WO2005065446A1 - 不稔性植物体の生産方法およびこれを用いて得られる植物体、並びにその利用 - Google Patents

不稔性植物体の生産方法およびこれを用いて得られる植物体、並びにその利用 Download PDF

Info

Publication number
WO2005065446A1
WO2005065446A1 PCT/JP2005/000155 JP2005000155W WO2005065446A1 WO 2005065446 A1 WO2005065446 A1 WO 2005065446A1 JP 2005000155 W JP2005000155 W JP 2005000155W WO 2005065446 A1 WO2005065446 A1 WO 2005065446A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
seq
amino acid
transcription
transcription factor
Prior art date
Application number
PCT/JP2005/000155
Other languages
English (en)
French (fr)
Inventor
Masaru Takagi
Keiichiro Hiratsu
Nobutaka Mitsuda
Original Assignee
Japan Science And Technology Agency
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004002192A external-priority patent/JP2005192483A/ja
Priority claimed from JP2004093796A external-priority patent/JP4437936B2/ja
Priority claimed from JP2004221592A external-priority patent/JP2006034218A/ja
Priority claimed from JP2004231544A external-priority patent/JP2006042729A/ja
Application filed by Japan Science And Technology Agency, National Institute Of Advanced Industrial Science And Technology filed Critical Japan Science And Technology Agency
Priority to CA002540711A priority Critical patent/CA2540711A1/en
Priority to EP05703394A priority patent/EP1702508A4/en
Priority to AU2005203861A priority patent/AU2005203861B2/en
Priority to BRPI0506368-0A priority patent/BRPI0506368A/pt
Priority to US10/574,470 priority patent/US20110099664A1/en
Publication of WO2005065446A1 publication Critical patent/WO2005065446A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8287Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for fertility modification, e.g. apomixis
    • C12N15/8289Male sterility
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8287Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for fertility modification, e.g. apomixis
    • C12N15/829Female sterility

