US10299061B1 - Playback device calibration - Google Patents

Playback device calibration Download PDF

Info

Publication number
US10299061B1
US10299061B1 US16/115,524 US201816115524A US10299061B1 US 10299061 B1 US10299061 B1 US 10299061B1 US 201816115524 A US201816115524 A US 201816115524A US 10299061 B1 US10299061 B1 US 10299061B1
Authority
US
United States
Prior art keywords
playback device
room
audio
response
audio content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US16/115,524
Inventor
Timothy Sheen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sonos Inc
Original Assignee
Sonos Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sonos Inc filed Critical Sonos Inc
Priority to US16/115,524 priority Critical patent/US10299061B1/en
Assigned to SONOS, INC. reassignment SONOS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SHEEN, TIMOTHY
Priority to US16/401,981 priority patent/US10582326B1/en
Publication of US10299061B1 publication Critical patent/US10299061B1/en
Application granted granted Critical
Priority to EP19765920.4A priority patent/EP3844980A1/en
Priority to PCT/US2019/048366 priority patent/WO2020046956A1/en
Priority to US16/796,496 priority patent/US10848892B2/en
Priority to US16/949,951 priority patent/US11350233B2/en
Assigned to JPMORGAN CHASE BANK, N.A. reassignment JPMORGAN CHASE BANK, N.A. SECURITY AGREEMENT Assignors: SONOS, INC.
Priority to US17/804,372 priority patent/US11877139B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/301Automatic calibration of stereophonic sound system, e.g. with test microphone
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • G06F3/165Management of the audio stream, e.g. setting of volume, audio stream path
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • G10K11/17823Reference signals, e.g. ambient acoustic environment
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal
    • G10K11/17881General system configurations using both a reference signal and an error signal the reference signal being an acoustic signal, e.g. recorded with a microphone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2227/00Details of public address [PA] systems covered by H04R27/00 but not provided for in any of its subgroups
    • H04R2227/007Electronic adaptation of audio signals to reverberation of the listening space for PA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2400/00Details of stereophonic systems covered by H04S but not provided for in its groups
    • H04S2400/13Aspects of volume control, not necessarily automatic, in stereophonic sound systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/305Electronic adaptation of stereophonic audio signals to reverberation of the listening space

Definitions

  • the present disclosure is related to consumer goods and, more particularly, to methods, systems, products, features, services, and other elements directed to media playback or some aspect thereof.
  • Sonos Wireless Home Sound System enables people to experience music from many sources via one or more networked playback devices. Through a software control application installed on a controller (e.g., smartphone, tablet, computer, voice input device), one can play what she wants in any room having a networked playback device.
  • a controller e.g., smartphone, tablet, computer, voice input device
  • Media content e.g., songs, podcasts, video sound
  • playback devices such that each room with a playback device can play back corresponding different media content.
  • rooms can be grouped together for synchronous playback of the same media content, and/or the same media content can be heard in all rooms synchronously.
  • FIG. 1A is a partial cutaway view of an environment having a media playback system configured in accordance with aspects of the disclosed technology.
  • FIG. 1B is a schematic diagram of the media playback system of FIG. 1A and one or more networks.
  • FIG. 1C is a block diagram of a playback device.
  • FIG. 1D is a block diagram of a playback device.
  • FIG. 1E is a block diagram of a network microphone device.
  • FIG. 1F is a block diagram of a network microphone device.
  • FIG. 1G is a block diagram of a playback device.
  • FIG. 1H is a partially schematic diagram of a control device.
  • FIG. 2A is a diagram of a playback environment within which a playback device may be calibrated.
  • FIG. 2B is a block diagram of a database for storing room response data and corresponding playback device calibration settings.
  • FIG. 2C is a diagram of a playback environment within which a playback device may be calibrated.
  • FIG. 3A is a flowchart of a method for populating a database with room response data and corresponding playback device calibration settings.
  • FIG. 3B is a flowchart of a method for calibrating a playback device using a database populated with room response data and corresponding playback device calibration settings.
  • any environment has certain acoustic characteristics (“acoustics”) that define how sound travels within that environment.
  • acoustics acoustic characteristics
  • the size and shape of the room, as well as objects inside that room may define the acoustics for that room.
  • angles of walls with respect to a ceiling affect how sound reflects off the wall and the ceiling.
  • furniture positioning in the room affects how the sound travels in the room.
  • Various types of surfaces within the room may also affect the acoustics of that room; hard surfaces in the room may reflect sound, whereas soft surfaces may absorb sound. Accordingly, calibrating a playback device within a room so that the audio output by the playback device accounts for (e.g., offsets) the acoustics of that room may improve a listening experience in the room.
  • An example calibration process for a media playback system involves a playback device outputting audio content while in a given environment (e.g., a room).
  • the audio content may have predefined spectral content, such as a pink noise, a sweep, or a combination of content.
  • one or more microphone devices detect the outputted audio content at one or more different spatial positions in the room to facilitate determining an acoustic response of the room (also referred to herein as a “room response”).
  • a mobile device with a microphone such as a smartphone or tablet (referred to herein as a network device) may be moved to the various locations in the room to detect the audio content. These locations may correspond to those locations where one or more listeners may experience audio playback during regular use (i.e., listening) of the playback device.
  • the calibration process involves a user physically moving the network device to various locations in the room to detect the audio content at one or more spatial positions in the room. Given that this acoustic response involves moving the microphone to multiple locations throughout the room, this acoustic response may also be referred to as a “multi-location acoustic response.”
  • the media playback system may identify an audio processing algorithm. For instance, a network device may identify an audio processing algorithm, and transmit to the playback device, data indicating the identified audio processing algorithm. In some examples, the network device identifies an audio processing algorithm that, when applied to the playback device, results in audio content output by the playback device having a target audio characteristic, such as a target frequency response at one or more locations in the room.
  • the network device can identify the audio processing algorithm in various ways. In one case, the network device determines the audio processing algorithm based on the data indicating the detected audio content.
  • the network device sends, to a computing device such as a server, data indicating the audio content detected at the various locations in the room, and receives, from the computing device, the audio processing algorithm after the server (or another computing device connected to the server) has determined the audio processing algorithm.
  • a computing device such as a server
  • the audio processing algorithm After the server (or another computing device connected to the server) has determined the audio processing algorithm.
  • performing a calibration process such as the one described above is not feasible or practical.
  • a listener might not have access to a network device that is capable of or configured for performing such a calibration process.
  • a listener may choose not to calibrate the playback device because of they find the process of moving the microphone around the room inconvenient or otherwise burdensome.
  • a playback device in an environment is configured to calibrate itself with respect to the environment without using a network device to detect audio content at various locations in the room.
  • the playback device leverages a database of calibration settings (e.g., audio processing algorithms) that have been generated for other playback devices using a calibration process, such as the process described above.
  • the database becomes statistically capable of providing a set of calibration settings that are appropriate for calibrating the playback device to account for the acoustic response of its environment.
  • such a database is populated with calibration settings by various playback devices performing a calibration process similar to the process described above.
  • the database is populated by performing a calibration process for each playback device of a number of playback devices that involves each playback device outputting audio content in a room, moving a network device to various locations in the room to determine a multi-location acoustic response of the room, and determining the calibration settings based on the room's multi-location acoustic response. This process is repeated by a large number of users in a larger number of different rooms, thereby providing a statistically sufficient volume of different room responses and corresponding calibration settings.
  • a playback device may include its own microphone, which the playback device uses to determine an acoustic response of the room different from the multi-location acoustic response of the room. While the playback device outputs audio content for determining the multi-location acoustic response of the room as described above, the playback device concurrently uses its own microphone to detect reflections of the audio content within the room and determines a different acoustic response of the room based on the detected reflections (as compared with the acoustic response determined based on the reflections detected by a network device).
  • This acoustic response determined by the playback device may be referred to as a “localized acoustic response,” as the acoustic response is determined based on captured audio localized at the playback device, rather than at multiple locations throughout the room via the microphone of the network device.
  • Data representing the localized acoustic response and data representing the calibration settings are then stored in the database and associated with one another.
  • the database is populated with a number of records, each record corresponding to a respective playback device, and each record including data representing the respective playback device's localized acoustic response and the respective playback device's calibration settings for the localized acoustic response.
  • media playback systems can access the database to determine suitable calibration settings without requiring the use of a network device to first determine a multi-location acoustic response for a room in which the playback device(s) of that system are located. For instance, the playback device determines a localized acoustic response for the room by outputting audio content in the room and using a microphone of the playback device to detect reflections of the audio content within the room. The playback device then queries the database to identify a stored localized acoustic response that is substantially similar to, or that is most similar to, the localized acoustic response determined by the playback device. The playback device then applies to itself the identified calibration settings that are associated in the database with the identified localized acoustic response.
  • the above playback device calibration process may be initiated at various times and/or in various ways.
  • calibration of the playback device is initiated when the playback device is being set up for the first time, when the playback device plays music for the first time, or if the playback device has been moved to a new location. For instance, if the playback device is moved to a new location, calibration of the playback device may be initiated based on a detection of the movement or based on a user input indicating that the playback device has moved to a new location.
  • calibration of the playback device is initiated on demand via a controller device. Further, in some examples, calibration of the playback device is initiated periodically, or after a threshold amount of time has elapsed after a previous calibration, in order to account for changes to the environment of the playback device and/or changes to the database of calibration settings.
  • a playback device outputs first audio content via one or more speakers of the playback device, and the playback device captures audio data representing reflections of the first audio content within a room in which the playback device is located via one or more microphones of the playback device. Based on the captured audio data, the playback device determines an acoustic response of the room in which the playback device is located. Further, the playback device establishes a connection with a database populated with a plurality of sets of stored audio calibration settings, each set associated with a respective stored acoustic room response of a plurality of stored acoustic room responses.
  • the plurality of sets of stored audio calibration settings are determined based on multiple media playback systems each performing a respective audio calibration process, which includes (i) outputting, via a respective playback device within a respective room that is different from the room in which the playback device is located, respective audio content, (ii) while the respective playback device outputs the respective audio content, capturing, via a microphone of a respective network device in communication with the respective playback device, first respective audio data representing reflections of the respective audio content in the respective room while the respective network device is moving from a first physical location to a second physical location within the respective room, and (iii) based on the first respective audio data, determining a set of audio calibration settings for the respective playback device.
