WO2009110466A1 - 植物の油脂を増産させる遺伝子及びその利用方法 - Google Patents

植物の油脂を増産させる遺伝子及びその利用方法 Download PDF

Info

Publication number
WO2009110466A1
WO2009110466A1 PCT/JP2009/053960 JP2009053960W WO2009110466A1 WO 2009110466 A1 WO2009110466 A1 WO 2009110466A1 JP 2009053960 W JP2009053960 W JP 2009053960W WO 2009110466 A1 WO2009110466 A1 WO 2009110466A1
Authority
WO
WIPO (PCT)
Prior art keywords
leu
plant
amino acid
asp
gene
Prior art date
Application number
PCT/JP2009/053960
Other languages
English (en)
French (fr)
Inventor
大音徳
茶谷大志
近藤聡
光川典宏
村本伸彦
高木優
松井恭子
Original Assignee
トヨタ自動車株式会社
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社, 独立行政法人産業技術総合研究所 filed Critical トヨタ自動車株式会社
Priority to CN200980116011.3A priority Critical patent/CN102016032B/zh
Priority to AU2009220650A priority patent/AU2009220650B2/en
Priority to US12/921,060 priority patent/US9045786B2/en
Priority to CA2717727A priority patent/CA2717727C/en
Publication of WO2009110466A1 publication Critical patent/WO2009110466A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6463Glycerides obtained from glyceride producing microorganisms, e.g. single cell oil
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8247Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition

