WO2009107202A1 - 音響信号処理装置及び音響信号処理方法 - Google Patents

音響信号処理装置及び音響信号処理方法 Download PDF

Info

Publication number
WO2009107202A1
WO2009107202A1 PCT/JP2008/053298 JP2008053298W WO2009107202A1 WO 2009107202 A1 WO2009107202 A1 WO 2009107202A1 JP 2008053298 W JP2008053298 W JP 2008053298W WO 2009107202 A1 WO2009107202 A1 WO 2009107202A1
Authority
WO
WIPO (PCT)
Prior art keywords
acoustic signal
signal
sound
sound field
correction
Prior art date
Application number
PCT/JP2008/053298
Other languages
English (en)
French (fr)
Inventor
伸一 佐藤
伸寛 友田
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to US12/866,348 priority Critical patent/US20110007905A1/en
Priority to PCT/JP2008/053298 priority patent/WO2009107202A1/ja
Priority to JP2010500478A priority patent/JPWO2009107202A1/ja
Publication of WO2009107202A1 publication Critical patent/WO2009107202A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/301Automatic calibration of stereophonic sound system, e.g. with test microphone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/13Acoustic transducers and sound field adaptation in vehicles

Definitions

  • the present invention relates to an acoustic signal processing device, an acoustic signal processing method, an acoustic signal processing program, and a recording medium on which the acoustic signal processing program is recorded.
  • the installation environment of such an audio device is various. For this reason, it often happens that a plurality of speakers that output sound cannot be arranged at positions having symmetry in terms of the multi-channel surround system.
  • the plurality of speakers are placed at positions having symmetry that is recommended from the viewpoint of the multi-channel surround system. Can not be placed.
  • the characteristics of each speaker are often not optimal in realizing the multi-channel surround system. For this reason, in order to obtain good quality surround sound by the adopted multi-channel surround system, it is necessary to correct the sound field by correcting the acoustic signal.
  • the acoustic device (hereinafter, also referred to as “sound source device”) that needs to correct the acoustic signal for the sound field correction as described above is not limited to one type.
  • a sound source device that is assumed to be mounted on a vehicle, there are a player that reproduces the audio content recorded on the above-described DVD or the like, a broadcast receiving device that reproduces the audio content included in the broadcast wave, and the like.
  • a technique for sharing a means for correcting an acoustic signal has been proposed (see Patent Document 1: hereinafter referred to as “conventional example”).
  • the conventional technology described above is a technology for suppressing the occurrence of a sense of incongruity with the user's volume due to switching of the sound source device. For this reason, the technology of the conventional example does not perform sound field correction processing in order to make the sound field formed by output sounds from a plurality of speakers full of presence.
  • a sound source device (so-called genuine product) mounted on a vehicle at the time of manufacture of the vehicle
  • a specific sound field correction process is performed on the original sound signal faithful to the audio content, and the speaker Some of them generate acoustic signals for provision to.
  • an acoustic device that is not a genuine product generally generates an original acoustic signal as an acoustic signal for providing to a speaker. For this reason, when sound reproduction is performed by switching between a sound source device that has been subjected to sound field correction processing and a sound source device that has not been subjected to sound field correction processing, a difference in sound quality may occur for the user. become.
  • the present invention has been made in view of the above circumstances, and supplies an output audio signal that has been subjected to a unified sound field correction process to a speaker, regardless of which of a plurality of acoustic signals is selected.
  • An object of the present invention is to provide an acoustic signal processing device and an acoustic signal processing method capable of performing the above.
  • an acoustic signal processing device for generating an acoustic signal to be supplied to a plurality of speakers, receiving means for receiving an acoustic signal from each of a plurality of external devices; and the plurality of external devices Measuring means for measuring a mode of sound field correction processing applied to an acoustic signal received from a specific external device among the devices; as an acoustic signal supplied to the plurality of speakers, other than the specific external device Generating means for generating, when an acoustic signal received from an external device is selected, an acoustic signal that has been subjected to sound field correction processing in a mode measured by the measuring means with respect to the selected acoustic signal;
  • An acoustic signal processing device comprising:
  • the present invention is an acoustic signal processing method for generating an acoustic signal to be supplied to a plurality of speakers, and a sound applied to an acoustic signal received from a specific external device in the plurality of external devices.
  • the present invention is an acoustic signal processing program characterized by causing an arithmetic means to execute the acoustic signal processing method of the present invention.
  • the present invention is a recording medium in which the acoustic signal processing program of the present invention is recorded so as to be readable by a calculation means.
  • FIG. 1 is a block diagram schematically showing a configuration of an acoustic signal processing device according to an embodiment of the present invention. It is a figure for demonstrating the arrangement position of the four speaker units of FIG. It is a block diagram for demonstrating the structure of the control unit of FIG. It is a block diagram for demonstrating the structure of the reception process part of FIG. It is a block diagram for demonstrating the structure of the sound field correction
  • the measurement of the aspect of the sound field correction process in the sound source device 920 0 is a flowchart for explaining the setting of the sound field correction process in the interior of the device of FIG.
  • FIG. 1 is a block diagram illustrating a schematic configuration of an acoustic signal processing apparatus 100 according to an embodiment.
  • the acoustic signal processing device 100 is a device mounted on the vehicle CR (see FIG. 2).
  • the acoustic signal processing apparatus 100 performs processing on an acoustic signal of a 4-channel surround system that is one of the multi-channel surround systems.
  • the four-channel surround sound signal includes a left channel (hereinafter referred to as “L channel”), a right channel (hereinafter referred to as “R channel”), a surround left channel (hereinafter referred to as “SL channel”), and a surround right channel.
  • L channel left channel
  • R channel right channel
  • SL channel surround left channel
  • SR channel An acoustic signal having a four-channel configuration
  • speaker units 910 L to 910 SR corresponding to the L to SR channels are connected to the acoustic signal processing apparatus 100.
  • the speaker unit 910 L is disposed in the front door housing on the passenger seat side.
  • the speaker unit 910 L is disposed so as to face the passenger seat side.
  • the speaker unit 910 R is disposed in the front door housing on the driver's seat side.
  • the speaker unit 910 R is disposed so as to face the driver's seat side.
  • the speaker unit 910 SL is arranged in a housing on the rear side of the passenger seat.
  • the speaker unit 910 SL is disposed so as to face the rear seat on the passenger seat side.
  • speaker unit 910 SR is arranged in a housing on the rear side of the driver's seat.
  • the speaker unit 910 SR is disposed so as to face the rear seat on the driver's seat side.
  • Sound is output from the speaker units 910 L to 910 SR arranged as described above to the sound field space ASP.
  • sound source devices 920 0 , 920 1 , 920 2 are connected to the acoustic signal processing device 100.
  • each of the sound source devices 920 0 , 920 1 , and 920 2 generates an acoustic signal based on the audio content and sends it to the acoustic signal processing device 100.
  • the tone generator 920 0 generates a 4-channel original sound signal faithful to the audio content recorded on a recording medium RM such as a DVD (Digital Versatile Disk). Then, in the sound source device 920 0 , the sound field correction process is performed on the original sound signal, and the sound signal UAS is generated. In the present embodiment, the sound field correction process performed on the original sound signal at the sound source device 920 0, sound field reproduction sound corresponding to when it is output to the sound field space ASP from the speaker units 910 L ⁇ 910 SR It is assumed that correction processing has been performed.
  • the acoustic signal UAS is composed of four analog signals UAS L to UAS SR .
  • the sound source device 920 1 generates a 4-channel original sound signal faithful to the audio content. Then, the sound source device 920 1, the original audio signal is sent to the audio signal processing device 100 as an acoustic signal NAS.
  • the acoustic signal NAS is composed of four analog signals NAS L to NAS SR .
  • the sound source device 920 2 generates an original acoustic signal having a 4-channel configuration that is faithful to the audio content. Then, the original sound signal is sent from the sound source device 920 2 to the sound signal processing device 100 as the sound signal NAD.
  • the acoustic signal NAD is a digital signal that is not subjected to signal separation for each of the four channels.
  • the acoustic signal processing apparatus 100 includes a control unit 110, a display unit 150, and an operation input unit 160.
  • the control unit 110 performs generation processing of the output audio signal AOS based on the above-described measurement processing of the appropriate sound field correction processing and the acoustic signal from any one of the sound source devices 920 0 to 920 2 .
  • the control unit 110 will be described later.
  • the display unit 150 includes, for example, (i) a display device such as a liquid crystal panel, an organic EL (Electro Luminescence) panel, and a PDP (Plasma Display Panel), and (ii) a graphic renderer that controls the entire display unit 150. It comprises a display controller, and (iii) a display image memory for storing display image data.
  • the display unit 150 displays operation guidance information and the like according to display data IMD from the control unit 110.
  • the above-described operation input unit 160 includes a key unit provided in the main body of the acoustic signal processing device 100 and / or a remote input device including the key unit.
  • a key part provided in the main body part a touch panel provided in a display device of the display unit 150 can be used.
  • it can replace with the structure which has a key part, or can also employ
  • the operation content of the acoustic signal processing apparatus 100 is set. For example, a sound command for selecting whether to output from the speaker units 910 L to 910 SR a sound command based on an acoustic signal from any one of the sound source devices 920 0 to 920 2 , a measurement command in the mode of appropriate sound field correction processing A user performs a selection command or the like using the operation input unit 160. Such input contents are sent from the operation input unit 160 to the control unit 110 as operation input data IPD.
  • the control unit 110 includes a reception processing unit 111 as a reception unit, a signal selection unit 112, and a sound field correction unit 113 as a generation unit.