  • the plurality of stored acoustic room responses are determined based on the multiple media playback systems each performing a respective acoustic room response determination process, which includes (i) while the respective playback device outputs the respective audio content, capturing, via a microphone disposed in a housing of the respective playback device, second respective audio data representing reflections of the respective audio content in the respective room, and (ii) based on the second respective audio data, determining an acoustic response of the respective room.
  • the playback device queries the database for a stored acoustic room response that corresponds to the determined acoustic response of the room in which the playback device is located.
  • the playback device applies to itself a particular set of stored audio calibration settings associated with the stored acoustic room response that corresponds to the determined acoustic response of the room in which the playback device is located.
  • the playback device then outputs, via one or more of its speakers, second audio content using the particular set of audio calibration settings associated with the stored acoustic room response that corresponds to the determined acoustic response of the room in which the playback device is located.
  • FIG. 1A is a partial cutaway view of a media playback system 100 distributed in an environment 101 (e.g., a house).
  • the media playback system 100 comprises one or more playback devices 110 (identified individually as playback devices 110 a - n ), one or more network microphone devices (“NMDs”) 120 (identified individually as NMDs 120 a - c ), and one or more control devices 130 (identified individually as control devices 130 a and 130 b ).
  • NMDs network microphone devices
  • a playback device can generally refer to a network device configured to receive, process, and output data of a media playback system.
  • a playback device can be a network device that receives and processes audio content.
  • a playback device includes one or more transducers or speakers powered by one or more amplifiers.
  • a playback device includes one of (or neither of) the speaker and the amplifier.
  • a playback device can comprise one or more amplifiers configured to drive one or more speakers external to the playback device via a corresponding wire or cable.
  • NMD i.e., a “network microphone device”
  • a network microphone device can generally refer to a network device that is configured for audio detection.
  • an NMD is a stand-alone device configured primarily for audio detection.
  • an NMD is incorporated into a playback device (or vice versa).
  • control device can generally refer to a network device configured to perform functions relevant to facilitating user access, control, and/or configuration of the media playback system 100 .
  • Each of the playback devices 110 is configured to receive audio signals or data from one or more media sources (e.g., one or more remote servers, one or more local devices) and play back the received audio signals or data as sound.
  • the one or more NMDs 120 are configured to receive spoken word commands
  • the one or more control devices 130 are configured to receive user input.
  • the media playback system 100 can play back audio via one or more of the playback devices 110 .
  • the playback devices 110 are configured to commence playback of media content in response to a trigger.
  • one or more of the playback devices 110 can be configured to play back a morning playlist upon detection of an associated trigger condition (e.g., presence of a user in a kitchen, detection of a coffee machine operation).
  • the media playback system 100 is configured to play back audio from a first playback device (e.g., the playback device 100 a ) in synchrony with a second playback device (e.g., the playback device 100 b ).
  • a first playback device e.g., the playback device 100 a
  • a second playback device e.g., the playback device 100 b
  • Interactions between the playback devices 110 , NMDs 120 , and/or control devices 130 of the media playback system 100 configured in accordance with the various embodiments of the disclosure are described in greater detail below with respect to FIGS. 1B-1H .
  • the environment 101 comprises a household having several rooms, spaces, and/or playback zones, including (clockwise from upper left) a master bathroom 101 a , a master bedroom 101 b , a second bedroom 101 c , a family room or den 101 d , an office 101 e , a living room 101 f , a dining room 101 g , a kitchen 101 h , and an outdoor patio 101 i . While certain embodiments and examples are described below in the context of a home environment, the technologies described herein may be implemented in other types of environments.
  • the media playback system 100 can be implemented in one or more commercial settings (e.g., a restaurant, mall, airport, hotel, a retail or other store), one or more vehicles (e.g., a sports utility vehicle, bus, car, a ship, a boat, an airplane), multiple environments (e.g., a combination of home and vehicle environments), and/or another suitable environment where multi-zone audio may be desirable.
  • a commercial setting e.g., a restaurant, mall, airport, hotel, a retail or other store
  • vehicles e.g., a sports utility vehicle, bus, car, a ship, a boat, an airplane
  • multiple environments e.g., a combination of home and vehicle environments
  • multi-zone audio may be desirable.
  • the media playback system 100 can comprise one or more playback zones, some of which may correspond to the rooms in the environment 101 .
  • the media playback system 100 can be established with one or more playback zones, after which additional zones may be added, or removed to form, for example, the configuration shown in FIG. 1A .
  • Each zone may be given a name according to a different room or space such as the office 101 e , master bathroom 101 a , master bedroom 101 b , the second bedroom 101 c , kitchen 101 h , dining room 101 g , living room 101 f , and/or the balcony 101 i .
  • a single playback zone may include multiple rooms or spaces.
  • a single room or space may include multiple playback zones.
  • the master bathroom 101 a , the second bedroom 101 c , the office 101 e , the living room 101 f , the dining room 101 g , the kitchen 101 h , and the outdoor patio 101 i each include one playback device 110
  • the master bedroom 101 b and the den 101 d include a plurality of playback devices 110
  • the playback devices 110 l and 110 m may be configured, for example, to play back audio content in synchrony as individual ones of playback devices 110 , as a bonded playback zone, as a consolidated playback device, and/or any combination thereof.
  • the playback devices 110 h - j can be configured, for instance, to play back audio content in synchrony as individual ones of playback devices 110 , as one or more bonded playback devices, and/or as one or more consolidated playback devices. Additional details regarding bonded and consolidated playback devices are described below with respect to FIGS. 1B and 1E .
  • one or more of the playback zones in the environment 101 may each be playing different audio content.
  • a user may be grilling on the patio 101 i and listening to hip hop music being played by the playback device 110 c while another user is preparing food in the kitchen 101 h and listening to classical music played by the playback device 110 b .
  • a playback zone may play the same audio content in synchrony with another playback zone.
  • the user may be in the office 101 e listening to the playback device 110 f playing back the same hip hop music being played back by playback device 110 c on the patio 101 i .
  • the playback devices 110 c and 110 f play back the hip hop music in synchrony such that the user perceives that the audio content is being played seamlessly (or at least substantially seamlessly) while moving between different playback zones. Additional details regarding audio playback synchronization among playback devices and/or zones can be found, for example, in U.S. Pat. No. 8,234,395 entitled, “System and method for synchronizing operations among a plurality of independently clocked digital data processing devices,” which is incorporated herein by reference in its entirety.
  • FIG. 1B is a schematic diagram of the media playback system 100 and a cloud network 102 .
  • the links 103 communicatively couple the media playback system 100 and the cloud network 102 .
  • the links 103 can comprise, for example, one or more wired networks, one or more wireless networks, one or more wide area networks (WAN), one or more local area networks (LAN), one or more personal area networks (PAN), one or more telecommunication networks (e.g., one or more Global System for Mobiles (GSM) networks, Code Division Multiple Access (CDMA) networks, Long-Term Evolution (LTE) networks, 5G communication network networks, and/or other suitable data transmission protocol networks), etc.
  • GSM Global System for Mobiles
  • CDMA Code Division Multiple Access
  • LTE Long-Term Evolution
  • 5G communication network networks and/or other suitable data transmission protocol networks
  • the cloud network 102 is configured to deliver media content (e.g., audio content, video content, photographs, social media content) to the media playback system 100 in response to a request transmitted from the media playback system 100 via the links 103 .
  • the cloud network 102 is further configured to receive data (e.g. voice input data) from the media playback system 100 and correspondingly transmit commands and/or
  • the cloud network 102 comprises computing devices 106 (identified separately as a first computing device 106 a , a second computing device 106 b , and a third computing device 106 c ).
  • the computing devices 106 can comprise individual computers or servers, such as, for example, a media streaming service server storing audio and/or other media content, a voice service server, a social media server, a media playback system control server, etc.
  • one or more of the computing devices 106 comprise modules of a single computer or server.
  • one or more of the computing devices 106 comprise one or more modules, computers, and/or servers.
  • the cloud network 102 is described above in the context of a single cloud network, in some embodiments the cloud network 102 comprises a plurality of cloud networks comprising communicatively coupled computing devices. Furthermore, while the cloud network 102 is shown in FIG. 1B as having three of the computing devices 106 , in some embodiments, the cloud network 102 comprises fewer (or more than) three computing devices 106 .
  • the media playback system 100 is configured to receive media content from the networks 102 via the links 103 .
  • the received media content can comprise, for example, a Uniform Resource Identifier (URI) and/or a Uniform Resource Locator (URL).
  • URI Uniform Resource Identifier
  • URL Uniform Resource Locator
  • the media playback system 100 can stream, download, or otherwise obtain data from a URI or a URL corresponding to the received media content.
  • a network 104 communicatively couples the links 103 and at least a portion of the devices (e.g., one or more of the playback devices 110 , NMDs 120 , and/or control devices 130 ) of the media playback system 100 .
  • the network 104 can include, for example, a wireless network (e.g., a WiFi network, a Bluetooth, a Z-Wave network, a ZigBee, and/or other suitable wireless communication protocol network) and/or a wired network (e.g., a network comprising Ethernet, Universal Serial Bus (USB), and/or another suitable wired communication).
  • a wireless network e.g., a WiFi network, a Bluetooth, a Z-Wave network, a ZigBee, and/or other suitable wireless communication protocol network
  • a wired network e.g., a network comprising Ethernet, Universal Serial Bus (USB), and/or another suitable wired communication.
  • WiFi can refer to several different communication protocols including, for example, Institute of Electrical and Electronics Engineers (IEEE) 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, 802.11ac, 802.11ad, 802.11af, 802.11ah, 802.11ai, 802.11aj, 802.11aq, 802.11ax, 802.11ay, 802.15, etc. transmitted at 2.4 Gigahertz (GHz), 5 GHz, and/or another suitable frequency.
  • IEEE Institute of Electrical and Electronics Engineers
  • the network 104 comprises a dedicated communication network that the media playback system 100 uses to transmit messages between individual devices and/or to transmit media content to and from media content sources (e.g., one or more of the computing devices 106 ).
  • the network 104 is configured to be accessible only to devices in the media playback system 100 , thereby reducing interference and competition with other household devices.
  • the network 104 comprises an existing household communication network (e.g., a household WiFi network).
  • the links 103 and the network 104 comprise one or more of the same networks.
  • the links 103 and the network 104 comprise a telecommunication network (e.g., an LTE network, a 5G network).
  • the media playback system 100 is implemented without the network 104 , and devices comprising the media playback system 100 can communicate with each other, for example, via one or more direct connections, PANs, telecommunication networks, and/or other suitable communication links.