Definitions

  • Biomass generally refers to the total amount of organisms that inhabit or exist per certain area, and in particular when plants are targeted, it means the dry weight per unit area.
  • the unit of biomass is quantified by mass or energy amount.
  • biomass and “biomass” are synonymous with the expression “biomass”.
  • Standing crop is sometimes used. Since plant biomass is generated by fixing carbon dioxide in the atmosphere using solar energy, it can be captured as so-called carbon neutral energy. Therefore, increasing plant biomass has the effects of global environmental conservation, prevention of global warming, and reduction of greenhouse gas emissions. Therefore, the technology for increasing plant biomass production is highly industrially important.
  • plants are cultivated for the purpose of part of the tissue itself (seed, root, leaf stem, etc.) or for the purpose of producing various substances such as fats and oils.
  • fats and oils produced by plants soybean oil, sesame oil, olive oil, coconut oil, rice oil, cottonseed oil, sunflower oil, corn oil, bean flower oil, palm oil, rapeseed oil, etc. have been known since ancient times. Widely used in industrial applications.
  • oils and fats produced by plants are also used as raw materials for biodiesel fuel and bioplastics, and their applicability is expanding as petroleum alternative energy.
  • the technology to increase the oil production of plant seeds can be broadly divided into the improvement of cultivation methods and the development of varieties with increased fat production.
  • the methods for developing oil-and-fat increased varieties are broadly divided into conventional breeding methods centering on mating technology and molecular breeding methods by genetic recombination.
  • the production of fats and oils by genetic recombination includes A) a technique that modifies the synthesis system of seed triacylglycerol (TAG), the main component of vegetable fats and oils, and B) the morphogenesis and metabolism of plants and the expression of genes related to them. There are known techniques for altering various regulatory genes that control the regulation.
  • TAG seed triacylglycerol
  • Non-patent Document 2 there is a report on fat and oil production technology by overexpression of DGAT (diacylglycerol acyltransferase) that transfers an acyl group to the sn-3 position of diacylglycerol.
  • DGAT diacylglycerol acyltransferase
  • Non-patent Document 2 it has been reported that the fat content and seed weight increase as the expression level of DGAT increases, and the number of seeds per individual may increase.
  • the seed oil content of Arabidopsis to which this method was applied increased by 46%, and the amount of oil per individual increased by about 125% at the maximum.
  • Patent Document 1 a technique is employed in which a gene that enhances the oil content of seeds is selected after a recombinant plant in which transcription factors are overexpressed or knocked out comprehensively is produced. According to Patent Document 1, it is described that the oil content of seeds increased by 23% due to the overexpression of ERF subfamily B-4 transcription factor gene. However, Patent Document 1 does not describe the increase or decrease in the fat content per individual.
  • Non-Patent Document 3 describes that the oil content of seeds is improved by overexpressing WRINKLED1, which is a transcription factor having an AP2 / EREB domain.
  • the purpose is to provide.
  • a transcription factor belonging to a specific transcription factor family and a functional peptide (hereinafter referred to as a repressor domain) that converts an arbitrary transcription factor into a transcription repressor. It was found that various quantitative traits can be improved by expressing a chimeric protein that is fused with the above, and in particular, the substance productivity per individual, especially the oil and fat productivity can be improved.
  • the present invention has been completed.
  • a plant according to the present invention is a chimeric protein obtained by fusing a transcription factor belonging to the transcription factor family comprising a protein consisting of the amino acid sequence shown in SEQ ID NO: 4 and a functional peptide that converts any transcription factor into a transcription repressor. Is expressed.
  • the transcriptional control activity, particularly the transcription promoting activity in a predetermined transcription factor is suppressed by fusing a functional peptide.
  • the transcription factor for fusing the functional peptide is preferably any of the following proteins (a) to (c).
  • A a protein comprising the amino acid sequence shown in SEQ ID NO: 4
  • B comprising an amino acid sequence in which one or a plurality of amino acids are deleted, substituted, added or inserted in the amino acid sequence shown in SEQ ID NO: 4, and having transcription promoting activity
  • C a protein having transcription-promoting activity encoded by a polynucleotide that hybridizes under stringent conditions to a polynucleotide comprising a base sequence complementary to the base sequence shown in SEQ ID NO: 3
  • Examples of the peptide include the following formulas (1) to (8).
  • the manufacturing method of the substance using the plant concerning this invention includes the process of isolate
  • fats and oils can be mentioned as the above substances.
  • Genes involved in the pigment synthesis pathway include genes that code for factors related to the substrate and product transport of the pigment synthesis pathway metabolism, genes that encode enzymes that catalyze the pigment synthesis pathway metabolism, and pigment synthesis systems. It contains a gene that encodes an enzyme that catalyzes a reaction that forms a field of tract metabolic reaction.
  • genes that encode factors related to transport of substrates and products of pigment synthesis pathway metabolic reactions genes that encode enzymes that catalyze pigment synthesis pathway metabolism reactions, and reactions that form fields of pigment synthesis pathway metabolism reactions
  • genes that encode factors related to transport of substrates and products of pigment synthesis pathway metabolic reactions genes that encode enzymes that catalyze pigment synthesis pathway metabolism reactions, and reactions that form fields of pigment synthesis pathway metabolism reactions
  • a gene that regulates the expression of a gene encoding an enzyme that catalyzes A gene that regulates the expression of a gene encoding an enzyme that catalyzes.
  • the method for producing a plant-derived oil / fat uses seeds collected from a plant body that lacks the function of at least one gene selected from the group consisting of a chalcone synthase gene, a chalcone isomerase gene, and a flavone-3-hydrase gene. It includes a step of recovering the fat and oil component.
  • the screening method for a plant body with an improved amount of oils and fats includes a step of collecting seeds from a plant body to be evaluated for the amount of oils and fats in seeds, and the seed coat color of the collected seeds. And the step of determining that the amount of oil and fat in the seed is high when it is white.
  • the plant according to the present invention has improved substance productivity per individual. Therefore, by using the plant according to the present invention, the productivity of the target substance can be improved, and the target substance can be produced at a low cost.
  • the method for producing plant-derived fats and oils according to the present invention improves the productivity of fats and oils because the amount of fats and oils contained per unit amount of seeds is significantly improved in plants lacking the function of a specific gene. can do.
  • the plant screening method according to the present invention for improving the amount of fats and oils allows quick and simple screening using a small amount of seeds because the amount of fats and oils in the seeds is evaluated non-destructively.
  • FIG. 6 is a characteristic diagram showing the results of calculating the integrated values of R value, G value, and B value using image data for the seed coat color of seeds and comparing them with wild type seeds.
  • the plant according to the present invention is a fusion of a transcription factor belonging to a predetermined transcription factor family, in particular, a transcription factor belonging to a predetermined transcription factor family and a functional peptide that converts any transcription factor into a transcriptional repressor. It expresses the chimeric protein thus produced, and has improved substance productivity per individual as compared with the wild type plant. That is, the plant body according to the present invention is a plant body in which a transcription factor is expressed as a chimeric protein with the above functional peptide so as to significantly improve substance productivity in the desired plant. .
  • the transcription promoting activity in the transcription factor is suppressed by fusing with the functional peptide.
  • the transcription repressing effect due to the functional peptide appears as a dominant trait. It is preferable to have.
  • the substance productivity per individual means the content per unit volume of various substances produced by the plant.
  • the substance is not particularly limited, and may be a substance that is originally produced by a plant, or a substance that is not originally produced by a plant but can be produced by a genetic manipulation technique or the like. Also good.
  • the target product may be lignocellulose that occupies most of the weight of the plant, or may be vegetable oil that is industrially used as seed oil.
  • the vegetable oil may be a simple lipid that is an ester of a fatty acid and an alcohol, may be a complex lipid containing phosphorus, sugar, nitrogen, or the like, or may be a fatty acid itself.
  • the simple lipid alcohol may be a higher alcohol having a high molecular weight or a polyhydric alcohol such as glycerol (glycerin).
  • the fatty acid of the simple lipid may be a saturated fatty acid, an unsaturated fatty acid, or a special fatty acid containing a hydroxyl group or an epoxy group.
  • the simple lipid that is an ester of glycerol and a fatty acid may be monoacylglycerol, diacylglycerol, or triacylglycerol.
  • fats and oils will be exemplified and described as substances that improve productivity, but the technical scope of the present invention is not limited thereto.
  • the present invention is similarly applied to substances other than fats and oils as substances produced by plants.
  • the plant body is not particularly limited, and any plant can be targeted.
  • the target plant include soybean, sesame, olive oil, eggplant, rice, cotton, sunflower, corn, sugarcane, jatropha, palm palm, tobacco, beni flower and rapeseed.
  • Arabidopsis thaliana which is widely used as a model organism in gene analysis of plants and has established a method for gene expression analysis, can also be used as a target plant.
  • transcriptional repression that the transcription factor chimeric protein has as an activity is to recognize the cis sequence recognized by the transcription factor and cis sequences in other transcription factors similar to the cis sequence, and actively promote downstream gene expression. It can also be called a transcriptional repressing factor.
  • the method for suppressing transcription that the chimeric protein of transcription factor has as an activity is not particularly limited, but the method of constructing a chimeric protein (fusion protein) to which a repressor domain sequence or SRDX sequence is added is most preferable.
  • the repressor domain sequence is an amino acid sequence that constitutes a peptide that converts an arbitrary transcription factor into a transcription repressor, and is a sequence that has been found variously by the present inventors.
  • a repressor domain sequence for example, JP-A-2001-269177, JP-A-2001-269178, JP-A-2001-292777, JP-A-2001-292777, JP-A-2001-269176, JP-A-2001-269176 2001-269179, WO03 / 055903 pamphlet, Ohta, M., Matsui, K., Hiratsu, K., Shinshi, H.
  • the repressor domain sequence is excised from the Class II ERF (Ethylene Responsive Element Binding Factor) protein and the plant zinc finger protein (Zinc Finger Protein, such as Arabidopsis SUPERMAN protein, etc.) and has a very simple structure. .
  • ERF Ethylene Responsive Element Binding Factor
  • Zinc Finger Protein such as Arabidopsis SUPERMAN protein, etc.
  • transcriptional regulatory factors expressed as chimeric proteins include transcription factors specified by AGI code At1g71030 in Arabidopsis thaliana (hereinafter simply referred to as “transcription factor At1g71030”).
  • the transcription factor At1g71030 is a transcription factor of the myb family and is known to be similar to MybHv5 GI: 19055 derived from barley.
  • the amino acid sequence of the transcription factor At1g71030 is shown in SEQ ID NO: 4.
  • the base sequence of the gene encoding the transcription factor At1g71030 is shown in SEQ ID NO: 3.
  • Transcription coupling factor (transcription coactivator) specified by At5g24520 (hereinafter simply referred to as “transcription coupling factor At5g24520”), transcription repressor (transcription repressor) and transcription repression coupling factor (transcripition corepressor) are known as transcription control factors.
  • transcription control factors transcription control factors
  • transcription repressor transcription repressor
  • transcription repression coupling factor transcription control factors
  • a chimeric protein to which a repressor domain is added can also be constructed for these transcription coupling factors and transcription repression factors.
  • the AGI code At5g24520 is composed of a transcriptional coupling factor known as transparent testa glabra 1 protein (TTG1).
  • GenBank accession number AAF27919 from Malus domestica
  • GenBank accession number AAC18914 from Petunia hybrida
  • GenBank accession number AAM95645 from Gossypium hirsutum
  • GenBank accession number BAB58883 derived from Perilla frutescens is homologous to the transcriptional coupling factor At5g24520, and a function equivalent to the function described in this specification can be expected.
  • the amino acid sequence of the transcription coupling factor At5g24520 is shown in SEQ ID NO: 2.
  • the base sequence of the gene encoding the transcription coupling factor At5g24520 is shown in SEQ ID NO: 1.
  • the transcription coupling factor At5g24520 and the transcription factor At1g71030 which are the targets of the chimeric protein are not limited to those consisting of the amino acid sequences shown in SEQ ID NOs: 2 and 4, respectively, and one or more amino acid sequences are deleted in the amino acid sequence.
  • the amino acid sequence may include a substituted, added, or inserted amino acid sequence, and may have transcription promoting activity.
  • the plurality of amino acids for example, 1 to 20, preferably 1 to 10, more preferably 1 to 7, further preferably 1 to 5, particularly preferably 1 to 3 are used. means.
  • amino acid deletion, substitution, or addition can be performed by modifying the base sequence encoding the transcription factor by a technique known in the art.
  • Mutation can be introduced into a nucleotide sequence by a known method such as Kunkel method or Gapped duplex method or a method according thereto, for example, a mutation introduction kit using site-directed mutagenesis (for example, Mutant- Mutations are introduced using K, Mutant-G (both trade names, manufactured by TAKARA Bio Inc.) or the like, or using LA PCR-in-vitro Mutagenesis series kits (trade name, manufactured by TAKARA Bio Inc.).
  • a mutation introduction kit using site-directed mutagenesis for example, Mutant- Mutations are introduced using K, Mutant-G (both trade names, manufactured by TAKARA Bio Inc.) or the like, or using LA PCR-in-vitro Mutagenesis series kits (trade name, manufactured by TAKARA Bio Inc.).
  • EMS ethyl methanesulfonic acid
  • 5-bromouracil 2-aminopurine
  • hydroxylamine N-methyl-N'-nitro-N nitrosoguanidine
  • other carcinogenic compounds are representative.
  • a method using a chemical mutagen such as that described above may be used, or a method using radiation treatment or ultraviolet treatment represented by X-rays, alpha rays, beta rays, gamma rays and ion beams may be used.
  • transcription coupling factor and transcription factor that are the target of the chimeric protein are not limited to the transcription coupling factor At5g24520 and the transcription factor At1g71030 in Arabidopsis thaliana, and the transcription coupling factor having the same function in plants other than Arabidopsis thaliana (for example, the plants described above) And transcription factors (hereinafter referred to as homologous transcription coupling factors and homologous transcription factors, respectively).
  • homologous transcription coupling factor for transcription coupling factor At5g24520 or homologous transcription factor for transcription factor At1g71030 is based on the amino acid sequence of transcription coupling factor At5g24520 or transcription factor At1g71030 or the base sequence of each gene if plant genome information is known.
  • the homologous transcription coupling factor and the homologous transcription factor are, for example, 70% or more, preferably 80% or more, more preferably 90% or more, most preferably, relative to the amino acid sequence of the transcription coupling factor At5g24520 or the transcription factor At1g71030. It is searched as an amino acid sequence having a homology of 95% or more.
  • the homology value means a value obtained by default setting using a computer program in which the blast algorithm is implemented and a database storing gene sequence information.
  • a homologous gene can be identified by isolating a genomic region or cDNA that hybridizes under stringent conditions to at least a part.
  • stringent conditions refer to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed. For example, hybridization at 45 ° C.
  • Hybridization can be performed by a conventionally known method such as the method described in J. Sambrook et al. Molecular lonCloning, A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory (1989).
  • the plant according to the present invention exhibits a characteristic that the production amount of fats and oils is significantly improved by expressing a chimeric protein of the transcription factor and the functional peptide as described above. Moreover, when the chimeric protein of the transcription coupling factor and the functional peptide described above is expressed, the oil and fat production amount is significantly improved.
  • the target transcription factor is expressed in a state in which the transcription promoting activity is suppressed, and the cis sequence that is homologous to the cis sequence recognized by the target transcription factor is recognized. It is characterized by significantly improving oil production by expressing it as transcriptional repressive activity, and changing the affinity specificity of other transcription factors and transcription factors with other factors, nucleic acids, lipids and carbohydrates. Show.
  • endogenous transcription factors and transcription coupling factors may be modified to produce the chimeric protein.
  • a gene encoding the chimeric protein may be introduced to express the gene. good.
  • a technique of introducing and expressing the chimeric protein (fusion protein) in a plant is preferable.
  • transcription factor with suppressed transcription promoting activity is not particularly limited, and a transcription factor having a significantly reduced transcription promoting activity inherent in the transcription factor. It means that.
  • functional peptide that converts an arbitrary transcription factor into a transcriptional repressor refers to a transcriptional promoter inherent in the transcription factor when fused to an arbitrary transcription factor to form a chimeric protein. It means that the peptide has a function of becoming a transcription factor with significantly reduced activity (sometimes referred to as a transcription repressor conversion peptide).
  • Such a “functional peptide that converts an arbitrary transcription factor into a transcription repressor” is not particularly limited, but is preferably a peptide consisting of an amino acid sequence known as a repressor domain sequence or SRDX sequence. .
  • the transcription repressing conversion peptide is described in detail in JP-A-2005-204657, and all of those disclosed in the gazette can be used.
  • Examples of the transcription repressor converting peptide include amino acid sequences represented by any of the following formulas (1) to (8).
  • the number of amino acid residues represented by X1 may be in the range of 0 to 10. Moreover, the kind of specific amino acid which comprises the amino acid residue represented by X1 is not specifically limited, What kind of thing may be sufficient.
  • the amino acid residue represented by X1 is preferably as short as possible in view of the ease of synthesizing the transcriptional repression converting peptide of formula (1). Specifically, the number of amino acid residues represented by X1 is preferably 5 or less.
  • the number of amino acid residues represented by X3 may be at least 6.
  • the kind of specific amino acid which comprises the amino acid residue represented by X3 is not specifically limited, What kind of thing may be sufficient.
  • the number of amino acid residues represented by Y1 is 0, similar to X1 of the transcriptional repression converting peptide of the above formula (1). It may be in the range of up to 10 pieces. Moreover, the kind of specific amino acid which comprises the amino acid residue represented by Y1 is not specifically limited, What kind of thing may be sufficient. Specifically, the number of amino acid residues represented by Y1 is preferably 5 or less.
  • the number of amino acid residues represented by Y3 may be at least 6 as in the case of X3 of the transcription repressing converting peptide of the above formula (1).
  • the specific kind of amino acid which comprises the amino acid residue represented by Y3 is not specifically limited, What kind of thing may be sufficient.
  • the amino acid residue represented by Z1 contains Leu within the range of 1 to 3.
  • the case of 1 amino acid is Leu
  • the case of 2 amino acids is Asp-Leu
  • the case of 3 amino acids is Leu-Asp-Leu.
  • the number of amino acid residues represented by Z3 may be in the range of 0-10.
  • the kind of specific amino acid which comprises the amino acid residue represented by Z3 is not specifically limited, What kind of thing may be sufficient.
  • the number of amino acid residues represented by Z3 is more preferably 5 or less.
  • Specific examples of the amino acid residue represented by Z3 include Gly, Gly-Phe-Phe, Gly-Phe-Ala, Gly-Tyr-Tyr, Ala-Ala-Ala and the like. It is not limited.
  • the number of amino acid residues in the entire transcriptional repressor conversion peptide represented by the formula (3) is not particularly limited, but from the viewpoint of ease of synthesis, it may be 20 amino acids or less. preferable.
  • the transcriptional repression conversion peptide of the above formula (4) is a hexamer (6mer) composed of 6 amino acid residues.
  • the amino acid sequence when the amino acid residue represented by Z4 is Glu corresponds to the 196th to 201st amino acid sequence of Arabidopsis SUPERMAN protein (SUP protein). .
  • the various transcription repressor converting peptides described above can be modified with the transcription factors and transcription coupling factors by fusing them with the transcription factors and transcription coupling factors described above to form chimeric proteins (fusion proteins).
  • the transcription factor or transcription coupling factor can be modified into a transcriptional repression factor or a negative transcription coupling factor by fusing with the transcription factor or transcription coupling factor described above to form a chimeric protein (fusion protein).
  • a transcriptional repressing factor that is not dominant can be used as a dominant type transcriptional repressing factor.
  • a chimeric protein can be produced by obtaining a fusion gene with a gene encoding a transcription factor or transcription coupling factor using the polynucleotide encoding the transcription repressing conversion peptide.
  • a fusion gene is constructed by linking a polynucleotide encoding the transcription repressing conversion peptide (referred to as a transcription repressing conversion polynucleotide) and a gene encoding the transcription factor or transcription coupling factor, Introduce into cells.
  • a chimeric protein fusion protein
  • the specific base sequence of the transcriptional repression conversion polynucleotide is not particularly limited, and may include a base sequence corresponding to the amino acid sequence of the transcriptional repression conversion peptide based on the genetic code.
  • the transcriptional repression conversion polynucleotide may include a base sequence serving as a linking site for linking with a transcription factor gene.
  • an additional base sequence for matching them may be included. Good.
  • a polypeptide having a linker function for connecting between a transcription factor or transcription coupling factor and a transcription repressor conversion peptide or a chimeric protein (fusion protein) such as His, Myc, Flag, etc. for epitope labeling.
  • a chimeric protein such as His, Myc, Flag, etc. for epitope labeling.
  • additional polypeptides such as polypeptides may be included.
  • the chimeric protein (fusion protein) may contain a structure other than the polypeptide, such as a sugar chain or an isoprenoid group, as necessary.
  • the method for producing a plant body is not particularly limited as long as it includes a process of producing a chimeric protein of the above-mentioned transcription factor or transcription coupling factor and a transcription repressing conversion peptide in the plant body to improve the oil productivity.
  • a production method including steps such as an expression vector construction step, a transformation step, and a selection step.
  • steps such as an expression vector construction step, a transformation step, and a selection step.
  • each step will be specifically described.
  • the expression vector construction step is particularly limited as long as it is a step for constructing a recombinant expression vector comprising the gene encoding the transcription factor or transcription coupling factor described above, a transcriptional repression conversion polynucleotide, and a promoter. is not.
  • Various vectors known in the art can be used as a base vector for the recombinant expression vector.
  • a plasmid, phage, cosmid or the like can be used, and can be appropriately selected according to the plant cell to be introduced and the introduction method. Specific examples include pBR322, pBR325, pUC19, pUC119, pBluescript, pBluescriptSK, and pBI vectors.
  • the method for introducing a vector into a plant is a method using Agrobacterium
  • the pBI binary vector include pBIG, pBIN19, pBI101, pBI121, pBI221, and the like.
  • the promoter is not particularly limited as long as it is a promoter capable of expressing a gene in a plant body, and a known promoter can be suitably used.
  • promoters include cauliflower mosaic virus 35S promoter (CaMV35S), various actin gene promoters, various ubiquitin gene promoters, nopaline synthase gene promoter, tobacco PR1a gene promoter, tomato ribulose 1,5-diphosphate carboxylase Oxidase small subunit gene promoter, napin gene promoter, oleosin gene promoter and the like.
  • cauliflower mosaic virus 35S promoter, actin gene promoter, or ubiquitin gene promoter can be more preferably used.
  • any gene can be strongly expressed when introduced into a plant cell.
  • the promoter may be linked so that it can express a fusion gene in which a gene encoding a transcription factor or transcription coupling factor and a transcriptional repression-converting polynucleotide are linked, and introduced into the vector.
  • the specific structure is not particularly limited.
  • the recombinant expression vector may further contain other DNA segments in addition to the promoter and the fusion gene.
  • the other DNA segment is not particularly limited, and examples thereof include a terminator, a selection marker, an enhancer, and a base sequence for improving translation efficiency.
  • the recombinant expression vector may further have a T-DNA region.
  • the T-DNA region can increase the efficiency of gene transfer particularly when Agrobacterium is used to introduce the recombinant expression vector into a plant body.
  • the transcription terminator is not particularly limited as long as it has a function as a transcription termination site, and may be a known one.
  • the transcription termination region (Nos terminator) of the nopaline synthase gene the transcription termination region of the cauliflower mosaic virus 35S (CaMV35S terminator) and the like can be preferably used.
  • the Nos terminator can be more preferably used.
  • a transformant selection marker for example, a drug resistance gene can be used.
  • drug resistance genes include drug resistance genes for hygromycin, bleomycin, kanamycin, gentamicin, chloramphenicol and the like.
  • Examples of the base sequence for improving the translation efficiency include an omega sequence derived from tobacco mosaic virus. By placing this omega sequence in the untranslated region (5′UTR) of the promoter, the translation efficiency of the fusion gene can be increased.
  • the recombinant expression vector can contain various DNA segments depending on the purpose.
  • the method for constructing the recombinant expression vector is not particularly limited, and the promoter, the gene encoding the transcription factor or the transcription coupling factor, the transcription repressing conversion polynucleotide, and the necessary vectors are selected as appropriate mother vectors.
  • the other DNA segments may be introduced in a predetermined order.
  • a fusion gene is constructed by linking a gene encoding a transcription factor and a transcription repressor conversion polynucleotide, and then the fusion gene and a promoter (such as a transcription terminator, if necessary) are linked to an expression cassette. May be constructed and introduced into a vector.
  • the cleavage site of each DNA segment is set as a complementary protruding end and the order of the DNA segment is defined by reacting with a ligation enzyme.
  • the terminator is included in the expression cassette, the promoter, the chimeric gene, and the terminator may be in order from the upstream.
  • the types of reagents for constructing the recombinant expression vector that is, the types of restriction enzymes and ligation enzymes are not particularly limited, and commercially available ones may be appropriately selected and used.
  • the above-described recombinant expression vector propagation method is not particularly limited, and a conventionally known method can be used.
  • Escherichia coli may be used as a host and propagated in the E. coli.
  • a preferred E. coli type may be selected according to the type of vector.
  • Transformation step is a step of introducing a plant cell using the above-described recombinant expression vector so as to express the above-described fusion gene.