Definitions

  • the present invention relates to a technique for producing a sterile plant, and more particularly, a method for producing a male sterile plant, a method for producing a plant in which anther cleavage is suppressed, and a double-flowered plant
  • the present invention relates to a production method of a plant, a plant obtained by using the production method, and a use thereof.
  • male sterile bodies that cannot form normal pollen.
  • male sterile bodies have been obtained and used for breeding in many plants such as tomatoes and cucumber.
  • Non-Patent Document 1 discloses a technique for artificially causing male sterility due to a nuclear gene.
  • the chalcone synthase activity is suppressed by introducing an antisense gene for chalcone synthase into ⁇ -thia.
  • the biosynthesis of chalcone which is a biosynthetic precursor of flavonoids, is suppressed, and the transformed ⁇ -thiure becomes male sterile.
  • Non-Patent Document 2 discloses a technique for producing a male sterile body by eliminating tobacco tapetate tissue with a toxic substance.
  • the argE gene which is a transcription / translation product of N-acetyl-L-ordinine deacetylase, is fused to a DNA sequence similar to the TA29 promoter that functions specifically in tapetate tissue. To be introduced. The tobacco is then given non-toxic N-acetyl-L-phosphinothricin.
  • the N-acetyl-L-phosphinothricin is deacetylated by the N-acetyl-L-orditin deacetylase expressed in the anther, resulting in toxic L-phosphinothricin.
  • This toxic substance causes the tapetate tissue to undergo necrosis and disappears, so that the transformed tobacco becomes male sterile without pollen formation.
  • Non-Patent Document 3 discloses a technique for artificially causing cytoplasmic male sterility.
  • a mitochondrial atp9 gene from wheat which is not subjected to RNA editing, is introduced into tobacco cells. This results in the expression of an inactive ATP9 protein that translocates to mitochondria. As a result, the function of mitochondria is inhibited, so that the transformed tobacco becomes male sterile.
  • Non-Patent Document 4 describes that another transgenic tobacco transfected with an antisense gene of mitochondrial atp9 gene to which RNA editing is not performed is prepared and RNA editing is performed. A technique has been disclosed for producing a transgenic tobacco which restores fertility in the next generation by crossing with a transgenic tobacco into which no mitochondrial atp9 gene has been introduced.
  • NAC families have been known as a family of plant-specific transcription factors. In Arabidopsis, more than 100 genes belonging to the NAC family have been reported to date.
  • NAC family members isolated to date have been reported as transcription factors required for shoot apical meristem formation, maintenance of flower organs, lateral root formation, etc., and it is becoming clear that they have various functions. is there. However, the cis sequence to which the NAC family specifically binds has not been fully supported, and the analysis of its function has been awaited (for example, see Non-Patent Document 5).
  • Patent Document 1 discloses a method for producing a male sterile plant by controlling the expression of a gene DAD1 that controls anther cleavage and pollen maturation.
  • Non-Patent Document 6 reports that in order for cleavage to occur, the guard cells need to be sufficiently functional until cell death. However, little has been gained at the molecular level of anther dehiscence. Not been.
  • mutants such as delayed-dehiscence 1—delayed-dehiscence 5, non-dehiscence 1, and msH, are known as mutants with abnormal anther dehiscence (for example, see Non-Patent Document 7) .
  • the causative genes that control anther dehiscence the genes that have been elucidated so far, such as the above-mentioned DAD1, are so numerous that the causative genes have not yet been elucidated.
  • Non-Patent Document 8 reports that the phenotype of the obtained mutant is caused by insertion of a transposon into AtMYB26.
  • the flower bud fission tissue is divided into four constitutive petals, stamens, and pistils.
  • whorll has four petals
  • whorl2 has four petals
  • whorl3 has six stamens
  • whorl4 has two carpels.
  • the traits of these organs are determined by the homeotic genes of flowers (for example, see Non-Patent Document 9).
  • Flower homeotic genes are classified into three classes, A, B, and C, and encode transcription factors. Therefore, the combination of these genes determines the type of flower organ formed in the flower bud meristem.
  • the agamous gene (hereinafter referred to as the "AG gene") is the above-mentioned class C gene.
  • AG gene The agamous gene
  • the function of class A extends to the entire region of the flower. It is known that stamens turn into petals, and in the wild type, a new flower is formed in an area that becomes a pistil, and the form of the flower is a double flower (for example, see Non-Patent Document 9).
  • RNA interference RNA interference
  • the present inventors have attempted to introduce a gene encoding a fusion protein (chimeric protein) obtained by fusing various transcription factors with the above peptide into a plant.
  • the transcription factor is converted into a transcription repressor, and the transcription factor succeeds in producing a plant in which the expression of a target gene that promotes transcription is suppressed.
  • JP-A 2000-300273 (Published date: October 31, 2000 (2000))
  • JP 2004-24108 Gazette (Date of publication: January 29, 2004 (2004))
  • JP-A 2001-269177 (Published date: October 2, 2001)
  • JP-A 2001-269178 (Published date: October 2, 2001 (2001))
  • JP 2001-292776 Gazette (Published date: 2001 (2001) 10 May 2)
  • JP-A 2001-292777 (Published date: October 23, 2001)
  • JP-A 2001-269176 (Published date: October 2, 2001)
  • JP-A 2001-269179 (Published date: October 2, 2001 (2001))
  • Non-Patent Document 6 Beals, TP, Goldberg, RB, The Plant Cell, Vol. 9, 1527—1545, September, 1997
  • Patent Document 1 the occurrence of anther dehiscence and the absence of fertility of pollen occur simultaneously. However, regardless of whether the pollen is fertile or not, if anther dehiscence does not occur, self-pollination can be avoided in mating using heterosis.
  • the method of using a male sterile body in which pollen does not have fertility which is conventionally used! / Pull pollen has a fertility. This is an effective method for However, since the next generation will not bear fruit if it is sterile, fertility must be restored in the next generation. On the other hand, if the anther dehiscence is suppressed, but the pollen seems to have fertility, it is necessary to create a plant that does not self-pollinate while leaving the pollen itself fertile. It is very useful for breeding.
  • Such suppression of anther dehiscence is achieved by producing a chimeric protein of a transcription factor that promotes transcription of genes involved in anther dehiscence and a functional peptide that converts the transcription factor into a transcription repressor.
  • the technology is known.
  • RNAi method may suppress the function of the AG gene to obtain a double-flowered plant, but the RNAi method requires the determination of a target site when suppressing gene expression.
  • problems such as difficulty in trial and error, difficulty in constructing constructs, low efficiency of transfusion depending on cells, and limited effects of RNA interference. Therefore, it is very difficult to obtain a double-flowered plant simply and reliably by the RNAi method in a short period of time.
  • the present invention has been made in view of the above problems, and has as its object to sterilize plants by suppressing the transcription of genes involved in flower organ formation to sterilize plants. It is an object of the present invention to provide a production method.
  • Another object of the present invention is to produce a chimeric protein of a transcription factor that promotes transcription of a gene involved in anther dehiscence and a functional peptide that converts the transcription factor into a transcription repressor.
  • An object of the present invention is to provide a method for producing a sterile plant in which anther cleavage is suppressed.
  • an object of the present invention is to convert a transcription factor involved in the formation of stamens and pistils into a transcription repressor, and suppress the transcription of a target gene of the above-mentioned transcription factor, thereby shortening the time. It is an object of the present invention to provide a simple and reliable method for producing a sterile plant that makes a flower form a double flower.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, converted the APETALA3 protein, which is one of transcription factors that promote transcription of genes involved in flower organ formation, into a transcription repressor.
  • the present inventors have found that a male sterile plant in which petals and stamens are not formed can be produced, and the present invention has been completed.
  • the method for producing a sterile plant according to the present invention provides a transcription factor that promotes expression of a gene involved in flower organ formation and a function of converting an arbitrary transcription factor into a transcription repressor.
  • a chimeric protein fused with a peptide is produced in a plant, and the plant is sterilized. It is characterized by doing.
  • the method for producing a sterile plant according to the present invention includes a transcription factor that promotes the expression of a gene involved in flower organ formation, and a functional peptide that converts an arbitrary transcription factor into a transcription repressor. It is characterized in that a chimeric protein fused with is produced in a plant and suppresses the expression of genes involved in flower organ formation! /
  • a transcription factor capable of promoting the expression of a gene involved in flower organ formation is a transcription factor involved in the formation of stamen or pistil. It is preferably a child.
  • the obtained plant body is a sterile plant body without forming seeds.
  • the target plant can be turned into a sterile plant very easily without using a complicated gene recombination technique.
  • the sterile plant preferably has at least the formation of stamens inhibited.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems. It has been found that when the transforming peptide is fused and expressed in plants, the anther dehiscence is completely or only incompletely caused. This also promotes the transcription of the NAC family proteins (proteins encoded at the At2g46770 locus; hereinafter, appropriately referred to as “NACAD1” (NAC involving to Anther Development)). For the first time, the present inventors have clarified that the transcription factor is a transcription factor.
  • the transcription factor involved in the formation of stamens or pistils is a transcription factor that promotes transcription of a gene involved in anther cleavage. Therefore, it is preferable to suppress the cleavage of anthers by producing in a plant a chimeric protein obtained by fusing the above-mentioned transcription factor with a functional peptide that converts an arbitrary transcription factor into a transcription repressor. ,.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that a transcription factor that promotes transcription of a gene involved in anther dehiscence, When a peptide that converts a transcription factor into a transcription repressor is fused to MYB26 protein, which is expressed in a plant, the ability to completely prevent anther dehiscence or only incompletely occurs And completed the present invention.
  • the transcription factor that promotes the transcription of a gene involved in the cleavage of anthers is a transcription factor having a MYB domain
  • a chimeric protein in which a factor and a functional peptide that converts an arbitrary transcription factor into a transcription repressor are fused in a plant to suppress the transcription of a gene involved in anther dehiscence.
  • the female organ has fertility.
  • the pollen itself of the above plant has fertility.
  • the chimeric protein can effectively suppress transcription of a gene targeted by the transcription factor. Therefore, an effect is obtained in which the anther dehiscence of the plant in which the chimeric protein is produced is suppressed.
  • the present inventors converted a transcription factor involved in the formation of stamens and pistils into a transcription repressor, and suppressed the transcription of a target gene of the above-mentioned transcription factor. It was clarified for the first time that it could be simply and reliably produced in a short period of time, and completed the present invention.
  • the method for producing a sterile plant according to the present invention comprises a transcription factor involved in the formation of stamens and pistils, and a function of converting any transcription factor into a transcription repressor.
  • the transcription factor can be converted to a transcription repressor, and in a plant, transcription of a target gene of the transcription factor is suppressed.
  • the chimeric protein acts more dominantly than the transcription factor and suppresses transcription of the target gene. Therefore, a double-flowered plant can be easily and reliably produced in a short period of time.
  • the obtained double-flowered plant is a sterile plant in which no seed is formed. Therefore, a target plant that does not use complicated genetic recombination techniques can be extremely easily turned into a sterile plant.
  • the method for producing a sterile plant comprises a method of producing a recombinant expression vector containing a chimeric gene comprising a gene encoding the transcription factor and a polynucleotide encoding the functional peptide in a plant cell. Including the transformation step to be introduced!
  • the method for producing a sterile plant may further include an expression vector constructing step for constructing the recombinant expression vector.
  • the chimeric protein can be expressed in plant cells simply by incorporating the transcription factor gene into the cassette vector to which the functional peptide has been added, and introducing the gene into a plant cell.
  • the transcription of the target gene of the transcription factor can be easily suppressed by the chimeric protein. Therefore, a sterile plant can be easily and reliably produced in a short period of time.
  • the transcription factor is characterized by being a protein described in the following (a) or (b): (A) a protein consisting of the amino acid sequence of SEQ ID NO: 134; (B) in the amino acid sequence represented by SEQ ID NO: 134, one or several amino acids are substituted, deleted, inserted, and Z or added, and promote the expression of a gene involved in flower organ formation. Proteins that have the function of
  • a gene described in the following (c) or (d) is preferably used.
  • C a gene having the nucleotide sequence of SEQ ID NO: 135 as an open reading frame region.
  • the transcription factor is preferably a protein described in the following (a) or (b).
  • the transcription factor has 50% or more homology to the amino acid sequence represented by SEQ ID NO: 136, and has a function of promoting transcription of a gene involved in anther dehiscence. It may be a protein.
  • a gene described in the following (c) or (d) is preferably used.
  • C a gene having the nucleotide sequence of SEQ ID NO: 137 as an open reading frame region.
  • the transcription factor is preferably a protein described in the following (a) or (b).
  • a gene described in the following (c) or (d) is preferably used.
  • C a gene having the nucleotide sequence of SEQ ID NO: 139 as an open reading frame region.
  • the transcription factor is preferably a protein described in the following (a) or (b).
  • a gene described in the following (c) or (d) is preferably used.
  • the transcription factor is converted into a transcription repressor by the functional peptide, and transcription of a target gene of the transcription factor is suppressed. Therefore, a double-flowered plant can be easily and reliably produced in a short period of time.
  • the method for producing a plant in which anther dehiscence is controlled comprises a gene encoding a protein described in the following (a) or (b):
  • a transcription factor that hybridizes with a gene having a nucleotide sequence complementary to the gene consisting of the nucleotide sequence of SEQ ID NO: 137 under stringent conditions and promotes transcription of a gene involved in anther dehiscence. Is characterized in that a gene encoding is used.
  • XI represents 0-10 amino acid residues
  • X2 represents Asn or Glu
  • X3 represents at least 6 amino acid residues.
  • Z1 represents Leu, Asp-Leu or Leu-Asp-Leu
  • Z2 represents Glu, Gin or Asp
  • Z3 represents 0-10 amino acid residues.
  • Z4 represents Glu, Gin or Asp
  • the functional peptide is preferably a peptide having an amino acid sequence represented by any one of SEQ ID NOS: 117.
  • the functional peptide may be a peptide described in (e) or (f) below! (E) a peptide having the amino acid sequence of SEQ ID NO: 18 or 19; (F) A peptide having an amino acid sequence represented by SEQ ID NO: 18 or 19 in which one or several amino acids have substitution, deletion, insertion, Z or addition.
  • oc 1 represents Asp, Asn, Glu, Gln, Thr or Ser
  • ⁇ 1 represents Asp, Gin, Asn, Arg Ar Glu, Thr, Ser or His
  • ⁇ 1 represents Arg ⁇ Indicates Gln, Asn, Thr, Ser, His, Lys or Asp.
  • the functional peptide has the following formula (6) — (8)
  • oc 1 represents Asp, Asn, Glu, Gln, Thr or Ser
  • oc 2 represents Asn, Glu, Gln, Thr or Ser
  • j81 represents Asp, Gln, Asn , Arg, Glu, Thr, Ser or His
  • j82 represents Asn, Arg, Thr, Ser or His
  • ⁇ 2 represents Gln, Asn, Thr, Ser, His, Lys or Asp.
  • It may be a peptide having the amino acid sequence shown in 29, 30, 31, 32, 33, 34, 35, 38, 39, 40 or 152.
  • the functional peptide may be a peptide having the amino acid sequence shown in SEQ ID NO: 36 or 37.
  • the functional peptide is a peptide having an amino acid sequence represented by any of the above formulas. Since it is a peptide or any of the peptides shown in the above SEQ ID NOs, and most of them are very short peptides, the synthesis is easy and the transcription of the target gene of the transcription factor can be efficiently suppressed. Further, the functional peptide has a function of suppressing the expression of a target gene in preference to the activity of another transcription factor that is functionally redundant (redundant). Therefore, there is an effect that the expression of the target gene can be effectively suppressed.
  • the plant that is useful in the present invention is a sterile plant produced by the above production method.
  • the above-mentioned sterile plant preferably contains at least one of a grown plant individual, a plant cell, a plant tissue, a callus, and a seed.
  • kits for producing a sterile plant which is useful in the present invention is a kit for performing the above-mentioned production method, and comprises vase formation, stamen or pistil formation, anther dehiscence. Or a gene encoding a transcription factor that promotes the expression of genes involved in the formation of stamens and pistils, and a polynucleotide encoding a functional peptide that converts any transcription factor into a transcription repressor. , A promoter and a recombinant expression vector.
  • the kit for producing a sterile plant may further comprise a group of reagents for introducing the recombinant expression vector into a plant cell.
  • FIG. 1 (a) is a view showing the whole of an Arabidopsis thaliana plant transformed with the recombinant expression vector p35S :: APETALA3SRDX in the Examples.
  • FIG. 1 (b) is an enlarged view of the tip of an Arabidopsis grown plant transformed by the recombinant expression vector p35S :: APETALA3SRDX in the example.
  • FIG. 1 (c) is an enlarged view of the vase of a grown plant of Arabidopsis thaliana transformed with the recombinant expression vector p35S :: APETALA3SRDX in the example.
  • FIG. 2 is a process chart showing a method for constructing a construction vector for constructing a recombinant expression vector used in Examples.
  • FIG. 3 A transcription repressor converting peptide SR was added to the construction vector p35SG used in the examples.
  • FIG. 3 is a process chart for incorporating a gene encoding DX and a NACAD1 gene.
  • FIG. 2 is a process chart for incorporating a gene encoding DX and a MYB26 gene.
  • FIG. 5 A transcription repressor converting peptide SR was added to the construction vector
  • FIG. 3 is a process chart for incorporating a gene encoding DX and an AG gene.
  • FIG. 6 is a process diagram showing a method for constructing a transformation vector pBIGCKH.
  • FIG. 7 (a) is a view showing the shape of the anther of Arabidopsis thaliana transformed with the recombinant expression vector pBIG-NACAD1SRDX in the example.
  • FIG. 7 (b) is a view showing the shape of anthers in wild-type Arabidopsis thaliana.
  • FIG. 8 is a diagram showing Arabidopsis thaliana (right) transformed with the recombinant expression vector pBIG-NACAD1SRDX and wild-type Arabidopsis thaliana (left) in Examples.
  • FIG. 9 (a) Arabidopsis thaliana transformed with the recombinant expression vector pBIG-NACAD1SRDX in the example, “mass of harvested seeds X dry weight of above-ground parts other than 100Z seeds
  • FIG. 9 (b) is a graph plotting the number of individuals with respect to the class value of “mass of harvested seeds X dry weight of the ground except for 100Z seeds” of wild-type Arabidopsis thaliana.
  • FIG. 10 In Examples, plants transformed with pBIG-NACADlSRDX and suppressed anther dehiscence were examined to determine whether or not fruiting would take place when pollen in anthers was taken out and pollinated. It is a figure showing a result.
  • FIG. 11 (a) is a view showing the shape of anthers in wild-type Arabidopsis thaliana.
  • FIG. 11 (b) is a view showing the shape of the anther of Arabidopsis thaliana transformed with the recombinant expression vector PBIG-MYB26SRDX in the example.
  • FIG. 12 (a) is a graph in which the number of individuals is plotted against the class value of “(number of fruited pods Z number of flowering flowers) ⁇ 100” of wild-type Arabidopsis thaliana.
  • FIG. 12 (b) is a graph in which “(number of fruited pods Z number of flowering flowers) ⁇ 100” of Arabidopsis thaliana transformed with the recombinant expression vector pBIG-MYB26SRDX in the examples is plotted.
  • FIG. 13 (a) Arabidopsis thaliana transformed with pBIG-AGSRDX and completely double-flowered It is a figure showing a flower.
  • FIG. 13 (b) is a diagram showing the entire Arabidopsis thaliana in which the flower morphology is double-flowered.
  • FIG. 14 (a) is a diagram showing wild-type Arabidopsis thaliana flowers.
  • FIG. 14 (b) is a view showing an Arabidopsis thaliana flower of an AG mutant.
  • FIG. 15 shows Arabidopsis thaliana flowers transformed with the recombinant expression vector pBIG-AGSRDX and having incomplete double bloom.
  • FIG. 16 is a diagram showing Arabidopsis thaliana flowers transformed with the recombinant expression vector pBIG-AGSRDX and having a form close to a wild type.
  • the present invention relates to a technique for producing a sterile plant, which comprises a transcription factor that promotes transcription of a gene involved in flower organ formation, and a functional peptide that converts an arbitrary transcription factor into a transcription repressor. And a chimeric protein produced by fusing with a plant. Since a normal pollen cannot be formed in the plant obtained by this method, a male sterile plant can be produced according to the present invention.
  • normal pollen formation cannot be performed as follows. That is, the DNA-binding domain derived from the transcription factor in the chimeric protein binds to a target gene presumed to be involved in flower organ formation. The transcription factor is converted to a transcription repressor, and the transcription of the target gene is suppressed. As a result, a male sterile plant that cannot form normal pollen, for example, by inhibiting the formation of stamens, can be obtained.
  • the male sterile plant (the present male sterile plant) produced by the production method of the present invention is one that cannot form normal pollen. That is, examples of the present male sterile body include those in which the formation of stamens is inhibited and no pollen is formed, and those in which stamens are formed but no anthers are formed, so that pollen is formed. No pollen is formed, and stamens and anthers are formed, but the amount of pollen that is formed is small and does not lead to cleavage of the anthers, or the formed pollen enlarges and sticks to each other and does not fly at all There are things.
  • the male sterile body in the male sterile body, normal pollen formation may not be possible, and the formation of other tissues may not be performed normally.
  • the male sterile body may be one in which petals and calyxes are formed in an unusual form, or those in which petals and calyx are formed at all. For example, if petals and calyx are not formed at all, pistils are exposed, so that it is possible to simplify the trouble of pollinating pollen of other species (removal of calyx and petals).
  • the present invention is also a technique for suppressing the dehiscence of anthers in a plant, and includes a transcription factor that promotes transcription of a gene involved in anther dehiscence, and a transcription factor that suppresses an arbitrary transcription factor.
  • a chimeric protein fused with a functional peptide that converts to a chimeric protein is produced in a plant. In the plant thus obtained, transcription of a gene involved in anther dehiscence is suppressed, and a plant in which anther dehiscence is suppressed can be produced.
  • the dehiscence of anthers is suppressed as follows. That is, the DNA binding domain derived from the transcription factor in the chimeric protein binds to a target gene presumed to be involved in anther dehiscence. The transcription factor is converted to a transcription repressor, and the transcription of the target gene is suppressed. This reduces the production of proteins presumed to be involved in anther dehiscence, and as a result, it is possible to suppress the anther dehiscence of the resulting plant.
  • the present invention also relates to a technique for suppressing the dehiscence of anthers in a plant, which is a transcription factor that promotes transcription of a gene involved in anther dehiscence, which is a transcription factor having an MYB domain.
  • a chimeric protein fused with a functional peptide that converts a transcription factor into a transcription repressor is produced in a plant.
  • transcription of a gene involved in anther dehiscence is suppressed, and a plant in which anther dehiscence is suppressed can be produced.
  • RNAi method As a method for suppressing the function of a gene at present, the effect of lowering the efficiency of transfection may be limited depending on the cell. Therefore, when using the RNAi method, it is difficult to determine the target site, and trial and error is required. Also, it is difficult to construct a construct.
  • a chimeric gene in which a gene encoding the functional peptide is linked to a gene encoding the transcription factor is introduced into a plant, so that the anther of a target plant can be disrupted very easily. Control opening Is possible.
  • Plants produced by the production method according to the present invention include plants in which anther dehiscence does not completely occur and plants in which anther dehiscence occurs only incompletely.
  • the body is included.
  • the anther is a part of the stamen and is a bag-shaped part that produces pollen.
  • pollen germinates in the anther and elongates the pollen tube through a soft anther wall without the development of a fibrous cell layer. Release pollen out of the anther.
  • Anther dehiscence occurs when the guard cells undergo cell death where the anther wall breaks.
  • the plant in which anther dehiscence is suppressed as referred to in the present invention refers to a plant in which the mouth cells have been cut but the mouth cells have been cut off and the anther wall has been warped to open the anther.
  • Oral cells are tissues with even smaller cellular forces, corresponding to the part where anthers open.
  • the female organ has fertility.
  • pollen of another species can be pollinated to the plant of the present invention in which the anther dehiscence is suppressed. Therefore, the first hybrid (F1) varieties can be obtained by hybridization using heterosis without the labor of artificially removing or artificially removing male organs.
  • the anther dehiscence is suppressed! If the pollen itself is fertile, the pollen itself may have fertility or fertility. It is not necessary that the pollen itself has fertility. This makes it possible to produce plants that do not undergo self-pollination while leaving the pollen itself fertile and useful for breeding and the like. That is, a male sterile body whose pollen itself does not have fertility cannot produce and maintain a homozygous individual by selfing because the pollen itself cannot be used. Homozygous individuals can be self-pollinated by self-pollination, but homozygous individuals will not be able to gain 1Z4 when they are powerful. On the other hand, leaving the fertility of the pollen itself will allow the creation and maintenance of homozygous individuals, which could be applied to breeding.
  • the present invention also relates to a technique for producing a double-flowered plant, comprising the production of stamens and pistils.
  • a double-flowered plant is produced by producing, in a plant, a chimeric protein in which a transcription factor involved in formation and a functional peptide that converts an arbitrary transcription factor to a transcription repressor are fused.
  • the transcription factor is converted into a transcription repressor by the functional peptide. Therefore, when the DNA binding domain derived from the transcription factor in the chimeric protein binds to the target gene of the transcription factor, the transcription of the target gene of the transcription factor is suppressed. As a result, the functions of the genes involved in the formation of stamens and pistils are lost, and the above-mentioned class A function is applied to the entire area of the flower, so that the stamens turn into petals, and in the wild type, New flowers are formed in the pistil area, and a double-flowered plant is formed. That is, as shown in FIG. 13 (A), the flowers are repeatedly formed in the order of the petals and the petals from the outside.
  • the trait that the chimeric protein suppresses transcription of a target gene of the transcription factor is dominant. That is, even if a normal gene involved in the formation of stamens and pistils exists, the mutant gene in which transcription of the target gene of the transcription factor is suppressed is more predominantly expressed. That is, the chimeric protein acts more dominantly than the transcription factor and suppresses transcription of the target gene.
  • a double-flowered plant can be produced simply and reliably in a short period of time.
  • the double-flowered plant obtained is a sterile plant in which no seed is formed.
  • sterile plants not only completely sterile plants in which neither stamens nor pistils are formed, but incomplete stamen-like organs and Z or pistil-like organs are formed. However, it also includes sterile plants in which seed formation is suppressed.
  • the chimeric protein used in the present invention may be a gene involved in flower organ formation, a gene involved in the formation of stamens or pistils, a gene involved in the dehiscence of anthers, It is a fusion of a transcription factor that promotes the transcription of genes involved in the formation of pistils and pistils with a functional peptide that converts any transcription factor into a transcription repressor.
  • a transcription factor that promotes transcription of a gene involved in anther dehiscence may be a transcription factor having a MYB domain.
  • the chimeric protein used in the present invention acts dominantly on endogenous genes.
  • the chimeric protein according to the present invention can be used for flower organ formation, which is controlled by the corresponding transcription factor, even if the plant is a diploid / diploid, or a plant has a function duplication gene.
  • the transcription factor used in the present invention is not particularly limited as long as it is a transcription factor that promotes transcription of a gene involved in flower organ formation. Strong transcription factors are stored in many plants. Therefore, the transcription factors used in the present invention include proteins that are conserved in various plants and have similar functions.
  • transcription factors include, but are not limited to, APETALA3 protein and PISTILLATA protein, which are transcription factors including the MADS Box.
  • a typical example of the transcription factor used in the present invention includes, for example, APETALA3 protein.
  • the APETALA3 protein is a protein having the amino acid sequence shown in SEQ ID NO: 134, and as described above, is known to be a transcription factor that promotes transcription of genes involved in flower organ formation. In Arabidopsis thaliana, it is known that the formation of petals and stamens is inhibited in a mutant of the gene encoding this APETALA3 protein (referred to as APETALA3 gene for convenience of explanation). Puru (see Thomas Jack, Laura L. Brockman, and Elliot M. Meyerrowitz., Cell, Vol 68, pp 683-697, February, 1992).
  • the APET ALA3 protein which is a transcription factor, is converted to a transcription repressor by fusing a functional peptide described later to this APETALA3 protein.
  • the transcription factor used in the present invention is not limited to the APETALA3 protein having the amino acid sequence shown in SEQ ID NO: 134, but has a function of promoting the expression of genes involved in flower organ formation. Should be fine. Specifically, in the amino acid sequence shown in SEQ ID NO: 134, one or several amino acids are substituted, deleted, inserted, and Z or even a protein having the amino acid sequence strength of added, the above function If it has, it can be used in the present invention.
  • amino acid sequence in which one or several amino acids are substituted, deleted, inserted, and Z or added in the amino acid sequence represented by SEQ ID NO: 134" The range of is not particularly limited, for example, means 1 to 20, preferably 1 to 10, more preferably 1 to 7, more preferably 1 to 5, particularly preferably 1 to 3 .
  • the amino acid sequence of a transcription factor that promotes transcription of a gene involved in flower organ formation used in the present invention is considered to be highly conserved among many plants of different species. Therefore, it is not always necessary to isolate a unique transcription factor that promotes the expression of a gene involved in flower organ formation or its gene in individual plants that want to produce male sterile bodies. That is, it is considered that by introducing the chimeric protein constructed in Arabidopsis thaliana shown in Examples described later into other plants, male sterile bodies can be easily produced in plants of various species.
  • a known gene recombination technique can be suitably used, as described later. Therefore, in the method for producing a plant according to the present invention, a gene encoding the above-mentioned transcription factor can also be suitably used.
  • the gene encoding the transcription factor is not particularly limited, but a specific example is the APETALA3 gene when the APETALA3 protein is used as the transcription factor.
  • the nucleotide sequence of SEQ ID NO: 135 is Polynucleotides included as a frame (ORF) can be mentioned.
  • the APETALA3 gene or the gene encoding the transcription factor used in the present invention is not limited to the above examples, but may be a gene having homology to the base sequence shown in SEQ ID NO: 135. It may be. Specifically, for example, a gene that hybridizes under stringent conditions to a gene consisting of a nucleotide sequence complementary to the gene consisting of the nucleotide sequence shown in SEQ ID NO: 135, and that encodes the above-mentioned transcription factor, etc. be able to.
  • “no hybridization under stringent conditions” means binding under 60 ° C. under 2 ⁇ SSC washing conditions.
  • the method for obtaining the gene encoding the transcription factor is not particularly limited. Many plant powers can be isolated by a conventionally known method. For example, a primer pair prepared based on the base sequence of a known transcription factor can be used. The above gene can be obtained, for example, by performing PCR using a pair of the primers and a plant cDNA or genomic DNA as a type III. The gene encoding the above transcription factor can also be obtained by chemically synthesizing according to a conventionally known method.
  • the transcription factor used in the present invention is not particularly limited as long as it is a transcription factor that promotes transcription of a gene involved in anther dehiscence.
  • anthers cleave and release pollen out of the anthers. Therefore, transcription factors that promote the transcription of genes involved in anther dehiscence are conserved in many plants. Therefore, the transcription factors used in the present invention include transcription factors having similar functions that are conserved in various plants.
  • a typical example of the transcription factor used in the present invention is, for example, the NACAD1 protein.
  • NACAD1 protein is a protein having the amino acid sequence shown in SEQ ID NO: 136, and as described above, is one of the NAC family proteins of Arabidopsis thaliana. In the present invention, for example, this NACAD1 protein will be described later.
  • NACAD1 protein By fusing a functional peptide, NACAD1 protein, which is a transcription factor, is converted to a transcriptional repressor.
  • the transcription factor used in the present invention is not limited to the NACAD1 protein having the amino acid sequence shown in SEQ ID NO: 136, but may be any transcription factor that promotes transcription of a gene involved in anther dehiscence. Just fine. Specifically, in the amino acid sequence shown in SEQ ID NO: 136, one or several amino acids are substituted, deleted, inserted, and Z- or added, even if the protein has the amino acid sequence strength, If it has a function, it can be used in the present invention.
  • ⁇ one or several '' in the above ⁇ amino acid sequence shown in SEQ ID NO: 136, in which one or several amino acids are substituted, deleted, inserted, and Z or added, '' Although not particularly limited, it means, for example, 1 to 20, preferably 1 to 10, more preferably 1 to 7, still more preferably 1 to 5, and particularly preferably 1 to 3.
  • the transcription factor is a protein having 20% or more, preferably 50% or more, more preferably 60% or 70% or more homology with the amino acid sequence shown in SEQ ID NO: 136. And proteins having a function of promoting transcription of genes involved in anther dehiscence. Here, “homology” is the proportion of the same sequence in the amino acid sequence, and the higher the value, the closer the two are. Examples of the transcription factor include a NAC factor having the above homology of 52% and having the same function as the NACAD1 protein having the amino acid sequence shown in SEQ ID NO: 136.
  • the gene encoding the transcription factor is not particularly limited as long as it corresponds to the amino acid sequence of the transcription factor based on the genetic code.
  • a gene encoding this NACAD1 protein (referred to as NACAD1 gene for convenience of explanation) can be mentioned.
  • NACAD1 gene for example, a polynucleotide containing the nucleotide sequence of SEQ ID NO: 137 as an open reading frame (ORF) Nucleotides may be mentioned.
  • the NACAD1 gene or the gene encoding the transcription factor used in the present invention is not limited to the above examples, and may be a gene having homology to the base sequence shown in SEQ ID NO: 137. You may. Specifically, for example, a gene that hybridizes under stringent conditions with a gene consisting of a nucleotide sequence complementary to the gene consisting of the nucleotide sequence shown in SEQ ID NO: 137, and that encodes the above-mentioned transcription factor, etc. it can.
  • the meaning of “noisy under stringent conditions” is as described above.
  • the above hybridization can be performed by a conventionally known method.
  • the method for obtaining the gene encoding the transcription factor is not particularly limited. As described above, many plant powers can be isolated by a conventionally known method. Further, as described above, the gene encoding the transcription factor is obtained by chemically synthesizing according to a conventionally known method.
  • (l-1-c) A transcription factor that promotes transcription of genes involved in anther dehiscence, and has a MYB domain
  • the transcription factor used in the present invention is a transcription factor that promotes transcription of a gene involved in anther dehiscence, and is not particularly limited as long as it has a MYB domain.
  • the MYB domain refers to a domain having about 50 amino acid residues as a unit having homology with a product of the myb gene, which is one of oncogenes. Transcription factors having such MYB domains are called MYB transcription factor families, and MYB domains are conserved in many species of animals and plants.
  • the transcription factor used in the present invention is a transcription factor belonging to the powerful MYB transcription factor family and may be a transcription factor that promotes the transcription of a gene involved in anther dehiscence! In general, anthers cleave and release pollen out of the anthers. Therefore, the transcription factors used in the present invention include transcription factors having similar functions and similar domains conserved in various plants.
  • transcription factors examples include Arabidopsis MYB26 protein and a protein encoded by rice NP-9165761 (GenBank accession number). The above-mentioned transcription factors are not limited thereto. is not.
  • a typical example of the transcription factor used in the present invention is the Arabidopsis MYB26 protein.
  • the MYB26 protein includes, for example, a protein having an amino acid sequence represented by SEQ ID NO: 138, and is one of the MYB transcription factor family of Arabidopsis thaliana, as described above.
  • the MYB26 protein is not limited to the protein having the amino acid sequence shown in SEQ ID NO: 138, but is a strong splicing variant as long as it is a transcription factor having a function of promoting transcription of a gene involved in anther dehiscence. Is also included.
  • the MYB26 protein which is a transcription factor, is converted to a transcription repressor by fusing a functional peptide described below with the MYB26 protein.
  • the gene targeted by this transcription factor MYB26 is an enzyme responsible for lignin synthesis in anthers. It is expected that this is the gene. In other words, it is expected that the MYB26 transcription factor positively regulates the expression of genes such as enzymes responsible for lignin synthesis in anthers. Regarding the relationship between lignin synthesis and anther cleavage, it is conceivable that the anthers open to the left and right around the stomach due to the contraction of the endothelial cells of the anther wall by lignini and dehydration.
  • the transcription factor used in the present invention is a gene involved in the cleavage of anthers. It is a transcription factor that promotes transcription and that positively controls the expression of genes such as enzymes responsible for lignin synthesis.
  • the transcription factor used in the present invention is not limited to the MYB26 protein consisting of the amino acid sequence of SEQ ID NO: 138, but is a MYB family transcription factor that promotes the transcription of a gene involved in anther cleavage. Is good enough. Specifically, in the amino acid sequence represented by SEQ ID NO: 138, even if the protein has one or several amino acids substituted, deleted, inserted, and Z or added, the above function And MYB domain can be used in the present invention.
  • amino acid sequence shown in SEQ ID NO: 138 one or several amino acids are substituted, deleted, inserted, and Z
  • the range of ⁇ one or several '' in the ⁇ or added amino acid sequence '' is not particularly limited, for example, 1 to 20, preferably 1 to 10, more preferably 1 to 7, and still more preferably 1 From 5 to 5, particularly preferably from 1 to 3.
  • the transcription factor is a protein having 20% or more, preferably 50% or more, more preferably 60% or 70% or more homology with the amino acid sequence shown in SEQ ID NO: 138. And a protein having a function of promoting transcription of a gene involved in anther dehiscence and a MYB domain.
  • “homology” is the ratio of the same sequence in the amino acid sequence, and the higher the value, the closer the two are !!
  • the amino acid sequence of the transcription factor used in the present invention which is a transcription factor that promotes transcription of a gene involved in anther dehiscence and has a MYB domain, differs among many different species of plants. It is considered that storage stability is high. Therefore, it is not always necessary to isolate a strong transcription factor or a gene encoding a strong transcription factor in each plant in which anther cleavage is to be suppressed. That is, by introducing the gene encoding the chimeric protein constructed in Arabidopsis thaliana shown in the examples described later into other plants, it is possible to easily produce plants in which anther cleavage is suppressed in plants of various species. can do.
  • a known gene recombination technique can be suitably used as described later. Therefore, in the method for producing a plant according to the present invention, a gene encoding the above-mentioned transcription factor can also be suitably used.
  • the gene encoding the transcription factor is not particularly limited as long as it corresponds to the amino acid sequence of the transcription factor based on the genetic code.
  • a gene encoding this MYB26 protein (for convenience of description, referred to as MYB26 gene) can be mentioned.
  • MYB26 gene is, for example, a polynucleotide containing the nucleotide sequence of SEQ ID NO: 139 as an open reading frame (ORF).
  • the gene encoding the MYB26 gene or the transcription factor used in the present invention has homology to the base sequence shown in SEQ ID NO: 139, which is not limited to the above examples. It may be a gene. Specifically, for example, in SEQ ID NO: 139 A gene that hybridizes under stringent conditions with a gene consisting of a nucleotide sequence complementary to the gene consisting of the indicated nucleotide sequence and that encodes the above-mentioned transcription factor can be mentioned. The meaning of “noisy under stringent conditions” is as described above.
  • the above hybridization can be performed by a conventionally known method.
  • the method for obtaining the gene encoding the transcription factor is not particularly limited. As described above, many plant powers can be isolated by a conventionally known method. Further, as described above, the gene encoding the transcription factor is obtained by chemically synthesizing according to a conventionally known method.
  • the transcription factor used in the present invention is not particularly limited as long as it is a transcription factor involved in the formation of stamens and pistils.
  • the transcription factor used in the present invention is a protein consisting of the amino acid sequence shown in SEQ ID NO: 140, or a mutant of the protein shown in SEQ ID NO: 140, which also has amino acid sequence strength.
  • the protein consisting of the amino acid sequence shown in SEQ ID NO: 140 is a transcription factor encoded by the AG gene and is involved in the formation of stamens and pistils.
  • Variants include deletions, insertions, inversions, repetitions, and type substitutions (eg, replacement of a hydrophilic residue with another residue; (A hydrophobic residue is not replaced).
  • type substitutions eg, replacement of a hydrophilic residue with another residue; (A hydrophobic residue is not replaced).
  • neutral amino acid substitutions in a protein generally have little effect on the activity of the protein.
  • any base of a polynucleotide encoding a protein can be mutated.
  • a primer corresponding to an arbitrary site of a polynucleotide encoding a protein can be designed to produce a deletion mutant or an addition mutant.
  • it can be easily determined whether or not the produced mutant has a desired activity.
  • Preferred variants have conservative or non-conservative amino acid substitutions, deletions, or additions. Preferred are silent substitutions, additions and deletions, particularly preferred are conservative substitutions. They do not alter the protein activity according to the invention.
  • the transcription factor according to the present embodiment is preferably a protein described in the following (a) or (b).
  • the range of ⁇ one or several '' in the ⁇ amino acid sequence in which one or several amino acids are substituted, deleted, inserted, and Z or added '' is not particularly limited, for example, 1 to 20, It preferably means 1 to 10, more preferably 1 to 7, still more preferably 1 to 5, particularly preferably 1 to 3.
  • such a mutant protein has a mutation artificially introduced by a known mutant protein production method.
  • the protein is not limited to the above-mentioned proteins, but may be a protein which is isolated and purified from a naturally occurring protein.
  • the protein according to the present invention may be a protein in which amino acids are peptide-bonded, but is not limited to this. It is a complex protein containing a structure other than a protein. Is also good.
  • examples of the “structure other than protein” include a sugar chain and an isoprenoid group, but are not particularly limited.
  • the protein according to the present invention may include an additional protein!
  • proteins examples include epitope-labeled proteins such as His, Myc, and Flag.
  • the homeotic gene of flowers has been isolated from Arabidopsis thaliana, etc., and is thought to function similarly not only in dicotyledonous plants but also in monocotyledonous plants. Therefore, the amino acid sequences of transcription factors involved in the formation of stamens and pistils, such as the transcription factor encoded by the AG gene, are considered to be highly conserved among many plants of different species. Therefore, it is not always necessary to isolate transcription factors and genes involved in the formation of stamens and pistils in individual plants that form a double-flowered plant. That is, by introducing the chimeric protein constructed in Arabidopsis thaliana shown in Examples described later into other plants, a double-flowered plant can be produced in plants of various species.
  • a known gene recombination technique can be suitably used, as described later. Therefore, in the method for producing a plant according to the present invention, a gene (polynucleotide) encoding the above-mentioned transcription factor can also be suitably used.
  • the gene encoding the transcription factor can exist in the form of RNA (eg, mRNA) or in the form of DNA (eg, cDNA or genomic DNA).
  • DNA may be double-stranded or single-stranded.
  • Single-stranded DNA or RNA may be the coding strand (also known as the sense strand) or the non-coding strand (also known as the antisense strand).
  • the gene encoding the transcription factor is further involved in the formation of stamens and pistils It may be a mutant of a gene encoding a transcription factor. Mutants can occur naturally, such as naturally occurring allelic variants.
  • allelic variant is intended one of several interchangeable forms of a gene that occupy a given locus on the chromosome of an organism. Non-naturally occurring variants can be generated, for example, using mutagenesis techniques well known in the art.
  • Examples of such a mutant include a mutant in which one or several bases are deleted, substituted, or added in the base sequence of the polynucleotide encoding the transcription factor. Variants can be mutated in the coding or non-coding region, or both. Mutations in the coding region can produce conservative or non-conservative amino acid deletions, substitutions, or additions.
  • the gene encoding the transcription factor includes a gene encoding the transcription factor or a polynucleotide that hybridizes to the gene under stringent hybridization conditions.
  • the gene encoding the transcription factor is preferably a polynucleotide described in the following (c) or (d)! /.
  • (d) encodes a protein that hybridizes with a gene consisting of a nucleotide sequence complementary to the gene consisting of the nucleotide sequence shown in SEQ ID NO: 141 under stringent conditions and is involved in the formation of stamens and pistils The gene to do.
  • stringent conditions means that at least 90% or more identity, preferably at least 95% identity, and most preferably 97% identity exists between sequences. It means that hybridization occurs.
  • the above hybridization can be performed by a conventionally known method.
  • the hybridization conditions conventionally known conditions can be suitably used, and there is no particular limitation.
  • In general, at 42 ° C., 6 ⁇ SSPE, 50% honolemamide, 1% SDS, 100 / z gZml DNA, 5X Denhardt's solution (1X SSPE; 0.18M sodium chloride, 10mM sodium phosphate, PH7.7, ImM EDTA. 5X Denhardt's solution; 0.1% bovine serum albumin, 0.1% % Ficoll, 0.1% polybutylpyrrolidone).
  • the method for obtaining the gene encoding the transcription factor is not particularly limited.
  • a method for isolating a DNA fragment containing the polynucleotide encoding the transcription factor and closing the DNA fragment by a known technique is used. be able to.
  • a probe that specifically and partially hybridizes with a part of the nucleotide sequence of the gene encoding the transcription factor may be prepared, and a genomic DNA library or a cDNA library may be screened!
  • the misaligned sequence and the Z or length of the probe may be used. You can use something.
  • a method for obtaining the gene encoding the transcription factor a method using an amplification means such as PCR can be mentioned.
  • primers are respectively prepared from the sequences on the 5, and 3 sides (or their complementary sequences), and genomic DNA (
  • a large amount of a DNA fragment containing the polynucleotide encoding the above-mentioned transcription factor can be obtained by performing PCR or the like with the) as a template and amplifying the DNA region sandwiched between both primers.
  • the functional peptide for converting any transcription factor into a transcription repressor used in the present invention (for convenience of description, referred to as a transcription repressor converting peptide) is not particularly limited. Any peptide can be used as long as it can suppress the transcription of the target gene controlled by the transcription factor. Specifically, for example, a transcription repressor converting peptide discovered by the present inventors (see Patent Documents 3-9, Non-Patent Documents 10 and 11 and the like) can be mentioned.
  • the inventor of the present invention has proposed that Arabidopsis-derived AtERF3 protein, AtERF4 protein, AtERF7 protein, and AtERF8 protein, which are one of the Class II ERF gene groups, are combined with a transcription factor to significantly suppress gene transcription.
  • a transcription factor to significantly suppress gene transcription.
  • the gene encoding each of the above proteins and the DNA cut out therefrom By constructing an effector plasmid containing this and introducing it into plant cells, the inventors succeeded in actually suppressing gene transcription (see, for example, Patent Documents 3-6).
  • a gene encoding a tobacco ERF3 protein see, for example, Patent Document 7
  • a rice OsERF3 protein see, for example, Patent Document 8
  • a gene encoding Arabidopsis thaliana ZAT10 and ZAT11 was found to suppress gene transcription.
  • the present inventors have revealed that these proteins have a common motif containing aspartic acid mono-isocyanate-asparagine (DLN) in the terminal region of the carboxyl group.
  • DLN aspartic acid mono-isocyanate-asparagine