  • audio content sources may be regularly added or removed from the media playback system 100 .
  • the media playback system 100 performs an indexing of media items when one or more media content sources are updated, added to, and/or removed from the media playback system 100 .
  • the media playback system 100 can scan identifiable media items in some or all folders and/or directories accessible to the playback devices 110 , and generate or update a media content database comprising metadata (e.g., title, artist, album, track length) and other associated information (e.g., URIs, URLs) for each identifiable media item found.
  • the media content database is stored on one or more of the playback devices 110 , network microphone devices 120 , and/or control devices 130 .
  • the playback devices 110 l and 110 m comprise a group 107 a .
  • the playback devices 110 l and 110 m can be positioned in different rooms in a household and be grouped together in the group 107 a on a temporary or permanent basis based on user input received at the control device 130 a and/or another control device 130 in the media playback system 100 .
  • the playback devices 110 l and 110 m can be configured to play back the same or similar audio content in synchrony from one or more audio content sources.
  • the group 107 a comprises a bonded zone in which the playback devices 110 l and 110 m comprise left audio and right audio channels, respectively, of multi-channel audio content, thereby producing or enhancing a stereo effect of the audio content.
  • the group 107 a includes additional playback devices 110 .
  • the media playback system 100 omits the group 107 a and/or other grouped arrangements of the playback devices 110 .
  • the media playback system 100 includes the NMDs 120 a and 120 d , each comprising one or more microphones configured to receive voice utterances from a user.
  • the NMD 120 a is a standalone device and the NMD 120 d is integrated into the playback device 110 n .
  • the NMD 120 a is configured to receive voice input 121 from a user 123 .
  • the NMD 120 a transmits data associated with the received voice input 121 to a voice assistant service (VAS) configured to (i) process the received voice input data and (ii) transmit a corresponding command to the media playback system 100 .
  • VAS voice assistant service
  • the computing device 106 c comprises one or more modules and/or servers of a VAS (e.g., a VAS operated by one or more of SONOS®, AMAZON®, GOOGLE® APPLE®, MICROSOFT®).
  • the computing device 106 c can receive the voice input data from the NMD 120 a via the network 104 and the links 103 .
  • the computing device 106 c processes the voice input data (i.e., “Play Hey Jude by The Beatles”), and determines that the processed voice input includes a command to play a song (e.g., “Hey Jude”).
  • the computing device 106 c accordingly transmits commands to the media playback system 100 to play back “Hey Jude” by the Beatles from a suitable media service (e.g., via one or more of the computing devices 106 ) on one or more of the playback devices 110 .
  • FIG. 1C is a block diagram of the playback device 110 a comprising an input/output 111 .
  • the input/output 111 can include an analog I/O 111 a (e.g., one or more wires, cables, and/or other suitable communication links configured to carry analog signals) and/or a digital I/O 111 b (e.g., one or more wires, cables, or other suitable communication links configured to carry digital signals).
  • the analog I/O 111 a is an audio line-in input connection comprising, for example, an auto-detecting 3.5 mm audio line-in connection.
  • the digital I/O 111 b comprises a Sony/Philips Digital Interface Format (S/PDIF) communication interface and/or cable and/or a Toshiba Link (TOSLINK) cable.
  • the digital I/O 111 b comprises an High-Definition Multimedia Interface (HDMI) interface and/or cable.
  • the digital I/O 111 b includes one or more wireless communication links comprising, for example, a radio frequency (RF), infrared, WiFi, Bluetooth, or another suitable communication protocol.
  • RF radio frequency
  • the analog I/O 111 a and the digital 111 b comprise interfaces (e.g., ports, plugs, jacks) configured to receive connectors of cables transmitting analog and digital signals, respectively, without necessarily including cables.
  • the playback device 110 a can receive media content (e.g., audio content comprising music and/or other sounds) from a local audio source 105 via the input/output 111 (e.g., a cable, a wire, a PAN, a Bluetooth connection, an ad hoc wired or wireless communication network, and/or another suitable communication link).
  • the local audio source 105 can comprise, for example, a mobile device (e.g., a smartphone, a tablet, a laptop computer) or another suitable audio component (e.g., a television, a desktop computer, an amplifier, a phonograph, a Blu-ray player, a memory storing digital media files).
  • the local audio source 105 includes local music libraries on a smartphone, a computer, a networked-attached storage (NAS), and/or another suitable device configured to store media files.
  • one or more of the playback devices 110 , NMDs 120 , and/or control devices 130 comprise the local audio source 105 .
  • the media playback system omits the local audio source 105 altogether.
  • the playback device 110 a does not include an input/output 111 and receives all audio content via the network 104 .
  • the playback device 110 a further comprises electronics 112 , a user interface 113 (e.g., one or more buttons, knobs, dials, touch-sensitive surfaces, displays, touchscreens), and one or more transducers 114 (referred to hereinafter as “the transducers 114 ”).
  • the electronics 112 is configured to receive audio from an audio source (e.g., the local audio source 105 ) via the input/output 111 , one or more of the computing devices 106 a - c via the network 104 ( FIG. 1B )), amplify the received audio, and output the amplified audio for playback via one or more of the transducers 114 .
  • an audio source e.g., the local audio source 105
  • the computing devices 106 a - c via the network 104 ( FIG. 1B )
  • the playback device 110 a optionally includes one or more microphones 115 (e.g., a single microphone, a plurality of microphones, a microphone array) (hereinafter referred to as “the microphones 115 ”).
  • the playback device 110 a having one or more of the optional microphones 115 can operate as an NMD configured to receive voice input from a user and correspondingly perform one or more operations based on the received voice input.
  • the electronics 112 comprise one or more processors 112 a (referred to hereinafter as “the processors 112 a ”), memory 112 b , software components 112 c , a network interface 112 d , one or more audio processing components 112 g (referred to hereinafter as “the audio components 112 g ”), one or more audio amplifiers 112 h (referred to hereinafter as “the amplifiers 112 h ”), and power 112 i (e.g., one or more power supplies, power cables, power receptacles, batteries, induction coils, Power-over Ethernet (POE) interfaces, and/or other suitable sources of electric power).
  • the electronics 112 optionally include one or more other components 112 j (e.g., one or more sensors, video displays, touchscreens, battery charging bases).
  • the processors 112 a can comprise clock-driven computing component(s) configured to process data
  • the memory 112 b can comprise a computer-readable medium (e.g., a tangible, non-transitory computer-readable medium, data storage loaded with one or more of the software components 112 c ) configured to store instructions for performing various operations and/or functions.
  • the processors 112 a are configured to execute the instructions stored on the memory 112 b to perform one or more of the operations.
  • the operations can include, for example, causing the playback device 110 a to retrieve audio data from an audio source (e.g., one or more of the computing devices 106 a - c ( FIG. 1B )), and/or another one of the playback devices 110 .
  • an audio source e.g., one or more of the computing devices 106 a - c ( FIG. 1B )
  • the operations further include causing the playback device 110 a to send audio data to another one of the playback devices 110 a and/or another device (e.g., one of the NMDs 120 ).
  • Certain embodiments include operations causing the playback device 110 a to pair with another of the one or more playback devices 110 to enable a multi-channel audio environment (e.g., a stereo pair, a bonded zone).
  • the processors 112 a can be further configured to perform operations causing the playback device 110 a to synchronize playback of audio content with another of the one or more playback devices 110 .
  • a listener will preferably be unable to perceive time-delay differences between playback of the audio content by the playback device 110 a and the other one or more other playback devices 110 . Additional details regarding audio playback synchronization among playback devices can be found, for example, in U.S. Pat. No. 8,234,395, which was incorporated by reference above.
  • the memory 112 b is further configured to store data associated with the playback device 110 a , such as one or more zones and/or zone groups of which the playback device 110 a is a member, audio sources accessible to the playback device 110 a , and/or a playback queue that the playback device 110 a (and/or another of the one or more playback devices) can be associated with.
  • the stored data can comprise one or more state variables that are periodically updated and used to describe a state of the playback device 110 a .
  • the memory 112 b can also include data associated with a state of one or more of the other devices (e.g., the playback devices 110 , NMDs 120 , control devices 130 ) of the media playback system 100 .
  • the state data is shared during predetermined intervals of time (e.g., every 5 seconds, every 10 seconds, every 60 seconds) among at least a portion of the devices of the media playback system 100 , so that one or more of the devices have the most recent data associated with the media playback system 100 .
  • the network interface 112 d is configured to facilitate a transmission of data between the playback device 110 a and one or more other devices on a data network such as, for example, the links 103 and/or the network 104 ( FIG. 1B ).
  • the network interface 112 d is configured to transmit and receive data corresponding to media content (e.g., audio content, video content, text, photographs) and other signals (e.g., non-transitory signals) comprising digital packet data including an Internet Protocol (IP)-based source address and/or an IP-based destination address.
  • IP Internet Protocol
  • the network interface 112 d can parse the digital packet data such that the electronics 112 properly receives and processes the data destined for the playback device 110 a.
  • the network interface 112 d comprises one or more wireless interfaces 112 e (referred to hereinafter as “the wireless interface 112 e ”).
  • the wireless interface 112 e e.g., a suitable interface comprising one or more antennae
  • can be configured to wirelessly communicate with one or more other devices e.g., one or more of the other playback devices 110 , NMDs 120 , and/or control devices 130 ) that are communicatively coupled to the network 104 ( FIG. 1B ) in accordance with a suitable wireless communication protocol (e.g., WiFi, Bluetooth, LTE).
  • a suitable wireless communication protocol e.g., WiFi, Bluetooth, LTE
  • the network interface 112 d optionally includes a wired interface 112 f (e.g., an interface or receptacle configured to receive a network cable such as an Ethernet, a USB-A, USB-C, and/or Thunderbolt cable) configured to communicate over a wired connection with other devices in accordance with a suitable wired communication protocol.
  • the network interface 112 d includes the wired interface 112 f and excludes the wireless interface 112 e .
  • the electronics 112 excludes the network interface 112 d altogether and transmits and receives media content and/or other data via another communication path (e.g., the input/output 111 ).
  • the audio components 112 g are configured to process and/or filter data comprising media content received by the electronics 112 (e.g., via the input/output 111 and/or the network interface 112 d ) to produce output audio signals.