  • a method (transformation method) for introducing a recombinant expression vector into a plant cell is not particularly limited, and any conventionally known method suitable for the plant cell can be used. Specifically, for example, a method using Agrobacterium or a method of directly introducing into plant cells can be used. As a method using Agrobacterium, for example, Bechtold, E., Ellis, J. and Pelletier, G. (1993) In Planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis plants. CR Acad. Sci. Paris Sci.
  • Examples of methods for directly introducing a recombinant expression vector and DNA containing the gene of interest into plant cells include microinjection, electroporation (electroporation), polyethylene glycol, particle gun, and protoplast fusion. Method, calcium phosphate method and the like can be used.
  • a transcription unit necessary for expression of the target gene such as a promoter or transcription terminator, and DNA containing the target gene are sufficient, and the vector function Is not mandatory.
  • the DNA contains only the protein coding region of the gene of interest that does not have a transcription unit, it is sufficient if it can be integrated without the transcription unit of the host and the gene of interest can be expressed.
  • Examples of plant cells into which the above recombinant expression vector and the DNA containing the gene of interest and the DNA containing the gene DNA of interest and not containing the expression vector are introduced include, for example, plant organs such as flowers, leaves, and roots Cell, callus, suspension culture cell and the like of each tissue.
  • the recombinant expression vector may be appropriately constructed according to the type of plant to be produced.
  • An expression vector may be constructed in advance and introduced into plant cells. That is, the method for producing a plant according to the present invention may or may not include a transformation DNA construction step using the above-described recombinant expression vector.
  • the selection method is not particularly limited.
  • the selection may be performed on the basis of drug resistance such as hygromycin resistance, and after growing the transformant, the plant itself or any organ or tissue may be selected.
  • You may select from fat-and-oil content contained.
  • a method of quantifying the oil and fat component from the seeds of the transformant according to a conventional method and comparing it with the oil and fat content contained in the seeds of the non-transformed plant body can be mentioned. (See examples below).
  • the method for producing a plant according to the present invention since the fusion gene is introduced into the plant, it is possible to obtain offspring from which the oil content is significantly improved by sexual reproduction or asexual reproduction. Become. It is also possible to obtain propagation materials such as plant cells, seeds, fruits, strains, calluses, tubers, cut ears, lumps, etc. from the plants and their progeny, and mass-produce the plants based on these. . Therefore, the method for producing a plant according to the present invention may include a breeding process (mass production process) for breeding the selected plant.
  • a breeding process mass production process
  • the plant body in the present invention includes at least one of a grown plant individual, a plant cell, a plant tissue, a callus, and a seed. That is, in this invention, if it is a state which can be made to grow finally to a plant individual, all will be considered as a plant body.
  • the plant cells include various forms of plant cells. Such plant cells include, for example, suspension culture cells, protoplasts, leaf sections and the like. Plants can be obtained by growing and differentiating these plant cells.
  • regeneration of the plant body from a plant cell can be performed using a conventionally well-known method according to the kind of plant cell. Therefore, the method for producing a plant according to the present invention may include a regeneration step for regenerating the plant from plant cells or the like.
  • the method for producing a plant according to the present invention is not limited to the method of transforming with a recombinant expression vector, and other methods may be used.
  • the chimeric protein (fusion protein) itself may be administered to a plant body.
  • the chimeric protein (fusion protein) may be administered to the young plant so that the fat content can be improved at the site of the plant finally used.
  • the administration method of the chimeric protein (fusion protein) is not particularly limited, and various known methods may be used.
  • a chimeric protein of a transcription factor belonging to a predetermined transcription factor family and the functional peptide by expressing a chimeric protein of a transcription factor belonging to a predetermined transcription factor family and the functional peptide, a substance per individual as compared with a wild-type plant body.
  • a plant body with improved productivity can be provided.
  • a predetermined transcription coupling factor, the above functional peptide, and a chimeric protein it is possible to provide a plant body having improved substance productivity per individual compared to a wild type plant body.
  • the transcription promoting activity of the target transcription factor may be suppressed, or the transcriptional inhibitory effect on the homologous sequence of the cis sequence recognized by the target transcription factor may be exhibited. is there.
  • the chimeric protein may act to change the affinity specificity for other factors, DNA, RNA, lipids or carbohydrates that have affinity for the transcription factor or transcription coupling factor of interest. In some cases, it may act to improve the affinity for a substance having no affinity for the transcription factor of interest.
  • a transcription factor that is a target of the chimeric protein a transcription factor that recognizes a cis sequence that is homologous to the cis sequence recognized by the subject, and a transcription factor that is the target of the chimeric protein
  • transcription factors and other factors having affinity for the transcription factor that is the target of the chimeric protein are also expressed in the plant body, the gene to be controlled to be dominant negative due to the action effect of the chimeric protein described above.
  • Expression can be suppressed. Thereby, in the plant body according to the present invention, the expression level of the gene group related to fat and oil production and / or the gene group related to degradation of the produced fat and oil is changed, and as a result, the fat and oil content is significantly improved. It is thought that.
  • the fat content is significantly improved when there is no change in the seed mass per grain compared to the wild type, but when the fat content is improved, and the seed mass per grain compared to the wild type.
  • it becomes significantly large and the amount of fats and oils is improved it means either the case where the fats and oils content in seeds is improved as compared with the wild type.
  • the amount of oil and fat produced by one plant is improved.
  • the plant according to the present invention can be used in a plant-derived oily production method.
  • fats and oils can be produced by growing a plant according to the present invention, collecting seeds, and collecting oil and fat components from the collected seeds.
  • the method for producing fats and oils using the plant according to the present invention can be said to be a method with excellent productivity because the fat and oil content in a single plant is high.
  • the number of cultivated individuals per unit cultivated land area is constant, the amount of fats and oils produced from per unit cultivated land area is greatly improved by using the plant according to the present invention. Therefore, the manufacturing cost required for oil production can be significantly reduced by using the plant according to the present invention.
  • the method for producing fats and oils using the plant according to the present invention is a method with excellent productivity because the fats and oils content in the seed per unit weight is high.
  • the fats and oils to be produced are not particularly limited.
  • oils derived from plants such as oil, benflower oil and rapeseed oil.
  • the manufactured fats and oils can be widely used for household use and industrial use, and can also be used as a raw material for biodiesel fuel. That is, by using the plant body according to the present invention, the above-described fats and oils for home use or industrial use, biodiesel fuel, and the like can be produced at low cost.
  • a method for producing plant-derived fats and oils in addition, in the present invention, the inventors have found a novel finding that the fat and oil content is significantly improved in seeds collected from plants exhibiting a specific phenotype. Specifically, seeds collected from four types of pigment synthesis pathway-deficient strains (tt4, tt5, tt6 and ⁇ CHS) disclosed in the reference (Plant J. 1995 Nov; 8 (5): 659-71.) The oil content in seeds is significantly improved compared to the wild type.
  • the method for producing a plant-derived oil / fat uses seeds collected from a plant body that lacks the function of at least one gene selected from the group consisting of a chalcone synthase gene, a chalcone isomerase gene, and a flavone-3-hydrase gene. It includes a step of recovering the fat and oil component.
  • the tt4 strain and ⁇ CHS disclosed in the above references are strains lacking the chalcone synthase gene, the tt5 strain is a strain lacking the chalcone isomerase gene, and the tt6 strain is a strain lacking the flavone-3-hydrase gene It is.
  • the base sequence of the chalcone synthase gene in Arabidopsis thaliana is shown in SEQ ID NO: 5, and the amino acid sequence of the chalcone synthase encoded by the gene is shown in SEQ ID NO: 6.
  • the base sequence of the chalcone isomerase gene in Arabidopsis thaliana is shown in SEQ ID NO: 7, and the amino acid sequence of the chalcone isomerase encoded by the gene is shown in SEQ ID NO: 8.
  • the base sequence of the flavone-3-hydrase gene in Arabidopsis thaliana is shown in SEQ ID NO: 9, and the amino acid sequence of the flavone-3-hydrase encoded by the gene is shown in SEQ ID NO: 10.
  • the chalcone synthase gene, chalcone isomerase gene, and flavone-3-hydrase gene are not limited to the above specific sequences. That is, the chalcone synthase gene, the chalcone isomerase gene and the flavone-3-hydrase gene include an amino acid sequence in which one or a plurality of amino acid sequences are deleted, substituted, added or inserted in the above specific amino acid sequence, and It may encode a protein having chalcone synthase activity, chalcone isomerase activity and flavone-3-hydrase activity.
  • amino acids for example, 1 to 20, preferably 1 to 10, more preferably 1 to 7, further preferably 1 to 5, particularly preferably 1 to 3 are used. means.
  • amino acid deletion, substitution, or addition can be performed by modifying the above specific base sequence by a technique known in the art.
  • Mutation can be introduced into a nucleotide sequence by a known method such as Kunkel method or Gapped duplex method or a method according thereto, for example, a mutation introduction kit using site-directed mutagenesis (for example, Mutant- Mutations are introduced using K, Mutant-G (both trade names, manufactured by TAKARA Bio Inc.) or the like, or using LA PCR-in-vitro Mutagenesis series kits (trade name, manufactured by TAKARA Bio Inc.).
  • a mutation introduction kit using site-directed mutagenesis for example, Mutant- Mutations are introduced using K, Mutant-G (both trade names, manufactured by TAKARA Bio Inc.) or the like, or using LA PCR-in-vitro Mutagenesis series kits (trade name, manufactured by TAKARA Bio Inc.).
  • EMS ethyl methanesulfonic acid
  • 5-bromouracil 2-aminopurine
  • hydroxylamine N-methyl-N'-nitro-N nitrosoguanidine
  • other carcinogenic compounds are representative.
  • a method using a chemical mutagen such as that described above may be used, or a method using radiation treatment or ultraviolet treatment represented by X-rays, alpha rays, beta rays, gamma rays and ion beams may be used.
  • the chalcone synthase gene, chalcone isomerase gene, and flavone-3-hydrase gene include genes having the same function in plants other than Arabidopsis (for example, the plants described above) (hereinafter referred to as homologous genes).
  • the homologous gene of chalcone synthase gene, chalcone isomerase gene or flavone-3-hydrase gene is the nucleotide sequence of chalcone synthase gene, chalcone isomerase gene or flavone-3-hydrase gene or the gene thereof if plant genome information is known. It is possible to search from the plant genome information to be searched based on the amino acid sequence encoded by.
  • the homologous transcription factor is an amino acid having a homology of, for example, 70% or more, preferably 80% or more, more preferably 90% or more, and most preferably 95% or more with respect to the above specific amino acid sequence. Searched as an array.
  • the homology value means a value obtained by default setting using a computer program in which the blast algorithm is implemented and a database storing gene sequence information.
  • a genome is extracted from the target plant or a cDNA library of the target plant is constructed, and the chalcone synthase gene, chalcone isomerase gene or flavone-3-
  • a homologous gene can be identified by isolating a genomic region or cDNA that hybridizes under stringent conditions to at least a part of the base sequence of the hydrase gene.
  • stringent conditions refer to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed. For example, hybridization at 45 ° C.
  • Hybridization can be performed by a conventionally known method such as the method described in J. Sambrook et al. Molecular lonCloning, A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory (1989).
  • the method for producing plant-derived fats and oils according to the present invention is not limited to a system using seeds derived from Arabidopsis thaliana, and can be applied to any plant.
  • plants to which the method for producing plant-derived oils and fats according to the present invention can be applied include dicotyledonous plants, monocotyledonous plants such as Brassicaceae, Gramineae, Eggplant, Legume, Willowaceae, etc. (see below) However, it is not limited to these plants.
  • Brassicaceae Arabidopsis thaliana, Brassica (Brassica rapa, Brassica napus), Cabbage (Brassica oleracea var. Capitata), Rapeseed (Brassica rapa, Brassica napus), Nanohana (Brassica rapa, Brassica ⁇ napus) Pekinensis), Chingen rhinoceros (Brassica rapa var. (Brassica rapa var. Chinensis), Japanese radish (Brassica Raphanus sativus), Wasabi (Wasabia japonica), etc.
  • Eggplant family tobacco (Nicotiana tabacum), eggplant (Solanum melongena), potato (Solaneum tuberosum), tomato (Lycopersicon lycopersicum), capsicum (Capsicum annuum), petunia (Petunia), etc.
  • Legumes soybean (Glycinelymax), pea (Pisum sativum), broad bean (Vicia faba), wisteria (Wisteria floribunda), peanut (Arachis. Hypogaea), Lotus corniculatus var. (Vigna angularis), Acacia.
  • Asteraceae chrysanthemum (Chrysanthemum morifolium), sunflower (Helianthus annuus), etc.
  • Palms oil palm (Elaeis guineensis, Elaeis oleifera), coconut (Cocos nucifera), date palm (Phoenix dactylifera), wax palm (Copernicia) Ursiaceae: Rhis succedanea, Cashew nutcrest (Anacardium occidentale), Urushi (Toxicodendron vernicifluum), mango (Mangifera indica), pistachio (Pistacia vera) Cucurbitaceae: pumpkins (Cucurbita maxima, Cucurbita moschata, Cucurbita pepo), cucumbers (Cucumis sativus), callas (Trichosanthes cucumeroides), gourds (Lagenaria siceraria var. Gourda) Rosaceae: Almond (Amygdalus communis), Rose (Rosa), Strawberry (Fragaria), Sakura (Prunus), Apple (Malus pumila var. Domestica
  • Lily family Tulip (Tulipa), Lily (Lilium), etc.
  • Deletion of the function of a gene means that the gene is deleted from the genome, the expression (transcription level and translation level) of the gene is inhibited, and the activity of the protein encoded by the gene is reduced or It is meant to include deletion.
  • a method for deleting a gene is not particularly limited, and examples thereof include a method using homologous recombination and a method using transposon. Moreover, when deleting the said gene, the full length of the said gene may be deleted, and you may delete partially.
  • the method for inhibiting the expression of the gene is not particularly limited, but a method for deleting the promoter controlling the expression of the gene, or replacing the promoter controlling the expression of the gene with an expression-inducible promoter.
  • examples of a method for reducing the activity of a protein encoded by a gene include a method of acting a substance having a function of specifically binding to the protein and suppressing the activity of the protein.
  • examples of the substance include antibodies and inhibitors that can inhibit the function of the protein.
  • the method for recovering fats and oils from seeds is not particularly limited, and any method such as a pressing method, an extraction method, and a pressing method may be used.
  • a pressing method an extraction method
  • a pressing method an extraction method
  • a pressing method an extraction method
  • a pressing method an extraction method
  • a pressing method an oil and fat component
  • an oil and fat component can be recovered from seeds collected from a plant by an ether extraction method using a Soxhlet extractor.
  • the method for producing plant-derived fats and oils according to the present invention even if the amount of seeds that can be collected from a single plant is the same, because the fat and oil content per seed is high, the plant body is used. It can be said that this is an excellent method.
  • the fats and oils to be produced are not particularly limited.
  • soybean oil, sesame oil, olive oil, coconut oil, rice oil, cottonseed oil, sunflower oil, corn oil, beni flower Examples include oils derived from plants such as oil and rapeseed oil.
  • the manufactured fats and oils can be widely used for household use and industrial use, and can also be used as a raw material for biodiesel fuel and bioplastic. That is, by using the plant according to the present invention, the above-described oils and fats for home use or industrial use, biodiesel fuel, bioplastic, and the like can be produced at low cost.
  • a pigment synthesis pathway-deficient strain is a mutant strain that lacks the function of a gene involved in the pigment synthesis system, and has a phenotype in which the seed coat color is lighter than that of the wild strain (more white than the wild type). Indicates.
  • the tt4 strain and ⁇ CHS disclosed in the above references are strains lacking the chalcone synthase gene, the tt5 strain is a strain lacking the chalcone isomerase gene, and the tt6 strain is a strain lacking the flavone-3-hydrase gene .
  • the seed coat color becomes white due to the failure of pigment synthesis. Therefore, when seeds are collected from the plant to be screened and the seed coat color of the collected seeds is confirmed, the ability of pigment synthesis by the pigment synthesis pathway in the plant can be determined, and the seed content contained in the collected seeds can be determined with high accuracy. Can be estimated.
  • the seed coat color of seeds collected from these plants can be observed and those that are whiter can be selected as varieties with high oil production.
  • the plant body to be screened may be one subjected to some mutagen treatment, or a plant variety produced by a conventionally known breeding method or the like.
  • the mutagen treatment is not particularly limited, and chemical mutagen and / or physical mutagen treatment widely used for inducing mutations can be used.
  • chemical mutagen for example, ethyl methanesulfonate (EMS), ethylnitrosourea (ENS), 2-aminopurine, 5-bromouracil (5-BU), an alkylating agent and the like can be used.
  • EMS ethyl methanesulfonate
  • ENS ethylnitrosourea
  • 2-aminopurine ethylnitrosourea
  • 5-bromouracil (5-BU) 5-bromouracil
  • an alkylating agent ethylating agent
  • radiation ultraviolet rays, etc.
  • Mutagenesis using these mutagens can be performed by known methods.
  • the screening method of the present invention it is not necessary to destroy seeds collected from plants, and the amount of fats and oils contained in seeds is determined by a very simple and quick determination method such as observing the seed coat color visually. Can do.
  • the seed coat color of seeds collected from plants may be judged from image data, and the seed coat color may be measured quantitatively.
  • the seed image to be evaluated is converted into digital data, and the R value, G value, and B value (RGB value) of the seed region in the image data are measured.
  • Any software for image processing software may be used to measure the R value, G value and B value of the seed region.
  • the measured R value, G value, and B value are compared with the R value, G value, and B value in wild-type seeds.
  • the integrated value of the measured R value, G value, and B value is calculated and compared with the integrated value of the R value, G value, and B value in wild-type seeds.
  • the seed coat color of the seed to be measured Can be judged to be closer to white.
  • the measured R value, G value, and B value integrated value show a value of 2.88 times or more of the R value, G value, and B value integrated value in the wild type seed, It can be determined that the seed is whitened (lightened).
  • the seed coat color of the seed collected from the plant is observed as image data, it is not necessary to destroy the seed, and the amount of fats and oils contained in the seed is determined by a very simple and quick determination method. Can be determined.
  • the seed coat color from the image data not only the integrated value of the R value, G value, and B value, but also the total value of the R value, G value, and B value may be calculated.
  • Example 1 In this example, for the transcriptional coupling factor At5g24520 and the transcription factor At1g71030 in Arabidopsis thaliana, a chimeric protein (fusion protein) added with a repressor domain sequence was expressed in the plant body, and the fat content in the seed collected from the plant body was determined. It was measured. For comparison, with regard to the transcription factor At1g56650, a chimeric protein (fusion protein) was similarly expressed in the plant, and the oil content in the seeds was measured.
  • Amplification of transcription factor gene From a cDNA library of Arabidopsis thaliana, using the primers described below, the coding region DNA fragment excluding the termination codon of At1g71030, the coding region DNA fragment including the termination codon, and the coding excluding the termination codon of At5g24520
  • the DNA fragment of the region and the coding region DNA excluding the stop codon of At1g56650 were amplified by PCR. PCR conditions were 94 ° C for 1 minute, 47 ° C for 2 minutes, and extension reaction at 74 ° C for 1 minute for 25 cycles. After completion of PCR, the amplified DNA fragments were separated and collected by agarose gel electrophoresis.
  • p35SSXG was used. In order to link the transcription factor gene sequence and the repressor domain sequence, this vector was cut with SmaI, and a PCR amplified fragment encoding the above transcription factor was inserted, and p35SSXG (At1g56650), p35SSXG (At5g24520), p35SSXG (At1g71030 ) was produced. P35SSXG (At1g71030) was inserted with a PCR amplified fragment using At1g71030 amplification forward primer 1 and At1g71030 amplification reverse primer 1.
  • p35SOXG was inserted into the cleavage site with SmaI to prepare p35SOXG (At1g71030).
  • pBCKH was used as a binary vector for gene transfer into plants by Agrobacterium.
  • This vector is obtained by incorporating the cassette of the Gateway vector conversion system (Invitrogen) into the HindIII site of pBIG (Hygr) (Nucleic Acids Res. 18, 203 (1990)).
  • this vector and p35SSXG (At1g56650), p35SSXG (At5g24520), p35SSXG (At1g71030) or p35SOXG (At1g71030) are mixed and assembled using GATEWAY LR clonase (Invitrogen). A replacement reaction was performed.
  • pBCKH-p35SSXG (At1g56650), pBCKH-p35SSXG (At5g24520), pBCKH-p35SSXG (At1g71030) and pBCKH-p35SOXG (At1g71030) were prepared.
  • Arabidopsis thaliana (Colombia) was used as a plant into which improved transcription factors were introduced.
  • the gene transfer method was in accordance with Transformation of Arabidopsis thaliana by vacuum infiltration. However, in order to infect, no vacuum treatment was carried out, but only immersion in Agrobacterium solution.
  • the improved transcription factor expression vectors pBCKH-p35SSXG (At1g56650), pBCKH-p35SSXG (At5g24520), pBCKH-p35SSXG (At1g71030) and pBCKH-p35SOXG (At1g71030) were transformed into the soil bacterium Agrobacterium tumefaciens strain p5890 It was introduced into the (Gmr) (koncz and Schell 1986) strain by electroporation.
  • the introduced bacteria were cultured in a 1 liter YEP medium containing antibiotics (kanamycin (Km) 50 ⁇ g / ml, gentamicin (Gm) 25 ⁇ g / ml, rifampicillin (Rif) 50 ⁇ g / ml) until OD600 was 1.
  • the cells are collected from the culture solution and contain 1 liter of infection medium (Infiltration medium, 1 liter, 2.2 g MS salt, 1X B5 vitamins, 50 g sucrose, 0.5 g MES, 0.044 ⁇ M benzylaminopurine, amino400 ⁇ l Silwet PH 5.7) Suspended in cocoon.
  • Seed seeds (T1 seeds) were sterilized with 50% bleach and 0.02% Triton X-100 solution for 7 minutes, rinsed three times with sterile water, and sterilized hygromycin selective medium (4.3g / l4.3MS salts, 0.5% sucrose, 0.5 g / l MES, pH 5.7, 0.8% agar, 30mg / l hygromycin, 250 mg / l Vancomycin).
  • T1 plants Ten transformed plants (T1 plants) grown on the hygromycin plate were selected for each improved transcription gene and transplanted to a 50 mm diameter pot containing vermiculite mixed soil. This was cultivated at 22 ° C., 16 hours light period, 8 hours dark period, and light intensity of about 60-80 ⁇ E / cm 2 to obtain seeds (T2 seeds). The skin color of the obtained T2 seeds was light brown or yellow, while the wild strain was dark brown.
  • Dye synthesis pathway-deficient strain Moreover, in this example, the fat and oil content contained in seeds collected from the pigment synthesis pathway-deficient strain was also measured.
  • a pigment synthesis pathway-deficient strain tt4 (NASC stock No. N85) (reference: Plant J., 8, 659-671, 1995), tt5 (NASC stock No. N86), tt6 (NASC (stock No. N87) (reference: Plant Physiol., 111, 339-345, 1996) and ⁇ CHS (NASC stock No. N520583)) were obtained from NASC (The Nottingham Arabidopsis Stock Centre).
  • tt4, tt5, and tt6 were prepared from Arabidopsis thaliana, Ler strain, and ⁇ CHS was prepared from Arabidopsis thaliana, Col-0 strain. This was sterilized with 50% bleach and 0.02% Triton X-100 solution for 7 minutes, rinsed three times with sterile water, and the medium (4.3 g / l MS salts, 0.5% sucrose, 0.5 g / l MES, pH 5.7 , 0.8% agar). The plant body vermiculite mixed soil grown on the plate was transplanted to a pot having a diameter of 50 mm.
  • T2 seeds with improved transcription factors or transcription factors introduced T2 seeds (At1g56650-SRDX, At5g24520-SRDX, At1g71030-SRDX) introduced with one of two improved transcription factor genes and improved transcription coupling factor genes and transcription Oil content analysis of T2 seed (At1g71030) and wild strains (Col-0, Ler) into which the factor was introduced was performed.
  • T2 seed At1g71030
  • Col-0, Ler wild strains into which the factor was introduced was performed.
  • MARAN-23 Resonance Instruments Ltd., UK
  • H-NMR Analysis software RI-NMR Ver. 2.0.
  • a calibration curve was prepared using olive oil as the standard substance for fats and oils, and the fat content (wt%) in the seeds was determined.
  • the fat content increase rate of each line is 30.2% for T2 seed (At1g56650-SRDX), 12.3% for T2 seed (At5g24520-SRDX), and T2 seed (At1g71030-SRDX) was 12.2% and T2 seed (At1g71030) was 2.3% (FIG. 1).
  • ⁇ CHS was 8.9% for the Col-0 strain
  • tt4, tt5, and tt6 were 4.7%, 8.8%, and 11.1% for the Ler strain, respectively (FIG. 2).
  • the fat and oil content per seed weight of the plant introduced with the chimeric gene of transcription factor At1g56650, transcription coupling factor At5g24520, and transcription factor At1g71030 with the addition of the repressor domain It was found to be a very effective plant body in terms of fat and oil content per weight and excellent in fat and oil production.
  • the fat content per seed weight of the plant introduced with At1g71030 having expression promoting activity was slightly increased compared with the fat content per weight of the plant grown at the same time, but the increase rate suppressed the expression promoting activity. It was about 1/5 of the increase rate of fat content per weight of the plant seed which introduced At1g71030.
  • At1g71030 encodes a protein having a single MYB-like domain (AtMybL2) and overexpresses this gene with the CaMV35S promoter, indicating a trait that lacks leaves, stems, and trichomes. This is thought to be due to the suppression of the expression of the GL2 gene required for trichome formation (reference: DNA Res., 9, 31-34, 2002). It has been reported that the fat and oil content of seeds is increased by 8% by disrupting the GL2 gene (reference: Plant Mol Biol. 2006, 60,: 377-87, 2006).
  • AtMybL2 protein has a transcriptional repressor consisting of 6 amino acids in its carboxy terminal region, and is an overexpression plant of the gene encoding AtMybL2 with an overexpression plant of AtMybL2 gene and a transcriptional repressor known as EAR-motif, In either case, the synthesis of anthocyanin precursor was suppressed (reference: 18TH INTERNATIONAL CONFERENCE ON ARABIDOPSIS RESEARCH, TAIR accession Publication: 501721814).
  • At1g71030 overexpressing T2 seeds was 2.3%, whereas that of At1g71030 overexpressing T2 seeds with a repressor domain increased significantly by 12.2%.
  • the increase in fat content at the time of GL2 gene disruption was significantly higher than 8%. From these results, it is considered that At1g71030 with repressor domain added acted on the oil synthesis and storage process of seeds through unknown pathways other than GL2, and increased the oil content.
  • seed coat color is an important phenotype for predicting oil content in not only conventional breeding methods by crossing but also molecular breeding methods by gene transfer method and gene disruption method.
  • the integrated values of R value, G value and B value are at least 2.88 times higher than the wild type. It was. As described above, it has become possible to measure the seed coat color quantitatively using the image data of the seed and to evaluate the amount of oil and fat in the seed very simply and quickly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Cell Biology (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Botany (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Physics & Mathematics (AREA)
  • Nutrition Science (AREA)
  • Plant Pathology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 個体あたりの物質生産性を向上させることができる新規な機能を有する転写制御因子を探索し、植物体におけるこれらの特性を向上する。  配列番号4に示すアミノ酸配列を含む転写因子を含む転写因子ファミリーに属する転写因子とリプレッサードメインとを融合させたキメラタンパク質を植物体内で発現させる。