  • the control unit 110 includes a signal selection unit 114, a DA (Digital-to-Analogue) conversion unit 115, an amplification unit 116, and a processing control unit 119.
  • DA Digital-to-Analogue
  • the reception processing unit 111 receives the acoustic signal UAS from the sound source device 920 0 , the acoustic signal NAS from the sound source device 920 1, and the acoustic signal NAD from the sound source device 920 2 .
  • the reception processing unit 111 generates a signal UAD from the acoustic signal UAS, generates a signal ND1 from the acoustic signal NAS, and generates a signal ND2 from the acoustic signal NAD.
  • the reception processing unit 111 includes AD (Analogue to Digital) conversion units 211 and 212 and a channel separation unit 213.
  • the AD conversion unit 211 includes four AD converters.
  • the AD converter 211 receives the acoustic signal UAS from the sound source device 920 0 .
  • the AD conversion unit 211 AD converts each of the individual acoustic signals UAS L to UAS SR that are analog signals included in the acoustic signal UAS, and generates a digital signal UAD.
  • the signal UAD generated in this way is sent to the processing control unit 119 and the signal selection unit 114.
  • the AD conversion unit 212 includes four AD converters.
  • the AD converter 212 receives the acoustic signal NAS from the sound source device 920 1 . Then, the AD conversion unit 212, each individual acoustic signals NAS L ⁇ NAS SR is an analog signal included in the acoustic signal NAS to AD conversion, and generates a signal ND1 in digital form.
  • the signal ND1 generated in this way is sent to the signal selection unit 112.
  • the channel separation unit 213 receives the acoustic signal NAD from the sound source device 920 2 . Then, the channel separation unit 213 analyzes the acoustic signal NAD, and converts the acoustic signal NAD into the individual signals ND2 L to ND2 SR corresponding to the L to SR channels in the 4-channel surround system according to the channel designation information included in the acoustic signal NAD. To generate a signal ND2. The signal ND2 generated in this way is sent to the signal selection unit 112.
  • the signal selection unit 112 receives the signals ND ⁇ b> 1 and ND ⁇ b> 2 from the reception processing unit 111. Then, the signal selection unit 112 selects one of the signal ND1 and the signal ND2 according to the signal selection designation SL1 from the processing control unit 119, and sends the signal ND1 to the sound field correction unit 113 as the signal SND.
  • the signal SND includes individual signals SND L to SND SR corresponding to L to SR.
  • the sound field correction unit 113 receives the signal SND from the signal selection unit 112. Then, the sound field correction unit 113 performs sound field correction processing on the signal SND in accordance with the designation from the processing control unit 119. As shown in FIG. 5, the sound field correction unit 113 includes a frequency characteristic correction unit 231, a delay correction unit 232, and a volume correction unit 233.
  • the frequency characteristic correction unit 231 receives the signal SND from the signal selection unit 112. Then, the frequency characteristic correction unit 231 includes the individual signals FCD L to FCD SR obtained by correcting the frequency characteristics of the individual signals SND L to SND SR in the signal SND according to the frequency characteristic correction command FCC from the processing control unit 119. Generate an FCD. The signal FCD generated in this way is sent to the delay correction unit 232.
  • the frequency characteristic correction unit 231 includes individual frequency characteristic correction means such as an equalizer means prepared for each of the individual signals SND L to SND SR .
  • the frequency characteristic correction command FCC includes individual frequency characteristic correction commands FCC L to FCC SR corresponding to the individual signals SND L to SND SR .
  • the delay correction unit 232 receives the signal FCD from the frequency characteristic correction unit 231. Then, the delay correction unit 232 generates a signal DCD including the individual signals DCD L to DCD SR obtained by delaying each of the individual signals FCD L to FCD SR in the signal FCD according to the delay control command DLC from the processing control unit 119. . The signal DCD generated in this way is sent to the volume correction unit 233.
  • the delay correction unit 232 includes individual variable delay means prepared for each of the individual signals FCD L to FCD SR .
  • the delay control command DLC includes individual delay control commands DLC L to DLC SR corresponding to the individual signals FCD L to FCD SR , respectively.
  • the volume correction unit 233 receives the signal DCD from the delay correction unit 232. Then, the volume correction unit 233 generates a signal APD including individual signals APD L to APD SR obtained by correcting the volume of each of the individual signals DCD L to DCD SR in the signal DCD according to the volume correction command VLC from the processing control unit 119. To do. The signal APD generated in this way is sent to the signal selection unit 114.
  • volume correction unit 233 is configured to include individual volume correction means such as variable attenuation means prepared for each of the individual signals DCD L to DCD SR .
  • the volume correction command VLC includes individual volume correction commands VLC L to VLC SR corresponding to the individual signals DCD L to DCD SR .
  • the signal selection unit 114 receives the signal UAD from the reception processing unit 111 and the signal APD from the sound field correction unit 113. Then, the signal selection unit 114 selects one of the signal UAD and the signal APD according to the signal selection designation SL2 from the processing control unit 119, and sends it to the DA conversion unit 115 as the signal AOD.
  • the signal AOD includes individual signals AOD L to AOD SR corresponding to the L to SR channels.
  • the DA conversion unit 115 includes four DA converters.
  • the DA conversion unit 115 receives the signal AOD from the signal selection unit 114. Then, the DA conversion unit 115 DA-converts each of the individual signals AOD L to AOD SR included in the signal AOD to generate an analog signal ACS.
  • the signal ACS thus generated is sent to the amplifying unit 116.
  • the amplifying unit 116 includes four power amplifying units.
  • the amplifier 116 receives the signal ACS from the DA converter 115. Then, the amplifying unit 116 power-amplifies each of the individual signals ACS L to ACS SR included in the signal ACS to generate an output audio signal AOS.
  • the processing control unit 119 performs various processes to control the operation of the acoustic signal processing apparatus 100. As shown in FIG. 6, the processing control unit 119 includes a correction measurement unit 291 as a measurement unit and a correction control unit 295.
  • Additional corrective measurement unit 291 under control of the correction control unit 295, the acoustic signal UAS is generated by the sound source device 920 0 based on measuring speech content recorded in the measurement recording medium, reception processing unit The signal UAD obtained by AD conversion in 111 is analyzed, and the mode of the sound field correction processing in the sound source device 920 0 is measured.
  • the corrected measurement result AMR which is a measurement result by the correction measurement unit 291, is reported to the correction control unit 295.
  • frequency characteristic correction processing refers to frequency characteristic correction processing performed on each of the individual acoustic signals corresponding to the L to SR channels in the original acoustic signal.
  • synchronization correction process refers to a process for correcting the audio output timing from each of the speaker units 910 L to 910 SR .
  • volume balance correction process refers to a process for correcting a balance between speaker units regarding the output volume from each of the speaker units 910 L to 910 SR .
  • the sound field correction process is performed in the tone generator 920 0, as a result of the synchronization correction process in the sound field correction process, for example, in FIG. 8
  • the acoustic signal UAS including the individual acoustic signals UAS L to UAS SR as shown is supplied to the control unit 110.
  • the period T P is synchronized in the sound source device 920 0 correction processing by the individual acoustic signals UAS L ⁇ maximum delay time difference T DM supposed speculative maximum time difference and a is the maximum value of the delay time difference that is applied to the UAS SR
  • the time is longer than twice the time of TMM .
  • the correction measurement unit 291 the first after the detection of the pulse, analyzing a pulse in the individual acoustic signals UAS L ⁇ UAS SR after a lapse of period T P / 2 for any of the individual acoustic signals UAS L ⁇ UAS SR as a target, measuring the aspects of the synchronization correction process in the sound source device 920 0.
  • the pulse to be analyzed is the synchronization signal. Since the detection is performed in the order of small delay times due to the correction processing, the correction measurement unit 291 can correctly measure the mode of the synchronous correction processing.
  • the period T P and the assumed maximum time difference T MM are determined in advance based on experiments, simulations, experiences, and the like from the viewpoint of measuring a correct and quick mode of synchronous correction processing.
  • the correction control unit 295 performs control processing corresponding to the user's operation input received as the operation input data IPD from the operation input unit 160.
  • the correction control unit 295 receives the sound based on the designated acoustic signal from the speaker.
  • Signal selection designations SL1 and SL2 required to be output from units 910 L to 910 SR are sent to signal selection sections 112 and 114.
  • the correction control unit 295 sends a signal selection designation SL2 to the signal selection unit 114 indicating that the signal UAD should be selected.
  • the signal selection designation SL1 is not issued.
  • the correction control unit 295 sends the signal selection designation SL1 to the effect that the signal ND1 should be selected to the signal selection unit 112, and signals that the signal APD should be selected.
  • the signal is sent to the signal selection unit 114 as the selection designation SL2.
  • the correction control unit 295 sends the signal selection designation SL1 to the effect that the signal ND2 should be selected to the signal selection unit 112, and also signals that the signal APD should be selected.
  • the signal is sent to the signal selection unit 114 as the selection designation SL2.
  • the correction control unit 295 if the user inputs a measurement instruction aspects of the sound field correction processing by the sound source device 920 0 on the operation input unit 160, control measures the measurement start instruction to the correction measurement unit 291 signal AMC Send as.
  • the user for each individual correction processing of the measurement object, after to perform the generation of the acoustic signal UAS based on a corresponding audio content to the sound source device 920 0, the operation input unit 160, the measurement object The type of correction processing is input. Each time the measurement related to the individual correction process is completed, the corrected measurement result AMR indicating the individual correction process for which the measurement has been completed is reported to the correction control unit 295.
  • the correction control unit 295 receives the correction measurement result AMR as the measurement result of the individual correction process from the correction measurement unit 291, the correction control unit 295 has a mode similar to the mode of the measured individual correction process based on the correction measurement result AMR.