  • the audio processing components 112 g comprise, for example, one or more digital-to-analog converters (DAC), audio preprocessing components, audio enhancement components, a digital signal processors (DSPs), and/or other suitable audio processing components, modules, circuits, etc.
  • one or more of the audio processing components 112 g can comprise one or more subcomponents of the processors 112 a .
  • the electronics 112 omits the audio processing components 112 g .
  • the processors 112 a execute instructions stored on the memory 112 b to perform audio processing operations to produce the output audio signals.
  • the amplifiers 112 h are configured to receive and amplify the audio output signals produced by the audio processing components 112 g and/or the processors 112 a .
  • the amplifiers 112 h can comprise electronic devices and/or components configured to amplify audio signals to levels sufficient for driving one or more of the transducers 114 .
  • the amplifiers 112 h include one or more switching or class-D power amplifiers.
  • the amplifiers include one or more other types of power amplifiers (e.g., linear gain power amplifiers, class-A amplifiers, class-B amplifiers, class-AB amplifiers, class-C amplifiers, class-D amplifiers, class-E amplifiers, class-F amplifiers, class-G and/or class H amplifiers, and/or another suitable type of power amplifier).
  • the amplifiers 112 h comprise a suitable combination of two or more of the foregoing types of power amplifiers.
  • individual ones of the amplifiers 112 h correspond to individual ones of the transducers 114 .
  • the electronics 112 includes a single one of the amplifiers 112 h configured to output amplified audio signals to a plurality of the transducers 114 . In some other embodiments, the electronics 112 omits the amplifiers 112 h.
  • the transducers 114 receive the amplified audio signals from the amplifier 112 h and render or output the amplified audio signals as sound (e.g., audible sound waves having a frequency between about 20 Hertz (Hz) and 20 kilohertz (kHz)).
  • the transducers 114 can comprise a single transducer. In other embodiments, however, the transducers 114 comprise a plurality of audio transducers. In some embodiments, the transducers 114 comprise more than one type of transducer.
  • the transducers 114 can include one or more low frequency transducers (e.g., subwoofers, woofers), mid-range frequency transducers (e.g., mid-range transducers, mid-woofers), and one or more high frequency transducers (e.g., one or more tweeters).
  • low frequency can generally refer to audible frequencies below about 500 Hz
  • mid-range frequency can generally refer to audible frequencies between about 500 Hz and about 2 kHz
  • “high frequency” can generally refer to audible frequencies above 2 kHz.
  • one or more of the transducers 114 comprise transducers that do not adhere to the foregoing frequency ranges.
  • one of the transducers 114 may comprise a mid-woofer transducer configured to output sound at frequencies between about 200 Hz and about 5 kHz.
  • one or more playback devices 110 comprises wired or wireless headphones (e.g., over-the-ear headphones, on-ear headphones, in-ear earphones).
  • one or more of the playback devices 110 comprise a docking station and/or an interface configured to interact with a docking station for personal mobile media playback devices.
  • a playback device may be integral to another device or component such as a television, a lighting fixture, or some other device for indoor or outdoor use.
  • a playback device omits a user interface and/or one or more transducers.
  • FIG. 1D is a block diagram of a playback device 110 p comprising the input/output 111 and electronics 112 without the user interface 113 or transducers 114 .
  • FIG. 1E is a block diagram of a bonded playback device 110 q comprising the playback device 110 a ( FIG. 1C ) sonically bonded with the playback device 110 i (e.g., a subwoofer) ( FIG. 1A ).
  • the playback devices 110 a and 110 i are separate ones of the playback devices 110 housed in separate enclosures.
  • the bonded playback device 110 q comprises a single enclosure housing both the playback devices 110 a and 110 i .
  • the bonded playback device 110 q can be configured to process and reproduce sound differently than an unbonded playback device (e.g., the playback device 110 a of FIG.
  • the playback device 110 a is full-range playback device configured to render low frequency, mid-range frequency, and high frequency audio content
  • the playback device 110 i is a subwoofer configured to render low frequency audio content.
  • the playback device 110 a when bonded with the first playback device, is configured to render only the mid-range and high frequency components of a particular audio content, while the playback device 110 i renders the low frequency component of the particular audio content.
  • the bonded playback device 110 q includes additional playback devices and/or another bonded playback device.
  • NMDs Network Microphone Devices
  • FIG. 1F is a block diagram of the NMD 120 a ( FIGS. 1A and 1B ).
  • the NMD 120 a includes one or more voice processing components 124 (hereinafter “the voice components 124 ”) and several components described with respect to the playback device 110 a ( FIG. 1C ) including the processors 112 a , the memory 112 b , and the microphones 115 .
  • the NMD 120 a optionally comprises other components also included in the playback device 110 a ( FIG. 1C ), such as the user interface 113 and/or the transducers 114 .
  • the NMD 120 a is configured as a media playback device (e.g., one or more of the playback devices 110 ), and further includes, for example, one or more of the audio components 112 g ( FIG. 1C ), the amplifiers 114 , and/or other playback device components.
  • the NMD 120 a comprises an Internet of Things (IoT) device such as, for example, a thermostat, alarm panel, fire and/or smoke detector, etc.
  • IoT Internet of Things
  • the NMD 120 a comprises the microphones 115 , the voice processing 124 , and only a portion of the components of the electronics 112 described above with respect to FIG. 1B .
  • the NMD 120 a includes the processor 112 a and the memory 112 b ( FIG. 1B ), while omitting one or more other components of the electronics 112 .
  • the NMD 120 a includes additional components (e.g., one or more sensors, cameras, thermometers, barometers, hygrometers).
  • FIG. 1G is a block diagram of a playback device 110 r comprising an NMD 120 d .
  • the playback device 110 r can comprise many or all of the components of the playback device 110 a and further include the microphones 115 and voice processing 124 ( FIG. 1F ).
  • the playback device 110 r optionally includes an integrated control device 130 c .
  • the control device 130 c can comprise, for example, a user interface (e.g., the user interface 113 of FIG. 1B ) configured to receive user input (e.g., touch input, voice input) without a separate control device. In other embodiments, however, the playback device 110 r receives commands from another control device (e.g., the control device 130 a of FIG. 1B ).
  • the microphones 115 are configured to acquire, capture, and/or receive sound from an environment (e.g., the environment 101 of FIG. 1A ) and/or a room in which the NMD 120 a is positioned.
  • the received sound can include, for example, vocal utterances, audio played back by the NMD 120 a and/or another playback device, background voices, ambient sounds, etc.
  • the microphones 115 convert the received sound into electrical signals to produce microphone data.
  • the voice processing 124 receives and analyzes the microphone data to determine whether a voice input is present in the microphone data.
  • the voice input can comprise, for example, an activation word followed by an utterance including a user request.
  • an activation word is a word or other audio cue that signifying a user voice input. For instance, in querying the AMAZON® VAS, a user might speak the activation word “Alexa.” Other examples include “Ok, Google” for invoking the GOOGLE® VAS and “Hey, Siri” for invoking the APPLE® VAS.
  • voice processing 124 monitors the microphone data for an accompanying user request in the voice input.
  • the user request may include, for example, a command to control a third-party device, such as a thermostat (e.g., NEST® thermostat), an illumination device (e.g., a PHILIPS HUE® lighting device), or a media playback device (e.g., a Sonos® playback device).
  • a thermostat e.g., NEST® thermostat
  • an illumination device e.g., a PHILIPS HUE® lighting device
  • a media playback device e.g., a Sonos® playback device.
  • a user might speak the activation word “Alexa” followed by the utterance “set the thermostat to 68 degrees” to set a temperature in a home (e.g., the environment 101 of FIG. 1A ).
  • the user might speak the same activation word followed by the utterance “turn on the living room” to turn on illumination devices in a living room area of the home.
  • the user may similarly speak an activation word followed by a request to play a particular song, an album, or a playlist of music on a playback device in the home.
  • FIG. 1H is a partially schematic diagram of the control device 130 a ( FIGS. 1A and 1B ).
  • the term “control device” can be used interchangeably with “controller” or “control system.”
  • the control device 130 a is configured to receive user input related to the media playback system 100 and, in response, cause one or more devices in the media playback system 100 to perform an action(s) or operation(s) corresponding to the user input.
  • the control device 130 a comprises a smartphone (e.g., an iPhoneTM, an Android phone) on which media playback system controller application software is installed.
  • control device 130 a comprises, for example, a tablet (e.g., an iPadTM), a computer (e.g., a laptop computer, a desktop computer), and/or another suitable device (e.g., a television, an automobile audio head unit, an IoT device).
  • the control device 130 a comprises a dedicated controller for the media playback system 100 .
  • the control device 130 a is integrated into another device in the media playback system 100 (e.g., one more of the playback devices 110 , NMDs 120 , and/or other suitable devices configured to communicate over a network).
  • the control device 130 a includes electronics 132 , a user interface 133 , one or more speakers 134 , and one or more microphones 135 .
  • the electronics 132 comprise one or more processors 132 a (referred to hereinafter as “the processors 132 a ”), a memory 132 b , software components 132 c , and a network interface 132 d .
  • the processor 132 a can be configured to perform functions relevant to facilitating user access, control, and configuration of the media playback system 100 .
  • the memory 132 b can comprise data storage that can be loaded with one or more of the software components executable by the processor 132 a to perform those functions.
  • the software components 132 c can comprise applications and/or other executable software configured to facilitate control of the media playback system 100 .
  • the memory 112 b can be configured to store, for example, the software components 132 c , media playback system controller application software, and/or other data associated with the media playback system 100 and the user.
  • the network interface 132 d is configured to facilitate network communications between the control device 130 a and one or more other devices in the media playback system 100 , and/or one or more remote devices.
  • the network interface 132 is configured to operate according to one or more suitable communication industry standards (e.g., infrared, radio, wired standards including IEEE 802.3, wireless standards including IEEE 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, 802.15, 4G, LTE).
  • the network interface 132 d can be configured, for example, to transmit data to and/or receive data from the playback devices 110 , the NMDs 120 , other ones of the control devices 130 , one of the computing devices 106 of FIG.
  • the transmitted and/or received data can include, for example, playback device control commands, state variables, playback zone and/or zone group configurations.
  • the network interface 132 d can transmit a playback device control command (e.g., volume control, audio playback control, audio content selection) from the control device 130 a to one or more of the playback devices 100 .
  • a playback device control command e.g., volume control, audio playback control, audio content selection
  • the network interface 132 d can also transmit and/or receive configuration changes such as, for example, adding/removing one or more playback devices 100 to/from a zone, adding/removing one or more zones to/from a zone group, forming a bonded or consolidated player, separating one or more playback devices from a bonded or consolidated player, among others.
