is difficult to return to the compressor (30). Therefore, also in this case, there is a possibility that oil rises in the compressor (30).
  • the surface tension of the refrigerating machine oil is 0.02 N / m or more and 0.04 N / m or less at 20 ° C., the size of the oil droplets is in the optimum range, and the oil as described above Raising is avoided.
  • the eighth invention is the refrigeration apparatus of any one of the fourth to seventh inventions, wherein the refrigerating machine oil has a chlorine concentration of 50 ppm or less.
  • the chlorine concentration of the refrigerating machine oil is 50 ppm or less, the deterioration of the refrigerant caused by chlorine is suppressed. Thereby, the generation of impurities is also suppressed, and the durability of the resin functional parts (61, 62, 63, 64, 65) is improved.
  • the ninth invention is characterized in that, in any one of the fourth to eighth, the refrigerating machine oil has a sulfur concentration of 50 ppm or less.
  • the sulfur concentration of the refrigerating machine oil is 50 ppm or less, deterioration of the refrigerant due to sulfur is suppressed. Thereby, the generation of impurities is also suppressed, and the durability of the resin functional parts (61, 62, 63, 64, 65) is improved.
  • a tenth invention is the refrigeration apparatus according to any one of the fourth to ninth inventions, wherein the refrigerating machine oil includes an acid scavenger, an extreme pressure additive, an antioxidant, an oxygen scavenger, an antifoaming agent, an oily agent. At least one kind of additive is added between the agent and the copper deactivator.
  • At least one additive among the acid scavenger, the extreme pressure additive, the antioxidant, the oxygen scavenger, the antifoaming agent, the oiliness agent, and the copper deactivator is the refrigerating machine oil. Included. For this reason, refrigerating machine oil and a refrigerant
  • An eleventh aspect of the present invention is the refrigeration apparatus of the tenth aspect, wherein in the refrigerating machine oil, when one kind of additive is added, the ratio of the additive is 0.01 mass% or more and 5 mass% or less. When a plurality of types of additives are added, the ratio of each additive is 0.01% by mass or more and 5% by mass or less.
  • the ratio of the additive in the refrigerating machine oil is 0.01 mass% or more and 5 mass% or less.
  • the proportion of any additive in the refrigerating machine oil is 0.01% by mass or more and 5% by mass or less.
  • the refrigerant of the refrigerant circuit (10) a single refrigerant comprising 2,3,3,3-tetrafluoro-1-propene or 2,3,3,3-tetrafluoro-1-propene A mixed refrigerant containing is used.
  • the thirteenth invention is characterized in that, in the refrigeration apparatus according to any one of the first to twelfth inventions, the refrigerant in the refrigerant circuit (10) is a mixed refrigerant further containing difluoromethane.
  • a mixed refrigerant containing difluoromethane and a refrigerant represented by the above molecular formula 1 and having one double bond in the molecular structure is used as the refrigerant of the refrigerant circuit (10).
  • the refrigerant represented by the molecular formula 1 and having one double bond in the molecular structure is a so-called low-pressure refrigerant.
  • difluoromethane which is a so-called high-pressure refrigerant, is added to the refrigerant represented by the above molecular formula 1 and having one double bond in the molecular structure.
  • a fourteenth invention is the compressor according to any one of the first to thirteenth inventions, wherein the refrigerant of the refrigerant circuit (10) is a mixed refrigerant further containing pentafluoroethane. .
  • a mixed refrigerant containing a refrigerant represented by the above molecular formula 1 and having one double bond in the molecular structure and pentafluoroethane is used as the refrigerant in the refrigerant circuit (10).
  • the refrigerant represented by the above-described molecular formula 1 and having one double bond in the molecular structure is a slightly flammable refrigerant, but it is not without the risk of ignition. Therefore, in the present invention, pentafluoroethane, which is a flame-retardant refrigerant, is added to the refrigerant represented by the above molecular formula 1 and having one double bond in the molecular structure.
  • a refrigerant having one double bond in the molecular structure or a mixed refrigerant containing the refrigerant is used.
  • a refrigeration apparatus having a high coefficient of performance (COP) in the refrigeration cycle can be provided.
  • the above-mentioned refrigerant has a relatively unstable molecular structure due to a double bond or the like, and the refrigerant is likely to deteriorate and impurities and the like are easily generated.
  • the resin functional parts (61, 62, 63, 64, 65) of the refrigeration apparatus may be chemically / physically modified and deteriorated due to the influence of such impurities.
  • the resin functional parts (61, 62, 63, 64, 65) of the present invention are materials that are relatively stable against impurities in the refrigerant, that is, polytetrafluoroethylene, polyphenylene sulfide, phenol.
  • Resin polyamide resin, chlorobrene rubber, silicon rubber, hydrogenated nitrile rubber, fluorine rubber, or hydrin rubber. Therefore, it is avoided that the resin functional parts (61, 62, 63, 64, 65) are chemically / physically modified due to the influence of the impurities. As a result, the desired durability can be secured in the resin functional component.
  • the sliding member (61, 62, 63, 64) as the resin functional component is made of any of polytetrafluoroethylene, polyphenylene sulfide, and polyamide resin.
  • the sealing member (65) as a resin functional component is made of any of polytetrafluoroethylene, polyphenylene sulfide, chlorobrene rubber, silicon rubber, hydrogenated nitrile rubber, fluorinated rubber, and hydrin rubber. Yes. Thereby, deterioration of the sealing member (65) due to impurities generated from the refrigerant can be avoided. As a result, since the durability of the seal member (65) is improved, the seal member (65) can obtain a desired sealing property.
  • the refrigerating machine oil having a saturated water content of 2000 ppm or more at a temperature of 30 ° C. and a relative humidity of 90% since the refrigerating machine oil having a saturated water content of 2000 ppm or more at a temperature of 30 ° C. and a relative humidity of 90% is used, the water in the refrigerant can be captured by the refrigerating machine oil. For this reason, it can prevent that a refrigerant
  • the refrigerating machine oil of the fifth invention is mainly composed of at least one of polyalkylene glycol, polyol ester, and polyvinyl ether.
  • the refrigerating machine oil of the sixth invention has a kinematic viscosity of 30 cSt or more and 400 cSt or less at 40 ° C., it can sufficiently secure the lubrication performance of the sliding portion.
  • the pour point is ⁇ 30 ° C. or lower, the fluidity of the refrigerating machine oil can be secured even at a relatively low temperature.
  • the refrigerating machine oil of the seventh invention has a surface tension of 0.02 N / m or more and 0.04 N / m or less at 20 ° C., a large amount of refrigerating machine oil is discharged from the compressor (30), or the compressor The refrigeration oil discharged from the compressor does not easily return to the compressor. Therefore, it is possible to suppress oil from rising in the compressor, and it is possible to prevent poor lubrication of the sliding portion of the compression mechanism (82).
  • the refrigerating machine oil of the eighth invention has a chlorine concentration of 50 ppm or less, it can prevent the deterioration of the refrigerant due to chlorine. As a result, the durability of the resin functional parts (61, 62, 63, 64, 65) can be further improved. Moreover, since the refrigerating machine oil of the ninth invention has a sulfur concentration of 50 ppm or less, it can be prevented that the deterioration of the refrigerant is promoted due to sulfur. As a result, the durability of the resin functional parts (61, 62, 63, 64, 65) can be further improved.
  • the refrigerating machine oil of the tenth and eleventh inventions at least one of the six types of additives, acid scavenger, extreme pressure additive, antioxidant, antifoaming agent, oiliness agent, and copper deactivator. Additives are added. For this reason, a refrigerant
  • difluoromethane which is a so-called high-pressure refrigerant
  • pentafluoroethane which is a flame-retardant refrigerant
  • the refrigerant in the refrigerant circuit (10) is difficult to burn, and the reliability of the refrigeration apparatus can be improved.
  • FIG. 1 is a schematic configuration diagram of a refrigeration apparatus according to an embodiment.
  • FIG. 2 is a longitudinal sectional view of the compressor according to the embodiment.
  • FIG. 3 is a cross-sectional view of the compression mechanism of the compressor according to the embodiment.
  • FIG. 4 is a longitudinal sectional view of a compressor according to Modification 3 of the embodiment.
  • Air conditioner (refrigeration equipment) 30 Compressor 61 Upper bearing (sliding member, resin functional part) 62 Intermediate bearings (sliding members, resin functional parts) 63 Lower bearing (sliding member, resin functional parts) 64 Thrust bearings (sliding members, resin functional parts) 65 Seal ring (seal member)
  • the present embodiment is an air conditioner (20) configured by a refrigeration apparatus (20) according to the present invention.
  • the air conditioner (20) of the present embodiment includes an outdoor unit (22) and three indoor units (23a, 23b, 23c).
  • the number of indoor units (23) is merely an example.
  • the air conditioner (20) includes a refrigerant circuit (10) that is filled with refrigerant and performs a refrigeration cycle.
  • the refrigerant circuit (10) includes an outdoor circuit (9) accommodated in the outdoor unit (22) and indoor circuits (17a, 17b, 17c) accommodated in the indoor units (23). These indoor circuits (17a, 17b, 17c) are connected to the outdoor circuit (9) by the liquid side connecting pipe (18) and the gas side connecting pipe (19). These indoor circuits (17a, 17b, 17c) are connected in parallel to each other.
  • the refrigerant circuit (10) of the present embodiment is filled with a single refrigerant of 2,3,3,3-tetrafluoro-1-propene (hereinafter referred to as “HFO-1234yf”) as a refrigerant.
  • HFO-1234yf 2,3,3,3-tetrafluoro-1-propene
  • the chemical formula of HFO-1234yf is represented by CF 3 —CF ⁇ CH 2 .
  • the outdoor circuit (9) is provided with a compressor (30), an outdoor heat exchanger (11), an outdoor expansion valve (12), and a four-way switching valve (13).
  • the compressor (30) is configured, for example, as an inverter type compressor with variable operating capacity. Electric power is supplied to the compressor (30) via an inverter.
  • the compressor (30) has a discharge side connected to the second port (P2) of the four-way switching valve (13) and a suction side connected to the first port (P1) of the four-way switching valve (13). Details of the compressor (30) will be described later.
  • the outdoor heat exchanger (11) is configured as a cross-fin type fin-and-tube heat exchanger.
  • An outdoor fan (14) is provided in the vicinity of the outdoor heat exchanger (11). In the outdoor heat exchanger (11), heat is exchanged between the outdoor air and the refrigerant.
  • One end of the outdoor heat exchanger (11) is connected to the third port (P3) of the four-way switching valve (13), and the other end is connected to the outdoor expansion valve (12).
  • the fourth port (P4) of the four-way switching valve (13) is connected to the gas side communication pipe (19).
  • the outdoor expansion valve (12) is provided between the outdoor heat exchanger (11) and the liquid side end of the outdoor circuit (9).
  • the outdoor expansion valve (12) is configured as an electronic expansion valve with a variable opening.
  • the four-way selector valve (13) is in a first state in which the first port (P1) and the fourth port (P4) communicate with each other and the second port (P2) and the third port (P3) communicate with each other (FIG. 1).
  • the second state shown in FIG. 1
  • the first port (P1) and the third port (P3) communicate with each other
  • the second port (P2) and the fourth port (P4) communicate with each other.
  • the state shown by a broken line) can be switched freely.
  • Each indoor circuit (17) is provided with an indoor heat exchanger (15a, 15b, 15c) and an indoor expansion valve (16a, 16b, 16c) in order from the gas side end to the liquid side end. Yes.
  • the indoor heat exchanger (15) is configured as a cross-fin type fin-and-tube heat exchanger.
  • An indoor fan (21) is provided in the vicinity of the indoor heat exchanger (15).
  • the indoor expansion valve (16) is configured as an electronic expansion valve with a variable opening.
  • the compressor (30) is configured as, for example, a fully sealed high-pressure dome type scroll compressor.
  • the configuration of the compressor (30) will be described with reference to FIGS.
  • the compressor (30) includes a casing (70) that is a vertical type and forms a sealed container.
  • An electric motor (85) and a compression mechanism (82) are arranged in the casing (70) from the bottom to the top.
  • the electric motor (85) includes a stator (83) and a rotor (84).
  • the stator (83) is fixed to the body of the casing (70).
  • the rotor (84) is disposed inside the stator (83), and is connected to the crankshaft (90).
  • the crankshaft (90) is supported by a lower bearing member (60) disposed in the vicinity of the oil sump of the casing (70).
  • the compression mechanism (82) includes a movable scroll (76) and a fixed scroll (75), and constitutes a scroll type compression mechanism.
  • the movable scroll (76) includes a substantially disc-shaped movable side end plate (76b) and a spiral movable side wrap (76a).
  • the movable side wrap (76a) is erected on the front surface (upper surface) of the movable side end plate (76b).
  • a cylindrical protrusion (76c) into which the eccentric part of the crankshaft (90) is inserted is erected on the back surface (lower surface) of the movable side end plate (76b).
  • the movable scroll (76) is supported by the housing (77) disposed below the movable scroll (76) via the Oldham ring (79).
  • the fixed scroll (75) includes a substantially disc-shaped fixed side end plate (75b) and a spiral fixed side wrap (75a).
  • the fixed side wrap (75a) is erected on the front surface (lower surface) of the fixed side end plate (75b).
  • the fixed side wrap (75a) and the movable side wrap (76a) mesh with each other to form a plurality of compression chambers (73) between the contact portions of both wraps (75a, 76a). ing.
  • the plurality of compression chambers (73) includes a first compression chamber (73a) configured between an inner peripheral surface of the fixed side wrap (75a) and an outer peripheral surface of the movable side wrap (76a), and a fixed side wrap ( 75a) and a second compression chamber (73b) configured between the outer peripheral surface of the movable side wrap (76a).
  • a suction port (98) is formed at the outer edge of the fixed scroll (75).
  • a suction pipe (57) penetrating the top of the casing (70) is connected to the suction port (98).
  • the suction port (98) intermittently communicates with each of the first compression chamber (73a) and the second compression chamber (73b) as the movable scroll (76) revolves.
  • the suction port (98) is provided with a suction check valve (not shown) that prohibits the flow of refrigerant from the compression chamber (73) to the suction pipe (57).
  • a discharge port (93) is formed at the center of the fixed side end plate (75b).
  • the discharge port (93) intermittently communicates with each of the first compression chamber (73a) and the second compression chamber (73b) as the movable scroll (76) revolves.
  • the discharge port (93) opens into a muffler space (96) formed above the fixed scroll (75).
  • the inside of the casing (70) is partitioned into an upper suction space (101) and a lower discharge space (100) by a disc-shaped housing (77).
  • the suction space (101) communicates with the suction port (98) through a communication port (not shown).
  • the discharge space (100) communicates with the muffler space (96) through a communication passage (103) formed between the fixed scroll (75) and the housing (77). Since the refrigerant discharged from the discharge port (93) flows through the muffler space (96), the discharge space (100) during operation becomes a high-pressure space filled with the refrigerant compressed by the compression mechanism (82).
  • a discharge pipe (56) penetrating the body of the casing (70) is opened.
  • an insulation coating material for the winding of the stator (83), an insulating film, and a seal of the compression mechanism (82) Material is used.
  • These parts are substances that are not physically or chemically denatured by the refrigerant, even when in contact with high-temperature and high-pressure refrigerant, especially solvent resistance, extraction resistance, thermal and chemical stability, and foam resistance. Substances having properties are used.
  • any of polyvinyl formal, polyester, THEIC modified polyester, polyamide, polyamide imide, polyester imide, and polyester amide imide is used as the insulating coating material for the winding of the stator (83). It is preferable to use a double coated wire in which the upper layer is polyamideimide and the lower layer is polyesterimide. In addition to the above substances, an enamel coating having a glass transition temperature of 120 ° C. or higher may be used.
  • any of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyphenylene sulfide (PPS), and polybutylene terephthalate (PBT) is used for the insulating film.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PPS polyphenylene sulfide
  • PBT polybutylene terephthalate
  • PEEK Polyether ether ketone
  • LCP liquid crystal polymer
  • an oil sump for storing refrigeration oil is formed at the bottom of the casing (70).
  • a first oil supply passage (104) that opens to the oil sump is formed inside the crankshaft (90).
  • a second oil supply passage (105) connected to the first oil supply passage (104) is formed in the movable side end plate (76b).
  • the refrigeration oil in the oil reservoir is supplied to the compression chamber (73) on the low pressure side through the first oil supply passage (104) and the second oil supply passage (105).
  • the compressor (30) is provided with a resin structural component disposed so as to be in contact with the refrigerant and the refrigerating machine oil.
  • the compressor (30) of the present embodiment is provided with an upper bearing (61), an intermediate bearing (62), a lower bearing (63), and a thrust bearing (64) as the resin structural parts.
  • the upper bearing (61) is formed at a sliding portion between the eccentric portion at the upper end of the crankshaft (90) and the protruding portion (76c) of the movable scroll (76).
  • the intermediate bearing (62) is formed at a sliding portion between the large diameter portion of the crankshaft (90) and the inner peripheral surface of the through hole of the housing (77).
  • the lower bearing (63) is formed at a sliding portion between the lower end portion of the crankshaft (90) and the inner peripheral surface of the through hole of the lower bearing member (60).
  • the upper bearing (61), the intermediate bearing (62), and the lower bearing (63) constitute a so-called journal bearing.
  • the thrust bearing (64) is formed at a sliding contact portion between the back surface of the movable side end plate (76b) of the movable scroll (76) and the support portion of the housing (77).
  • Each bearing (61, 62, 63, 64) made of the above-mentioned resin functional parts constitutes a sliding member.
  • the bearings (61, 62, 63, 64) constituting these sliding members are made of any one of polytetrafluoroethylene (PTFE), polyphenylene sulfide, and polyamide resin.
  • a refrigerating machine oil mainly composed of at least one of three types of base oils of polyalkylene glycol, polyol ester, and polyvinyl ether can be used for the compressor (30).
  • the refrigerating machine oil of this embodiment uses a refrigerating machine oil mainly composed of only polyvinyl ether among these three types.
  • a refrigerating machine oil mainly composed of polyvinyl ether having a structural unit represented by the following general formula (I) is used.
  • the polyvinyl ether having this structure is excellent in compatibility with the refrigerant represented by the molecular formula 1 and having one double bond in the molecular structure.
  • R1, R2, and R3 represent hydrogen or a hydrocarbon group having 1 to 8 carbon atoms. R1, R2, and R3 may be the same or different from each other.
  • R4 is 40% or more and 100% or less of an alkyl group having 1 or 2 carbon atoms and 0% or more and 60% or less of an alkyl group having 3 or 4 carbon atoms, for each structural unit.
  • the composition ratio is as follows.
  • the refrigerating machine oil has a kinematic viscosity of 30 cSt or more and 400 cSt or less at 40 ° C., a pour point of ⁇ 30 ° C. or less, a surface tension of 0.02 N / m or more and 0.04 N / m or less at 20 ° C., and a density of 15 It is 0.8 g / cm 3 or more and 1.8 g / cm 3 or less at ° C.
  • the refrigeration oil has a saturated water content of 2000 ppm or more at a temperature of 30 ° C. and a relative humidity of 90%, and the aniline point is a value within a predetermined numerical range.
  • the “aniline point” is a numerical value indicating the solubility of, for example, a hydrocarbon solvent, and when the sample (here, refrigerating machine oil) is mixed with an equal volume of aniline and cooled, it cannot be dissolved together. This represents the temperature when turbidity starts to appear (specified in JIS K 2256).
  • these values are values of the refrigeration oil itself in a state where the refrigerant is not dissolved. This is the same for the refrigerating machine oil described in Modification 1 and Modification 2 described later, and other embodiments.
  • the polyvinyl ether that is the main component of the refrigerating machine oil is compatible with HFO-1234yf.
  • the kinematic viscosity of the refrigerating machine oil is 400 cSt or less at 40 ° C.
  • HFO-1234yf is dissolved to some extent in the refrigerating machine oil.
  • the pour point of the refrigerating machine oil is ⁇ 30 ° C. or lower, the flowability of the refrigerating machine oil can be secured even at a low temperature portion in the refrigerant circuit (10).
  • the surface tension is 0.04 N / m or less at 20 ° C., it is difficult for the refrigerating machine oil discharged from the compressor (30) to become large oil droplets that are difficult to be washed away by the refrigerant. Accordingly, the refrigerating machine oil discharged from the compressor (30) is dissolved in HFO-1234yf and returns to the compressor (30) together with HFO-1234yf.
  • the kinematic viscosity of the refrigerating machine oil is 30 cSt or more at 40 ° C.
  • the kinematic viscosity is not too low and the oil film strength is not insufficient, and the lubricating performance is ensured.
  • the surface tension is 0.02 N / m or more at 20 ° C.
  • small oil droplets are hardly formed in the gas refrigerant in the compressor (30), and a large amount of refrigerating machine oil is discharged from the compressor (30). There is nothing. For this reason, the amount of refrigerating machine oil stored in the compressor (30) can be sufficiently secured.