  • a frequency characteristic correction command FCC, a delay control command DLC, or a volume correction command VLC necessary for the sound field correction unit 113 to perform the correction process on the signal SND is generated.
  • the frequency characteristic correction command FCC, delay control command DLC, or volume correction command VLC generated in this way is sent to the sound field correction unit 113. Then, the type of the individual correction process and the fact that the measurement is completed are displayed on the display device of the display unit 150.
  • step S11 the correction control unit 295 of the process control unit 119 determines whether or not the measurement command from the operation input unit 160 has been received. If this determination is negative (step S11: N), the process of step S11 is repeated.
  • the sound source device 920 to initiate generation of an acoustic signal UAS based on the audio content corresponding to the individual correction processing to be measured. Subsequently, when the user inputs a measurement command specifying the individual correction process to be measured first, to the operation input unit 160, the fact is reported to the correction control unit 295 as operation input data IPD.
  • step S11 Upon receiving this report, the result of determination in step S11 becomes affirmative (step S11: Y), and the process proceeds to step S12.
  • step S12 the correction control unit 295 sends a measurement start command specifying the individual measurement process specified in the measurement command by the user to the correction measurement unit 291 as the measurement control signal AMC.
  • the correction measurement unit 291 measures the aspect of the individual correction process specified in the measurement start command.
  • the correction measurement unit 291 collects the signal levels of the individual signals UAD L to UAD SR in the signal UAD from the reception processing unit 111 over a predetermined time. And the correction measurement part 291 analyzes the collection result, and measures the aspect of the said individual correction process.
  • the correction measurement unit 291 first determines the signal level for each of the individual signals UAD L to UAD SR based on the collection result. The frequency distribution of is calculated. Then, the correction measurement unit 291 analyzes the calculation result of the frequency distribution and measures the mode of the frequency characteristic correction process. This measurement result is reported to the correction control unit 295 as the corrected measurement result AMR.
  • the correction measurement unit 291 first starts collection, and one of the individual signals UAD L to UAD SR is first determined in advance. The timing when the signal state is higher than the level is specified. Then, the correction measurement unit 291 specifies the timing at which each of the individual signals UAD L to UAD SR becomes a signaled state after the time T P / 2 has elapsed from the specified timing. Based on the result, the correction measurement unit 291 measures the mode of the synchronization correction process. This measurement result is reported to the correction control unit 295 as the corrected measurement result AMR.
  • the correction measurement unit 291 When the individual correction process specified in the measurement start command is a volume balance correction process, the correction measurement unit 291 first determines an average signal for each of the individual signals UAD L to UAD SR based on the collection result. Calculate the level. Then, the correction measurement unit 291 analyzes the signal level difference between the individual signals UAD L to UAD SR and measures the volume balance correction process. This measurement result is reported to the correction control unit 295 as the corrected measurement result AMR.
  • step S14 the correction control unit 295 that has received the report of the corrected measurement result AMR performs an individual correction process in the same manner as the corrected measurement result AMR in the sound field correction unit 113 based on the corrected measurement result AMR.
  • the set value of is calculated. For example, when receiving the correction measurement result AMR regarding the mode of the frequency characteristic correction process, the correction control unit 295 calculates a set value to be set in the frequency characteristic correction unit 231 in the sound field correction unit 113. Further, when receiving the correction measurement result AMR related to the mode of the synchronization correction processing, the correction control unit 295 calculates a setting value to be set in the delay correction unit 232 in the sound field correction unit 113. When receiving the correction measurement result AMR related to the aspect of the volume balance correction process, the correction control unit 295 calculates a setting value to be set in the volume correction unit 233 in the sound field correction unit 113.
  • the correction control unit 295 sends the set value calculation result to the corresponding one of the frequency characteristic correction unit 231, the delay correction unit 232, and the volume correction unit 233.
  • a frequency characteristic correction command FCC specifying a set value is sent to the frequency characteristic correction unit 231.
  • a delay control command DLC designating a set value is sent to the delay correction unit 232.
  • a volume correction command VLC specifying a set value is sent to the volume correction unit 233.
  • the correction control unit 295 displays the fact on the display device of the display unit 150.
  • the correction control unit 295 When the user inputs designation of the type of acoustic signal corresponding to the sound reproduced and output from the speaker units 910 L to 910 SR to the operation input unit 160, the fact is reported to the correction control unit 295 as operation input data IPD. Receiving this report, the correction control unit 295 sends the signal selection designations SL1 and SL2 necessary for outputting the sound based on the designated acoustic signal from the speaker units 910 L to 910 SR to the signal selection units 112 and 114. .
  • the correction control unit 295 sends a signal selection designation SL2 to the signal selection unit 114 to select the signal UAD.
  • the signal selection designation SL1 is not issued.
  • output audio signals AOS L to AOS SR similar to the acoustic signal UAS are supplied to the speaker units 910 L to 910 SR .
  • the correction control unit 295 sends the signal selection designation SL1 indicating that the signal ND1 should be selected to the signal selection unit 112 and also indicates that the signal APD should be selected.
  • the signal selection unit 114 As a result, the measurement of all aspects of the individual sound field processing in aspects of the sound field correction process in the sound source device 920 0 as described above, for all the individual sound field correction processing to the sound field correction section 113 based on the measurement result After the setting, the sound field correction process similar to the sound field correction process in the sound source device 920 0 is performed on the sound signal NAS for the speaker units 910 L to 910 SR .
  • the output audio signals AOS L to AOS SR are supplied to the speaker units 910 L to 910 SR .
  • the correction control unit 295 sends the signal selection designation SL1 indicating that the signal ND2 should be selected to the signal selection unit 112 and also indicates that the signal APD should be selected.
  • the signal selection unit 114 As a result, the measurement of all aspects of the individual sound field processing in aspects of the sound field correction process in the sound source device 920 0 as described above, for all the individual sound field correction processing to the sound field correction section 113 based on the measurement result After the setting, the sound field correction process similar to the sound field correction process in the sound source device 920 0 is performed on the sound signal NAD for the speaker units 910 L to 910 SR and generated.
  • the output audio signals AOS L to AOS SR are supplied to the speaker units 910 L to 910 SR .
  • the correction measurement unit 291 measures the sound source device 920 0 processing control unit 119 of the embodiment of the sound field correction process has been applied to the acoustic signal UAS received from a specific external device To do.
  • the acoustic signal NAS or the acoustic signal NAD other than the acoustic signal UAS is selected as the acoustic signal supplied to the speaker units 910 L to 910 SR , the above measurement is performed on the selected acoustic signal. An acoustic signal subjected to the sound field correction processing according to the aspect is generated.
  • the output audio signals AOS L to AOS SR are supplied to the speaker units 910 L to 910 SR in a state where the unified sound field correction processing has been performed. can do.
  • the maximum assumed that is assumed as the maximum delay time difference T DM is the maximum value of the delay time difference that is applied to the individual acoustic signals UAS L ⁇ UAS SR by the synchronization correction process in the sound source device 920 0
  • the time is longer than twice the time difference TMM .
  • the generation timing of the acoustic signal UAD for measurement of the synchronization correction process and the collection timing of the signal UAD by the correction measurement unit 291 are initially shifted. Even when the gone, by analyzing the changes in the signal UAD in after correcting the measurement unit 291 is no signal period of the signal UAD is the duration T P / 2 or more, aspects of the synchronization correction process in the sound source device 920 0 Can be measured correctly.
  • the types of individual sound field correction in the above-described embodiment are examples, and the types of individual sound field correction can be reduced, or other types of individual sound field correction can be added.
  • the pink noise sound is used in the measurement of the frequency characteristic correction processing mode and the volume balance correction processing mode.
  • a white noise sound may be used.
  • a half wave sine wave an impulse wave, a triangular wave, a sawtooth wave, a spot sine wave, or the like can be employed.
  • the user designates the type of individual sound field correction to be measured for each measurement of the individual sound field correction processing.
  • the acoustic signal for measurement in the sound source device 9200 is specified.
  • the measurement of the three types of individual sound field processing may be automatically performed in a predetermined order.
  • the form of the acoustic signal in the above embodiment is an exemplification, and the present invention can also be applied when receiving an acoustic signal of another form.
  • the number of acoustic signals that are not subjected to sound field correction can be any number.
  • the 4-channel surround system is adopted and the four speaker units are provided.
  • the audio signal that is the read result of the audio content is appropriately separated or mixed, and two or more and three or less.
  • the present invention can be applied to an acoustic signal processing device that outputs sound from five or more speakers.
  • the control unit in the above embodiment is configured as a computer system including a central processing unit (CPU: Central Processor Unit) and a DSP (Digital Signal Processor), and the functions of the control unit are realized by executing a program. You can also. These programs may be acquired in the form recorded on a portable recording medium such as a CD-ROM or DVD, or may be acquired in the form of delivery via a network such as the Internet. Good.
  • CPU Central Processor Unit
  • DSP Digital Signal Processor