Description

植物の油脂を増産させる遺伝子及びその利用方法
 バイオマス(biomass)とは、一般的には一定面積あたりに生息または存在する生物の総量を指し、特に植物を対象とした場合は、単位面積あたりの乾重量を意味する。バイオマスの単位は、質量又はエネルギー量で数値化する。バイオマスという表現は、「生物体量」、「生物量」も同義語であり、植物バイオマスの場合には「現存量(Standing crop)」の語が使われることもある。植物バイオマスは、大気中の二酸化炭素を太陽エネルギーを用いて固定して生成されるため、いわゆるカーボンニュートラルなエネルギーとして捕らえることができる。したがって、植物のバイオマスを増加させることは、地球環境保全、地球温暖化防止、温室効果ガス排出低減の効果がある。従って、植物バイオマスを増産させる技術は産業上の重要性が高い。
 一方、植物は、その一部の組織自体(種子、根、葉茎など)を目的として栽培されたり、油脂などの種々の物質生産を目的として栽培されたりする。例えば、植物が生産する油脂としては、大豆油、ごま油、オリーブ油、椰子油、米油、綿実油、ひまわり油、コーン油、べに花油、パーム油及び菜種油等が古来より知られており、家庭用途や工業用途に広く利用されている。また、植物が生産する油脂は、バイオディーゼル燃料やバイオプラスチックの原料としても使用され、石油代替エネルギーとして適用性が広がっている。
 このような状況において、植物を用いた油脂生産を工業的に成功させるには、単位耕地面積あたりの生産性の向上が必要となる。ここで単位耕地面積あたりの栽培個体数が一定であると仮定すると、個体あたりの油脂生産量の向上が必要であることが判る。植物体から採取した種子から油脂を回収する場合には、個体あたりの種子収量を向上させる、及び種子中の油脂含有量を向上させるといった技術により、個体あたりの油脂生産量の向上が達成できるものと期待される。
 植物種子の油脂生産量を増加させる技術には大別して栽培法の改良によるものと、油脂増産品種の開発がある。油脂増産品種の開発方法は、交配技術を中心とした従来育種法と遺伝子組換えによる分子育種法とに大別される。遺伝子組換えによる油脂増産技術としては、A)植物油脂の主成分である種子トリアシルグリセロール(TAG)の合成系を改変する技術、及びB)植物の形態形成や代謝及びそれらに関わる遺伝子の発現を制御する各種制御遺伝子を改変する技術とが知られている。
 上記A)の方法としては、光合成により生産される糖を原料として合成されるTAGの合成量を増加させる方法として(1)TAGの構成成分である脂肪酸、あるいはグリセロールの糖からの合成活性を高める方法、(2)グリセロールと脂肪酸からTAGが合成される反応を強化する方法が考えられる。これらについて、遺伝子工学的な方法を用いた技術としては以下の技術が報告されている。(1)の例としては、シロイヌナズナの細胞質型acetyl-coenzyme A carboxylase (ACCase)をナタネのプラスチド中で過剰発現させることにより、種子の油脂含量を5%向上させた報告(非特許文献1)が挙げられる。また、(2)の例としては、ジアシルグリセロールのsn-3位にアシル基を転移するDGAT(diacylglycerol acyltransferase)の過剰発現による油脂増産技術に関する報告(非特許文献2)が挙げられる。非特許文献2の方法では、DGATの発現量が増加するに従って油脂含量と種子重が増加し、個体あたりの種子数が増加する場合があることも報告されている。本方法を適用したシロイヌナズナの種子油脂含量は46%増、個体あたりの油脂量は最高で約125%増であった。
 一方、上記B)の方法としては、生合成系酵素遺伝子の発現制御に関与する転写因子遺伝子の発現を制御する方法が考えられる。この例としては、特許文献1が挙げられる。本特許文献1では、転写因子を網羅的に過剰発現またはノックアウトした組換え植物を作製したのちに種子の油脂含量を高める遺伝子を選抜するといった手法が採用されている。特許文献1によれば、ERF subfamily B-4転写因子遺伝子の過剰発現によって種子の油脂含量が23%増加したと記載されている。しかし、特許文献1において、個体あたりの油脂含量の増減については記載されていない。また、非特許文献3には、AP2/EREBドメインを持つ転写因子であるWRINKLED1を過剰発現させることにより、種子の油脂含量が向上することが記載されている。
 しかしながら、種々の形質の改良を目的とした上述した分子育種法が開発されているにもかかわらず、植物の重量増産、特定の組織増産、或いは目的物質の生産性向上を伴う、収量向上技術は実用の域に達していない。
 この理由として、真に優れた遺伝子が未発見であること、試験段階で効果のある組換え新品種が実用段階では多様な自然環境下で期待通りの効果を発揮できないことにあると考えられる。また、植物の重量増産、特定の組織増産、或いは目的物質の生産性と言った量的形質は制御系から代謝系に亘る様々なステップで多数の遺伝子が関わっており、量的形質を改善する真に優れた有用遺伝子を発見、開発することは困難であった。これらの問題を解決するためには、効果が劇的に高い新たな遺伝子を見出すこと、効果レベルは同等であっても実用環境条件で効果を発揮する遺伝子を開発することが課題である。
Plant Physiology (1997) Vol. 11, pp. 75-81 Plant Physiology (2001), Vol. 126, pp. 861-874 Plant J. (2004) 40, 575-585 WO01/36597
 そこで、上述したような実情に鑑み、個体あたりの物質生産性、特に種子中の油脂量を向上させることができる新規な機能を有する遺伝子を探索し、植物体におけるこれらの特性を向上できる技術を提供することを目的とする。
 上述した目的を達成するため、本発明者らが鋭意検討した結果、特定の転写因子ファミリーに属する転写因子と、任意の転写因子を転写抑制因子に転換する機能性ペプチド(以下、リプレッサードメインと称する場合もある)とを融合したキメラタンパク質を発現させることによって、様々な量的形質を改善させることができ、特に、個体あたりの物質生産性、特に油脂生産性を向上させることができることを見いだし、本発明を完成するに至った。
 本発明に係る植物体は、配列番号4に示すアミノ酸配列からなるタンパク質を含む転写因子ファミリーに属する転写因子と、任意の転写因子を転写抑制因子に転換する機能性ペプチドとを融合させたキメラタンパク質を発現させたものである。本発明に係る植物体においては、機能性ペプチドを融合することによって、所定の転写因子における転写制御活性、特に転写促進活性が抑制されていることが好ましい。
 ここで、上記機能性ペプチドを融合する転写因子としては、以下の(a)~(c)のいずれかのタンパク質であることが好ましい。
(a)配列番号4に示すアミノ酸配列を含むタンパク質
(b)配列番号4に示すアミノ酸配列において1又は複数個のアミノ酸が欠失、置換、付加又は挿入されたアミノ酸配列を含み、転写促進活性を有するタンパク質
(c)配列番号3に示す塩基配列の相補的な塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下においてハイブリダイズするポリヌクレオチドによってコードされ転写促進活性を有するタンパク質
 ここで上記機能性ペプチドとしては、次に示す式(1)~(8)を挙げることができる。
(1)X1-Leu-Asp-Leu-X2-Leu-X3
(但し、式中、X1は0~10個のアミノ酸残基を示し、X2はAsn又はGluを示し、X3は少なくとも6個のアミノ酸残基を示す。)
(2)Y1-Phe-Asp-Leu-Asn-Y2-Y3
(但し、式中、Y1は0~10個のアミノ酸残基を示し、Y2はPhe又はIleを示し、Y3は少なくとも6個のアミノ酸残基を示す。)
(3)Z1-Asp-Leu-Z2-Leu-Arg-Leu-Z3
(但し、式中、Z1はLeu、Asp-Leu又はLeu-Asp-Leuを示し、Z2はGlu、Gln又はAspを示し、Z3は0~10個のアミノ酸残基を示す。)
(4)Asp-Leu-Z4-Leu-Arg-Leu
(但し、式中、Z4はGlu、Gln又はAspを示す。)
(5)α1-Leu-β1-Leu-γ1-Leu
(6)α1-Leu-β1-Leu-γ2-Leu
(7)α1-Leu-β2-Leu-Arg-Leu
(8)α2-Leu-β1-Leu-Arg-Leu
(但し、式(5)~(8)中、α1はAsp、Asn、Glu、Gln、Thr又はSerを示し、α2はAsn、Glu、Gln、Thr又はSerを示し、β1はAsp、Gln、Asn、Arg、Glu、Thr、Ser又はHisを示し、β2はAsn、Arg、Thr、Ser又はHisを示し、γ1はArg、Gln、Asn、Thr、Ser、His、Lys又はAspを示し、γ2はGln、Asn、Thr、Ser、His、Lys又はAspを示す。)
 また、本発明に係る植物体を用いた物質の製造方法は、上述した本発明に係る植物体から、生産性が向上した物質を分離及び回収する工程を含むものである。ここで、上記物質としては油脂を挙げることができる。
 一方、上述した目的を達成するため、本発明者らが鋭意検討した結果、色素合成経路に関与する遺伝子を欠損させた株において、個体あたりの物質生産性、特に油脂生産性を向上させることができることを見いだし、本発明を完成するに至った。色素合成系路に関与する遺伝子とは、色素合成経路代謝反応の基質や生成物の輸送に関する因子をコードする遺伝子や、色素合成系路代謝反応を触媒する酵素をコードする遺伝子や、色素合成系路代謝反応の場を形成させる反応を触媒する酵素をコードする遺伝子を含む。さらに、色素合成経路代謝反応の基質や生成物の輸送に関する因子をコードする遺伝子や、色素合成系路代謝反応を触媒する酵素をコードする遺伝子や、色素合成系路代謝反応の場を形成させる反応を触媒する酵素をコードする遺伝子の発現を制御する遺伝子を含む。
 すなわち、本発明に係る植物由来油脂の製造方法は、カルコンシンターゼ遺伝子、カルコンイソメラーゼ遺伝子及びフラボン-3-ヒドラーゼ遺伝子からなる群から選ばれる少なくとも1の遺伝子の機能を欠損した植物体から採取した種子から油脂成分を回収する工程を含むものである。
 また、本発明に係る油脂量が向上した植物体のスクリーニング方法は、種子内の油脂量を評価する対象となる植物体から種子を採取する工程と、採取した種子の種皮色を観察し、より白色である場合には種子内の油脂量が高いと判定する工程とを含むものである。
 本発明に係る植物体は、個体あたりの物質生産性が向上したものとなる。したがって、本発明に係る植物体を用いることによって、目的物質の生産性の向上を達成することができ、目的物質を低コストで製造することができる。
 また、本発明に係る植物由来油脂の製造方法は、特定の遺伝子の機能を欠損する植物体において種子の単位量あたりに含まれる油脂量が大幅に向上しているため、油脂の生産性を向上することができる。
 さらに、本発明に係る油脂量が向上した植物体のスクリーニング方法は、種子内の油脂量を非破壊で評価するため、小量の種子を用いて迅速、且つ簡便にスクリーニングすることができる。
 本明細書は本願の優先権の基礎である日本国特許出願2008-054008号の明細書および/または図面に記載される内容を包含する。
各改良型転写因子遺伝子、改良型転写共役因子遺伝子若しくは転写因子遺伝子を導入した系統及び野生株の種子油脂含量を測定した結果を示す特性図である。 色素合成経路欠損株及び野生株の種子油脂含量を測定した結果を示す特性図である。 種子の種皮色について画像データを用いてR値、G値及びB値の積算値を算出し、野生型の種子と比較した結果を示す特性図である。
 以下、本発明を詳細に説明する。
 本発明に係る植物体は、所定の転写制御因子ファミリーに属する転写制御因子、特に、所定の転写因子ファミリーに属する転写因子と、任意の転写因子を転写抑制因子に転換する機能性ペプチドとを融合させたキメラタンパク質を発現するものであり、野生型の植物体と比較して、個体あたりの物質生産性が向上したものである。すなわち、本発明に係る植物体は、所望の植物を対象として、当該植物における物質生産性を有意に向上させるように、転写因子を上記機能性ペプチドとのキメラタンパク質として発現させた植物体である。
 特に、本発明に係る植物体においては、上記機能性ペプチドと融合することによって、転写因子における転写促進活性が抑制していることが好ましい。換言すると、本発明に係る植物体においては、転写因子に上記機能性ペプチドを融合させたキメラタンパク質を発現させた結果、上記機能性ペプチドに起因する転写抑制効果が優性の形質として現れるといった特徴を有していることが好ましい。
 ここで、個体あたり物質生産性とは、植物が生成する各種の物質についての単位体積あたりの含有量を意味する。物質としては、特に限定されず、植物体が本来的に生成する物質であっても良いし、植物体が本来的には生成しないが遺伝子操作技術等によって生成できるようになった物質であっても良い。特に、組織あたりの目的生産物の含量が高くなれば、精製コストや運搬コストを低減できるため産業上有用性が高い。特に、目的生産物としては、植物のほとんどの重量を占めるリグノセルロースでも良く、種子油として産業上利用されている植物油でも良い。植物油は、脂肪酸とアルコールのエステルである単純脂質でも良く、リンや糖や窒素などを含んだ複合脂質でも良く、脂肪酸そのものでも良い。単純脂質のアルコールとしては分子量の高い高級アルコールでも良く、グリセロール(グリセリン)などの多価アルコールでも良い。単純脂質の脂肪酸としては、飽和脂肪酸でも良く、不飽和脂肪酸でも良く、また、水酸基やエポキシ基を含んだ特殊脂肪酸でも良い。グリセロールと脂肪酸のエステルである単純脂質としては、モノアシルグリセロールでも良く、ジアシルグリセロールでも良く、トリアシルグリセロールでも良い。
 以下の説明において、生産性を向上させる物質として油脂を例示して説明するが、本発明の技術的範囲がこれに限定されるものではない。本発明は、植物が生成する物質として油脂以外の物質についても同様に適用される。
 ここで、植物体としては、特に限定されず、如何なる植物をも対象とすることができる。特に、従来より油脂の生産に使用される植物を対象とすることが好ましい。対象とする植物としては、例えば、大豆、ごま、オリーブ油、椰子、イネ、綿花、ひまわり、トウモロコシ、サトウキビ、ジャトロファ、パームヤシ、タバコ、べに花及びナタネ等を挙げることができる。また、植物の遺伝子解析におけるモデル生物として広く利用されており、遺伝子発現解析の方法が確立しているシロイヌナズナを対象の植物とすることもできる。
 また、転写因子のキメラタンパク質が活性として有する転写抑制とは、当該転写因子が認識するcis配列や、そのcis配列と類似する他の転写因子におけるcis配列を認識し、下流の遺伝子発現を積極的に抑制する活性であり、転写抑制因子とも呼べるものである。転写因子のキメラタンパク質が活性として有する転写抑制する手法は、特に限定されないが、特に、リプレッサードメイン配列やSRDX配列を付加したキメラタンパク質(融合タンパク質)を構築する方法が最も好ましい。
 この手法においてリプレッサードメイン配列とは、任意の転写因子を転写抑制因子に転換するペプチドを構成するアミノ酸配列であり本発明者らによって種々見出された配列である。リプレッサードメイン配列を使用した方法については、例えば、特開2001-269177公報、特開2001-269178公報、特開2001-292776公報、特開2001-292777公報、特開2001-269176公報、特開2001-269179公報、国際公開第WO03/055903号パンフレット、Ohta, M., Matsui, K., Hiratsu, K., Shinshi, H. and Ohme-Takagi, M., The Plant Cell, Vol.13,1959-1968,August,2001及びHiratsu, K., Ohta, M., Matsui, K., Ohme-Takagi, M., FEBS Letters 514(2002)351-354を参照することができる。リプレッサードメイン配列は、Class II ERF(Ethylene Responsive Element Binding Factor)タンパク質や植物のジンクフィンガータンパク質(Zinc Finger Protein、例えばシロイヌナズナSUPERMANタンパク質等)から切り出されたもので、極めて単純な構造を有している。
 キメラタンパク質として発現する転写制御因子としては、シロイヌナズナにおけるAGIコードAt1g71030で特定される転写因子(以下、単に『転写因子At1g71030』と称す)を挙げることができる。転写因子At1g71030は、mybファミリーの転写因子であり、オオムギ由来のMybHv5 GI:19055と類似していることが知られている。転写因子At1g71030のアミノ酸配列を配列番号4に示す。転写因子At1g71030をコードする遺伝子の塩基配列を配列番号3に示す。
 また、At5g24520で特定される転写共役因子(transcription coactivator)(以下、単に『転写共役因子At5g24520』と称す)、転写抑制因子(transcription repressor)や転写抑制共役因子(transcripition corepressor)が転写制御因子として知られており、これら転写共役因子や転写抑制因子についても同様にリプレッサードメインを付加したキメラタンパク質を構築することができる。なお、AGIコードAt5g24520は、transparent testa glabra 1 protein (TTG1) として知られる転写共役因子が因子である。他の植物由来の遺伝子では、Malus domestica由来のGenBankアクセッション番号AAF27919がコードするタンパク質、Petunia hybrida由来のGenBankアクセッション番号AAC18914がコードするタンパク質、Gossypium hirsutum由来のGenBankアクセッション番号AAM95645がコードするタンパク質、Perilla frutescens由来のGenBankアクセッション番号BAB58883がコードするタンパク質が転写共役因子At5g24520と相同であることが知られ、本明細書で記載した機能と同等の機能が期待できる。転写共役因子At5g24520のアミノ酸配列を配列番号2に示す。転写共役因子At5g24520をコードする遺伝子の塩基配列を配列番号1に示す。
 また、キメラタンパク質の対象となる転写共役因子At5g24520及び転写因子At1g71030は、それぞれ配列番号2及び4に示すアミノ酸配列からなるものに限定されず、当該アミノ酸配列において1又は複数個のアミノ酸配列が欠失、置換、付加又は挿入されたアミノ酸配列を含み、且つ、転写促進活性を有するものであっても良い。ここで、複数個のアミノ酸としては、例えば、1から20個、好ましくは1から10個、より好ましくは1から7個、さらに好ましくは1個から5個、特に好ましくは1個から3個を意味する。なお、アミノ酸の欠失、置換若しくは付加は、上記転写因子をコードする塩基配列を、当該技術分野で公知の手法によって改変することによって行うことができる。塩基配列に変異を導入するには、Kunkel法またはGapped duplex法等の公知手法又はこれに準ずる方法により行うことができ、例えば部位特異的突然変異誘発法を利用した変異導入用キット(例えばMutant-KやMutant-G(何れも商品名、TAKARA Bio社製))等を用いて、あるいはLA PCR in vitro Mutagenesisシリーズキット(商品名、TAKARA Bio社製)を用いて変異が導入される。また、変異導入方法としては、EMS(エチルメタンスルホン酸)、5-ブロモウラシル、2-アミノプリン、ヒドロキシルアミン、N-メチル-N’-ニトロ-Nニトロソグアニジン、その他の発ガン性化合物に代表されるような化学的変異剤を使用する方法でも良いし、X線、アルファ線、ベータ線、ガンマ線、イオンビームに代表されるような放射線処理や紫外線処理による方法でも良い。
 さらに、キメラタンパク質の対象となる転写共役因子及び転写因子には、シロイヌナズナにおける転写共役因子At5g24520及び転写因子At1g71030に限定されず、シロイヌナズナ以外の植物(例えば上述した植物)において同機能を有する転写共役因子及び転写因子(以下、それぞれ相同転写共役因子及び相同転写因子と称す)が含まれる。転写共役因子At5g24520に対する相同転写共役因子又は転写因子At1g71030に対する相同転写因子は、植物ゲノム情報が明らかになっていれば、転写共役因子At5g24520又は転写因子At1g71030のアミノ酸配列或いは各遺伝子の塩基配列に基づいて、検索対象の植物ゲノム情報から検索することができる。このとき、相同転写共役因子及び相同転写因子としては、転写共役因子At5g24520又は転写因子At1g71030のアミノ酸配列に対して、例えば70%以上、好ましくは80%以上、より好ましくは90%以上、最も好ましくは95%以上の相同性を有するアミノ酸配列として検索される。ここで、相同性の値は、blastアルゴリズムを実装したコンピュータプログラム及び遺伝子配列情報を格納したデータベースを用いてデフォルトの設定で求められる値を意味する。
 また、植物ゲノム情報が明らかとなっていない場合には、対象となる植物からゲノムを抽出するか或いは対象となる植物のcDNAライブラリーを構築し、転写共役因子At5g24520又は転写因子At1g71030の塩基配列の少なくとも一部に対して、ストリンジェントな条件下でハイブリダイズするゲノム領域或いはcDNAを単離することで相同遺伝子を同定することができる。ここで、ストリンジェントな条件とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいう。例えば、45℃、6×SSC(塩化ナトリウム/クエン酸ナトリウム)でのハイブリダイゼーション、その後の50~65℃、0.2~1×SSC、0.1%SDSでの洗浄が挙げられ、或いはそのような条件として、65~70℃、1×SSCでのハイブリダイゼーション、その後の65~70℃、0.3×SSCでの洗浄を挙げることができる。ハイブリダイゼーションは、J. Sambrook et al. Molecular Cloning, A Laboratory Manual,2nd Ed., Cold Spring Harbor Laboratory(1989)に記載されている方法等、従来公知の方法で行うことができる。
 本発明に係る植物体は、上述したような転写因子と機能性ペプチドとのキメラタンパク質を発現させることで、油脂生産量が有意に向上するといった特徴を示す。また、上述した転写共役因子と機能性ペプチドとのキメラタンパク質を発現させた場合も、油脂生産量が有意に向上するといった特徴を示す。特に、キメラタンパク質とすることで、対象となる転写因子を、転写促進活性を抑制した状態で発現させること、さらに、対象となる転写因子が認識するcis配列と相同性のあるcis配列を認識する転写抑制活性として発現させること、対象となる転写因子及び転写共役因子が持つ他因子や核酸や脂質や糖質との親和特異性を変化させることで、油脂生産量が有意に向上するといった特徴を示す。このとき、上記植物体においては、内因性の転写因子や転写共役因子を改変してそのキメラタンパク質を作製してもよいが、キメラタンパク質をコードする遺伝子を導入し、当該遺伝子を発現させても良い。
 一例としては、上述したような転写因子や転写共役因子と、任意の転写因子を転写抑制因子に転換する機能性ペプチドとを融合させたキメラタンパク質(融合タンパク質)をコードする遺伝子を対象の植物に導入し、当該キメラタンパク質(融合タンパク質)を植物内で発現させる手法が好ましい。
 本明細書中で記載する「転写促進活性が抑制された転写因子」とは、特に限定されるものではなく、当該転写因子が本来的に有している転写促進活性が有意に低減した転写因子であることを意味する。また、「任意の転写因子を転写抑制因子に転換する機能性ペプチド」とは、任意の転写因子と融合してキメラタンパク質となったときに、当該転写因子が本来的に有している転写促進活性が有意に低減した転写因子となる機能を有するペプチドであることを意味する(転写抑制転換ペプチドと称する場合もある)。このような「任意の転写因子を転写抑制因子に転換する機能性ペプチド」としては、特に限定されないが、なかでもリプレッサードメイン配列やSRDX配列として知られたアミノ酸配列からなるペプチドであることが好ましい。この転写抑制転換ペプチドについては、特開2005-204657号公報に詳述されており、当該公報に開示されたものを全て使用することができる。
 転写抑制転換ペプチドは、例えば次に示す式(1)~(8)のいずれかで表されるアミノ酸配列を挙げることができる。
(1)X1-Leu-Asp-Leu-X2-Leu-X3
(但し、式中、X1は0~10個のアミノ酸残基を示し、X2はAsn又はGluを示し、X3は少なくとも6個のアミノ酸残基を示す。)
(2)Y1-Phe-Asp-Leu-Asn-Y2-Y3
(但し、式中、Y1は0~10個のアミノ酸残基を示し、Y2はPhe又はIleを示し、Y3は少なくとも6個のアミノ酸残基を示す。)
(3)Z1-Asp-Leu-Z2-Leu-Arg-Leu-Z3
(但し、式中、Z1はLeu、Asp-Leu又はLeu-Asp-Leuを示し、Z2はGlu、Gln又はAspを示し、Z3は0~10個のアミノ酸残基を示す。)
(4)Asp-Leu-Z4-Leu-Arg-Leu
(但し、式中、Z4はGlu、Gln又はAspを示す。)
(5)α1-Leu-β1-Leu-γ1-Leu
(6)α1-Leu-β1-Leu-γ2-Leu
(7)α1-Leu-β2-Leu-Arg-Leu
(8)α2-Leu-β1-Leu-Arg-Leu