  • the present inventor has found that the Arabidopsis SUPERMAN protein has a motif that does not coincide with the above-mentioned common motif, but has a function of converting any transcription factor into a transcription repressor. It has also been found that a chimeric gene in which a gene encoding is linked to a DNA-binding domain of a transcription factor or a gene encoding a transcription factor produces a protein having a strong transcriptional repressing ability.
  • the Class II ERF protein Arabidopsis-derived AtERF3 protein, AtERF4 protein, AtERF7 protein, and AtERF8 protein the Class II ERF protein Arabidopsis-derived AtERF3 protein, AtERF4 protein, AtERF7 protein, and AtERF8 protein , Tapaco ERF3 protein, rice OsERF3 protein, proteins such as Arabidopsis thaliana ZAT10 protein and ZAT11 protein which are one of the jinta singer proteins, the SU PERMAN protein, peptides cut out of these, and synthetic peptides having the above functions. Peptides and the like can be mentioned.
  • a specific structure of an example of the transcription repressor converting peptide is an amino acid sequence represented by any one of the following formulas (1) and (4).
  • XI represents 0-10 amino acid residues
  • X2 represents Asn or Glu
  • X3 represents Shows at least six amino acid residues.
  • Y1 represents 0-10 amino acid residues
  • Y2 represents Phe or lie
  • Y3 represents at least 6 amino acid residues.
  • Z1 represents Leu, Asp-Leu or Leu-Asp-Leu
  • Z2 represents Glu, Gin or Asp
  • Z3 represents 0-10 amino acid residues.
  • Z4 represents Glu, Gin or Asp
  • the number of amino acid residues represented by XI may be in the range of 0 to 10.
  • the type of the specific amino acid constituting the amino acid residue represented by XI is not particularly limited, and may be any type.
  • an oligomer having one arbitrary amino acid or 2-10 arbitrary amino acid residue is added to the N-terminal side! Yes, and it doesn't have to have any amino acids added!
  • the amino acid residue represented by XI is preferably as short as possible in view of the ease of synthesizing the transcription repressor converting peptide of formula (1). Specifically, the number is preferably 10 or less, more preferably 5 or less.
  • the number of amino acid residues represented by the above X3 may be at least six.
  • the type of the specific amino acid constituting the amino acid residue represented by X3 is not particularly limited, and may be any type.
  • an oligomer having a power of six or more arbitrary amino acid residues may be added to the C-terminal side. The function described above can be exhibited if the amino acid residue represented by X3 is at least six.
  • the number of amino acid residues represented by Y1 is 0 to 10 as in the case of XI of the transcriptional repression-converting peptide of the above formula (1).
  • the number may be within the range of the number.
  • the type of the specific amino acid constituting the amino acid residue represented by Y1 is not particularly limited, and may be any type.
  • one arbitrary amino acid or 2-10 Oligomers with any amino acid residue power may or may not be added, and no amino acids may be added.
  • the amino acid residue represented by Y1 should be as short as possible in view of the ease of synthesizing the transcription repressor converting peptide of formula (2). Specifically, the number is preferably 10 or less, more preferably 5 or less.
  • the number of amino acid residues represented by the above Y3 is at least 6 as in X3 of the transcription repressor converting peptide of the above formula (1). I just need it.
  • the type of the specific amino acid constituting the amino acid residue represented by Y3 is not particularly limited, and may be any type.
  • an oligomer having 6 or more arbitrary amino acid residue power is added to the C-terminal side. It just needs to be done. The above function can be exhibited if the amino acid residue represented by Y3 is at least six.
  • the amino acid residue represented by the above Z1 Contains Leu in the range of one to three.
  • the case of one amino acid is Leu
  • the case of two amino acids is Asp-Leu
  • the case of three amino acids is Leu-Asp Leu.
  • the number of amino acid residues represented by the above Z3 is 0-10, as in the case of XI of the transcription repressor converting peptide of the above formula (1).
  • the number may be within the range.
  • the type of the specific amino acid constituting the amino acid residue represented by Z3 is not particularly limited, and may be any type.
  • an oligomer having one arbitrary amino acid or 2-10 arbitrary amino acid residues may be added to the C-terminal side. And no amino acids are added.
  • the amino acid residue represented by Z3 is preferably as short as possible in view of the ease of synthesizing the transcription repressor conversion peptide of formula (3). Specifically, the number is preferably 10 or less, more preferably 5 or less. Specific examples of the amino acid residue represented by Z3 include Gly, Gly—Phe—Phe, Gly—Phe—Ala, Gly—Tyr—Tyr, Ala—Ala—Ala, and of course. It is not limited.
  • the number of amino acid residues in the entire transcriptional repression-converting peptide represented by the formula (3) is not particularly limited. However, from the viewpoint of ease of synthesis, the number of amino acid residues is 20 amino acids or less. It is preferable that
  • SEQ ID NOS: 46 to 54 a specific sequence of an oligomer having 7 to 10 amino acid residues excluding Z3 is shown in SEQ ID NOS: 46 to 54.
  • the transcription repressor converting peptide of the above formula (4) is a hexamer (6 mer) having six amino acid residues, and its specific sequence is shown in SEQ ID NOS: 5, 14, and 55.
  • the above Z4 is G1
  • the amino acid sequence when u is the amino acid sequence shown in SEQ ID NO: 5
  • the amino acid sequence when Z4 is Asp is the amino acid sequence shown in SEQ ID NO: 14
  • the amino acid sequence when Z4 is Gin is the amino acid sequence shown in SEQ ID NO: 55 is the amino acid sequence shown in 55.
  • the transcription repressor converting peptide used in the present invention may be a peptide having a minimum sequence such as a hexamer represented by the above formula (4).
  • the amino acid sequence shown in SEQ ID NO: 5 corresponds to the 196-201 amino acid sequence of Arabidopsis thaliana SUPERMAN protein (SUP protein), and as described above, the present inventor newly found the above-mentioned transcription repressor converting peptide. It is.
  • the peptide having the amino acid sequence shown in SEQ ID NO: 18 is a SUP protein.
  • amino acid sequence in which one or several amino acids are substituted, deleted, inserted, and Z or added in any of the amino acid sequences shown in SEQ ID NOs: 18 and 19 Although the range of ⁇ several '' is not particularly limited, for example, 1 to 20, preferably 1 to 10, more preferably 1 to 7, still more preferably 1 to 5, particularly preferably 1 to 3 Means
  • the deletion, substitution, or addition of the amino acid can be performed by modifying the nucleotide sequence encoding the peptide by a method known in the art.
  • a known method such as the Kunkel method or the For example, using a mutagenesis kit using site-directed mutagenesis (for example, Mutant-K or Mutant-G (both trade names, manufactured by TAKARA)) or the like, or LA PCR in vitro Mutagenesis series kit (trade name, TAKAR
  • the functional peptide is not limited to a peptide having the full-length sequence of the amino acid sequence shown in SEQ ID NO: 18, and may be a peptide having a partial sequence thereof.
  • Examples of the peptide having the partial sequence include a peptide having the amino acid sequence shown in SEQ ID NO: 19 (amino acid sequence at position 175 to 204 of the SUP protein). Examples include the peptide represented by the above (3).
  • This motif is specifically a peptide having an amino acid sequence represented by the following general formula (5). These peptides are also included in the above-described transcription repressor converting peptide.
  • ⁇ 1 represents Asp, Asn, Glu, Gln, Thr or Ser
  • ⁇ 1 represents Asp, Gln, Asn ⁇ Arg ⁇ Glu, Thr, Ser or His
  • ⁇ 1 Indicates Arg ⁇ Gln, Asn ⁇ Thr, Ser, His, Lys or Asp.
  • ⁇ 1 represents 85, 85! 1, 0111, 0111, 1 ⁇ : or 361 :
  • ⁇ 2 represents Asn, Glu, Gln, Thr or Ser.
  • J81 represents Asp, Gln, Asn, Arg, Glu, Thr, Ser or His
  • j82 represents Asn, Arg, Thr, Ser or His
  • j83 represents Glu, A Indicates sp or Gin.
  • ⁇ 2 represents Gln, Asn, Thr, Ser, His, Lys or Asp
  • the more specific f-line of the transcription repressor converting peptide having the amino acid sequence represented by the above formulas (5) to (9) includes the f-sequence IJ numbers 20, 21, 22, 23, 24, Peptides having the amino acid sequence represented by 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 38, 39, 40 or 152 can be mentioned. Among them, the peptide of IJ No.
  • 27, 28, 30, 32, 38, 39, 40 or 152 corresponds to the peptide represented by the general formula (6), and has SEQ ID NO: 20, 23, 33, 34 or The peptide of 35 corresponds to the peptide represented by the general formula (7), and the peptide of SEQ ID NO: 24, 25, 26, 29, or 31 corresponds to the peptide represented by the general formula (8), The peptide of 21 or 22 corresponds to the peptide represented by the general formula (9).
  • a transcriptional repressor converting peptide having the amino acid sequence represented by SEQ ID NO: 36 or 37 can also be used.
  • a chimeric protein can be produced by obtaining a chimera gene with a polynucleotide encoding a transcription factor using the polynucleotide encoding the transcription repressor converting peptide.
  • a chimeric gene is obtained by linking a polynucleotide encoding the above-described transcription repressor converting peptide (for convenience of description, referred to as a transcription repressor converting polynucleotide) and a polynucleotide encoding the above transcription factor. Is constructed and introduced into plant cells. As a result, a chimeric protein can be produced. The specific method for introducing the chimeric gene into the plant cells will be described in detail in (2) below.
  • the specific nucleotide sequence of the above-described transcription repressor converting polynucleotide is not particularly limited, and may include a nucleotide sequence corresponding to the amino acid sequence of the above-mentioned transcription repressor converting peptide based on the genetic code. .
  • the transcription repressor-converted polynucleotide may include a nucleotide sequence serving as a linking site for linking to a polynucleotide encoding a transcription factor.
  • the amino acid reading of the transcription repressor converting polynucleotide is performed. When the reading frame does not match the reading frame of the polynucleotide encoding the transcription factor, an additional nucleotide sequence for matching them may be included.
  • transcription repressor-converted polynucleotide examples include, for example, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, or 153 Can be mentioned.
  • the polynucleotides represented by 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133 or 154 are each complementary to the polynucleotides exemplified above. Polynucleotide.
  • transcription repressor-converted polynucleotide examples include the polynucleotides shown in SEQ ID NOS: 90 and 91, for example. These polynucleotides correspond to the amino acid sequences shown in SEQ ID NOs: 140 and 152 as shown in Table 1 below.
  • SEQ ID NO: 1 SEQ ID NO: 5 6 ⁇ 5 7 SEQ ID NO: 2 SEQ ID NO: 9 6-9 7 SEQ ID NO: 2 SEQ ID NO: 5 8 ⁇ 5 9 SEQ ID NO: 23 SEQ ID NO: 9 8 ⁇ 9 9 SEQ ID NO: 3 SEQ ID NO: 60 ⁇ 6 1 SEQ ID NO: 2 4 SEQ ID NO: 1 0 0 .1 0 1 SEQ ID NO: 4 SEQ ID NO: 6 2 ⁇ 6 3 SEQ ID NO: 2 5 SEQ ID NO: 1 0 2 .1 0 3 SEQ ID NO: 5 SEQ ID NO: 6 4 ⁇ 6 5 SEQ ID NO: 2 6 SEQ ID NO: 1 0 4 ⁇ 1 0 5 SEQ ID NO: 6 SEQ ID NO: 6 ⁇ 6 7 SEQ ID NO: 2 SEQ ID NO: 1 0 6 ⁇ 1 0 7 SEQ ID NO: 7 SEQ ID NO: 6 8 ⁇ 6 9 SEQ ID NO: 2 8 SEQ ID NO: 1 0 8
  • the chimeric protein used in the present invention can also obtain the above-mentioned chimeric gene power obtained by linking a gene encoding a transcription factor and a transcription repressor-converting polynucleotide. Therefore, the configuration of the chimeric protein is not particularly limited as long as it includes the site of the transcription factor and the site of the transcription repressor converting peptide.
  • a polypeptide having a linker function for connecting a transcription factor to a transcription repressor converting peptide a polypeptide for labeling a chimeric protein such as His, Myc, Flag, etc. with an epitope, etc. May be included.
  • the chimeric protein may contain a structure other than the polypeptide, for example, a sugar chain or an isoprenoid group, if necessary.
  • the method for producing a plant according to the present invention comprises the steps of producing the chimeric protein described in (I) above in a plant, suppressing the expression of genes involved in flower organ formation, and suppressing the dehiscence of anthers.
  • the method for producing a plant according to the present invention is not particularly limited as long as it includes a process of producing a double-flowered plant, or a plant production method according to the present invention, for example, an expression vector constructing step, It can be mentioned as a production method including steps such as a conversion step and a selection step. Among them, in the present invention, it is sufficient that at least the transformation step is included. Hereinafter, each step will be specifically described.
  • the expression vector constructing step performed in the present invention comprises a gene encoding the transcription factor described in the above (1-1), the transcription repressor converting polynucleotide described in the above (I4), and a promoter.
  • the step is not particularly limited as long as it is a step for constructing a recombinant expression vector containing the following.
  • a parent vector of the above-mentioned recombinant expression vector conventionally known various vectors can be used.
  • a plasmid, a phage, a cosmid, or the like can be used, and can be appropriately selected depending on a plant cell to be introduced or an introduction method.
  • Specific examples include pBR322, pBR325, pUC19, pUC119, pBluescript, pBluescriptSK, and pBI vectors.
  • pBI-based binary vector when the method of introducing a vector into a plant is a method using agrobacterium, it is preferable to use a pBI-based binary vector.
  • pBI binary vectors include pBIG, pBIN19, pBI101, pBI121, and pBI221.
  • the promoter is not particularly limited as long as it is a promoter capable of expressing a gene in a plant, and a known promoter can be suitably used.
  • Such promoters include, for example, cauliflower mosaic virus 35S promoter (CaMV35S), actin promoter, nopaline synthase promoter, tobacco PRla gene promoter, tomato ribulose 1,5-bisphosphate carboxylase oxidase small subunit. Promoters and the like can be mentioned.
  • the forceful mosaic virus 35S promoter or actin promoter can be more preferably used. If these promoters are used, the resulting recombinant expression vector Can strongly express any gene when introduced into plant cells.
  • the above-mentioned promoter is more preferably a promoter capable of expressing a gene in an anther-specific manner.
  • promoters include, for example, TA56 promoter, AtMYB26 promoter, DAD1 promoter and the like.
  • the promoter is a promoter of a gene encoding NACAD1 or a similar transcription factor conserved in various plants. By using such a mouth motor, it becomes possible to express the gene specifically in the time and tissue of the expression of the gene, and it is possible to more effectively suppress the anther dehiscence.
  • the above promoter is linked so as to express a chimeric gene in which a gene encoding a transcription factor and a transcription repressor-converted polynucleotide are linked, and is used as a recombinant expression vector if it is introduced into the vector.
  • the specific structure of is not particularly limited! /,
  • the above-described thread-recombinant expression vector may further contain other DNA segments in addition to the above-mentioned promoter and the above-mentioned chimeric gene.
  • the other DNA segment is not particularly limited, and examples thereof include a terminator, a selection marker, an enhancer, a base sequence for enhancing translation efficiency, and the like.
  • the above-mentioned recombinant expression vector further has a TDNA region! The T DNA region can increase the efficiency of gene transfer particularly when the above-mentioned recombinant expression vector is introduced into a plant using agrobacterium.
  • the terminator is not particularly limited as long as it has a function as a transcription termination site, and may be a known one.
  • a transcription termination region of the nopaline synthase gene Nos terminator 1
  • a transcription termination region of cauliflower mosaic virus 35S CaMV35S terminator 1
  • a Nos terminator can be more preferably used.
  • a drug resistance gene can be used as the selection marker.
  • drug resistance genes include, for example, drug resistance genes for geno, idalomycin, bleomycin, kanamycin, gentamicin, chloramuecole, and the like.
  • the transformed plants can be easily selected by selecting the plants that grow in the medium containing the antibiotic.
  • Examples of the base sequence for enhancing the translation efficiency include an omega sequence derived from tobacco mosaic virus. By arranging this omega sequence in the untranslated region (5 ′ UTR) of the promoter, the translation efficiency of the chimeric gene can be increased. As described above, the above-mentioned transformation vector can contain various DNA segments depending on the purpose.
  • the method for constructing the above-mentioned recombinant expression vector is not particularly limited, either.
  • the above-mentioned promoter, the gene encoding the transcription factor, the transcription repressor-converted polynucleotide, and the Accordingly, the other DNA segments may be introduced in a predetermined order.
  • a chimeric gene is constructed by ligating a gene encoding a transcription factor and a transcription repressor converting polynucleotide, and then ligating the chimera gene with a promoter (if necessary, a terminator or the like).
  • An expression cassette may be constructed and introduced into a vector.
  • the order of the DNA segments is defined by, for example, setting the cleavage sites of the respective DNA segments as protruding ends complementary to each other and reacting with a ligation enzyme. Becomes possible.
  • a terminator is included in the expression cassette, it is sufficient that the promoter, the chimeric gene, and the terminator are arranged in this order from the upstream.
  • the types of reagents for constructing the recombinant expression vector that is, the types of restriction enzymes and ligation enzymes are not particularly limited.
  • the method of propagation (production method) of the recombinant expression vector is not particularly limited, and a conventionally known method can be used.
  • E. coli is used as the host What is necessary is just to multiply in enterobacteria.
  • a preferred type of Escherichia coli may be selected depending on the type of the vector.
  • the recombinant expression vector described in the above () -1) is introduced into a plant cell to produce the chimeric protein described in the above (I). It just needs to be.
  • the method for introducing the above-mentioned recombinant expression vector into plant cells is not particularly limited, and any conventionally known method suitable for plant cells can be used. Specifically, for example, a method using an agrobacterium or a method of directly introducing into plant cells can be used. As a method using an agrobacterium, for example, Transformation of Arabiaopsis thaliana by vacuum
  • Methods for directly introducing the recombinant expression vector into plant cells include, for example, a microinjection method, an electoral poration method (electroporation method), a polyethylene glycol method, a particle gun method, a protoplast fusion method, a calcium phosphate method and the like. Can be used.
  • Examples of the plant cells into which the above-mentioned recombinant expression vector is introduced include cells of various tissues, callus, suspension cultured cells, and the like in plant organs such as flowers, leaves, and roots.
  • a suitable recombinant expression vector may be appropriately constructed according to the type of plant to be produced.
  • a general-purpose recombinant expression vector may be constructed in advance and introduced into plant cells. That is, the method for producing a plant according to the present invention may include, may or may not include the step of constructing the recombinant expression vector described in (1) above. !,.
  • the method for producing a plant according to the present invention may further comprise the step of constructing the recombinant expression vector if the above transformation step is included. May be included. Specific examples include a selection step of selecting an appropriate transformant from the transformed plant. [0195]
  • the method for selection is not particularly limited. For example, selection may be made on the basis of drug resistance such as hygromycin resistance, or after growing a transformant, normal Selection may be made based on the inability to form pollen. After growing the transformant, the status of anther dehiscence may be selected. For example, as an example of selecting the status of anther dehiscence, a method of observing the shape of an anther using an electron microscope, a stereomicroscope, or the like can be mentioned (see Examples below).
  • the morphology of the flower of the plant itself may be selected.
  • a method of transforming the flower morphology of a transformant and comparing it with the flower morphology of a plant can be mentioned (see Examples below). See).
  • the morphology of the flowers can be selected by simply comparing, and the effect of the present invention itself, that is, the production of a double-flowered plant can be confirmed.
  • the method for producing a plant according to the present invention since the chimeric gene is introduced into the plant, expression of a gene involved in flower organ formation by sexual or asexual reproduction is suppressed from the plant. It is possible to obtain the descended offspring. In addition, it is possible to obtain progeny in which anther dehiscence is suppressed. Furthermore, it is possible to obtain a descendant whose flower form is a double flower. It is also possible to obtain plant cells and propagation materials such as seeds, fruits, strains, callus, tubers, cuttings, and lumps from the plants and their progeny, and to mass-produce the plants based on these. . Therefore, the method for producing a plant according to the present invention may include a breeding process (mass production process) for breeding the selected plant!
  • the plant in the present invention includes at least one of a grown plant individual, a plant cell, a plant tissue, a callus, and a seed.
  • the plant cells include various forms of plant cells.
  • the powerful plant cells include, for example, suspension culture cells, protoplasts, leaf sections, and the like. Plants can be obtained by proliferating these plant cells.
  • the regeneration of a plant from a plant cell can be performed using a conventionally known method depending on the type of the plant cell. Therefore, the plant production method of the present invention may include a regeneration step of regenerating a plant from a plant cell.
  • the method for producing a plant according to the present invention is not limited to the method of transformation with a recombinant expression vector, and other methods may be used.
  • the chimeric protein itself may be administered to a plant.
  • young plants should be used so as to suppress the expression of genes involved in flower organ formation, suppress the anther dehiscence, or double the flower morphology at the site of the plant to be finally used. May be administered with the chimeric protein.
  • the method of administering the chimeric protein is not particularly limited, and various known methods may be used.
  • the method for producing a plant according to the present invention is based on expressing the gene encoding the chimeric protein in the plant.
  • a DNA binding domain derived from a transcription factor in the chimeric protein binds to a target gene presumed to be involved in flower organ formation.
  • the target gene presumed to be involved in flower organ formation may be a target gene presumed to be involved in stamen or pistil formation.
  • the target gene presumed to be involved in the formation of stamens or pistils may be a gene presumed to be involved in the dehiscence of anthers.
  • it may be a gene presumed to be involved in the formation of stamens and pistils.
  • the transcription factor is converted to a transcription repressor, and the transcription of the target gene is suppressed.
  • mutations occur in flower organ formation, and sterile plants can be obtained. This can also suppress anther dehiscence. Furthermore, this makes it possible to make the flower form a double flower. Therefore, the present invention also includes a plant obtained by the above method for producing a plant.
  • sterile plants include no stamens and pistils! In addition to completely sterile plants, incompatible plants, that is, Also includes plants that have stamens and pistils but cannot form seeds. Also included are plants that have incomplete stamens and Z or pistils but cannot form seeds.
  • sterile plants in which stamen formation is inhibited and no pollen is formed sterile plants in which stamens are formed but pollen is not formed because anthers are not formed
  • Sterile plants that produce both stamens and anthers but produce less pollen and do not lead to anther cleavage are so-called male sterile plants, such as sterile plant bodies, in which the pollen formed and the pollen grows and squeezes each other and does not fly at all.
  • a sterile plant When a target plant is transformed with a chimeric gene encoding the above-mentioned chimeric protein, a sterile plant can be obtained very easily without using complicated genetic recombination techniques. The sterile plant is unable to form seed. In addition, pollen does not separate in completely sterile plants and male sterile plants. Therefore, it is possible to prevent the genetically modified plant from spreading into the environment.
  • the male sterile plant cannot be self-pollinated, but can be crossed between different varieties. Therefore, it can be suitably used for crossing using heterosis, and breeding of first generation hybrids having excellent traits can be performed efficiently.
  • sterile plants that can be used in the present invention are not particularly limited. Plants whose usefulness is enhanced by acquiring sterility, and their usefulness by suppressing the dehiscence of anthers
  • Examples of the plant include a plant whose sex is enhanced and a plant whose utility is enhanced by changing the form of a flower to a double flower.
  • Such plants may be angiosperms or gymnosperms. Examples of gymnosperms include plants of the cedar family Cedaraceae, Pinaceae, Cypress, and Oysteraceae.
  • the angiosperm may be a monocotyledon or a dicotyledon. Examples of dicotyledonous plants include plants of Brassicaceae such as Arabidopsis thaliana and plants of Camellia family.
  • the dicotyledonous plant may be a subphylla subphyllus!
  • Examples of the joint-vening subfamily include the Genus Genius, Eggplant, Perilla, Aphagnum, Obaco, Pleuronidae, Scrophulariformes, Akanene, Pseudomonaceae, and Chrysanthemum.
  • examples of the phytoaceae are, for example, Diptera, Camellia, Aoii, Sagaribana, Pterodactyla, Violets, Willows, Paragonidae, Sedges, Iwaumeles, Power Kinoki, Sakuraso, etc. Can be mentioned.
  • examples of the monocotyledonous plants include plants such as rice, corn, wheat, and the like, and plants of the family Poaceae.
  • the sterile plants that can be used in the present invention may be plants that use fruits and seeds as commercial products, and houseplants (flower plants) that use flowers and plant bodies as commercial products. Therefore, specific examples of the sterile plants useful for the present invention include rapeseed, potato, spinach, soybean, cabbage, lettuce, tomato, cauliflower, pod, radish, radish, broccoli, melon, orange, watermelon.
  • There are various kinds of edible plants such as green onion, burdock and burdock, and houseplants such as rose, chrysanthemum, hydrangea and carnation.
  • the present invention is useful in a field where a certain effect is produced by producing a sterile plant. Some specific examples are given below, but the usefulness of the present invention is not limited to these.
  • the technique of the present invention can produce a male sterile plant that cannot form normal pollen, and can be used for breeding by crossing using heterosis. Since the male sterile plant of the present invention cannot form normal pollen, self-pollination is not performed even for a self-fertile plant such as rice. Therefore, pollination of pollen of other species can facilitate crossing between species. This makes it possible to easily and efficiently search for first-generation hybrids of superior varieties using hybrid heterosis.
  • the technique of the present invention can produce a plant in which anther dehiscence is suppressed, and can be used for breed improvement by crossing using heterosis.
  • pollen is not released out of the anther, and thus self-pollination is not performed even for self-fertile plants such as rice. Therefore, pollination of pollen of other species can facilitate crossing between species. This makes it possible to easily and efficiently search for first-generation hybrids of superior varieties using hybrid heterosis.
  • the technology of the present invention can also be applied to cross-fertile plants such as corn.
  • cross-pollinating plants are currently breeding by avoiding self-pollination by cutting the stamens manually (emasculation work) and pollinating pollen of other species.
  • the technique of the present invention produces a male-sterile plant or a plant in which anther dehiscence is suppressed, such labor is not required, so that the time and cost required for breeding are reduced.
  • the labor required for cultivating excellent varieties can be significantly reduced compared to the current situation.
  • the technique of the present invention can produce a plant in which pollen has fertility but suppressed anther dehiscence, so that a plant in which self-pollination does not occur while leaving fertility in the pollen itself.
  • the body can be produced, which is useful for breeding. That is, it is possible to create and maintain homozygous individuals by leaving the fertility in the pollen itself.
  • self-crossing such a pure plant it is possible to obtain a uniform seed breeding population, and it is possible to reduce the labor and time required for the selection operation.
  • the technology of the present invention can also be applied to plants whose rhizomes are commercial products, such as onions and potatoes. It is known that pollination of this type of plant significantly inhibits the growth of the rhizome and reduces its commercial value. For this reason, male removal work is currently required to avoid pollination, and the labor and cost for this are extremely large. According to the technique of the present invention, a male sterile body or a plant in which anther dehiscence is suppressed is obtained from a plant whose rhizome is a commercial product, so that pollination can be avoided without the need for male removal work. Therefore, the cost and time required to grow plants and produce products can be significantly reduced compared to the current situation.
  • the technology of the present invention can be suitably applied to plants that do not use fruits and flowers as commercial products.
  • One example is the prevention of hay fever. That is, plants that scatter large amounts of pollen that cause hay fever, such as trees such as cedar, cypress, and sawara, gramineous plants such as duckweed, ooagagaeri, and Naganodasa, weeds such as ragweed, artemisia, and Mapra.
  • hay fever that is, plants that scatter large amounts of pollen that cause hay fever, such as trees such as cedar, cypress, and sawara, gramineous plants such as duckweed, ooagagaeri, and Naganodasa, weeds such as ragweed, artemisia, and Mapra.
  • the technology of the present invention can prevent plant diseases caused by virus infection via pollen. Certain plant viruses are present in pollen of diseased plants and are known to transmit to healthy plants through stamens and cause disease. According to the technique of the present invention, if a plant that cannot form normal pollen is produced, pollen-mediated virus infection is not performed, and thus a powerful plant disease can be prevented. [0217]
  • the technology of the present invention can prevent undesired diffusion of genetically modified plants into nature. For example, eucalyptus, a raw material for pulp, has been genetically engineered to create genetically modified plants that are more resistant to salt and cold, and that have been introduced with even better traits, such as larger trees. Verification experiments of transduced traits in outdoor environments have been conducted.
  • the genetically modified plant is transformed using the technology of the present invention into V, a male sterile body, or a plant in which the cleavage of anthers is suppressed, it is not possible to form normal pollen.
  • the diffusion of the genetically modified plants into nature by pollen dispersal does not occur. Therefore, it is possible to conduct verification tests on genetically modified plants under conditions closer to the actual outdoor environment than in the current situation. Thereby, the trait introduced into the genetically modified plant can be verified under a more natural environment.
  • the ability to produce a double-flowered plant is not particularly limited, and the present invention may be any field that is more effective in producing a double-flowered plant. Such fields include application to the creation of new horticultural varieties.
  • a transcription factor gene is incorporated into a cassette vector to which the above functional peptide has been added.
  • the chimeric protein can be expressed in the plant cell, and the transcription of a target gene of a transcription factor can be easily suppressed.
  • the chimeric protein is better than the transcription factor. Also acts predominantly to repress target gene transcription. Therefore, double-flowered plants can be easily and reliably produced in a short period of time, which is extremely useful for horticulture.
  • the double-flowered plant or the sterile plant produced by the present invention can be suitably used for crossing utilizing hybrid vigor and efficiently breeding the first generation of hybrid having excellent traits. It is very useful in agriculture because it can be done.
  • kits for performing a method for producing a plant that is useful for the present invention that is, a sterile plant production kit may be mentioned. it can.
  • the sterile plant production kit include a recombinant expression vector containing at least a chimeric gene comprising the gene encoding the transcription factor and the transcription repressor-converted polynucleotide. It is more preferable to include a group of reagents for introducing the above-mentioned recombinant expression vector into plant cells. Examples of the reagent group include an enzyme and a buffer corresponding to the type of transformation. In addition, laboratory materials such as microcentrifuge tubes may be attached as necessary.
  • NACAD1 and similar transcription factor forces stored in various plants are transcription factors that promote the transcription of genes involved in anther dehiscence, and completed the present invention.
  • a method for producing a sterile plant in which anther cleavage is controlled by using a gene encoding a strong transcription factor is also included in the present invention.
  • the method for producing a sterile plant in which anther cleavage is restricted comprises a gene encoding a protein described in the following (a) or (b):
  • is a gene according to the following (C) or (d):
  • a transcription factor that hybridizes with a gene having a nucleotide sequence complementary to the gene consisting of the nucleotide sequence of SEQ ID NO: 137 under stringent conditions and promotes transcription of a gene involved in anther dehiscence.
  • the above protein is a protein having 20% or more, preferably 50% or more, more preferably 60% or 70% or more homology with the amino acid sequence shown in SEQ ID NO: 136.
  • proteins having the function of promoting the transcription of genes involved in anther dehiscence include a NAC factor having the same function as the NACAD 1 protein having the amino acid sequence shown in SEQ ID NO: 136, which is the protein having the above homology of 52%.
  • This method of producing a plant can be achieved by suppressing the expression of the gene encoding the above-mentioned transcription factor involved in anther dehiscence, and by overexpressing it.
  • a method for suppressing the expression of the above gene include an antisense method, a gene targeting method, an RNAi method, a cosuppression method, and a gene disruption tagging method.
  • Examples of a method for overexpressing the above gene include a method of constructing a vector containing an appropriate promoter and the above gene arranged downstream thereof and introducing the vector into a plant.
  • a polynucleotide encoding the 12-amino acid peptide LDLDLELRLGFA (SRDX) (SEQ ID NO: 17), which is one of the transcription repressor converting peptides, is linked to the APE TALA3 gene and further functions as a cauliflower that functions in plant cells.
  • a recombinant expression vector was constructed by connecting downstream of the mosaic virus 35S promoter, and this was introduced into Arabidopsis thaliana using the Agrobacterium terminus method to transform Arabidopsis thaliana.
  • Plasmid p35S-GFP (Clontech, USA) was digested with restriction enzymes HindIII and BamHI, and a DNA fragment containing cauliflower mosaic virus 35S promoter was separated and recovered by agarose gel electrophoresis.
  • Plant transformation vector pBIG—HYG (transferred from Michigan State University, USA)
  • DNA having the following sequence was synthesized, heated at 70 ° C for 10 minutes, and then annealed by natural cooling to obtain double-stranded DNA.
  • This DNA fragment has a BamHI restriction enzyme site, an omega sequence derived from tobacco mosaic virus for increasing translation efficiency, a restriction enzyme site Smal, and restriction enzyme sites Sail and Sstl in this order from the 5 'end.
  • a DNA fragment containing only the coding region of APETALA3 was amplified by PCR, separated and recovered by agarose gel electrophoresis.
  • the PCR conditions were 25 cycles, each consisting of a denaturation reaction of 94 ° C for 1 minute, a complete reaction of 47 ° C for 2 minutes, and an extension reaction of 74 ° C for 1 minute.
  • all PCR reactions were performed under the same conditions.
  • the DNA fragment containing only the protein coding region of the APETALA3 gene obtained above and the DNA fragment containing the coding region of the transcription repressor converting peptide SRDX are inserted into the above PBIG2 that has been cut with the restriction enzyme Smal, and are closed in the forward direction.
  • the plasmid p35S :: APETALA3SRDX was obtained as a recombinant expression vector.
  • Transformation of Arabidopsis thaliana with p35S :: APETALA3SRDX was performed using the Transformation of Arabidopsis thaliana by vacuum Infiltration (http: / 1 www.bch.msu.edu/pamgreen/protocol.htm) was followed. However, we did not use Bakyuum to infect it, we just dipped it.
  • p35S :: APETALA3SRD X was introduced into the soil bacterium Agrobacterium tumefaciens strain GV3101 (C58ClRifr) pMP90 (GmrXkoncz and Schell 1986) by the electoporation method.
  • the plant transformed with p35S :: APETALA3SRDX was a mutant in which calyx and stamens were deleted and normal pollen formation was not performed.
  • the pollen of the wild type plant was pollinated to the pistil of this plant, seeds were formed. From this, it was confirmed that the plant transformed with p35S :: APETALA3SRDX was a male sterile plant whose pistils had fertility.
  • a 12 amino acid peptide LDLDLELRLGFA (SRDX) (SEQ ID NO: 17), which is one of the transcriptional repression peptides, is encoded between the cauliflower mosaic virus 35S promoter and the transcription termination region of the nopaline synthase gene.
  • a recombinant expression vector incorporating a polynucleotide in which a polynucleotide was linked downstream of the NACAD1 gene was constructed, and this was introduced into Arabidopsis thaliana using the Agrobacterium terminus method to transform Arabidopsis thaliana.
  • P35SG which is a vector for transformation vector construction, was constructed according to the following steps (1)-(4).
  • AttLl and attL2 on the pENTR vector manufactured by Invitrogen were used as primers attLl-F (SEQ ID NO: 142), attLl-R (SEQ ID NO: 143), attL2-F (sequence No. 144) and attL2-R (SEQ ID NO: 145) were used for amplification by PCR.
  • the obtained attLl fragment was digested with the restriction enzyme HindIII and the attL2 fragment with EcoRI and purified. The conditions for the PCR reaction are as described above.
  • a DNA fragment having the following SEQ ID NOs: 146 and 147 was synthesized, heated at 90 ° C. for 2 minutes, heated at 60 ° C. for 1 hour, and then at room temperature (25 ° C.) The mixture was allowed to stand for 2 hours and allowed to elute to form a double strand. This was ligated to the Xbal-Sacl region of the 35S-Nos plasmid fragment DNA to complete the p35S-Nos plasmid.
  • the DNA fragment having the sequence of SEQ ID NOs: 146 and 147 includes a BamHI restriction enzyme site at the 5 'end, an omega sequence derived from tobacco mosaic virus for improving translation efficiency, and restriction enzyme sites Smal, Sail, and Sstl in this order.
  • This p35S-Nos plasmid was digested with the restriction enzyme Hindlll, and the above attLl fragment was inserted. This was further digested with EcoRI, and the attL2 fragment was inserted to complete the vector p35SG.
  • P35SSRDXG which is a construction vector incorporating a polynucleotide encoding a transcription repressor converting peptide, was constructed according to the following steps (1)-(2).
  • p35SG was digested with restriction enzymes Smal and Sail, and the double-stranded DNA encoding SRDX was inserted into this region to construct p35SSRDXG.
  • pBIGCKH a plant transformation vector having two att sites for recombination with a DNA fragment flanked by att sites in a construction vector, was prepared according to the following steps (1) to ( Constructed as in 3).
  • a gene encoding a transcription factor NACAD1 protein derived from Arabidopsis thaliana was incorporated into the above-mentioned construction vector p35SSRDXG according to the following steps (1)-(3).
  • the cDNA and encoded amino acid sequence of the NACAD1 gene are shown in SEQ ID NOs: 137 and 136, respectively.
  • the obtained DNA fragment of the NACAD1 coding region was ligated to the Smal site of the construction vector p35SSRDXG that had been digested with the restriction enzyme Smal in advance.
  • a DNA fragment containing the CaMV35S promoter, chimeric gene, Noster and the like on the above-mentioned construction vector was recombined into a plant transformation vector pBIGCKH to construct an expression vector using the plant as a host.
  • the recombination reaction was performed according to the following steps (1)-(3) using Gateway (registered trademark) LR clonase (registered trademark) of Invitrogen Corporation.
  • Arabidopsis thaliana was transformed with pBIG-NACAD1SRDX, a plasmid in which the DNA fragment containing the chimeric gene was incorporated into pBIGCKH, and the transformed plant Produced body. Transformation of Arabidopsis plants i, i ransformation or Arabidopsis tnaiiana by vacuum
  • the strain was introduced into Agrobacterium tumefaciens strain GV3101 (58ClRirrvpMP90 (GmrXkoncz and Sahell 1986)) by the electoporation method.
  • Km kanamycin
  • Gm gentamicin
  • Rif rifampicillin
  • FIG. 7 (a) shows the results of scanning electron microscopy of the shape of anthers in wild-type Arabidopsis thaliana.
  • FIG. 7 (a) Arabidopsis transformed with pBIG-NACAD1SR DX did not undergo anther dehiscence.
  • pBIG-NACAD1SRDX it was confirmed that anther dehiscence had not completely occurred, or not shown, but only incompletely.
  • FIG. 8 shows a wild strain of Arabidopsis thaliana.
  • 20 on the horizontal axis means that the calculated value of (mass of harvested seeds Z, dry weight of above-ground parts other than seeds) X 100 is a class that is greater than 10 and less than or equal to 20.
  • the plant group transformed with pBIG-NACADISRDX has a higher yield of seeds compared to the normal fruiting group (Fig. 9 (b)).
  • the mass of the seed refers to the total mass of the seeds collected by one individual.
  • a 12 amino acid peptide LDLDLELRLGFA (SRDX) (SEQ ID NO: 17), which is one of the transcriptional repression peptides, is encoded between the cauliflower mosaic virus 35S promoter and the transcription termination region of the nopaline synthase gene.
  • Polynucleo By constructing a recombinant expression vector incorporating a polynucleotide in which a tide was linked downstream of the Arabidopsis MYB26 gene, this was introduced into Arabidopsis thaliana by the agrobacterium method, thereby transforming Arabidopsis thaliana.
  • P35SG a vector for transformation vector construction, was constructed in the same manner as in Example 2, as shown in FIG.
  • P35SSRDXG a construction vector into which a polynucleotide encoding a transcription repressor converting peptide was incorporated, was constructed in the same manner as in Example 2.
  • PBIGCKH a plant transformation vector having two att sites for recombination with the DNA fragment sandwiched between the att sites of the construction vector, was constructed in the same manner as in Example 2, as shown in FIG. did.
  • a gene encoding a transcription factor MYB26 protein derived from Arabidopsis thaliana was incorporated into the above-mentioned construction vector P35SSRDXG according to the following steps (1)-(3).
  • Primer 2 (MYB26-R) 5 AGTTATGACGTACTGTCCACAAGAGATTGG— 3 '(SEQ ID NO: 158)
  • the cDNA and encoded amino acid sequence of the MYB26 gene are shown in SEQ ID NOs: 139 and 138, respectively.
  • a DNA fragment containing the CaMV35S promoter, chimeric gene, Noster and the like on the above-mentioned construction vector was recombined into a plant transformation vector pBIGCKH to construct an expression vector using the plant as a host.
  • the recombination reaction was performed using the Gateway (registered trademark) LR clonase (registered trademark) manufactured by Invitrogen and using P35SMYB26SRDXG in which the coding region of this MYB26 was inserted in the forward direction in place of p35SSRDXG. Construction of recombinant expression vector>
  • pBIG-MYB26SRDX which is a plasmid in which the DNA fragment containing the above chimeric gene was incorporated into pBIGCKH, to produce a transformant.
  • Production of transformed plants was performed in the same manner as described in Example 2> Production of plants transformed with recombinant expression vectors except that pBIG-MYB26SRDX was used instead of pBIG-NACAD1SRDX. I went in.
  • FIG. 11 (a) shows the results of similarly observing the shape of anthers in wild-type Arabidopsis thaliana with a scanning electron microscope.
  • FIG. 11 (b) shows the results of similarly observing the shape of anthers in wild-type Arabidopsis thaliana with a scanning electron microscope.
  • FIG. 11 (b) shows the results of similarly observing the shape of anthers in wild-type Arabidopsis thaliana with a scanning electron microscope.
  • FIG. 11 (b) shows the results of similarly observing the shape of anthers in wild-type Arabidopsis thaliana with a scanning electron microscope.
  • FIG. 11 (b) shows the results of similarly observing the shape of anthers in wild-type Arabidopsis thaliana with a scanning electron microscope.
  • FIG. 11 (b) shows the results of similarly observing the shape of anthers in wild-type Arabidopsis thaliana with a scanning electron microscope.
  • anther dehiscence occurred in Arabidopsis
  • FIG. 12 shows the results.
  • the vertical axis represents the number of individuals
  • the horizontal axis represents the class value of (number of fruited pods Z number of bloomed flowers) ⁇ 100.
  • 20 on the horizontal axis means that the calculated value of (the number of fruited pods Z the number of flowers that have bloomed) X 100 is greater than 10 and less than or equal to 20.
  • seeds obtained from a plant group transformed with pBIG-MYB26SRDX were obtained by self-pollinating incompletely cleaved pollen released by anther power.
  • the "number of fruited pods” refers to the total number of pods (corn silses) in which seeds are formed in one individual.
  • Example 4 the cauliflower mosaic virus 35S promoter and nopa A polynucleotide comprising a polynucleotide encoding a 12 amino acid peptide LDLDLELRLGFA (SRDX) (SEQ ID NO: 17), which is one of the transcriptional repressor converting peptides, is linked to the transcription termination region of the phosphorus synthase gene downstream of the AG gene.
  • SRDX 12 amino acid peptide
  • SEQ ID NO: 17 which is one of the transcriptional repressor converting peptides
  • P35SG a vector for transformation vector construction, was constructed in the same manner as in Example 2, as shown in FIG.
  • P35SSRDXG a construction vector into which a polynucleotide encoding a transcription repressor converting peptide was incorporated, was constructed in the same manner as in Example 2.
  • PBIGCKH a plant transformation vector having two att sites for recombination with the DNA fragment sandwiched between the att sites of the construction vector, was constructed in the same manner as in Example 2, as shown in FIG. did.
  • a DNA sequence or gene encoding a transcription factor AG protein derived from Arabidopsis thaliana was incorporated into the above-mentioned construction vector P35SSRDXG according to the following steps (1)-(3).
  • Fufuima 1 ⁇ 1 5 atgaccgcgtaccaatcggagctaggagg— 3 (Rooster No. 150)
  • Phuima 1 25 cactaactggagagcggtttggtcttggcg—3 ′ (Rooster U No. ⁇ 51)
  • a DNA fragment containing the CaMV35S promoter, chimeric gene, Noster and the like on the above-mentioned construction vector was recombined into a plant transformation vector pBIGCKH to construct an expression vector using the plant as a host.
  • the recombination reaction was performed as described in Example 2 except that P35SAGSRDXG in which the coding region of AG was inserted in the forward direction was used instead of p35SSRDXG using Gateway (registered trademark) LR clonase (registered trademark) of Invitrogen. Construction of Expression Vector>
  • pBIG-AGSRDX is a plasmid in which the DNA fragment containing the above chimeric gene was incorporated into pBIGCKH, to produce a transformant.
  • Production of transformed plants was performed in the same manner as described in ⁇ Production of plants transformed with recombinant expression vector> in Example 2 except that pBIG-AG SRDX was used instead of pBIG-NACAD1SRDX. I went in.
  • FIGS. 13 to 16 show Arabidopsis thaliana flowers transformed with pBIG-AGSRDX and completely double-flowered
  • Figure 13 (b) shows the entire Arabidopsis thaliana flowers in double-flowered form. is there.
  • a complete double-flowered plant was formed in 16 of the 28 individuals tested, as shown in FIG. 13 (a).
  • FIG. 14 (a) shows wild-type Arabidopsis thaliana flowers
  • FIG. 14 (b) shows AG mutant Arabidopsis thaliana flowers. 4 petals, 4 petals, 6 wild-type Arabidopsis
  • Arabidopsis thaliana transformed by the method of the present invention turns the stamen into petals and forms a new flower in whorl4, the pistil.
  • the AG mutant has the same structure, Arabidopsis transformed by the method of the present invention forms a beautiful, well-rounded double-flowered plant in which the interval between petals is narrower than that of the AG mutant. did.
  • FIG. 15 shows Arabidopsis flowers of 10 individuals out of 28 individuals transformed with pBIG-AGSRDX. In the above 10 individuals, an incomplete double-flowered plant was formed.
  • FIG. 16 shows two Arabidopsis flowers out of 28 individuals transformed with pBIG-AGSRDX. In the above two individuals, flowers similar to wild type were formed.
  • a transcription factor that promotes expression of a gene involved in flower organ formation and an optional transcription factor are converted into a transcription repressor.
  • a chimeric protein fused with a functional peptide is produced in a plant to suppress the expression of genes involved in flower organ formation, thereby producing a male sterile plant.
  • a male-sterile plant can be produced, and the target plant can be produced very easily without using a complicated gene recombination technique. This has the effect that the plant can be subjected to male sterility.
  • the chimeric protein used in the present invention acts dominantly on endogenous genes. Therefore, even if the plant is a diploid / diploid, or a plant has a function-duplicated gene, the chimeric protein of the present invention can control flower formation by controlling the corresponding transcription factor. Expression of related genes can be uniformly suppressed. Therefore, it is possible to easily transform any transgenic plant into a male sterile plant.
  • amino acid sequence of a transcription factor that promotes transcription of a gene involved in flower organ formation used in the present invention is considered to be highly conserved among many plants of different species.
  • the present invention As described above, according to the present invention, a so-called male sterile plant in which normal pollen formation is not performed but pistils have fertility can be produced in a wide range of plants. . Therefore, the present invention can be used in various types of agriculture, forestry, agribusiness, an industry for processing agricultural products, a food industry, and the like, and is considered to be very useful.
  • the method for producing a plant in which anther dehiscence is suppressed provides a transcription factor that promotes transcription of a gene involved in anther dehiscence and transcription of an arbitrary transcription factor. Since the plant is constructed to produce a chimeric protein fused with a functional peptide that converts to an inhibitory factor, the expression of genes involved in anther dehiscence is suppressed, and anther dehiscence is suppressed. It is possible to produce a suppressed plant.
  • the chimeric protein used in the present invention has a predominant effect on the endogenous gene
  • the chimeric protein according to the present invention has a diploid to diploid plant. Or the presence of a duplication of function gene in the plant, the expression of genes related to anther dehiscence can be uniformly suppressed, and all plants capable of transfection can be When the plant can be easily transformed into a plant in which is suppressed, an effect is obtained.
  • amino acid sequence of a transcription factor that promotes transcription of a gene involved in anther dehiscence used in the present invention is considered to be highly conserved among many plants of different species.
  • the present invention can be used in various types of agriculture, forestry, aadari business, an industry that processes agricultural products, a food industry, and the like, and is considered to be very useful.
  • the method for producing a sterile plant according to the present invention converts a transcription factor involved in the formation of stamen and pistil and any transcription factor into a transcription repressor.
  • the plant has a configuration to produce a double-flowered plant by producing a chimeric protein fused with a functional peptide that produces a double-flowered plant by suppressing the transcription of the target gene of the transcription factor. The effect is that double-flowered plants can be produced simply and reliably.
  • a double-flowered plant or a sterile plant can be obtained by suppressing the transcription of a gene targeted by the AG transcription factor. Therefore, the present invention can be used in various agriculture, horticulture, landscaping, agribusiness, and the like, and is considered to be very useful.