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Stereophonic System (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)

Abstract

 特定の外部機器である音源装置9200から受信した音響信号UASに施されている音場補正処理の態様を処理制御部119における補正計測部が計測する。そして、スピーカユニット910L~910SRに供給される音響信号として、音響信号UAS以外の音響信号NAS又は音響信号NADが選択された場合に、音場補正部113が、選択された音響信号に対して、上記の計測された態様の音場補正処理を施した音響信号APDを生成する。このため、複数の音響信号UAS,NAS,NADのいずれが選択されても、統一的な音場補正処理が施された状態で、スピーカユニット910L~910SRに供給することができる。

Description

音響信号処理装置及び音響信号処理方法
 本発明は、音響信号処理装置、音響信号処理方法、音響信号処理プログラム及び当該音響信号処理プログラムが記録された記録媒体に関する。
 近年、DVD(Digital Versatile Disk)等の普及に伴って、複数のスピーカを有するマルチチャンネルサラウンド方式の音響装置が普及している。これにより、家庭内空間や車両内空間においても、臨場感溢れるサラウンド音声を楽しむことができるようになってきている。
 こうした音響装置の設置環境は様々である。このため、音声を出力する複数のスピーカを、マルチチャンネルサラウンド方式の観点における対称性を有する位置に配置することができない場合がしばしば発生する。特に、車両にマルチチャンネルサラウンド方式の音響装置を搭載する場合には、聴取位置である着座位置の制約等から、複数のスピーカを、マルチチャンネルサラウンド方式の観点から推奨される対称性を有する位置に配置することができない。さらに、各スピーカの特性も、当該マルチチャンネルサラウンド方式の実現に際して最適なものとなっていない場合も多い。このため、採用されるマルチチャンネルサラウンド方式により良質なサラウンド音声を得るためには、音響信号を補正することにより、音場を補正することが必要となる。
 ところで、上記のような音場補正等のために音響信号の補正が必要となる音響装置(以下、「音源装置」ともいう)は1種類に限らない。例えば、車両に搭載されることが想定される音源装置としては、上述したDVD等に記録された音声コンテンツを再生するプレイヤや、放送波に含まれる音声コンテンツを再生する放送受信装置等がある。こうした場合に、音響信号補正のための手段を共通化する技術が提案されている(特許文献1参照:以下、「従来例」という)。
 この従来例の技術では、複数の音源装置からの音響信号を入力するとともに、再生の選択が行われた音源装置に対応する音声をスピーカから再生出力する。そして、再生選択の切り替えの際に、音量レベルを適切なものとすべく、複数の音源装置に共通の音量補正手段により音量補正を行っている。
特開2006-99834号公報
 上述した従来例の技術は、音源装置の切り替えによる利用者の音量に対する違和感の発生を抑制する技術である。このため、従来例の技術は、複数のスピーカからの出力音声が形成する音場を臨場感溢れるものとするために音場補正処理を行うものではない。
 ところで、例えば、車両の製造時において当該車両に搭載される音源装置(いわゆる、純正品)の中には、音声コンテンツに対して忠実な原音響信号に特定の音場補正処理を施して、スピーカへの提供用の音響信号を生成しているものがある。一方、純正品ではない音響装置では、一般に、原音響信号をスピーカへの提供用の音響信号として生成している。このため、音場補正処理が施されている音源装置と、音場補正処理が施されていない音源装置とを切り換えて音声再生を行った場合には、利用者にとって音質感の差が生じることになる。
 このため、音場補正処理を行っている音源装置と、音場補正処理を行っていない音源装置とを切り換えて音声再生を行った場合であっても、利用者にとって違和感の無い音声再生を行うことができる技術が望まれている。かかる要請に応えることが、本発明が解決すべき課題の一つとして挙げられる。
 本発明は、上記の事情を鑑みてなされたものであり、複数の音響信号のいずれが選択されても、統一的な音場補正処理が施された状態の出力音声信号をスピーカへ供給することができる音響信号処理装置及び音響信号処理方法を提供することを目的とする。
 本発明は、第1の観点からすると、複数のスピーカに供給する音響信号を生成する音響信号処理装置であって、複数の外部機器のそれぞれから音響信号を受信する受信手段と;前記複数の外部機器のうちの特定の外部機器から受信した音響信号に施されている音場補正処理の態様を計測する計測手段と;前記複数のスピーカへ供給される音響信号として、前記特定の外部機器以外の外部機器から受信した音響信号が選択された場合に、前記選択された音響信号に対して、前記計測手段により計測された態様の音場補正処理が施された音響信号を生成する生成手段と;を備えることを特徴とする音響信号処理装置である。
 本発明は、第2の観点からすると、複数のスピーカに供給する音響信号を生成する音響信号処理方法であって、複数の外部機器における特定の外部機器から受信した音響信号に施されている音場補正処理の態様を計測する計測工程と;前記複数のスピーカへ供給される音響信号として、前記特定の外部機器以外の外部機器から受信した音響信号が選択された場合に、前記選択された音響信号に対して、前記計測工程において計測された態様の音場補正処理が施された音響信号を生成する生成工程と;を備えることを特徴とする音響信号処理方法である。
 本発明は、第3の観点からすると、本発明の音響信号処理方法を演算手段に実行させる、ことを特徴とする音響信号処理プログラムである。
 本発明は、第4の観点からすると、本発明の音響信号処理プログラムが、演算手段により読み取り可能に記録されている、ことを特徴とする記録媒体である。
本発明の一実施形態に係る音響信号処理装置の構成を概略的に示すブロック図である。 図1の4個のスピーカユニットの配置位置を説明するための図である。 図1の制御ユニットの構成を説明するためのブロック図である。 図3の受信処理部の構成を説明するためのブロック図である。 図3の音場補正部の構成を説明するためのブロック図である。 図3の処理制御部の構成を説明するためのブロック図である。 同期補正処理の計測の際に使用される計測用音声コンテンツを説明するための図である。 同期補正処理の計測の際の計測対象信号を説明するための図である。 音源装置9200における音場補正処理の態様の計測と、図1の装置の内部における音場補正処理の設定を説明するためのフローチャートである。
 以下、本発明の一実施形態を、図1~図9を参照して説明する。なお、以下の説明及び図面においては、同一又は同等の要素には同一の符号を付し、重複する説明は省略する。
 [構成]
 図1には、一実施形態に係る音響信号処理装置100の概略的な構成がブロック図にて示されている。なお、以下の説明においては、音響信号処理装置100は、車両CR(図2参照)に搭載される装置であるものとする。また、この音響信号処理装置100は、マルチチャンネルサラウンド方式の1つである4チャンネルサラウンド方式の音響信号に対する処理を行うものとする。4チャンネルサラウンド方式の音響信号とは、レフトチャンネル(以下、「Lチャンネル」という)、ライトチャンネル(以下、「Rチャンネル」という)、サラウンドレフトチャンネル(以下、「SLチャンネル」という)及びサラウンドライトチャンネル(以下、「SRチャンネル」という)の4チャンネル構成の音響信号をいうものとする。
 図1に示されるように、音響信号処理装置100には、L~SRチャンネルに対応するスピーカユニット910L~910SRが接続されている。これらのスピーカユニット910j(j=L~SR)のそれぞれは、制御ユニット110から送られてきた出力音声信号AOSにおける個別出力音声信号AOSjに従って、音声を再生して出力する。
 本実施形態では、図2に示されるように、スピーカユニット910Lは、助手席側の前方ドア筐体内に配置される。このスピーカユニット910Lは、助手席側を向くように配設されている。
 また、スピーカユニット910Rは、運転席側の前方ドア筐体内に配置される。このスピーカユニット910Rは、運転席側を向くように配設されている。
 また、スピーカユニット910SLは、助手席側後部の筐体内に配置される。このスピーカユニット910SLは、助手席側の後部座席を向くように配設されている。
 また、スピーカユニット910SRは、運転席側後部の筐体内に配置される。このスピーカユニット910SRは、運転席側の後部座席を向くように配設されている。
 以上のように配置されたスピーカユニット910L~910SRから、音場空間ASPへ向けて音声が出力されるようになっている。
 図1に戻り、音響信号処理装置100には、音源装置9200,9201,9202が接続される。ここで、音源装置9200,9201,9202のそれぞれは、音声コンテンツに基づいて音響信号を生成し、音響信号処理装置100へ送るようになっている。
 上記の音源装置9200は、DVD(Digital Versatile Disk)等の記録媒体RMに記録された音声コンテンツに忠実な4チャンネル構成の原音響信号を生成する。そして、音源装置9200では、当該原音響信号に対して音場補正処理が施され、音響信号UASが生成される。本実施形態では、音源装置9200において原音響信号に対して施される音場補正処理は、再生音声がスピーカユニット910L~910SRから音場空間ASPへ出力される場合に応じた音場補正処理となっているものとする。
 なお、本実施形態では、音響信号UASは、4つのアナログ信号UASL~UASSRから構成されている。ここで、アナログ信号UASj(j=L~SR)は、スピーカユニット910jに供給可能な態様の信号となっている。
 上記の音源装置9201は、音声コンテンツに忠実な4チャンネル構成の原音響信号を生成する。そして、音源装置9201からは、当該原音響信号が音響信号NASとして音響信号処理装置100へ送られる。なお、本実施形態では、音響信号NASは、4つのアナログ信号NASL~NASSRから構成されている。ここで、アナログ信号NASj(j=L~SR)は、スピーカユニット910jに供給可能な態様の信号となっている。
 上記の音源装置9202は、音声コンテンツに忠実な4チャンネル構成の原音響信号を生成する。そして、音源装置9202からは、当該原音響信号が音響信号NADとして音響信号処理装置100へ送られる。なお、本実施形態では、音響信号NADは、4つのチャンネルごとの信号分離が行われていないデジタル信号となっている。
 次に、一実施形態に係る上記の音響信号処理装置100の詳細について説明する。図1に示されるように、音響信号処理装置100は、制御ユニット110と、表示ユニット150と、操作入力ユニット160とを備えている。
 制御ユニット110は、上述した適正音場補正処理の態様の計測処理、及び、音源装置9200~9202のいずれかからの音響信号に基づいて、出力音声信号AOSの生成処理を行う。この制御ユニット110については、後述する。
 上記の表示ユニット150は、例えば、(i)液晶パネル、有機EL(Electro Luminescence)パネル、PDP(Plasma Display Panel)等の表示デバイスと、(ii)表示ユニット150全体の制御を行うグラフィックレンダラ等の表示コントローラと、(iii)表示画像データを記憶する表示画像メモリ等を備えて構成されている。この表示ユニット150は、制御ユニット110からの表示データIMDに従って、操作ガイダンス情報等を表示する。
 上記の操作入力ユニット160は、音響信号処理装置100の本体部に設けられたキー部、及び/又はキー部を備えるリモート入力装置等により構成される。ここで、本体部に設けられたキー部としては、表示ユニット150の表示デバイスに設けられたタッチパネルを用いることができる。なお、キー部を有する構成に代えて、又は併用して音声認識技術を利用して音声にて入力する構成を採用することもできる。