  • the saturated water content of the refrigerating machine oil is 2000 ppm or more at a temperature of 30 ° C./90% relative humidity
  • the refrigerating machine oil has a relatively high hygroscopicity. This makes it possible to capture the water in HFO-1234yf to some extent by the refrigerating machine oil.
  • HFO-1234yf has a molecular structure that is easily altered / deteriorated due to the influence of contained moisture. Therefore, such deterioration can be suppressed by the moisture absorption effect by the refrigerating machine oil.
  • the numerical range of the aniline point of the refrigerating machine oil should be set in consideration of the compatibility with the resin functional parts.
  • the compatibility between the bearings (61, 62, 63, 64) constituting the above-described resin functional parts and the refrigerating machine oil is improved.
  • the aniline point is too small, the refrigeration oil easily penetrates into the bearings (61, 62, 63, 64), and the bearings (61, 62, 63, 64) easily swell.
  • the aniline point is too large, the refrigerating machine oil hardly penetrates into the bearings (61, 62, 63, 64), and the bearings (61, 62, 63, 64) are likely to contract. Therefore, by setting the aniline point of the refrigerating machine oil within a predetermined numerical range, swelling / shrinkage deformation of the bearings (61, 62, 63, 64) can be prevented.
  • the gap (gap) at the sliding portion cannot be maintained at a desired length. As a result, there is a risk of increasing the sliding resistance and reducing the rigidity of the sliding portion.
  • an acid scavenger, an extreme pressure additive, an antioxidant, an antifoaming agent, an oil agent, and a copper deactivator are added as additives to the refrigerating machine oil of the present embodiment.
  • all the six additives are used, but each additive may be added as necessary, and only one additive may be used.
  • the blending amount of each additive is set so that the ratio contained in the refrigerating machine oil is 0.01% by mass or more and 5% by mass or less.
  • the compounding quantity of an acid scavenger and the compounding quantity of antioxidant have the preferable range of 0.05 mass% or more and 3 mass% or less.
  • epoxy compounds such as phenyl glycidyl ether, alkyl glycidyl ether, alkylene glycol glycidyl ether, cyclohexene oxide, ⁇ -olefin oxide, and epoxidized soybean oil can be used.
  • preferred acid scavengers from the viewpoint of compatibility are phenyl glycidyl ether, alkyl glycidyl ether, alkylene glycol glycidyl ether, cyclohexene oxide, and ⁇ -olefin oxide.
  • the alkyl group of the alkyl glycidyl ether and the alkylene group of the alkylene glycol glycidyl ether may have a branch. These carbon numbers should just be 3 or more and 30 or less, more preferably 4 or more and 24 or less, and still more preferably 6 or more and 16 or less.
  • the ⁇ -olefin oxide may have a total carbon number of 4 to 50, more preferably 4 to 24, and even more preferably 6 to 16. Only one type of acid scavenger may be used, or a plurality of types may be used in combination.
  • phosphate ester can be used for an extreme pressure additive.
  • phosphoric acid esters phosphoric acid esters, phosphorous acid esters, acidic phosphoric acid esters, acidic phosphorous acid esters and the like can be used.
  • amine salt of phosphoric acid ester, phosphorous acid ester, acidic phosphoric acid ester, and acidic phosphorous acid ester can also be used for an extreme pressure additive as phosphoric acid esters.
  • phosphate esters include triaryl phosphates, trialkyl phosphates, trialkylaryl phosphates, triarylalkyl phosphates, and trialkenyl phosphates.
  • phosphoric acid esters are specifically listed as triphenyl phosphate, tricresyl phosphate, benzyl diphenyl phosphate, ethyl diphenyl phosphate, tributyl phosphate, ethyl dibutyl phosphate, cresyl diphenyl phosphate, dicresyl phenyl phosphate, ethyl phenyl diphenyl phosphate.
  • phosphites include triethyl phosphite, tributyl phosphite, triphenyl phosphite, tricresyl phosphite, tri (nonylphenyl) phosphite, tri (2-ethylhexyl) phosphite, tridecyl.
  • phosphites trilauryl phosphites, triisooctyl phosphites, diphenylisodecyl phosphites, tristearyl phosphites, trioleyl phosphites and the like.
  • acidic phosphate ester examples include 2-ethylhexyl acid phosphate, ethyl acid phosphate, butyl acid phosphate, oleyl acid phosphate, tetracosyl acid phosphate, isodecyl acid phosphate, lauryl acid phosphate, tridecyl acid phosphate, Examples include stearyl acid phosphate and isostearyl acid phosphate.
  • the acid phosphite include dibutyl hydrogen phosphite, dilauryl hydrogen phosphite, dioleyl hydrogen phosphite, distearyl hydrogen phosphite, diphenyl hydrogen phosphite and the like.
  • phosphoric acid esters oleyl acid phosphate and stearyl acid phosphate are preferred.
  • mono-substituted amines among the amines used in the amine salt of phosphate ester, phosphite ester, acidic phosphate ester or acidic phosphite ester include butylamine, pentylamine, hexylamine, cyclohexylamine, There are octylamine, laurylamine, stearylamine, oleylamine, benzylamine and the like.
  • disubstituted amines include dibutylamine, dipentylamine, dihexylamine, dicyclohexylamine, dioctylamine, dilaurylamine, distearylamine, dioleylamine, dibenzylamine, stearyl monoethanolamine, decyl monoethanol.
  • Examples include ethanolamine, hexyl monopropanolamine, benzyl monoethanolamine, phenyl monoethanolamine, and tolyl monopropanol.
  • tri-substituted amine examples include tributylamine, tripentylamine, trihexylamine, tricyclohexylamine, trioctylamine, trilaurylamine, tristearylamine, trioleylamine, tribenzylamine, dioleyl monoethanolamine, Dilauryl monopropanolamine, dioctyl monoethanolamine, dihexyl monopropanolamine, dibutyl monopropanolamine, oleyl diethanolamine, stearyl dipropanolamine, lauryl diethanolamine, octyl dipropanolamine, butyl diethanolamine, benzyl Diethanolamine, phenyl diethanolamine, tolyl dipropanolamine, xylyl diethanolamine Emissions, triethanolamine, there is a tri-propanolamine and the like.
  • extreme pressure additives other than those mentioned above.
  • extreme pressure additives of organic sulfur compounds such as monosulfides, polysulfides, sulfoxides, sulfones, thiosulfinates, sulfurized fats and oils, thiocarbonates, thiophenes, thiazoles, methanesulfonate esters, etc.
  • Thiophosphate ester extreme pressure additives such as thiophosphate triesters, ester extreme pressure additives such as higher fatty acids, hydroxyaryl fatty acids, polyhydric alcohol esters, acrylate esters, chlorinated hydrocarbons
  • Organic chlorinated extreme pressure additives such as chlorinated carboxylic acid derivatives, fluorinated aliphatic carboxylic acids, fluorinated ethylene resins, fluorinated alkylpolysiloxanes, fluorinated graphite, etc.
  • alcohol-based extreme pressure additives such as higher alcohols, naphthenates (lead naphthenate, etc.), fat Use extreme pressure additives such as salts (fatty acid lead, etc.), thiophosphates (zinc dialkyldithiophosphate, etc.), thiocarbamates, organomolybdenum compounds, organotin compounds, organogermanium compounds, borate esters, etc. It is possible.
  • a phenolic antioxidant or an amine antioxidant can be used as the antioxidant.
  • the phenolic antioxidants include 2,6-di-tert-butyl-4-methylphenol (DBPC), 2,6-di-tert-butyl-4-ethylphenol, 2,2′-methylenebis (4 -Methyl-6-tert-butylphenol), 2,4-dimethyl-6-tert-butylphenol, 2,6-di-tert-butylphenol and the like.
  • Amine antioxidants include N, N'-diisopropyl-p-phenylenediamine, N, N'-di-sec-butyl-p-phenylenediamine, phenyl- ⁇ -naphthylamine, N.P. N'-di-phenyl-p-phenylenediamine and the like.
  • An oxygen scavenger that traps oxygen can also be used as the antioxidant.
  • benzotriazole and its derivatives can be used as the copper deactivator.
  • a silicon compound can be used as the antifoaming agent.
  • the oily agent higher alcohols can be used.
  • the refrigerating machine oil of the present embodiment includes, if necessary, a load bearing additive, a chlorine scavenger, a cleaning dispersant, a viscosity index improver, a rust inhibitor, a stabilizer, a corrosion inhibitor, and a pour point depressant. Etc. can also be added.
  • the blending amount of each additive may be 0.01 mass% or more and 5 mass% or less, and preferably 0.05 mass% or more and 3 mass% or less.
  • the refrigerating machine oil of this embodiment has a chlorine concentration of 50 ppm or less and a sulfur concentration of 50 ppm or less.
  • the air conditioner (20) can perform a cooling operation and a heating operation, and switching between the cooling operation and the heating operation is performed by the four-way switching valve (13).
  • the four-way selector valve (13) is set to the first state.
  • the compressor (30) When the compressor (30) is operated in this state, the high-pressure refrigerant discharged from the compressor (30) releases heat to the outdoor air and condenses in the outdoor heat exchanger (11).
  • the refrigerant condensed in the outdoor heat exchanger (11) is distributed to each indoor circuit (17).
  • the refrigerant flowing in is depressurized by the indoor expansion valve (16), and then absorbs heat from the indoor air in the indoor heat exchanger (15) and evaporates.
  • the room air is cooled and supplied to the room.
  • each indoor circuit (17) merges with the refrigerant evaporated in other indoor circuits (17) and returns to the outdoor circuit (9).
  • the refrigerant returned from each indoor circuit (17) is compressed again by the compressor (30) and discharged.
  • the degree of superheat of each indoor expansion valve (16) is controlled so that the degree of superheat of the refrigerant at the outlet of the indoor heat exchanger (15) becomes a constant value (for example, 5 ° C.). .
  • the four-way selector valve (13) is set to the second state.
  • the compressor (30) When the compressor (30) is operated in this state, the high-pressure refrigerant discharged from the compressor (30) is distributed to each indoor circuit (17).
  • the refrigerant flowing in dissipates heat to the indoor air and condenses in the indoor heat exchanger (15).
  • room air is heated and supplied indoors.
  • the refrigerant condensed in the indoor heat exchanger (15) joins in the outdoor circuit (9).
  • the refrigerant merged in the outdoor circuit (9) is depressurized by the outdoor expansion valve (12), and then absorbs heat from the outdoor air and evaporates in the outdoor heat exchanger (11).
  • the refrigerant evaporated in the outdoor heat exchanger (11) is compressed again by the compressor (30) and discharged.
  • the opening of each indoor expansion valve (16) is subcool controlled so that the degree of supercooling of the refrigerant at the outlet of the indoor heat exchanger (15) becomes a constant value (for example, 5 ° C.). .
  • a refrigerant composed of a refrigerant having one double bond in the molecular structure ie, HFO-1234yf
  • an air conditioner (20) having a high coefficient of performance (COP) in the refrigeration cycle can be provided.
  • each bearing (61, 62, 63, 64) is made of any of polytetrafluoroethylene, polyphenylene sulfide, and polyamide resin, and these resin materials are impurities generated from the refrigerant. Has a relatively high stability. Therefore, it is possible to avoid deterioration of the bearing (61, 62, 63, 64) due to the influence of the above impurities, and the bearing (61, 62, 63, 64) can obtain a desired sliding performance. Can do.
  • the refrigerating machine oil having a saturated water content of 2000 ppm or more at a temperature of 30 ° C. and a relative humidity of 90% since the refrigerating machine oil having a saturated water content of 2000 ppm or more at a temperature of 30 ° C. and a relative humidity of 90% is used, the water in the refrigerant can be captured by the refrigerating machine oil. Therefore, it is possible to prevent HFO-1234yf from being deteriorated due to the influence of moisture.
  • the chlorine concentration of the refrigerating machine oil is 50 ppm or less, the deterioration of the refrigerant can be prevented from being accelerated by the influence of the chlorine component.
  • the refrigerating machine oil has a sulfur concentration of 50 ppm or less, it is possible to prevent the deterioration of the refrigerant from being accelerated by the influence of the sulfur component.
  • the refrigerating machine oil is selected so as to prevent the deterioration of the refrigerant as much as possible, the generation of impurities due to the deterioration of the refrigerant can be suppressed, whereby the bearings (61, 62 , 63, 64) can be effectively prevented.
  • the refrigerating machine oil contains at least one of polyalkylene glycol, polyol ester, and polyvinyl ether as a main component.
  • coolant and refrigerator oil become easy to melt
  • oil rise in the compressor (30) can be suppressed, so that a shortage of refrigerating machine oil and further poor lubrication in the compressor (30) can be avoided. Therefore, the reliability of the compressor (30) can be improved.
  • the bearing (61, 62, 63, 64) of the present embodiment is made of polytetrafluoroethylene or polyamide resin, the bearing (61, 62, 64) is affected by the influence of impurities caused by deterioration of the refrigerating machine oil. 63, 64) is also prevented from being chemically / physically modified.
  • difluoromethane which is a so-called high-pressure refrigerant
  • coolant is added to the refrigerant represented by the above molecular formula 1 and having one double bond in the molecular structure.
  • the refrigerating machine oil mainly composed of only the polyol ester among the three types of base oils of polyalkylene glycol, polyol ester, and polyvinyl ether is used for the compressor (30).
  • the polyol ester includes “an ester of an aliphatic polyhydric alcohol and a linear or branched fatty acid”, “a partial ester of an aliphatic polyhydric alcohol and a linear or branched fatty acid”, and Any one of “complex ester of partial ester of aliphatic polyhydric alcohol and linear or branched fatty acid having 3 to 9 carbon atoms and aliphatic dibasic acid or aromatic dibasic acid” It is used.
  • these polyol esters are excellent in compatibility with a refrigerant represented by the above-described molecular formula 1 and having one double bond in the molecular structure.
  • Examples of the aliphatic polyhydric alcohol that forms “an ester or partial ester of an aliphatic polyhydric alcohol and a linear or branched fatty acid” include ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, and trimethylolethane. Ditrimethylolethane, trimethylolpropane, ditrimethylolpropane, glycerin, pentaerythritol, dipentaerythritol, tripentaerythritol, sorbitol, and the like can be used. Among these, as the aliphatic polyhydric alcohol, pentaerythritol, dipentaerythritol, and tripentaerythritol are preferable.
  • fatty acids having 3 to 12 carbon atoms can be used, for example, propionic acid, butyric acid, pivalic acid, valeric acid, caproic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, dodecanoic acid.
  • the fatty acid a fatty acid having 5 to 12 carbon atoms is preferable, and a fatty acid having 5 to 9 carbon atoms is more preferable.
  • valeric acid hexanoic acid, heptanoic acid, 2-methylhexanoic acid, 2-ethylhexanoic acid, isooctanoic acid, isononanoic acid, isodecanoic acid, 2,2-dimethyloctanoic acid, 2-butyloctanoic acid, 3 5,5-trimethylhexanoic acid and the like are preferable.
  • a complex ester of a partial ester of an aliphatic polyhydric alcohol and a linear or branched fatty acid having 3 to 9 carbon atoms and an aliphatic dibasic acid or aromatic dibasic acid Fatty acids having 5 to 7 carbon atoms are preferred, and fatty acids having 5 or 6 carbon atoms are more preferred. Specifically, valeric acid, hexanoic acid, isovaleric acid, 2-methylbutyric acid, 2-ethylbutyric acid or a mixture thereof is preferable. In addition, a fatty acid in which a fatty acid having 5 carbon atoms and a fatty acid having 6 carbon atoms are mixed at a weight ratio of 10:90 or more and 90:10 or less can be used.
  • the aliphatic dibasic acids include succinic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, and docosannadioic acid.
  • Aromatic dibasic acids include phthalic acid and isophthalic acid.
  • a polyhydric alcohol and a dibasic acid are reacted at a predetermined ratio to be partially esterified, and then the partial ester and a fatty acid are reacted.
  • the reaction order of the dibasic acid and the fatty acid may be reversed, or the dibasic acid and the fatty acid may be mixed and used for esterification.
  • a refrigerating machine oil mainly composed of polyalkylene glycol among the three types of base oils of polyalkylene glycol, polyol ester, and polyvinyl ether is used for the compressor (30). .
  • molecular formula 2 R1 (R2) m ( R3O) n R4 (where, m and n are integers, R1 and R4, hydrogen, 1 to 6 alkyl group carbon atoms, or an aryl group R2 and R3 represent an alkyl group having 1 to 4 carbon atoms.)
  • Polyalkylene glycol having a molecular structure represented by the following formula is used.
  • the polyalkylene glycol having this molecular structure is excellent in compatibility with a refrigerant represented by the above molecular formula and having one double bond in the molecular structure.
  • the resin material of the present invention is a resin functional part disposed so as to be in contact with the refrigerant, the inner side and the outer side (each functional part connected to the refrigerant circuit (10)) of the compressor (30) also Applicable.
  • the resin functional component is preferably composed of any of polytetrafluoroethylene, polyphenylene sulfide, phenol resin, polyamide resin, chlorobrene rubber, silicon rubber, hydrogenated nitrile rubber, fluorine rubber, and hydrin rubber. . This point will be described in detail below.
  • a sliding member made of a fluorine resin such as polytetrafluoroethylene, polyphenylene sulfide, or polyamide resin on the surface of a sliding portion such as a movable scroll (76), a fixed scroll (75), and an Oldham ring (79). May be formed.
  • a fluorine resin such as polytetrafluoroethylene, polyphenylene sulfide, or polyamide resin
  • the resin material of the present invention may be applied to the sliding member applied to each functional component of the refrigerant circuit (10) outside the compressor (30).
  • a sliding member made of a fluorine resin such as polytetrafluoroethylene, polyphenylene sulfide, or polyamide resin may be applied to the sliding portion of the valve body of the four-way selector valve (13). good.
  • 66 nylon is preferably used as the polyamide resin in the sliding portion of the valve body.
  • the resin material of the present invention can also be applied to a seal member for preventing refrigerant leakage.
  • a seal ring (65) as a seal member is interposed between the movable side end plate (76b) of the movable scroll (76) and the upper surface of the housing (77).
  • the seal ring (65) partitions the upper space of the housing (77) into the inside and outside. That is, the seal ring (65) prevents the high-pressure refrigerant on the inner peripheral side from leaking to the outer peripheral side, that is, the suction side of the compression chamber (30).
  • Such a sealing member (65) is preferably composed of any of polytetrafluoroethylene, polyphenylene sulfide, chlorobrene rubber, silicon rubber, hydrogenated nitrile rubber, fluorinated rubber, and hydrin rubber. These resin materials have relatively high stability against impurities generated due to deterioration of the refrigerant. As a result, deterioration of the seal ring (65) with the generation of the impurities is suppressed.
  • the seal member to which the present invention is applied is, for example, an O-ring interposed between the inner peripheral surface of the casing (70) and the outer peripheral surface of the housing (77), a suction pipe (56), or a discharge pipe.
  • the packing etc. which are interposed in the pipe joint part of (57) are also mentioned.
  • the resin material of the present invention can be applied to the seal member applied to each functional component of the refrigerant circuit (10) outside the compressor (30).
  • a sealing member for preventing the refrigerant from flowing out is Tetrafluoroethylene, polyphenylene sulfide, chlorobrene rubber, silicon rubber, hydrogenated nitrile rubber, fluorinated rubber, or hydrin rubber may be used.
  • the resin material of the present invention when applied to the seal member (65), it is preferable to set the aniline point of the refrigerating machine oil to a value within a predetermined numerical range. Thereby, swelling and shrinkage
  • a refrigerating machine oil mainly containing two or more of polyalkylene glycol, polyol ester, and polyvinyl ether may be used.
  • a single refrigerant other than HFO-1234yf among refrigerants represented by the above molecular formula and having one double bond in the molecular structure may be used. Good.
  • 1,2,3,3,3-pentafluoro-1-propene referred to as “HFO-1225ye”
  • the chemical formula is represented by CF 3 —CF ⁇ CHF
  • 1,3,3 , 3-tetrafluoro-1-propene referred to as “HFO-1234ze”
  • the chemical formula is represented by CF 3 —CH ⁇ CHF
  • 1,2,3,3-tetrafluoro-1-propene (“HFO ⁇ 1234ye ”
  • the chemical formula is CHF 2 —CF ⁇ CHF
  • 3,3,3-trifluoro-1-propene HFO-1243zf
  • the chemical formula is CF 3 —CH ⁇ CH .. represented by 2)
  • the refrigerant represented by the above molecular formula and having one double bond in the molecular structure (2,3,3,3-tetrafluoro-1-propene, 1,3,3,3-tetra Fluoro-1-propene, 1,2,3,3-tetrafluoro-1-propene, 3,3,3-trifluoro-1-propene, 1,2,2-trifluoro-1-propene, 2-fluoro -1-propene), HFC-32 (difluoromethane), HFC-125 (pentafluoroethane), HFC-134 (1,1,2,2-tetrafluoroethane), HFC-134a (1,1,1 , 2-tetrafluoroethane), HFC-143a (1,1,1-trifluoroethane), HFC-152a (1,1-difluoroethane), HFC-161, HFC-227ea, HF -236ea, HFC-236fa, HFC-
  • a mixed refrigerant composed of two components of HFO-1234yf and HFC-32 may be used.
  • a mixed refrigerant composed of 78.2% by mass of HFO-1234yf and 21.8% by mass of HFC-32 can be used.
  • the mixed refrigerant of HFO-1234yf and HFC-32 may have a ratio of HFO-1234yf of 70% by mass to 94% by mass and a ratio of HFC-32 of 6% by mass to 30% by mass, preferably
  • the ratio of HFO-1234yf may be 77% by mass or more and 87% by mass or less, and the ratio of HFC-32 may be 13% by mass or more and 23% by mass or less. More preferably, the ratio of HFO-1234yf is 77% by mass or more and 79% by mass. More preferably, the proportion of HFC-32 is 21% by mass or more and 23% by mass or less at a mass% or less.
  • a mixed refrigerant of HFO-1234yf and HFC-125 may be used.
  • the ratio of HFC-125 is preferably 10% by mass or more, and more preferably 10% by mass or more and 20% by mass or less.
  • a mixed refrigerant composed of three components of HFO-1234yf, HFC-32, and HFC-125 may be used.
  • a mixed refrigerant composed of 52% by mass of HFO-1234yf, 23% by mass of HFC-32, and 25% by mass of HFC-125 can be used.
  • a dryer filled with silicic acid or synthetic zeolite as a desiccant may be provided in the refrigerant circuit (10).
  • the compressor (30) may be a horizontal type, or may be another type of compressor such as a reciprocating type, a rotary type, and a screw type.
  • the air conditioning apparatus only for heating may be sufficient as a freezing apparatus (20), the refrigerator and freezer for cooling food may be sufficient, an air conditioner, a refrigerator, and a freezer. Or a hot water supply device that heats water with a radiator of the refrigerant circuit (10).
  • the present invention is useful for a refrigeration apparatus that performs a refrigeration cycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Lubricants (AREA)
  • Compressor (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