(但し、式(5)~(8)中、α1はAsp、Asn、Glu、Gln、Thr又はSerを示し、α2はAsn、Glu、Gln、Thr又はSerを示し、β1はAsp、Gln、Asn、Arg、Glu、Thr、Ser又はHisを示し、β2はAsn、Arg、Thr、Ser又はHisを示し、γ1はArg、Gln、Asn、Thr、Ser、His、Lys又はAspを示し、γ2はGln、Asn、Thr、Ser、His、Lys又はAspを示す。)
式(1)の転写抑制転換ペプチド
 上記式(1)の転写抑制転換ペプチドにおいては、上記X1で表されるアミノ酸残基の数は0~10個の範囲内であればよい。また、X1で表されるアミノ酸残基を構成する具体的なアミノ酸の種類は特に限定されるものではなく、どのようなものであってもよい。このX1で表されるアミノ酸残基は、式(1)の転写抑制転換ペプチドを合成するときの容易さからみれば、できるだけ短いほうがよい。具体的にX1で表されるアミノ酸残基は、5個以下であることが好ましい。
 同様に、上記式(1)の転写抑制転換ペプチドにおいては、上記X3で表されるアミノ酸残基の数は少なくとも6個であればよい。また、X3で表されるアミノ酸残基を構成する具体的なアミノ酸の種類は特に限定されるものではなく、どのようなものであってもよい。
式(2)の転写抑制転換ペプチド
 上記式(2)の転写抑制転換ペプチドにおいては、上記式(1)の転写抑制転換ペプチドのX1と同様、上記Y1で表されるアミノ酸残基の数は0~10個の範囲内であればよい。また、Y1で表されるアミノ酸残基を構成する具体的なアミノ酸の種類は特に限定されるものではなく、どのようなものであってもよい。具体的にY1で表されるアミノ酸残基は、5個以下であることが好ましい。
 同様に、上記式(2)の転写抑制転換ペプチドにおいては、上記式(1)の転写抑制転換ペプチドのX3と同様、上記Y3で表されるアミノ酸残基の数は少なくとも6個であればよい。また、Y3で表されるアミノ酸残基を構成する具体的なアミノ酸の種類は特に限定されるものではく、どのようなものであってもよい。
式(3)の転写抑制転換ペプチド
 上記式(3)の転写抑制転換ペプチドにおいては、上記Z1で表されるアミノ酸残基は、1~3個の範囲内でLeuを含むものとなっている。アミノ酸1個の場合は、Leuであり、アミノ酸2個の場合は、Asp-Leuとなっており、アミノ酸3個の場合はLeu-Asp-Leuとなっている。
 一方、上記式(3)の転写抑制転換ペプチドにおいては、上記Z3で表されるアミノ酸残基の数は0~10個の範囲内であればよい。また、Z3で表されるアミノ酸残基を構成する具体的なアミノ酸の種類は特に限定されるものではなく、どのようなものであってもよい。具体的にZ3で表されるアミノ酸残基は、5個以下であることがより好ましい。Z3で表されるアミノ酸残基の具体的な例としては、Gly、Gly-Phe-Phe、Gly-Phe-Ala、Gly-Tyr-Tyr、Ala-Ala-Ala等が挙げられるが、もちろんこれらに限定されるものではない。
 また、この式(3)で表される転写抑制転換ペプチド全体のアミノ酸残基の数は、特に限定されるものではないが、合成するときの容易さからみれば、20アミノ酸以下であることが好ましい。
式(4)の転写抑制転換ペプチド
 上記式(4)の転写抑制転換ペプチドは、6個のアミノ酸残基からなるヘキサマー(6mer)である。なお、上記式(4)の転写抑制転換ペプチドにおいてZ4で表されるアミノ酸残基がGluの場合のアミノ酸配列は、シロイヌナズナSUPERMANタンパク質(SUPタンパク質)の196~201番目のアミノ酸配列に相当している。
 以上で説明した各種転写抑制転換ペプチドは、上述した転写因子や転写共役因子と融合してキメラタンパク質(融合タンパク質)とすることにより、当該転写因子や転写共役因子の特性を改変することができる。具体的には、上述した転写因子や転写共役因子と融合してキメラタンパク質(融合タンパク質)とすることにより、転写因子や転写共役因子を転写抑制因子や負の転写共役因子に改変することができる。さらには、ドミナントでない転写抑制因子をドミナント型転写抑制因子にすることも可能である。
 また、上記転写抑制転換ペプチドをコードするポリヌクレオチドを用いて、転写因子や転写共役因子をコードする遺伝子との融合遺伝子を得れば、キメラタンパク質(融合タンパク質)を生産させることができる。具体的には、上記転写抑制転換ペプチドをコードするポリヌクレオチド(転写抑制転換ポリヌクレオチドと称す)と上記転写因子や転写共役因子をコードする遺伝子とを連結することにより融合遺伝子を構築して、植物細胞に導入する。これによりキメラタンパク質(融合タンパク質)を生産させることができる。上記転写抑制転換ポリヌクレオチドの具体的な塩基配列は特に限定されるものではなく、遺伝暗号に基づいて、上記転写抑制転換ペプチドのアミノ酸配列に対応する塩基配列を含んでいればよい。また、必要に応じて、上記転写抑制転換ポリヌクレオチドは、転写因子遺伝子と連結するための連結部位となる塩基配列を含んでいてもよい。さらに、上記転写抑制転換ポリヌクレオチドのアミノ酸読み枠と、転写因子や転写共役因子の遺伝子の読み枠とが一致しないような場合に、これらを一致させるための付加的な塩基配列を含んでいてもよい。さらにまた、転写因子や転写共役因子と転写抑制転換ペプチドとの間をつなぐためのリンカー機能を有するポリペプチドや、HisやMyc、Flag等のようにキメラタンパク質(融合タンパク質)をエピトープ標識するためのポリペプチド等、各種の付加的なポリペプチドが含まれていてもよい。さらに上記キメラタンパク質(融合タンパク質)には、必要に応じて、ポリペプチド以外の構造、例えば、糖鎖やイソプレノイド基等が含まれていてもよい。
 植物体を製造する方法は、上述した転写因子や転写共役因子と転写抑制転換ペプチドとのキメラタンパク質を植物体で生産させ、油脂生産性を向上させる過程を含んでいれば特に限定されるものではないが、例えば、発現ベクター構築工程、形質転換工程、選抜工程等の工程を含む製造法方法として挙げることができる。以下、各工程について具体的に説明する。
発現ベクター構築工程
 発現ベクター構築工程は、上述した転写因子や転写共役因子をコードする遺伝子と転写抑制転換ポリヌクレオチドと、プロモーターとを含む組換え発現ベクターを構築する工程であれば特に限定されるものではない。組換え発現ベクターの母体となるベクターとしては、従来公知の種々のベクターを用いることができる。例えば、プラスミド、ファージ、またはコスミド等を用いることができ、導入される植物細胞や導入方法に応じて適宜選択することができる。具体的には、例えば、pBR322、pBR325、pUC19、pUC119、pBluescript、pBluescriptSK、pBI系のベクター等を挙げることができる。特に、植物体へのベクターの導入法がアグロバクテリウムを用いる方法である場合には、pBI系のバイナリーベクターを用いることが好ましい。pBI系のバイナリーベクターとしては、具体的には、例えば、pBIG、pBIN19、pBI101、pBI121、pBI221等を挙げることができる。
 プロモーターは、植物体内で遺伝子を発現させることが可能なプロモーターであれば特に限定されるものではなく、公知のプロモーターを好適に用いることができる。かかるプロモーターとしては、例えば、カリフラワーモザイクウイルス35Sプロモーター(CaMV35S)、各種アクチン遺伝子プロモーター、各種ユビキチン遺伝子プロモーター、ノパリン合成酵素遺伝子のプロモーター、タバコのPR1a遺伝子プロモーター、トマトのリブロース1,5-二リン酸カルボキシラーゼ・オキシダーゼ小サブユニット遺伝子プロモーター、ナピン遺伝子プロモーター、オレオシン遺伝子プロモーター等を挙げることができる。この中でも、カリフラワーモザイクウイルス35Sプロモーター、アクチン遺伝子プロモーター又はユビキチン遺伝子プロモーターをより好ましく用いることができる。上記各プロモーターを用いれば、植物細胞内に導入されたときに任意の遺伝子を強く発現させることが可能となる。プロモーターは、転写因子や転写共役因子をコードする遺伝子と転写抑制転換ポリヌクレオチドとを連結した融合遺伝子を発現しうるように連結され、ベクター内に導入されていればよく、組換え発現ベクターとしての具体的な構造は特に限定されるものではない。
 なお、組換え発現ベクターは、プロモーター及び上記融合遺伝子に加えて、さらに他のDNAセグメントを含んでいてもよい。当該他のDNAセグメントは特に限定されるものではないが、ターミネーター、選別マーカー、エンハンサー、翻訳効率を高めるための塩基配列等を挙げることができる。また、上記組換え発現ベクターは、さらにT-DNA領域を有していてもよい。T-DNA領域は特にアグロバクテリウムを用いて上記組換え発現ベクターを植物体に導入する場合に遺伝子導入の効率を高めることができる。
 転写ターミネーターは転写終結部位としての機能を有していれば特に限定されるものではなく、公知のものであってもよい。例えば、具体的には、ノパリン合成酵素遺伝子の転写終結領域(Nosターミネーター)、カリフラワーモザイクウイルス35Sの転写終結領域(CaMV35Sターミネーター)等を好ましく用いることができる。この中でもNosターミネーターをより好ましく用いることできる。上記組換えベクターにおいては、転写ターミネーターを適当な位置に配置することにより、植物細胞に導入された後に、不必要に長い転写物を合成したり、強力なプロモーターがプラスミドのコピー数の減少させたりするような現象の発生を防止することができる。
 形質転換体選別マーカーとしては、例えば薬剤耐性遺伝子を用いることができる。かかる薬剤耐性遺伝子の具体的な一例としては、例えば、ハイグロマイシン、ブレオマイシン、カナマイシン、ゲンタマイシン、クロラムフェニコール等に対する薬剤耐性遺伝子を挙げることができる。これにより、上記抗生物質を含む培地中で生育する植物体を選択することによって、形質転換された植物体を容易に選別することができる。
 翻訳効率を高めるための塩基配列としては、例えばタバコモザイクウイルス由来のomega配列を挙げることができる。このomega配列をプロモーターの非翻訳領域(5’UTR)に配置させることによって、上記融合遺伝子の翻訳効率を高めることができる。このように、上記組換え発現ベクターには、その目的に応じて、さまざまなDNAセグメントを含ませることができる。
 組換え発現ベクターの構築方法についても特に限定されるものではなく、適宜選択された母体となるベクターに、上記プロモーター、転写因子や転写共役因子をコードする遺伝子、および転写抑制転換ポリヌクレオチド、並びに必要に応じて上記他のDNAセグメントを所定の順序となるように導入すればよい。例えば、転写因子をコードする遺伝子と転写抑制転換ポリヌクレオチドとを連結して融合遺伝子を構築し、次に、この融合遺伝子とプロモーターと(必要に応じて転写ターミネーター等)とを連結して発現カセットを構築し、これをベクターに導入すればよい。
 キメラ遺伝子(融合遺伝子)の構築および発現カセットの構築では、例えば、各DNAセグメントの切断部位を互いに相補的な突出末端としておき、ライゲーション酵素で反応させることで、当該DNAセグメントの順序を規定することが可能となる。なお、発現カセットにターミネーターが含まれる場合には、上流から、プロモーター、上記キメラ遺伝子、ターミネーターの順となっていればよい。また、組換え発現ベクターを構築するための試薬類、すなわち制限酵素やライゲーション酵素等の種類についても特に限定されるものではなく、市販のものを適宜選択して用いればよい。
 また、上記組換え発現ベクターの増殖方法(生産方法)も特に限定されるものではなく、従来公知の方法を用いることができる。一般的には大腸菌をホストとして当該大腸菌内で増殖させればよい。このとき、ベクターの種類に応じて、好ましい大腸菌の種類を選択してもよい。
形質転換工程
 本発明において行われる形質転換工程は、上述した融合遺伝子を発現させるように、上述した組換え発現ベクターを用いて植物細胞に導入する工程である。組換え発現ベクターを用いて植物細胞に導入する方法(形質転換方法)は特に限定されるものではなく、植物細胞に応じた適切な従来公知の方法を用いることができる。具体的には、例えば、アグロバクテリウムを用いる方法や直接植物細胞に導入する方法を用いることができる。アグロバクテリウムを用いる方法としては、例えば、Bechtold, E., Ellis, J. and Pelletier, G. (1993) In Planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis plants. C.R. Acad. Sci. Paris Sci. Vie, 316, 1194-1199. あるいは、Zyprian E, Kado Cl, Agrobacterium-mediated plant transformation by novel mini-T vectors in conjunction with a high-copy vir region helper plasmid. Plant Molecular Biology, 1990, 15(2), 245-256.に記載された方法を用いることができる。
 組換え発現ベクターと対象となる遺伝子を含んだDNAを直接植物細胞に導入する方法としては、例えば、マイクロインジェクション法、エレクトロポレーション法(電気穿孔法)、ポリエチレングリコール法、パーティクルガン法、プロトプラスト融合法、リン酸カルシウム法等を用いることができる。
 また、DNAを直接植物細胞に導入する方法を採るなら、対象とする遺伝子の発現に必要な転写ユニット、例えプロモーターや転写ターミネーターと、対象とする遺伝子を含んだDNAあれば十分であり、ベクター機能が必須ではない。さらに、転写ユニットを有さない対象とする遺伝子のタンパク質コード領域のみを含むDNAであっても、宿主の転写ユニット無いにインテグレートし、対象となる遺伝子を発現することができればよい。
 上記組換え発現ベクターと対象となる遺伝子を含んだDNAや、発現ベクターを含まず対象となる遺伝子DNAを含んだDNAが導入される植物細胞としては、例えば、花、葉、根等の植物器官における各組織の細胞、カルス、懸濁培養細胞等を挙げることができる。ここで、本発明にかかる植物体の生産方法においては、上記組換え発現ベクターは、生産しようとする種類の植物体に合わせて適切なものを適宜構築してもよいが、汎用的な組換え発現ベクターを予め構築しておき、それを植物細胞に導入してもよい。すなわち、本発明に係る植物体の製造方法においては、上述した組換え発現ベクターを用いた形質転換用DNAの構築工程が含まれていてもよいし、含まれていなくてもよい。
その他の工程、その他の方法
 本発明に係る植物体の生産方法においては、上記形質転換工程が含まれていればよく、さらに上記組換え発現ベクターを用いた形質転換用DNAの構築工程が含まれていてもよいが、さらに他の工程が含まれていてもよい。具体的には、形質転換後の植物体から適切な形質転換体を選抜する選抜工程等を挙げることができる。
 選抜の方法は特に限定されるものではなく、例えば、ハイグロマイシン耐性等の薬剤耐性を基準として選抜してもよいし、形質転換体を育成した後に、植物体そのもの、または任意の器官や組織に含まれる油脂含有量から選抜してもよい。例えば、油脂含有量から選抜する例としては、形質転換体の種子から定法に従って油脂成分を定量し、形質転換していない植物体の種子に含まれる油脂含有量と比較する方法を挙げることができる(後述の実施例参照)。
 本発明に係る植物体の製造方法では、上記融合遺伝子を植物体に導入するため、該植物体から、有性生殖または無性生殖により油脂含有量が有意に向上した子孫を得ることが可能となる。また、該植物体やその子孫から植物細胞や、種子、果実、株、カルス、塊茎、切穂、塊等の繁殖材料を得て、これらを基に該植物体を量産することも可能となる。したがって、本発明に係る植物体の製造方法では、選抜後の植物体を繁殖させる繁殖工程(量産工程)が含まれていてもよい。
 なお、本発明における植物体とは、成育した植物個体、植物細胞、植物組織、カルス、種子の少なくとも何れかが含まれる。つまり、本発明では、最終的に植物個体まで成育させることができる状態のものであれば、全て植物体とみなす。また、上記植物細胞には、種々の形態の植物細胞が含まれる。かかる植物細胞としては、例えば、懸濁培養細胞、プロトプラスト、葉の切片等が含まれる。これらの植物細胞を増殖・分化させることにより植物体を得ることができる。なお、植物細胞からの植物体の再生は、植物細胞の種類に応じて、従来公知の方法を用いて行うことができる。したがって、本発明に係る植物体の製造方法では、植物細胞等から植物体を再生させる再生工程が含まれていてもよい。
 また、本発明に係る植物体の生産方法は、組換え発現ベクターで形質転換する方法に限定されるものではなく、他の方法を用いてもよい。具体的には、例えば、上記キメラタンパク質(融合タンパク質)そのものを植物体に投与してもよい。この場合、最終的に利用する植物体の部位において油脂含有量を向上できるように、若年期の植物体にキメラタンパク質(融合タンパク質)を投与すればよい。またキメラタンパク質(融合タンパク質)の投与方法も特に限定されるものではなく、公知の各種方法を用いればよい。
 以上説明したように、本発明によれば、所定の転写因子ファミリーに属する転写因子と上記機能性ペプチドとのキメラタンパク質を発現させることで、野生型の植物体と比較して、個体あたりの物質生産性が向上した植物体を提供することができる。また、所定の転写共役因子と上記機能性ペプチドとキメラタンパク質を発現させることで、野生型の植物体と比較して、個体あたりの物質生産性が向上した植物体を提供することができる。植物体に上記キメラタンパク質を発現させると、対象となる転写因子の転写促進活性が抑制される場合もあり、或いは対象となる転写因子が認識するcis配列の相同配列に対する転写抑制効果を示す場合もある。さらに、キメラタンパク質は、対象となる転写因子や転写共役因子に対して親和性を有する他の因子、DNA、RNA、脂質又は糖質に対して当該親和特異性を変化させるように作用する場合もあり、或いは対象となる転写因子に対して親和性の無い物質に対して親和性を向上させるように作用する場合もある。本発明に係る植物体においては、キメラタンパク質の対象となる転写因子、当該が認識するcis配列と相同性のあるcis配列を認識する転写因子、キメラタンパク質の対象となる転写因子と相同性のある転写因子、キメラタンパク質の対象となる転写因子に対して親和性を有する他の因子等も同様に植物体に発現しているものの、上述したキメラタンパク質の作用効果により、ドミナントネガティブに制御対象の遺伝子発現を抑制することができる。これにより、本発明に係る植物体においては、油脂生産に関連する遺伝子群及び/又は生産された油脂の分解に関連する遺伝子群の発現レベルが変化し、その結果、油脂含有量が有意に向上すると考えられる。
 ここで油脂含有量が有意に向上するとは、野生型と比較して一粒あたりの種子質量に変化はないが油脂量が向上した場合と、野生型と比較して一粒あたりの種子質量が有意に大となり油脂量が向上した場合、野性型と比較して種子中の油脂含量が向上した場合のいずれかを意味する。いずれの場合であっても、植物一個体が生産する油脂量が向上したこととなる。本発明に係る植物体は、植物由来の油性の製造方法に利用することができる。例えば、本発明に係る植物体を成長させて種子を採取し、採取した種子から油脂成分を回収することで油脂を製造することができる。
 特に本発明に係る植物体を利用した油脂の製造方法は、植物一個体における油脂含有量が高いため生産性に優れた方法であるといえる。換言すると、単位耕地面積あたりの栽培個体数が一定であると仮定すると、本発明に係る植物体を利用することによって単位耕地面積あたりから製造する油脂量が大幅に向上することとなる。したがって、本発明に係る植物体を利用することによって油脂生産に要する製造コストを大幅に削減することができる。
 さらに本発明に係る植物体を利用した油脂の製造方法は、単位重量あたりの種子における油脂含有量が高いため生産性に優れた方法であると言える。
 なお、本発明に係る植物体を利用した油脂の製造方法において、製造対象の油脂としては、特に限定されず、例えば、大豆油、ごま油、オリーブ油、椰子油、米油、綿実油、ひまわり油、コーン油、べに花油及び菜種油等の植物由来の油脂を例示することができる。また、製造した油脂は、家庭用途や工業用途に広く利用することができ、更にはバイオディーゼル燃料の原料としても使用することができる。すなわち、本発明に係る植物体を利用することによって、上述した家庭用途又は工業用途の油脂や、バイオディーゼル燃料等を低コストに製造することができる。
植物由来油脂の製造方法
 また、本発明では、特定の表現型を示す植物体から採取した種子において油脂含有量が有意に向上しているといった新規知見を見いだした。具体的には、参考文献(Plant J. 1995 Nov;8(5):659-71.)に開示された4種類の色素合成経路欠損株(tt4、tt5、tt6及びΔCHS)から採取した種子は、野生型と比較して種子における油脂含量が有意に向上している。すなわち、本発明に係る植物由来油脂の製造方法は、カルコンシンターゼ遺伝子、カルコンイソメラーゼ遺伝子及びフラボン-3-ヒドラーゼ遺伝子からなる群から選ばれる少なくとも1の遺伝子の機能を欠損した植物体から採取した種子から油脂成分を回収する工程を含むものである。なお、上記参考文献に開示されたtt4株及びΔCHSはカルコンシンターゼ遺伝子を欠損した株であり、tt5株はカルコンイソメラーゼ遺伝子を欠損した株であり、tt6株はフラボン-3-ヒドラーゼ遺伝子を欠損した株である。
 シロイヌナズナにおけるカルコンシンターゼ遺伝子の塩基配列を配列番号5に示し、当該遺伝子によりコードされるカルコンシンターゼのアミノ酸配列を配列番号6に示す。シロイヌナズナにおけるカルコンイソメラーゼ遺伝子の塩基配列を配列番号7に示し、当該遺伝子によりコードされるカルコンイソメラーゼのアミノ酸配列を配列番号8に示す。シロイヌナズナにおけるフラボン-3-ヒドラーゼ遺伝子の塩基配列を配列番号9に示し、当該遺伝子によりコードされるフラボン-3-ヒドラーゼのアミノ酸配列を配列番号10に示す。
 但し、本発明においてカルコンシンターゼ遺伝子、カルコンイソメラーゼ遺伝子及びフラボン-3-ヒドラーゼ遺伝子は、上記の具体的な配列に限定されるものではない。すなわち、カルコンシンターゼ遺伝子、カルコンイソメラーゼ遺伝子及びフラボン-3-ヒドラーゼ遺伝子は、上記の具体的なアミノ酸配列において1又は複数個のアミノ酸配列が欠失、置換、付加又は挿入されたアミノ酸配列を含み、且つ、カルコンシンターゼ活性、カルコンイソメラーゼ活性及びフラボン-3-ヒドラーゼ活性を有するタンパク質をコードするものであっても良い。ここで、複数個のアミノ酸としては、例えば、1から20個、好ましくは1から10個、より好ましくは1から7個、さらに好ましくは1個から5個、特に好ましくは1個から3個を意味する。なお、アミノ酸の欠失、置換若しくは付加は、上記の具体的な塩基配列を、当該技術分野で公知の手法によって改変することによって行うことができる。塩基配列に変異を導入するには、Kunkel法またはGapped duplex法等の公知手法又はこれに準ずる方法により行うことができ、例えば部位特異的突然変異誘発法を利用した変異導入用キット(例えばMutant-KやMutant-G(何れも商品名、TAKARA Bio社製))等を用いて、あるいはLA PCR in vitro Mutagenesisシリーズキット(商品名、TAKARA Bio社製)を用いて変異が導入される。また、変異導入方法としては、EMS(エチルメタンスルホン酸)、5-ブロモウラシル、2-アミノプリン、ヒドロキシルアミン、N-メチル-N’-ニトロ-Nニトロソグアニジン、その他の発ガン性化合物に代表されるような化学的変異剤を使用する方法でも良いし、X線、アルファ線、ベータ線、ガンマ線、イオンビームに代表されるような放射線処理や紫外線処理による方法でも良い。
 さらに、本発明において、カルコンシンターゼ遺伝子、カルコンイソメラーゼ遺伝子及びフラボン-3-ヒドラーゼ遺伝子には、シロイヌナズナ以外の植物(例えば上述した植物)において同機能を有する遺伝子(以下、相同遺伝子と称す)が含まれる。カルコンシンターゼ遺伝子、カルコンイソメラーゼ遺伝子又はフラボン-3-ヒドラーゼ遺伝子の相同遺伝子は、植物ゲノム情報が明らかになっていれば、カルコンシンターゼ遺伝子、カルコンイソメラーゼ遺伝子又はフラボン-3-ヒドラーゼ遺伝子の塩基配列又は当該遺伝子によりコードされるアミノ酸配列に基づいて、検索対象の植物ゲノム情報から検索することができる。このとき、相同転写因子としては、上記の具体的なアミノ酸配列に対して、例えば70%以上、好ましくは80%以上、より好ましくは90%以上、最も好ましくは95%以上の相同性を有するアミノ酸配列として検索される。ここで、相同性の値は、blastアルゴリズムを実装したコンピュータプログラム及び遺伝子配列情報を格納したデータベースを用いてデフォルトの設定で求められる値を意味する。
 また、植物ゲノム情報が明らかとなっていない場合には、対象となる植物からゲノムを抽出するか或いは対象となる植物のcDNAライブラリーを構築し、カルコンシンターゼ遺伝子、カルコンイソメラーゼ遺伝子又はフラボン-3-ヒドラーゼ遺伝子の塩基配列の少なくとも一部に対して、ストリンジェントな条件下でハイブリダイズするゲノム領域或いはcDNAを単離することで相同遺伝子を同定することができる。ここで、ストリンジェントな条件とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいう。例えば、45℃、6×SSC(塩化ナトリウム/クエン酸ナトリウム)でのハイブリダイゼーション、その後の50~65℃、0.2~1×SSC、0.1%SDSでの洗浄が挙げられ、或いはそのような条件として、65~70℃、1×SSCでのハイブリダイゼーション、その後の65~70℃、0.3×SSCでの洗浄を挙げることができる。ハイブリダイゼーションは、J. Sambrook et al. Molecular Cloning, A Laboratory Manual,2nd Ed., Cold Spring Harbor Laboratory(1989)に記載されている方法等、従来公知の方法で行うことができる。