 この操作入力ユニット160を利用者が操作することにより、音響信号処理装置100の動作内容の設定が行われる。例えば、適正音場補正処理の態様の計測指令、音源装置920~920のうちのどの音源装置からの音響信号に基づく音声を、スピーカユニット910L~910SRから出力させるかを選択する音声選択指令等を、利用者が操作入力ユニット160を利用して行う。こうした入力内容は、操作入力データIPDとして、操作入力ユニット160から制御ユニット110へ向けて送られる。
 上記の制御ユニット110は、図3に示されるように、受信手段としての受信処理部111と、信号選択部112と、生成手段としての音場補正部113とを備えている。また、制御ユニット110は、信号選択部114と、DA(Digital to Analogue)変換部115と増幅部116、処理制御部119とを備えている。
 上記の受信処理部111は、音源装置9200からの音響信号UAS、音源装置9201からの音響信号NAS及び音源装置9202からの音響信号NADを受ける。そして、受信処理部111は、音響信号UASから信号UADを生成し、音響信号NASから信号ND1を生成するとともに、音響信号NADから信号ND2を生成する。この受信処理部111は、図4に示されるように、AD(Analogue to Digital)変換部211,212と、チャンネル分離部213とを備えている。
 上記のAD変換部211は、4個のAD変換器を備えて構成される。このAD変換部211は、音源装置9200からの音響信号UASを受ける。そして、AD変換部211は、音響信号UASに含まれるアナログ信号である個別音響信号UASL~UASSRのそれぞれをAD変換して、デジタル形式の信号UADを生成する。こうして生成された信号UADは、処理制御部119及び信号選択部114へ送られる。なお、信号UADには、個別音響信号UASj(j=L~SR)がAD変換された個別信号UADjが含まれている。
 上記のAD変換部212は、AD変換部211と同様に、4個のAD変換器を備えて構成される。このAD変換部212は、音源装置9201からの音響信号NASを受ける。そして、AD変換部212は、音響信号NASに含まれるアナログ信号である個別音響信号NASL~NASSRのそれぞれをAD変換して、デジタル形式の信号ND1を生成する。こうして生成された信号ND1は、信号選択部112へ送られる。なお、信号ND1には、個別音響信号NASj(j=L~SR)がAD変換された個別信号ND1jが含まれている。
 上記のチャンネル分離部213は、音源装置9202からの音響信号NADを受ける。そして、チャンネル分離部213は、音響信号NADを解析し、音響信号NADに含まれるチャンネル指定情報に従って、音響信号NADを、4チャンネルサラウンド方式におけるL~SRチャンネルに対応する個別信号ND2L~ND2SRに分離することにより、信号ND2を生成する。こうして生成された信号ND2は、信号選択部112へ送られる。
 図3に戻り、上記の信号選択部112は、受信処理部111からの信号ND1,ND2を受ける。そして、信号選択部112は、処理制御部119からの信号選択指定SL1に従って、信号ND1及び信号ND2のいずれか一方を選択し、信号SNDとして音場補正部113へ送る。ここで、信号SNDは、L~SRに対応する個別信号SNDL~SNDSRが含まれている。
 上記の音場補正部113は、信号選択部112からの信号SNDを受ける。そして、音場補正部113は、処理制御部119からの指定に従って、信号SNDに対して音場補正処理を施す。この音場補正部113は、図5に示されるように、周波数特性補正部231と、遅延補正部232と、音量補正部233とを備えている。
 上記の周波数特性補正部231は、信号選択部112からの信号SNDを受ける。そして、周波数特性補正部231は、信号SNDにおける個別信号SNDL~SNDSRのそれぞれの周波数特性を、処理制御部119からの周波数特性補正指令FCCに従って補正した個別信号FCDL~FCDSRを含む信号FCDを生成する。こうして生成された信号FCDは、遅延補正部232へ送られる。
 なお、周波数特性補正部231は、個別信号SNDL~SNDSRごとに用意された、例えばイコライザ手段等の個別周波数特性補正手段を備えて構成される。また、周波数特性補正指令FCCは、個別信号SNDL~SNDSRのそれぞれに対応する個別周波数特性補正指令FCCL~FCCSRを含むようになっている。
 上記の遅延補正部232は、周波数特性補正部231からの信号FCDを受ける。そして、遅延補正部232は、信号FCDにおける個別信号FCDL~FCDSRのそれぞれを、処理制御部119からの遅延制御指令DLCに従って遅延させた個別信号DCDL~DCDSRを含む信号DCDを生成する。こうして生成された信号DCDは、音量補正部233へ送られる。
 なお、遅延補正部232は、個別信号FCDL~FCDSRごとに用意された個別可変遅延手段を備えて構成される。また、遅延制御指令DLCは、個別信号FCDL~FCDSRのそれぞれに対応する個別遅延制御指令DLCL~DLCSRを含むようになっている。
 上記の音量補正部233は、遅延補正部232からの信号DCDを受ける。そして、音量補正部233は、信号DCDにおける個別信号DCDL~DCDSRのそれぞれの音量を、処理制御部119からの音量補正指令VLCに従って補正した個別信号APDL~APDSRを含む信号APDを生成する。こうして生成された信号APDは、信号選択部114へ送られる。
 なお、音量補正部233は、個別信号DCDL~DCDSRごとに用意された、例えば可変減衰手段等の個別音量補正手段を備えて構成される。また、音量補正指令VLCは、個別信号DCDL~DCDSRのそれぞれに対応する個別音量補正指令VLCL~VLCSRを含むようになっている。
 図3に戻り、上記の信号選択部114は、受信処理部111からの信号UADと、音場補正部113からの信号APDとを受ける。そして、信号選択部114は、処理制御部119からの信号選択指定SL2に従って、信号UAD及び信号APDのいずれか一方を選択し、信号AODとしてDA変換部115へ送る。ここで、信号AODは、L~SRチャンネルに対応する個別信号AODL~AODSRが含まれている。
 上記のDA変換部115は、4個のDA変換器を備えて構成される。このDA変換部115は、信号選択部114からの信号AODを受ける。そして、DA変換部115は、信号AODに含まれる個別信号AODL~AODSRのそれぞれをDA変換して、アナログ形式の信号ACSを生成する。こうして生成された信号ACSは、増幅部116へ送られる。なお、信号ACSには、個別信号AODj(j=L~SR)がDA変換された個別信号ACSjが含まれている。
 上記の増幅部116は、4個のパワー増幅手段を備えて構成される。この増幅部116は、DA変換部115からの信号ACSを受ける。そして、増幅部116は、信号ACSに含まれる個別信号ACSL~ACSSRのそれぞれをパワー増幅して、出力音声信号AOSを生成する。こうして生成された出力音声信号AOSにおける個別出力音声信号AOSj(j=L~SR)が、スピーカユニット910jへ送られる。
 上記の処理制御部119は、様々な処理を行って、音響信号処理装置100の動作を制御する。この処理制御部119は、図6に示されるように、計測手段としての補正計測部291と、補正制御部295とを備えている。
 上記の補正計測部291は、補正制御部295による制御のもとで、計測用記録媒体に記録された計測用音声コンテンツに基づいて音源装置9200により生成された音響信号UASが、受信処理部111においてAD変換された信号UADを解析して、音源装置9200における音場補正処理の態様を計測する。この補正計測部291は、音源装置9200において行われる音場補正処理に含まれる周波数特性補正処理、同期補正処理及び音量バランス補正処理の態様を計測するようになっている。補正計測部291による計測結果である補正計測結果AMRは、補正制御部295に報告される。
 ここで、「周波数特性補正処理」とは、原音響信号におけるL~SRチャンネルに対応する個別音響信号のそれぞれに対して施された周波数特性の補正処理をいう。また、「同期補正処理」とは、スピーカユニット910L~910SRのそれぞれからの音声出力タイミングの補正処理をいう。また、「音量バランス補正処理」とは、スピーカユニット910L~910SRのそれぞれからの出力音量に関するスピーカユニット間におけるバランスの補正処理をいう。
 同期補正処理の態様の計測に際しては、図7に示されるように、計測用音声コンテンツとして、L~SRチャンネルに対応して周期TPで同時に発生するパルス状の音が使用される。こうした同期計測用の音声コンテンツに対応する原音響信号に対して、音源装置9200において音場補正処理が施されると、当該音場補正処理における同期補正処理の結果として、例えば、図8に示されるような、個別音響信号UASL~UASSRを含む音響信号UASが、制御ユニット110に供給される。
 ここで、周期TPは、音源装置9200における同期補正処理により個別音響信号UASL~UASSRに付与されている遅延時間差の最大値である最大遅延時間差TDMとして想定されている想定最大時間差TMMの2倍よりも長い時間とされている。また、補正計測部291は、個別音響信号UASL~UASSRのいずれかについて最初にパルスを検出した後、時間TP/2が経過した後の個別音響信号UASL~UASSRにおけるパルスを解析対象として、音源装置9200における同期補正処理の態様を計測する。このため、同期補正処理の計測用の音響信号UASの発生タイミングと、補正計測部291による信号UADの収集タイミングとがずれてしまった場合であっても、解析の対象となるパルスは、当該同期補正処理による遅延時間の小さい順序で検出されるので、補正計測部291は、当該同期補正処理の態様を正しく計測することができる。
 周期TP及び想定最大時間差TMMは、正しくかつ迅速な同期補正処理の態様を計測するとの観点から、実験、シミュレーション、経験等に基づいて予め定められる。
 一方、周波数特性補正処理及び音量バランス補正処理の態様の計測に際しては、本実施形態では、計測用音声コンテンツとしてピンクノイズ音の継続音が使用されるようになっている。
 図6に戻り、上記の補正制御部295は、操作入力ユニット160からの操作入力データIPDとして受けた利用者の操作入力に対応した制御処理を行う。この補正制御部295は、利用者がスピーカユニット910L~910SRから再生出力する音声に対応する音響信号の種類の指定を操作入力ユニット160に入力すると、指定された音響信号に基づく音声がスピーカユニット910L~910SRから出力されるために必要な信号選択指定SL1,SL2を信号選択部112,114へ送る。
 例えば、利用者により音響信号UASが指定されると、補正制御部295は、信号UADを選択すべき旨を、信号選択指定SL2として信号選択部114へ送る。なお、音響信号UASが指定された場合には、信号選択指定SL1の発行は行わない。
 また、利用者により音響信号NASが指定されると、補正制御部295は、信号ND1を選択すべき旨を信号選択指定SL1として信号選択部112へ送るとともに、信号APDを選択すべき旨を信号選択指定SL2として信号選択部114へ送る。また、利用者により音響信号NADが指定されると、補正制御部295は、信号ND2を選択すべき旨を信号選択指定SL1として信号選択部112へ送るとともに、信号APDを選択すべき旨を信号選択指定SL2として信号選択部114へ送る。
 また、補正制御部295は、利用者が音源装置9200による音場補正処理の態様の計測指令を操作入力ユニット160に入力した場合には、補正計測部291へ計測開始指令を計測制御信号AMCとして送る。なお、本実施形態では、利用者が、計測対象の個別補正処理ごとに、対応する音声コンテンツに基づく音響信号UASの生成を音源装置9200に行わせた後に、操作入力ユニット160に、計測対象の補正処理の種類を入力するようになっている。そして、個別補正処理に関する計測が終了するごとに、計測が終了した個別補正処理を示した補正計測結果AMRが、補正制御部295に報告されるようになっている。