 分子式1:C(但し、m及びnは1以上5以下の整数で、m+n=6の関係が成立する。)で示され且つ分子構造中に二重結合を1個有する冷媒から成る単一冷媒又は該冷媒を含む混合冷媒が用いられる冷媒回路を備えた冷凍装置において、冷媒回路(10)の冷媒と接触可能に配設される所定の樹脂製機能部品(61,62,63,64,65)を、ポリテトラフルオロエチレン、ポリフェニレンサルファイド、フェノール樹脂、ポリアミド樹脂、クロロブレンゴム、シリコンゴム、水素化ニトリルゴム、フッ素ゴム、ヒドリンゴムのいずれかで構成する。

Description

冷凍装置
 本発明は、圧縮機で冷媒を圧縮して冷凍サイクルを行う冷媒回路を備えた冷凍装置に関するものである。
 従来より、冷凍サイクルを行う冷媒回路を備えた冷凍装置は、空気調和装置や給湯機等に広く適用されている。
 特許文献1には、この種の冷凍装置が開示されている。この冷凍装置は、圧縮機、凝縮器、膨張弁、凝縮器が接続されて冷凍サイクルが行われる冷媒回路を備えている。この冷媒回路では、圧縮機で圧縮された冷媒が凝縮器で空気へ放熱して凝縮する。凝縮器で凝縮した冷媒は、膨張弁で減圧された後、蒸発器で蒸発する。蒸発後の冷媒は、圧縮機に吸入されて再び圧縮される。
 また、特許文献1の冷媒回路には、分子式1:C(但し、m及びnは1以上5以下の整数で、m+n=6の関係が成立する。)で表され且つ分子構造中に二重結合を1個有する冷媒が用いられている。この冷媒は、塩素原子や臭素原子を含まず、オゾン層の破壊への影響が小さいことが知られている。
特開平4-110388号公報
 ところで、特許文献1に開示の冷媒は、二重結合を有する等、比較的不安定な分子構造であるため、長期の冷凍サイクルに伴い冷媒が劣化して不純物等が生成することがある。このような不純物が生成されると、例えば圧縮機の可動スクロールの摺動部材やシール部材等の樹脂製の機能部品が不純物の影響により劣化し易くなる。その結果、このような機能部品の耐久性や信頼性が損なわれてしまう虞がある。
 本発明は、かかる点に鑑みてなされたものであり、その目的は、分子式1:C(但し、m及びnは1以上5以下の整数で、m+n=6の関係が成立する。)で表され且つ分子構造中に二重結合を1個有する冷媒から成る単一冷媒又は該冷媒を含む混合冷媒が用いられる冷媒回路を備えた冷凍装置において、冷媒と接触可能に配設される所定の樹脂製機能部品の劣化を抑制することである。
 第1の発明は、圧縮機(30)によって冷媒を循環させて冷凍サイクルを行う冷媒回路(10)を備え、上記冷媒回路(10)の冷媒として、分子式1:C(但し、m及びnは1以上5以下の整数で、m+n=6の関係が成立する。)で表され且つ分子構造中に二重結合を1個有する冷媒、又は該冷媒を含む混合冷媒が用いられる冷凍装置を前提としている。そして、この冷凍装置は、上記冷媒回路(10)の冷媒と接触可能に配設される所定の樹脂製機能部品(61,62,63,64,65)が、ポリテトラフルオロエチレン、ポリフェニレンサルファイド、フェノール樹脂、ポリアミド樹脂、クロロブレンゴム、シリコンゴム、水素化ニトリルゴム、フッ素ゴム、ヒドリンゴムのいずれかで構成されていることを特徴とするものである。
 第1の発明の冷凍装置では、冷媒回路(10)の冷媒として、上記分子式1で表され且つ分子構造中に二重結合を1個有する冷媒又は該冷媒を含む混合冷媒が用いられている。この冷媒は、圧縮機(30)によって圧縮され、冷媒回路(10)で冷凍サイクルが行われる。
 冷媒回路(10)の冷媒と接触可能に所定の樹脂製機能部品(61,62,63,64,65)が配設される。ここで、樹脂製機能部品(61,62,63,64,65)は、ポリテトラフルオロエチレン、ポリフェニレンサルファイド、フェノール樹脂、ポリアミド樹脂、クロロブレンゴム、シリコンゴム、水素化ニトリルゴム、フッ素ゴム、ヒドリンゴムのいずれかで構成される。これらの樹脂材料は、冷媒から生成される不純物に対して比較的高い安定性を有する。その結果、上記の不純物の生成に伴う樹脂製機能部品の劣化が抑制される。
 第2の発明は、第1の発明の冷凍装置において、上記樹脂製機能部品は、所定の摺動部に設けられる摺動部材(65)で構成され、該摺動部材(65)は、ポリテトラフルオロエチレン、ポリフェニレンサルファイド、ポリアミド樹脂のいずれかで構成されていることを特徴とするものである。
 第2の発明では、摺動部に設けられる摺動部材(65)が樹脂製機能部品を構成する。そして、この摺動部材(65)が、ポリテトラフルオロエチレン、ポリフェニレンサルファイド、ポリアミド樹脂のいずれかで構成される。このため、冷媒から生成された不純物の影響により、摺動部材(65)が変性/劣化してしまうことが抑制される。
 第3の発明は、第1の発明の冷凍装置において、上記樹脂製機能部品は、所定の隙間での冷媒の漏れを防止するためのシール部材(65)で構成され、該シール部材(65)は、ポリテトラフルオロエチレン、ポリフェニレンサルファイド、クロロブレンゴム、シリコンゴム、水素化ニトリルゴム、フッ素化ゴム、ヒドリンゴムのいずれかで構成されていることを特徴とするものである。
 第3の発明では、所定の隙間での冷媒の漏れを防止するためのシール部材(65)が樹脂製機能部品を構成する。そして、シール部材(65)が、ポリフェニレンサルファイド、クロロブレンゴム、シリコンゴム、水素化ニトリルゴム、フッ素化ゴム、ヒドリンゴムのいずれかで構成される。このため、冷媒から生成された不純物の影響により、シール部材(65)が変性/劣化してしまうことが抑制される。
 第4の発明は、第1乃至第3のいずれか1つの発明の冷凍装置において、上記圧縮機(30)では、温度30℃、相対湿度90%における飽和水分量が2000ppm以上の冷凍機油が用いられることを特徴とするものである。
 第4の発明では、圧縮機(30)の冷凍機油として、温度30℃、相対湿度90%の条件下における飽和水分量が2000ppm以上の冷凍機油が用いられる。つまり、本発明では、吸湿性が比較的高い冷凍機油が用いられる。これにより、冷媒中の水分を冷凍機油に捕捉することができる。その結果、冷媒では、水分の影響による劣化が抑制される。
 第5の発明は、第4の発明の冷凍装置において、上記冷凍機油は、ポリアルキレングリコール、ポリオールエステル、及びポリビニルエーテルのうち少なくとも1つを主成分とすることを特徴とするものである。
 第5の発明では、冷凍機油として、ポリアルキレングリコール、ポリオールエステル、ポリビニルエーテルの少なくとも1つを主成分とする冷凍機油が用いられている。これらの冷凍機油は、上記分子式1で表され且つ分子構造中に二重結合を1個有する冷媒に対して相溶性を有するので、この冷媒が冷凍機油に溶解され易くなる。
 ところで、上述のように冷媒が劣化して不純物が生成されると、この不純物の影響により本発明の冷凍機油も劣化してしまうことがある。これにより、冷凍機油の劣化に起因して更に不純物が生成され、冷凍機油に由来する不純物の影響により樹脂製機能部品(61,62,63,64,65)が劣化し易くなる。しかしながら、本発明では、樹脂製機能部品(61,62,63,64,65)として、ポリテトラフルオロエチレン、ポリフェニレンサルファイド、フェノール樹脂、ポリアミド樹脂、クロロブレンゴム、シリコンゴム、水素化ニトリルゴム、フッ素ゴム、ヒドリンゴムのいずれかを用いているので、冷凍機油から発生した不純物により樹脂製機能部品(61,62,63,64,65)が劣化してしまうのを回避できる。
 第6の発明は、第4又は第5の発明の冷凍装置において、上記冷凍機油が、動粘度が40℃において30cSt以上400cSt以下で、流動点が-30℃以下であることを特徴とするものである。
 第6の発明では、冷凍機油の動粘度が40℃において30cSt以上であるため、動粘度不足によって油膜強度が不十分になることはなく、摺動部の潤滑性能が確保される。また、冷凍機油の流動点が-30℃以下であるため、冷媒回路(10)において低温部位でも冷凍機油の流動性が確保できる。
 第7の発明は、第1乃至第6のいずれか1つの発明の冷凍装置において、上記冷凍機油は、表面張力が20℃において0.02N/m以上0.04N/m以下であることを特徴とするものである。
 第7の発明では、冷凍機油の表面張力が、20℃において0.02N/m以上0.04N/m以下となる。ここで、冷凍機油の表面張力が小さすぎると、圧縮機(30)内のガス冷媒中で冷凍機油が小さな油滴になりやすく、比較的多量の冷凍機油が冷媒と共に圧縮機(30)から吐出されてしまう。従って、圧縮機(30)で油上がりが生じる虞がある。逆に、冷凍機油の表面張力が大きすぎると、圧縮機(30)から吐出された冷凍機油が、冷媒回路(10)において大きな油滴になり易い。このため、圧縮機(30)から吐出された冷凍機油が、冷媒によって押し流されにくく、圧縮機(30)に戻りにくくなる。従って、この場合にも、圧縮機(30)で油上がりが生じる虞がある。
 以上のように、本発明では、冷凍機油の表面張力が20℃において0.02N/m以上0.04N/m以下としたので、油滴の大きさが最適な範囲となり、上記のような油上がりが回避される。
 第8の発明は、第4乃至第7のいずれか1つの発明の冷凍装置において、上記冷凍機油は、塩素濃度が50ppm以下であることを特徴とするものである。
 第8の発明では、冷凍機油の塩素濃度が50ppm以下となるので、塩素に起因する冷媒の劣化促進が抑制される。これにより、不純物の生成も抑制され、樹脂製機能部品(61,62,63,64,65)の耐久性が向上する。
 第9の発明は、第4乃至第8のいずれか1つにおいて、上記冷凍機油は、硫黄濃度が50ppm以下であることを特徴とするものである。
 第9の発明では、冷凍機油の硫黄濃度が50ppm以下となるので、硫黄に起因する冷媒の劣化が抑制される。これにより、不純物の生成も抑制され、樹脂製機能部品(61,62,63,64,65)の耐久性が向上する。
 第10の発明は、第4乃至第9のいずれか1つの発明の冷凍装置において、上記冷凍機油には、酸捕捉剤、極圧添加剤、酸化防止剤、酸素捕捉剤、消泡剤、油性剤、及び銅不活性化剤のうち少なくとも1種類の添加剤が添加されていることを特徴とするものである。
 第10の発明では、酸捕捉剤、極圧添加剤、酸化防止剤、酸素捕捉剤、消泡剤、油性剤、及び銅不活性化剤の添加剤のうち少なくとも1種類の添加剤が冷凍機油に含まれている。このため、冷凍機油や冷媒の安定化が図られ、不純物等の生成が抑制される。
 第11の発明は、第10の発明の冷凍装置において、上記冷凍機油では、1種類の添加剤が添加されている場合には該添加剤の割合が0.01質量%以上5質量%以下に、複数種類の添加剤が添加されている場合には各添加剤の割合が0.01質量%以上5質量%以下になっていることを特徴とするものである。
 第11の発明では、1種類の添加剤が冷凍機油に添加されている場合には、冷凍機油中の添加剤の割合が、0.01質量%以上5質量%以下になっている。複数種類の添加剤が冷凍機油に添加されている場合には、冷凍機油中の何れの添加剤も、その割合が0.01質量%以上5質量%以下になっている。
 第12の発明は、第1乃至第11の何れか1つの発明の冷凍装置において、上記分子式1:C(但し、m及びnは1以上5以下の整数で、m+n=6の関係が成立する。)で表され且つ分子構造中に二重結合を1個有する冷媒は、2,3,3,3-テトラフルオロ-1-プロペンであることを特徴とするものである。
 第12の発明では、冷媒回路(10)の冷媒として、2,3,3,3-テトラフルオロ-1-プロペンからなる単一冷媒、又は2,3,3,3-テトラフルオロ-1-プロペンを含む混合冷媒が用いられる。
 第13の発明は、第1乃至第12のいずれか1つの発明の冷凍装置において、上記冷媒回路(10)の冷媒は、さらにジフルオロメタンを含む混合冷媒であることを特徴とするものである。
 第13の発明では、冷媒回路(10)の冷媒として、上記分子式1で表され且つ分子構造中に二重結合を1個有する冷媒とジフルオロメタンとを含む混合冷媒が用いられる。ここで、上記分子式1で表され且つ分子構造中に二重結合を1個有する冷媒は、いわゆる低圧冷媒である。このため、例えば上記分子式1で表され且つ分子構造中に二重結合を1個有する冷媒からなる単一冷媒を用いる場合には、冷媒の圧力損失が冷凍装置の運転効率に与える影響が比較的大きく、理論上の運転効率に対して実際の運転効率が低下してしまう。そこで、本発明では、上記分子式1で表され且つ分子構造中に二重結合を1個有する冷媒に、いわゆる高圧冷媒であるジフルオロメタンが加えられている。
 第14の発明は、第1乃至第13のいずれか1つの発明の圧縮機において、上記冷媒回路(10)の冷媒は、さらにペンタフルオロエタンを含む混合冷媒であることを特徴とするものである。
 第14の発明では、冷媒回路(10)の冷媒として、上記分子式1で表され且つ分子構造中に二重結合を1個有する冷媒とペンタフルオロエタンとを含む混合冷媒が用いられる。ここで、上記分子式1で表され且つ分子構造中に二重結合を1個有する冷媒は、微燃性の冷媒ではあるが、発火するおそれがない訳ではない。そこで、本発明では、上記分子式1で表され且つ分子構造中に二重結合を1個有する冷媒に、難燃性の冷媒であるペンタフルオロエタンが加えられている。
 本発明では、冷媒回路(10)の冷媒として、分子式1:C(但し、m及びnは1以上5以下の整数で、m+n=6の関係が成立する。)で表され且つ分子構造中に二重結合を1個有する冷媒、又は該冷媒を含む混合冷媒が用いられる。これにより、冷凍サイクルの理論上の成績係数(COP)が高い冷凍装置を提供できる。
 ここで、上記の冷媒は、二重結合を有する等の理由により比較的不安定な分子構造であり、冷媒が劣化して不純物等が生成され易い。このため、冷凍装置の樹脂製機能部品(61,62,63,64,65)は、このような不純物の影響により化学的/物理的に変性して劣化してしまう虞がある。しかしながら、本発明の樹脂製機能部品(61,62,63,64,65)は、上記の冷媒の不純物に対して、比較的安定性に優れた材料、即ちポリテトラフルオロエチレン、ポリフェニレンサルファイド、フェノール樹脂、ポリアミド樹脂、クロロブレンゴム、シリコンゴム、水素化ニトリルゴム、フッ素ゴム、ヒドリンゴムのいずれかで構成されている。従って、上記不純物の影響により、樹脂製機能部品(61,62,63,64,65)が化学的/物理的に変性してしまうことが回避される。その結果、樹脂製機能部品では、所望とする耐久性を確保することができる。
 第2の発明では、樹脂製機能部品としての摺動部材(61,62,63,64)をポリテトラフルオロエチレン、ポリフェニレンサルファイド、ポリアミド樹脂のいずれかで構成している。これにより、冷媒から生成する不純物に起因する摺動部材(61,62,63,64)の劣化を回避できる。その結果、摺動部材(61,62,63,64)の耐久性が向上するので、摺動部材(61,62,63,64)では、所望とする摺動性/耐摩耗性を得ることができる。
 第3の発明では、樹脂製機能部品としてのシール部材(65)をポリテトラフルオロエチレン、ポリフェニレンサルファイド、クロロブレンゴム、シリコンゴム、水素化ニトリルゴム、フッ素化ゴム、ヒドリンゴムのいずれかで構成している。これにより、冷媒から生成する不純物に起因するシール部材(65)の劣化を回避できる。その結果、シール部材(65)の耐久性が向上するので、シール部材(65)では、所望とするシール性を得ることができる。