 換言すると、本発明に係る植物由来油脂の製造方法は、シロイヌナズナ由来の種子を用いる系に限定されず、あらゆる植物を対象として適用することができる。本発明に係る植物由来油脂の製造方法を適用できる植物としては、例えば、双子葉植物、単子葉植物、例えばアブラナ科、イネ科、ナス科、マメ科、ヤナギ科等に属する植物(下記参照)が挙げられるが、これらの植物に限定されるものではない。
 アブラナ科:シロイヌナズナ(Arabidopsis thaliana)、アブラナ(Brassica rapa、Brassica napus)、キャベツ(Brassica oleracea var. capitata)、ナタネ(Brassica rapa、Brassica napus)、ナノハナ(Brassica rapa、Brassica napus)、ハクサイ(Brassica rapa var. pekinensis)、チンゲンサイ(Brassica rapa var. chinensis)、カブ(Brassica rapa var. rapa)、ノザワナ(Brassica rapa var. hakabura)、ミズナ(Brassica rapa var. lancinifolia)、コマツナ(Brassica rapa var. peruviridis)、パクチョイ(Brassica rapa var. chinensis)、ダイコン(Brassica Raphanus sativus)、ワサビ(Wasabia japonica)など。
 ナス科:タバコ(Nicotiana tabacum)、ナス(Solanum melongena)、ジャガイモ(Solaneum tuberosum)、トマト(Lycopersicon lycopersicum)、トウガラシ(Capsicum annuum)、ペチュニア(Petunia)など。
 マメ科:ダイズ(Glycine max)、エンドウ(Pisum sativum)、ソラマメ(Vicia faba)、フジ(Wisteria floribunda)、ラッカセイ(Arachis. hypogaea)、ミヤコグサ(Lotus corniculatus var. japonicus)、インゲンマメ(Phaseolus vulgaris)、アズキ(Vigna angularis)、アカシア(Acacia).など。
 キク科:キク(Chrysanthemum morifolium)、ヒマワリ(Helianthus annuus)など。
 ヤシ科:アブラヤシ(Elaeis guineensis、Elaeis oleifera)、ココヤシ(Cocos nucifera)、ナツメヤシ(Phoenix dactylifera)、ロウヤシ(Copernicia)
 ウルシ科:ハゼノキ(Rhus succedanea)、カシューナットノキ(Anacardium occidentale)、ウルシ(Toxicodendron vernicifluum)、マンゴー(Mangifera indica)、ピスタチオ(Pistacia vera)
 ウリ科:カボチャ(Cucurbita maxima、Cucurbita moschata、Cucurbita pepo)、キュウリ(Cucumis sativus)、カラスウリ(Trichosanthes cucumeroides)、ヒョウタン(Lagenaria siceraria var. gourda)
 バラ科:アーモンド(Amygdalus communis)、バラ(Rosa)、イチゴ(Fragaria)、サクラ(Prunus)、リンゴ(Malus pumila var. domestica)など。
 ナデシコ科:カーネーション(Dianthus caryophyllus)など。
 ヤナギ科:ポプラ(Populus trichocarpa、Populus nigra、Populus tremula)
 イネ科:トウモロコシ(Zea mays)、イネ(Oryza sativa)、オオムギ(Hordeum vulgare)、コムギ(Triticum aestivum)、タケ(Phyllostachys)、サトウキビ(Saccharum officinarum)など。
 ユリ科:チューリップ(Tulipa)、ユリ(Lilium)など。
 また、遺伝子の機能を欠損させるとは、当該遺伝子をゲノムから欠失させること、当該遺伝子の発現(転写レベル及び翻訳レベル)を阻害すること、及び当該遺伝子によってコードされるタンパク質の活性を低下又は欠失させることを含む意味である。
 より詳細に、遺伝子を欠失させる方法としては、特に限定されないが、相同組換えを用いた方法やトランスポゾンを用いた方法を挙げることができる。また、当該遺伝子を欠失させる場合には、当該遺伝子の全長を欠失させても良いし、部分的に欠失させても良い。
 また、遺伝子の発現を阻害する方法としては、特に限定しないが、当該遺伝子の発現を制御しているプロモーターを欠失させる方法、当該遺伝子の発現を制御しているプロモーターを発現誘導型プロモーターに置換する方法、当該遺伝子の発現を制御しているプロモーターに突然変異を導入する方法、RNA干渉を利用して当該遺伝子の転写産物を分解する方法、及びアンチセンスRNAを利用して当該遺伝子の翻訳を阻害する方法を挙げることができる。
 さらに、遺伝子がコードするタンパク質の活性を低下させる方法としては、当該タンパク質に特異的に結合して当該タンパク質の活性を抑制する機能を有する物質を作用させる方法を挙げることができる。当該物質としては、当該タンパク質の機能を阻害できる抗体や阻害物質を挙げることができる。
 本発明に係る植物由来油脂の製造方法において種子から油脂を回収する方法は、特に限定されず、圧搾法、抽出法及び圧出法などの如何なる方法を用いても良い。例えば、ソックスレー抽出器を用いたエーテル抽出法によって、植物から採取した種子から油脂成分を回収することができる。本発明に係る植物由来油脂の製造方法によれば、植物一個体から採取できる種子量が同等であっても、種子一粒あたりの油脂含有量が高いため植物体を用いているため、生産性に優れた方法であるといえる。換言すると、単位耕地面積あたりの栽培個体数が一定であると仮定すると、本発明に係る植物由来油脂の製造方法によれば、単位耕地面積あたりから製造する油脂量が大幅に向上することとなり、油脂生産に要する製造コストを大幅に削減することができる。
 なお、本発明に係る植物由来油脂の製造方法において、製造対象の油脂としては、特に限定されず、例えば、大豆油、ごま油、オリーブ油、椰子油、米油、綿実油、ひまわり油、コーン油、べに花油及び菜種油等の植物由来の油脂を例示することができる。また、製造した油脂は、家庭用途や工業用途に広く利用することができ、更にはバイオディーゼル燃料やバイオプラスチックの原料としても使用することができる。すなわち、本発明に係る植物体を利用することによって、上述した家庭用途又は工業用途の油脂や、バイオディーゼル燃料やバイオプラスチック等を低コストに製造することができる。
油脂量が向上した植物体のスクリーニング方法
 上述したように、本発明では、色素合成経路欠損株(参考文献:Plant J. 1995 Nov;8(5):659-71.)から採取した種子において、野生型と比較して油脂含有量が有意に向上しているといった新規知見を見いだした。色素合成経路欠損株は、色素合成系に関与する遺伝子の機能が欠損した変異株であって、野生株と比較して種皮色が淡色(野生型と比較してより白色)であるという表現型を示す。上記参考文献に開示されたtt4株及びΔCHSはカルコンシンターゼ遺伝子を欠損した株であり、tt5株はカルコンイソメラーゼ遺伝子を欠損した株であり、tt6株はフラボン-3-ヒドラーゼ遺伝子を欠損した株である。これら遺伝子を欠損した変異株においては、色素の合成不全により種皮色がより白色となる。このため、スクリーニング対象の植物から種子を採取し、採取した種子の種皮色を確認すると、当該植物における色素合成経路による色素合成能が判断できるとともに、採取した種子に含まれる種子含量を高精度に推定することができる。
 すなわち、例えば、同種に含まれる様々な植物体があるとき、これら植物体から採取した種子の種皮色を観察してより白色であるものは油脂生産量の高い品種であると選抜することができる。ここで、スクリーニング対象となる植物体とは、何らかの変異原処理を施したものであっても良いし、従来公知の育種法等によって作出された植物品種であっても良い。
 ここで、変異原処理としては、特に限定されず、広く突然変異の誘発に用いられている化学的変異原及び/又は物理的変異原による処理を用いることができる。化学的突然変異源として、例えばメタンスルホン酸エチル(EMS)、エチルニトロソ尿素(ENS)、2-アミノプリン、5-ブロモウラシル(5-BU)、アルキル化剤などが用いることができる。また、物理的変異原としては、放射線、紫外線等を用いることができる。これらの変異原を用いた変異の誘発は公知の方法で行うことができる。
 本発明に係るスクリーニング方法によれば、植物から採取した種子を破壊する必要がなく、目視により種皮色を観察するといった非常に簡便且つ迅速な判定法により、種子に含まれる油脂量を判定することができる。
 また、本発明に係るスクリーニング方法では、植物から採取した種子の種皮色を画像データから判断し、種皮色を定量的に測定しても良い。具体的には、評価対象の種子の画像をデジタルデータに変換し、画像データ中の種子領域のR値、G値及びB値(RGB値)を測定する。種子領域のR値、G値及びB値の測定には、画像処理ソフトウェアであれば如何なるソフトウェアを使用しても良い。次に、測定されたR値、G値及びB値を、野生型の種子におけるR値、G値及びB値と比較する。一例としては、測定されたR値、G値及びB値の積算値を算出し、野生型の種子におけるR値、G値及びB値の積算値と比較する。例えば、測定されたR値、G値及びB値の積算値が、野生型の種子におけるR値、G値及びB値の積算値として有意に上昇していれば、測定対象の種子の種皮色はより白色に近いと判断することができる。特に、測定されたR値、G値及びB値の積算値が、野生型の種子におけるR値、G値及びB値の積算値に対して、2.88倍以上の値を示す場合には、より白色化(淡色化)した種子であると判断することができる。
 以上のように、植物から採取した種子の種皮色を画像データとして観察するといった手法であっても種子を破壊する必要がなく、非常に簡便且つ迅速な判定法により、種子に含まれる油脂量を判定することができる。なお、画像データから種子の種皮色を観察する際に、R値、G値及びB値の積算値に限らず、R値、G値及びB値の合計値等を算出しても良い。
 以下、実施例により本発明をより詳細に説明するが、本発明の技術的範囲はこれら実施例に限定されるものではない。
〔実施例1〕
 本実施例では、シロイヌナズナにおける転写共役因子At5g24520及び転写因子At1g71030について、それぞれリプレッサードメイン配列を付加したキメラタンパク質(融合タンパク質)を植物体において発現させ、当該植物体から採取した種子における油脂含有量を測定した。また、比較のため転写因子At1g56650についても、同様にしてキメラタンパク質(融合タンパク質)を植物体において発現させ、種子における油脂含有量を測定した。
転写因子遺伝子の増幅
 シロイヌナズナのcDNAライブラリーより、以下に記載するプライマーを用いて、At1g71030の終始コドンを除くコード領域のDNA断片並びに終止コドンを含むコード領域のDNA断片、At5g24520の終始コドンを除くコード領域のDNA断片及びAt1g56650の終始コドンを除くコード領域のDNAをPCRにより増幅した。PCR条件は94℃1分、47℃2分、伸長反応74℃1分を25サイクル行なった。PCR終了後、増幅されたDNA断片をアガローズゲル電気泳動により分離、回収した。
・At1g71030増幅用フォワードプライマー1
  gATGAACAAAACCCGCCTTCGTGCTCTCTC(配列番号11)
・At1g71030増幅用リバースプライマー1
  TCGGAATAGAAGAAGCGTTTCTTGACCTGT(配列番号12)
・At1g71030増幅用フォワードプライマー2
  gATGAACAAAACCCGCCTTCGTGCTCTCTC(配列番号13)
・At1g71030増幅用リバースプライマー2(配列番号14)
  TCATCGGAATAGAAGAAGCGTTTCTTGACC
・At1g56650増幅用フォワードプライマー
  GATGGAGGGTTCGTCCAAAGGGC(配列番号15)
・At1g56650増幅用リバースプライマー
  ATCAAATTTCACAGTCTCTCCATCG(配列番号16)
・At5g24520増幅用フォワードプライマー
  gATGGATAATTCAGCTCCAGATTCGTTATC(配列番号17)
・At5g24520増幅用リバースプライマー
  AACTCTAAGGAGCTGCATTTTGTTAGCAAA(配列番号18)
融合遺伝子の作製
 上記DNA断片がコードする転写因子遺伝子の3'末端にリプレッサードメイン配列を付加するために、CaMV35Sプロモーターの下流にSmaIサイトとリプレッサードメイン(アミノ酸配列:GLDLDLELRLGFA)配列を有するベクターであるp35SSXGを用いた。転写因子遺伝子配列とリプレッサードメイン配列を連結するために、本ベクターをSmaIで切断し、上記の転写因子をコードするPCR増幅断片を挿入し、p35SSXG(At1g56650)とp35SSXG(At5g24520)、 p35SSXG(At1g71030)を作製した。 なおp35SSXG(At1g71030)はAt1g71030増幅用フォワードプライマー1及びAt1g71030増幅用リバースプライマー1を用いたPCR増幅断片を挿入した。また、At1g71030増幅用フォワードプライマー2及びAt1g71030増幅用リバースプライマー2を用いたPCR増幅断片を、リプレッサードメインを付加せずに発現するために、CaMV35Sプロモーターの下流にSmaIサイト配列を有するベクターである、p35SOXGをSmaIで切断部位に挿入し、p35SOXG(At1g71030)を作製した。
改良型転写因子および転写因子発現ベクターの構築
 アグロバクテリウムにより植物に遺伝子導入を行なうためのバイナリーベクターとしてはpBCKHを用いた。本ベクターはpBIG(Hygr)(Nucleic Acids Res. 18, 203 (1990))のHindIIIサイトにGatewayベクターコンバージョンシステム(Invitrogen)のカセットを組み込んだものである。このベクターに改良型転写因子遺伝子を組み込むために、本ベクターと、p35SSXG(At1g56650)、p35SSXG(At5g24520)、p35SSXG(At1g71030)またはp35SOXG(At1g71030)を混合し、GATEWAY LR clonase (Invitrogen)を用いて組換え反応を行った。その結果、pBCKH-p35SSXG(At1g56650)、pBCKH-p35SSXG(At5g24520)、pBCKH-p35SSXG(At1g71030)及びpBCKH-p35SOXG(At1g71030)を作製した。
改良型転写因子遺伝子発現ベクターの植物への導入
 改良型転写因子を導入する植物にはシロイヌナズナ(Arabidopsis thaliana, Columbia )を用いた。遺伝子導入法は、Transformation of Arabidopsis thaliana by vacuum infiltration に従った。ただし、感染させるのに減圧処理は行なわず、アグロバクテリウム菌液に浸すだけとした。具体的には、改良型転写因子発現ベクター pBCKH-p35SSXG(At1g56650)、pBCKH-p35SSXG(At5g24520)、pBCKH-p35SSXG(At1g71030)及びpBCKH-p35SOXG(At1g71030)を、土壌細菌Agrobacterium tumefaciens strain GV3101 (C58C1Rifr) pMP90 (Gmr)(koncz and Schell 1986)株にエレクトロポレーション法で導入した。
 導入した菌を1リットルの、抗生物質(カナマイシン(Km)50μg/ml、ゲンタマイシン(Gm)25μg/ml、リファンピシリン(Rif)50μg/ml)を含むYEP培地でOD600が1になるまで培養した。次いで、培養液から菌体を回収し、1リットルの感染用培地(Infiltration medium、1リッターあたり、2.2 g MS salt, 1X B5 vitamins, 50 g sucrose, 0.5 g MES, 0.044 μM benzylaminopurine, 400μl Silwetを含む。pH 5.7) に懸濁した。この溶液に、14日間生育したシロイヌナズナを1分間浸し、感染させた後、再び栽培を継続し結実させた。採種した種子(T1種子)を50%ブリーチ、0.02%Triton X-100溶液で7分間滅菌した後、滅菌水で3回リンスし、滅菌したハイグロマイシン選択培地(4.3g/l MS salts, 0.5 % sucrose, 0.5 g/l MES, pH 5.7, 0.8 % agar, 30mg/l hygromycin, 250 mg/l Vancomycin)に播種した。上記ハイグロマイシンプレートで生育する形質転換植物体(T1植物)を各改良型転写遺伝子につき10系統を選抜し、バーミキュライト混合土を入れた直径50mmのポットに移植した。これを22℃、16時間明期8時間暗期、光強度約60~80μE/cm2で栽培し種子(T2種子)を得た。得られたT2種子の表皮色は、野生株が濃い茶色であるのに対して、どの系統も薄茶色もしくは黄色であった。
色素合成経路欠損株
 また、本実施例では、色素合成経路欠損株から採取した種子に含まれる油脂含有量も測定した。本実施例では、具体的に色素合成経路欠損株tt4(NASC stock No. N85) (参考文献:Plant J., 8, 659-671, 1995)、tt5(NASC stock No. N86)、tt6(NASC stock No. N87) (参考文献:Plant Physiol., 111, 339-345, 1996)、ΔCHS(NASC stock No. N520583))についてはNASC(The Nottingham Arabidopsis Stock Centre)より入手した。tt4、tt5、tt6はArabidopsis thaliana, Ler株より作製され、ΔCHSはArabidopsis thaliana, Col-0株より作製された。これをを50%ブリーチ、0.02%Triton X-100溶液で7分間滅菌した後、滅菌水で3回リンスし、培地(4.3g/l MS salts, 0.5 % sucrose, 0.5 g/l MES, pH 5.7, 0.8 % agar)に播種した。上記プレートで生育する植物体バーミキュライト混合土を入れた直径50mmのポットに移植した。これを22℃、16時間明期8時間暗期、光強度約50~60μE/cm2(tt4, tt5, tt6, WT(Ler))または、光強度約40μE/cm2(ΔCHS、WT(Col-o))で栽培し種子を得た。得られた種子の表皮色は、野生株が濃い茶色であるのに対して、どの系統も薄茶色もしくは黄色であった。
改良型転写因子または転写因子導入T2種子の分析
 2種類の改良型転写因子遺伝子及び改良型転写共役因子遺伝子のいずれかを導入したT2種子(At1g56650-SRDX、At5g24520-SRDX、At1g71030-SRDX)および転写因子を導入したT2種子(At1g71030)およびおよび野生株(Col-0、Ler)の油脂含量分析を行なった。油脂の定量分析はMARAN-23 (ResonanceInsturuments Ltd., UK) H-NMRと、解析ソフトRI-NMR Ver. 2.0を用い、2~10mgのシロイヌナズナ種子を測定した。油脂の標準物質にはオリーブオイルを用いて検量線を作製し、種子中の油脂含量(重量%)を求めた。
 各改良型転写因子遺伝子、改良型転写共役因子若しくは転写因子遺伝子を導入した系統及び野生株の種子油脂含量の平均値(n=3~10)を求めた。その結果、Col-0の油脂含量平均値を1とした時の各系統の油脂含量増加率は、T2種子(At1g56650-SRDX)は30.2%、T2種子(At5g24520-SRDX)は12.3%、T2種子(At1g71030-SRDX)は12.2%、T2種子(At1g71030)は2.3%であった(図1)。
色素合成経路欠損株種子の分析
 4種類の色素合成経路欠損株種子(tt4、tt5、tt6、ΔCHS)およびおよび野生株(Col-0、Ler)の油脂含量分析を行なった。油脂の定量分析はMARAN-23(ResonanceInsturuments Ltd., UK) H-NMRと、解析ソフトRI-NMR Ver. 2.0を用い、2~10mgのシロイヌナズナ種子を測定した。油脂の標準物質にはオリーブオイルを用いて検量線を作製し、種子中の油脂含量(重量%)を求めた。
 色素合成経路欠損株及び野生株の種子油脂含量の平均値(n=3~10)を求めた。ΔCHSはCol-0株に対して8.9%、tt4、tt5及びtt6はLer株に対してそれぞれ、4.7%、8.8%、11.1%の油脂含量であった(図2)。
結果と考察
 以上の結果から、リプレッサードメインを付加した転写因子At1g56650、転写共役因子At5g24520、転写因子At1g71030それぞれのキメラ遺伝子を導入した植物体の種子の重量あたり油脂含量は、同時に栽培した野生株の重量あたり油脂含量に比べ優れており、油脂生産において非常に有効な植物体であることが判明した。一方で発現促進活性を持つAt1g71030を導入した植物体の種子の重量あたり油脂含量は、同時に栽培した植物体の重量あたり油脂含量とくらべ若干増加していたが、その増加率は発現促進活性を抑制したAt1g71030を導入した植物体種子の重量あたり油脂含量の増加率の1/5程度であった。At1g71030は、シングルMYB様のドメインを持つタンパク質(AtMybL2)をコードし、この遺伝子をCaMV35Sプロモーターで過剰発現することにより、葉、茎、萼のトライコームを欠失する形質を示す。これは、トライコームの形成に必要なGL2遺伝子の発現が抑制されることによると考えられる(参考文献:DNA Res., 9, 31-34, 2002)。GL2遺伝子を破壊することにより、種子の油脂含量が8%増加することが報告されている(参考文献:Plant Mol Biol. 2006 , 60, :377-87, 2006)。
 また、AtMybL2タンパク質はそのカルボキシ末端領域に6アミノ酸からなる転写リプレッサーを持ち、AtMybL2遺伝子の過剰発現植物及びEAR-motifとして知られる転写リプレッサーを付加したAtMybL2をコードする遺伝子の過剰発現植物では、いずれの場合にもアントシアニン前駆体の合成が抑制された(参考文献:18TH INTERNATIONAL CONFERENCE ON ARABIDOPSIS RESEARCH, TAIR accession Publication:501721814)。しかしながら、解析の結果、At1g71030の過剰発現体のT2種子の油脂含量増加率2.3%に対して、リプレッサードメインを付加したAt1g71030の過剰発現体のT2種子は油脂含量の増加率は12.2%と大幅に高く、またGL2遺伝子破壊時の油脂含量増加率8%よりも顕著に高かった。これらの結果より、リプレッサードメインを付加したAt1g71030がGL2以外の未知の経路で種子の油脂合成と貯蔵過程に作用をおよぼし、油脂含量を増加したと考えられる。
 一方で、色素合成経路欠損株の分析結果より、色素合成経路の主要遺伝子が破壊された突然変異株tt4、tt5、tt6、T-DNAの挿入によりCHS遺伝子が破壊されたΔCHS株の種子の油脂含量はいずれも野生株に対して高かった。種皮色と油脂含量ナタネでは種皮色が黄色い品種HUA-yellow No. 1は種皮色が黒い品種と比べ、油脂含量が5-7%高いと報告されている(参考文献:Genome 44: 1077-1082 (2001))。しかしながら、異種間の交配に起因する従来育種法では、種皮色と種子の油脂含量を決定する形質の遺伝子座が近接していた場合でも同様の減少が観察されうる。よって、遺伝子の発現と形質の相関関係についてはこれまで、明らかにされていない。すなわち、従来、種皮色の形質を左右する遺伝子座が油脂含量に影響するといった知見は知られていなかった。
 これに対して、本結果では、実際に種皮の色素合成酵素をコードする遺伝子を破壊することにより種子中の油脂含量の増加が確認できた。よって、交配による従来育種法のみならず、遺伝子導入法、遺伝子破壊法による分子育種法においても、種皮色が油脂含量を予想する重要な表現型であることが初めて明らかになった。種皮色を指標に用いることにより種子の油脂含量を非破壊かつ特別な装置を用いずに、効率よく油脂含量が増加した種子を選抜することが可能になる。
 より詳細に、野生株、At1g71030-SRDX、At1g56650-SRDX、ΔCHS系統の種子の写真を撮影しデジタルデータに変換した。得られたデジタルデータを画像処理ソフト(アドビ・フォトショップ)を用いて種子の領域のRGB値をそれぞれを定量した。次に、定量したR値、G値及びB値の積算値を算出した。また、野生型におおいて定量したR値、G値及びB値の積算値に対する比率も算出した。その結果を表1及び図3に示す。
Figure JPOXMLDOC01-appb-T000001
 表1及び図3に示すように、At1g71030-SRDX、At1g56650-SRDX及びΔCHS系統においては、R値、G値及びB値の積算値を野生型と比較したところ少なくとも2.88倍以上の値を示していた。以上のように、種子の画像データを用いて種皮色を定量的に測定し、種子中の油脂量を非常に簡便に且つ迅速に評価できることが可能となった。
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。