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

 花器形成に関与する遺伝子の転写を抑制することにより、不稔性植物体を生産する技術を提供する。  花器形成に関与する遺伝子の発現を促進する転写因子をコードする遺伝子と、任意の転写因子を転写抑制因子に転換する機能性ペプチドをコードするポリヌクレオチドとのキメラ遺伝子を植物細胞に導入して、上記転写因子と上記機能性ペプチドとを融合させたキメラタンパク質を植物細胞内で生産させる。  該キメラタンパク質が花器形成に関与する遺伝子の発現を優勢的に抑制する結果、正常な花粉形成ができない、植物の雄性不稔体が生産される。また、該キメラタンパク質が葯の裂開に関与する遺伝子の発現を抑制し、葯の裂開が抑制された植物体が生産される。さらに、該キメラタンパク質が、雄しべおよび雌しべの形成に関与する転写因子が標的とする遺伝子の発現を抑制し、八重咲き植物体が生産される。

Description

明 細 書
不稔性植物体の生産方法およびこれを用いて得られる植物体、並びにそ の利用
技術分野
[0001] 本発明は、不稔性植物体を生産する技術に関し、より詳細には、植物の雄性不稔 体の生産方法、葯の裂開が抑制された植物体の生産方法、八重咲き植物体の生産 方法、およびこれらの生産方法を用いて得られる植物体、並びにその利用に関する ものである。
背景技術
[0002] 異なる品種間で交配させ、雑種を作ると、両親より優れた形質が子供に現れる。こ れを雑種強勢という。この雑種強勢を利用した交配により、農産物をハイブリッド化し て優良品種を作出することが、現在、一般的になっている。例えば、主要な野菜ゃ穀 物の優良品種のほとんどは、こうした交配により品種改良されている。
[0003] 雑種強勢の利益を受けるためには、互いに異なった品種間で交配させる必要があ る。このため、交配を行う品種において、自家受粉が行われないようにする必要があ る。ここで、トウモロコシなどの、雄花と雌花が離れた植物では、雄花を人為的に刈り 取ることにより、自家受粉を避けることができる。しかし、この作業は、多大な人的労力 を有し非常に手間となる。また、イネに代表される自殖性植物では、多数の花が集合 していたり、雄しベおよび雌しベが花弁を包み込んでいたりする。そのため、人為的 に雄花を刈り取ることすら困難であり、自家受粉を避けることは非常に難しい。
[0004] したがって、雑種強勢を利用した交配を行うためには、正常な花粉形成ができない 、いわゆる雄性不稔体を利用することが望ましい。事実、これまで、トマトゃキユウリな どの多くの植物において、雄性不稔体が得られ、品種改良に利用されてきた。
[0005] しかし、一方、雄性不稔体が確立されて 、な 、植物品種もまた、多数、存在すること も事実である。これらの植物において、雄性不稔体を、突然変異によって新たに得る 場合、成果を偶然性に委ねざるをえないため、長期にわたる交配が必要となる。した がって、労力もコストも多大に必要となり、現在の農業において、その取り組みは現実 的に困難である。
[0006] そこで、遺伝子組み換え技術を利用して、人為的に雄性不稔体を確立する試みが 、これまでいくつか為されている
非特許文献 1には、核内遺伝子による雄性不稔を人為的に引き起こす技術が開示 されている。この技術では、ぺ-チユアにカルコンシンターゼのアンチセンス遺伝子 を導入して、カルコンシンターゼの活性を抑制する。これにより、フラボノイドの生合成 的前駆体であるカルコンの生合成が抑えられ、形質転換されたぺ-チユアは雄性不 稔体となる。
[0007] 非特許文献 2には、毒性物質によりタバコのタペート組織を消失させることで、雄性 不稔体を作出する技術が開示されている。この技術では、 N ァセチルー L オル二 チンデァセチラーゼを転写 ·翻訳産物とする、 argE遺伝子を、タペート組織において 特異的に機能する TA29プロモーターに類似する DNA配列に融合させた形で、タ バコに導入する。次に、このタバコに、毒性のない N ァセチルー L フォスフィノスリシ ンを投与する。すると、葯において発現された N ァセチルー L オル二チンデァセチ ラーゼによって、 N ァセチルー L フォスフィノスリシンが脱ァセチル化され、毒性の ある、 L-フォスフィノスリシンとなる。この毒性物質によって、タペート組織がネクロー シスを起こして消失するため、形質転換されたタバコは、花粉が形成されない雄性不 稔体となる。
[0008] また、非特許文献 3には、細胞質雄性不稔を人為的に引き起こす技術が開示され ている。この技術では、コムギ由来の、 RNAエディティングが行われないミトコンドリア atp9遺伝子を、タバコ細胞に導入する。これにより、不活性の ATP9タンパク質が発 現されて、ミトコンドリアに移行する。その結果、ミトコンドリアの機能が阻害されるため 、形質転換されたタバコは雄性不稔体となる。
[0009] さらに、非特許文献 4には、 RNAエディティングが行われな ヽミトコンドリア atp9遺 伝子のアンチセンス遺伝子を導入した別の形質転換タバコを作成し、これと、 RNA エディティングが行われないミトコンドリア atp9遺伝子を導入した形質転換タバコとを 交配することによって、次世代で稔性が回復する形質転換タバコを作出する技術が 開示されている。 [0010] また、従来から、植物において、植物特異的転写因子ファミリ一として、 NACフアミ リーが知られている。シロイヌナズナにおいては、 NACファミリーに属する遺伝子は 現在までに 100以上報告されている。これまでに単離された NACファミリ一は、茎頂 分裂組織の形成 '維持、花器官形成、側根形成等に必要な転写因子として報告され ており、様々な機能を持つことが明らかになりつつある。しかし、 NACファミリーが特 異的に結合するシス配列等についてはわ力つておらず、その機能の解析が待たれる ところである (例えば、非特許文献 5参照)。
[0011] ところで、植物を異なる品種間で交配させ、農産物をハイブリッド化して優良品種を 作出することが、現在一般的に行なわれている。これは、植物を異なる品種間で交配 させ雑種を作ると、両親より優れた形質が子供に現れる雑種強勢を利用するものであ る。雑種強勢の利益を受けるためには、互いに異なった品種間で交配させる必要が ある。このため、交配を行う品種において、自家受粉が行われないようにする必要が ある。このような方法としては、雄性器官を人為的に除去する方法、人為的に交配す る方法、花粉の成熟を阻害する化学物質を用いる方法等があるが、これらはその方 法を利用できる植物が限られ、また、多大な人的労力を要し手間のかかる作業である 。このため、雄性配偶子 (花粉)の形成が不完全なため種子形成の不能により稔性を 喪失した雄性不稔体を利用する方法が、広く用いられている。これまで、種々の植物 において、突然変異により得られた雄性不稔体が品種改良に利用されている。また、 雄性不稔体が確立されていない植物品種も多ぐ遺伝子組換え技術を利用して、人 為的に雄性不稔体を確立する試みも報告されている(例えば、特許文献 1、 2参照)。 特許文献 1では、葯の裂開および花粉の成熟を制御する遺伝子 DAD1の発現を制 御することによる雄性不稔植物の作出方法が開示されている。
[0012] 一方、葯の裂開を抑制する試みとしては、細胞毒性を有するバルナーゼを、葯特 異的に遺伝子を発現させる TA56プロモーターに結合し、タバコに導入することによ つて、口辺細胞を人為的に殺したタバコの葯では、葯の裂開が起きなくなることが報 告されている (例えば、非特許文献 6参照)。また、非特許文献 6では、裂開が起こる ためには、口辺細胞は、細胞死を迎えるまでの間は十分機能的であることが必要で あることが報告されている。しかし、葯の裂開における分子レベルでの知見は殆ど得 られていない。葯の裂開が異常な突然変異体として、 delayed-dehiscence 1— delayed- dehiscence 5、 non- dehiscence 1、 msH等比較的多数の突然変異体が知ら れている (例えば、非特許文献 7参照)。しかしながら、葯の裂開を制御する原因遺伝 子として、これまでに明らかにされているものは、上記 DAD1等数えるほどしかなぐ その多くは未だに原因遺伝子が明らかにされていない。
[0013] さらに、トウモロコシのトランスポゾン En— lZSpmで突然変異を誘発したシロイヌナ ズナ集団力 葯の裂開に異常が見られる突然変異体を単離し、原因遺伝子の同定 を行ったことが報告されている (例えば、非特許文献 8参照)。非特許文献 8では、得 られた突然変異体の表現型は、 AtMYB26にトランスポゾンが挿入されることにより 引き起こされるものであることが報告されている。
[0014] また、一般に、花はがぐ花弁、雄しベ、雌しベの 4つの器官力 なり、花芽分裂組 織を 4つの同心円状領域、つまり、外側から whorll— 4に分けた場合、 whorllには 4つのがぐ whorl2には 4つの花弁、 whorl3には 6つの雄しベ、 whorl4には 2つの 心皮が融合した雌しベが作られる。これらの器官の形質は、花のホメォティック遺伝 子によって決定されることが知られている(例えば、非特許文献 9参照)。花のホメォ ティック遺伝子は、 A、 B、 Cの 3クラスに分類され、転写因子をコードしている。そのた め、これらの遺伝子群の組み合わせによって、花芽分裂組織に形成される花器官の 種類が決定される。すなわち、クラス Aのみが働くとがくが、クラス Aと Bが協働すると 花弁が、クラス Bと Cが協働すると雄しベが、クラス Cのみが働くと雌しベが形成される 。したがって、ホメォティック遺伝子の機能が突然変異などで失われると、ある器官が 他の器官の形質に転換する。このような変化はホメォティックな変換と呼ばれ、植物 ではシロイヌナズナ等で花の器官形質決定に関与するホメォティック遺伝子が明らか になって!/、る(例えば、非特許文献 9参照)。
[0015] agamous遺伝子(以下「AG遺伝子」と称する)は、上記のクラス C遺伝子であり、 A G遺伝子の機能が失われた AG変異体では、クラス Aの機能が花の全領域に及び、 雄しベが花弁に変化し、野生型では雌しベとなる領域に新しい花が作られ、花の形 態は八重咲きとなることが知られている(例えば、非特許文献 9参照)。
[0016] これまで、八重咲き植物体の作製を目的として花の形態を変化させる場合は、その 目的とする形質を有する植物の品種を掛け合わせる交配育種を行うのが一般的であ る。
[0017] また、近年、特定の遺伝子の働きを抑制する方法として、 2本鎖 RNAを細胞の中に 入れ、その配列に相同な細胞の mRNAを分解する RNA干渉 (RNAi)法が広く用い られるようになってきて!/、る。
[0018] 一方、本発明者は、任意の転写因子を転写抑制因子に転換するペプチドを種々 見出している(例えば、特許文献 3— 9、非特許文献 10、 11参照)。このペプチドは、 Class II ERF (Ethylene Responsive Element Binding Factor)タンパク質や植物のジ ンクフィンガータンパク質(Zinc Finger Protein,例えばシロイヌナズナ SUPERMAN タンパク質等)力も切り出されたもので、極めて単純な構造を有して 、る。
[0019] さらに、本発明者は、種々の転写因子と上記ペプチドとを融合させた融合タンパク 質 (キメラタンパク質)をコードする遺伝子を植物体内に導入することを試みて ヽる。 そして、これにより、転写因子が転写抑制因子に転換され、該転写因子が転写を促 進する標的遺伝子の発現が抑制された植物体を生産することに成功している。
[特許文献 1]
日本国公開特許公報「特開 2000— 300273公報」(公開日:平成 12年(2000) 10 月 31曰)
[特許文献 2]
日本国公開特許公報「特開 2004— 24108公報」(公開日:平成 16年(2004) 1月 2 9曰)
[特許文献 3]
日本国公開特許公報「特開 2001— 269177公報」(公開日:平成 13年(2001) 10 月 2曰)
[特許文献 4]
日本国公開特許公報「特開 2001— 269178公報」(公開日:平成 13年(2001) 10 月 2曰)
[特許文献 5]
日本国公開特許公報「特開 2001— 292776公報」(公開日:平成 13年(2001) 10 月 2曰)
[特許文献 6]
日本国公開特許公報「特開 2001— 292777公報」(公開日:平成 13年(2001) 10 月 23曰)
[特許文献 7]
日本国公開特許公報「特開 2001— 269176公報」(公開日:平成 13年(2001) 10 月 2曰)
[特許文献 8]
日本国公開特許公報「特開 2001— 269179公報」(公開日:平成 13年(2001) 10 月 2曰)
[特許文献 9]
国際公開第 WO03Z055903号パンフレット (公開日:平成 15年(2003) 7月 10日
)
[非特許文献 1]
Ingrid M. van der Meer, Maike E. Stam, Arjen J. van Tunen, Joseph N. M. Mol, and Antoine R. Stuitje. The Plant Cell, Vol 4, pp 253-262, March, 1992
[非特許文献 2]
G. Kriete, K. Niehaus, A.M. Perlick, A. Puehler and I. Broer, The Plant Journal, Vol 9, pp 809-818, 1996
[非特許文献 3]
Michel Hernould, Sony Suharsono, Simon Litvak, Alejandro Araya, and Armand Mouras., Proc. Natl. Acad. Sci. USA, Vol 90, pp. 2370—2374, March, 1993
[非特許文献 4]
Eduardo Zabaleta, Armand Mouras, Michel Hernould, Suharsono, and Alejandro Araya., Proc. Natl. Acad. Scl. USA, Vol 93, pp 11259-11263, October, 1996
[非特許文献 5]
Xie,Q.,Frugis,G.,Colgan,D.,Chua,N-H., Genes Dev.14,3024— 3036,2000
[非特許文献 6] Beals,T.P.,Goldberg,R.B., The Plant Cell, Vol.9, 1527— 1545, September, 1997
[非特許文献 7]
日向康吉編著, 「花」性と生殖の分子生物学一」,学会出版センター, pll6-pll7 [非特許文献 8]
Sterner— Lange,¾.,Unte,U. Eckstein, L., Yang,し., Wilson, Z.A.,Schmelzer,E.,Dekker, K.,Saedler,H., The Plant Journal(2003)34,519- 528
[非特許文献 9]
酒井一著、「植物の形を決める分子機構」、秀潤社、 150 - 155頁
[非特許文献 10]
Ohta.M., Matsui.K., Hiratsu'K., Shinshi.H. and Ohme- Takagi'M., The Plant Cell, Vol.13, 1959-1968, August, 2001
[非特許文献 11]
Hiratsu'K., Ohta.M., Matsui.K., Ohme— Takagi'M., FEBS Letters
514(2002)351-354
[0020] しかし、従来、花器形成に関与する遺伝子の転写を抑制することによって、不稔性 植物体を生産する技術は知られて 、な 、。
[0021] また、上記特許文献 1では、葯の裂開が起こらないことと、花粉が稔性を有しないこ とは同時に起こっている。しかし、花粉の稔性の有無にかかわらず、葯の裂開が起こ らなければ、雑種強勢を利用した交配において、自家受粉を避けることができる。
[0022] また、従来より用いられて!/ヽる花粉が稔性を有さな ヽ雄性不稔体を利用する方法は 、結実すると自動的に雑種になるので、雑種第 1代を作成するのに有効な方法であ る。しかし、次世代でも不稔であると結実しないので、次世代では稔性を回復しなけ ればならない。これに対して、葯の裂開は抑制されるが、花粉は稔性を有しているよう な場合は、花粉自体に生殖能を残しつつ、自家受粉が起きない植物を作成すること 力 Sでき、育種上非常に有用である。このような葯の裂開の抑制を、葯の裂開に関与す る遺伝子の転写を促進する転写因子と転写因子を転写抑制因子に転換する機能性 ペプチドとのキメラタンパク質を生産させることによって行なう技術は知られて ヽな 、。 [0023] また、従来の交配育種による方法では、目的とする形質を有する植物を生産するた めには、長い年月と、熟練者の経験が必要である。したがって、短期間で簡便、確実 に八重咲き植物体を得ることは非常に困難である。
[0024] さら〖こ、上記 RNAi法によって AG遺伝子の機能を抑制し、八重咲き植物体を得る ことも考えられるが、 RNAi法には、遺伝子の発現を抑制する場合にターゲットとする 部位の決定が困難であり、試行錯誤が必要であること、コンストラクトの構築が難しい こと、細胞によってはトランスフヱクシヨンの効率が低ぐ RNA干渉の効果が限定され ること、等の種々の問題点がある。したがって、 RNAi法によって八重咲き植物体を短 期間で簡便、確実に得ることは非常に困難である。
[0025] 本発明は、上記の問題点に鑑みなされたものであって、その目的は、花器形成に 関与する遺伝子の転写を抑制することによって、植物を不稔化する、不稔性植物体 の生産方法を提供することにある。
[0026] また、本発明の目的は、葯の裂開に関与する遺伝子の転写を促進する転写因子と 転写因子を転写抑制因子に転換する機能性ペプチドとのキメラタンパク質を生産さ せることによって、葯の裂開が抑制された不稔性植物体を生産する方法を提供する ことにある。
[0027] さらに、本発明の目的は、雄しベおよび雌しベの形成に関与する転写因子を転写 抑制因子に転換し、上記転写因子の標的遺伝子の転写を抑制することにより、短期 間で簡便、確実に花の形態を八重咲きにする不稔性植物体を生産する方法を提供 することにある。
発明の開示
[0028] 本発明者は、上記課題を解決すべく鋭意検討を行った結果、花器形成に関与する 遺伝子の転写を促進する転写因子の 1つである APETALA3タンパク質を転写抑制 因子に転換することによって、花弁および雄しベが形成されない雄性不稔植物体を 生産できることを見出し、本発明を完成させるに至った。
[0029] すなわち、本発明にかかる不稔性植物体の生産方法は、花器形成に関与する遺 伝子の発現を促進する転写因子と、任意の転写因子を転写抑制因子に転換する機 能性ペプチドとを融合させたキメラタンパク質を植物体で生産させ、植物体を不稔ィ匕 することを特徴としている。
[0030] また、本発明にかかる不稔性植物体の生産方法は、花器形成に関与する遺伝子の 発現を促進する転写因子と、任意の転写因子を転写抑制因子に転換する機能性べ プチドとを融合させたキメラタンパク質を植物体で生産させ、花器形成に関与する遺 伝子の発現を抑制することを特徴として!/、る。
[0031] また、本発明に係る不稔性植物体の生産方法では、上記花器形成に関与する遺 伝子の発現を促進する転写因子力 雄しベまたは雌しベの形成に関与する転写因 子であることが好ましい。
[0032] 上記構成によれば、得られる植物体は、種子が形成されな!、不稔性植物体となる。
したがって、複雑な遺伝子組み替え技術を利用することなぐ非常に簡便に目的の 植物を不稔性植物体とすることができる。
[0033] また、本発明に係る不稔性植物体の生産方法では、不稔性植物体は、少なくとも雄 しべの形成が阻害されたものであることが好ましい。
[0034] また、本発明者は、上記課題を解決すべく鋭意検討を行った結果、 NACファミリー タンパク質の 1つである At2g46770遺伝子座においてコードされるタンパク質に、任意 の転写因子を転写抑制因子に転換するペプチドを融合させて、植物体内で発現さ せると、葯の裂開が完全に起こらなくなる力、または、不完全にしか起こらなくなること を見出した。また、これにより、この NACファミリータンパク質 (At2g46770遺伝子座に おいてコードされるタンパク質、以下、適宜「NACAD1」 (NAC involving to Anther Development)と称する)力 葯の裂開に関与する遺伝子の転写を促進する転写因子 であることを初めて明らかにし、本発明を完成させるに至った。
すなわち、本発明に係る不稔性植物体の生産方法では、上記雄しベまたは雌しベの 形成に関与する転写因子が、葯の裂開に関与する遺伝子の転写を促進する転写因 子であって、上記転写因子と、任意の転写因子を転写抑制因子に転換する機能性 ペプチドとを融合させたキメラタンパク質を、植物体で生産させることにより、葯の裂 開を抑制することが好まし 、。
[0035] また、本発明者は、上記課題を解決すべく鋭意検討を行った結果、葯の裂開に関 与する遺伝子の転写を促進する転写因子であって、 MYBドメインを有する転写因子 の 1つである MYB26タンパク質に、転写因子を転写抑制因子に転換するペプチド を融合させて、植物体内で発現させると、葯の裂開が完全に起こらなくなる力 または 、不完全にしか起こらなくなることを見出し、本発明を完成させるに至った。
[0036] すなわち、本発明に係る不稔性植物体の生産方法では、上記葯の裂開に関与す る遺伝子の転写を促進する転写因子が、 MYBドメインを有する転写因子であって、 上記転写因子と、任意の転写因子を転写抑制因子に転換する機能性ペプチドとを 融合させたキメラタンパク質を、植物体で生産させ、葯の裂開に関与する遺伝子の転 写を抑制することが好ましい。上記植物体は、さらに、雌性器官が稔性を有している ことが好ましい。また、上記植物体はさらに花粉自体が稔性を有することが好ましい。
[0037] これにより、上記キメラタンパク質は、上記転写因子が標的とする遺伝子の転写を 効果的に抑制することができる。それゆえ、上記キメラタンパク質が生産された植物 体の葯の裂開が抑制されるという効果を奏する。
[0038] また、本発明者は、雄しベおよび雌しベの形成に関与する転写因子を転写抑制因 子に転換し、上記転写因子の標的遺伝子の転写を抑制することにより、八重咲き植 物体を短期間で簡便、確実に生産することができることを初めて明らかにし、本発明 を完成させるに至った。
[0039] すなわち、本発明にカゝかる不稔性植物体の生産方法は、雄しベおよび雌しベの形 成に関与する転写因子と、任意の転写因子を転写抑制因子に転換する機能性ぺプ チドとを融合させたキメラタンパク質を植物体で生産させることにより、花の形態を八 重咲きにすることを特徴として 、る。
[0040] 上記構成によれば、上記転写因子を転写抑制因子に転換することができ、植物体 内では、上記転写因子の標的遺伝子の転写が抑制される。また、上記転写因子の標 的遺伝子の転写を抑制するという形質は、ドミナントであるので、上記キメラタンパク 質の方が上記転写因子よりも優勢的に働いて、標的遺伝子の転写を抑制する。した がって、短期間で、簡便、確実に八重咲き植物体を生産することができる。
[0041] また、上記構成によれば、得られる八重咲き植物体は、種子が形成されな!ヽ不稔性 植物体となる。したがって、複雑な遺伝子組み替え技術を利用することなぐ目的の 植物を非常に簡便に不稔性植物体とすることができる。 [0042] また、上記不稔性植物体の生産方法は、上記転写因子をコードする遺伝子と上記 機能性ペプチドをコードするポリヌクレオチドとからなるキメラ遺伝子を含む組換え発 現ベクターを、植物細胞に導入する形質転換工程を含んで!/ヽてもよ!/ヽ。
[0043] また、上記不稔性植物体の生産方法は、さらに、上記組換え発現ベクターを構築 する発現ベクター構築工程を含んで 、てもよ 、。
[0044] 上記構成によれば、上記機能性ペプチドが付加されたカセットベクターに上記転写 因子の遺伝子を組み込み、植物細胞に導入するだけで、上記キメラタンパク質を植 物細胞内で発現させることができ、上記キメラタンパク質により転写因子の標的遺伝 子の転写を容易に抑制することができる。したがって、短期間に、簡便、確実に不稔 性植物体を生産することができる。
[0045] 上記転写因子は、以下の(a)又は (b)記載のタンパク質であることを特徴として!/、る 。(a)配列番号 134に示されるアミノ酸配列からなるタンパク質。(b)配列番号 134に 示されるアミノ酸配列において、 1個又は数個のアミノ酸が置換、欠失、挿入、及び Z 又は付加されたアミノ酸配列からなり、花器形成に関与する遺伝子の発現を促進す る機能を有するタンパク質。
[0046] また、上記転写因子をコードする遺伝子として、以下の(c)又は(d)記載の遺伝子 が用いられることが好ましい。(c)配列番号 135に示される塩基配列をオープンリー デイングフレーム領域として有する遺伝子。 (d)配列番号 135に示される塩基配列か らなる遺伝子と相補的な塩基配列力もなる遺伝子とストリンジヱントな条件でノ、イブリ ダイズし、且つ、花器形成に関与する遺伝子の発現を促進する転写因子をコードす る遺 子。
[0047] 上記転写因子は、以下の(a)又は (b)記載のタンパク質であることが好ま 、。 (a) 配列番号 136に示されるアミノ酸配列力もなるタンパク質。(b)配列番号 136に示さ れるアミノ酸配列において、 1個又は数個のアミノ酸が置換、欠失、挿入、及び Z又 は付加されたアミノ酸配列力もなり、葯の裂開に関与する遺伝子の転写を促進する 機能を有するタンパク質。
[0048] また、上記転写因子は、配列番号 136に示されるアミノ酸配列に対して 50%以上 の相同性を有し、且つ、葯の裂開に関与する遺伝子の転写を促進する機能を有する タンパク質であってもよい。
[0049] また、上記転写因子をコードする遺伝子として、以下の(c)又は(d)記載の遺伝子 が用いられることが好ましい。(c)配列番号 137に示される塩基配列をオープンリー デイングフレーム領域として有する遺伝子。 (d)配列番号 137に示される塩基配列か らなる遺伝子と相補的な塩基配列力もなる遺伝子とストリンジヱントな条件でノ、イブリ ダイズし、且つ、葯の裂開に関与する遺伝子の転写を促進する転写因子をコードす る遺 子。
[0050] また、上記転写因子は、以下の(a)又は (b)記載のタンパク質であることが好ま U 、 。(a)配列番号 138に示されるアミノ酸配列からなるタンパク質。(b)配列番号 138に 示されるアミノ酸配列において、 1個又は数個のアミノ酸が置換、欠失、挿入、及び Z 又は付加されたアミノ酸配列力もなり、葯の裂開に関与する遺伝子の転写を促進す る機能を有するタンパク質。
[0051] また、上記転写因子をコードする遺伝子として、以下の(c)又は(d)記載の遺伝子 が用いられることが好ましい。(c)配列番号 139に示される塩基配列をオープンリー デイングフレーム領域として有する遺伝子。 (d)配列番号 139に示される塩基配列か らなる遺伝子と相補的な塩基配列力もなる遺伝子とストリンジヱントな条件でノ、イブリ ダイズし、且つ、葯の裂開に関与する遺伝子の転写を促進する転写因子をコードす る遺 子。
[0052] また、上記転写因子は、以下の(a)または (b)記載のタンパク質であることが好まし い。(a)配列番号 140に示されるアミノ酸配列力もなるタンパク質。(b)配列番号 140 に示されるアミノ酸配列において、 1個または数個のアミノ酸が置換、欠失、挿入、及 び Zまたは付加されたアミノ酸配列力もなるタンパク質。
[0053] また、上記転写因子をコードする遺伝子として、以下の(c)または (d)記載の遺伝子 を用いることが好ましい。
(c)配列番号 141に示される塩基配列をオープンリーディングフレーム領域として有 する遺伝子。
(d)配列番号 141に示される塩基配列からなる遺伝子と相補的な塩基配列からなる 遺伝子とストリンジェントな条件でノヽイブリダィズし、かつ、雄しベおよび雌しベの形成 に関与するタンパク質をコードする遺伝子。
[0054] 上記構成によれば、上記転写因子は上記機能性ペプチドにより転写抑制因子に転 換され、上記転写因子の標的遺伝子の転写が抑制される。したがって、短期間に、 簡便、確実に八重咲き植物体を生産することができる。
[0055] また、本発明にかかる葯の裂開が制御された植物体の生産方法は、以下の(a)又 は (b)記載のタンパク質をコードする遺伝子、
(a)配列番号 136に示されるアミノ酸配列力もなるタンパク質、
(b)配列番号 136に示されるアミノ酸配列において、 1個又は数個のアミノ酸が置換、 欠失、挿入、及び Z又は付加されたアミノ酸配列からなり、葯の裂開に関与する遺伝 子の転写を促進する機能を有するタンパク質、
或いは、以下の(c)又は (d)記載の遺伝子、
(c)配列番号 137に示される塩基配列をオープンリーディングフレーム領域として有 する遺伝子、
(d)配列番号 137に示される塩基配列からなる遺伝子と相補的な塩基配列力 なる 遺伝子とストリンジェントな条件でハイブリダィズし、且つ、葯の裂開に関与する遺伝 子の転写を促進する転写因子をコードする遺伝子を用いることを特徴としている。
[0056] また、上記機能性ペプチドは、次に示す式(1)一 (4)
( 1) XI— Leu— Asp— Leu— X2— Leu— X3
(但し、式中、 XIは 0— 10個のアミノ酸残基を示し、 X2は Asnまたは Gluを示し、 X3 は少なくとも 6個のアミノ酸残基を示す。 )
(2) Yl— Phe— Asp— Leu— Asn— Y2— Y3
(但し、式中、 Ylは 0— 10個のアミノ酸残基を示し、 Y2は Pheまたは lieを示し、 Y3 は少なくとも 6個のアミノ酸残基を示す。 )
(3) Zl-Asp-Leu-Z2-Leu-Arg-Leu-Z3
(但し、式中、 Z1は Leu、 Asp— Leuまたは Leu— Asp— Leuを示し、 Z2は Glu、 Ginま たは Aspを示し、 Z3は 0— 10個のアミノ酸残基を示す。 )
(4) Asp— Leu— Z4— Leu— Arg— Leu
(但し、式中、 Z4は Glu、 Ginまたは Aspを示す。) の!、ずれかで表されるアミノ酸配列を有するものであることが好まし!/、。
[0057] また、上記機能性ペプチドは、配列番号 1一 17のいずれかに示されるアミノ酸配列 を有するペプチドであることが好まし 、。
[0058] また、上記機能性ペプチドは、以下の(e)または (f)記載のペプチドであってもよ!/、 。(e)配列番号 18または 19に示されるアミノ酸配列を有するペプチド。(f)配列番号 18または 19に示されるアミノ酸配列において、 1個または数個のアミノ酸が置換、欠 失、挿入、及び Zまたは付加されたアミノ酸配列を有するペプチド。
[0059] また、上記機能性ペプチドは、次に示す式(5)
(5) 1— Leu— j8 1— Leu— y 1— Leu
(但し、式中 oc 1は、 Asp、 Asn、 Glu、 Gln、 Thrまたは Serを示し、 β 1は、 Asp、 Gin 、 Asn、 Argゝ Glu、 Thr、 Serまたは Hisを示し、 γ 1は、 Argゝ Gln、 Asn、 Thr、 Ser 、 His、 Lysまたは Aspを示す。)
で表されるアミノ酸配列を有するものであってもよ 、。
[0060] また、上記機能性ペプチドは、次に示す式 (6)— (8)
(oノ 1— Leu— j8 1— Leu— y 2— Leu
(7) 1— Leu— j8 2— Leu— Arg— Leu
(8) 2— Leu— β 1— Leu— Arg— Leu
(但し、各式中 oc 1は、 Asp、 Asn、 Glu、 Gln、 Thrまたは Serを示し、 oc 2は、 Asn、 G lu、 Gln、 Thrまたは Serを示し、 j8 1は、 Asp、 Gln、 Asn、 Arg、 Glu、 Thr、 Serまた は Hisを示し、 j8 2は Asn、 Arg、 Thr、 Serまたは Hisを示し、 γ 2は Gln、 Asn、 Thr 、 Ser、 His、 Lysまたは Aspを示す。)
の!、ずれかで表されるアミノ酸配列を有するものであってもよ!/、。
[0061] また、上記機能性ペプチドは、配列番号 20、 21、 22、 23、 24、 25、 26、 27、 28、
29、 30、 31、 32、 33、 34、 35、 38、 39、 40または 152に示されるアミノ酸配列を有 するペプチドであってもよ 、。
[0062] また、上記機能性ペプチドは、配列番号 36または 37に示されるアミノ酸配列を有 するペプチドであってもよ 、。
[0063] 上記機能性ペプチドは、上記式のいずれかで表されるアミノ酸配列を有するぺプ チドまたは上記配列番号に示されるいずれかのペプチドであり、その多くは極めて短 いペプチドであるため、合成が容易であり、上記転写因子の標的遺伝子の転写抑制 を効率的に行うことができる。また、上記機能性ペプチドは、機能的に重複 (リダンダ ント)する他の転写因子の活性に優先して標的遺伝子の発現を抑制する機能を有し ている。それゆえ、標的遺伝子の発現を効果的に抑制できるという効果を奏する。
[0064] また、本発明に力かる植物体は、上記生産方法により生産された不稔性植物体で あることを特徴としている。上記不稔性植物体には、成育した植物個体、植物細胞、 植物組織、カルス、種子の少なくとも何れかが含まれることが好ましい。
[0065] また、本発明に力かる不稔性植物体の生産キットは、上記の生産方法を行うための キットであって、花器形成、雄しベまたは雌しベの形成、葯の裂開、または雄しベおよ び雌しベの形成に関与する遺伝子の発現を促進する転写因子をコードする遺伝子と 、任意の転写因子を転写抑制因子に転換する機能性ペプチドをコードするポリヌクレ ォチドと、プロモーターとを含む組換え発現ベクターを少なくとも含むことを特徴とし ている。上記不稔性植物体の生産キットは、さらに、上記組換え発現ベクターを植物 細胞に導入するための試薬群を含んで 、てもよ 、。
[0066] 本発明のさらに他の目的、特徴、および優れた点は、以下に示す記載によって十 分わ力るであろう。また、本発明の利益は、添付図面を参照した次の説明で明白にな るであろう。
図面の簡単な説明
[0067] [図 1(a)]実施例で組換え発現ベクター p35S : :APETALA3SRDXにより形質転換 されたシロイヌナズナの成長した植物体の全体を示す図である。
[図 1(b)]実施例で組換え発現ベクター p35S:: APETALA3SRDXにより形質転換 されたシロイヌナズナの成長した植物体の先端を拡大した図である。
[図 1(c)]実施例で組換え発現ベクター p35S:: APETALA3SRDXにより形質転換 されたシロイヌナズナの成長した植物体の花器を拡大した図である。
[図 2]実施例において用いる組換え発現ベクターを構築するための構築用ベクター の構築方法を示す工程図である。
[図 3]実施例において用いる構築用ベクター p35SGに、転写抑制転換ペプチド SR DXをコードする遺伝子と NACAD1遺伝子とを組み込む工程図である。
[図 4]実施例において用いる構築用ベクター p35SGに、転写抑制転換ペプチド SR
DXをコードする遺伝子と MYB26遺伝子とを組み込む工程図である。
[図 5]実施例において用いる構築用ベクター p35SGに、転写抑制転換ペプチド SR
DXをコードする遺伝子と AG遺伝子とを組み込む工程図である。
[図 6]形質転換用ベクター pBIGCKHの構築方法を示す工程図である。
[図 7(a)]実施例で組換え発現ベクター pBIG-NACADlSRDXにより形質転換され たシロイヌナズナの葯の形状を示す図である。
[図 7(b)]野生型のシロイヌナズナの葯の形状を示す図である。
[図 8]実施例で組換え発現ベクター pBIG-NACADlSRDXにより形質転換された シロイヌナズナ (右側)と、野生型のシロイヌナズナ (左側)を示す図である。
[図 9(a)]実施例で組換え発現ベクター pBIG-NACADlSRDXにより形質転換され たシロイヌナズナの「収穫された種子の質量 X 100Z種子以外の地上部の乾燥重量
」の階級値に対し、個体数をプロットしたグラフである。
[図 9(b)]野生型のシロイヌナズナの「収穫された種子の質量 X 100Z種子以外の地 上部の乾燥重量」の階級値に対し、個体数をプロットしたグラフである。
[図 10]実施例で、 pBIG-NACADlSRDXにより形質転換され、葯の裂開が抑制さ れた植物体にぉ 、て、葯内の花粉を取り出して受粉させた場合に結実するかを調べ た結果を示す図である。
[図 11(a)]野生型のシロイヌナズナの葯の形状を示す図である。
[図 11(b)]実施例で組換え発現ベクター PBIG-MYB26SRDXにより形質転換され たシロイヌナズナの葯の形状を示す図である。
[図 12(a)]野生型のシロイヌナズナの「(結実したさやの数 Z開花した花の数) X 100」 の階級値に対し、個体数をプロットしたグラフである。
[図 12(b)]実施例で組換え発現ベクター pBIG-MYB26SRDXにより形質転換され たシロイヌナズナの「(結実したさやの数 Z開花した花の数) X 100」をプロットしたグ ラフである。
[図 13(a)]pBIG— AGSRDXで形質転換し、完全な八重咲きとなったシロイヌナズナの 花を示す図である。
[図 13(b)]花の形態が八重咲きとなったシロイヌナズナの全体を表す図である。
[図 14(a)]野生型のシロイヌナズナの花を示す図である。
[図 14(b)]AG変異体のシロイヌナズナの花を示す図である。
[図 15]組換え発現ベクター pBIG— AGSRDXにより形質転換され、不完全な八重咲 きとなつたシロイヌナズナ花を示す図である。
[図 16]組換え発現ベクター pBIG— AGSRDXにより形質転換され、野生型に近い形 態となつたシロイヌナズナの花を示す図である。
発明を実施するための最良の形態
[0068] 以下、本発明の実施の一形態について、図 1 (a)—図 16に基づいて説明する。な お、本発明はこれに限定されるものではない。
[0069] 本発明は、不稔性植物体を生産する技術であって、花器形成に関与する遺伝子の 転写を促進する転写因子と、任意の転写因子を転写抑制因子に転換する機能性べ プチドとを融合させたキメラタンパク質を、植物体で生産させるものである。これによつ て得られる植物体では、正常な花粉形成ができないため、本発明により、雄性不稔 植物体を生産することができる。
[0070] ここで、正常な花粉形成ができなくなることは、次のようにして起こる。すなわち、上 記キメラタンパク質における上記転写因子由来の DNA結合ドメインが、花器形成に 関与すると推定される標的遺伝子に結合する。上記転写因子は転写抑制因子に転 換され、標的遺伝子の転写が抑制される。これにより、例えば雄しベの形成が阻害さ れるなどして、正常な花粉形成ができな ヽ雄性不稔植物体を得ることができる。
[0071] 本発明の生産方法で生産される植物の雄性不稔体 (本雄性不稔体)は、正常な花 粉形成ができないものである。すなわち、本雄性不稔体の例には、雄しベの形成が 阻害され、花粉がまったく形成されないものや、雄しベは形成されるが、葯が形成さ れないために、花粉が形成されないものや、雄しベも葯も形成されるが、形成される 花粉の量が少なぐ葯の開裂に至らないものや、形成された花粉が肥大化して互い にくつついてしまい、全く飛散しないもの、などがある。
[0072] なお、本雄性不稔体では、雌しベは稔性を有して!/、る。このため、本雄性不稔体に 他種の花粉を授粉できる。したがって、雑種強勢を利用した交配により、一代雑種を 得ることが出来る。
[0073] また、本雄性不稔体では、正常な花粉形成ができなくなることに加えて、他の組織 の形成が正常に行われなくなつていてもよい。例えば、本雄性不稔体は、花弁ゃ萼 などが通常とは異なる形に形成されるものや、あるいは全く形成されて 、な 、もので もよい。例えば、花弁ゃ萼がまったく形成されなければ、雌しベが露出するため、他 種の花粉を授粉する際の手間 (萼ゃ花弁を除去する等)を簡略化できる。
[0074] また、本発明は、植物体の葯の裂開を抑制する技術であって、葯の裂開に関与す る遺伝子の転写を促進する転写因子と、任意の転写因子を転写抑制因子に転換す る機能性ペプチドとを融合させたキメラタンパク質を、植物体で生産させる。これによ つて得られる植物体では、葯の裂開に関与する遺伝子の転写が抑制され、葯の裂開 が抑制された植物体を生産することができる。
[0075] ここで、葯の裂開は次のように抑制される。すなわち、上記キメラタンパク質における 上記転写因子由来の DNA結合ドメインが、葯の裂開に関与すると推定される標的遺 伝子に結合する。上記転写因子は転写抑制因子に転換され、標的遺伝子の転写が 抑制される。これにより葯の裂開に関与すると推定されるタンパク質の生成が減少し、 その結果、得られる植物体の葯の裂開を抑制することができる。