 第4の発明では、温度30℃、相対湿度90%における飽和水分量が2000ppm以上の冷凍機油を用いているので、冷媒中の水分を冷凍機油に捕捉させることができる。このため、水分の影響により冷媒が劣化してしまうのを防止できる。
 第5の発明の冷凍機油は、ポリアルキレングリコール、ポリオールエステル、及びポリビニルエーテルのうち少なくとも1つを主成分としている。これにより、冷媒と冷凍機油とが相互に溶け易くなる。このため、冷媒回路(10)中に冷凍機油が流出しても、この冷凍機油は冷媒に溶け込んで圧縮機(30)に返送され易くなる。その結果、圧縮機(30)における油上がりを抑制することができるので、圧縮機(30)の冷凍機油不足、更には潤滑不良を未然に回避できる。従って、圧縮機(30)の信頼性を向上させることができる。
 特に、第6の発明の冷凍機油は、動粘度が40℃において30cSt以上400cSt以下であるので、摺動部の潤滑性能を充分確保できる。また、本発明では、流動点が-30℃以下であるので、比較的低温部位でも冷凍機油の流動性を確保できる。
 第7の発明の冷凍機油は、表面張力が20℃において0.02N/m以上0.04N/m以下であるので、圧縮機(30)から多量に冷凍機油が吐出されることや、圧縮機から吐出された冷凍機油が圧縮機に戻りにくくなることがない。従って、圧縮機において油上がりが生じることを抑制することができ、圧縮機構(82)の摺動部の潤滑不良を防止できる。
 第8の発明の冷凍機油は、塩素濃度が50ppm以下であるので、塩素に起因して冷媒の劣化が促進してしまうことを防止できる。その結果、樹脂製機能部品(61,62,63,64,65)の耐久性を更に向上できる。また、第9の発明の冷凍機油は、硫黄濃度が50ppm以下であるので、硫黄に起因して冷媒の劣化が促進してしまうことを防止できる。その結果、樹脂製機能部品(61,62,63,64,65)の耐久性を更に向上できる。
 第10や第11の発明の冷凍機油では、酸捕捉剤、極圧添加剤、酸化防止剤、消泡剤、油性剤、及び銅不活性化剤の6種類の添加剤のうち少なくとも1種類の添加剤が添加されている。このため、冷媒や冷凍機油を安定化させることができ、不純物の発生を抑制できる。その結果、樹脂製機能部品(61,62,63,64,65)の耐久性/信頼性を更に向上できる。
 第12の発明では、上記分子式1で表され且つ分子構造中に二重結合を1個有する冷媒が、2,3,3,3-テトラフルオロ-1-プロペンであるので、冷凍サイクルのCOPの向上を図ることができる。
 第13の発明では、上記分子式1で表され且つ分子構造中に二重結合を1個有する冷媒に、いわゆる高圧冷媒であるジフルオロメタンが加えられている。このため、冷媒の圧力損失が冷凍装置の運転効率に与える影響を小さくすることができるので、冷凍装置の実際の運転効率を向上させることができる。
 第14の発明では、上記分子式1で表され且つ分子構造中に二重結合を1個有する冷媒に、難燃性の冷媒であるペンタフルオロエタンが加えられている。従って、冷媒回路(10)の冷媒が燃えにくくなるので、冷凍装置の信頼性を向上させることができる。
図1は、実施形態に係る冷凍装置の概略構成図である。 図2は、実施形態に係る圧縮機の縦断面図である。 図3は、実施形態に係る圧縮機の圧縮機構の横断面図である。 図4は、実施形態の変形例3に係る圧縮機の縦断面図である。
符号の説明
 10 冷媒回路
 20 空気調和装置(冷凍装置)
 30 圧縮機
 61 上部軸受(摺動部材,樹脂製機能部品)
 62 中間軸受(摺動部材,樹脂製機能部品)
 63 下部軸受(摺動部材,樹脂製機能部品)
 64 スラスト軸受(摺動部材,樹脂製機能部品)
 65 シールリング(シール部材)
 以下、本発明の実施形態を図面に基づいて詳細に説明する。
 本実施形態は、本発明に係る冷凍装置(20)によって構成された空気調和装置(20)である。本実施形態の空気調和装置(20)は、図1に示すように、室外機(22)と3台の室内機(23a,23b,23c)とを備えている。なお、室内機(23)の台数は、単なる例示である。
 上記空気調和装置(20)は、冷媒を充填されて冷凍サイクルを行う冷媒回路(10)を備えている。冷媒回路(10)は、室外機(22)に収容される室外回路(9)と、各室内機(23)に収容される室内回路(17a,17b,17c)とを備えている。これらの室内回路(17a,17b,17c)は、液側連絡配管(18)及びガス側連絡配管(19)によって室外回路(9)に接続されている。これらの室内回路(17a,17b,17c)は、互いに並列に接続されている。
 本実施形態の冷媒回路(10)には、冷媒として2,3,3,3-テトラフルオロ-1-プロペン(以下、「HFO-1234yf」という。)の単一冷媒が充填されている。なお、HFO-1234yfの化学式は、CF-CF=CHで表される。
  〈室外回路の構成〉
 室外回路(9)には、圧縮機(30)、室外熱交換器(11)、室外膨張弁(12)、及び四路切換弁(13)が設けられている。
 圧縮機(30)は、例えば運転容量が可変なインバータ式の圧縮機として構成されている。圧縮機(30)には、インバータを介して電力が供給される。圧縮機(30)は、吐出側が四路切換弁(13)の第2ポート(P2)に接続され、吸入側が四路切換弁(13)の第1ポート(P1)に接続されている。なお、圧縮機(30)についての詳細は後述する。
 室外熱交換器(11)は、クロスフィン型のフィン・アンド・チューブ熱交換器として構成されている。室外熱交換器(11)の近傍には、室外ファン(14)が設けられている。室外熱交換器(11)では、室外空気と冷媒との間で熱交換が行われる。室外熱交換器(11)は、一端が四路切換弁(13)の第3ポート(P3)に接続され、他端が室外膨張弁(12)に接続されている。また、四路切換弁(13)の第4ポート(P4)は、ガス側連絡配管(19)に接続されている。
 室外膨張弁(12)は、室外熱交換器(11)と室外回路(9)の液側端との間に設けられている。室外膨張弁(12)は、開度可変の電子膨張弁として構成されている。
 四路切換弁(13)は、第1ポート(P1)と第4ポート(P4)とが連通して第2ポート(P2)と第3ポート(P3)とが連通する第1状態(図1に実線で示す状態)と、第1ポート(P1)と第3ポート(P3)とが連通して第2ポート(P2)と第4ポート(P4)とが連通する第2状態(図1に破線で示す状態)とが切り換え自在に構成されている。
  〈室内回路の構成〉
 各室内回路(17)には、そのガス側端から液側端へ向かって順に、室内熱交換器(15a,15b,15c)と、室内膨張弁(16a,16b,16c)とが設けられている。
 室内熱交換器(15)は、クロスフィン型のフィン・アンド・チューブ熱交換器として構成されている。室内熱交換器(15)の近傍には、室内ファン(21)が設けられている。室内熱交換器(15)では、室内空気と冷媒との間で熱交換が行われる。また、室内膨張弁(16)は、開度可変の電子膨張弁として構成されている。
  〈圧縮機の構成〉
 圧縮機(30)は、例えば全密閉の高圧ドーム型のスクロール圧縮機として構成されている。圧縮機(30)の構成を図2及び図3に従って説明する。
 圧縮機(30)は、縦型で密閉容器を形成するケーシング(70)を備えている。ケーシング(70)の内部には、下から上へ向かって、電動機(85)と圧縮機構(82)とが配置されている。
 電動機(85)は、ステータ(83)とロータ(84)とを備えている。ステータ(83)は、ケーシング(70)の胴部に固定されている。一方、ロータ(84)は、ステータ(83)の内側に配置され、クランク軸(90)が連結されている。クランク軸(90)は、ケーシング(70)の油溜まりの近傍に配置された下部軸受部材(60)に支持されている。
 圧縮機構(82)は、可動スクロール(76)と固定スクロール(75)とを備え、スクロール式の圧縮機構を構成している。可動スクロール(76)は、略円板状の可動側鏡板(76b)と、渦巻き状の可動側ラップ(76a)とを備えている。可動側ラップ(76a)は可動側鏡板(76b)の前面(上面)に立設されている。また、可動側鏡板(76b)の背面(下面)には、クランク軸(90)の偏心部が挿入された円筒状の突出部(76c)が立設されている。可動スクロール(76)は、オルダムリング(79)を介して、可動スクロール(76)の下側に配置されたハウジング(77)に支持されている。一方、固定スクロール(75)は、略円板状の固定側鏡板(75b)と、渦巻き状の固定側ラップ(75a)とを備えている。固定側ラップ(75a)は固定側鏡板(75b)の前面(下面)に立設されている。圧縮機構(82)では、固定側ラップ(75a)と可動側ラップ(76a)とが互いに噛み合うことによって、両ラップ(75a,76a)の接触部の間に複数の圧縮室(73)が形成されている。
 なお、本実施形態の圧縮機(30)では、いわゆる非対称渦巻き構造が採用されており、固定側ラップ(75a)と可動側ラップ(76a)とで巻き数(渦巻きの長さ)が相違している。上記複数の圧縮室(73)は、固定側ラップ(75a)の内周面と可動側ラップ(76a)の外周面との間に構成される第1圧縮室(73a)と、固定側ラップ(75a)の外周面と可動側ラップ(76a)の内周面との間に構成される第2圧縮室(73b)とから構成されている。
 圧縮機構(82)では、固定スクロール(75)の外縁部に吸入ポート(98)が形成されている。吸入ポート(98)には、ケーシング(70)の頂部を貫通する吸入管(57)が接続されている。吸入ポート(98)は、可動スクロール(76)の公転運動に伴って、第1圧縮室(73a)と第2圧縮室(73b)のそれぞれに間欠的に連通する。また、吸入ポート(98)には、圧縮室(73)から吸入管(57)へ戻る冷媒の流れを禁止する吸入逆止弁が設けられている(図示省略)。
 また、圧縮機構(82)では、固定側鏡板(75b)の中央部に吐出ポート(93)が形成されている。吐出ポート(93)は、可動スクロール(76)の公転運動に伴って、第1圧縮室(73a)と第2圧縮室(73b)のそれぞれに間欠的に連通する。吐出ポート(93)は、固定スクロール(75)の上側に形成されたマフラー空間(96)に開口している。
 ケーシング(70)内は、円盤状のハウジング(77)によって、上側の吸入空間(101)と下側の吐出空間(100)とに区画されている。吸入空間(101)は、図示しない連通ポートを通じて、吸入ポート(98)に連通している。吐出空間(100)は、固定スクロール(75)とハウジング(77)とに亘ってに形成された連絡通路(103)を通じて、マフラー空間(96)に連通している。運転中の吐出空間(100)は、吐出ポート(93)から吐出された冷媒がマフラー空間(96)を通じて流入するので、圧縮機構(82)で圧縮された冷媒で満たされる高圧空間になる。吐出空間(100)には、ケーシング(70)の胴部を貫通する吐出管(56)が開口している。
 本実施形態の圧縮機(30)のケーシング(70)内には、有機材料によって構成された部品として、ステータ(83)の巻き線の絶縁被覆材料、絶縁フィルム、及び圧縮機構(82)のシール材料が用いられている。これらの部品には、高温高圧の冷媒に接触した場合でも、冷媒により物理的や化学的に変性を受けない物質で、特に耐溶剤性、耐抽出性、熱的・化学的安定性、耐発泡性を有する物質が用いられている。
 具体的に、ステータ(83)の巻き線の絶縁被覆材料は、ポリビニルフォルマール、ポリエステル、THEIC変性ポリエステル、ポリアミド、ポリアミドイミド、ポリエステルイミド、ポリエステルアミドイミドの何れかが用いられている。なお、好ましいのは、上層がポリアミドイミド、下層がポリエステルイミドの二重被覆線である。また、上記物質以外に、ガラス転移温度が120℃以上のエナメル被覆を用いてもよい。
 また、絶縁フィルムには、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリフェニレンサルファイド(PPS)、ポリブチレンテフタレート(PBT)の何れかが用いられている。なお、絶縁フィルムに、発泡材料が冷凍サイクルの冷媒と同じ発泡フィルムを用いることも可能である。インシュレーター等の巻き線を保持する絶縁材料には、ポリエーテルエーテルケトン(PEEK)又は液晶ポリマー(LCP)が用いられている。ワニスには、エポキシ樹脂が用いられている。
 また、ケーシング(70)の底部には、冷凍機油が貯留される油溜まりが形成されている。また、クランク軸(90)の内部には、油溜まりに開口する第1給油通路(104)が形成されている。また、可動側鏡板(76b)には、第1給油通路(104)に接続する第2給油通路(105)が形成されている。この圧縮機(30)では、油溜まりの冷凍機油が第1給油通路(104)及び第2給油通路(105)を通じて低圧側の圧縮室(73)に供給される。
 また、圧縮機(30)には、冷媒及び冷凍機油と接触可能に配設される樹脂製構造部品が設けられている。本実施形態の圧縮機(30)には、上記樹脂製構造部品として、上部軸受(61)と中間軸受(62)と下部軸受(63)とスラスト軸受(64)とが設けられている。
 上部軸受(61)は、クランク軸(90)の上端の偏心部と可動スクロール(76)の突出部(76c)との間の摺動部位に形成されている。中間軸受(62)は、クランク軸(90)の大径部位と、ハウジング(77)の貫通口の内周面との間の摺動部位に形成されている。下部軸受(63)は、クランク軸(90)の下端部と、上記下部軸受部材(60)の貫通口の内周面との間の摺動部位に形成されている。上部軸受(61)、中間軸受(62)、及び下部軸受(63)は、いわゆるジャーナル軸受を構成している。スラスト軸受(64)は、可動スクロール(76)の可動側鏡板(76b)の背面とハウジング(77)の支持部との間の摺接部位に形成されている。
 上記樹脂製機能部品から成る各軸受け(61,62,63,64)は、摺動部材を構成している。これらの摺動部材を構成する各軸受け(61,62,63,64)は、ポリテトラフルオロエチレン(PTFE)、ポリフェニレンサルファイド、ポリアミド樹脂のいずれかで構成されている。
  〈冷凍機油について〉
 本実施形態では、ポリアルキレングリコール、ポリオールエステル、及びポリビニルエーテルの3種類の基油のうち少なくとも1種類を主成分とする冷凍機油を圧縮機(30)に用いることが可能である。例えば、本実施形態の冷凍機油には、この3種類のうちポリビニルエーテルだけを主成分とする冷凍機油が用いられている。
 本実施形態の冷凍機油では、下記一般式(I)で表される構成単位を有するポリビニルエーテルを主成分とする冷凍機油が用いられている。この構造のポリビニルエーテルは、ポリビニルエーテルの中でも、上記分子式1で表され且つ分子構造中に二重結合を1個有する冷媒との相溶性に優れている。
Figure JPOXMLDOC01-appb-C000001
 一般式(I)において、R1、R2、及びR3は、水素又は炭素数が1以上8以下の炭化水素基を表している。R1、R2、及びR3は、同一でもよく、互いに異なっていてもよい。また、一般式(I)においては、構成単位毎において、R4が炭素数が1又は2のアルキル基が40%以上100%以下、炭素数が3又は4のアルキル基が0%以上60%以下の構成比を有している。