Claims (28)

  1.  配列番号4に示すアミノ酸配列からなるタンパク質を含む転写因子ファミリーに属する転写因子と、任意の転写因子を転写抑制因子に転換する機能性ペプチドとを融合させたキメラタンパク質を発現させた植物体。
  2.  上記転写因子の転写促進活性が抑制されていることを特徴とする請求項1記載の植物体。
  3.  上記キメラタンパク質が転写抑制因子活性をもつことを特徴とする請求項1記載の植物体。
  4.  上記転写因子が、以下の(a)~(c)のいずれかのタンパク質であることを特徴とする請求項1記載の植物体。
    (a)配列番号4に示すアミノ酸配列を含むタンパク質
    (b)配列番号4に示すアミノ酸配列において1又は複数個のアミノ酸が欠失、置換、付加又は挿入されたアミノ酸配列を含み、転写促進活性を有するタンパク質
    (c)配列番号3に示す塩基配列の相補的な塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下においてハイブリダイズするポリヌクレオチドによってコードされ転写促進活性を有するタンパク質
  5.  上記機能性ペプチドが、次に示す式(1)~(8)
    (1)X1-Leu-Asp-Leu-X2-Leu-X3
    (但し、式中、X1は0~10個のアミノ酸残基を示し、X2はAsn又はGluを示し、X3は少なくとも6個のアミノ酸残基を示す。)
    (2)Y1-Phe-Asp-Leu-Asn-Y2-Y3
    (但し、式中、Y1は0~10個のアミノ酸残基を示し、Y2はPhe又はIleを示し、Y3は少なくとも6個のアミノ酸残基を示す。)
    (3)Z1-Asp-Leu-Z2-Leu-Arg-Leu-Z3
    (但し、式中、Z1はLeu、Asp-Leu又はLeu-Asp-Leuを示し、Z2はGlu、Gln又はAspを示し、Z3は0~10個のアミノ酸残基を示す。)
    (4)Asp-Leu-Z4-Leu-Arg-Leu
    (但し、式中、Z4はGlu、Gln又はAspを示す。)
    (5)α1-Leu-β1-Leu-γ1-Leu
    (6)α1-Leu-β1-Leu-γ2-Leu
    (7)α1-Leu-β2-Leu-Arg-Leu
    (8)α2-Leu-β1-Leu-Arg-Leu
    (但し、式(5)~(8)中、α1はAsp、Asn、Glu、Gln、Thr又はSerを示し、α2はAsn、Glu、Gln、Thr又はSerを示し、β1はAsp、Gln、Asn、Arg、Glu、Thr、Ser又はHisを示し、β2はAsn、Arg、Thr、Ser又はHisを示し、γ1はArg、Gln、Asn、Thr、Ser、His、Lys又はAspを示し、γ2はGln、Asn、Thr、Ser、His、Lys又はAspを示す。)
    のいずれかで表されるアミノ酸配列を有するものであることを特徴とする請求項1記載の植物体。
  6.  油脂生産性が有意に向上したことを特徴とする請求項1乃至5いずれか一項記載の植物体。
  7.  特定の組織中の油脂含量が有意に向上したことを特徴とする請求項1乃至5いずれか一項記載の植物体。
  8.  特定の組織中が種子であることを特徴とする請求項7記載の植物体。
  9.  被子植物であることを特徴とする請求項1乃至8いずれか一項記載の植物体。
  10.  双子葉植物であることを特徴とする請求項1乃至8いずれか一項記載の植物体。
  11.  アブラナ科植物であることを特徴とする請求項1乃至8いずれか一項記載の植物体。
  12.  シロイヌナズナであることを特徴とする請求項1乃至8いずれか一項記載の植物体。
  13.  請求項1乃至12いずれか一項記載の植物体から、生産性が向上した物質を分離及び回収する工程を含む、植物体を用いた物質の製造方法。
  14.  上記物質は油脂であることを特徴とする請求項13記載の植物体を用いた物質の製造方法。
  15.  配列番号4に示すアミノ酸配列からなるタンパク質を含む転写因子ファミリーに属する転写因子と、任意の転写因子を転写抑制因子に転換する機能性ペプチドとを融合させたキメラタンパク質。
  16.  上記転写因子が以下の(a)~(c)のいずれかのタンパク質であることを特徴とする請求項15記載のキメラタンパク質。
    (a)配列番号4に示すアミノ酸配列を含むタンパク質
    (b)配列番号4に示すアミノ酸配列において1又は複数個のアミノ酸が欠失、置換、付加又は挿入されたアミノ酸配列を含み、転写促進活性を有するタンパク質
    (c)配列番号3に示す塩基配列の相補的な塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下においてハイブリダイズするポリヌクレオチドによってコードされ転写促進活性を有するタンパク質
  17.  上記機能性ペプチドが、次に示す式(1)~(8)
    (1)X1-Leu-Asp-Leu-X2-Leu-X3
    (但し、式中、X1は0~10個のアミノ酸残基を示し、X2はAsn又はGluを示し、X3は少なくとも6個のアミノ酸残基を示す。)
    (2)Y1-Phe-Asp-Leu-Asn-Y2-Y3
    (但し、式中、Y1は0~10個のアミノ酸残基を示し、Y2はPhe又はIleを示し、Y3は少なくとも6個のアミノ酸残基を示す。)
    (3)Z1-Asp-Leu-Z2-Leu-Arg-Leu-Z3
    (但し、式中、Z1はLeu、Asp-Leu又はLeu-Asp-Leuを示し、Z2はGlu、Gln又はAspを示し、Z3は0~10個のアミノ酸残基を示す。)
    (4)Asp-Leu-Z4-Leu-Arg-Leu
    (但し、式中、Z4はGlu、Gln又はAspを示す。)
    (5)α1-Leu-β1-Leu-γ1-Leu
    (6)α1-Leu-β1-Leu-γ2-Leu
    (7)α1-Leu-β2-Leu-Arg-Leu
    (8)α2-Leu-β1-Leu-Arg-Leu
    (但し、式(5)~(8)中、α1はAsp、Asn、Glu、Gln、Thr又はSerを示し、α2はAsn、Glu、Gln、Thr又はSerを示し、β1はAsp、Gln、Asn、Arg、Glu、Thr、Ser又はHisを示し、β2はAsn、Arg、Thr、Ser又はHisを示し、γ1はArg、Gln、Asn、Thr、Ser、His、Lys又はAspを示し、γ2はGln、Asn、Thr、Ser、His、Lys又はAspを示す。)
    のいずれかで表されるアミノ酸配列を有するものであることを特徴とする請求項15記載のキメラタンパク質。
  18.  請求項15乃至17いずれか一項記載のキメラタンパク質をコードする遺伝子。
  19.  請求項18記載の遺伝子を含む発現ベクター。
  20.  請求項18記載の遺伝子を含む形質転換体。
  21.  カルコンシンターゼ遺伝子の機能を欠損した植物体から採取した種子から油脂成分を回収する工程を含む、植物由来油脂の製造方法。
  22.  上記カルコンシンターゼ遺伝子が、以下の(a)~(c)のいずれかのタンパク質をコードする遺伝子であることを特徴とする請求項21記載の植物由来油脂の製造方法。
    (a)配列番号6に示すアミノ酸配列を含むタンパク質
    (b)配列番号6に示すアミノ酸配列において1又は複数個のアミノ酸が欠失、置換、付加又は挿入されたアミノ酸配列を含み、カルコンシンターゼ活性を有するタンパク質
    (c)配列番号5に示す塩基配列の相補的な塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下においてハイブリダイズするポリヌクレオチドによってコードされカルコンシンターゼ活性を有するタンパク質
  23.  カルコンイソメラーゼ遺伝子の機能を欠損した植物体から採取した種子から油脂成分を回収する工程を含む、植物由来油脂の製造方法。
  24.  上記カルコンシンターゼ遺伝子が、以下の(a)~(c)のいずれかのタンパク質をコードする遺伝子であることを特徴とする請求項23記載の植物由来油脂の製造方法。
    (a)配列番号8に示すアミノ酸配列を含むタンパク質
    (b)配列番号8に示すアミノ酸配列において1又は複数個のアミノ酸が欠失、置換、付加又は挿入されたアミノ酸配列を含み、カルコンイソメラーゼ活性を有するタンパク質
    (c)配列番号7に示す塩基配列の相補的な塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下においてハイブリダイズするポリヌクレオチドによってコードされカルコンイソメラーゼ活性を有するタンパク質
  25.  フラボン-3-ヒドラーゼ遺伝子の機能を欠損した植物体から採取した種子から油脂成分を回収する工程を含む、植物由来油脂の製造方法。
  26.  上記フラボン-3-ヒドラーゼ遺伝子が、以下の(a)~(c)のいずれかのタンパク質をコードする遺伝子であることを特徴とする請求項25記載の植物由来油脂の製造方法。
    (a)配列番号10に示すアミノ酸配列を含むタンパク質
    (b)配列番号10に示すアミノ酸配列において1又は複数個のアミノ酸が欠失、置換、付加又は挿入されたアミノ酸配列を含み、フラボン-3-ヒドラーゼ活性を有するタンパク質
    (c)配列番号9に示す塩基配列の相補的な塩基配列からなるポリヌクレオチドに対してストリンジェントな条件下においてハイブリダイズするポリヌクレオチドによってコードされフラボン-3-ヒドラーゼ活性を有するタンパク質
  27.  種子内の油脂量を評価する対象となる植物体から種子を採取する工程と、
     採取した種子の種皮色を観察し、より白色である場合には種子内の油脂量が高いと判定する工程とを含む、油脂量が向上した植物体のスクリーニング方法。
  28.  上記評価対象の植物体は、転写因子と任意の転写因子を転写抑制因子に転換する機能性ペプチドとを融合させたキメラタンパク質を発現する植物体又は遺伝子機能欠損植物体であることを特徴とする請求項27記載のスクリーニング方法。
PCT/JP2009/053960 2008-03-04 2009-03-03 植物の油脂を増産させる遺伝子及びその利用方法 WO2009110466A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980116011.3A CN102016032B (zh) 2008-03-04 2009-03-03 使植物的油脂增产的基因及其利用方法
AU2009220650A AU2009220650B2 (en) 2008-03-04 2009-03-03 Gene that increases production of plant fat-and-oil and method for using the same
US12/921,060 US9045786B2 (en) 2008-03-04 2009-03-03 Gene that increases production of plant fat-and-oil and method for using the same
CA2717727A CA2717727C (en) 2008-03-04 2009-03-03 Gene that increases production of plant fat-and-oil and method for using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-054008 2008-03-04
JP2008054008A JP5299886B2 (ja) 2008-03-04 2008-03-04 植物の油脂を増産させる遺伝子及びその利用方法