[0076] また、本発明は、植物体の葯の裂開を抑制する技術であって、葯の裂開に関与す る遺伝子の転写を促進する転写因子であって MYBドメインを有する転写因子と、転 写因子を転写抑制因子に転換する機能性ペプチドとを融合させたキメラタンパク質 を、植物体で生産させる。これによつて得られる植物体では、葯の裂開に関与する遺 伝子の転写が抑制され、葯の裂開が抑制された植物体を生産することができる。
[0077] また、例えば現在遺伝子の働きを抑える方法として一般的な RNAi法の場合、細胞 によってはトランスフエクシヨンの効率が低ぐ効果が限定される場合もある。従って、 RNAi法を用いる場合、ターゲットとする部位の決定が難しく試行錯誤が必要である 。また、コンストラクトの構築が難しい。本発明にかかる方法では、上記転写因子をコ ードする遺伝子に上記機能性ペプチドをコードする遺伝子を結合したキメラ遺伝子を 植物体に導入することによって、非常に簡便に目的の植物の葯の裂開を抑制するこ とが可能となる。
[0078] 本発明にかかる生産方法で生産される葯の裂開が抑制された植物体には、葯の裂 開が完全に起こらない植物体及び葯の裂開が不完全にしか起こらない植物体が含 まれる。ここで葯とは雄しベ(おしべ)の一部で、花粉をつくる袋状の部分である。閉 花受精をするもの (例:マメ科)では、花粉が葯内で発芽し、繊維状細胞層の発達を みない柔らかな葯壁を通して花粉管を伸長させるが、一般に葯は裂開して花粉を葯 の外に放出する。葯の裂開は、口辺細胞が細胞死を起こし、そこで葯壁が切れること によって起こる。また、口辺細胞が切れただけでは葯はロを開かず、花粉が放出され るためには葯壁が収縮して反りかえることが必要である。本発明でいう葯の裂開が抑 制された植物体とは、口辺細胞が切れただけの植物体であってもよぐ口辺細胞が 切れ且つ葯壁が反りかえって葯がロを開いた植物体であってもよい。なお、口辺細 胞とは、葯がロを開く部分にあたる、一層の小さな細胞力もなる組織である。
[0079] なお、本発明の葯の裂開が抑制された植物体では、雌性器官 (雌しベ)は、稔性を 有している。これにより、本発明の葯の裂開が抑制された植物体に他種の花粉を受 粉できる。したがって、雄性器官を人為的に除去したり、人為的に交配させるという手 間を力けずに、雑種強勢を利用した交配により、雑種第 1代 (F1)品種を得ることがで きる。
[0080] また、本発明の葯の裂開が抑制された植物体では、葯の裂開が抑制されて!、れば よぐ花粉自体は稔性を有していてもよいし、稔性を有していなくてもよいが、花粉自 体が稔性を有していることがより好ましい。これにより、花粉自体には生殖能を残しつ つ、自家受粉が起きない植物体を生産することが可能となり、育種等に有用である。 すなわち、花粉自体が稔性を有していない雄性不稔体では、それ自身の花粉が利 用できないので、自殖によるホモ接合性の個体を作出、維持することができない。へ テロ接合性の個体を自家受粉することにより、ホモ接合性の個体を作出することはで きるが、力かる場合もホモ接合性の個体は 1Z4し力得られない。これに対し、花粉自 体には生殖能を残すことにより、ホモ接合性の個体を作出、維持することが可能とな り、育種への応用が考えられる。
[0081] また、本発明は、八重咲き植物体を生産する技術であって、雄しベおよび雌しベの 形成に関与する転写因子と、任意の転写因子を転写抑制因子に転換する機能性べ プチドとを融合させたキメラタンパク質を植物体で生産させることにより、八重咲き植 物体を生産するものである。
[0082] 上記キメラタンパク質を生産させる方法では、上記転写因子は、上記機能性べプチ ドにより転写抑制因子に転換される。そのため、上記キメラタンパク質における転写 因子由来の DNA結合ドメインが、転写因子の標的遺伝子に結合すると、転写因子 の標的遺伝子の転写が抑制される。その結果、雄しベおよび雌しベの形成に関与す る遺伝子の機能が失われ、上述したクラス Aの機能が花の全領域に及ぶため、雄し ベが花弁に変化し、野生型では雌しベとなる領域に新しい花が作られ、八重咲き植 物体が形成される。すなわち、図 13 (A)に示すように、外側からがぐ花弁、花弁の 順で花が繰り返し形成される。
[0083] また、上記キメラタンパク質が上記転写因子の標的遺伝子の転写を抑制するという 形質は、ドミナントである。すなわち、雄しベおよび雌しベの形成に関与する正常な 遺伝子が存在していても、転写因子の標的遺伝子の転写が抑制された変異型の遺 伝子の方が優勢に発現する。つまり、上記キメラタンパク質の方が上記転写因子より も優勢的に働いて標的遺伝子の転写を抑制する。
[0084] したがって、短期間で、簡便、確実に、八重咲き植物体を生産することができる。ま た、得られる八重咲き植物体は、種子が形成されない不稔性植物体となる。上記不 稔性植物体には、雄しベも雌しベも全く形成されない完全不稔性植物体の他、不完 全な雄しベ様器官および Zまたは雌しベ様器官が形成されるものの、種子の形成が 抑制される不稔性植物体も含まれる。
[0085] 上記不稔性植物体では、種子が形成されな!ヽ。また、上記完全不稔性植物体では 、花粉の離散が生じない。したがって、遺伝子組み換え植物の環境への拡散を防止 することができる。
[0086] 以降の説明では、本発明にかかる不稔性植物体の生産方法に用いられるキメラタ ンパク質、本発明にかかる植物体の生産方法の一例、これにより得られる植物体とそ の有用性、並びにその利用について、それぞれ説明する。
[0087] (I)本発明で用いられるキメラタンパク質 上述したように、本発明で用いられるキメラタンパク質は、花器形成に関与する遺伝 子、雄しベまたは雌しベの形成に関与する遺伝子、葯の裂開に関与する遺伝子、ま たは、雄しベおよび雌しベの形成に関与する遺伝子の転写を促進する転写因子と、 任意の転写因子を転写抑制因子に転換する機能性ペプチドとを融合させたものであ る。葯の裂開に関与する遺伝子の転写を促進する転写因子は、 MYBドメインを有す る転写因子であってもよい。
[0088] また、本発明で用いられるキメラタンパク質は、内在性の遺伝子に対して、優勢に 作用するものである。すなわち、本発明にかかるキメラタンパク質は、植物が二倍体 ゃ複二倍体であったり、あるいは植物に機能重複遺伝子が存在したりしても、該当す る転写因子が制御する、花器形成に関わる遺伝子、雄しベまたは雌しベの形成に関 与する遺伝子、葯の裂開に関与する遺伝子、または雄しベおよび雌しベの形成に関 与する遺伝子の発現を、一様に抑制できる。そのため、遺伝子導入可能なあらゆる 植物を、不稔性植物体、雄性不稔体、葯の裂開が抑制された植物体または八重咲き 植物体に容易に形質転換することが可能となる。
[0089] 以下では、上記転写因子および機能性ペプチドそれぞれについて説明する。
[0090] (l-1-a)花器形成に関与する遺伝子の転写を促進する転写因子
本発明で用いられる転写因子は、花器形成に関与する遺伝子の転写を促進する 転写因子であれば特に限定されるものではない。力かる転写因子は多くの植物に保 存されている。したがって、本発明で用いられる転写因子には、種々の植物に保存さ れて 、る同様の機能を有するタンパク質が含まれる。
[0091] このような転写因子としては、 MADS Boxを含んだ転写因子である APETALA3 タンパク質や PISTILLATAタンパク質がある力 これらに限定されるものではない。
[0092] 本発明で用いられる転写因子の代表的な一例としては、例えば、 APETALA3タ ンパク質を挙げることができる。 APETALA3タンパク質は、配列番号 134に示され るアミノ酸配列を有するタンパク質であり、上述したように、花器形成に関与する遺伝 子の転写を促進する転写因子であることが知られている。また、シロイヌナズナでは、 この APETALA3タンパク質をコードする遺伝子(説明の便宜上、 APETALA3遺 伝子と称する)の変異株において、花弁と雄しベの形成が阻害されることが知られて ヽる (Thomas Jack, Laura L. Brockman, and Elliot M. Meyerrowitz., Cell, Vol 68, pp 683-697, February, 1992を参照のこと)。本発明では、例えば、この APETALA3タ ンパク質に後述する機能性ペプチドを融合させることにより、転写因子である APET ALA3タンパク質を転写抑制因子に転換させる。
[0093] 本発明で用いられる転写因子としては、配列番号 134に示されるアミノ酸配列を有 する APETALA3タンパク質に限定されるものではなぐ花器形成に関与する遺伝 子の発現を促進する機能を有する転写因子であればよい。具体的には、配列番号 1 34に示されるアミノ酸配列において、 1個又は数個のアミノ酸が置換、欠失、挿入、 及び Z又は付加されたアミノ酸配列力もなるタンパク質であっても、上記機能を有し ていれば本発明にて用いることができる。なお、上記の「配列番号 134に示されるアミ ノ酸配列において、 1個又は数個のアミノ酸が置換、欠失、挿入、及び Z又は付加さ れたアミノ酸配列」における「1個又は数個」の範囲は特に限定されないが、例えば、 1から 20個、好ましくは 1から 10個、より好ましくは 1から 7個、さらに好ましくは 1個から 5個、特に好ましくは 1個から 3個を意味する。
[0094] また、本発明で用いられる、花器形成に関わる遺伝子の転写を促進する転写因子 のアミノ酸配列は、種の異なる数多くの植物間において、保存性が高いものと考えら れる。そのため、雄性不稔体を生産したい個々の植物体において、花器形成に関与 する遺伝子の発現を促進する固有の転写因子やその遺伝子を、必ずしも単離する 必要はない。すなわち、後述する実施例で示す、シロイヌナズナで構築したキメラタ ンパク質を、他の植物に導入することで、さまざまな種の植物において簡便に雄性不 稔体を生産できると考えられる。
[0095] 本発明で用いられるキメラタンパク質を生産させる際には、後述するように、公知の 遺伝子組換え技術を好適に用いることができる。そこで、本発明にかかる植物体の生 産方法には、上記転写因子をコードする遺伝子も好適に用いることができる。
[0096] 上記転写因子をコードする遺伝子としては特に限定されるものではないが、具体的 な一例としては、例えば、転写因子として APETALA3タンパク質を用いる場合には 、この APETALA3遺伝子を挙げることができる。 APETALA3遺伝子の具体的な 一例としては、例えば、配列番号 135に示される塩基配列をオープンリーディングフ レーム(ORF)として含むポリヌクレオチドを挙げることができる。
[0097] もちろん、本発明で用いられる APETALA3遺伝子、または、転写因子をコードす る遺伝子としては、上記の例に限定されるものではなぐ配列番号 135に示される塩 基配列と相同性を有する遺伝子であってもよい。具体的には、例えば、配列番号 13 5に示される塩基配列からなる遺伝子と相補的な塩基配列からなる遺伝子とストリン ジェントな条件でハイブリダィズし、かつ、上記転写因子をコードする遺伝子等を挙げ ることができる。なお、ここでストリンジェントな条件でノヽイブリダィズするとは、 60°Cで 2 X SSC洗浄条件下で結合することを意味する。
[0098] 上記ハイブリダィゼーシヨンは、 J. Sambrook et al. Molecular Cloning, A
Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory(1989)に,己載されてい o 方法等、従来公知の方法で行うことができる。通常、温度が高いほど、塩濃度が低い ほどストリンジエンシーは高くなる(ノヽイブリダィズしがたくなる)。
[0099] 上記転写因子をコードする遺伝子を取得する方法は特に限定されるものではなぐ 従来公知の方法により、多くの植物力 単離することができる。例えば、既知の転写 因子の塩基配列に基づき作製したプライマー対を用いることができる。このプライマ 一対を用いて、植物の cDNA又はゲノミック DNAを铸型として PCRを行うこと等によ り上記遺伝子を得ることができる。また、上記転写因子をコードする遺伝子は、従来 公知の方法により化学合成して得ることもできる。
[0100] (I 1 b)葯の裂開に関与する遺伝子の転写を促進する転写因子
本発明で用いられる転写因子は、葯の裂開に関与する遺伝子の転写を促進する 転写因子であれば特に限定されるものではな 、。一般に葯は裂開して花粉を葯の外 に放出する。従って、葯の裂開に関与する遺伝子の転写を促進する転写因子は多く の植物に保存されている。したがって、本発明で用いられる転写因子には、種々の 植物に保存されている同様の機能を有する転写因子が含まれる。
[0101] 本発明で用いられる転写因子の代表的な一例としては、例えば、 NACAD1タンパ ク質を挙げることができる。 NACAD1タンパク質は、配列番号 136に示されるァミノ 酸配列を有するタンパク質であり、上述したように、シロイヌナズナの NACファミリータ ンパク質の 1つである。本発明では、例えば、この NACAD1タンパク質に後述する 機能性ペプチドを融合させることにより、転写因子である NACAD1タンパク質を転 写抑制因子に転換させる。
[0102] 本発明で用いられる転写因子としては、配列番号 136に示されるアミノ酸配列を有 する NACAD1タンパク質に限定されるものではなぐ葯の裂開に関与する遺伝子の 転写を促進する転写因子であればよい。具体的には、配列番号 136に示されるアミ ノ酸配列において、 1個又は数個のアミノ酸が置換、欠失、挿入、及び Z又は付加さ れたアミノ酸配列力もなるタンパク質であっても、上記機能を有して 、れば本発明に て用いることができる。なお、上記の「配列番号 136に示されるアミノ酸配列において 、 1個又は数個のアミノ酸が置換、欠失、挿入、及び Z又は付加されたアミノ酸配列」 における「1個又は数個」の範囲は特に限定されないが、例えば、 1から 20個、好まし くは 1から 10個、より好ましくは 1から 7個、さらに好ましくは 1個から 5個、特に好ましく は 1個から 3個を意味する。
[0103] また上記転写因子としては、配列番号 136に示されるアミノ酸配列に対して、 20% 以上、好ましくは 50%以上、さらに好ましくは 60%または 70%以上の相同性を有す るタンパク質であって、且つ、葯の裂開に関与する遺伝子の転写を促進する機能を 有するタンパク質も含まれる。なおここで「相同性」とは、アミノ酸配列中に占める同じ 配列の割合であり、この値が高いほど両者は近縁であるといえる。上記転写因子とし ては、例えば、上記相同性が 52%であって、配列番号 136に示されるアミノ酸配列を 有する NACAD1タンパク質と同じ機能を持つ NAC因子が挙げられる。
[0104] 本発明で用いられるキメラタンパク質を生産させる際には、後述するように、公知の 遺伝子組換え技術を好適に用いることができる。そこで、本発明にかかる植物体の生 産方法には、上記転写因子をコードする遺伝子も好適に用いることができる。
[0105] 上記転写因子をコードする遺伝子としては特に限定されるものではなぐ遺伝暗号 に基づいて、上記転写因子のアミノ酸配列に対応するものであればよい。具体的な 一例としては、例えば、転写因子として NACAD1タンパク質を用いる場合には、この NACAD1タンパク質をコードする遺伝子 (説明の便宜上、 NACAD1遺伝子と称す る)を挙げることができる。 NACAD1遺伝子の具体的な一例としては、例えば、配列 番号 137に示される塩基配列をオープンリーディングフレーム(ORF)として含むポリ ヌクレオチドを挙げることができる。
[0106] もちろん、本発明で用いられる NACAD1遺伝子、または、転写因子をコードする 遺伝子としては、上記の例に限定されるものではなぐ配列番号 137に示される塩基 配列と相同性を有する遺伝子であってもよい。具体的には、例えば、配列番号 137 に示される塩基配列からなる遺伝子と相補的な塩基配列からなる遺伝子とストリンジ ェントな条件でハイブリダィズし、かつ、上記転写因子をコードする遺伝子等を挙げる ことができる。なお、「ストリンジェントな条件でノヽイブリダィズする」の意味については 上述の通りである。
[0107] 上記ノ、イブリダィゼーシヨンは、上述のように、従来公知の方法で行うことができる。
上記転写因子をコードする遺伝子を取得する方法は特に限定されるものではなぐ 上述のように、従来公知の方法により、多くの植物力も単離することができる。また、 上記転写因子をコードする遺伝子は、上述のように、従来公知の方法により化学合 成して得ることちでさる。
[0108] (l-1-c)葯の裂開に関与する遺伝子の転写を促進する転写因子であって MYBド メインを有する転写因子
本発明で用いられる転写因子は、葯の裂開に関与する遺伝子の転写を促進する 転写因子であって、 MYBドメインを有する転写因子であれば特に限定されるもので はない。ここで、 MYBドメインとは、がん遺伝子の 1つである myb遺伝子の産物と相 同性を有する約 50アミノ酸残基を 1つの単位とするドメインを ヽぅ。かかる MYBドメイ ンを持つ転写因子は MYB転写因子ファミリーとよばれ、 MYBドメインは動物及び植 物の多くの種において保存されている。本発明で用いられる転写因子は、力かる MY B転写因子ファミリーに属する転写因子であって、葯の裂開に関与する遺伝子の転 写を促進する転写因子であればよ!、。一般に葯は裂開して花粉を葯の外に放出す る。したがって、本発明で用いられる転写因子には、種々の植物に保存されている同 様の機能及び同様のドメインを有する転写因子が含まれる。
[0109] このような転写因子としてはシロイヌナズナ MYB26タンパク質、イネ NP— 916576 . 1 (GenBankァクセッション番号)によりコードされるタンパク質等を挙げることができ る力 上記転写因子はこれらに限定されるものではない。 [0110] 本発明で用いられる転写因子の代表的な一例としては、シロイヌナズナ MYB26タ ンパク質を挙げることができる。 MYB26タンパク質は、例えば、配列番号 138に示さ れるアミノ酸配列からなるタンパク質を挙げることができ、上述したように、シロイヌナ ズナの MYB転写因子ファミリーの 1つである。なお、特に高等生物では、可変スプラ イシングの結果生じるスプライシングノリアントが複数存在することが知られており、 M YB26タンパク質でも、複数のスプライシングバリアントが存在する。従って、上記 MY B26タンパク質には、配列番号 138に示されるアミノ酸配列力もなるタンパク質に限ら れず、葯の裂開に関与する遺伝子の転写を促進する機能を有する転写因子である 限り、力かるスプライシングバリアントも含まれる。本発明では、例えば、この MYB26 タンパク質に後述する機能性ペプチドを融合させることにより、転写因子である MYB 26タンパク質を転写抑制因子に転換させる。
[0111] なお、 MYB26タンパク質が標的とする、葯の裂開に関与する遺伝子については明 らかにされていないが、この転写因子 MYB26が標的とする遺伝子は、葯におけるリ グニン合成を担う酵素等の遺伝子であることが予想されて ヽる。すなわち MYB26転 写因子は、葯におけるリグニン合成を担う酵素等の遺伝子発現を正に制御しているこ とが予想される。リグニン合成と葯の開裂との関係については、葯壁の内被細胞がリ グニンィ匕と脱水とによって収縮することにより、葯はストミゥムを中心に左右に開くこと が考えられる。従って、本発明で用いられる転写因子が標的とする遺伝子が、リグ- ン合成を担う酵素等の遺伝子である場合には、本発明で用いられる転写因子は、葯 の裂開に関与する遺伝子の転写を促進する転写因子であり、且つ、リグニン合成を 担う酵素等の遺伝子発現を正に制御して 、る転写因子であると 、うことができる。
[0112] 本発明で用いられる転写因子としては、配列番号 138に示されるアミノ酸配列から なる MYB26タンパク質に限定されるものではなぐ葯の裂開に関与する遺伝子の転 写を促進する MYBファミリー転写因子であればよい。具体的には、配列番号 138に 示されるアミノ酸配列において、 1個又は数個のアミノ酸が置換、欠失、挿入、及び Z 又は付加されたアミノ酸配列カゝらなるタンパク質であっても、上記機能及び MYBドメ インを有していれば本発明にて用いることができる。なお、上記の「配列番号 138に 示されるアミノ酸配列において、 1個又は数個のアミノ酸が置換、欠失、挿入、及び Z 又は付加されたアミノ酸配列」における「1個又は数個」の範囲は特に限定されないが 、例えば、 1から 20個、好ましくは 1から 10個、より好ましくは 1から 7個、さらに好ましく は 1個から 5個、特に好ましくは 1個から 3個を意味する。
[0113] また上記転写因子としては、配列番号 138に示されるアミノ酸配列に対して、 20% 以上、好ましくは 50%以上、さらに好ましくは 60%または 70%以上の相同性を有す るタンパク質であって、且つ、葯の裂開に関与する遺伝子の転写を促進する機能及 び MYBドメインを有するタンパク質も含まれる。なおここで「相同性」とは、アミノ酸配 列中に占める同じ配列の割合であり、この値が高 、ほど両者は近縁であると!/、える。
[0114] また、本発明で用いられる、葯の裂開に関与する遺伝子の転写を促進する転写因 子であって MYBドメインを有する転写因子のアミノ酸配列は、種の異なる数多くの植 物間において、保存性が高いものと考えられる。そのため、葯の裂開を抑制したい個 々の植物体において、力かる転写因子や力かる転写因子をコードする遺伝子を必ず しも単離する必要はない。すなわち、後述する実施例で示す、シロイヌナズナで構築 したキメラタンパク質をコードする遺伝子を、他の植物に導入することで、さまざまな 種の植物において簡便に葯の裂開が抑制された植物体を生産することができる。
[0115] 本発明で用いられるキメラタンパク質を生産させる際には、後述するように、公知の 遺伝子組換え技術を好適に用いることができる。そこで、本発明にかかる植物体の生 産方法には、上記転写因子をコードする遺伝子も好適に用いることができる。
[0116] 上記転写因子をコードする遺伝子としては特に限定されるものではなぐ遺伝暗号 に基づいて、上記転写因子のアミノ酸配列に対応するものであればよい。具体的な 一例としては、例えば、転写因子として MYB26タンパク質を用いる場合には、この M YB26タンパク質をコードする遺伝子 (説明の便宜上、 MYB26遺伝子と称する)を挙 げることができる。 MYB26遺伝子の具体的な一例としては、例えば、配列番号 139 に示される塩基配列をオープンリーディングフレーム(ORF)として含むポリヌクレオ チドを挙げることができる。
[0117] もちろん、本発明で用いられる MYB26遺伝子、または、転写因子をコードする遺 伝子としては、上記の例に限定されるものではなぐ配列番号 139に示される塩基配 列と相同性を有する遺伝子であってもよい。具体的には、例えば、配列番号 139に 示される塩基配列からなる遺伝子と相補的な塩基配列からなる遺伝子とストリンジェ ントな条件でハイブリダィズし、かつ、上記転写因子をコードする遺伝子等を挙げるこ とができる。なお、「ストリンジェントな条件でノヽイブリダィズする」の意味については上 述の通りである。
[0118] 上記ノ、イブリダィゼーシヨンは、上述のように、従来公知の方法で行うことができる。
上記転写因子をコードする遺伝子を取得する方法は特に限定されるものではなぐ 上述のように、従来公知の方法により、多くの植物力も単離することができる。また、 上記転写因子をコードする遺伝子は、上述のように、従来公知の方法により化学合 成して得ることちでさる。
[0119] (I 1 d)雄しベおよび雌しベの形成に関与する転写因子
本発明で用いられる転写因子は、雄しベおよび雌しベの形成に関与する転写因子 であれば、特に限定されるものではない。一実施形態において、本発明で用いられ る転写因子は、配列番号 140に示されるアミノ酸配列からなるタンパク質、または配 列番号 140に示されるアミノ酸配列力もなるタンパク質の変異体である。配列番号 14 0に示されるアミノ酸配列からなるタンパク質は、上記 AG遺伝子がコードする転写因 子であり、雄しベおよび雌しベの形成に関与する。
[0120] 変異体としては、欠失、挿入、逆転、反復、およびタイプ置換 (例えば、親水性の残 基の別の残基への置換、し力し通常は強く親水性の残基を強く疎水性の残基には置 換しない)を含む変異体が挙げられる。特に、タンパク質における「中性」アミノ酸置換 は、一般的にそのタンパク質の活性にほとんど影響しない。
[0121] タンパク質のアミノ酸配列中のいくつかのアミノ酸力 このタンパク質の構造または 機能に有意に影響することなく容易に改変され得ることは、当該分野において周知 である。さらに、人為的に改変させるだけではぐ天然のタンパク質において、当該タ ンパク質の構造または機能を有意に変化させない変異体が存在することもまた周知 である。
[0122] 当業者は、周知技術を使用してタンパク質のアミノ酸配列において 1または数個の アミノ酸を容易に変異させることができる。例えば、公知の点変異導入法に従えば、タ ンパク質をコードするポリヌクレオチドの任意の塩基を変異させることができる。また、 タンパク質をコードするポリヌクレオチドの任意の部位に対応するプライマーを設計し て欠失変異体または付加変異体を作製することができる。さらに、本明細書中に記載 される方法を用いれば、作製した変異体が所望の活性を有するか否かを容易に決定 し得る。
[0123] 好ましい変異体は、保存性もしくは非保存性アミノ酸置換、欠失、または添加を有 する。好ましくは、サイレント置換、添加、および欠失であり、特に好ましくは、保存性 置換である。これらは、本発明に係るタンパク質活性を変化させない。
[0124] 代表的に保存性置換と見られるのは、脂肪族アミノ酸 Ala、 Val、 Leu,および lieの 中での 1つのアミノ酸の別のアミノ酸への置換;ヒドロキシル残基 Serおよび Thrの交 換、酸性残基 Aspおよび Gluの交換、アミド残基 Asnおよび Ginの間の置換、塩基性 残基 Lysおよび Argの交換、ならびに芳香族残基 Phe、 Tyrの間の置換である。
[0125] 上記に詳細に示されるように、どのアミノ酸の変化が表現型的にサイレントでありそう 力 (すなわち、機能に対して有意に有害な効果を有しそうにないか)に関するさらなる ガイダンスは、 Bowie, J. U.り「Deciphering the Message in Protein Se quences: Tolerance to Amino Acid SubstitutionsJ , Science 247 : 13 06-1310 (1990) (本明細書中に参考として援用される)に見出され得る。
[0126] 本実施形態に係る転写因子は、以下の(a)または (b)記載のタンパク質であること が好ましい。
(a)配列番号 140に示されるアミノ酸配列力もなるタンパク質。
(b)配列番号 140に示されるアミノ酸配列において、 1個または数個のアミノ酸が置 換、欠失、挿入、及び,または付加されたアミノ酸配列からなるタンパク質。
[0127] なお、上記の「(i)記載のアミノ酸配列において、 1個または数個のアミノ酸が置換、 欠失、挿入、及び Zまたは付加されたアミノ酸配列」及び「配列番号 140に示される アミノ酸配列において、 1個または数個のアミノ酸が置換、欠失、挿入、及び Zまたは 付加されたアミノ酸配列」における「1個または数個」の範囲は特に限定されないが、 例えば、 1から 20個、好ましくは 1から 10個、より好ましくは 1から 7個、さらに好ましく は 1個から 5個、特に好ましくは 1個から 3個を意味する。このような変異タンパク質は 、上述したように、公知の変異タンパク質作製法により人為的に導入された変異を有 するタンパク質に限定されるものではなぐ天然に存在するタンパク質を単離精製し たものであってもよい。
[0128] なお、本発明に係るタンパク質は、アミノ酸がペプチド結合して 、るタンパク質であ ればよいが、これに限定されるものではなぐタンパク質以外の構造を含む複合タン ノ ク質であってもよい。本明細書中で使用される場合、「タンパク質以外の構造」とし ては、糖鎖やイソプレノイド基等を挙げることができるが、特に限定されるものではな い。
[0129] また、本発明に係るタンパク質は、付加的なタンパク質を含むものであってもよ!/、。
付カ卩的なタンパク質としては、例えば、 Hisや Myc、 Flag等のェピトープ標識タンパク 質が挙げられる。
[0130] ところで、花のホメォティック遺伝子は、シロイヌナズナゃキンギヨソゥなどから単離さ れており、双子葉植物のみならず単子葉植物でも同様に機能すると考えられている。 そのため、 AG遺伝子がコードする転写因子等の、雄しベおよび雌しベの形成に関 与する転写因子のアミノ酸配列は、種の異なる数多くの植物間において、保存性が 高いものと考えられる。したがって、八重咲き植物体の形成を行う個々の植物体にお いて、雄しベおよび雌しベの形成に関与する転写因子やその遺伝子を必ずしも単離 する必要はない。すなわち、後述する実施例で示す、シロイヌナズナで構築したキメ ラタンパク質を、他の植物に導入することで、さまざまな種の植物において八重咲き 植物体を生産することができる。
[0131] 本発明で用いられるキメラタンパク質を生産する際には、後述するように、公知の遺 伝子組換え技術を好適に用いることができる。そこで、本発明にかかる植物体の生産 方法には、上記転写因子をコードする遺伝子 (ポリヌクレオチド)も好適に用いること ができる。
[0132] 上記転写因子をコードする遺伝子は、 RNA (例えば、 mRNA)の形態、または DN Aの形態(例えば、 cDNAまたはゲノム DNA)で存在し得る。 DNAは、二本鎖であつ ても一本鎖であってもよい。一本鎖 DNAまたは RNAは、コード鎖(センス鎖としても 知られる)であっても、非コード鎖(アンチセンス鎖としても知られる)であってもよ!/、。
[0133] 上記転写因子をコードする遺伝子はさらに、雄しベおよび雌しベの形成に関与する 転写因子をコードする遺伝子の変異体であってもよい。変異体は、天然の対立遺伝 子変異体のように、天然に生じ得る。「対立遺伝子変異体」によって、生物の染色体 上の所定の遺伝子座を占める遺伝子のいくつかの交換可能な形態の 1つが意図さ れる。天然に存在しない変異体は、例えば当該分野で周知の変異誘発技術を用い て生成され得る。
[0134] このような変異体としては、上記転写因子をコードするポリヌクレオチドの塩基配列 において 1または数個の塩基が欠失、置換、または付加した変異体が挙げられる。変 異体は、コードもしくは非コード領域、またはその両方において変異され得る。コード 領域における変異は、保存的もしくは非保存的なアミノ酸欠失、置換、または付加を 生成し得る。
[0135] 上記転写因子をコードする遺伝子は、ストリンジェントなハイブリダィゼーシヨン条件 下で、上記転写因子をコードする遺伝子または当該遺伝子にノヽイブリダィズするポリ ヌクレオチドを含む。
[0136] 一実施形態において、上記転写因子をコードする遺伝子は、以下の(c)または (d) 記載のポリヌクレオチドであることが好まし!/、。
(c)配列番号 141に示される塩基配列をオープンリーディングフレーム領域として有 する遺伝子。
(d)配列番号 141に示される塩基配列からなる遺伝子と相補的な塩基配列からなる 遺伝子とストリンジェントな条件でノヽイブリダィズし、かつ、雄しベおよび雌しベの形成 に関与するタンパク質をコードする遺伝子。
[0137] なお、上記「ストリンジェントな条件」とは、少なくとも 90%以上の同一性、好ましくは 少なくとも 95%以上の同一性、最も好ましくは 97%の同一性が配列間に存在する時 にのみハイブリダィゼーシヨンが起こることを意味する。
[0138] 上記ノ、イブリダィゼーシヨンは、上述のように従来公知の方法で行うことができる。
通常、温度が高いほど、塩濃度が低いほどストリンジエンシーは高くなり(ハイブリダィ ズし難くなる)、より相同なポリヌクレオチドを取得することができる。ハイブリダィゼー シヨンの条件としては、従来公知の条件を好適に用いることができ、特に限定しない ヽ ί列えば、 42°C、 6 X SSPE、 50%ホノレムアミド、 1%SDS、 100 /z gZml サケ精 子 DNA、 5 Xデンハルト液(ただし、 1 X SSPE ;0. 18M 塩化ナトリウム、 10mMリ ン酸ナトリウム、 PH7. 7、 ImM EDTA。 5 Xデンハルト液; 0. 1% 牛血清アルブミ ン、 0. 1% フイコール、 0. 1% ポリビュルピロリドン)が挙げられる。
[0139] 上記転写因子をコードする遺伝子を取得する方法は特に限定されるものではなぐ 公知の技術により、上記転写因子をコードするポリヌクレオチドを含む DNA断片を単 離し、クロー-ングする方法を用いることができる。例えば、上記転写因子をコードす る遺伝子の塩基配列の一部と特異的にノ、イブリダィズするプローブを調製し、ゲノム DNAライブラリーや cDNAライブラリーをスクリーニングすればよ!、。このようなプロ ーブとしては、上記転写因子をコードする遺伝子の塩基配列またはその相補配列の 少なくとも一部に特異的にハイブリダィズするプローブであれば、 、ずれの配列およ び Zまたは長さのものを用いてもょ 、。
[0140] あるいは、上記転写因子をコードする遺伝子を取得する方法として、 PCR等の増幅 手段を用いる方法を挙げることができる。例えば、上記転写因子をコードするポリヌク レオチドの cDNAのうち、 5,側および 3,側の配列(またはその相補配列)の中からそ れぞれプライマーを調製し、これらプライマーを用いてゲノム DNA (または cDNA)等 を铸型にして PCR等を行 ヽ、両プライマー間に挟まれる DNA領域を増幅することで 、上記転写因子をコードするポリヌクレオチドを含む DNA断片を大量に取得できる。
[0141] (I 2)任意の転写因子を転写抑制因子に転換する機能性ペプチド
本発明で用いられる、任意の転写因子を転写抑制因子に転換する機能性ペプチド (説明の便宜上、転写抑制転換ペプチドと称する)としては、特に限定されるものでは なぐ転写因子と融合させたキメラタンパク質を形成させることにより、当該転写因子 により制御される標的遺伝子の転写を抑制することができるペプチドであればよい。 具体的には、例えば、本発明者によって見出された転写抑制転換ペプチド (特許文 献 3— 9、非特許文献 10· 11等参照)を挙げることができる。
[0142] 本発明者は、 Class II ERF遺伝子群の一つであるシロイヌナズナ由来の AtERF3 タンパク質、 AtERF4タンパク質、 AtERF7タンパク質、 AtERF8タンパク質を転写 因子に結合させたタンパク質が、遺伝子の転写を顕著に抑制するとの知見を得た。 そこで、上記タンパク質をそれぞれコードする遺伝子およびこれから切り出した DNA を含むエフェクタープラスミドを構築し、これを植物細胞に導入することにより、実際に 遺伝子の転写を抑制することに成功した (例えば特許文献 3— 6参照)。また、 Class II ERF遺伝子群の一つであるタバコ ERF3タンパク質 (例えば特許文献 7参照)、ィ ネ OsERF3タンパク質 (例えば特許文献 8参照)をコードする遺伝子、及び、ジンタフ インガータンパク質の遺伝子群の一つであるシロイヌナズナ ZAT10、同 ZAT11をコ ードする遺伝子についても上記と同様な試験を行ったところ、遺伝子の転写を抑制 することを見出している。さらに本発明者は、これらタンパク質は、カルボキシル基末 端領域に、ァスパラギン酸一口イシンーァスパラギン (DLN)を含む共通のモチーフを 有することを明らかにした。そして、この共通モチーフを有するタンパク質について検 討した結果、遺伝子の転写を抑制するタンパク質は極めて単純な構造のペプチドで あってもよぐこれら単純な構造を有するペプチドが、任意の転写因子を転写抑制因 子に変換する機能を有することを見出している。
[0143] また、本発明者は、シロイヌナズナ SUPERMANタンパク質は、上記の共通のモチ ーフと一致しないモチーフを有するが、任意の転写因子を転写抑制因子に変換する 機能を有すること、また該 SUPERMANタンパク質をコードする遺伝子を、転写因子 の DNA結合ドメイン又は転写因子をコードする遺伝子に結合させたキメラ遺伝子は 、強力な転写抑制能を有するタンパク質を産生することも見出している。
[0144] したがって、本発明において用いられる転写抑制転換ペプチドの一例として、本実 施の形態では、 Class II ERFタンパク質であるシロイヌナズナ由来の AtERF3タンパ ク質、同 AtERF4タンパク質、同 AtERF7タンパク質、同 AtERF8タンパク質、タパ コ ERF3タンパク質、イネ OsERF3タンパク質、ジンタフインガータンパク質の一つで あるシロイヌナズナ ZAT10タンパク質、同 ZAT11タンパク質等のタンパク質、同 SU PERMANタンパク質、これらカゝら切り出したペプチドや、上記機能を有する合成べ プチド等を挙げることができる。
[0145] 上記転写抑制転換ペプチドの一例の具体的な構造は、下記式(1)一(4)の何れか で表されるアミノ酸配列となって 、る。
( 1) XI— Leu— Asp— Leu— X2— Leu— X3
(但し、式中、 XIは 0— 10個のアミノ酸残基を示し、 X2は Asn又は Gluを示し、 X3は 少なくとも 6個のアミノ酸残基を示す。 )
(2) Yl-Phe-Asp-Leu-Asn-Y2-Y3
(但し、式中、 Y1は 0— 10個のアミノ酸残基を示し、 Y2は Pheまたは lieを示し、 Y3 は少なくとも 6個のアミノ酸残基を示す。 )
(3) Zl-Asp-Leu-Z2-Leu-Arg-Leu-Z3
(但し、式中、 Z1は Leu、 Asp— Leuまたは Leu— Asp— Leuを示し、 Z2は Glu、 Ginま たは Aspを示し、 Z3は 0— 10個のアミノ酸残基を示す。 )
(4) Asp— Leu— Z4— Leu— Arg— Leu
(但し、式中、 Z4は Glu、 Ginまたは Aspを示す。)
[0146] (I 2— 1)式(1)の転写抑制転換ペプチド
上記式(1)の転写抑制転換ペプチドにおいては、上記 XIで表されるアミノ酸残基 の数は 0— 10個の範囲内であればよい。また、 XIで表されるアミノ酸残基を構成す る具体的なアミノ酸の種類は特に限定されるものではなぐどのようなものであっても よい。換言すれば、上記式(1)の転写抑制転換ペプチドにおいては、 N末端側には 、 1個の任意のアミノ酸または 2— 10個の任意のアミノ酸残基力もなるオリゴマーが付 加されて!、てもよ 、し、アミノ酸が何も付加されて 、なくてもよ!、。
[0147] この XIで表されるアミノ酸残基は、式(1)の転写抑制転換ペプチドを合成するとき の容易さ力もみれば、できるだけ短いほうがよい。具体的には、 10個以下であること が好ましぐ 5個以下であることがより好ましい。
[0148] 同様に、上記式(1)の転写抑制転換ペプチドにおいては、上記 X3で表されるァミノ 酸残基の数は少なくとも 6個であればよい。また、 X3で表されるアミノ酸残基を構成 する具体的なアミノ酸の種類は特に限定されるものではなぐどのようなものであって もよい。換言すれば、上記式(1)の転写抑制転換ペプチドにおいては、 C末端側に は、 6個以上の任意のアミノ酸残基力もなるオリゴマーが付加されていればよい。上 記 X3で表されるアミノ酸残基は、最低 6個あれば上記機能を示すことができる。
[0149] 上記式(1)の転写抑制転換ペプチドにおいて、 XIおよび X3を除いた 5個のアミノ 酸残基力もなるペンタマ一(5mer)の具体的な配列は、配列番号 41、 42に示す。な お、上記 X2が Asnの場合のアミノ酸配列が配列番号 41に示すアミノ酸配列であり、 上記 X2が Gluの場合のアミノ酸配列が配列番号 42に示すアミノ酸配列である。
[0150] (1-2-2)式(2)の転写抑制転換ペプチド
上記式(2)の転写抑制転換ペプチドにお!/、ては、上記式(1)の転写抑制転換ぺプ チドの XIと同様、上記 Y1で表されるアミノ酸残基の数は 0— 10個の範囲内であれば よい。また、 Y1で表されるアミノ酸残基を構成する具体的なアミノ酸の種類は特に限 定されるものではなぐどのようなものであってもよい。換言すれば、上記式(2)の転 写抑制転換ペプチドにおいては、上記式(1)の転写抑制転換ペプチドと同様、 N末 端側には、 1個の任意のアミノ酸または 2— 10個の任意のアミノ酸残基力もなるオリゴ マーが付加されて 、てもよ 、し、アミノ酸が何も付加されて 、なくてもょ 、。
[0151] この Y1で表されるアミノ酸残基は、式(2)の転写抑制転換ペプチドを合成するとき の容易さ力もみれば、できるだけ短いほうがよい。具体的には、 10個以下であること が好ましぐ 5個以下であることがより好ましい。
[0152] 同様に、上記式(2)の転写抑制転換ペプチドにおいては、上記式(1)の転写抑制 転換ペプチドの X3と同様、上記 Y3で表されるアミノ酸残基の数は少なくとも 6個であ ればよい。また、 Y3で表されるアミノ酸残基を構成する具体的なアミノ酸の種類は特 に限定されるものではぐどのようなものであってもよい。換言すれば、上記式(2)の 転写抑制転換ペプチドにおいては、上記式(1)の転写抑制転換ペプチドと同様、 C 末端側には、 6個以上の任意のアミノ酸残基力もなるオリゴマーが付加されていれば よい。上記 Y3で表されるアミノ酸残基は、最低 6個あれば上記機能を示すことができ る。