 上記冷凍機油は、動粘度が40℃において30cSt以上400cSt以下で、流動点が-30℃以下で、表面張力が20℃において0.02N/m以上0.04N/m以下で、さらに密度が15℃において0.8g/cm以上1.8g/cm以下になっている。また、冷凍機油は、温度30℃、相対湿度90%における飽和水分量が2000ppm以上で、さらにアニリン点が所定の数値範囲内の値となっている。ここで、「アニリン点」は、例えば炭化水素系溶剤等の溶解性を示す数値であり、試料(ここでは冷凍機油)を等容積のアニリンと混合して冷やしたときに、互いに溶解し合えなくなって濁りがみえ始めたときの温度を表すものである(JIS K 2256で規定)。なお、これらの値は、冷媒が溶解しない状態の冷凍機油自体の値である。この点は、後述する変形例1、変形例2、及びその他の実施形態に記載した冷凍機油も同じである。
 本実施形態では、冷凍機油の主成分となるポリビニルエーテルが、HFO-1234yfに対して相溶性を有している。そして、冷凍機油の動粘度は、40℃において400cSt以下である。このため、HFO-1234yfが、冷凍機油にある程度溶解する。また、冷凍機油の流動点が-30℃以下であるため、冷媒回路(10)において低温部位でも冷凍機油の流動性が確保できる。また、表面張力が20℃において0.04N/m以下であるため、圧縮機(30)から吐出された冷凍機油が冷媒によって押し流されにくくなるような大きな油滴になりにくい。従って、圧縮機(30)から吐出された冷凍機油は、HFO-1234yfに溶解してHFO-1234yfと共に圧縮機(30)に戻ってくる。
 また、冷凍機油の動粘度が40℃において30cSt以上であるため、動粘度が低すぎて油膜強度が不十分になることはなく、潤滑性能が確保される。また、表面張力が20℃において0.02N/m以上であるため、圧縮機(30)内のガス冷媒中で小さな油滴になりにくく、圧縮機(30)から多量に冷凍機油が吐出されることがない。このため、圧縮機(30)における冷凍機油の貯留量を充分に確保することができる。
 また、冷凍機油の飽和水分量が、温度30℃/相対湿度90%において2000ppm以上であるため、冷凍機油の吸湿性が比較的高いものとなる。これにより、HFO-1234yf中の水分を冷凍機油によって有る程度捕捉することが可能となる。HFO-1234yfは、含有される水分の影響により、変質/劣化し易い分子構造を有する。よって、冷凍機油による吸湿効果により、このような劣化を抑制することができる。
 更に、冷凍機油のアニリン点は、上記樹脂製機能部品との適合性を考慮して、その数値範囲を設定するのが良い。このようにアニリン点を設定することで、例えば上述した樹脂製機能部品を構成する軸受(61,62,63,64)と冷凍機油との適合性が向上する。具体的に、アニリン点が小さ過ぎると、冷凍機油が軸受(61,62,63,64)に浸透し易くなり、軸受(61,62,63,64)が膨潤し易くなる。一方、アニリン点が大き過ぎると、冷凍機油が軸受(61,62,63,64)と浸透し難くなり、軸受(61,62,63,64)が収縮し易くなる。そこで、冷凍機油のアニリン点を所定の数値範囲とすることで、軸受(61,62,63,64)の膨潤/収縮変形を防止できる。ここで、例えば各軸受(61,62,63,64)が膨潤/縮小変形してしまうと、摺動部での隙間(ギャップ)を所望とする長さに維持することができない。その結果、摺動抵抗の増大や摺動部の剛性の低下を招く虞がある。しかしながら、上記のように冷凍機油のアニリン点を所定の数値範囲とすることで、軸受(61,62,63,64)の膨潤/縮小変形が抑制されるので、このような不具合を回避できる。
 また、本実施形態の冷凍機油には、添加剤として、酸捕捉剤、極圧添加剤、酸化防止剤、消泡剤、油性剤、及び銅不活性化剤が添加されている。なお、本実施形態では上記6つの添加剤を全て使用しているが、各添加剤は必要に応じて添加すればよく、添加剤が1つだけであってもよい。個々の添加剤の配合量は、冷凍機油に含まれる割合が0.01質量%以上5質量%以下になるように設定されている。なお、酸捕捉剤の配合量、及び酸化防止剤の配合量は、0.05質量%以上3質量%以下の範囲が好ましい。
 酸捕捉剤には、フェニルグリシジルエーテル、アルキルグリシジルエーテル、アルキレングリコールグリシジルエーテル、シクロヘキセンオキシド、α-オレフィンオキシド、エポキシ化大豆油などのエポキシ化合物を用いることができる。なお、これらの中で相溶性の観点から好ましい酸捕捉剤は、フェニルグリシジルエーテル、アルキルグリシジルエーテル、アルキレングリコールグリシジルエーテル、シクロヘキセンオキシド、α-オレフィンオキシドである。アルキルグリシジルエーテルのアルキル基、及びアルキレングリコールグリシジルエーテルのアルキレン基は、分岐を有していてもよい。これらの炭素数は、3以上30以下であればよく、4以上24以下であればより好ましく、6以上16以下であれば更に好ましい。また、α-オレフィンオキシドは、全炭素数が4以上50以下であればよく、4以上24以下であればより好ましく、6以上16以下であれば更に好ましい。酸捕捉剤は、1種だけを用いてもよく、複数種類を併用することも可能である。
 なお、極圧添加剤には、リン酸エステル類を含むものを用いることができる。リン酸エステル類としては、リン酸エステル、亜リン酸エステル、酸性リン酸エステル、及び酸性亜リン酸エステル等を用いることができる。また、極圧添加剤には、リン酸エステル類には、リン酸エステル、亜リン酸エステル、酸性リン酸エステル、及び酸性亜リン酸エステルのアミン塩を含むものを用いることもできる。
 リン酸エステルには、トリアリールホスフェート、トリアルキルホスフェート、トリアルキルアリールホスフェート、トリアリールアルキルホスフェート、トリアルケニルホスフェート等がある。さらに、リン酸エステルを具体的に列挙すると、トリフェニルホスフェート、トリクレジルホスフェート、ベンジルジフェニルホスフェート、エチルジフェニルホスフェート、トリブチルホスフェート、エチルジブチルホスフェート、クレジルジフェニルホスフェート、ジクレジルフェニルホスフェート、エチルフェニルジフェニルホスフェート、ジエチルフェニルフェニルホスフェート、プロピルフェニルジフェニルホスフェート、ジプロピルフェニルフェニルホスフェート、トリエチルフェニルホスフェート、トリプロピルフェニルホスフェート、ブチルフェニルジフェニルホスフェート、ジブチルフェニルフェニルホスフェート、トリブチルフェニルホスフェート、トリヘキシルホスフェート、トリ(2-エチルヘキシル)ホスフェート、トリデシルホスフェート、トリラウリルホスフェート、トリミリスチルホスフェート、トリパルミチルホスフェート、トリステアリルホスフェート、トリオレイルホスフェート等がある。
 また、亜リン酸エステルの具体的としては、トリエチルホスファイト、トリブチルホスファイト、トリフェニルホスファイト、トリクレジルホスファイト、トリ(ノニルフェニル)ホスファイト、トリ(2-エチルヘキシル)ホスファイト、トリデシルホスファイト、トリラウリルホスファイト、トリイソオクチルホスファイト、ジフェニルイソデシルホスファイト、トリステアリルホスファイト、トリオレイルホスファイト等がある。
 また、酸性リン酸エステルの具体的としては、2-エチルヘキシルアシッドホスフェート、エチルアシッドホスフェート、ブチルアシッドホスフェート、オレイルアシッドホスフェート、テトラコシルアシッドホスフェート、イソデシルアシッドホスフェート、ラウリルアシッドホスフェート、トリデシルアシッドホスフェート、ステアリルアシッドホスフェート、イソステアリルアシッドホスフェート等がある。
 また、酸性亜リン酸エステルの具体的としては、ジブチルハイドロゲンホスファイト、ジラウリルハイドロゲンホスファイト、ジオレイルハイドゲンホスファイト、ジステアリルハイドロゲンホスファイト、ジフェニルハイドロゲンホスファイト等がある。以上のリン酸エステル類の中で、オレイルアシッドホスフェート、ステアリルアシッドホスフェートが好適である。
 また、リン酸エステル、亜リン酸エステル、酸性リン酸エステル又は酸性亜リン酸エステルのアミン塩に用いられるアミンのうちモノ置換アミンの具体例としては、ブチルアミン、ペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、オクチルアミン、ラウリルアミン、ステアリルアミン、オレイルアミン、ベンジルアミン等がある。また、ジ置換アミンの具体例としては、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン、ジシクロヘキシルアミン、ジオクチルアミン、ジラウリルアミン、ジステアリルアミン、ジオレイルアミン、ジベンジルアミン、ステアリル・モノエタノールアミン、デシル・モノエタノールアミン、ヘキシル・モノプロパノールアミン、ベンジル・モノエタノールアミン、フェニル・モノエタノールアミン、トリル・モノプロパノール等がある。また、トリ置換アミンの具体例としては、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、トリシクロヘキシルアミン、トリオクチルアミン、トリラウリルアミン、トリステアリルアミン、トリオレイルアミン、トリベンジルアミン、ジオレイル・モノエタノールアミン、ジラウリル・モノプロパノールアミン、ジオクチル・モノエタノールアミン、ジヘキシル・モノプロパノールアミン、ジブチル・モノプロパノールアミン、オレイル・ジエタノールアミン、ステアリル・ジプロパノールアミン、ラウリル・ジエタノールアミン、オクチル・ジプロパノールアミン、ブチル・ジエタノールアミン、ベンジル・ジエタノールアミン、フェニル・ジエタノールアミン、トリル・ジプロパノールアミン、キシリル・ジエタノールアミン、トリエタノールアミン、トリプロパノールアミン等がある。
 また、上記以外の極圧添加剤を添加することも可能である。例えば、モノスルフィド類、ポリスルフィド類、スルホキシド類、スルホン類、チオスルフィネート類、硫化油脂、チオカーボネート類、チオフェン類、チアゾール類、メタンスルホン酸エステル類等の有機硫黄化合物系の極圧添加剤、チオリン酸トリエステル類等のチオリン酸エステル系の極圧添加剤、高級脂肪酸、ヒドロキシアリール脂肪酸類、多価アルコールエステル類、アクリル酸エステル類等のエステル系の極圧添加剤、塩素化炭化水素類、塩素化カルボン酸誘導体等の有機塩素系の極圧添加剤、フッ素化脂肪族カルボン酸類、フッ素化エチレン樹脂、フッ素化アルキルポリシロキサン類、フッ素化黒鉛等の有機フッ素化系の極圧添加剤、高級アルコール等のアルコール系の極圧添加剤、ナフテン酸塩類(ナフテン酸鉛等)、脂肪酸塩類(脂肪酸鉛等)、チオリン酸塩類(ジアルキルジチオリン酸亜鉛等)、チオカルバミン酸塩類、有機モリブデン化合物、有機スズ化合物、有機ゲルマニウム化合物、ホウ酸エステル等の金属化合物系の極圧添加剤を用いることが可能である。
 また、酸化防止剤には、フェノール系の酸化防止剤やアミン系の酸化防止剤を用いることができる。フェノール系の酸化防止剤には、2,6-ジ-tert-ブチル-4-メチルフェノール(DBPC)、2,6-ジ-tert-ブチル-4-エチルフェノール、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、2,4-ジメチル-6-tert-ブチルフェノール、2,6-ジ-tert-ブチルフェノール等がある。また、アミン系の酸化防止剤には、N,N’-ジイソプロピル-p-フェニレンジアミン、N,N’-ジ-sec-ブチル-p-フェニレンジアミン、フェニル-α-ナフチルアミン、N.N’-ジ-フェニル-p-フェニレンジアミン等がある。なお、酸化防止剤には、酸素を捕捉する酸素捕捉剤も用いることができる。
 また、銅不活性化剤としては、ベンゾトリアゾールやその誘導体等を用いることができる。消泡剤としては、ケイ素化合物を用いることができる。油性剤としては、高級アルコール類を用いることができる。
 また、本実施形態の冷凍機油には、必要に応じて、耐荷重添加剤、塩素捕捉剤、清浄分散剤、粘度指数向上剤、防錆剤、安定剤、腐食防止剤、及び流動点降下剤等を添加することも可能である。個々の添加剤の配合量は、冷凍機油に含まれる割合が0.01質量%以上5質量%以下であればよく、0.05質量%以上3質量%以下であることが好ましい。また、本実施形態の冷凍機油は、塩素濃度が50ppm以下、さらに硫黄濃度が50ppm以下になっている。
  -運転動作-
 上記空気調和装置(20)の運転動作について説明する。この空気調和装置(20)は、冷房運転と暖房運転とが実行可能になっており、四路切換弁(13)によって冷房運転と暖房運転との切り換えが行われる。
 《冷房運転》
 冷房運転時には、四路切換弁(13)が第1状態に設定される。この状態で、圧縮機(30)の運転が行われると、圧縮機(30)から吐出された高圧冷媒が、室外熱交換器(11)において室外空気へ放熱して凝縮する。室外熱交換器(11)で凝縮した冷媒は、各室内回路(17)へ分配される。各室内回路(17)では、流入した冷媒が、室内膨張弁(16)で減圧された後に、室内熱交換器(15)において室内空気から吸熱して蒸発する。一方、室内空気は冷却されて室内へ供給される。
 各室内回路(17)で蒸発した冷媒は、他の室内回路(17)で蒸発した冷媒と合流して、室外回路(9)へ戻ってくる。室外回路(9)では、各室内回路(17)から戻ってきた冷媒が、圧縮機(30)で再び圧縮されて吐出される。なお、冷房運転中は、各室内膨張弁(16)の開度が、室内熱交換器(15)の出口における冷媒の過熱度が一定値(例えば5℃)になるように過熱度制御される。
 《暖房運転》
 暖房運転時には、四路切換弁(13)が第2状態に設定される。この状態で、圧縮機(30)の運転が行われると、圧縮機(30)から吐出された高圧冷媒が、各室内回路(17)へ分配される。各室内回路(17)では、流入した冷媒が室内熱交換器(15)において室内空気へ放熱して凝縮する。一方、室内空気は加熱されて室内へ供給される。室内熱交換器(15)で凝縮した冷媒は、室外回路(9)で合流する。
 室外回路(9)で合流した冷媒は、室外膨張弁(12)で減圧された後、室外熱交換器(11)において室外空気から吸熱して蒸発する。室外熱交換器(11)で蒸発した冷媒は、圧縮機(30)で再び圧縮されて吐出される。なお、暖房運転中は、各室内膨張弁(16)の開度が、室内熱交換器(15)の出口における冷媒の過冷却度が一定値(例えば5℃)になるようにサブクール制御される。
  -実施形態の効果-
 本実施形態では、冷媒回路(10)の冷媒として、分子式1:C(但し、m及びnは1以上5以下の整数で、m+n=6の関係が成立する。)で表され且つ分子構造中に二重結合を1個有する冷媒から成る冷媒(即ち、HFO-1234yf)を用いている。これにより、冷凍サイクルの理論上の成績係数(COP)が高い空気調和装置(20)を提供できる。