Publications (1)

Publication Number Publication Date
WO2009110466A1 true WO2009110466A1 (ja) 2009-09-11

Family

ID=41056020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053960 WO2009110466A1 (ja) 2008-03-04 2009-03-03 植物の油脂を増産させる遺伝子及びその利用方法

Country Status (6)

Country Link
US (1) US9045786B2 (ja)
JP (1) JP5299886B2 (ja)
CN (1) CN102016032B (ja)
AU (1) AU2009220650B2 (ja)
CA (1) CA2717727C (ja)
WO (1) WO2009110466A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2230309B1 (en) 2007-12-05 2016-03-09 Toyota Jidosha Kabushiki Kaisha Gene capable of increasing the production of oil-and-fat in plant, and use thereof
EP2666860B1 (en) 2007-12-05 2018-09-19 Toyota Jidosha Kabushiki Kaisha Genes that increase plant oil and method for using the same
JP5847991B2 (ja) 2009-06-04 2016-01-27 トヨタ自動車株式会社 種子における物質生産性を向上させる遺伝子及びその利用方法
JP5718554B2 (ja) 2009-06-04 2015-05-13 トヨタ自動車株式会社 植物の植物重量を増産させる遺伝子及びその利用方法
JP5519192B2 (ja) 2009-06-04 2014-06-11 トヨタ自動車株式会社 種子のタンパク質含量を増産させる遺伝子及びその利用方法
BR122019021594B1 (pt) * 2009-10-30 2021-10-05 Agresearch Limited Oleosina modificada célula hospedeira, corpo oleoso e seu método de produção, emulsão, ração animal, e método para produção de uma planta que acumula mais óleo que uma planta controle adequada
BR112014015921A2 (pt) * 2011-12-27 2021-05-25 Commonwealth Scientific And Industrial Research Organisation processos para produzir lipídeos
CN104341519B (zh) * 2013-07-31 2017-05-17 中国农业科学院作物科学研究所 水稻转录因子Os01g45090.1基因CDS序列的应用
US10988599B2 (en) * 2018-08-11 2021-04-27 Kaien Yang Method of producing plant biomass-based bioplastic
CN109517812A (zh) * 2018-12-18 2019-03-26 浙江万里学院 杜鹃花查尔酮合成酶RsCHS蛋白及其编码基因
CN111122579A (zh) * 2020-01-17 2020-05-08 中国农业科学院都市农业研究所 一种生菜叶片黄酮总量测定方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003055903A1 (fr) * 2001-12-26 2003-07-10 National Institute Of Advanced Industrial Science And Technology Gene et peptide regulateurs de transcription
JP2005027654A (ja) * 2003-06-20 2005-02-03 Japan Science & Technology Agency 転写因子を転写抑制因子に変換するペプチド及びこれをコードするポリヌクレオチド、並びにその利用
JP2005204657A (ja) * 2003-12-24 2005-08-04 Japan Science & Technology Agency タンニン含量が低減された植物体の生産方法およびこれを用いて得られる植物体、並びにその利用
US20060107345A1 (en) * 2003-09-30 2006-05-18 Nickolai Alexandrov Sequence-determined DNA fragments and corresponding polypeptides encoded thereby
WO2006056701A1 (fr) * 2004-11-26 2006-06-01 Genoplante-Valor Methode d'adressage d'acides nucleiques vers des plastes

Family Cites Families (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602023B2 (ja) 1982-02-03 1985-01-18 菊正宗酒造株式会社 米の蛋白質の抽出方法
JP2622725B2 (ja) 1988-07-25 1997-06-18 東亜医用電子株式会社 胃組織の腺腔を抽出するための画像処理方法
WO1993018643A1 (en) 1992-03-24 1993-09-30 Rice Breeding Research Laboratories Process for reducing seed storage proteins and process for transforming plants
JPH0690766A (ja) 1992-09-09 1994-04-05 Mitsui Giyousai Shokubutsu Bio Kenkyusho:Kk アブラナのホスホエノールピルビン酸 カルボキシラーゼ遺伝子
JP2706888B2 (ja) 1993-01-25 1998-01-28 新潟県 乳酸菌を利用した米の処理法及びその米を利用した加工食品並びに低タンパク質米飯の製造方法
JP2557312B2 (ja) 1993-04-23 1996-11-27 亀田製菓株式会社 低蛋白質、低カリウム、低リン米の製造方法
JP3289043B2 (ja) 1993-10-21 2002-06-04 株式会社アレルゲンフリー・テクノロジー研究所 アレルゲン低減化米の製造方法
JPH09182A (ja) 1995-06-23 1997-01-07 Toyo Suisan Kaisha Ltd 炊飯用低タンパク米の製造方法
JPH0965840A (ja) 1995-08-29 1997-03-11 Asahi Chem Ind Co Ltd 低タンパク質米の製造方法
US5783393A (en) 1996-01-29 1998-07-21 Agritope, Inc. Plant tissue/stage specific promoters for regulated expression of transgenes in plants
JPH09313059A (ja) 1996-02-01 1997-12-09 Mitsubishi Corp 植物種子の貯蔵脂質含量を増加させる方法
US5914449A (en) 1996-02-01 1999-06-22 Mitsubishi Corporation Method for increasing storage lipid content in plant seed
US6476294B1 (en) 1998-07-24 2002-11-05 Calgene Llc Plant phosphatidic acid phosphatases
US6717034B2 (en) 2001-03-30 2004-04-06 Mendel Biotechnology, Inc. Method for modifying plant biomass
US7238860B2 (en) 2001-04-18 2007-07-03 Mendel Biotechnology, Inc. Yield-related polynucleotides and polypeptides in plants
US7663025B2 (en) 1999-03-23 2010-02-16 Mendel Biotechnology, Inc. Plant Transcriptional Regulators
US7858848B2 (en) 1999-11-17 2010-12-28 Mendel Biotechnology Inc. Transcription factors for increasing yield
US20030101481A1 (en) 1998-09-22 2003-05-29 James Zhang Plant gene sequences I
US7345217B2 (en) 1998-09-22 2008-03-18 Mendel Biotechnology, Inc. Polynucleotides and polypeptides in plants
JP2001059842A (ja) 1999-08-25 2001-03-06 Nec Corp 病理診断装置
WO2001036444A1 (en) 1999-11-17 2001-05-25 Mendel Biotechnology, Inc. Plant developmental genes
WO2001064022A2 (en) 2000-03-01 2001-09-07 The Regents Of The University Of California Leafy cotyledon1 genes and their uses
JP3409079B2 (ja) 2000-03-27 2003-05-19 独立行政法人産業技術総合研究所 遺伝子の転写を抑制する機能を有するペプチド
JP3421740B2 (ja) 2000-03-27 2003-06-30 独立行政法人産業技術総合研究所 遺伝子の転写を抑制する機能を有するペプチド
JP3407033B2 (ja) 2000-03-27 2003-05-19 独立行政法人産業技術総合研究所 遺伝子の転写を抑制する機能を有するペプチド
JP3407034B2 (ja) 2000-03-27 2003-05-19 独立行政法人産業技術総合研究所 遺伝子の転写を抑制する機能を有するペプチド
JP3407036B2 (ja) 2000-04-11 2003-05-19 独立行政法人産業技術総合研究所 遺伝子の転写を抑制する機能を有するペプチド
JP3407035B2 (ja) 2000-04-11 2003-05-19 独立行政法人産業技術総合研究所 遺伝子の転写を抑制する機能を有するペプチド
JP4253420B2 (ja) 2000-05-30 2009-04-15 株式会社Adeka アレルゲン低減化且つ低タンパク質化穀類及びその製造方法
JP3656104B2 (ja) 2001-03-13 2005-06-08 国立大学法人 奈良先端科学技術大学院大学 植物において脂肪酸合成を促進させる方法
AU2002324783A1 (en) * 2001-08-09 2003-02-24 Mendel Biotechnology, Inc. Stress-related polynucleotides and polypeptides in plants
JP3995211B2 (ja) 2001-12-26 2007-10-24 独立行政法人産業技術総合研究所 転写抑制遺伝子及びペプチド
US20040006797A1 (en) 2002-04-05 2004-01-08 Lifang Shi MYB transcription factors and uses for crop improvement
PT1546336E (pt) 2002-09-18 2012-04-09 Mendel Biotechnology Inc Polinucleótidos e polipéptidos em plantas
US7268276B2 (en) 2002-11-18 2007-09-11 Monsanto Technology Llc Production of increased oil and protein in plants by the disruption of the phenylpropanoid pathway
EP1577384A4 (en) 2002-12-20 2007-04-18 Inc Admin Agency Naro PLANT WITH REDUCED PROTEIN CONTENT IN SEED AND METHOD FOR THE PRODUCTION AND USE THEREOF
JP2004286666A (ja) 2003-03-24 2004-10-14 Olympus Corp 病理診断支援装置および病理診断支援プログラム
JP2005013214A (ja) 2003-06-02 2005-01-20 Japan Science & Technology Agency 植物を宿主とする発現ベクターを構築するための構築用ベクター及びその利用方法
JP4452876B2 (ja) 2003-08-06 2010-04-21 国立大学法人 香川大学 LKP2部分cDNAを用いた遺伝子導入による植物体の種子収量、乾燥重量の制御
US7989676B2 (en) 2006-08-31 2011-08-02 Ceres, Inc. Nucleotide sequences and corresponding polypeptides conferring modulated plant characteristics
EP1682668B1 (en) 2003-11-13 2011-03-16 Mendel Biotechnology, Inc. Plant transcriptional regulators
JP4437936B2 (ja) 2004-03-26 2010-03-24 独立行政法人科学技術振興機構 葯の裂開が抑制された植物体の生産方法およびこれを用いて得られる植物体、並びにその利用
WO2005065446A1 (ja) 2004-01-07 2005-07-21 Japan Science And Technology Agency 不稔性植物体の生産方法およびこれを用いて得られる植物体、並びにその利用
JP2005192483A (ja) 2004-01-07 2005-07-21 Japan Science & Technology Agency 植物の雄性不稔体の生産方法およびこれを用いて得られる植物体、並びにその利用
JP2006042729A (ja) 2004-08-06 2006-02-16 Japan Science & Technology Agency 八重咲き植物体の生産方法およびこれを用いて得られる植物体、並びにその利用
JP2006034218A (ja) * 2004-07-29 2006-02-09 Japan Science & Technology Agency 葯の裂開が抑制された植物体の生産方法2およびこれを用いて得られる植物体、並びにその利用
JP2005204573A (ja) 2004-01-22 2005-08-04 Japan Science & Technology Agency 葉の形状が改変された植物体の生産方法およびこれを用いて得られる植物体、並びにその利用
WO2005085467A1 (ja) 2004-03-05 2005-09-15 Japan Science And Technology Agency タンパク質複合体検出方法、およびタンパク質複合体検出キット
US20060041961A1 (en) 2004-03-25 2006-02-23 Abad Mark S Genes and uses for pant improvement
JP2005295878A (ja) 2004-04-09 2005-10-27 Japan Science & Technology Agency 花芽形成遅延植物体の生産方法、及びこれを用いて得られる植物体、並びにその利用
JP2005295879A (ja) 2004-04-09 2005-10-27 Japan Science & Technology Agency 花の形態が改変された植物体の生産方法およびこれを用いて得られる植物体、並びにその利用
JP2005352571A (ja) 2004-06-08 2005-12-22 Olympus Corp 画像処理装置
WO2005120215A1 (en) 2004-06-11 2005-12-22 Plant Research International B.V. The shine clade of transcription factors and their use
JP2006006248A (ja) 2004-06-28 2006-01-12 Japan Science & Technology Agency 葉の形態形成が制御された植物体の生産方法およびこれを用いて得られる植物体、並びにその利用
JP2006020607A (ja) 2004-07-09 2006-01-26 Japan Science & Technology Agency 葉の形態が改変された植物体の生産方法およびこれを用いて得られる植物体、並びにその利用
JP2006042730A (ja) 2004-08-06 2006-02-16 Japan Science & Technology Agency 単子葉植物の雄性不稔体の生産方法およびこれを用いて得られる植物体、並びにその利用
JP2006055125A (ja) 2004-08-23 2006-03-02 Japan Science & Technology Agency 遺伝子の転写抑制機能を有する新規ペプチドおよびこれをコードするポリヌクレオチド、並びにその利用
JP2006101827A (ja) 2004-10-08 2006-04-20 Japan Science & Technology Agency 雄性不稔形質転換植物体の生産方法およびこれを用いて得られる植物体、並びにその利用
JP2006134188A (ja) 2004-11-08 2006-05-25 Japan Science & Technology Agency オリゴヌクレオチドデータ管理装置、オリゴヌクレオチドデータ管理システム、オリゴヌクレオチドデータ管理プログラムおよび記録媒体
JP2006280242A (ja) 2005-03-31 2006-10-19 Japan Science & Technology Agency 完全不稔性植物体の生産方法およびこれを用いて得られる植物体、並びにその利用
JP5083792B2 (ja) 2005-04-28 2012-11-28 独立行政法人科学技術振興機構 植物体の脱分化方法及びこれを用いて得られるカルス、並びにその利用
WO2006133461A1 (en) 2005-06-08 2006-12-14 Ceres Inc. Identification of terpenoid-biosynthesis related regulatory protein-regulatory region associations
WO2007102346A1 (ja) 2006-02-28 2007-09-13 Japan Science And Technology Agency グルカン量を低減させることなくリグニン量およびセルロース量を低減させた植物体およびその生産方法、並びにこれらの利用
WO2007117693A2 (en) 2006-04-07 2007-10-18 Ceres, Inc. Regulatory protein-regulatory region associations related to alkaloid biosynthesis
JP2009296886A (ja) 2006-10-03 2009-12-24 Japan Science & Technology Agency 有用形質を有する植物をスクリーニングするためのツールおよびその利用
JP4947589B2 (ja) 2007-06-27 2012-06-06 Kddi株式会社 類似画像検索装置
US8362325B2 (en) 2007-10-03 2013-01-29 Ceres, Inc. Nucleotide sequences and corresponding polypeptides conferring modulated plant characteristics
JP5151403B2 (ja) 2007-11-06 2013-02-27 日本電気株式会社 低分化癌検出モジュール、これを備えた病理画像診断支援装置、プログラムおよび記録媒体
EP2230309B1 (en) 2007-12-05 2016-03-09 Toyota Jidosha Kabushiki Kaisha Gene capable of increasing the production of oil-and-fat in plant, and use thereof
EP2666860B1 (en) 2007-12-05 2018-09-19 Toyota Jidosha Kabushiki Kaisha Genes that increase plant oil and method for using the same
JP5365011B2 (ja) 2008-01-29 2013-12-11 日本電気株式会社 病理診断支援装置、病理診断支援方法、およびプログラム
JP2009210409A (ja) 2008-03-04 2009-09-17 Kddi Corp 画像領域分割方法および装置
US20110209244A1 (en) 2008-09-29 2011-08-25 National Institute Of Advanced Industrial Science And Technology Method for production of plant imparted with stress tolerance and use thereof
WO2010041423A1 (ja) 2008-10-09 2010-04-15 日本電気株式会社 病理組織診断支援システム、病理組織診断支援プログラム、病理組織診断支援方法
JP5718554B2 (ja) 2009-06-04 2015-05-13 トヨタ自動車株式会社 植物の植物重量を増産させる遺伝子及びその利用方法
JP5847991B2 (ja) 2009-06-04 2016-01-27 トヨタ自動車株式会社 種子における物質生産性を向上させる遺伝子及びその利用方法
JP5519192B2 (ja) 2009-06-04 2014-06-11 トヨタ自動車株式会社 種子のタンパク質含量を増産させる遺伝子及びその利用方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003055903A1 (fr) * 2001-12-26 2003-07-10 National Institute Of Advanced Industrial Science And Technology Gene et peptide regulateurs de transcription
JP2005027654A (ja) * 2003-06-20 2005-02-03 Japan Science & Technology Agency 転写因子を転写抑制因子に変換するペプチド及びこれをコードするポリヌクレオチド、並びにその利用
US20060107345A1 (en) * 2003-09-30 2006-05-18 Nickolai Alexandrov Sequence-determined DNA fragments and corresponding polypeptides encoded thereby
JP2005204657A (ja) * 2003-12-24 2005-08-04 Japan Science & Technology Agency タンニン含量が低減された植物体の生産方法およびこれを用いて得られる植物体、並びにその利用
WO2006056701A1 (fr) * 2004-11-26 2006-06-01 Genoplante-Valor Methode d'adressage d'acides nucleiques vers des plastes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAWA, S.: "Overexpression of the AtmybL2 gene represses trichome development in Arabidopsis", DNA RES, vol. 9, no. 2, 2002, pages 31 - 34 *
SHEN, B. ET AL.: "The homeobox gene GLABRA2 affects seed oil content in Arabidopsis", PLANT MOL BIOL, vol. 60, no. 3, 2006, pages 377 - 387 *

Also Published As

Publication number Publication date
CN102016032B (zh) 2014-05-07
CN102016032A (zh) 2011-04-13
JP5299886B2 (ja) 2013-09-25
AU2009220650A1 (en) 2009-09-11
US20110081691A1 (en) 2011-04-07
CA2717727C (en) 2015-04-21
US9045786B2 (en) 2015-06-02
AU2009220650B2 (en) 2012-11-15
JP2009207421A (ja) 2009-09-17
CA2717727A1 (en) 2009-09-11

Similar Documents

Publication Publication Date Title
JP5299886B2 (ja) 植物の油脂を増産させる遺伝子及びその利用方法
JP5847991B2 (ja) 種子における物質生産性を向上させる遺伝子及びその利用方法
US9018446B2 (en) Genes that increase plant oil and method for using the same
CA2989127C (en) Genes that increase plant oil and method for using the same
JP5718554B2 (ja) 植物の植物重量を増産させる遺伝子及びその利用方法
JP5910704B2 (ja) 種子における物質生産性を向上させる遺伝子及びその利用方法
JP2013247955A (ja) 植物の油脂を増産させる遺伝子及びその利用方法
JP5910702B2 (ja) 種子における物質生産性を向上させる遺伝子及びその利用方法
JP5920440B2 (ja) 種子における物質生産性を向上させる遺伝子及びその利用方法
JP5910703B2 (ja) 種子における物質生産性を向上させる遺伝子及びその利用方法
JP5686977B2 (ja) 植物の油脂生産性を増大させる遺伝子及びその利用方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980116011.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09717019

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2717727

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009220650

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2009220650

Country of ref document: AU

Date of ref document: 20090303

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12921060

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09717019

Country of ref document: EP

Kind code of ref document: A1