  • the user interface 133 is configured to receive user input and can facilitate ‘control of the media playback system 100 .
  • the user interface 133 includes media content art 133 a (e.g., album art, lyrics, videos), a playback status indicator 133 b (e.g., an elapsed and/or remaining time indicator), media content information region 133 c , a playback control region 133 d , and a zone indicator 133 e .
  • the media content information region 133 c can include a display of relevant information (e.g., title, artist, album, genre, release year) about media content currently playing and/or media content in a queue or playlist.
  • the playback control region 133 d can include selectable (e.g., via touch input and/or via a cursor or another suitable selector) icons to cause one or more playback devices in a selected playback zone or zone group to perform playback actions such as, for example, play or pause, fast forward, rewind, skip to next, skip to previous, enter/exit shuffle mode, enter/exit repeat mode, enter/exit cross fade mode, etc.
  • the playback control region 133 d may also include selectable icons to modify equalization settings, playback volume, and/or other suitable playback actions.
  • the user interface 133 comprises a display presented on a touch screen interface of a smartphone (e.g., an iPhoneTM, an Android phone). In some embodiments, however, user interfaces of varying formats, styles, and interactive sequences may alternatively be implemented on one or more network devices to provide comparable control access to a media playback system.
  • the one or more speakers 134 can be configured to output sound to the user of the control device 130 a .
  • the one or more speakers comprise individual transducers configured to correspondingly output low frequencies, mid-range frequencies, and/or high frequencies.
  • the control device 130 a is configured as a playback device (e.g., one of the playback devices 110 ).
  • the control device 130 a is configured as an NMD (e.g., one of the NMDs 120 ), receiving voice commands and other sounds via the one or more microphones 135 .
  • the one or more microphones 135 can comprise, for example, one or more condenser microphones, electret condenser microphones, dynamic microphones, and/or other suitable types of microphones or transducers. In some embodiments, two or more of the microphones 135 are arranged to capture location information of an audio source (e.g., voice, audible sound) and/or configured to facilitate filtering of background noise. Moreover, in certain embodiments, the control device 130 a is configured to operate as playback device and an NMD. In other embodiments, however, the control device 130 a omits the one or more speakers 134 and/or the one or more microphones 135 .
  • an audio source e.g., voice, audible sound
  • the control device 130 a is configured to operate as playback device and an NMD. In other embodiments, however, the control device 130 a omits the one or more speakers 134 and/or the one or more microphones 135 .
  • control device 130 a may comprise a device (e.g., a thermostat, an IoT device, a network device) comprising a portion of the electronics 132 and the user interface 133 (e.g., a touch screen) without any speakers or microphones.
  • a device e.g., a thermostat, an IoT device, a network device
  • the user interface 133 e.g., a touch screen
  • a playback device is configured to calibrate itself to account for an acoustic response of a room in which the playback device is located.
  • the playback device performs this self-calibration by leveraging a database that is populated with calibration settings that were determined for a number of other playback devices.
  • the calibration settings stored in the database are determined based on multi-location acoustic responses for the rooms of the other playback devices.
  • FIG. 2A depicts an example environment for using a multi-location acoustic response of a room to determine calibration settings for a playback device.
  • a playback device 210 a and a network device 230 are located in a room 201 a .
  • the playback device 210 a may be similar to any of the playback devices 110 depicted in FIGS. 1A-1E and 1G
  • the network device 230 may be similar to any of the NMDs 120 or controllers 130 depicted in FIGS. 1A-1B and 1F-1H .
  • One or both of the playback device 210 a and the network device 230 are in communication, either directly or indirectly, with a computing device 206 .
  • the computing device 206 may be similar to any of the computing devices 106 depicted in FIG. 1B .
  • the computing device 206 may be a server located remotely from the room 201 a and connected to the playback device 210 a and/or the network device 230 over a wired or wireless communication network.
  • the playback device 210 a outputs audio content via one or more transducers (e.g., one or more speakers and/or speaker drivers) of the playback device 210 a .
  • the audio content is output using a test signal or measurement signal representative of audio content that may be played by the playback device 210 a during regular use by a user.
  • the audio content may include content with frequencies substantially covering a renderable frequency range of the playback device 210 a or a frequency range audible to a human.
  • the audio content is output using an audio signal designed specifically for use when calibrating playback devices such as the playback device 210 a being calibrated in examples discussed herein.
  • the audio content is an audio track that is a favorite of a user of the playback device 210 a , or a commonly played audio track by the playback device 210 a .
  • Other examples are also possible.
  • the network device 230 moves to various locations within the room 201 a .
  • the network device 230 may move between a first physical location and a second physical location within the room 201 a .
  • the first physical location may be the point (a)
  • the second physical location may be the point (b).
  • the network device 230 may traverse locations within the room 201 a where one or more listeners may experience audio playback during regular use of the playback device 210 a .
  • the room 201 a includes a kitchen area and a dining area, and a path 208 between the first physical location (a) and the second physical location (b) covers locations within the kitchen area and dining area where one or more listeners may experience audio playback during regular use of the playback device 210 a.
  • movement of the network device 230 between the first physical location (a) and the second physical location (b) may be performed by a user.
  • a graphical display of the network device 230 may provide an indication to move the network device 230 within the room 201 a .
  • the graphical display may display text, such as “While audio is playing, please move the network device through locations within the playback zone where you or others may enjoy music.” Other examples are also possible.
  • the network device 230 determines a multi-location acoustic response of the room 201 a . To facilitate this, while the network device 230 is moving between physical locations within the room 201 a , the network device 230 captures audio data representing reflections of the audio content output by the playback device 210 a in the room 201 a .
  • the network device 230 may be a mobile device with a built-in microphone (e.g., microphone(s) 115 of network microphone device 120 a ), and the network device 230 may use the built-in microphone to capture the audio data representing reflections of the audio content at multiple locations within the room 201 a.
  • the multi-location acoustic response is an acoustic response of the room 201 a based on the detected audio data representing reflections of the audio content at multiple locations in the room 201 a , such as at the first physical location (a) and the second physical location (b).
  • the multi-location acoustic response may be represented as a spectral response, spatial response, or temporal response, among others.
  • the spectral response may be an indication of how volume of audio sound captured by the microphone varies with frequency within the room 201 a .
  • a power spectral density is an example representation of the spectral response.
  • the spatial response may indicate how the volume of the audio sound captured by the microphone varies with direction and/or spatial position in the room 201 a .
  • the temporal response may be an indication of how audio sound played by the playback device 210 a , e.g., an impulse sound or tone played by the playback device 210 a , changes within the room 201 a .
  • the change may be characterized as a reverberation, delay, decay, or phase change of the audio sound.
  • the responses may be represented in various forms.
  • the spatial response and temporal responses may be represented as room averages.
  • the multi-location acoustic response may be represented as a set of impulse responses or bi-quad filter coefficients representative of the acoustic response, among others. Values of the multi-location acoustic response may be represented in vector or matrix form.
  • Audio played by the playback device 210 a is adjusted based on the multi-location acoustic response of the room 201 a so as to offset or otherwise account for acoustics of the room 201 a indicated by the multi-location acoustic response.
  • the multi-location acoustic response is used to identify calibration settings, which may include determining an audio processing algorithm.
  • U.S. Pat. No. 9,706,323, incorporated by reference above, discloses various audio processing algorithms, which are contemplated herein.
  • determining the audio processing algorithm involves determining an audio processing algorithm that, when applied to the playback device 210 a , causes audio content output by the playback device 210 a in the room 201 a to have a target frequency response. For instance, determining the audio processing algorithm may involve determining frequency responses at the multiple locations traversed by the network device while moving within the room 201 a and determining an audio processing algorithm that adjusts the frequency responses at those locations to more closely reflect target frequency responses. In one example, if one or more of the determined frequency responses has a particular audio frequency that is more attenuated than other frequencies, then determining the audio processing algorithm may involve determining an audio processing algorithm that increases amplification at the particular audio frequency. Other examples are possible as well.
  • the audio processing algorithm takes the form of a filter or equalization.
  • the filter or equalization may be applied by the playback device 210 a (e.g., via audio processing components 112 g ).
  • the filter or equalization may be applied by another playback device, the computing device 206 , and/or the network device 230 , which then provides the processed audio content to the playback device 210 a for output.
  • the filter or equalization may be applied to audio content played by the playback device 210 a until such time that the filter or equalization is changed or is no longer valid for the room 201 a.
  • the audio processing algorithm may be stored in a database of the computing device 206 or may be calculated dynamically.
  • the network device 230 sends to the computing device 206 the detected audio data representing reflections of the audio content at multiple locations in the room 201 a , and receives, from the computing device 206 , the audio processing algorithm after the computing device 206 has determined the audio processing algorithm.
  • the network device 230 determines the audio processing algorithm based on the detected audio data representing reflections of the audio content at multiple locations in the room 201 a.
  • the playback device 210 a concurrently captures audio data at a stationary location for determining a localized acoustic response of the room 201 a .
  • the playback device 210 a may have one or more microphones, which may be fixed in location.
  • the one or more microphones may be co-located in or on the playback device 210 a (e.g., mounted in a housing of the playback device) or be co-located in or on an NMD proximate to the playback device 210 a .
  • the one or more microphones may be oriented in one or more directions.
  • the one or more microphones detect audio data representing reflections of the audio content output by the playback device 210 a in the room 201 a , and this detected audio data is used to determine the localized acoustic response of the room 201 a.
  • the localized acoustic response is an acoustic response of the room 201 a based on the detected audio data representing reflections of the audio content at a stationary location in the room.
  • the stationary location may be at the one or more microphones located on or proximate to the playback device 210 a , but could also be at the microphone of an NMD or a controller device proximate to the playback device 210 a.
  • the localized acoustic response may be represented as a spectral response, spatial response, or temporal response, among others.
  • the spectral response may be an indication of how volume of audio sound captured by the microphone varies with frequency within the room 201 a .
  • a power spectral density is an example representation of the spectral response.
  • the spatial response may indicate how the volume of the audio sound captured by the microphone varies with direction and/or spatial position in the room 201 a .
  • the temporal response may be an indication of how audio sound played by the playback device 210 a , e.g., an impulse sound or tone played by the playback device 210 a , changes within the room 201 a .