 一方、HFO-1234yfは、二重結合を有する等の理由により比較的不安定な分子構造であり、冷媒が劣化して不純物等が生成され易い。従って、このような不純物により、空気調和装置(10)の樹脂製機能部品(即ち、軸受(61,62,63,64))が化学的/物理的に変性して劣化してしまう虞がある。しかしながら、本発明では、各軸受(61,62,63,64)が、ポリテトラフルオロエチレン、ポリフェニレンサルファイド、ポリアミド樹脂のいずれかで構成されており、これらの樹脂材料は、冷媒から生成される不純物に対して比較的高い安定性を有する。従って、上記の不純物の影響により、軸受(61,62,63,64)が劣化してしまうのを回避でき、軸受(61,62,63,64)では、所望とする摺動性能を得ることができる。
 また、本実施形態では、温度30℃、相対湿度90%における飽和水分量が2000ppm以上の冷凍機油を用いているので、冷媒中の水分を冷凍機油に捕捉させることができる。このため、水分の影響によりHFO-1234yfが劣化してしまうのを防止できる。また、冷凍機油は、塩素濃度が50ppm以下であるので、塩素成分の影響により冷媒の劣化が促進してしまうことも防止できる。更に、冷凍機油は、硫黄濃度が50ppm以下であるので、硫黄成分の影響により、冷媒の劣化が促進してしまうことも防止できる。以上のように、本実施形態では、冷媒の劣化を極力防止するように冷凍機油を選定しているので、冷媒の劣化に起因する不純物の生成を抑えることができ、これにより軸受(61,62,63,64)の変性/劣化を効果的に防止できる。
 また、冷凍機油は、ポリアルキレングリコール、ポリオールエステル、及びポリビニルエーテルのうち少なくとも1つを主成分としている。これにより、冷媒と冷凍機油とが相互に溶け易くなる。このため、冷媒回路(10)中に冷凍機油が流出しても、この冷凍機油は冷媒に溶け込んで圧縮機(30)に返送され易くなる。その結果、圧縮機(30)における油上がりを抑制することができるので、圧縮機(30)の冷凍機油不足、更には潤滑不良を未然に回避できる。従って、圧縮機(30)の信頼性を向上させることができる。
 一方、このような冷凍機油は、長期の冷凍サイクルにより劣化して不純物が生成することがある。しかしながら、本実施形態の軸受(61,62,63,64)は、ポリテトラフルオロエチレン又はポリアミド樹脂で構成されているので、冷凍機油の劣化に起因する不純物の影響により、軸受(61,62,63,64)が化学的/物理的に変性してしまうことも回避される。
 更に、上記分子式1で表され且つ分子構造中に二重結合を1個有する冷媒に、いわゆる高圧冷媒であるジフルオロメタンが加えられている。このため、冷媒の圧力損失が空気調和装置(20)の運転効率に与える影響を小さくすることができるので、空気調和装置(20)の実際の運転効率を向上させることができる。
  -実施形態の変形例1-
 本実施形態の変形例1では、ポリアルキレングリコール、ポリオールエステル、及びポリビニルエーテルの3種類の基油のうちポリオールエステルだけを主成分とする冷凍機油が、圧縮機(30)に用いられている。ポリオールエステルには、「脂肪族多価アルコールと直鎖状若しくは分岐鎖状の脂肪酸とのエステル」、「脂肪族多価アルコールと直鎖状若しくは分岐鎖状の脂肪酸との部分エステル」、及び、「脂肪族多価アルコールと炭素数が3以上9以下の直鎖状若しくは分岐鎖状の脂肪酸との部分エステルと、脂肪族二塩基酸若しくは芳香族二塩基酸とのコンプレックスエステル」の何れかが用いられている。これらのポリオールエステルは、ポリオールエステルの中でも、上記分子式1で表され且つ分子構造中に二重結合を1個有する冷媒との相溶性に優れている。
 「脂肪族多価アルコールと直鎖状又は分岐鎖状の脂肪酸とのエステル又は部分エステル」を形成する脂肪族多価アルコールには、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、トリメチロールエタン、ジトリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、グリセリン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ソルビトール等を用いることができる。このうち脂肪族多価アルコールとしては、ペンタエリスリトール、ジペンタエリスリトール、及びトリペンタエリスリトールが好ましい。
 また、脂肪酸には、炭素数が3以上12以下のものを用いることができ、例えばプロピオン酸、酪酸、ピバリン酸、吉草酸、カプロン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ドデカン酸、イソ吉草酸、ネオペンタン酸、2-メチル酪酸、2-エチル酪酸、2-メチルヘキサン酸、2-エチルヘキサン酸、イソオクタン酸、イソノナン酸、イソデカン酸、2,2-ジメチルオクタン酸、2-ブチルオクタン酸、3,5,5-トリメチルヘキサン酸を用いることができる。脂肪酸としては、炭素数が5以上12以下の脂肪酸が好ましく、炭素数が5以上9以下の脂肪酸が更に好ましい。具体的には、吉草酸、ヘキサン酸、ヘプタン酸、2-メチルヘキサン酸、2-エチルヘキサン酸、イソオクタン酸、イソノナン酸、イソデカン酸、2,2-ジメチルオクタン酸、2-ブチルオクタン酸、3,5,5-トリメチルヘキサン酸等が好ましい。
 また、「脂肪族多価アルコールと炭素数が3以上9以下の直鎖状若しくは分岐鎖状の脂肪酸との部分エステルと、脂肪族二塩基酸若しくは芳香族二塩基酸とのコンプレックスエステル」では、炭素数が5以上7以下の脂肪酸が好ましく、炭素数が5又は6の脂肪酸が更に好ましい。具体的には、吉草酸、ヘキサン酸、イソ吉草酸、2-メチル酪酸、2-エチル酪酸又はその混合物が好ましい。また、炭素数が5の脂肪酸と炭素数が6の脂肪酸を重量比で10:90以上90:10以下の割合で混合した脂肪酸を使用することができる。
 また、脂肪族二塩基酸には、コハク酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、トリデカン二酸、ドコサンナ二酸がある。また、芳香族二塩基酸には、フタル酸、イソフタル酸がある。コンプレックスエステルを調製するためのエステル化反応は、多価アルコールと二塩基酸を所定の割合で反応させて部分エステル化した後に、その部分エステルと脂肪酸とを反応させる。なお、二塩基酸と脂肪酸の反応順序を逆にしてもよく、二塩基酸と脂肪酸を混合してエステル化に供してもよい。
  -実施形態の変形例2-
 本実施形態の変形例2では、ポリアルキレングリコール、ポリオールエステル、及びポリビニルエーテルの3種類の基油のうちポリアルキレングリコールだけを主成分とする冷凍機油が、圧縮機(30)に用いられている。
 この変形例2では、分子式2:R1(R2)(R3O)R4(但し、m及びnは整数で、R1及びR4は、水素、炭素数が1以上6以下のアルキル基、又はアリール基を表し、R2及びR3は、炭素数が1以上4以下のアルキル基を表す。)で表される分子構造のポリアルキレングリコールが用いられている。この分子構造のポリアルキレングリコールは、ポリアルキレングリコールの中でも、上記分子式で表され且つ分子構造中に二重結合を1個有する冷媒との相溶性に優れている。
  -実施形態の変形例3-
 本発明の樹脂材料は、冷媒と接触可能に配設された樹脂製機能部品であれば、圧縮機(30)の内側、及び外側(冷媒回路(10)に接続される各機能部品)についても適用可能である。この場合、樹脂製機能部品としては、ポリテトラフルオロエチレン、ポリフェニレンサルファイド、フェノール樹脂、ポリアミド樹脂、クロロブレンゴム、シリコンゴム、水素化ニトリルゴム、フッ素ゴム、ヒドリンゴムのいずれかで構成されるのが好ましい。この点について、以下に詳細に説明する。
  〈摺動部材〉
 例えば可動スクロール(76)、固定スクロール(75)、オルダムリング(79)等の摺動部の表面に、フッ素系樹脂、例えばポリテトラフルオロエチレン、ポリフェニレンサルファイド、ポリアミド樹脂のいずれかから成る摺動部材を形成するようにしても良い。
 また、圧縮機(30)の外側の冷媒回路(10)の各機能部品に適用される摺動部材について、本発明の樹脂材料を適用しても良い。具体的には、例えば四路切換弁(13)の弁体の摺動部に、フッ素系樹脂、例えばポリテトラフルオロエチレン、ポリフェニレンサルファイド、ポリアミド樹脂のいずれかから成る摺動部材を適用しても良い。特に、弁体の摺動部では、上記ポリアミド樹脂として66ナイロンを用いることが好ましい。
  〈シール部材〉
 本発明の樹脂材料を冷媒の漏れを防止するためのシール部材に適用することもできる。例えば図4では、可動スクロール(76)の可動側鏡板(76b)とハウジング(77)の上面との間にシール部材としてのシールリング(65)が介設されている。シールリング(65)は、ハウジング(77)の上側の空間を内外に仕切っている。つまり、シールリング(65)は、その内周側の高圧冷媒が、その外周側、即ち圧縮室(30)の吸入側に漏れるのを防止している。このようなシール部材(65)は、ポリテトラフルオロエチレン、ポリフェニレンサルファイド、クロロブレンゴム、シリコンゴム、水素化ニトリルゴム、フッ素化ゴム、ヒドリンゴムのいずれかで構成されるのが好ましい。これらの樹脂材料は、冷媒の劣化により生成した不純物に対して、比較的高い安定性を有する。その結果、上記の不純物の生成に伴って、シールリング(65)が劣化してしまうことが抑制される。
 また、本発明が適用されるシール部材としては、例えばケーシング(70)の内周面とハウジング(77)の外周面との間に介設されるオーリングや、吸入管(56)や吐出管(57)の配管継手部に介設されるパッキン等も挙げられる。
 また、圧縮機(30)の外側の冷媒回路(10)の各機能部品に適用されるシール部材について、本発明の樹脂材料を適用することもできる。具体的には、例えば四路切換弁(13)、各膨張弁(12,16a,16b,16c)、その他電磁弁等において、冷媒が外部へ流出するのを防止するためのシール部材を、ポリテトラフルオロエチレン、ポリフェニレンサルファイド、クロロブレンゴム、シリコンゴム、水素化ニトリルゴム、フッ素化ゴム、ヒドリンゴムのいずれかで構成しても良い。
 また、本発明の樹脂材料をシール部材(65)に適用する場合にも、冷凍機油のアニリン点を所定の数値範囲の値にすることが好ましい。これにより、シール部材(65)の膨潤や収縮を抑制することができる。その結果、シール部材(65)のシール性能の低下や劣化を防止でき、シール部材(65)のシール性能を長期に亘って確保することができる。
  〈その他の構造部品〉
 更に、本発明の樹脂材料を上記以外の他の部材(構造部品)に適用しても良い。具体的には、例えば冷凍機油を所定箇所に案内するためのパイプや、四路切換弁(13)、膨張弁(12,16a,16b,16c)、その他電磁弁等の弁体そのものを、フッ素樹脂、フェノール樹脂、ポリアミド樹脂(好ましくはナイロン66)のいずれかで構成するようにしても良い。
 《その他の実施形態》
 上記実施形態は、以下のように構成してもよい。
 上記実施形態について、ポリアルキレングリコール、ポリオールエステル、及びポリビニルエーテルのうち2つ以上を主成分とする冷凍機油を用いてもよい。
 また、上記実施形態では、冷媒回路(10)の冷媒として、上記分子式で表され且つ分子構造中に二重結合を1個有する冷媒のうちHFO-1234yf以外の冷媒の単一冷媒を用いてもよい。具体的には、1,2,3,3,3-ペンタフルオロ-1-プロペン(「HFO-1225ye」といい、化学式はCF-CF=CHFで表される。)、1,3,3,3-テトラフルオロ-1-プロペン(「HFO-1234ze」といい、化学式はCF-CH=CHFで表される。)、1,2,3,3-テトラフルオロ-1-プロペン(「HFO-1234ye」といい、化学式はCHF-CF=CHFで表される。)、3,3,3-トリフルオロ-1-プロペン(「HFO-1243zf」といい、化学式はCF-CH=CHで表される。)、1,2,2-トリフルオロ-1-プロペン(化学式はCH-CF=CFで表される。)、2-フルオロ-1-プロペン(化学式はCH-CF=CHで表される。)等を用いることができる。
 また、上記実施形態について、上記分子式で表され且つ分子構造中に二重結合を1個有する冷媒(2,3,3,3-テトラフルオロ-1-プロペン、1,3,3,3-テトラフルオロ-1-プロペン、1,2,3,3-テトラフルオロ-1-プロペン、3,3,3-トリフルオロ-1-プロペン、1,2,2-トリフルオロ-1-プロペン、2-フルオロ-1-プロペン)に、HFC-32(ジフルオロメタン)、HFC-125(ペンタフルオロエタン)、HFC-134(1,1,2,2―テトラフルオロエタン)、HFC-134a(1,1,1,2―テトラフルオロエタン)、HFC-143a(1,1,1-トリフルオロエタン)、HFC-152a(1,1-ジフルオロエタン)、HFC-161、HFC-227ea、HFC-236ea、HFC-236fa、HFC-365mfc、メタン、エタン、プロパン、プロペン、ブタン、イソブタン、ペンタン、2-メチルブタン、シクロペンタン、ジメチルエーテル、ビス-トリフルオロメチル-サルファイド、二酸化炭素、ヘリウムのうち少なくとも1つを加えた混合冷媒を用いてもよい。
 例えば、HFO-1234yfとHFC-32の2成分からなる混合冷媒を用いてもよい。この場合は、78.2質量%のHFO-1234yfと、21.8質量%のHFC-32とからなる混合冷媒を用いることができる。なお、HFO-1234yfとHFC-32の混合冷媒は、HFO-1234yfの割合が70質量%以上94質量%以下でHFC-32の割合が6質量%以上30質量%以下であればよく、好ましくは、HFO-1234yfの割合が77質量%以上87質量%以下でHFC-32の割合が13質量%以上23質量%以下であればよく、更に好ましくは、HFO-1234yfの割合が77質量%以上79質量%以下でHFC-32の割合が21質量%以上23質量%以下であれば更に好ましい。
 また、HFO-1234yfとHFC-125の混合冷媒を用いてもよい。この場合は、HFC-125の割合が10質量%以上であるのが好ましく、さらに10質量%以上20質量%以下であるのが更に好ましい。
 また、HFO-1234yfとHFC-32とHFC-125の3成分からなる混合冷媒を用いてもよい。この場合は、52質量%のHFO-1234yfと、23質量%のHFC-32と、25質量%のHFC-125とからなる混合冷媒を用いることができる。
 また、上記実施形態について、ケイ酸や合成ゼオライトが乾燥剤として充填された乾燥機を冷媒回路(10)に設けてもよい。
 また、上記実施形態について、圧縮機(30)が、横型であってもよく、レシプロ式、ロータリ式、及びスクリュー式などの他のタイプの圧縮機であってもよい。
 また、上記実施形態について、冷凍装置(20)が、暖房専用の空気調和装置であってもよいし、食品を冷却するための冷蔵庫や冷凍庫であってもよいし、空調機と冷蔵庫や冷凍庫とを組み合せた冷凍装置であってもよいし、冷媒回路(10)の放熱器で水を加熱する給湯装置であってもよい。
 なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 以上説明したように、本発明は、冷凍サイクルを行う冷凍装置について有用である。