[0153] 上記式(2)の転写抑制転換ペプチドにおいて、 Y1および Y3を除いた 5個のアミノ 酸残基力もなるペンタマ一(5mer)の具体的な配列は、配列番号 43、 44に示す。な お、上記 Y2が Pheの場合のアミノ酸配列が配列番号 43に示すアミノ酸配列であり、 上記 Y2が lieの場合のアミノ酸配列が配列番号 44に示すアミノ酸配列である。また、 Y2を除 、た 4個のアミノ酸残基力 なるテトラマー(4mer)の具体的な配列は、配列 番号 45に示す。
[0154] (1-2-3)式(3)の転写抑制転換ペプチド
上記式(3)の転写抑制転換ペプチドにおいては、上記 Z1で表されるアミノ酸残基 は、 1一 3個の範囲内で Leuを含むものとなっている。アミノ酸 1個の場合は、 Leuで あり、アミノ酸 2個の場合は、 Asp— Leuとなっており、アミノ酸 3個の場合は Leu— Asp Leuとなっている。
[0155] 一方、上記式(3)の転写抑制転換ペプチドにおいては、上記式(1)の転写抑制転 換ペプチドの XI等と同様、上記 Z3で表されるアミノ酸残基の数は 0— 10個の範囲内 であればよい。また、 Z3で表されるアミノ酸残基を構成する具体的なアミノ酸の種類 は特に限定されるものではなぐどのようなものであってもよい。換言すれば、上記式( 3)の転写抑制転換ペプチドにおいては、 C末端側には、 1個の任意のアミノ酸または 2— 10個の任意のアミノ酸残基力もなるオリゴマーが付加されていてもよいし、ァミノ 酸が何も付加されて 、なくてもょ 、。
[0156] この Z3で表されるアミノ酸残基は、式(3)の転写抑制転換ペプチドを合成するとき に容易さからみれば、できるだけ短いほうがよい。具体的には、 10個以下であること が好ましぐ 5個以下であることがより好ましい。 Z3で表されるアミノ酸残基の具体的な 例としては、 Gly、 Gly—Phe— Phe、 Gly—Phe—Ala、 Gly—Tyr—Tyr、 Ala—Ala—Al a等が挙げられる力 もちろんこれらに限定されるものではない。
[0157] また、この式(3)で表される転写抑制転換ペプチド全体のアミノ酸残基の数は、特 に限定されるものではないが、合成するときの容易さからみれば、 20アミノ酸以下で あることが好ましい。
[0158] 上記式(3)の転写抑制転換ペプチドにおいて、 Z3を除いた 7— 10個のアミノ酸残 基力 なるオリゴマーの具体的な配列は、配列番号 46— 54に示す。なお、上記 Z1 力 SLeuかつ Z2が Glu、 Ginまたは Aspの場合のアミノ酸配列力 それぞれ配列番号 4 6、 47または 48に示すアミノ酸配列であり、上記 Z1が Asp— Leuかつ Z2が Glu、 Gin または Aspの場合のアミノ酸配列力 それぞれ配列番号 49、 50または 51に示すアミ ノ酸配列であり、上記 Z1が Leu— Asp— Leuかつ Z2が Glu、 Ginまたは Aspの場合の アミノ酸配列が、それぞれ配列番号 52、 53または 54に示すアミノ酸配列である。
[0159] (1-2-4)式 (4)の転写抑制転換ペプチド
上記式 (4)の転写抑制転換ペプチドは、 6個のアミノ酸残基力 なるへキサマー(6 mer)であり、その具体的な配列は、配列番号 5、 14、 55に示す。なお、上記 Z4が G1 uの場合のアミノ酸配列が配列番号 5に示すアミノ酸配列であり、上記 Z4が Aspの場 合のアミノ酸配列が配列番号 14に示すアミノ酸配列であり、上記 Z4が Ginの場合の アミノ酸配列が配列番号 55に示すアミノ酸配列である。
[0160] 特に、本発明において用いられる転写抑制転換ペプチドは、上記式 (4)で表される へキサマーのような最小配列を有するペプチドであってもよい。例えば、配列番号 5 に示すアミノ酸配列は、シロイヌナズナ SUPERMANタンパク質(SUPタンパク質) の 196— 201番目のアミノ酸配列に相当し、上述したように、本発明者が新たに上記 転写抑制転換ペプチドとして見出したものである。
[0161] (1-2-5)転写抑制転換ペプチドのより具体的な例
上述した各式で表される転写抑制転換ペプチドのより具体的な例としては、例えば
、配列番号 1一 17のいずれかに示されるアミノ酸配列を有するペプチドを挙げること ができる。これらオリゴペプチドは、本発明者が上記転写抑制転換ペプチドであること を見出したものである(例えば、特許文献 9参照)。
[0162] さらに、上記転写抑制転換ペプチドの他の具体的な例として、次に示す (e)又は (f
)記載のオリゴペプチドを挙げることができる。
(e)配列番号 18又は 19に示されるいずれかのアミノ酸配列力もなるペプチド。
(f)配列番号 18又は 19に示されるいずれかのアミノ酸配列において、 1個又は数個 のアミノ酸が置換、欠失、挿入、及び Z又は付加されたアミノ酸配列力もなるペプチド
[0163] 上記配列番号 18に示されるアミノ酸配列力もなるペプチドは、 SUPタンパク質であ る。また、上記の「配列番号 18又は 19に示されるいずれかのアミノ酸配列において、 1個又は数個のアミノ酸が置換、欠失、挿入、及び Z又は付加されたアミノ酸配列」に おける「1個又は数個」の範囲は特に限定されないが、例えば、 1から 20個、好ましく は 1から 10個、より好ましくは 1から 7個、さらに好ましくは 1個から 5個、特に好ましくは 1個から 3個を意味する。
[0164] 上記アミノ酸の欠失、置換若しくは付カ卩は、上記ペプチドをコードする塩基配列を、 当該技術分野で公知の手法によって改変することによって行うことができる。塩基配 列に変異を導入するには、 Kunkel法または Gapped duplex法等の公知手法又はこれ に準ずる方法により行うことができ、例えば部位特異的突然変異誘発法を利用した 変異導入用キット(例えば Mutant- Kや Mutant- G (何れも商品名、 TAKARA社製) ) 等を用いて、あるいは LA PCR in vitro Mutagenesisシリーズキット(商品名、 TAKAR
A社製)を用いて異変が導入される。
[0165] また、上記機能性ペプチドは、配列番号 18に示されるアミノ酸配列の全長配列を 有するペプチドに限られず、その部分配列を有するペプチドであってもよ 、。
[0166] その部分配列を有するペプチドとしては、例えば、配列番号 19に示されるアミノ酸 配列(SUPタンパク質の 175カゝら 204番目のアミノ酸配列)を有するペプチドが挙げ られ、その部分配列を有するペプチドとしては、上記(3)で表されるペプチドが挙げ られる。
[0167] (I 3)転写抑制転換ペプチドの他の例
本発明者は、さらに、上記モチーフの構造について検討した結果、新たに 6つのァ ミノ酸力もなるモチーフを見出した。このモチーフは、具体的には、次に示す一般式( 5)で表されるアミノ酸配列を有するペプチドである。これらのペプチドも、上記転写抑 制転換ペプチドに含まれる。
(5) 1— Leu— β 1— Leu— y 1— Leu
但し、上記式(5)中 α 1は、 Asp、 Asn、 Glu、 Gln、 Thr又は Serを示し、 β 1は、 Asp 、 Gln、 Asnゝ Argゝ Glu、 Thr、 Ser又は Hisを示し、 γ 1は、 Argゝ Gln、 Asnゝ Thr、 S er、 His、 Lys又は Aspを示す。
[0168] なお、上記一般式 (5)で表されるペプチドを、便宜上、次に示す一般式 (6)、(7)、
(8)又は(9)で表されるアミノ酸配列を有しているペプチドに分類する。
(oノ 1— Leu— β 1— Leu— y 2— Leu
(7) 1— Leu— β 2— Leu— Arg— Leu
(8) a 2— Leu— β 1— Leu— Arg— Leu
(9) Asp— Leu— β 3— Leu— Arg— Leu
ただし、上記各式中、《1は、八5 、八5!1、0111、0111、1¾:又は361:を示し、 α 2は、 Asn、 Glu、 Gln、 Thr又は Serを示す。また、 j8 1は、 Asp、 Gln、 Asn、 Arg、 Glu、 T hr、 Ser又は Hisを示し、 j8 2は Asn、 Arg、 Thr, Ser又は Hisを示し、 j8 3は、 Glu、 A sp又は Ginを示す。さらに、 γ 2は、 Gln、 Asn、 Thr、 Ser、 His、 Lys又は Aspを示す
[0169] 上記式(5)— (9)で表されるアミノ酸配列を有する転写抑制転換ペプチドのより具 体的な f列としては、酉己歹 IJ番号 20、 21、 22、 23、 24、 25、 26、 27、 28、 29、 30、 31、 32、 33、 34、 35、 38、 39、 40または 152で表されるアミノ酸配列を有するペプチド を挙げ、ること力 Sできる。このうち、酉己歹 IJ番号 27、 28、 30、 32、 38, 39、 40または 152 のペプチドは、一般式(6)に示されるペプチドに相当し、配列番号 20、 23、 33、 34 または 35のペプチドは、一般式(7)に示されるペプチドに相当し、配列番号 24、 25 、 26、 29、または 31のペプチドは、一般式(8)に示されるペプチドに相当し、配列番 号 21または 22のペプチドは、一般式(9)に示されるペプチドに相当する。
[0170] また、上記一般式(5)— (9)に示されるペプチド以外にも配列番号 36または 37で 表されるアミノ酸配列を有する転写抑制転換ペプチドを用いることもできる。
[0171] (1-4)キメラタンパク質の生産方法
上記 (I 2)および (I 3)で説明した各種転写抑制転換ペプチドは、上記 (I 1)で 説明した転写因子と融合してキメラタンパク質とすることにより、当該転写因子を転写 抑制因子とすることができる。したがって、本発明では、上記転写抑制転換ペプチド をコードするポリヌクレオチドを用いて、転写因子をコードするポリヌクレオチドとのキメ ラ遺伝子を得れば、キメラタンパク質を生産させることができる。
[0172] 具体的には、上記転写抑制転換ペプチドをコードするポリヌクレオチド (説明の便 宜上、転写抑制転換ポリヌクレオチドと称する)と上記転写因子をコードするポリヌクレ ォチドとを連結することによりキメラ遺伝子を構築して、植物細胞に導入する。これに よりキメラタンパク質を生産させることができる。なお、キメラ遺伝子を植物細胞に導入 する具体的な方法については、後述する(Π)の項で詳細に説明する。
[0173] 上記転写抑制転換ポリヌクレオチドの具体的な塩基配列は特に限定されるもので はなぐ遺伝暗号に基づいて、上記転写抑制転換ペプチドのアミノ酸配列に対応す る塩基配列を含んでいればよい。また、必要に応じて、上記転写抑制転換ポリヌクレ ォチドは、転写因子をコードするポリヌクレオチドと連結するための連結部位となる塩 基配列を含んでいてもよい。さらに、上記転写抑制転換ポリヌクレオチドのアミノ酸読 み枠と転写因子をコードするポリヌクレオチドの読み枠とがー致しないような場合に、 これらを一致させるための付加的な塩基配列を含んで 、てもよ 、。
上記転写抑制転換ポリヌクレオチドの具体例としては、例えば、 56、 58、 60、 62、 64 、 66、 68、 70、 72、 74、 76、 78、 80、 82、 84、 86、 88、 92、 94、 96、 98、 100、 10 2、 104、 106、 108、 110、 112、 114、 116、 118、 120、 122、 124、 126、 128、 1 30、 132、または 153に示される塩基配列を有するポリヌクレオチドを挙げることがで きる。また、配列番号 57、 59、 61、 63、 65, 67、 69、 71、 73、 75、 77、 79、 81、 83 、 85、 87、 89、 93、 95、 97、 99、 101、 103、 105、 107、 109、 111、 113、 115、 1 17、 119、 121、 123、 125、 127、 129、 131、 133または 154に示されるポリヌクレ ォチドは、それぞれ、上記例示されたポリヌクレオチドと相補的なポリヌクレオチドであ る。また、上記転写抑制転換ポリヌクレオチドの他の具体例としては、例えば、配列番 号 90、 91に示されるポリヌクレオチドを挙げることができる。これらのポリヌクレオチド は、以下の表 1に示すように配列番号 1一 40、 152に示されるアミノ酸配列に対応す るものである。
[表 1]
ァミノ酸配列 塩基配列 ァミノ酸配列 塩基配列
配列番号 1 配列番号 5 6 ■ 5 7 配列番号 2 2 配列番号 9 6 - 9 7 配列番号 2 配列番号 5 8 ■ 5 9 配列番号 2 3 配列番号 9 8 ■ 9 9 配列番号 3 配列番号 6 0 ■ 6 1 配列番号 2 4 配列番号 1 0 0 . 1 0 1 配列番号 4 配列番号 6 2 ■ 6 3 配列番号 2 5 配列番号 1 0 2 . 1 0 3 配列番号 5 配列番号 6 4 · 6 5 配列番号 2 6 配列番号 1 0 4■ 1 0 5 配列番号 6 配列番号 6 6 ■ 6 7 配列番号 2 7 配列番号 1 0 6■ 1 0 7 配列番号 7 配列番号 6 8 ■ 6 9 配列番号 2 8 配列番号 1 0 8■ 1 0 9 配列番号 8 配列番号 7 0 ■ 7 1 配列番号 2 9 配列番号 1 1 0■ 1 1 1 配列番号 9 配列番号 7 2 ■ 7 3 配列番号 3 0 配列番号 1 1 2■ 1 1 3 配列番号 1 0 配列番号 7 4 ■ 7 5 配列番号 3 1 配列番号 1 1 4■ 1 1 5 配列番号 1 1 配列番号 7 6 ■ 7 7 配列番号 3 2 配列番号 1 1 6■ 1 1 7 配列番号 1 2 配列番号 7 8 ■ 7 9 配列番号 3 3 配列番号 1 1 8■ 1 1 9 配列番号 1 3 配列番号 8 0 ■ 8 1 配列番号 3 4 配列番号 1 2 0 . 1 2 1 配列番号 1 4 配列番号 8 2 ■ 8 3 配列番号 3 5 配列番号 1 2 2■ 1 2 3 配列番号 1 5 酉己列番号 8 4 ■ 8 5 配列番号 3 6 配列番号 1 2 4■ 1 2 5 配列番号 1 6 配列番号 8 6 ■ 8 7 配列番号 3 7 配列番号 1 2 6■ 1 2 7 配列番号 1 7 配列番号 8 8 · 8 9 配列番号 3 8 配列番号 1 2 8 * 1 2 9 配列番号 1 8 配列番号 9 0 配列番号 3 9 配列番号 1 3 0■ 1 3 1 配列番号 1 9 配列番号 9 1 配列番号 4 0 配列番号 1 3 2■ 1 3 3 配列番号 2 0 配列番号 9 2 ■ 9 3 配列番号 1 5 2 配列番号 1 5 3■ 1 5 4 配列番号 2 1 配列番号 9 4 ■ 9 5
[0175] 本発明で用いられるキメラタンパク質は、転写因子をコードする遺伝子と転写抑制 転換ポリヌクレオチドとを連結した上記キメラ遺伝子力も得ることができる。したがって 、上記キメラタンパク質には、上記転写因子の部位と、上記転写抑制転換ペプチドの 部位とが含まれていればよぐその構成は特に限定されるものではない。例えば、転 写因子と転写抑制転換ペプチドとの間をつなぐためのリンカ一機能を有するポリぺプ チドや、 Hisや Myc、 Flag等のようにキメラタンパク質をェピトープ標識するためのポ リペプチド等、各種の付カ卩的なポリペプチドが含まれていてもよい。さらに上記キメラ タンパク質には、必要に応じて、ポリペプチド以外の構造、例えば、糖鎖やイソプレノ イド基等が含まれて 、てもよ 、。
[0176] (II)本発明に力かる植物体の生産方法の一例 本発明に力かる植物体の生産方法は、上記 (I)で説明したキメラタンパク質を植物 体で生産させ、花器形成に関与する遺伝子の発現を抑制する過程、葯の裂開を抑 制する過程、または八重咲き植物体を生産する過程を含んでいれば特に限定される ものではないが、本発明にかかる植物体の生産方法を具体的な工程で示せば、例え ば、発現ベクター構築工程、形質転換工程、選抜工程等の工程を含む生産方法とし て挙げることができる。このうち、本発明では、少なくとも形質転換工程が含まれてい ればよい。以下、各工程について具体的に説明する。
[0177] (Π— 1)発現ベクター構築工程
本発明にお ヽて行われる発現ベクター構築工程は、上記 (1-1)で説明した転写因 子をコードする遺伝子と、上記 (I 4)で説明した転写抑制転換ポリヌクレオチドと、プ 口モーターとを含む組換え発現ベクターを構築する工程であれば特に限定されるも のではない。
[0178] 上記組換え発現ベクターの母体となるベクターとしては、従来公知の種々のべクタ 一を用いることができる。例えば、プラスミド、ファージ、またはコスミド等を用いること ができ、導入される植物細胞や導入方法に応じて適宜選択することができる。具体的 には、例えば、 pBR322、 pBR325、 pUC19、 pUC119、 pBluescript、 pBluescriptS K、 pBI系のベクター等を挙げることができる。特に、植物体へのベクターの導入法が ァグロバタテリゥムを用いる方法である場合には、 pBI系のバイナリーベクターを用い ることが好ましい。 pBI系のバイナリーベクターとしては、具体的には、例えば、 pBIG 、 pBIN19、 pBI101、 pBI121、 pBI221等を挙げること力できる。
[0179] 上記プロモーターは、植物体内で遺伝子を発現させることが可能なプロモーターで あれば特に限定されるものではなぐ公知のプロモーターを好適に用いることができ る。かかるプロモーターとしては、例えば、カリフラワーモザイクウィルス 35Sプロモー ター(CaMV35S)、ァクチンプロモーター、ノパリン合成酵素のプロモーター、タバコ の PRla遺伝子プロモーター、トマトのリブロース 1, 5—二リン酸カルボキシラーゼ 'ォ キシダーゼ小サブユニットプロモーター等を挙げることができる。この中でも、力リフラ ヮーモザイクウィルス 35Sプロモーターまたはァクチンプロモーターをより好ましく用 いることができる。これらのプロモーターを用いれば、得られる組換え発現ベクターで は、植物細胞内に導入されたときに任意の遺伝子を強く発現させることが可能となる 。また、上記プロモーターは、葯特異的に遺伝子を発現させることができるプロモータ 一であることがさらに好ましい。かかるプロモーターとしては、例えば TA56プロモー ター、 AtMYB26プロモーター、 DAD1プロモーター等を挙げることができる。このよ うなプロモーターを用いることにより、上記キメラタンパク質をコードする遺伝子を葯で のみ発現させて、他の組織に影響を与えることなぐ葯の裂開を抑制することが可能 となる。また、上記プロモーターは、 NACAD1や種々の植物に保存されている同様 の転写因子をコードする遺伝子のプロモーターであることが特に好まし 、。かかるプ 口モーターを用いることにより、当該遺伝子の発現の時期及び組織に特異的に遺伝 子を発現させることが可能となり、葯の裂開をより効果的に抑制することができる。
[0180] 上記プロモーターは、転写因子をコードする遺伝子と転写抑制転換ポリヌクレオチ ドとを連結したキメラ遺伝子を発現しうるように連結され、ベクター内に導入されてい ればよぐ組換え発現ベクターとしての具体的な構造は特に限定されるものではな!/、
[0181] 上記糸且換え発現ベクターは、上記プロモーターおよび上記キメラ遺伝子に加えて、 さらに他の DNAセグメントを含んでいてもよい。当該他の DNAセグメントは特に限定 されるものではないが、ターミネータ一、選別マーカー、ェンハンサー、翻訳効率を 高めるための塩基配列等を挙げることができる。また、上記組換え発現ベクターは、 さらに T DN A領域を有して!/、てもよ!/、。 T DNA領域は特にァグロバタテリゥムを用 いて上記組換え発現ベクターを植物体に導入する場合に遺伝子導入の効率を高め ることがでさる。
[0182] ターミネータ一は転写終結部位としての機能を有していれば特に限定されるもので はなぐ公知のものであってもよい。例えば、具体的には、ノパリン合成酵素遺伝子の 転写終結領域 (Nosターミネータ一)、カリフラワーモザイクウィルス 35Sの転写終結 領域(CaMV35Sターミネータ一)等を好ましく用いることができる。この中でも Nosタ ーミネーターをより好ましく用いることできる。
[0183] 上記形質転換ベクターにおいては、ターミネータ一を適当な位置に配置することに より、植物細胞に導入された後に、不必要に長い転写物を合成したり、強力なプロモ 一ターがプラスミドのコピー数の減少させたりするような現象の発生を防止することが できる。
[0184] 上記選別マーカーとしては、例えば薬剤耐性遺伝子を用いることができる。かかる 薬剤耐性遺伝子の具体的な一例としては、例えば、ノ、イダロマイシン、ブレオマイシ ン、カナマイシン、ゲンタマイシン、クロラムフエ-コール等に対する薬剤耐性遺伝子 を挙げることができる。これにより、上記抗生物質を含む培地中で生育する植物体を 選択することによって、形質転換された植物体を容易に選別することができる。
[0185] 上記翻訳効率を高めるための塩基配列としては、例えばタバコモザイクウィルス由 来の omega配列を挙げることができる。この omega配列をプロモーターの非翻訳領 域(5' UTR)に配置させることによって、上記キメラ遺伝子の翻訳効率を高めることが できる。このように、上記形質転換ベクターには、その目的に応じて、さまざまな DNA セグメントを含ませることができる。
[0186] 上記組換え発現ベクターの構築方法についても特に限定されるものではなぐ適宜 選択された母体となるベクターに、上記プロモーター、転写因子をコードする遺伝子 、および転写抑制転換ポリヌクレオチド、並びに必要に応じて上記他の DNAセグメ ントを所定の順序となるように導入すればよい。例えば、転写因子をコードする遺伝 子と転写抑制転換ポリヌクレオチドとを連結してキメラ遺伝子を構築し、次に、このキ メラ遺伝子とプロモーターと (必要に応じてターミネータ一等)とを連結して発現カセッ トを構築し、これをベクターに導入すればよい。
[0187] キメラ遺伝子の構築および発現カセットの構築では、例えば、各 DNAセグメントの 切断部位を互いに相補的な突出末端としておき、ライゲーシヨン酵素で反応させるこ とで、当該 DNAセグメントの順序を規定することが可能となる。なお、発現カセットに ターミネータ一が含まれる場合には、上流から、プロモーター、上記キメラ遺伝子、タ 一ミネ一ターの順となっていればよい。また、組換え発現ベクターを構築するための 試薬類、すなわち制限酵素やライゲーシヨン酵素等の種類についても特に限定され るものではなぐ巿販のものを適宜選択して用いればよ!、。
[0188] また、上記組換え発現ベクターの増殖方法 (生産方法)も特に限定されるものでは なぐ従来公知の方法を用いることができる。一般的には大腸菌をホストとして当該大 腸菌内で増殖させればよい。このとき、ベクターの種類に応じて、好ましい大腸菌の 種類を選択してもよい。
[0189] (Π— 2)形質転換工程
本発明にお 、て行われる形質転換工程は、上記 (Π-1)で説明した組換え発現べ クタ一を植物細胞に導入して、上記 (I)で説明したキメラタンパク質を生産させるよう になっていればよい。
[0190] 上記組換え発現ベクターを植物細胞に導入する方法 (形質転換方法)は特に限定 されるものではなぐ植物細胞に応じた適切な従来公知の方法を用いることができる 。具体的には、例えば、ァグロパクテリゥムを用いる方法や直接植物細胞に導入する 方法を用いることができる。ァグロパクテリゥムを用いる方法としては、例えば、 Transformation of Arabiaopsis thaliana by vacuum
infiltration(http://www.bch.msu.edu/pamgreen/protocol.htm)を用 ヽ ことカSできる。
[0191] 組換え発現ベクターを直接植物細胞に導入する方法としては、例えば、マイクロイ ンジェクシヨン法、エレクト口ポレーシヨン法(電気穿孔法)、ポリエチレングリコール法 、パーティクルガン法、プロトプラスト融合法、リン酸カルシウム法等を用いることがで きる。
[0192] 上記組換え発現ベクターが導入される植物細胞としては、例えば、花、葉、根等の 植物器官における各組織の細胞、カルス、懸濁培養細胞等を挙げることができる。
[0193] ここで、本発明に力かる植物体の生産方法にぉ 、ては、上記組換え発現ベクター は、生産しょうとする種類の植物体に合わせて適切なものを適宜構築してもよいが、 汎用的な組換え発現ベクターを予め構築しておき、それを植物細胞に導入してもよ い。すなわち、本発明にかかる植物体の生産方法においては、上記 (ト 1)で説明し た組換え発現ベクター構築工程が含まれて 、てもよ 、し、含まれて!/、なくてもよ!、。
[0194] (Π— 3)その他の工程、その他の方法
本発明に力かる植物体の生産方法にぉ 、ては、上記形質転換工程が含まれて!/ヽ ればよぐさらに上記組換え発現ベクター構築工程が含まれていてもよいが、さらに 他の工程が含まれていてもよい。具体的には、形質転換後の植物体から適切な形質 転換体を選抜する選抜工程等を挙げることができる。 [0195] 選抜の方法は特に限定されるものではなぐ例えば、ハイグロマイシン耐性等の薬 剤耐性を基準として選抜してもよいし、形質転換体を育成した後に、成長した植物体 において、正常な花粉形成ができないことを基準として選抜してもよい。また、形質転 換体を育成した後に、葯の裂開の状況力も選抜してもよい。例えば、葯の裂開の状 況力 選抜する例としては、電子顕微鏡、実体顕微鏡等を用いて、葯の形状を観察 する方法を挙げることができる (後述の実施例参照)。
[0196] また、形質転換体を育成した後に、植物体そのものの花の形態力 選抜してもよい 。例えば、花の形態力 選抜する例としては、形質転換体の花の形態を、形質転換し て!、な 、植物体の花の形態と比較する方法を挙げることができる(後述の実施例参 照)。特に花の形態は、単に比較するだけでも選抜が可能になるとともに、八重咲き 植物体の生産という本発明の効果そのものも確認することができる。
[0197] 本発明にかかる植物体の生産方法では、上記キメラ遺伝子を植物体に導入するた め、該植物体から、有性生殖または無性生殖により花器形成に関与する遺伝子の発 現が抑制された子孫を得ることが可能となる。また、葯の裂開が抑制された子孫を得 ることが可能となる。さらに、花の形態が八重咲きとなる子孫を得ることが可能となる。 また、該植物体やその子孫から植物細胞や、種子、果実、株、カルス、塊茎、切穂、 塊等の繁殖材料を得て、これらを基に該植物体を量産することも可能となる。したが つて、本発明にかかる植物体の生産方法では、選抜後の植物体を繁殖させる繁殖ェ 程 (量産工程)が含まれて 、てもよ!/、。
[0198] なお、本発明における植物体とは、成育した植物個体、植物細胞、植物組織、カル ス、種子の少なくとも何れかが含まれる。つまり、本発明では、最終的に植物個体ま で成育させることができる状態のものであれば、全て植物体と見なす。また、上記植 物細胞には、種々の形態の植物細胞が含まれる。力かる植物細胞としては、例えば、 懸濁培養細胞、プロトプラスト、葉の切片等が含まれる。これらの植物細胞を増殖'分 ィ匕させることにより植物体を得ることができる。なお、植物細胞からの植物体の再生は 、植物細胞の種類に応じて、従来公知の方法を用いて行うことができる。したがって、 本発明に力かる植物体の生産方法では、植物細胞から植物体を再生させる再生ェ 程が含まれていてもよい。 [0199] また、本発明に力かる植物体の生産方法は、組換え発現ベクターで形質転換する 方法に限定されるものではなぐ他の方法を用いてもよい。具体的には、例えば、上 記キメラタンパク質そのものを植物体に投与してもよい。この場合、最終的に利用す る植物体の部位において花器形成に関与する遺伝子の発現を抑制し、葯の裂開を 抑制し、または花の形態を八重咲きにできるように、若年期の植物体にキメラタンパク 質を投与すればよい。またキメラタンパク質の投与方法も特に限定されるものではな ぐ公知の各種方法を用いればよい。
[0200] (ΠΙ)本発明により得られる植物体とその有用性、並びにその利用
本発明にかかる植物体の生産方法は、上記キメラタンパク質をコードする遺伝子を 植物体で発現させることによる。当該キメラタンパク質における転写因子由来の DNA 結合ドメインが、花器形成に関与すると推定される標的遺伝子に結合する。ここで、 上記花器形成に関与すると推定される標的遺伝子は、雄しベまたは雌しベの形成に 関与すると推定される標的遺伝子であってもよい。また、上述のように、上記雄しベま たは雌しベの形成に関与すると推定される標的遺伝子は、葯の裂開に関与すると推 定される遺伝子であってもよい。さらに、雄しベおよび雌しベの形成に関与すると推 定される遺伝子であってもよ 、。
[0201] 上記転写因子は転写抑制因子に転換され、標的遺伝子の転写が抑制される。これ により花器形成に変異が生じ、不稔性植物体を得ることができる。また、これにより葯 の裂開を抑制することができる。さらに、これにより花の形態を八重咲きにすることが できる。したがって、本発明には、上記植物体の生産方法により得られる植物体も含 まれる。
[0202] 本発明にお 、て「不稔性植物体」には、雄しベおよび雌しベが形成されな!、完全不 稔植物体の他、不和合性を持つ植物体、すなわち、雄しベおよび雌しベが形成され ているが種子を形成できない植物体も含まれる。また、不完全な雄しベ様器官および Zまたは雌しベ様器官を持つが、種子を形成できない植物体も含まれる。さらに、例 えば、雄しベの形成が阻害され、花粉が全く形成されない不稔性植物体、雄しベは 形成されるが、葯が形成されないために花粉が形成されない不稔性植物体、雄しベ も葯も形成されるが、形成される花粉の量が少なぐ葯の開裂に至らない不稔性植物 体、形成された花粉が肥大化して互いにくつついてしまい、全く飛散しない不稔性植 物体などの、いわゆる雄性不稔植物体も含まれる。
[0203] 上記キメラタンパク質をコードするキメラ遺伝子で目的の植物を形質転換すれば、 複雑な遺伝子組み替え技術を利用することなぐ非常に簡便に不稔性植物体を得る ことができる。上記不稔性植物体は種子を形成することができない。また、完全不稔 性植物体、雄性不稔植物体では、花粉の離散が生じない。したがって、遺伝子組み 換え植物の環境への拡散を防止することができる。
[0204] また、上記雄性不稔植物体は、自家受粉することができな 、が、異なった品種間で の交配は可能である。したがって、雑種強勢を利用した交配に好適に用いることがで き、優れた形質を有する雑種第一代の育種を効率的に行うことができる。
[0205] また、雄性不稔は、確実に交雑種となるので、交配のために雄しベを除く必要がな ぐ多大な労力が軽減される。したがって、交配実験の効率ィ匕に適している。
[0206] (III 1)本発明に力かる植物体の具体例
ここで、本発明に力かる不稔性植物体の具体的な種類は特に限定されるものでは なぐ不稔性を獲得することによりその有用性が高まる植物、葯の裂開の抑制により その有用性が高まる植物、または花の形態を八重咲きとすることによりその有用性が 高まる植物を挙げることができる。かかる植物は、被子植物であってもよいし裸子植 物であってもよい。裸子植物としては、例えば、スギ目のスギ科、マツ科、ヒノキ科の 植物やマキ科の植物を挙げることができる。また、被子植物としては、単子葉植物で あってもよいし、双子葉植物であってもよい。双子葉植物としては、例えば、シロイヌ ナズナ等のアブラナ科、ツバキ科等の植物を挙げることができる。
[0207] 双子葉植物としては、離弁花亜綱であってもよ!/、し、合弁花亜綱であってもよ!/、。合 弁花亜綱としては、例えば、リンドウ目、ナス目、シソ目、ァヮゴケ目、ォォバコ目、キ キヨウ目、ゴマノハグサ目、ァカネ目、マツムシソゥ目、キク目を挙げることができる。ま た、離弁花亜綱としては、例えば、ビヮモドキ目、ツバキ目、ァオイ目、サガリバナ目、 ゥッボカズラ目、スミレ目、ャナギ目、フゥチョウソゥ目、ッッジ目、イワウメ目、力キノキ 目、サクラソゥ目等を挙げることができる。また、単子葉植物としては、イネ、トウモロコ シ、ムギ等のイネ科、ホシクサ科等の植物を挙げることができる。 [0208] また、本発明に力かる不稔性植物体は、果実や種子を商品とする植物、花や植物 体そのものを商品とする観葉植物(花卉植物)であってもよい。したがって、本発明に 力かる不稔性植物体の具体例をさらに挙げると、ナタネ、ジャガイモ、ホウレンソゥ、 大豆、キャベツ、レタス、トマト、カリフラワー、さやいんげん、かぶ、大根、ブロッコリ一 、メロン、オレンジ、スイカ、ネギ、ゴボウなどの各種の食用植物、あるいはバラ、キク、 あじさい、カーネーションなどの観葉植物がある。
[0209] (III 2)本発明の有用性
本発明は、不稔性植物体を生産することにより一定の効果がある分野に有用性が ある。具体例を以下にいくつか挙げるが、本発明の有用性は、これらに限定されるも のではない。
[0210] まず、本発明の技術により、正常な花粉形成ができない雄性不稔植物体を作出で き、雑種強勢を利用した交配による品種改良に利用できる。本発明の雄性不稔植物 体では、正常な花粉形成ができないため、イネ等の自殖性植物であっても、自家受 粉が行われない。そのため、他種の花粉を授粉することで、種間の交配を簡便に行 える。これにより、雑種強勢を利用した、優良品種の一代雑種の探索を簡便かつ効 率的に行うことができる。
[0211] また、本発明の技術により、葯の裂開が抑制された植物体を作出でき、雑種強勢を 利用した交配による品種改良に利用できる。本発明の葯の裂開が抑制された植物体 では、花粉が葯の外に放出されないため、イネ等の自殖性植物であっても、自家受 粉が行われない。そのため、他種の花粉を授粉することで、種間の交配を簡便に行 える。これにより、雑種強勢を利用した、優良品種の一代雑種の探索を簡便かつ効 率的に行うことができる。
[0212] また、本発明の技術は、トウモロコシ等の他殖性植物にも適用できる。他殖性植物 では、現在、人力で雄しベを刈り取る作業 (除雄作業)により自家受粉を回避し、他品 種の花粉を授粉して品種改良を行っている。これに対し、本発明の技術で雄性不稔 植物体または葯の裂開が抑制された植物体を生産すれば、このような労力を必要と しなくなるため、品種改良に必要な時間やコスト、あるいは優良品種の栽培に必要な 手間を、現状に比較して大幅に低減することができる。 [0213] 特に、本発明の技術により、花粉は稔性を有するが、葯の裂開が抑制された植物 体を作出できるため、花粉自体には生殖能を残しつつ、自家受粉が起きない植物体 を生産することが可能となり、育種等に有用である。すなわち、花粉自体には生殖能 を残すことにより、ホモ接合性の個体を作出、維持することが可能となる。このような純 系植物を自家交配することによって、均一な種子繁殖集団を得ることが可能となり、 選抜作業を行なう手間や時間を低減することができる。
[0214] また、本発明の技術は、タマネギゃジャガイモなど、地下茎を商品とする植物にも 応用できる。この種の植物では、受粉が起こると、地下茎の成長が著しく阻害され、 商品価値が下がることが知られている。そのため、現在、受粉を回避するために除雄 作業が必要となり、そのための手間やコストが非常に大きい。本発明の技術により、 地下茎を商品とする植物の雄性不稔体または葯の裂開が抑制された植物体が得ら れるため、除雄作業を必要とせず、受粉を回避できる。そのため、植物体を育成して 商品を生産する際のコストや時間を、現状に比較して大幅に低減できる。
[0215] 本発明の技術は、果実や花を商品としない植物体にも好適に応用できる。その一 例を挙げると、花粉症の予防がある。すなわち、花粉症の原因となる花粉を大量に撒 き散らす植物、例えば、スギ、ヒノキ、サワラなどの榭木、カモガヤ、ォオアヮガエリ、 ナガノヽダサなどのイネ科植物、ブタクサ、ョモギ、カナムダラなどの雑草類において、 本発明の技術により雄性不稔体を生産すれば、正常な花粉形成ができないため、こ れらの植物体力も花粉が飛散する恐れがない。また、本発明の技術により葯の裂開 が抑制された植物体を生産すれば、これらの植物体から花粉が飛散する恐れがな 、 。そのため、これらのこれらの雄性不稔体または葯の裂開が抑制された植物体を、自 然界の野生型植物体と置き換えてやれば、花粉症の原因となる花粉の飛散が抑えら れるため、花粉症を予防できる。
[0216] また、本発明の技術により、花粉を経由するウィルスの感染が原因となる、植物の 病気を予防できる。ある種の植物ウィルスは、病的植物の花粉内に存在し、雄しベを 通じて健全植物に伝染して病気を引き起こすことが知られている。本発明の技術によ り、正常な花粉形成ができない植物体を生産すれば、花粉を媒介するウィルス感染 が行われな 、ため、力かる植物の病気を予防できる。 [0217] 本発明の技術により、遺伝子改変植物体の自然界への望ましくない拡散を防止で きる。一例を挙げると、パルプの原料であるユーカリでは、遺伝子操作により、耐塩性 や耐寒性に優れ、榭木が巨大化するなどの、より優れた形質を導入された遺伝子改 変植物体が創出され、野外環境下における導入形質の検証実験が行われている。し かし、このような遺伝子改変植物体を野外環境下で育てると、風や昆虫等を媒体とし た花粉の拡散を通じて、遺伝子改変植物体が自然界へ広く拡散していき、自然環境 が改変される恐れがある。そのため、力かる問題に対処するために、遺伝子改変植 物の検証実験を、外界力 完全に隔離された、特殊な環境下で行う必要がある。
[0218] しかし、本発明の技術を用いて、遺伝子改変植物体を、正常な花粉形成ができな V、雄性不稔体または葯の裂開が抑制された植物体に形質転換させておけば、花粉 の撒布による遺伝子改変植物体の自然界への拡散は起こらない。そのため、現状に 比較して、実際の野外環境下により近い条件で、遺伝子改変植物体の検証試験を 行うことができる。これにより、遺伝子改変植物体に導入した形質を、より自然な環境 下で検証できる。
[0219] また、本発明の技術を用いれば、力 や雄しベなど、花器の一部が欠損したり、ある いは変形したりした植物体を生産することができる。これにより、従来には存在しなか つた特異な形状の花器を有する植物体を生産できるため、これまでにない、新たな観 賞植物を得ることができる。
[0220] また、本発明によれば、八重咲き植物体を生産することができる力 本発明の有用 性は特に限定されるものではなぐ八重咲き植物体の生産により効果がある分野であ ればよい。かかる分野としては、新規な園芸品種の創出への応用等を挙げることがで きる。
[0221] まず、新規な園芸品種の創出への応用例について説明すると、本発明に係る植物 体の生産方法を用いることにより、上記機能性ペプチドが付加されたカセットベクター に転写因子の遺伝子を組み込み、植物細胞に導入するだけで、上記キメラタンパク 質を植物細胞内で発現させることができ、転写因子の標的遺伝子の転写を容易に抑 制することができる。また、上述のように、上記転写因子の標的遺伝子の転写を抑制 するという形質は、ドミナントであるため、上記キメラタンパク質の方が上記転写因子よ りも優勢的に働いて、標的遺伝子の転写を抑制する。したがって、短期間に簡便、確 実に八重咲き植物体を作出することができ、園芸上非常に有用である。
[0222] また、本発明により生産された八重咲き植物体または不稔性植物体では、種子の 形成が行われず、さらに、完全不稔性植物体、雄性不稔植物体では花粉の離散が 起こらないので、遺伝子組み換え植物の環境への拡散を防ぐことができ、非常に安 全である。
[0223] さらに、本発明により生産された八重咲き植物体または不稔性植物体は、雑種強勢 を利用した交配に好適に用いることができ、優れた形質を有する雑種第一代の育種 を効率的に行うことができるため、農業上非常に有用である。
[0224] (III 3)本発明の利用の一例
本発明の利用分野、利用方法は特に限定されるものではないが、一例として、本発 明に力かる植物体の生産方法を行うためのキット、すなわち不稔性植物体生産キット を挙げることができる。
[0225] この不稔性植物体生産キットの具体例としては、上記転写因子をコードする遺伝子 と上記転写抑制転換ポリヌクレオチドとからなるキメラ遺伝子を含む組換え発現べクタ 一を少なくとも含んでいればよぐ上記組換え発現ベクターを植物細胞に導入するた めの試薬群を含んでいればより好ましい。上記試薬群としては、形質転換の種類に 応じた酵素やバッファ一等を挙げることができる。その他、必要に応じてマイクロ遠心 チューブ等の実験用素材を添付してもよい。
[0226] (IV)葯の裂開が制御された不稔性植物体の生産方法
本発明者は、 NACAD1や種々の植物に保存されている同様の転写因子力 葯の 裂開に関与する遺伝子の転写を促進する転写因子であることを初めて明らかにし、 本発明を完成させるに至った。従って力かる転写因子をコードする遺伝子を利用して 、葯の裂開が制御された不稔性植物体を生産する方法も本発明に含まれる。