  • the change may be characterized as a reverberation, delay, decay, or phase change of the audio sound.
  • the spatial response and temporal response may be represented as averages in some instances.
  • the localized acoustic response may be represented as a set of impulse responses or bi-quad filter coefficients representative of the acoustic response, among others. Values of the localized acoustic response may be represented in vector or matrix form.
  • the localized acoustic response of the room 201 a may be used to determine a set of calibration settings for the playback device 210 a .
  • calibration settings based on a multi-location acoustic response are referred to herein as “multi-location calibration settings,” and calibration settings based on a localized acoustic response are referred to herein as “localized calibration settings.”
  • the localized calibration settings are configured to offset or otherwise account for acoustic characteristics of the room 201 a .
  • the localized calibration settings when applied to the playback device 210 a , cause audio content output by the playback device 210 a in the room 201 a to have a target frequency response. For instance, determining the localized calibration settings may involve determining an audio processing algorithm that adjusts a frequency response detected at or near the playback device 210 a to more closely reflect a target frequency response. In one example, if the detected frequency response has a particular audio frequency that is more attenuated than other frequencies, then determining the localized calibration settings may involve determining an audio processing algorithm that increases amplification at the particular audio frequency. Other examples are possible as well.
  • the localized calibration settings of the room 201 a may be determined in various ways.
  • the playback device 210 a determines the localized acoustic response based on the detected audio data representing audio reflections captured by the playback device 210 a within the room 201 a , and then the playback device 210 a determines the localized calibration settings based on the localized acoustic response of the room 201 a .
  • the playback device 210 a sends the detected audio data to the network device 230 , the network device 230 determines the localized acoustic response based on the detected audio data, and the network device 230 determines the localized calibration settings based on the localized acoustic response.
  • the playback device 210 a or the network device 230 sends the detected audio data to the computing device 206 , and the computing device 206 (or another device connected to the computing device 206 ) determines the localized acoustic response and the localized calibration settings.
  • this data is then provided to a computing device, such as computing device 206 , for storage in a database.
  • a computing device such as computing device 206
  • the network device 230 may send the determined multi-location calibration settings to the computing device 206
  • the playback device 210 a may send the localized acoustic response of the room 201 a to the computing device 206 .
  • the network device 230 or the playback device 210 a sends both the determined multi-location calibration settings and the localized acoustic response of the room 201 a to the computing device 206 .
  • Other examples are possible as well.
  • FIG. 2B depicts an example database 250 for storing both the determined multi-location calibration settings for the playback device 210 a and the localized acoustic response of the room 201 a .
  • the database 250 may be stored on a computing device, such as computing device 206 , located remotely from the playback device 210 a and/or from the network device 230 , or the database 250 may be stored on the playback device 210 a and/or the network device 230 .
  • the database 250 includes a number of records, and each record includes data representing multi-location calibrations settings (identified as “settings 1 ” through “settings 5 ”) for various playback devices as well as room responses (identified as “response 1 ” through “response 5 ”), such as localized acoustic responses, associated with the multi-location calibration settings.
  • the database 250 only depicts five records (numbered 1-5), but in practice should include many more than five records to improve the accuracy of the calibration processes described in further detail below.
  • the computing device 206 When the computing device 206 receives data representing the multi-location calibration settings for the playback device 210 a and data representing the localized acoustic response of the room 201 a , the computing device 206 stores the received data in a record of the database 250 . As an example, the computing device 206 stores the received data in record # 1 of the database 250 , such that “response 1 ” includes data representing the localized acoustic response of the room 201 a , and “settings 1 ” includes data representing the multi-location calibration settings for the playback device 210 a . In some cases, the database 250 also includes data representing respective multi-location acoustic responses associated with the localized acoustic responses and the corresponding multi-location calibration settings.
  • response 1 may include data representing both the localized acoustic response of the room 201 a and the multi-location acoustic response of the room 201 a.
  • the database 250 includes data identifying a type of a playback device associate with each record.
  • Playback device “type” refers to a model or revision of a model, as well as different models that are designed to produce similar audio output (e.g., playback devices with similar components), among other examples.
  • the type of the playback device may be indicated when providing the calibration settings and room response data to the database 250 .
  • the network device 230 and/or the playback device 210 a in addition to the network device 230 and/or the playback device 210 a sending data representing the multi-location calibration settings for the playback device 210 a and data representing the localized acoustic response of the room 201 a to the computing device 206 , the network device 230 and/or the playback device 210 a also sends data representing a type of the playback device 210 a to the computing device.
  • Examples of playback device types offered by Sonos, Inc. include, by way of illustration, various models of playback devices such as a “SONOS ONE,” “PLAY:1,” “PLAY:3,” “PLAY:5,” “PLAYBAR,” “PLAYBASE,” “CONNECT:AMP,” “CONNECT,” and “SUB,” among others.
  • the data identifying the type of the playback device additionally or alternatively includes data identifying a configuration of the playback device.
  • a playback device may be a bonded or paired playback device configured to process and reproduce sound differently than an unbonded or unpaired playback device.
  • the data identifying the type of the playback device 210 a includes data identifying whether the playback device 210 a is in a bonded or paired configuration.
  • the database 250 may be more quickly searched by filtering data based on playback device type, as described in further detail below. However, in some examples, the database 250 does not include data identifying the device type of the playback device associated with each record.
  • Each record of the database 250 corresponds to a historical playback device calibration process in which a particular playback device was calibrated by determining calibration settings based on a multi-location acoustic response, as described above in connection with FIG. 2A .
  • the calibration processes are “historical” in the sense that they relate to multi-location calibration settings and localized acoustic responses determined for rooms with various types of acoustic characteristics previously determined and stored in the database 250 . As additional iterations of the calibration process are performed, the resulting multi-location calibration settings and localized acoustic responses may be added to the database 250 .
  • playback devices may leverage the historical multi-location calibration settings and localized acoustic responses stored in the database 250 in order to self-calibrate to account for the acoustic responses of the rooms in which they are located.
  • a playback device determines a localized acoustic response of a room in which the device is located, and the playback device queries the database 250 to identify a record having a stored acoustic response that is similar to the determined acoustic response. The playback device then applies to itself the multi-location calibration settings stored in the database 250 that are associated with the identified record.
  • Efficacy of the applied calibration settings is influenced by a degree of similarity between the identified stored acoustic response in the database 250 and the determined acoustic response for the playback device being calibrated.
  • the applied calibration settings are more likely to accurately offset or otherwise account for an acoustic response of the room in which the playback device being calibrated is located (e.g., by achieving or approaching a target frequency response in the room, as described above).
  • the applied calibration settings are less likely to accurately account for an acoustic response of the room in which the playback device being calibrated is located.
  • populating the database 250 with records corresponding to a significantly large number of historical calibration processes may be desirable so as to increase the likelihood of the database 250 including acoustic response data similar to an acoustic response of the room of the playback device presently being calibrated.
  • FIG. 2C depicts an example environment in which a playback device 210 b leverages the database 250 to perform a self-calibration process without determining a multi-location acoustic response of its room 201 b.
  • the self-calibration of the playback device 210 b may be initiated when the playback device 210 b is being set up for the first time in the room 201 b , when the playback device 210 b first outputs music or some other audio content, or if the playback device 210 b has been moved to a new location.
  • calibration of the playback device 210 b may be initiated based on a detection of the movement (e.g., via a global positioning system (GPS), one or more accelerometers, or wireless signal strength variations), or based on a user input indicating that the playback device 210 b has moved to a new location (e.g., a change in playback zone name associated with the playback device 210 b ).
  • GPS global positioning system
  • one or more accelerometers e.g., one or more accelerometers, or wireless signal strength variations
  • calibration of the playback device 210 b may be initiated via a controller device, such as the controller device 130 a depicted in FIG. 1H .
  • a controller device such as the controller device 130 a depicted in FIG. 1H .
  • a user may access a controller interface for the playback device 210 b to initiate calibration of the playback device 210 b .
  • the user may access the controller interface, and select the playback device 210 b (or a group of playback devices that includes the playback device 210 b ) for calibration.
  • a calibration interface may be provided as part of a playback device controller interface to allow a user to initiate playback device calibration. Other examples are also possible.
  • calibration of the playback device 210 b is initiated periodically, or after a threshold amount of time has elapsed after a previous calibration, in order to account for changes to the environment of the playback device 210 b .
  • a user may change a layout of the room 201 b (e.g., by adding, removing, or rearranging furniture), thereby altering the acoustic response of the room 201 b .
  • any calibration settings applied to the playback device 210 b before the room 201 b is altered may have a reduced efficacy of accounting for, or offsetting, the altered acoustic response of the room 201 b .
  • Initiating calibration of the playback device 210 b periodically, or after a threshold amount of time has elapsed after a previous calibration, can help address this issue by updating the calibration settings at a later time (i.e., after the room 201 b is altered) so that the calibration settings applied to the playback device 210 b are based on the altered acoustic response of the room 201 b.
  • calibration of the playback device 210 b involves accessing and retrieving calibration settings from the database 250 , as described in further detail below, initiating calibration of the playback device 210 b periodically, or after a threshold amount of time has elapsed after a previous calibration, may further improve a listening experience in the room 201 b by accounting for changes to the database 250 . For instance, as users continue to calibrate various playback devices in various rooms, the database 250 continues to be updated with additional acoustic room responses and corresponding calibration settings.
  • a newly added acoustic response (i.e., an acoustic response that is added to the database 250 after the playback device 210 b has already been calibrated) may more closely resemble the acoustic response of the room 201 b .
  • the calibration settings corresponding to the newly added acoustic response may be applied to the playback device 210 b .
  • the playback device 210 b determines that at least a threshold amount of time has elapsed after the playback device 210 b has been calibrated, and, responsive to making such a determination, the playback device 210 b initiates a calibration process, such as the calibration processes described below.
  • the playback device 210 b When performing the calibration process, the playback device 210 b outputs audio content and determines a localized acoustic response of its room 201 b similarly to how playback device 210 a determined a localized acoustic response of room 201 a .
  • the playback device 210 b outputs audio content, which may include music or one or more predefined tones, captures audio data representing reflections of the audio content within the room 201 b , and determines the localized acoustic response based on the captured audio data.
  • Causing the playback device 210 b to output spectrally rich audio content during the calibration process may yield a more accurate localized acoustic response of the room 201 b .
  • the playback device 210 b may output predefined tones over a range of frequencies for determining the localized acoustic response of the room 201 b .