 また、補正制御部295は、補正計測部291から個別補正処理の計測結果として補正計測結果AMRを受けると、当該補正計測結果AMRに基づいて、計測された個別補正処理の態様と同様の態様の補正処理を、音場補正部113が信号SNDに対して施すために必要な周波数特性補正指令FCC、遅延制御指令DLC又は音量補正指令VLCを生成する。こうして生成された周波数特性補正指令FCC、遅延制御指令DLC又は音量補正指令VLCは、音場補正部113へ送られる。そして、当該個別補正処理の種類と、計測が終了した旨とを表示ユニット150の表示デバイスに表示させる。
 [動作]
 次に、上記のように構成された音響信号処理装置100の動作について、主に処理制御部119における処理に着目する。
 <音源装置9200による音場補正態様の計測及び音場補正部113の設定>
 まず、音源装置9200による音場補正処理の態様の計測及び音場補正部113の設定の処理について説明する。
 この処理では、図9に示されるように、ステップS11において、処理制御部119の補正制御部295が、操作入力ユニット160からの計測指令を受信したか否かを判定する。この判定が否定的であった場合(ステップS11:N)には、ステップS11の処理が繰り返される。
 この状態で、利用者が操作入力ユニット160を利用して、音源装置9200に、計測対象となる個別補正処理に対応する音声コンテンツに基づく音響信号UASの生成を開始させる。引き続き、利用者が、最初の計測対象となる個別補正処理を指定した計測指令を操作入力ユニット160に入力すると、操作入力データIPDとして、その旨が補正制御部295に報告される。
 この報告を受けると、ステップS11における判定の結果が肯定的となり(ステップS11:Y)、処理がステップS12へ進む。このステップS12では、補正制御部295が、利用者による計測指令において指定された個別計測処理を指定した計測開始指令を、計測制御信号AMCとして補正計測部291へ送る。
 引き続き、ステップS13において、補正計測部291が、計測開始指令において指定された個別補正処理の態様を計測する。この計測に際し、補正計測部291は、受信処理部111からの信号UADにおける個別信号UADL~UADSRの信号レベルを所定時間にわたって収集する。そして、補正計測部291は、収集結果を解析して、当該個別補正処理の態様を計測する。
 ここで、計測開始指令において指定された個別補正処理が周波数特性補正処理である場合には、補正計測部291は、まず、収集結果に基づいて、個別信号UADL~UADSRごとに、信号レベルの周波数分布を算出する。そして、補正計測部291は、周波数分布の算出結果を解析して、周波数特性補正処理の態様を計測する。この計測結果は、補正計測結果AMRとして、補正制御部295に報告される。
 また、計測開始指令において指定された個別補正処理が同期補正処理である場合には、補正計測部291は、まず、収集を開始して、個別信号UADL~UADSRのいずれかが最初に所定レベル以上である有信号状態になったタイミングを特定する。そして、補正計測部291は、その特定されたタイミングから時間TP/2が経過した後において、個別信号UADL~UADSRのそれぞれが有信号状態となるタイミングを特定する。その結果に基づいて、補正計測部291は、同期補正処理の態様を計測する。この計測結果は、補正計測結果AMRとして、補正制御部295に報告される。
 また、計測開始指令において指定された個別補正処理が音量バランス補正処理である場合には、補正計測部291は、まず、収集結果に基づいて、個別信号UADL~UADSRごとの平均的な信号レベルを算出する。そして、補正計測部291は、個別信号UADL~UADSRの相互間の信号レベル差を解析して、音量バランス補正処理の態様を計測する。この計測結果は、補正計測結果AMRとして、補正制御部295に報告される。
 次に、ステップS14において、補正計測結果AMRの報告を受けた補正制御部295が、補正計測結果AMRに基づいて、音場補正部113において補正計測結果AMRと同様の態様による個別補正処理のための設定値を算出する。例えば、周波数特性補正処理の態様に関する補正計測結果AMRを受けた場合には、補正制御部295は、音場補正部113における周波数特性補正部231に設定すべき設定値を算出する。また、同期補正処理の態様に関する補正計測結果AMRを受けた場合には、補正制御部295は、音場補正部113における遅延補正部232に設定すべき設定値を算出する。また、音量バランス補正処理の態様に関する補正計測結果AMRを受けた場合には、補正制御部295は、音場補正部113における音量補正部233に設定すべき設定値を算出する。
 引き続き、ステップ15において、補正制御部295が、設定値の算出結果を、周波数特性補正部231、遅延補正部232及び音量補正部233の内の該当するものへ送る。ここで、周波数特性補正部231へは、設定値を指定した周波数特性補正指令FCCが送られる。また、遅延補正部232へは、設定値を指定した遅延制御指令DLCが送られる。また、音量補正部233へは、設定値を指定した音量補正指令VLCが送られる。この結果、音場補正部113においては、計測された個別補正処理と同様の個別補正処理が、信号SNDに対して施されるようになる。
 こうして、個別計測処理の態様の計測と、計測結果に基づく個別補正処理の態様の音場補正部113への設定が終了すると、補正制御部295が、その旨を表示ユニット150の表示デバイスに表示させる。
 この後処理はステップS11へ戻る。そして、上記のステップS11~S15までの処理が繰り返される。
 <再生音声の選択>
 次に、スピーカユニット910L~910SRから再生出力する音声の選択処理について説明する。
 利用者がスピーカユニット910L~910SRから再生出力する音声に対応する音響信号の種類の指定を操作入力ユニット160に入力すると、その旨が操作入力データIPDとして補正制御部295に報告される。この報告を受けた補正制御部295は、指定された音響信号に基づく音声がスピーカユニット910L~910SRから出力されるために必要な信号選択指定SL1,SL2を信号選択部112,114へ送る。
 ここで、音響信号UASが指定されると、補正制御部295は、信号UADを選択すべき旨を、信号選択指定SL2として信号選択部114へ送る。なお、音響信号UASが指定された場合には、信号選択指定SL1の発行は行わない。この結果、音響信号UASと同様の出力音声信号AOSL~AOSSRが、スピーカユニット910L~910SRに供給される。
 また、音響信号NASが指定されると、補正制御部295は、信号ND1を選択すべき旨を信号選択指定SL1として信号選択部112へ送るとともに、信号APDを選択すべき旨を信号選択指定SL2として信号選択部114へ送る。この結果、上述した音源装置9200における音場補正処理の態様における全ての個別音場処理の態様の計測と、計測結果に基づく音場補正部113への全ての個別音場補正処理のための設定が行われた後には、スピーカユニット910L~910SRに対して、音源装置9200における音場補正処理の態様と同様の態様の音場補正処理が音響信号NASに対して施されて生成された出力音声信号AOSL~AOSSRが、スピーカユニット910L~910SRに供給される。
 また、音響信号NADが指定されると、補正制御部295は、信号ND2を選択すべき旨を信号選択指定SL1として信号選択部112へ送るとともに、信号APDを選択すべき旨を信号選択指定SL2として信号選択部114へ送る。この結果、上述した音源装置9200における音場補正処理の態様における全ての個別音場処理の態様の計測と、計測結果に基づく音場補正部113への全ての個別音場補正処理のための設定が行われた後には、スピーカユニット910L~910SRに対して、音源装置9200における音場補正処理の態様と同様の態様の音場補正処理が音響信号NADに対して施されて生成された出力音声信号AOSL~AOSSRが、スピーカユニット910L~910SRに供給される。
 以上説明したように、本実施形態では、特定の外部機器である音源装置9200から受信した音響信号UASに施されている音場補正処理の態様を処理制御部119における補正計測部291が計測する。そして、スピーカユニット910L~910SRに供給される音響信号として、音響信号UAS以外の音響信号NAS又は音響信号NADが選択された場合に、選択された音響信号に対して、上記の計測された態様の音場補正処理が施された音響信号を生成する。したがって、音響信号UAS,NAS,NADのいずれが選択されても、統一的な音場補正処理が施された状態で、出力音声信号AOSL~AOSSRを、スピーカユニット910L~910SRに供給することができる。
 また、本実施形態では、音源装置9200における音場補正処理に含まれる同期補正処理の態様を計測する際には、計測用音声コンテンツとして、L~SRチャンネルに対応して周期TPで同時に発生するパルス状の音が使用される。ここで、周期TPとしては、音源装置9200における同期補正処理により個別音響信号UASL~UASSRに付与されている遅延時間差の最大値である最大遅延時間差TDMとして想定されている想定最大時間差TMMの2倍よりも長い時間とされている。このため、最大遅延時間差TDMが想定最大時間差TMM以下であれば、同期補正処理の計測用の音響信号UADの発生タイミングと、補正計測部291による信号UADの収集タイミングとが当初にずれてしまった場合であっても、補正計測部291が信号UADの無信号期間が時間TP/2以上継続した後における信号UADの変化を解析することにより、音源装置9200における同期補正処理の態様を正しく計測することができる。
 [実施形態の変形]
 本発明は、上記の実施形態に限定されるものではなく、様々な変形が可能である。
 例えば、上記の実施形態における個別音場補正の種類は例示であり、個別音場補正の種類を少なくしたり、他の種類の個別音場補正を加えたりすることもできる。
 また、上記の実施形態では、周波数特性補正処理の態様及び音量バランス補正処理の態様の計測に際して、ピンクノイズ音を使用したが、ホワイトノイズ音を使用してもよい。
 また、同期補正処理の態様の計測に際しては、半波正弦波、インパルス波、三角波、鋸切り波及びスポット正弦波等を採用することができる。
 また、上記の実施形態では、個別音場補正処理の態様の計測ごとに、利用者が計測対象となる個別音場補正の種類を指定するようにしたが、音源装置9200における計測用の音響信号UASの生成と、音響信号処理装置100における計測処理との同期を取ることにより、3種類の個別音場処理の態様の計測を、所定の順序で自動的に行うようにしてもよい。
 また、上記の実施形態における音響信号の形態は例示であり、他の形態の音響信号を受ける場合にも本発明を適用することができる。また、音場補正が行われていない音響信号の数は、任意の数とすることができる。
 また、上記の実施形態では、4チャンネルサラウンド方式を採用し、4個のスピーカユニットを備えることとしたが、音声コンテンツの読み出し結果であるオーディオ信号を適宜分離もしくは混合し、2個以上3個以下、又は、5個以上のスピーカから音出力をさせるようにする音響信号処理装置に本発明を適用することができる。
 なお、上記の実施形態における制御ユニットを中央処理装置(CPU:Central Processor Unit)やDSP(Digital Signal Processor)を備えるコンピュータシステムとして構成し、制御ユニットの機能を、プログラムの実行によって実現するようにすることもできる。これらのプログラムは、CD-ROM、DVD等の可搬型記録媒体に記録された形態で取得されるようにしてもよいし、インターネットなどのネットワークを介した配送の形態で取得されるようにしてもよい。