[0227] すなわち、本発明にかかる葯の裂開が制限された不稔性植物体の生産方法は、以 下の(a)又は (b)記載のタンパク質をコードする遺伝子、
(a)配列番号 136に示されるアミノ酸配列力もなるタンパク質、
(b)配列番号 136に示されるアミノ酸配列において、 1個又は数個のアミノ酸が置換、 欠失、挿入、及び Z又は付加されたアミノ酸配列からなり、葯の裂開に関与する遺伝 子の転写を促進する機能を有するタンパク質、
或 ヽは、以下の(C)又は (d)記載の遺伝子、
(c)配列番号 137に示される塩基配列をオープンリーディングフレーム領域として有 する遺伝子、
(d)配列番号 137に示される塩基配列からなる遺伝子と相補的な塩基配列力 なる 遺伝子とストリンジェントな条件でハイブリダィズし、且つ、葯の裂開に関与する遺伝 子の転写を促進する転写因子をコードする遺伝子、
を用いるものである。
[0228] また上記タンパク質としては、配列番号 136に示されるアミノ酸配列に対して、 20% 以上、好ましくは 50%以上、さらに好ましくは 60%または 70%以上の相同性を有す るタンパク質であって、且つ、葯の裂開に関与する遺伝子の転写を促進する機能を 有するタンパク質も含まれる。このようなタンパク質としては、例えば、上記相同性が 5 2%のタンパク質であって、配列番号 136に示されるアミノ酸配列を有する NACAD 1タンパク質と同じ機能を持つ NAC因子が挙げられる。
[0229] この植物体の生産方法は、葯の裂開に関与する上記転写因子をコードする遺伝子 の発現を抑制させる力、過剰発現させることにより可能となる。上記遺伝子の発現を 抑制する方法としては、例えば、アンチセンス法、ジーンターゲッティング法、 RNAi 法、コサプレツシヨン法、遺伝子破壊型タギング法等を挙げることができる。また、上 記遺伝子を過剰発現させる方法としては、例えば、適当なプロモーターとその下流に 配置された上記遺伝子とを含むベクターを構築し、植物に導入する方法を挙げること ができる。
[0230] 本発明は上述した各実施形態に限定されるものではなぐ請求項に示した範囲で 種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適 宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
[0231] (実施例)
以下、実施例及び図 1 (a)ないし図 16に基づいて本発明をより詳細に説明するが、 本発明は以下の実施例に限定されるものではない。 [0232] 〔実施例 1〕
以下の実施例においては、転写抑制転換ペプチドのひとつである 12アミノ酸ぺプ チド LDLDLELRLGFA(SRDX) (配列番号 17)をコードするポリヌクレオチドを、 APE TALA3遺伝子と結合し、さらに植物細胞で機能するカリフラワーモザイクウィルス 35 Sプロモーターの下流につないで、組換え発現ベクターを構築し、これをシロイヌナズ ナにァグロバタテリゥム法を用いて導入することにより、シロイヌナズナを形質転換し た。
[0233] (1)植物形質転換用ベクター pBIG2の構築
クローンテック社製(Clontech社、 USA)のプラスミド p35S— GFPを制限酵素 Hind IIIと BamHIで切断し、カリフラワーモザイクウィルス 35Sプロモーターを含む DNA断 片をァガロースゲル電気泳動で分離し回収した。
[0234] 米国ミシガン州立大学より譲渡された植物形質転換用ベクター pBIG— HYG (
Becker, D. 1990 Nucleic Acid Research, 18:203)を制限酵素 Hindlllと Sstlとで切断 し、ァガロースゲル電気泳動によって GUS遺伝子を除 、た DNA断片を得た。
[0235] 以下の配列を有する DNAを合成し、 70°Cで 10分、加温した後、自然冷却によりァ ニールさせて 2本鎖 DNAとした。この DNA断片は、 5 '末端から、 BamHI制限酵素 部位、翻訳効率を高めるタバコモザイクウィルス由来の omega配列、制限酵素部位 Smal、および制限酵素部位 Sailと Sstlとをこの順に有する。
ATCCCGGGGGTACCGTCGACGAGCT-3'
Figure imgf000055_0001
TGTTGTTGGTAATTGTG- (配列番号 160)
[0236] 次に、カリフラワーモザイクウィルス 35Sプロモーター領域を含む DNA断片と、合 成した 2本鎖 DNAとを、 GUS遺伝子を除いた pBIG— HYGの HindIII、 Sstl部位に 挿入し、植物形質転換用ベクター PBIG2を得た。
[0237] (2)組換え発現ベクター pAPETALA3SRDXの構築
< APETALA3cDNAの単離 >
シロイヌナズナ cDNAライブラリーより、以下のプライマーを用いて終止コドンを除く APETALA3のコード領域のみを含む DNA断片を PCRを用いて増幅し、ァガロー スゲル電気泳動により分離し回収した。 PCRの条件は、変性反応 94°C1分、了ニー ル反応 47°C2分、伸長反応 74°C1分を 1サイクルとして 25サイクル行った。以下すベ ての PCR反応は同じ条件で行った。
5'プライマー
5,- GATGGCGAGAGGGAAGATCCAGATCAAG - 3' (配列番号 161)
3,プライマー
5' - TTCAAGAAGATGGAAGGTAATGATG - 3' (配列番号 162)
APETALA3遺伝子の cDNAおよびコードするアミノ酸配列をそれぞれ配列番号 1
35および 134に示す。
[0238] <転写抑制転換ペプチド LDLDLELRLGFA (SRDX)をコードするポリヌクレオチド の合成 >
12アミノ酸ペプチド LDLDLELRLGFA (SRDX)をコードし、 3,末端に終止コドン TAAを持つように設計した、以下の配列を有する DNAをそれぞれ合成し、 70°Cで 1 0分、加温した後、自然冷却によりァニールさせて 2本鎖 DNAとした。
63)
164)
[0239] <組換え発現ベクターの構築 >
上記で得た APETALA3遺伝子のタンパク質コード領域のみを含む DNA断片と 転写抑制転換ペプチド SRDXのコード領域を含む DNA断片とを、制限酵素 Smalで 切断した上記 PBIG2に挿入し、順方向にクローユングされているものを単離し、組換 え発現ベクターであるプラスミド p35S::APETALA3SRDXを得た。
[0240] (3)組換え発現ベクター p35S::APETALA3SRDXにより形質転換した植物体の 作成
p35S::APETALA3SRDXによるシロイヌナズナの形質転換は、 Transformation of Arabidopsis thaliana by vacuum infiltration(http:/ 1 www.bch.msu.edu/ pamgreen/ protocol.htm)に従った。ただし、感 染させるのにバキユウムは用いないで、浸すだけにした。 p35S::APETALA3SRD Xを、土壌細菌 Agrobacterium tumefaciens strain GV3101 (C58ClRifr) pMP90 (GmrXkoncz and Schell 1986)株にエレクト口ポレーシヨン法で導入した。導入した菌 を 1リットルの、抗生物質 (カナマイシン (Km) 50 μ gZml、ゲンタマイシン(Gm) 25 μ g/ml、リファンピシリン (Rif) 50 μ g/ml)を含む YEP培地で OD600が 1になる まで培養した。次いで、培養液力も菌体を回収し、 1リットルの感染用培地 (Infiltration medium,下表 2)に懸濁した。
[0241] [表 2]
Figure imgf000057_0001
[0242] この溶液に、 14日間生育したシロイヌナズナを 1分間浸し、感染させた後、再び生 育させて結種させた。回収した種子を 50%ブリーチ、 0. 02%Triton Χ-100溶液で 7 分間滅菌した後、滅菌水で 3回リンスし、滅菌したハイグロマイシン選択培地(下表 3) に蒔種した。
[0243] [表 3]
Figure imgf000057_0002
[0244] 上記ノ、イダロマイシンプレートで生育する形質転,物体を選抜し、成長させた。 このようにして、 p35S::APETALA3SRDXで形質転換された、成長した植物体を 1 5ライン取得した。植物体の一例を図 1 (a)—図 1 (c)に示す。
[0245] 図 1 (a)〖こ示すように、 p35S::APETALA3SRDXで形質転換された植物体では、 全ての花器において、花弁と雄しベが形成されていないかった。その一方で、雌しベ は正常に形成されていた。
[0246] また、図 1 (b)に示す、植物体の拡大図からわ力るように、花器では、雌しベの柱頭 が露出し、花弁と雄しベが欠損していた。さらに、図 1 (c)に示す花器の拡大図力 わ かるように、花弁および雄しベが明白に欠損していた。このような花器の正常でない 形状は、 APETALA3遺伝子の変異株における花器の形状と、同一なものであった 。なお、以上の結果は、得られた 15ラインの形質転換植物体の全てにおいて、同様 なものであった。
[0247] このように、 p35S::APETALA3SRDXで形質転換された植物体は、萼および雄 しべが欠損した、正常な花粉形成が行われない変異体であった。なお、この植物体 の雌しべに、野生型の植物体の花粉を授粉すると、種子が形成された。このことから 、 p35S::APETALA3SRDXで形質転換された植物体は、雌しベが稔性を有した 雄性不稔体であることが確認できた。
[0248] 〔実施例 2〕
本実施例においては、カリフラワーモザイクウィルス 35Sプロモーターと、ノパリン合 成酵素遺伝子の転写終止領域との間に、転写抑制転換ペプチドのひとつである 12 アミノ酸ペプチド LDLDLELRLGFA(SRDX) (配列番号 17)をコードするポリヌクレオ チドを NACAD1遺伝子の下流に結合したポリヌクレオチドを組み込んだ組換え発現 ベクターを構築し、これをシロイヌナズナにァグロバタテリゥム法を用いて導入すること により、シロイヌナズナを形質転換した。
[0249] <形質転換用ベクター構築用ベクターの構築 >
形質転換用ベクター構築用ベクターである P35SGを、図 2に示すように、以下のェ 程( 1)一 (4)のとおりに構築した。
[0250] (1)インビトロジェン社製 pENTRベクター上の attLl、 attL2のそれぞれの領域を プライマー attLl - F (配列番号 142)、 attLl - R (配列番号 143)、 attL2 - F (配列 番号 144)、 attL2— R (配列番号 145)を用いて PCRにて増幅した。得られた attLl 断片を制限酵素 HindIII、 attL2断片を EcoRIで消化し、精製した。 PCR反応の条 件は、上述のとおりである。
[0251] (2)クローンテック社製(Clontech社、 USA)のプラスミド pBI221を制限酵素 Xbalと Saclで切断した後、ァガロースゲル電気泳動で GUS遺伝子を除き、カリフラワーモ ザイクウィルス 35Sプロモーター(以下の説明では、便宜上、 CaMV35Sと称する)と ノパリン合成酵素遺伝子の転写終止領域 (以下の説明では、便宜上、 Nos— terと称 する)を含む 35S - Nosプラスミド断片 DNAを得た。
[0252] (3)以下の配列番号 146、 147の配列を有する DNA断片を合成し、 90°Cで 2分間 加熱した後、 60°Cで 1時間加熱し、その後室温(25°C)で 2時間静置してァユーリン グさせ 2本鎖を形成させた。これを上記 35S— Nosプラスミド断片 DNAの Xbal— Sacl 領域にライゲーシヨンし、 p35S— Nosプラスミドを完成させた。配列番号 146、 147の 配列を有する DNA断片には、 5 '末端に BamHI制限酵素部位、翻訳効率を高める タバコモザイクウィルス由来の omega配列、及び制限酵素部位 Smal、 Sail, Sstlが この順に含まれる。
5 -ctagaggatccacaattaccaacaacaacaaacaacaaacaacattacaattacagatcccgggggtaccgtcga cgagctc- 3' (配列番号 146)
5 -cgtcgacggtacccccgggatctgtaattgtaatgttgtttgttgtttgttgttgttggtaattgtggatcct-3 (目己 列番号 147)
[0253] (4)この p35S— Nosプラスミドを制限酵素 Hindlllで消化し、上記 attLl断片を揷 入した。さらにこれを EcoRIで消化し、 attL2断片を挿入して、ベクター p35SGを完 成させた。
[0254] <転写抑制転換ペプチドをコードするポリヌクレオチドを組み込んだ構築用べクタ 一の構築 >
転写抑制転換ペプチドをコードするポリヌクレオチドを組み込んだ構築用ベクター である P35SSRDXGを、図 3に示すように、以下の工程(1)一(2)のとおりに構築し た。
[0255] (1) 12アミノ酸転写抑制転換ペプチド LDLDLELRLGFA (SRDX)をコードし、 3 '末 端に終止コドン TAAを持つように設計した、以下の配列を有する DNAをそれぞれ合 成し、 70°Cで 10分加温した後、自然冷却によりァニールさせて 2本鎖 DNAとした。 5 gggcttgatctggatctagaactccgtttgggtttcgcttaag— ( 歹 号 148)
5 -tcgacttaagcgaaacccaaacggagttctagatccagatcaagccc-3 (酉己列^ 号 149)
[0256] (2) p35SGを制限酵素 Smal、 Sailで消化し、この領域に上記の SRDXをコードす る 2本鎖 DNAを挿入して、 p35SSRDXGを構築した。
[0257] <形質転換用ベクターの構築 >
構築用ベクターの att部位で挟まれた DNA断片と組換えるための、 2つの att部位 を有する植物形質転換用ベクターである pBIGCKHを、図 6に示すように、以下のェ 程(1)から(3)のとおりに構築した。
[0258] (1)米国ミシガン州立大学より譲渡された pBIG (Becker, D. Nucleic Acids Res.
18:203,1990)を制限酵素1¾11(1111、 EcoRIで消化し、 GUS、 Nos領域を電気泳動で 除いた。
[0259] (2)インビトロジェン社から購入した Gateway (登録商標)ベクターコンバージョンシス テムの FragmentAをプラスミド pBluscriptの EcoRVサイトに挿入した。これを Hindlll EcoRIで消化し、 FragmentA断片を回収した。
[0260] (3)回収した FragmentA断片を上記の pBIGプラスミド断片とライゲーシヨンを行!、、 pBIGCKHを構築した。これらは大腸菌 DB3. 1 (インビトロジェン社)でのみ増殖可 能で、クロラムフエ-コール耐性、カナマイシン耐性である。
[0261] <構築用べクタ一への NACAD1遺伝子の組み込み >
上記構築用ベクター p 35SSRDXGにシロイヌナズナ由来の転写因子 N ACAD 1タ ンパク質をコードする遺伝子を以下の工程(1)一 (3)のとおりに組み込んだ。
[0262] (1)シロイヌナズナ葉力 調整した mRNAを用いて作成した cDNAライブラリーか ら、以下のプライマーを用いて、終止コドンを除くシロイヌナズナ NACAD1遺伝子の コード領域のみを含む DNA断片を PCRにて増幅した。
プライマー 1 (NACAD1— F) 5し GATGATGTCAAAATCTATGAGCATATC- 3' (配 列番号 155)
プライマー 2 (NACAD1 - R) 5'- TCCACTACCATTCGACACGTGAC- 3' (配列番号 156)
NACAD1遺伝子の cDNAおよびコードするアミノ酸配列をそれぞれ配列番号 137 および 136に示す。
[0263] (2)得られた NACAD1コード領域の DNA断片を、図 3に示すように、予め制限酵 素 Smalで消化しておいた構築用ベクター p35SSRDXGの Smal部位にライゲーシ ヨンした。
[0264] (3)このプラスミドで大腸菌を形質転換し、プラスミドを調整して、塩基配列を決定し 、順方向に挿入されたクローンを単離し、 SRDXとのキメラ遺伝子となったものを得た
[0265] <組換え発現ベクターの構築 >
上記構築用ベクター上にある CaMV35Sプロモーター、キメラ遺伝子、 Nos— ter等 を含む DNA断片を、植物形質転換用ベクター pBIGCKHに組換えることにより、植 物を宿主とする発現ベクターを構築した。組換え反応はインビトロジェン社の Gateway (登録商標) LR clonase (登録商標)を用いて以下の工程(1)一(3)のとおりに行った
[0266] ( 1)まず、 p35SSRDXGl . 5 L (約 300ng)と pBIGCKH4. 0 L (約 600ng)に 5倍希釈した LR buffer 4. 0 μ Lと ΤΕ緩衝液(10mM TrisCl pH7.0、 ImM EDTA) 5 . 5 /z Lをカロえた。
[0267] (2)この溶液に LR clonase4. 0 μ Lをカ卩えて 25°Cで 60分間インキュベートした。続 いて、 proteinaseK2 μ Lをカ卩えて 37°Cで 10分間インキュベートした。
[0268] (3)その後、この溶液 1一 2 Lを大腸菌(DH5a等)に形質転換し、カナマイシンで 選択した。
[0269] <組換え発現ベクターにより形質転換した植物体の生産 >
次に、以下の工程(1)一(3)に示すように、上記キメラ遺伝子を含む DNA断片を p BIGCKHに組み込んだプラスミドである pBIG— NACAD1SRDXで、シロイヌナズ ナの形質転換を行い、形質転換植物体を生産した。シロイヌナズナ植物の形質転換 i 、 i ransformation or Arabidopsis tnaiiana by vacuum
infiltration(http://www.bch. msu.edu/ pamgreen/ protocol.htm)に従った。ただし、感 染させるのにバキユウムは用いないで、浸すだけにした。
[0270] (1)まず得られたプラスミド、 pBIG— NACAD1SRDXを、土壌細菌((
Agrobacterium tumefaciens strain GV3101(し 58ClRirrvpMP90(GmrXkoncz and Sahell 1986))株にエレクト口ポレーシヨン法で導入した。導入した菌を 1リットルの、抗生物 質(カナマイシン(Km) 50 μ g/m ゲンタマイシン(Gm) 25 μ g/ml,リファンピシリ ン (Rif) 50 μ g/ml)を含む YEP培地で OD600が 1になるまで培養した。次 、で、 培養液から菌体を回収し、 1リットルの感染用培地(Infiltration medium,上表 2)に懸 濁した。
[0271] (2)この溶液に、 14日間育成したシロイヌナズナを 1分間浸し感染させた後、再び 育成させ結種させた。なお、ァグロパクテリゥムを感染させた世代では、胚珠の生存 を妨げる場合を除き、一般に形質転換遺伝子の影響は出ない。そのため、葯の裂開 の抑制は起こらず結種した。回収した種子を 25%ブリーチ、 0. 02%Triton X-100溶 液で 7分間滅菌した後、滅菌水で 3回リンスし、滅菌したハイグロマイシン選択培地( 上表 3)に蒔種した。
[0272] (3)蒔種した約 2000粒の種子から平均して 50個体のハイグロマイシン耐性植物で ある形質転,物体を得た。これらの植物力ゝら全 RNAを調整し、 RT— PCRを用いて NACAD1SRDXの遺伝子が導入されていることを確認した。
[0273] pBIG— NACAD1SRDXで形質転換された植物体の数個体について、葯の形状 を走査型電子顕微鏡 CFSM— 6330F、日本電子製)で観察した。その結果を図 7 (a) に示す。図 7 (b)は野生型のシロイヌナズナの葯の形状を同様に走査型電子顕微鏡 で観察した結果を示している。図 7 (a)に示されているように、 pBIG— NACAD1SR DXで形質転換されたシロイヌナズナでは葯の裂開が起こっていない。このように、 p BIG— NACAD1SRDXで形質転換されたシロイヌナズナでは、葯の裂開は完全に 起こっていないか、或いは、図には示していないが、不完全にしか起こっていないこ とが確認された。結果として、図 8右側に示すように、 pBIG— NACAD1SRDXで形 質転換されたシロイヌナズナ植物体では、果実、種子が殆ど形成されな力つた。なお 、図 8左側は、シロイヌナズナの野生株を示す。
[0274] また、 pBIG— NACAD1SRDXで形質転換された 37個体の植物体につ!、て、各 個体で収穫された種子の質量の、種子以外の地上部の乾燥重量に対する割合を調 ベ、正常に結実する全く別のシロイヌナズナ植物体群と比較した。図 9 (a)、図 9 (b) にその結果を示す。図 9 (a)、(b)のグラフにおいて、縦軸は個体数、横軸は(収穫さ れた種子の質量 Z種子以外の地上部の乾燥重量) X 100の階級値を示す。例えば 横軸の 20は、(収穫された種子の質量 Z種子以外の地上部の乾燥重量) X 100の 計算値が 10より大きく 20以下の階級であることを意味する。図 9 (a)に示されているよ うに、 pBIG— NACADISRDXで形質転換された植物体群では、正常に結実する植 物体群(図 9 (b) )に比べて各個体で収穫された種子の質量の、種子以外の地上部 の乾燥重量に対する割合が低下した個体が数多く観察された。ここで種子の質量と は、 1個体全体で収穫された種子の質量の合計をいう。これは、 pBIG— NACAD1S RDXで形質転換された植物体群は自然状態では葯の裂開が抑えられるので、種子 が殆どできなかったことを示している。また、 pBIG— NACADISRDXで形質転換さ れた植物体群にぉ 、て得られた種子は、不完全に裂開した葯力 放出された花粉を 自家受粉したことにより得られたものである。
[0275] さらに、 pBIG— NACADISRDXで形質転換され、葯の裂開が抑制された植物体 において、葯内の花粉を取り出して受粉させた場合に結実するかを調べた。図 10に 、裂開しな力つた葯カもピンセットで無理やり花粉を取り出して受粉させた場合を矢 印で、何も行なわなかった場合を矢頭で示す。図 10の矢印部分に示されているよう に、葯の裂開が完全に抑制された場合においても、花粉を取り出して受粉させたとこ ろ結実したことから、花粉自体は稔性を有していることが確認された。この結果より、 p BIG-NACAD1SRDXで形質転換された植物体は、花粉自体には稔性があるが、 葯が裂開しないため受粉できず、結果として結実しないことがわ力つた。また、葯が裂 開しない花に受粉させたところ、結実したことから、雌性器官 (雌しベ)は稔性を有し ていることが確認された。
[0276] 〔実施例 3〕
本実施例においては、カリフラワーモザイクウィルス 35Sプロモーターと、ノパリン合 成酵素遺伝子の転写終止領域との間に、転写抑制転換ペプチドのひとつである 12 アミノ酸ペプチド LDLDLELRLGFA(SRDX) (配列番号 17)をコードするポリヌクレオ チドをシロイヌナズナ MYB26遺伝子の下流に結合したポリヌクレオチドを組み込ん だ組換え発現ベクターを構築し、これをシロイヌナズナにァグロバタテリゥム法を用い て導入することにより、シロイヌナズナを形質転換した。
[0277] <形質転換用ベクター構築用ベクターの構築 >
形質転換用ベクター構築用ベクターである P35SGを、図 2に示すように、実施例 2 と同様の方法で構築した。
[0278] <転写抑制転換ペプチドをコードするポリヌクレオチドを組み込んだ構築用べクタ 一の構築 >
転写抑制転換ペプチドをコードするポリヌクレオチドを組み込んだ構築用ベクター である P35SSRDXGを、図 3に示すように、実施例 2と同様の方法で構築した。
[0279] <形質転換用ベクターの構築 >
構築用ベクターの att部位で挟まれた DNA断片と組換えるための、 2つの att部位 を有する植物形質転換用ベクターである pBIGCKHを、図 6に示すように、実施例 2 と同様の方法で構築した。
[0280] <構築用ベクターへの MYB26遺伝子の組み込み >
上記構築用ベクター P35SSRDXGにシロイヌナズナ由来の転写因子 MYB26タン パク質をコードする遺伝子を以下の工程(1)一(3)のとおりに組み込んだ。
[0281] (1)シロイヌナズナ葉カゝら調整した mRNAを用いて作成した cDNAライブラリーか ら、以下のプライマーを用いて、終止コドンを除く MYB26遺伝子のコード領域のみ を含む DNA断片を PCRにて増幅した。
プライマー 1 (MYB26-F) 5 '-GATGGGTC ATC ACTC ATGCTGCAAC AAGC A-3 ' ( 配列番号 157)
プライマー 2 (MYB26-R) 5し AGTTATGACGTACTGTCCACAAGAGATTGG— 3' ( 配列番号 158)
MYB26遺伝子の cDNAおよびコードするアミノ酸配列をそれぞれ配列番号 139お よび 138に示す。
[0282] (2)得られた MYB26コード領域の DNA断片を、図 4に示すように、予め制限酵素 Smalで消化しておいた構築用ベクター p35SSRDXGの Smal部位にライゲーシヨン した。
[0283] (3)このプラスミドで大腸菌を形質転換し、プラスミドを調整して、塩基配列を決定し 、順方向に挿入されたクローンを単離し、 SRDXとのキメラ遺伝子となったものを得た
[0284] <組換え発現ベクターの構築 >
上記構築用ベクター上にある CaMV35Sプロモーター、キメラ遺伝子、 Nos— ter等 を含む DNA断片を、植物形質転換用ベクター pBIGCKHに組換えることにより、植 物を宿主とする発現ベクターを構築した。組換え反応はインビトロジェン社の Gateway (登録商標) LR clonase (登録商標)を用いて、 p35SSRDXGの代わり〖こ MYB26の コード領域が順方向に挿入された P35SMYB26SRDXGを用いる他は、実施例 2の <組換え発現ベクターの構築 >に記載した方法と同様の方法によって行った。
[0285] <組換え発現ベクターにより形質転換した植物体の生産 >
次に、上記キメラ遺伝子を含む DNA断片を pBIGCKHに組み込んだプラスミドで ある pBIG— MYB26SRDXで、シロイヌナズナの形質転換を行い、形質転^ ¾物体 を生産した。形質転換植物体の生産は、 pBIG— NACAD1SRDXの代わりに pBIG -MYB26SRDXを用いた他は、実施例 2のく組換え発現ベクターにより形質転換し た植物体の生産 >に記載した方法と同様の方法で行った。
[0286] 上記滅菌したノヽィグロマイシン選択培地(上表 3)に蒔種した約 5000粒の種子から 平均して 60個体のハイグロマイシン耐性植物である形質転換植物体を得た。これら の植物から全 RNAを調整し、 RT— PCRを用いて MYB26SRDXの遺伝子が導入さ れていることを確認した。
[0287] pBIG— MYB26SRDXで形質転換された植物体の数個体について、葯の形状を 走査型電子顕微鏡 QSM-6330F, 日本電子製)で観察した。その結果を図 11 (b) に示す。図 11 (a)は野生型のシロイヌナズナの葯の形状を同様に走査型電子顕微 鏡で観察した結果を示している。図 11 (b)に示されているように、 pBIG— MYB26S RDXで形質転換されたシロイヌナズナでは葯の裂開が起こって ヽな 、。このように、 pBIG— MYB26SRDXで形質転換されたシロイヌナズナでは、殆どの場合葯の裂開 は完全に起こっていなかった。或いは、図には示していないが、葯の裂開が起こって V、る場合でも不完全にしか起こって 、なかった。
[0288] また、 pBIG— MYB26SRDXで形質転換された 22個体の植物体につ!、て、各個 体で結実したさやの数の、開花した花の数に対する割合を調べ、正常に結実する全 く別のシロイヌナズナ植物体群と比較した。図 12にその結果を示す。図 12(a)、図 1 2 (b)のグラフにおいて、縦軸は個体数、横軸は(結実したさやの数 Z開花した花の 数) X 100の階級値を示す。例えば横軸の 20は、(結実したさやの数 Z開花した花 の数) X 100の計算値が 10より大きく 20以下の階級であることを意味する。
[0289] 図 12 (b)に示されているように、 pBIG— MYB26SRDXで形質転換された植物体 群では、正常に結実する植物体群(図 12 (a))に比べて各個体で結実したさやの数 の、開花した花の数に対する割合が低下した個体が数多く観察された。結実したさや の数の、開花した花の数に対する割合が 0より大きく 10以下である植物体が 22個体 中 11個体あり、種子が殆ど形成されな力つた個体の割合が高いことを示している。こ れは、 pBIG - MYB26SRDXで形質転換された植物体群は自然状態では葯の裂開 が抑えられるので、種子が殆どできな力つたことを示して!/、る。
[0290] また、 pBIG— MYB26SRDXで形質転換された植物体群において得られた種子は 、不完全に裂開した葯力 放出された花粉を自家受粉したことにより得られたもので ある。なお、「結実したさやの数」とは、 1個体全体において、種子が形成されたさや( 長角果)の総数をいう。
[0291] さらに、 pBIG— MYB26SRDXで形質転換され、葯の裂開が抑制された植物体に おいて、葯内の花粉を取り出して受粉させた場合に結実するかを調べた。その結果、 葯の裂開が完全に抑制された場合においても、花粉を取り出して受粉させたところ結 実したことから、花粉自体は稔性を有していることが確認された。この結果より、 pBIG MYB26SRDXで形質転換された植物体は、花粉自体には稔性があるが、葯が裂 開しないため受粉できず、結果として結実しないことがわ力つた。また、葯が裂開しな い花に受粉させたところ、結実したことから、雌性器官 (雌しベ)は稔性を有しているこ とが確認された。
[0292] 〔実施例 4〕
以下の実施例 4においては、カリフラワーモザイクウィルス 35Sプロモーターと、ノパ リン合成酵素遺伝子の転写終止領域との間に、転写抑制転換ペプチドのひとつであ る 12アミノ酸ペプチド LDLDLELRLGFA(SRDX) (配列番号 17)をコードするポリ ヌクレオチドを AG遺伝子の下流に結合したポリヌクレオチドを組み込んだ組換え発 現ベクターを構築し、これをシロイヌナズナにァグロバタテリゥム法を用いて導入する ことにより、シロイヌナズナを形質転換した。
[0293] <形質転換用ベクター構築用ベクターの構築 >
形質転換用ベクター構築用ベクターである P35SGを、図 2に示すように、実施例 2 と同様の方法で構築した。
[0294] <転写抑制転換ペプチドをコードするポリヌクレオチドを組み込んだ構築用べクタ 一の構築 >
転写抑制転換ペプチドをコードするポリヌクレオチドを組み込んだ構築用ベクター である P35SSRDXGを、図 3に示すように、実施例 2と同様の方法で構築した。
[0295] <形質転換用ベクターの構築 >
構築用ベクターの att部位で挟まれた DNA断片と組換えるための、 2つの att部位 を有する植物形質転換用ベクターである pBIGCKHを、図 6に示すように、実施例 2 と同様の方法で構築した。
[0296] <構築用ベクターへの AGコード領域の組み込み >
上記構築用ベクター P35SSRDXGにシロイヌナズナ由来の転写因子 AGタンパク 質をコードする DNA配列または遺伝子を以下の工程(1)一 (3)のとおりに組み込ん に。
[0297] (1)シロイヌナズナ完全長 cDNA pda01673を铸型として、以下のプライマーを用 いて、終止コドンを除く AGポリヌクレオチド (At4gl8960)のコード領域のみを含む DNA断片を PCRにて増幅した。
フフイマ1 ~~ 1 5 — atgaccgcgtaccaatcggagctaggagg— 3 (酉歹 号 150) プフイマ一 2 5― cactaactggagagcggtttggtcttggcg—3' (酉己歹 U番号丄 51) AGポリヌクレオチドのコードするアミノ酸配列および AGポリヌクレオチドの cDNAを それぞれ配列番号 140および 141に示す。
[0298] (2)得られた AGコード領域の DNA断片を、図 5に示すように、予め制限酵素 Smal で消化しておいた構築用ベクター P35SSRDXGの Smal部位にライゲーシヨンした。
[0299] (3)このプラスミドで大腸菌を形質転換し、プラスミドを調整して、塩基配列を決定し 、順方向に挿入されたクローンを単離し、 SRDXとのキメラ遺伝子となったものを得た
[0300] <組換え発現ベクターの構築 >
上記構築用ベクター上にある CaMV35Sプロモーター、キメラ遺伝子、 Nos— ter等 を含む DNA断片を、植物形質転換用ベクター pBIGCKHに組換えることにより、植 物を宿主とする発現ベクターを構築した。組換え反応はインビトロジェン社の Gateway (登録商標) LR clonase (登録商標)を用いて、 p35SSRDXGの代わりに AGのコード 領域が順方向に挿入された P35SAGSRDXGを用いる他は、実施例 2のく組換え 発現ベクターの構築 >に記載した方法と同様の方法によって行った。
[0301] <組換え発現ベクターにより形質転換した植物体の生産 >
次に、上記キメラ遺伝子を含む DNA断片を pBIGCKHに組み込んだプラスミドで ある pBIG— AGSRDXで、シロイヌナズナの形質転換を行い、形質転^ ¾物体を生 産した。形質転換植物体の生産は、 pBIG— NACAD1SRDXの代わりに pBIG— AG SRDXを用いた他は、実施例 2の <組換え発現ベクターにより形質転換した植物体 の生産 >に記載した方法と同様の方法で行った。
[0302] 蒔種した約 5000粒の種子から平均して 50個体のハイグロマイシン耐性植物である 形質転,物体を得た。これらの植物から全 RNAを調整し、 RT— PCRを用いて AG SRDXの遺伝子が導入されて 、ることを確認した。
[0303] 次に、 pBIG— AGSRDXで形質転換した植物体について、図 13から図 16に基づ いて説明する。図 13 (a)は、 pBIG— AGSRDXで形質転換し、完全な八重咲きとなつ たシロイヌナズナの花を示し、図 13 (b)は、花の形態が八重咲きとなったシロイヌナズ ナの全体を表す図である。 pBIG— AGSRDXで形質転換したシロイヌナズナの花は 、供試した 28個体のうち 16個体において、図 13 (a)に示すように、完全な八重咲き 植物体が形成された。
[0304] 図 14 (a)は、野生型のシロイヌナズナの花を示し、図 14 (b)は、 AG変異体のシロイ ヌナズナの花を示す図である。野生型のシロイヌナズナが 4つのがぐ 4つの花弁、 6 つの雄しベ、 1つの雌しベを有するのに対し、本発明に係る方法で形質転換したシロ ィヌナズナは、雄しベが花弁に変化し、雌しベとなる whorl4に新たな花が形成され た。 AG変異体も同様の構成となるが、本発明に係る方法で形質転換したシロイヌナ ズナは、 AG変異体と比較して、花弁同士の間隔が狭ぐ均整の取れた美しい八重咲 き植物体を形成した。
[0305] 図 15は、 pBIG— AGSRDXで形質転換した 28個体中 10個体の、シロイヌナズナ の花を示す。上記 10個体では、不完全ながら八重咲き植物体が形成された。図 16 は、 pBIG— AGSRDXで形質転換した 28個体中 2個体のシロイヌナズナの花を示す 。上記 2個体では、野生型に近い形態の花が形成された。
[0306] また、上記 16個体は、雄しベも雌しベも形成されな 、完全不稔性植物体となった。
上記 10個体では、不完全な雄しベ様、雌しベ様器官が形成されたものの、種子は形 成されなかった。すなわち、不稔性植物体が形成された。また、上記 2個体において は雄しベおよび雌しベが形成された力 種子形成数はきわめて少な力つた。このよう に、 pBIG— AGSRDXで形質転換された植物体は、すべて不稔性植物体となった。
[0307] なお、発明を実施するための最良の形態の項においてなした具体的な実施態様ま たは実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのよう な具体例にのみ限定して狭義に解釈されるべきものではなぐ本発明の精神と次に 記載する特許請求の範囲内で、いろいろと変更して実施することができるものである 産業上の利用の可能性
[0308] 本発明にかかる不稔性植物体の生産方法では、以上のように、花器形成に関与す る遺伝子の発現を促進する転写因子と、任意の転写因子を転写抑制因子に転換す る機能性ペプチドとを融合させたキメラタンパク質を植物体で生産させ、花器形成に 関与する遺伝子の発現を抑制することによって、植物の雄性不稔体を生産する。
[0309] したがって、上記キメラタンパク質をコードするキメラ遺伝子で目的の植物を形質転 換すれば雄性不稔植物を生産することができ、複雑な遺伝子組み替え技術を利用 することなぐ非常に簡便に目的の植物を雄性不稔ィ匕することができるという効果を 奏する。 [0310] また、本発明で用いられるキメラタンパク質は、内在性の遺伝子に対して、優勢に 作用するものである。そのため、植物が二倍体ゃ複二倍体であったり、あるいは植物 に機能重複遺伝子が存在したりしても、本発明にかかるキメラタンパク質は、該当す る転写因子が制御する、花器形成に関わる遺伝子の発現を、一様に抑制できる。し たがって、遺伝子導入可能なあらゆる植物を、雄性不稔体に容易に形質転換できる という効果を奏する。
[0311] また、本発明で用いられる、花器形成に関わる遺伝子の転写を促進する転写因子 のアミノ酸配列は、種の異なる数多くの植物間において、保存性が高いものと考えら れるため、特定のモデル植物で構築したキメラタンパク質を、他の植物に導入するこ とで、さまざまな種の植物にお 、て簡便に雄性不稔体を生産できると 、う効果を奏す る。
[0312] 以上のように、本発明によれば、正常な花粉形成が行われないが、雌しベは稔性を 有している、いわゆる雄性不稔植物体を、広範囲の植物で生産できる。それゆえ、本 発明は、各種農業や林業、アグリビジネス、さらには農産物を加工する産業や食品産 業等に利用可能であり、し力も非常に有用であると考えられる。
[0313] 本発明に係る葯の裂開が抑制された植物体の生産方法は、以上のように、葯の裂 開に関与する遺伝子の転写を促進する転写因子と、任意の転写因子を転写抑制因 子に転換する機能性ペプチドとを融合させたキメラタンパク質を、植物体で生産させ る構成を備えているので、葯の裂開に関与する遺伝子の発現が抑制され、葯の裂開 が抑制された植物体を生産することが可能となる。
[0314] したがって、上記キメラタンパク質をコードするキメラ遺伝子で目的の植物を形質転 換すれば葯の裂開が抑制された植物を生産することができ、複雑な遺伝子組み替え 技術を利用することなぐ非常に簡便に目的の植物の葯の裂開を抑制することができ るという効果を奏する。
[0315] また、本発明で用いられるキメラタンパク質は、内在性の遺伝子に対して、優勢に 作用するものであるため、本発明にかかるキメラタンパク質は、植物が二倍体ゃ複ニ 倍体であったり、あるいは植物に機能重複遺伝子が存在したりしても、葯の裂開に関 わる遺伝子の発現を一様に抑制でき、遺伝子導入可能なあらゆる植物を、葯の裂開 が抑制された植物体に容易に形質転換できると 、う効果を奏する。
[0316] また、本発明で用いられる、葯の裂開に関わる遺伝子の転写を促進する転写因子 のアミノ酸配列は、種の異なる数多くの植物間において、保存性が高いものと考えら れるため、特定のモデル植物で構築したキメラタンパク質を、他の植物に導入するこ とで、さまざまな種の植物にぉ 、て簡便に葯の裂開が抑制された植物体を生産でき るという効果を奏する。
[0317] 以上のように、葯の裂開に関与する遺伝子の転写を抑制することによって葯の裂開 が抑制された植物体を得ることができる。それゆえ、本発明は、各種農業や林業、ァ ダリビジネス、さらには農産物を加工する産業や食品産業等に利用可能であり、しか も非常に有用であると考えられる。
[0318] また、本発明に係る不稔性植物体の生産方法は、以上のように、雄しベおよび雌し ベの形成に関与する転写因子と、任意の転写因子を転写抑制因子に転換する機能 性ペプチドとを融合させたキメラタンパク質を植物体で生産させ、上記転写因子の標 的遺伝子の転写を抑制することにより、八重咲き植物体を生産するという構成を備え ているので、短期間に、簡便、確実に八重咲き植物体を生産することができるという 効果を奏する。
[0319] 以上のように、 AG転写因子が標的とする遺伝子の転写を抑制することによって八 重咲き植物体または不稔性植物体を得ることができる。それゆえ、本発明は、各種農 業、園芸業、造園業、アグリビジネス等に利用可能であり、しかも非常に有用であると 考えられる。