  • the playback device 210 b may determine the localized acoustic response based on audio data that is captured over an extended period of time.
  • the playback device 210 b may continue to capture audio data representing reflections of the output music within the room 201 b until a threshold amount of data at a threshold amount of frequencies is captured.
  • the playback device 210 b may capture the reflected audio data over the course of multiple songs, for instance, in order for the playback device 210 b to have captured the threshold amount of data at the threshold amount of frequencies.
  • the playback device 210 b gradually learns the localized acoustic response of the room 201 b , and once a threshold confidence in understanding of the localized acoustic response of the room 201 b is met, then the playback device 210 b uses the localized acoustic response of the room 201 b to determine calibration settings for the playback device 210 b , as described in further detail below.
  • the playback device 210 b may output the audio content at various volume levels. For instance, if audio characteristics such as acceptable volume ranges of the playback device 210 b are known, then the playback device 210 b or a controller device, such as the controller 130 a depicted in FIG. 1H , in communication with the playback device 210 b may cause the playback device 210 b to output the audio content at a volume that falls within the acceptable volume range of the playback device 210 b . However, there may be circumstances in which the acceptable volume range of the playback device 210 b is not known.
  • the playback device 210 b may include an amplifier, such as the “CONNECT:AMP,” offered by Sonos, Inc., configured to output audio via connection to external speakers with unknown audio characteristics. Without knowing the audio characteristics of the speakers, the playback device 210 b could damage the speakers by attempting to drive the speakers with too high electrical current.
  • an amplifier such as the “CONNECT:AMP,” offered by Sonos, Inc.
  • the playback device 210 b is configured to apply a limit to the output volume or to the driver current.
  • the limit may be set to a conservative value that is safe for most or virtually all speakers.
  • a user inputs into a controller device, for instance, information identifying or characterizing the speakers of the playback device 210 b .
  • the information may include a manufacturer and/or model number of the speakers, a size of the speakers, a maximum rated current or wattage of the speakers, or any other information that could be used to characterize the audio capabilities of the speakers.
  • the controller uses the input information to set an appropriate output volume of the playback device 210 b .
  • the playback device 210 b is configured to measure an impedance curve of the speakers, and the playback device 210 b or the controller device sets the output volume of the playback device 210 b based on the measured impedance curve.
  • the playback device 210 b varies the volume of the audio content while the playback device 210 b outputs the audio content. In one example, the playback device 210 b outputs the audio content at a first, lower volume and increases the volume of the audio content to a second, higher volume. The increase may be a gradual increase over time (i.e., over a first portion of the time period in which the playback device is outputting the audio content).
  • the playback device 210 b may determine when to stop increasing the volume based on various characteristics, such as a signal-to-noise ratio (SNR) of audio detected by the playback device 210 b while outputting the audio content.
  • SNR signal-to-noise ratio
  • a determined acoustic room response may be more accurate if the audio used for determining the room response has a high SNR.
  • the playback device 210 b uses its microphone to capture audio data representing the output audio content within the room 201 b , and the playback device 210 b determines an SNR of the captured audio data. If the determined SNR is below a threshold SNR, then the playback device 210 b increases the volume of the output audio content.
  • the playback device 210 b continues to increase the volume of the output audio content until the determined SNR exceeds the threshold SNR value. Similarly, in order to avoid outputting excessively loud audio content, in some embodiments the playback device 210 b decreases the volume of the output audio content responsive to determining that the SNR of the captured audio exceeds the threshold SNR value by a predetermined amount.
  • the playback device 210 b uses one or more stationary microphones, which may be disposed in or on a housing of the playback device 210 b or may be co-located in or on an NMD proximate to the playback device 210 b , to capture audio data representing reflections of the audio content in the room 201 b .
  • the playback device 210 b uses the captured audio data to determine the localized acoustic response of the room 201 b .
  • the localized acoustic response may include a spectral response, spatial response, or temporal response, among others, and the localized acoustic response may be represented in vector or matrix form.
  • determining the localized acoustic response of the room 201 b involves accounting for a self-response of the playback device 210 b or of a microphone of the playback device 210 b , for example, by processing the captured audio data representing reflections of the audio content in the room 201 b so that the captured audio data reduces or excludes the playback device's native influence on the audio reflections.
  • the self-response of the playback device 210 b is determined in an anechoic chamber, or is otherwise known based on a self-response of a similar playback device being determined in an anechoic chamber.
  • audio content output by the playback device 210 b is inhibited from reflecting back toward the playback device 210 b , so that audio captured by a microphone of the playback device 210 b is indicative of the self-response of the playback device 210 b or of the microphone of the playback device 210 b .
  • the playback device 210 offsets such a self-response from the captured audio data representing reflections of the first audio content when determining the localized acoustic response of the room 201 b.
  • the playback device 210 b accesses the database 250 to determine a set of calibration settings to account for the acoustic response of the room 201 b . For example, the playback device 210 b establishes a connection with the computing device 206 and with the database 250 of the computing device 206 , and the playback device 210 b queries the database 250 for a stored acoustic room response that corresponds to the determined localized acoustic response of the room 201 b.
  • querying the database 250 involves mapping the determined localized acoustic response of the room 201 b to a particular stored acoustic room response in the database 250 that satisfies a threshold similarity to the localized acoustic response of the room 201 b .
  • This mapping may involve comparing values of the localized acoustic response to values of the stored acoustic room responses and determining which of the stored acoustic room responses are similar to the localized acoustic response.
  • the mapping may involve determining distances between the localized acoustic response vector and the stored acoustic response vectors.
  • the stored acoustic response vector having the smallest distance from the localized acoustic response vector of the room 201 b may be identified as satisfying the threshold similarity.
  • one or more values of the localized acoustic response of the room 201 b may be averaged and compared to corresponding averaged values of the stored acoustic responses of the database 250 .
  • the stored acoustic response having averaged values closest to the averaged values of the localized acoustic response vector of the room 201 b may be identified as satisfying the threshold similarity.
  • Other examples are possible as well.
  • the room 201 b depicted in FIG. 2C and the room 201 a depicted in FIG. 2A are similarly shaped and have similar layouts. Further, the playback device 210 b and the playback device 210 a are arranged in similar positions in their respective rooms. As such, when the localized room response determined by playback device 210 b for room 201 b is compared to the room responses stored in the database 250 , the computing device 206 may determine that the localized room response determined by playback device 210 a for room 201 a has at least a threshold similarity to the localized room response determined by playback device 210 b for room 201 b.
  • querying the database 250 involves querying only a portion of the database 250 .
  • the database 250 may identify a type or configuration of playback device for which each record of the database 250 is generated. Playback devices of the same type or configuration may be more likely to have similar room responses and may be more likely to have compatible calibration settings. Accordingly, in some embodiments, when the playback device 210 b queries the database 250 for comparing the localized acoustic response of the room 201 b to the stored room responses of the database 250 , the playback device 210 b might only compare the localized acoustic response of the room 201 b to stored room responses associated with playback devices of the same type or configuration as the playback device 210 b.
  • the playback device 210 b identifies a set of calibration settings associated with the threshold similar stored acoustic room response. For instance, as shown in FIG. 2B , each stored acoustic room response is included as part of a record that also includes a set of calibration settings designed to account for the room response. As such, the playback device 210 b retrieves, or otherwise obtains from the database 250 , the set of calibration settings that share a record with the threshold similar stored acoustic room response and applies the set of calibration settings to itself.
  • the playback device 210 b After applying the obtained calibration settings to itself, the playback device 210 b outputs, via its one or more transducers, second audio content using the applied calibration settings. Even though the applied calibration settings were determined for a different playback device calibrated in a different room, the localized acoustic response of the room 201 b is similar enough to the stored acoustic response that the second audio content is output in a manner that at least partially accounts for the acoustics of the room 201 b . For instance, with the applied calibration settings, the second audio content output by the playback device 210 b may have a frequency response, at one or more locations in the room 201 b , that is closer to a target frequency response than the first audio content.
  • the playback device 210 b may determine localized calibration settings based on the localized acoustic response. Accordingly, in some examples, before or while querying the database 250 for multi-location calibration settings, the playback device 210 b determines localized calibration settings based on the localized acoustic response of the room 201 b and applies the determined localized calibration settings to itself.
  • the playback device 210 b successfully queries the database 250 for multi-location calibration settings by mapping the determined localized acoustic response of the room 201 b to a particular stored acoustic room response in the database 250 as described above, then the playback device 210 b transitions from applying the localized calibration settings to applying the multi-location calibration settings retrieved from the database 250 .
  • FIG. 3A shows an example embodiment of a method 300 for establishing a database of calibration settings for playback devices
  • FIG. 3B shows an example embodiment of a method 320 for calibrating a playback device using the database established according to method 300
  • Methods 300 and 320 can be implemented by any of the playback devices disclosed and/or described herein, or any other playback device now known or later developed.
  • Various embodiments of methods 300 and 320 include one or more operations, functions, and actions illustrated by blocks 302 through 312 and blocks 322 through 334 . Although the blocks are illustrated in sequential order, these blocks may also be performed in parallel, and/or in a different order than the order disclosed and described herein. Also, the various blocks may be combined into fewer blocks, divided into additional blocks, and/or removed based upon a desired implementation.
  • each block may represent a module, a segment, or a portion of program code, which includes one or more instructions executable by one or more processors for implementing specific logical functions or steps in the process.
  • the program code may be stored on any type of computer readable medium, for example, such as a storage device including a disk or hard drive.
  • the computer readable medium may include non-transitory computer readable media, for example, such as tangible, non-transitory computer-readable media that stores data for short periods of time like register memory, processor cache, and Random Access Memory (RAM).
  • the computer readable medium may also include non-transitory media, such as secondary or persistent long term storage, like read only memory (ROM), optical or magnetic disks, compact-disc read only memory (CD-ROM), for example.
  • the computer readable media may also be any other volatile or non-volatile storage systems.
  • the computer readable medium may be considered a computer readable storage medium, for example, or a tangible storage device.
  • each block in FIGS. 3A and 3B may represent circuitry that is wired to perform the specific logical functions in the process.
  • Method 300 involves populating a database with a plurality of sets of stored audio calibration settings, each set associated with a respective stored acoustic room response of a plurality of stored acoustic room responses.
  • the plurality of sets of stored audio calibration settings and the plurality of stored acoustic room responses are determined based on multiple media playback systems each performing a respective audio calibration process and a respective acoustic room response determination process represented by method 300 .