Claims (10)

  1.  複数のスピーカに供給する音響信号を生成する音響信号処理装置であって、
     複数の外部機器のそれぞれから音響信号を受信する受信手段と;
     前記複数の外部機器のうちの特定の外部機器から受信した音響信号に施されている音場補正処理の態様を計測する計測手段と;
     前記複数のスピーカへ供給される音響信号として、前記特定の外部機器以外の外部機器から受信した音響信号が選択された場合に、前記選択された音響信号に対して、前記計測手段により計測された態様の音場補正処理が施された音響信号を生成する生成手段と;
     を備えることを特徴とする音響信号処理装置。
  2.  前記計測手段は、前記特定の外部機器が計測用音声コンテンツから生成した音響信号を解析することにより、前記音場補正処理の態様を計測する、ことを特徴とする請求項1に記載の音響信号処理装置。
  3.  前記特定の外部機器は、移動体に搭載され、
     前記特定の外部機器から受信した音響信号は、前記移動体内部の音場空間に応じた音場補正処理が原音響信号に対して施された音響信号である、
     ことを特徴とする請求項1又は2に記載の音響信号処理装置。
  4.  前記音場補正処理には、前記複数のスピーカのそれぞれからの音声出力タイミングを補正する同期補正処理が含まれる、ことを特徴とする請求項1~3のいずれか一項に記載の音響信号処理装置。
  5.  前記音場補正処理に含まれる同期補正処理の態様を前記計測手段により計測する際には、前記特定の外部機器からの音響信号に対応する原音響信号における前記複数のスピーカのそれぞれに対応する原個別音響信号として、前記同期補正処理において前記原個別音響信号のそれぞれに付与される遅延時間の相互間における最大遅延時間差の2倍よりも長い周期で同時に発生するパルス状の信号が使用され、
     前記計測手段は、前記特定の外部機器からの音響信号における個別音響信号のいずれかについて最初にパルス状の信号が検出された時点から、前記周期の1/2の時間が経過した後における前記特定の外部機器からの音響信号に基づいて、前記同期補正処理の態様を計測する、
     ことを特徴とする請求項4に記載の音響信号処理装置。
  6.  前記音場補正処理には、前記複数のスピーカのそれぞれからの出力音量のスピーカ間におけるバランスを補正する音量バランス補正処理、及び、前記複数のスピーカのそれぞれに供給される音響信号の周波数特性を補正する周波数特性補正処理の少なくとも一方が含まれる、ことを特徴とする請求項1~5のいずれか一項に記載の音響信号処理装置。
  7.  前記複数の外部機器における前記特定の外部機器以外から受信する音響信号は、音場補正処理が施されていない無補正音響信号である、ことを特徴とする請求項1~6のいずれか一項に記載の音響信号処理装置。
  8.  複数のスピーカに供給する音響信号を生成する音響信号処理方法であって、
     複数の外部機器における特定の外部機器から受信した音響信号に施されている音場補正処理の態様を計測する計測工程と;
     前記複数のスピーカへ供給される音響信号として、前記特定の外部機器以外の外部機器から受信した音響信号が選択された場合に、前記選択された音響信号に対して、前記計測工程において計測された態様の音場補正処理が施された音響信号を生成する生成工程と;
     を備えることを特徴とする音響信号処理方法。
  9.  請求項8に記載の音響信号処理方法を演算手段に実行させる、ことを特徴とする音響信号処理プログラム。
  10.  請求項9に記載の音響信号処理プログラムが、演算手段により読み取り可能に記録されている、ことを特徴とする記録媒体。
PCT/JP2008/053298 2008-02-26 2008-02-26 音響信号処理装置及び音響信号処理方法 WO2009107202A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/866,348 US20110007905A1 (en) 2008-02-26 2008-02-26 Acoustic signal processing device and acoustic signal processing method
PCT/JP2008/053298 WO2009107202A1 (ja) 2008-02-26 2008-02-26 音響信号処理装置及び音響信号処理方法
JP2010500478A JPWO2009107202A1 (ja) 2008-02-26 2008-02-26 音響信号処理装置及び音響信号処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/053298 WO2009107202A1 (ja) 2008-02-26 2008-02-26 音響信号処理装置及び音響信号処理方法