Claims

請求の範囲
[1] 花器形成に関与する遺伝子の発現を促進する転写因子と、任意の転写因子を転 写抑制因子に転換する機能性ペプチドとを融合させたキメラタンパク質を植物体で 生産させ、植物体を不稔化することを特徴とする不稔性植物体の生産方法。
[2] 花器形成に関与する遺伝子の発現を促進する転写因子と、任意の転写因子を転 写抑制因子に転換する機能性ペプチドとを融合させたキメラタンパク質を植物体で 生産させ、花器形成に関与する遺伝子の発現を抑制することを特徴とする不稔性植 物体の生産方法。
[3] 上記花器形成に関与する遺伝子の発現を促進する転写因子が、雄しベまたは雌し ベの形成に関与する転写因子であることを特徴とする請求項 1に記載の不稔性植物 体の生産方法。
[4] 上記不稔性植物体は、少なくとも雄しベの形成が阻害されていることを特徴とする、 請求項 1から 3のいずれか 1項に記載の不稔性植物体の生産方法。
[5] 上記雄しベまたは雌しベの形成に関与する転写因子が、葯の裂開に関与する遺伝 子の転写を促進する転写因子であって、上記転写因子と、任意の転写因子を転写 抑制因子に転換する機能性ペプチドとを融合させたキメラタンパク質を、植物体で生 産させることにより、葯の裂開を抑制することを特徴とする請求項 3に記載の不稔性植 物体の生産方法。
[6] 上記葯の裂開に関与する遺伝子の転写を促進する転写因子が MYBドメインを有 する転写因子であって、上記転写因子と、任意の転写因子を転写抑制因子に転換 する機能性ペプチドとを融合させたキメラタンパク質を、植物体で生産させ、葯の裂 開に関与する遺伝子の転写を抑制することを特徴とする請求項 5に記載の不稔性植 物体の生産方法。
[7] 上記植物体は、さらに、雌性器官が稔性を有して!/ヽることを特徴とする請求項 5また は 6に記載の不稔性植物体の生産方法。
[8] 上記植物体は、さらに、花粉自体が稔性を有することを特徴とする請求項 5から 7の
V、ずれか 1項に記載の不稔性植物体の生産方法。
[9] 雄しベおよび雌しベの形成に関与する転写因子と、任意の転写因子を転写抑制因 子に転換する機能性ペプチドとを融合させたキメラタンパク質を植物体で生産させる ことにより、花の形態を八重咲きにすることを特徴とする不稔性植物体の生産方法。
[10] 上記転写因子をコードする遺伝子と上記機能性ペプチドをコードするポリヌクレオ チドとからなるキメラ遺伝子を含む組換え発現ベクターを、植物細胞に導入する形質 転換工程を含んでいることを特徴とする請求項 1一 4のいずれか 1項に記載の不稔性 植物体の生産方法。
[11] さらに、上記組換え発現ベクターを構築する発現ベクター構築工程を含んでいるこ とを特徴とする請求項 10に記載の不稔性植物体の生産方法。
[12] 上記転写因子をコードする遺伝子と上記機能性ペプチドをコードするポリヌクレオ チドとからなるキメラ遺伝子を含む組換え発現ベクターを、植物細胞に導入する形質 転換工程を含んでいることを特徴とする請求項 1, 3または 5— 8のいずれか 1項に記 載の不稔性植物体の生産方法。
[13] さらに、上記組換え発現ベクターを構築する発現ベクター構築工程を含んでいるこ とを特徴とする請求項 12に記載の不稔性植物体の生産方法。
[14] 上記転写因子をコードする遺伝子と上記機能性ペプチドをコードするポリヌクレオ チドとからなるキメラ遺伝子を含む組換え発現ベクターを、植物細胞に導入する形質 転換工程を含んでいることを特徴とする請求項 1, 3または 9のいずれか 1項に記載の 不稔性植物体の生産方法。
[15] さらに、上記組換え発現ベクターを構築する発現ベクター構築工程を含んでいるこ とを特徴とする請求項 14に記載の不稔性植物体の生産方法。
[16] 上記転写因子が、以下の(a)又は (b)記載のタンパク質であることを特徴とする請 求項 1一 4, 10または 11のいずれか 1項に記載の不稔性植物体の生産方法。
(a)配列番号 134に示されるアミノ酸配列力もなるタンパク質。
(b)配列番号 134に示されるアミノ酸配列において、 1個又は数個のアミノ酸が置換、 欠失、挿入、及び Z又は付加されたアミノ酸配列からなり、花器形成に関与する遺伝 子の発現を促進する機能を有するタンパク質。
[17] 上記転写因子をコードする遺伝子として、以下の(c)又は(d)記載の遺伝子が用い られることを特徴とする請求項 10または 11に記載の不稔性植物体の生産方法。 (c)配列番号 135に示される塩基配列をオープンリーディングフレーム領域として有 する遺伝子。
(d)配列番号 135に示される塩基配列からなる遺伝子と相補的な塩基配列力 なる 遺伝子とストリンジェントな条件でハイブリダィズし、かつ、花器形成に関与する遺伝 子の発現を促進する転写因子をコードする遺伝子。
[18] 上記転写因子が、以下の(a)又は (b)記載のタンパク質であることを特徴とする請 求項 1, 3, 5, 7, 8, 12または 13のいずれか 1項に記載の不稔性植物体の生産方法
(a)配列番号 136に示されるアミノ酸配列力もなるタンパク質。
(b)配列番号 136に示されるアミノ酸配列において、 1個又は数個のアミノ酸が置換、 欠失、挿入、及び Z又は付加されたアミノ酸配列からなり、且つ、葯の裂開に関与す る遺伝子の転写を促進する機能を有するタンパク質。
[19] 上記転写因子が、配列番号 136に示されるアミノ酸配列に対して 50%以上の相同 性を有し、且つ、葯の裂開に関与する遺伝子の転写を促進する機能を有するタンパ ク質であることを特徴とする請求項 1, 3, 5, 7, 8, 12または 13のいずれか 1項に記 載の不稔性植物体の生産方法。
[20] 上記転写因子をコードする遺伝子として、以下の(c)又は(d)記載の遺伝子が用い られることを特徴とする請求項 12または 13のいずれ力 1項に記載の不稔性植物体の 生産方法。
(c)配列番号 137に示される塩基配列をオープンリーディングフレーム領域として有 する遺伝子。
(d)配列番号 137に示される塩基配列からなる遺伝子と相補的な塩基配列力 なる 遺伝子とストリンジェントな条件でハイブリダィズし、且つ、葯の裂開に関与する遺伝 子の転写を促進する転写因子をコードする遺伝子。
[21] 上記転写因子が、以下の(a)又は (b)記載のタンパク質であることを特徴とする請 求項 1、 3, 6-8, 12または 13のいずれ力 1項に記載の不稔性植物体の生産方法。
(a)配列番号 138に示されるアミノ酸配列力もなるタンパク質、
(b)配列番号 138に示されるアミノ酸配列において、 1個又は数個のアミノ酸が置換、 欠失、挿入、及び Z又は付加されたアミノ酸配列からなり、且つ、葯の裂開に関与す る遺伝子の転写を促進する機能を有するタンパク質。
[22] 上記タンパク質をコードする遺伝子として、以下の(c)又は (d)記載の遺伝子が用 いられることを特徴とする請求項 12または 13のいずれか 1項に記載の不稔性植物体 の生産方法。
(c)配列番号 139に示される塩基配列をオープンリーディングフレーム領域として有 する遺伝子、
(d)配列番号 139に示される塩基配列からなる遺伝子と相補的な塩基配列力 なる 遺伝子とストリンジェントな条件でハイブリダィズし、且つ、葯の裂開に関与する遺伝 子の転写を促進するタンパク質をコードする遺伝子。
[23] 上記転写因子が、以下の(a)または (b)記載のタンパク質であることを特徴とする請 求項 1, 3, 9, 14または 15のいずれ力 1項に記載の不稔性植物体の生産方法。
(a)配列番号 140に示されるアミノ酸配列力もなるタンパク質。
(b)配列番号 140に示されるアミノ酸配列において、 1個または数個のアミノ酸が置 換、欠失、挿入、及び,または付加されたアミノ酸配列からなるタンパク質。
[24] 上記転写因子をコードする遺伝子として、以下の(c)または (d)記載の遺伝子が用 いられることを特徴とする請求項 14または 15のいずれか 1項に記載の不稔性植物体 の生産方法。
(c)配列番号 141に示される塩基配列をオープンリーディングフレーム領域として有 する遺伝子。
(d)配列番号 141に示される塩基配列からなる遺伝子と相補的な塩基配列からなる 遺伝子とストリンジェントな条件でノヽイブリダィズし、かつ、雄しベおよび雌しベの形成 に関与するタンパク質をコードする遺伝子。
[25] 以下の(a)又は (b)記載のタンパク質をコードする遺伝子、
(a)配列番号 136に示されるアミノ酸配列力もなるタンパク質、
(b)配列番号 136に示されるアミノ酸配列において、 1個又は数個のアミノ酸が置換、 欠失、挿入、及び Z又は付加されたアミノ酸配列からなり、葯の裂開に関与する遺伝 子の転写を促進する機能を有するタンパク質、 或 ヽは、以下の(c)又は (d)記載の遺伝子、
(c)配列番号 137に示される塩基配列をオープンリーディングフレーム領域として有 する遺伝子、
(d)配列番号 137に示される塩基配列からなる遺伝子と相補的な塩基配列力 なる 遺伝子とストリンジェントな条件でハイブリダィズし、且つ、葯の裂開に関与する遺伝 子の転写を促進する転写因子をコードする遺伝子、
を用いることを特徴とする不稔性植物体の生産方法。
[26] 上記機能性ペプチドが、次に示す式(1)一 (4)
( 1) XI— Leu— Asp— Leu— X2— Leu— X3
(但し、式中、 XIは 0— 10個のアミノ酸残基を示し、 X2は Asn又は Gluを示し、 X3は 少なくとも 6個のアミノ酸残基を示す。 )
(2) Yl— Phe— Asp— Leu— Asn— Y2— Y3
(但し、式中、 Ylは 0— 10個のアミノ酸残基を示し、 Y2は Phe又は lieを示し、 Y3は 少なくとも 6個のアミノ酸残基を示す。 )
(3) Zl-Asp-Leu-Z2-Leu-Arg-Leu-Z3
(但し、式中、 Z1は Leu、 Asp— Leu又は Leu— Asp— Leuを示し、 Z2は Glu、 Gin又 は Aspを示し、 Z3は 0— 10個のアミノ酸残基を示す。 )
(4) Asp— Leu— Z4— Leu— Arg— Leu
(但し、式中、 Z4は Glu、 Gin又は Aspを示す。)
のいずれかで表されるアミノ酸配列を有するものであることを特徴とする請求項 1から 25のいずれか 1項に記載の不稔性植物体の生産方法。
[27] 上記機能性ペプチドが、配列番号 1一 17のいずれかに示されるアミノ酸配列を有 するペプチドであることを特徴とする請求項 1から 25のいずれか 1項に記載の不稔性 植物体の生産方法。
[28] 上記機能性ペプチドが、以下の(e)又は (f)記載のペプチドであることを特徴とする 請求項 1から 25のいずれか 1項に記載の不稔性植物体の生産方法。
(e)配列番号 18または 19に示されるアミノ酸配列を有するペプチド。
(f)配列番号 18または 19に示されるアミノ酸配列にお 、て、 1個又は数個のアミノ酸 が置換、欠失、挿入、及び Z又は付加されたアミノ酸配列を有するペプチド。
[29] 上記機能性ペプチドが、次に示す式 (5)
(5) 1— Leu— β 1— Leu— y 1— Leu
(但し、式中 oc 1は、 Asp、 Asn、 Glu、 Gln、 Thr又は Serを示し、 β 1は、 Asp、 Gln、 Asn、 Argゝ Glu、 Thr、 Ser又は Hisを示し、 γ 1は、 Arg、 Gln、 Asn、 Thr、 Serゝ Hi s、 Lys、又は Aspを示す。)
で表されるアミノ酸配列を有するものであることを特徴とする請求項 1から 25のいずれ 力 1項に記載の不稔性植物体の生産方法。
[30] 上記機能性ペプチドが、次に示す式 (6)— (8)
(oノ 1— Leu— β 1— Leu— y 2— Leu
(7) 1— Leu— β 2— Leu— Arg— Leu
(8) a 2— Leu— β 1— Leu— Arg— Leu
(但し、各式中 oc 1は、 Asp、 Asn、 Glu、 Gln、 Thr又は Serを示し、 oc 2は、 Asn、 Glu 、 Gln、 Thr又は Serを示し、 j8 1は、 Asp、 Gln、 Asn、 Arg、 Glu、 Thr、 Ser又は His を示し、 j8 2は Asn、 Arg、 Thr、 Ser又は Hisを示し、 γ 2は Gln、 Asn、 Thr、 Ser、 Hi s、 Lys、又は Aspを示す。)
のいずれかで表されるアミノ酸配列を有するものであることを特徴とする請求項 1から 25のいずれか 1項に記載の不稔性植物体の生産方法。
[31] 上記機能性ペプチド力 配列番号 20、 21、 22、 23、 24、 25、 26、 27、 28、 29、 3 0、 31、 32、 33、 34、 35、 38、 39、 40または 152に示されるアミノ酸配列を有するぺ プチドであることを特徴とする請求項 1から 25のいずれ力 1項に記載の不稔性植物体 の生産方法。
[32] 上記機能性ペプチドが、配列番号 36または 37に示されるアミノ酸配列を有するぺ プチドであることを特徴とする請求項 1から 25のいずれ力 1項に記載の不稔性植物体 の生産方法。
[33] 請求項 1から 32のいずれ力 1項に記載の生産方法により生産された、不稔性植物 体。
[34] 上記不稔性植物体には、成育した植物個体、植物細胞、植物組織、カルス、種子 の少なくとも何れかが含まれることを特徴とする請求項 33に記載の不稔性植物体。
[35] 請求項 1から 32のいずれ力 1項に記載の生産方法を行うためのキットであって、 花器形成、雄しベまたは雌しベの形成、葯の裂開、または雄しベおよび雌しベの形 成に関与する遺伝子の発現を促進する転写因子をコードする遺伝子と、任意の転写 因子を転写抑制因子に転換する機能性ペプチドをコードするポリヌクレオチドと、プ 口モーターとを含む組換え発現ベクターを少なくとも含むことを特徴とする不稔性植 物体生産キット。
[36] さらに、上記組換え発現ベクターを植物細胞に導入するための試薬群を含むことを 特徴とする請求項 35に記載の植物の不稔性植物体生産キット。
PCT/JP2005/000155 2004-01-07 2005-01-07 不稔性植物体の生産方法およびこれを用いて得られる植物体、並びにその利用 WO2005065446A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002540711A CA2540711A1 (en) 2004-01-07 2005-01-07 Method of producing sterile plant, plant obtained by using the same and use thereof
EP05703394A EP1702508A4 (en) 2004-01-07 2005-01-07 METHOD FOR PRODUCING A STERILE PLANT, PLANT OBTAINED BY THE METHOD, AND USE THEREOF
AU2005203861A AU2005203861B2 (en) 2004-01-07 2005-01-07 Method of producing sterile plant, plant obtained by using the same and use thereof
BRPI0506368-0A BRPI0506368A (pt) 2004-01-07 2005-01-07 processo de produção de planta estéril, planta obtida pelo processo e uso das mesmas
US10/574,470 US20110099664A1 (en) 2004-01-07 2005-01-07 Producing process of sterile plants, plants obtained by the process, and use of the plants

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2004002192A JP2005192483A (ja) 2004-01-07 2004-01-07 植物の雄性不稔体の生産方法およびこれを用いて得られる植物体、並びにその利用
JP2004-002192 2004-01-07
JP2004-093796 2004-03-26
JP2004093796A JP4437936B2 (ja) 2004-03-26 2004-03-26 葯の裂開が抑制された植物体の生産方法およびこれを用いて得られる植物体、並びにその利用
JP2004221592A JP2006034218A (ja) 2004-07-29 2004-07-29 葯の裂開が抑制された植物体の生産方法2およびこれを用いて得られる植物体、並びにその利用
JP2004-221592 2004-07-29
JP2004231544A JP2006042729A (ja) 2004-08-06 2004-08-06 八重咲き植物体の生産方法およびこれを用いて得られる植物体、並びにその利用
JP2004-231544 2004-08-06

Publications (1)

Publication Number Publication Date
WO2005065446A1 true WO2005065446A1 (ja) 2005-07-21

Family

ID=34753821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000155 WO2005065446A1 (ja) 2004-01-07 2005-01-07 不稔性植物体の生産方法およびこれを用いて得られる植物体、並びにその利用

Country Status (6)

Country Link
US (1) US20110099664A1 (ja)
EP (1) EP1702508A4 (ja)
AU (1) AU2005203861B2 (ja)
BR (1) BRPI0506368A (ja)
CA (1) CA2540711A1 (ja)
WO (1) WO2005065446A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011523559A (ja) * 2008-06-06 2011-08-18 グラスランツ テクノロジー リミテッド 生合成に関与する新規の遺伝子
WO2019172282A1 (ja) * 2018-03-05 2019-09-12 国立研究開発法人産業技術総合研究所 受精を介さず種子植物の胚乳発生を誘導する核酸分子及びベクター、並びに受精を介さず胚乳を発生しうる組換え種子植物及びその作製方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4831370B2 (ja) 2006-02-28 2011-12-07 独立行政法人科学技術振興機構 グルカン量を低減させることなくリグニン量およびセルロース量を低減させた植物体およびその生産方法、並びにこれらの利用
US8314291B2 (en) 2007-08-06 2012-11-20 University Of Tsukuba Method for producing plant with modified flower morphology
EP2230309B1 (en) 2007-12-05 2016-03-09 Toyota Jidosha Kabushiki Kaisha Gene capable of increasing the production of oil-and-fat in plant, and use thereof
AU2013200360B2 (en) * 2007-12-05 2014-11-20 Toyota Jidosha Kabushiki Kaisha Genes that increase plant oil and method for using the same
WO2009072609A1 (ja) 2007-12-05 2009-06-11 Toyota Jidosha Kabushiki Kaisha 植物の油脂を増産させる遺伝子及びその利用方法
KR101671035B1 (ko) * 2008-02-08 2016-10-31 니치유 가부시키가이샤 화분 비산 방지용 제제
JP5299886B2 (ja) * 2008-03-04 2013-09-25 トヨタ自動車株式会社 植物の油脂を増産させる遺伝子及びその利用方法
JP5847991B2 (ja) 2009-06-04 2016-01-27 トヨタ自動車株式会社 種子における物質生産性を向上させる遺伝子及びその利用方法
JP5519192B2 (ja) 2009-06-04 2014-06-11 トヨタ自動車株式会社 種子のタンパク質含量を増産させる遺伝子及びその利用方法
JP5718554B2 (ja) 2009-06-04 2015-05-13 トヨタ自動車株式会社 植物の植物重量を増産させる遺伝子及びその利用方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003013227A2 (en) * 2001-08-09 2003-02-20 Mendel Biotechnology, Inc. Yield-related polynucleotides and polypeptides in plants
WO2003055903A1 (fr) * 2001-12-26 2003-07-10 National Institute Of Advanced Industrial Science And Technology Gene et peptide regulateurs de transcription

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003013227A2 (en) * 2001-08-09 2003-02-20 Mendel Biotechnology, Inc. Yield-related polynucleotides and polypeptides in plants
WO2003055903A1 (fr) * 2001-12-26 2003-07-10 National Institute Of Advanced Industrial Science And Technology Gene et peptide regulateurs de transcription

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HIRATSU K. ET AL.: "Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis", PLANT J., vol. 34, no. 5, 2003, pages 733 - 739, XP002300983 *
RIECHMANN J.L. ET AL.: "Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3,PISTILLATA, and AGAMOUS", PROC. NATL. ACAD. SCI. USA, vol. 93, no. 10, 1996, pages 4793 - 4798, XP002938741 *
See also references of EP1702508A4 *
STEINER-LANGE S. ET AL.: "Disruption of Arabidopsis thaliana MYB26 results in male sterility due to non-dehiscent anthers", PLANT J., vol. 34, no. 4, 2003, pages 19 - 528, XP002987976 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011523559A (ja) * 2008-06-06 2011-08-18 グラスランツ テクノロジー リミテッド 生合成に関与する新規の遺伝子
WO2019172282A1 (ja) * 2018-03-05 2019-09-12 国立研究開発法人産業技術総合研究所 受精を介さず種子植物の胚乳発生を誘導する核酸分子及びベクター、並びに受精を介さず胚乳を発生しうる組換え種子植物及びその作製方法
JP2019150022A (ja) * 2018-03-05 2019-09-12 国立研究開発法人産業技術総合研究所 受精を介さず種子植物の胚乳発生を誘導する核酸分子及びベクター、並びに受精を介さず胚乳を発生しうる組換え種子植物及びその作製方法
US11319545B2 (en) 2018-03-05 2022-05-03 National Institute Of Advanced Industrial Science And Technology Nucleic acid molecule and vector inducing endosperm development in seed plant without fertilization, transgenic seed plant capable of developing endosperm without fertilization and method for constructing same
JP7453657B2 (ja) 2018-03-05 2024-03-21 国立研究開発法人産業技術総合研究所 受精を介さず種子植物の胚乳発生を誘導する核酸分子及びベクター、並びに受精を介さず胚乳を発生しうる組換え種子植物及びその作製方法

Also Published As

Publication number Publication date
EP1702508A4 (en) 2007-10-24
US20110099664A1 (en) 2011-04-28
AU2005203861A1 (en) 2005-07-21
CA2540711A1 (en) 2005-07-21
EP1702508A1 (en) 2006-09-20
AU2005203861B2 (en) 2007-11-22
BRPI0506368A (pt) 2006-12-26

Similar Documents

Publication Publication Date Title
WO2005065446A1 (ja) 不稔性植物体の生産方法およびこれを用いて得られる植物体、並びにその利用
AU2009321261B2 (en) Method for producing male sterile plants
JP4642239B2 (ja) 作物植物での異系交雑および望ましくない遺伝子拡散を制限するための方法および遺伝子組成物
ES2253813T3 (es) Induccion de esterilidad masculina en plantas por la expresion de niveles elevados de estreptavidina.
AU2008206450B2 (en) Acetyl-CoA carboxylase herbicide resistant sorghum
US10704054B2 (en) Modulation of seed vigor
JP2005192483A (ja) 植物の雄性不稔体の生産方法およびこれを用いて得られる植物体、並びにその利用
JP7453657B2 (ja) 受精を介さず種子植物の胚乳発生を誘導する核酸分子及びベクター、並びに受精を介さず胚乳を発生しうる組換え種子植物及びその作製方法
JP2006280242A (ja) 完全不稔性植物体の生産方法およびこれを用いて得られる植物体、並びにその利用
JP4437936B2 (ja) 葯の裂開が抑制された植物体の生産方法およびこれを用いて得られる植物体、並びにその利用
JP2006042729A (ja) 八重咲き植物体の生産方法およびこれを用いて得られる植物体、並びにその利用
JP2006101827A (ja) 雄性不稔形質転換植物体の生産方法およびこれを用いて得られる植物体、並びにその利用
JP2006006248A (ja) 葉の形態形成が制御された植物体の生産方法およびこれを用いて得られる植物体、並びにその利用
JP2005295879A (ja) 花の形態が改変された植物体の生産方法およびこれを用いて得られる植物体、並びにその利用
JP2006020607A (ja) 葉の形態が改変された植物体の生産方法およびこれを用いて得られる植物体、並びにその利用
JP2006034218A (ja) 葯の裂開が抑制された植物体の生産方法2およびこれを用いて得られる植物体、並びにその利用
JP2006042730A (ja) 単子葉植物の雄性不稔体の生産方法およびこれを用いて得られる植物体、並びにその利用
EP2339008A1 (en) Basal transcription factors silencing to induce recoverable male sterility in plants
JPWO2009020101A1 (ja) 花の形態が改変された植物体の生産方法
WO2001037643A1 (fr) Procede de reduction de la fertilite du pollen au moyen des genes du facteur de transcription a doigt de zinc specifiques du pollen
Cassan-Wang Auxin-Dependent Transcriptional Regulation During Fruit Development
JP2001145429A (ja) タペート層特異的ジンクフィンガー転写因子の遺伝子を用いて花粉稔性を低下させる方法
WO2001037644A1 (fr) Procede de reduction de la fertilite du pollen au moyen d&#39;un gene du facteur de transcription a doigt de zinc specifique d&#39;une assise nourriciere
CZ339899A3 (cs) Ztracené bednění stropů

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580001035.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006109771

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 2540711

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2005203861

Country of ref document: AU

Ref document number: 1075/CHENP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2005703394

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005203861

Country of ref document: AU

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 10574470

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005703394

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0506368

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2005203861

Country of ref document: AU

Date of ref document: 20050107

Kind code of ref document: B