Claims (14)

  1.  圧縮機(30)によって冷媒を循環させて冷凍サイクルを行う冷媒回路(10)を備え、
     上記冷媒回路(10)の冷媒として、分子式1:C(但し、m及びnは1以上5以下の整数で、m+n=6の関係が成立する。)で表され且つ分子構造中に二重結合を1個有する冷媒、又は該冷媒を含む混合冷媒が用いられる冷凍装置であって、
     上記冷媒回路(10)の冷媒と接触可能に配設される所定の樹脂製機能部品(61,62,63,64,65)が、ポリテトラフルオロエチレン、ポリフェニレンサルファイド、フェノール樹脂、ポリアミド樹脂、クロロブレンゴム、シリコンゴム、水素化ニトリルゴム、フッ素ゴム、ヒドリンゴムのいずれかで構成されていることを特徴とする冷凍装置。
  2.  請求項1において、
     上記樹脂製機能部品は、所定の摺動部に設けられる摺動部材(61,62,63,64)で構成され、
     上記摺動部材(61,62,63,64)は、ポリテトラフルオロエチレン、ポリフェニレンサルファイド、ポリアミド樹脂のいずれかで構成されていることを特徴とする冷凍装置。
  3.  請求項1において、
     上記樹脂製機能部品は、所定の隙間での冷媒の漏れを防止するためのシール部材(65)で構成され、
     上記シール部材(65)は、ポリテトラフルオロエチレン、ポリフェニレンサルファイド、クロロブレンゴム、シリコンゴム、水素化ニトリルゴム、フッ素化ゴム、ヒドリンゴムのいずれかで構成されていることを特徴とする冷凍装置。
  4.  請求項1乃至3のいずれか1つにおいて、
     上記圧縮機(30)では、温度30℃、相対湿度90%における飽和水分量が2000ppm以上の冷凍機油が用いられることを特徴とする冷凍装置。
  5.  請求項4において、
     上記冷凍機油は、ポリアルキレングリコール、ポリオールエステル、及びポリビニルエーテルのうち少なくとも1つを主成分とすることを特徴とする冷凍装置。
  6.  請求項4において、上記冷凍機油は、動粘度が40℃において30cSt以上400cSt以下で、流動点が-30℃以下であることを特徴とする冷凍装置。
  7.  請求項4において、
     上記冷凍機油は、表面張力が20℃において0.02N/m以上0.04N/m以下であることを特徴とする冷凍装置。
  8.  請求項7において、
     上記冷凍機油は、塩素濃度が50ppm以下であることを特徴とする冷凍装置。
  9.  請求項4において、
     上記冷凍機油は、硫黄濃度が50ppm以下であることを特徴とする冷凍装置。
  10.  請求項4において、
     上記冷凍機油には、酸捕捉剤、極圧添加剤、酸化防止剤、酸素捕捉剤、消泡剤、油性剤、及び銅不活性化剤のうち少なくとも1種類の添加剤が添加されていることを特徴とする冷凍装置。
  11.  請求項10において、
     上記冷凍機油では、1種類の添加剤が添加されている場合には該添加剤の割合が0.01質量%以上5質量%以下に、複数種類の添加剤が添加されている場合には各添加剤の割合が0.01質量%以上5質量%以下になっていることを特徴とする冷凍装置。
  12.  請求項1乃至3のいずれか1つにおいて、
     上記分子式1:C(但し、m及びnは1以上5以下の整数で、m+n=6の関係が成立する。)で表され且つ分子構造中に二重結合を1個有する冷媒は、2,3,3,3-テトラフルオロ-1-プロペンであることを特徴とする冷凍装置。
  13.  請求項1乃至3のいずれか1つにおいて、
     上記冷媒回路(10)の冷媒は、さらにジフルオロメタンを含む混合冷媒であることを特徴とする冷凍装置。
  14.  請求項1乃至3のいずれか1つにおいて、
     上記冷媒回路(10)の冷媒は、さらにペンタフルオロエタンを含む混合冷媒であることを特徴とする冷凍装置。
PCT/JP2009/001006 2008-03-18 2009-03-05 冷凍装置 WO2009116239A1 (ja)

Priority Applications (17)

Application Number Priority Date Filing Date Title
PL18188884T PL3421794T3 (pl) 2008-03-18 2009-03-05 Urządzenie chłodnicze
PL18188885T PL3421795T3 (pl) 2008-03-18 2009-03-05 Urządzenie chłodnicze
EP18188887.6A EP3421796B1 (en) 2008-03-18 2009-03-05 Refrigeration apparatus
PL18188887T PL3421796T3 (pl) 2008-03-18 2009-03-05 Urządzenie chłodnicze
DK09721969.5T DK2267309T3 (en) 2008-03-18 2009-03-05 CHILLING UNIT
US12/920,595 US20110011123A1 (en) 2008-03-18 2009-03-05 Refrigeration apparatus
PL18188883T PL3421793T3 (pl) 2008-03-18 2009-03-05 Urządzenie chłodnicze
ES09721969T ES2697529T3 (es) 2008-03-18 2009-03-05 Aparato de refrigeración
BR122019017129-7A BR122019017129B1 (pt) 2008-03-18 2009-03-05 Aparelho de refrigeração
EP09721969.5A EP2267309B1 (en) 2008-03-18 2009-03-05 Refrigerating apparatus
BRPI0906185-1A BRPI0906185B1 (pt) 2008-03-18 2009-03-05 Aparelho de refrigeração
EP18188883.5A EP3421793B1 (en) 2008-03-18 2009-03-05 Refrigeration apparatus
EP18188889.2A EP3421797A1 (en) 2008-03-18 2009-03-05 Refrigeration apparatus
EP18188885.0A EP3421795B1 (en) 2008-03-18 2009-03-05 Refrigeration apparatus
CN2009801093617A CN101978164A (zh) 2008-03-18 2009-03-05 制冷装置
EP18188884.3A EP3421794B1 (en) 2008-03-18 2009-03-05 Refrigeration apparatus
PL09721969T PL2267309T3 (pl) 2008-03-18 2009-03-05 Urządzenie chłodnicze

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008070238A JP2009222032A (ja) 2008-03-18 2008-03-18 冷凍装置
JP2008-070238 2008-03-18

Publications (1)