Publications (1)

Publication Number Publication Date
WO2009107202A1 true WO2009107202A1 (ja) 2009-09-03

Family

ID=41015616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/053298 WO2009107202A1 (ja) 2008-02-26 2008-02-26 音響信号処理装置及び音響信号処理方法

Country Status (3)

Country Link
US (1) US20110007905A1 (ja)
JP (1) JPWO2009107202A1 (ja)
WO (1) WO2009107202A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123612A1 (ja) * 2016-12-28 2018-07-05 ソニー株式会社 オーディオ信号再生装置及び再生方法、収音装置及び収音方法、並びにプログラム

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9084058B2 (en) 2011-12-29 2015-07-14 Sonos, Inc. Sound field calibration using listener localization
US9668049B2 (en) 2012-06-28 2017-05-30 Sonos, Inc. Playback device calibration user interfaces
US9106192B2 (en) 2012-06-28 2015-08-11 Sonos, Inc. System and method for device playback calibration
US9219460B2 (en) 2014-03-17 2015-12-22 Sonos, Inc. Audio settings based on environment
US9706323B2 (en) 2014-09-09 2017-07-11 Sonos, Inc. Playback device calibration
US9690271B2 (en) 2012-06-28 2017-06-27 Sonos, Inc. Speaker calibration
US9690539B2 (en) 2012-06-28 2017-06-27 Sonos, Inc. Speaker calibration user interface
US9264839B2 (en) 2014-03-17 2016-02-16 Sonos, Inc. Playback device configuration based on proximity detection
US9891881B2 (en) 2014-09-09 2018-02-13 Sonos, Inc. Audio processing algorithm database
US9952825B2 (en) 2014-09-09 2018-04-24 Sonos, Inc. Audio processing algorithms
US9910634B2 (en) 2014-09-09 2018-03-06 Sonos, Inc. Microphone calibration
US10127006B2 (en) 2014-09-09 2018-11-13 Sonos, Inc. Facilitating calibration of an audio playback device
WO2016172593A1 (en) 2015-04-24 2016-10-27 Sonos, Inc. Playback device calibration user interfaces
US10664224B2 (en) 2015-04-24 2020-05-26 Sonos, Inc. Speaker calibration user interface
US9538305B2 (en) 2015-07-28 2017-01-03 Sonos, Inc. Calibration error conditions
US9693165B2 (en) 2015-09-17 2017-06-27 Sonos, Inc. Validation of audio calibration using multi-dimensional motion check
EP3531714B1 (en) 2015-09-17 2022-02-23 Sonos Inc. Facilitating calibration of an audio playback device
US9743207B1 (en) 2016-01-18 2017-08-22 Sonos, Inc. Calibration using multiple recording devices
US10003899B2 (en) 2016-01-25 2018-06-19 Sonos, Inc. Calibration with particular locations
US11106423B2 (en) 2016-01-25 2021-08-31 Sonos, Inc. Evaluating calibration of a playback device
US9864574B2 (en) 2016-04-01 2018-01-09 Sonos, Inc. Playback device calibration based on representation spectral characteristics
US9860662B2 (en) 2016-04-01 2018-01-02 Sonos, Inc. Updating playback device configuration information based on calibration data
US9763018B1 (en) 2016-04-12 2017-09-12 Sonos, Inc. Calibration of audio playback devices
CN105951216A (zh) * 2016-05-18 2016-09-21 桂林理工大学 一种三维氮掺杂碳纤维的制备方法
US9860670B1 (en) 2016-07-15 2018-01-02 Sonos, Inc. Spectral correction using spatial calibration
US9794710B1 (en) 2016-07-15 2017-10-17 Sonos, Inc. Spatial audio correction
US10372406B2 (en) 2016-07-22 2019-08-06 Sonos, Inc. Calibration interface
US10459684B2 (en) 2016-08-05 2019-10-29 Sonos, Inc. Calibration of a playback device based on an estimated frequency response
US11206484B2 (en) 2018-08-28 2021-12-21 Sonos, Inc. Passive speaker authentication
US10299061B1 (en) 2018-08-28 2019-05-21 Sonos, Inc. Playback device calibration
US10734965B1 (en) 2019-08-12 2020-08-04 Sonos, Inc. Audio calibration of a portable playback device
CN115378498B (zh) * 2021-11-22 2023-07-28 中国人民解放军战略支援部队信息工程大学 多用户可见光通信低时延传输计算一体化系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0787598A (ja) * 1993-08-13 1995-03-31 Blaupunkt Werke Gmbh ステレオ再生装置
JP2006262181A (ja) * 2005-03-17 2006-09-28 Alpine Electronics Inc オーディオ信号処理装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005341384A (ja) * 2004-05-28 2005-12-08 Sony Corp 音場補正装置、音場補正方法
JP2007255971A (ja) * 2006-03-22 2007-10-04 Sony Corp 車載用電子機器、車載用電子機器の動作制御方法
JP4760524B2 (ja) * 2006-05-16 2011-08-31 ソニー株式会社 コントロール機器、ルーティング検証方法およびルーティング検証プログラム
EP1860918B1 (en) * 2006-05-23 2017-07-05 Harman Becker Automotive Systems GmbH Communication system and method for controlling the output of an audio signal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0787598A (ja) * 1993-08-13 1995-03-31 Blaupunkt Werke Gmbh ステレオ再生装置
JP2006262181A (ja) * 2005-03-17 2006-09-28 Alpine Electronics Inc オーディオ信号処理装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123612A1 (ja) * 2016-12-28 2018-07-05 ソニー株式会社 オーディオ信号再生装置及び再生方法、収音装置及び収音方法、並びにプログラム
CN110100459A (zh) * 2016-12-28 2019-08-06 索尼公司 音频信号再现装置和再现方法、声音收集装置和声音收集方法及程序
JPWO2018123612A1 (ja) * 2016-12-28 2019-10-31 ソニー株式会社 オーディオ信号再生装置及び再生方法、収音装置及び収音方法、並びにプログラム

Also Published As

Publication number Publication date
US20110007905A1 (en) 2011-01-13
JPWO2009107202A1 (ja) 2011-06-30

Similar Documents

Publication Publication Date Title
WO2009107202A1 (ja) 音響信号処理装置及び音響信号処理方法
WO2009107227A1 (ja) 音響信号処理装置及び音響信号処理方法
CN1728892B (zh) 声场校正设备及其方法
JP4830644B2 (ja) コントロール機器、同期補正方法および同期補正プログラム
JP2011217068A (ja) 音場制御装置
JP2007271802A (ja) コンテンツ再生システム及びコンピュータプログラム
JPWO2006009004A1 (ja) 音響再生システム
JP2006196940A (ja) 音像定位制御装置
JP2008035251A (ja) オーディオシステム
JP4834146B2 (ja) 音場再生装置及び音場再生方法
JP4928967B2 (ja) 音響装置、その方法、そのプログラム及びその記録媒体
JP5055967B2 (ja) オーディオ再生装置
JP4845811B2 (ja) 音響装置、遅延時間測定方法、遅延時間測定プログラム及びその記録媒体
JP2007282053A (ja) オーディオ再生装置
JP2008227942A (ja) コンテンツ再生装置及びコンテンツ再生方法
JP2011035584A (ja) 音響装置、位相補正方法、位相補正プログラム及び記録媒体
JP2009038470A (ja) 音響装置、遅延時間測定方法、遅延時間測定プログラム及びその記録媒体
JP5067240B2 (ja) 遅延制御装置
JP4943806B2 (ja) 音響装置、その方法、そのプログラム及びその記録媒体
JP2009164943A (ja) 音響装置、音場補正方法、音場補正プログラム及びその記録媒体
JP2006304032A (ja) 拡声システム
JP2006135489A (ja) 再生バランス調整方法、プログラム及び再生バランス調整装置
JP2009213016A (ja) 音響信号処理装置及び音響信号処理方法
JP4889121B2 (ja) 音響装置、遅延測定方法、遅延測定プログラム及びその記録媒体
JP2009147879A (ja) 音響装置、音場補正方法、音場補正プログラム及びその記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08720884

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010500478

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12866348

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08720884

Country of ref document: EP

Kind code of ref document: A1