Publication Number Publication Date
WO2009116239A1 true WO2009116239A1 (ja) 2009-09-24

Family

ID=41090654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001006 WO2009116239A1 (ja) 2008-03-18 2009-03-05 冷凍装置

Country Status (12)

Country Link
US (1) US20110011123A1 (ja)
EP (6) EP3421793B1 (ja)
JP (1) JP2009222032A (ja)
CN (2) CN101978164A (ja)
BR (2) BR122019017129B1 (ja)
DK (5) DK2267309T3 (ja)
ES (5) ES2778698T3 (ja)
HU (3) HUE051750T2 (ja)
PL (5) PL3421796T3 (ja)
PT (5) PT2267309T (ja)
TR (1) TR201816389T4 (ja)
WO (1) WO2009116239A1 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009257652A (ja) * 2008-02-29 2009-11-05 Daikin Ind Ltd 冷凍装置
JP2011094039A (ja) * 2009-10-30 2011-05-12 Hitachi Appliances Inc 冷媒圧縮機,冷凍サイクル装置
JP5546917B2 (ja) * 2010-03-19 2014-07-09 Jx日鉱日石エネルギー株式会社 冷凍機油および冷凍機用作動流体組成物
JP2013120029A (ja) * 2011-12-08 2013-06-17 Panasonic Corp 空気調和機
JP5967971B2 (ja) * 2012-02-20 2016-08-10 三菱電機株式会社 電動機の製造方法
JP6064412B2 (ja) * 2012-07-30 2017-01-25 株式会社富士通ゼネラル 空気調和装置
US9783721B2 (en) 2012-08-20 2017-10-10 Honeywell International Inc. Low GWP heat transfer compositions
US8940180B2 (en) 2012-11-21 2015-01-27 Honeywell International Inc. Low GWP heat transfer compositions
US20140165631A1 (en) * 2012-12-14 2014-06-19 GM Global Technology Operations LLC Refrigeration Compositions, Refrigeration Systems and Methods of Making, Operating and Using the Same
US9982180B2 (en) 2013-02-13 2018-05-29 Honeywell International Inc. Heat transfer compositions and methods
WO2014206334A1 (en) 2013-06-27 2014-12-31 Emerson Climate Technologies, Inc. Scroll compressor with oil management system
KR20150002980A (ko) * 2013-06-28 2015-01-08 삼성전자주식회사 공기조화기
JP6354616B2 (ja) * 2014-02-20 2018-07-11 旭硝子株式会社 熱サイクルシステム用組成物および熱サイクルシステム
WO2015125881A1 (ja) * 2014-02-20 2015-08-27 旭硝子株式会社 熱サイクルシステム用組成物および熱サイクルシステム
WO2015125884A1 (ja) * 2014-02-20 2015-08-27 旭硝子株式会社 熱サイクルシステム用組成物および熱サイクルシステム
US10077922B2 (en) 2014-05-12 2018-09-18 Panasonic Intellectual Property Management Co., Ltd. Compressor and refrigeration cycle device using same
SG11201609315WA (en) 2014-05-12 2016-12-29 Panasonic Ip Man Co Ltd Compressor and refrigeration cycle device using same
JP6419482B2 (ja) * 2014-08-06 2018-11-07 株式会社不二工機 電気的駆動弁
JP6289686B2 (ja) * 2015-02-12 2018-03-07 三菱電機株式会社 スクロール圧縮機
JP6624486B2 (ja) 2015-03-30 2019-12-25 出光興産株式会社 冷凍機潤滑油及び冷凍機用混合組成物
JP6575009B2 (ja) 2015-03-30 2019-09-18 出光興産株式会社 冷凍機潤滑油及び冷凍機用混合組成物
US10641269B2 (en) 2015-04-30 2020-05-05 Emerson Climate Technologies (Suzhou) Co., Ltd. Lubrication of scroll compressor
JP6271102B1 (ja) * 2016-05-17 2018-01-31 三菱電機株式会社 冷凍サイクル装置
WO2019221178A1 (ja) * 2018-05-18 2019-11-21 ダイキン工業株式会社 冷凍サイクル装置
CN115614253A (zh) * 2018-07-20 2023-01-17 松下电器制冷装置新加坡 密封制冷压缩机以及使用该密封制冷压缩机的冷藏-冷冻装置
US11702608B2 (en) * 2018-08-06 2023-07-18 Eneos Corporation Lubrication method
EP3842708A4 (en) * 2018-08-20 2022-06-01 Daikin Industries, Ltd. REFRIGERATING CYCLE DEVICE

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01319589A (ja) * 1988-06-22 1989-12-25 Matsushita Electric Ind Co Ltd 冷凍機油
JPH04110388A (ja) 1990-08-31 1992-04-10 Daikin Ind Ltd 熱伝達用流体
JPH10238481A (ja) * 1997-02-26 1998-09-08 Matsushita Electric Ind Co Ltd スクロール圧縮機
JP2001227827A (ja) * 2000-02-16 2001-08-24 Daikin Ind Ltd 冷凍装置
JP2003139444A (ja) * 2001-10-31 2003-05-14 Mitsubishi Electric Corp 空気調和装置の冷媒置換方法、洗浄機、空気調和装置
JP2004116458A (ja) * 2002-09-27 2004-04-15 Denso Corp スクロール型圧縮機
JP2005281603A (ja) * 2004-03-30 2005-10-13 Nippon Oil Corp パッケージエアコンディショナー用冷凍機油組成物
JP2006512426A (ja) * 2002-10-25 2006-04-13 ハネウェル・インターナショナル・インコーポレーテッド フッ素置換オレフィンを含有する組成物
JP2008013681A (ja) * 2006-07-06 2008-01-24 Nippon Oil Corp 潤滑油基油及び潤滑油組成物
WO2008053951A1 (fr) * 2006-11-02 2008-05-08 Idemitsu Kosan Co., Ltd. Composition d'huile lubrifiante pour réfrigérateurs
WO2008108365A1 (ja) * 2007-03-08 2008-09-12 Idemitsu Kosan Co., Ltd. 圧縮型冷凍機用潤滑油、及びそれを用いた冷凍装置
WO2008130039A1 (ja) * 2007-04-18 2008-10-30 Idemitsu Kosan Co., Ltd. 冷凍機用潤滑油組成物及びこれを用いた圧縮機
WO2008130026A1 (ja) * 2007-04-18 2008-10-30 Idemitsu Kosan Co., Ltd. 冷凍機用潤滑油組成物
WO2008153106A1 (ja) * 2007-06-12 2008-12-18 Idemitsu Kosan Co., Ltd. 冷凍機用潤滑油組成物及びこれを用いた圧縮機

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1642192A (en) * 1991-03-18 1992-10-21 Allied-Signal Inc. Non-azeotropic refrigerant compositions comprising difluoromethane; 1,1,1-trifluoroethane; or propane
JP2980448B2 (ja) * 1991-06-28 1999-11-22 出光興産株式会社 圧縮式冷凍サイクルの潤滑方法
JPH05302094A (ja) * 1992-04-28 1993-11-16 Tonen Corp 冷凍機油組成物
JP3557053B2 (ja) * 1996-09-30 2004-08-25 三洋電機株式会社 冷媒圧縮機
JPH11230628A (ja) * 1998-02-13 1999-08-27 Matsushita Electric Ind Co Ltd 冷凍装置
US6189322B1 (en) * 1998-03-13 2001-02-20 Mitsubishi Denki Kabushiki Kaisha Refrigerant-circulating system, and refrigerant compressor and refrigeration cycle employing the refrigerant compressor
JP3860942B2 (ja) * 1999-11-18 2006-12-20 株式会社ジャパンエナジー 冷凍装置用潤滑油組成物、作動流体及び冷凍装置
JP2002038135A (ja) * 2000-07-27 2002-02-06 Sanyo Electric Co Ltd 冷媒および冷凍装置
US6962665B2 (en) * 2000-12-08 2005-11-08 E. I. Du Pont De Nemours And Company Refrigerant compositions containing a compatibilizer
US20040144952A1 (en) * 2001-06-04 2004-07-29 Stewart Charles L Non-halogenated metal conditioner and extreme pressure lubricant
US7370741B2 (en) * 2002-01-21 2008-05-13 Nsk Ltd. Engine start roller clutch-housed type rotation transmission device
US7279451B2 (en) * 2002-10-25 2007-10-09 Honeywell International Inc. Compositions containing fluorine substituted olefins
US7833433B2 (en) * 2002-10-25 2010-11-16 Honeywell International Inc. Heat transfer methods using heat transfer compositions containing trifluoromonochloropropene
US20040089839A1 (en) 2002-10-25 2004-05-13 Honeywell International, Inc. Fluorinated alkene refrigerant compositions
KR100511325B1 (ko) * 2002-12-20 2005-08-31 엘지전자 주식회사 왕복동식 압축기를 구비한 냉동장치
WO2005085402A1 (ja) * 2004-03-04 2005-09-15 Nippon Oil Corporation 冷凍機油組成物
EP2292715B1 (en) 2004-04-16 2012-08-22 Honeywell International Inc. Azeotrope-like compositions of tetrafluoropropene and trifluoroiodomethane
CN101124288A (zh) * 2004-04-16 2008-02-13 霍尼韦尔国际公司 类共沸三氟碘甲烷组合物
JP5097402B2 (ja) * 2004-08-24 2012-12-12 出光興産株式会社 熱交換器の熱交換効率を高くする方法
WO2006030489A1 (ja) * 2004-09-14 2006-03-23 Idemitsu Kosan Co., Ltd. 冷凍機油組成物
US20060243944A1 (en) 2005-03-04 2006-11-02 Minor Barbara H Compositions comprising a fluoroolefin
JP4751631B2 (ja) * 2005-03-29 2011-08-17 Jx日鉱日石エネルギー株式会社 冷凍機油
TWI558685B (zh) * 2005-06-24 2016-11-21 哈尼威爾國際公司 含有經氟取代之烯烴之組合物
US7335804B2 (en) * 2005-11-03 2008-02-26 Honeywell International Inc. Direct conversion of HCFC 225ca/cb mixture
WO2007084666A1 (en) * 2006-01-18 2007-07-26 Purdue Research Foundation Apparatus and method for determining refrigerant charge level
WO2007086479A1 (ja) 2006-01-26 2007-08-02 Daikin Industries, Ltd. 圧縮機の摺動部品の製造方法および圧縮機

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01319589A (ja) * 1988-06-22 1989-12-25 Matsushita Electric Ind Co Ltd 冷凍機油
JPH04110388A (ja) 1990-08-31 1992-04-10 Daikin Ind Ltd 熱伝達用流体
JPH10238481A (ja) * 1997-02-26 1998-09-08 Matsushita Electric Ind Co Ltd スクロール圧縮機
JP2001227827A (ja) * 2000-02-16 2001-08-24 Daikin Ind Ltd 冷凍装置
JP2003139444A (ja) * 2001-10-31 2003-05-14 Mitsubishi Electric Corp 空気調和装置の冷媒置換方法、洗浄機、空気調和装置
JP2004116458A (ja) * 2002-09-27 2004-04-15 Denso Corp スクロール型圧縮機
JP2006512426A (ja) * 2002-10-25 2006-04-13 ハネウェル・インターナショナル・インコーポレーテッド フッ素置換オレフィンを含有する組成物
JP2005281603A (ja) * 2004-03-30 2005-10-13 Nippon Oil Corp パッケージエアコンディショナー用冷凍機油組成物
JP2008013681A (ja) * 2006-07-06 2008-01-24 Nippon Oil Corp 潤滑油基油及び潤滑油組成物
WO2008053951A1 (fr) * 2006-11-02 2008-05-08 Idemitsu Kosan Co., Ltd. Composition d'huile lubrifiante pour réfrigérateurs
WO2008108365A1 (ja) * 2007-03-08 2008-09-12 Idemitsu Kosan Co., Ltd. 圧縮型冷凍機用潤滑油、及びそれを用いた冷凍装置
WO2008130039A1 (ja) * 2007-04-18 2008-10-30 Idemitsu Kosan Co., Ltd. 冷凍機用潤滑油組成物及びこれを用いた圧縮機
WO2008130026A1 (ja) * 2007-04-18 2008-10-30 Idemitsu Kosan Co., Ltd. 冷凍機用潤滑油組成物
WO2008153106A1 (ja) * 2007-06-12 2008-12-18 Idemitsu Kosan Co., Ltd. 冷凍機用潤滑油組成物及びこれを用いた圧縮機

Also Published As

Publication number Publication date
EP3421793A1 (en) 2019-01-02
BRPI0906185B1 (pt) 2019-09-24
PT2267309T (pt) 2018-11-22
BR122019017129B1 (pt) 2020-06-16
HUE051750T2 (hu) 2021-03-29
ES2829584T3 (es) 2021-06-01
ES2778698T3 (es) 2020-08-11
PL3421796T3 (pl) 2020-06-01
PT3421796T (pt) 2020-03-25
DK3421794T3 (da) 2020-10-19
PL2267309T3 (pl) 2019-02-28
TR201816389T4 (tr) 2018-11-21
EP2267309A1 (en) 2010-12-29
EP3421797A1 (en) 2019-01-02
PL3421795T3 (pl) 2020-06-29
HUE040727T2 (hu) 2019-03-28
ES2779930T3 (es) 2020-08-20
PT3421793T (pt) 2020-03-25
EP3421793B1 (en) 2019-12-18
CN103075348A (zh) 2013-05-01
PL3421793T3 (pl) 2020-07-27
EP3421795A1 (en) 2019-01-02
BRPI0906185A2 (pt) 2016-06-21
EP2267309B1 (en) 2018-08-22
DK3421793T3 (da) 2020-02-24
EP3421794A1 (en) 2019-01-02
EP2267309A4 (en) 2017-04-05
PL3421794T3 (pl) 2021-01-11
ES2697529T3 (es) 2019-01-24
CN103075348B (zh) 2015-02-25
PT3421795T (pt) 2020-03-25
DK3421796T3 (da) 2020-03-23
CN101978164A (zh) 2011-02-16
HUE048714T2 (hu) 2020-08-28
ES2777834T3 (es) 2020-08-06
DK2267309T3 (en) 2018-12-17
PT3421794T (pt) 2020-10-09
EP3421796B1 (en) 2019-12-18
DK3421795T3 (da) 2020-03-23
EP3421796A1 (en) 2019-01-02
JP2009222032A (ja) 2009-10-01
EP3421794B1 (en) 2020-08-05
US20110011123A1 (en) 2011-01-20
EP3421795B1 (en) 2019-12-18

Similar Documents

Publication Publication Date Title
WO2009116239A1 (ja) 冷凍装置
JP5407157B2 (ja) 冷凍装置
JP5304531B2 (ja) 冷凍装置
JP2009225636A (ja) 冷凍装置
WO2013146683A1 (ja) 冷凍機用作動流体組成物
JP2009222033A (ja) 冷凍装置
EP2814922B1 (en) Working fluids comprising difluoromethane and di-pentaerythritol ester
JP2009222351A (ja) 冷凍装置
CN111895672B (zh) 冷冻机、冷冻机用工作流体及冷冻机油
JP2009222361A (ja) 冷凍装置
JP5671695B2 (ja) 冷凍装置
JP2009222358A (ja) 冷凍装置
WO2024071028A1 (ja) 圧縮機および冷凍サイクル装置
JP5149714B2 (ja) 冷凍機油組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980109361.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09721969

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12920595

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009721969

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 3809/KOLNP/2010

Country of ref document: IN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: PI0906185

Country of ref document: BR

Free format text: IDENTIFIQUE O SIGNATARIO DA PETICAO NO 018100034842 DE 17/09/2010 E COMPROVE, SE FOR O CASO, QUE O MESMO TEM PODERES PARA ATUAR EM NOME DO DEPOSITANTE, UMA VEZ QUE BASEADO NO ARTIGO 216 DA LEI 9.279/1996 DE 14/05/1996 (LPI) "OS ATOS PREVISTOS NESTA LEI SERAO PRATICADOS PELAS PARTES OU POR SEUS PROCURADORES, DEVIDAMENTE QUALIFICADOS.".

ENP Entry into the national phase

Ref document number: PI0906185

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100917