  • Method 300 begins at block 302 , which involves a respective playback device outputting respective audio content via one or more transducers (e.g., one or more speakers and/or speaker drivers) within a respective room.
  • the audio content may include content with frequencies substantially covering a renderable frequency range of the respective playback device or a frequency range audible to a human.
  • the audio content is output using an audio signal created specifically for use when calibrating playback devices, such as the respective playback device.
  • the audio content is an audio track that is a favorite of a user of the respective playback device, or a commonly played audio track by the respective playback device. Other examples are also possible.
  • method 300 involves, while the respective playback device outputs the respective audio content, capturing, via a microphone of a respective mobile device in communication with the respective playback device, first respective audio data representing reflections of the respective audio content in the respective room while the respective mobile device is moving from a first physical location to a second physical location within the respective room.
  • method 300 involves, while the respective playback device outputs the respective audio content, capturing, via a microphone disposed in a housing of the respective playback device, second respective audio data representing reflections of the respective audio content in the respective room.
  • method 300 involves the respective playback device using the first respective audio data to determine a set of audio calibration settings for the respective playback device.
  • method 300 involves the respective playback device using the second respective audio data to determine an acoustic response of the respective room.
  • method 300 involves storing in the database the determined set of audio calibration settings for the respective playback device as well as the determined acoustic response of the respective room.
  • method 320 involves a playback device using a database that is populated with a plurality of sets of stored audio calibration settings and associated sets of stored acoustic room responses to calibrate the playback device so that the audio output by the playback device accounts for the acoustics of a room in which the playback device is located.
  • the database used in method 320 is populated by a plurality of playback devices performing method 300 .
  • Method 320 begins at block 322 , which involves a playback device outputting first audio content via one or more transducers (e.g., one or more speakers and/or speaker drivers) of the playback device.
  • the first audio content is the same audio content output by the respective playback device at block 302 in method 300 .
  • the first audio content is different than the audio content output by the respective playback device at block 302 in method 300 .
  • the playback device outputting the first audio content involves gradually increasing a volume level of the playback device while outputting the first audio content. Further, in some embodiments, method 320 further involves, while outputting the first audio content, measuring a signal-to-noise ratio of the first audio content to environmental noise in the room in which the playback device is located, and, when the signal-to-noise ratio exceeds a threshold value for calibration, ceasing to increase the volume level of the playback device and continuing to output the first audio content at the current volume level.
  • method 320 involves capturing, via a microphone of the playback device, audio data representing reflections of the first audio content within a room in which the playback device is located.
  • the microphone of the playback device is disposed in or on a housing of the playback device or is co-located in or on an NMD proximate to the playback device.
  • method 320 involves, based on the captured audio data, determining an acoustic response of the room in which the playback device is located.
  • a self-response of the playback device is pre-determined in an anechoic chamber, and determining the acoustic response of the room in which the playback device is located involves offsetting the self-response of the playback device from the captured audio data representing reflections of the first audio content.
  • a self-response of the playback device's microphone is pre-determined in an anechoic chamber, and determining the acoustic response of the room in which the playback device is located involves offsetting the self-response of the microphone from the captured audio data representing reflections of the first audio content.
  • method 320 involves establishing a connection with a database comprising a plurality of sets of stored audio calibration settings, each set associated with a respective stored acoustic room response of a plurality of stored acoustic room responses.
  • the plurality of sets of stored audio calibration settings are determined, in some embodiments, based on multiple media playback systems each performing a respective audio calibration process comprising (i) outputting, via a respective playback device within a respective room that is different from the room in which the playback device is located, respective audio content, (ii) while the respective playback device outputs the respective audio content, capturing, via a microphone of a respective mobile device in communication with the respective playback device, first respective audio data representing reflections of the respective audio content in the respective room while the respective mobile device is moving from a first physical location to a second physical location within the respective room, and (iii) based on the first respective audio data, determining a set of audio calibration settings for the respective playback device.
  • determining the set of audio calibration settings for the respective playback device involves (i) determining audio characteristics of the respective room based on the first respective audio data and (ii) determining respective audio calibration settings for the respective playback device that offset the determined audio characteristics of the respective room.
  • the plurality of stored acoustic room responses are determined based on the multiple media playback systems each performing a respective acoustic room response determination process comprising (i) while the respective playback device outputs the respective audio content, capturing, via a microphone disposed in a housing of the respective playback device, second respective audio data representing reflections of the respective audio content in the respective room, and (ii) based on the second respective audio data, determining an acoustic response of the respective room.
  • method 320 involves querying the database for a stored acoustic room response that corresponds to the determined acoustic response of the room in which the playback device is located.
  • querying the database for the stored acoustic room response involves mapping the acoustic response of the room in which the playback device is located to a particular stored acoustic room response in the database that satisfies a threshold similarity to the acoustic response of the room in which the playback device is located.
  • method 320 involves, responsive to the query, applying to the playback device a particular set of stored audio calibration settings associated with the stored acoustic room response that corresponds to the determined acoustic response of the room in which the playback device is located.
  • method 320 involves outputting, via the one or more transducers of the playback device, second audio content using the particular set of audio calibration settings associated with the stored acoustic room response that corresponds to the determined acoustic response of the room in which the playback device is located.
  • references herein to “embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one example embodiment of an invention.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.
  • the embodiments described herein, explicitly and implicitly understood by one skilled in the art can be combined with other embodiments.
  • At least one of the elements in at least one example is hereby expressly defined to include a tangible, non-transitory medium such as a memory, DVD, CD, Blu-ray, and so on, storing the software and/or firmware.

Abstract

Systems and methods for calibrating a playback device include (i) outputting first audio content; (ii) capturing audio data representing reflections of the first audio content within a room in which the playback device is located; (iii) based on the captured audio data, determining an acoustic response of the room; (iv) connecting to a database comprising a plurality of sets of stored audio calibration settings, each set associated with a respective stored acoustic room response of a plurality of stored acoustic room responses; (v) querying the database for a stored acoustic room response that corresponds to the determined acoustic response of the room in which the playback device is located; and (vi) applying to the playback device a particular set of stored audio calibration settings associated with the stored acoustic room response that corresponds to the determined acoustic response of the room in which the playback device is located.

Description

FIELD OF THE DISCLOSURE
The present disclosure is related to consumer goods and, more particularly, to methods, systems, products, features, services, and other elements directed to media playback or some aspect thereof.
BACKGROUND
Options for accessing and listening to digital audio in an out-loud setting were limited until in 2002, when SONOS, Inc. began development of a new type of playback system. Sonos then filed one of its first patent applications in 2003, entitled “Method for Synchronizing Audio Playback between Multiple Networked Devices,” and began offering its first media playback systems for sale in 2005. The Sonos Wireless Home Sound System enables people to experience music from many sources via one or more networked playback devices. Through a software control application installed on a controller (e.g., smartphone, tablet, computer, voice input device), one can play what she wants in any room having a networked playback device. Media content (e.g., songs, podcasts, video sound) can be streamed to playback devices such that each room with a playback device can play back corresponding different media content. In addition, rooms can be grouped together for synchronous playback of the same media content, and/or the same media content can be heard in all rooms synchronously.
BRIEF DESCRIPTION OF THE DRAWINGS
Features, aspects, and advantages of the presently disclosed technology may be better understood with regard to the following description, appended claims, and accompanying drawings, as listed below. A person skilled in the relevant art will understand that the features shown in the drawings are for purposes of illustrations, and variations, including different and/or additional features and arrangements thereof, are possible.
FIG. 1A is a partial cutaway view of an environment having a media playback system configured in accordance with aspects of the disclosed technology.
FIG. 1B is a schematic diagram of the media playback system of FIG. 1A and one or more networks.
FIG. 1C is a block diagram of a playback device.
FIG. 1D is a block diagram of a playback device.
FIG. 1E is a block diagram of a network microphone device.
FIG. 1F is a block diagram of a network microphone device.
FIG. 1G is a block diagram of a playback device.
FIG. 1H is a partially schematic diagram of a control device.
FIG. 2A is a diagram of a playback environment within which a playback device may be calibrated.
FIG. 2B is a block diagram of a database for storing room response data and corresponding playback device calibration settings.
FIG. 2C is a diagram of a playback environment within which a playback device may be calibrated.
FIG. 3A is a flowchart of a method for populating a database with room response data and corresponding playback device calibration settings.
FIG. 3B is a flowchart of a method for calibrating a playback device using a database populated with room response data and corresponding playback device calibration settings.
The drawings are for the purpose of illustrating example embodiments, but those of ordinary skill in the art will understand that the technology disclosed herein is not limited to the arrangements and/or instrumentality shown in the drawings.
DETAILED DESCRIPTION I. Overview
Any environment has certain acoustic characteristics (“acoustics”) that define how sound travels within that environment. For instance, with a room, the size and shape of the room, as well as objects inside that room, may define the acoustics for that room. For example, angles of walls with respect to a ceiling affect how sound reflects off the wall and the ceiling. As another example, furniture positioning in the room affects how the sound travels in the room. Various types of surfaces within the room may also affect the acoustics of that room; hard surfaces in the room may reflect sound, whereas soft surfaces may absorb sound. Accordingly, calibrating a playback device within a room so that the audio output by the playback device accounts for (e.g., offsets) the acoustics of that room may improve a listening experience in the room.
U.S. Pat. No. 9,706,323 entitled, “Playback Device Calibration,” and U.S. Pat. No. 9,763,018 entitled, “Calibration of Audio Playback Devices,” which are hereby incorporated by reference in their entirety, provide examples of calibrating playback devices to account for the acoustics of a room.
An example calibration process for a media playback system involves a playback device outputting audio content while in a given environment (e.g., a room). The audio content may have predefined spectral content, such as a pink noise, a sweep, or a combination of content. Then, one or more microphone devices detect the outputted audio content at one or more different spatial positions in the room to facilitate determining an acoustic response of the room (also referred to herein as a “room response”).
For example, a mobile device with a microphone, such as a smartphone or tablet (referred to herein as a network device) may be moved to the various locations in the room to detect the audio content. These locations may correspond to those locations where one or more listeners may experience audio playback during regular use (i.e., listening) of the playback device. In this regard, the calibration process involves a user physically moving the network device to various locations in the room to detect the audio content at one or more spatial positions in the room. Given that this acoustic response involves moving the microphone to multiple locations throughout the room, this acoustic response may also be referred to as a “multi-location acoustic response.”
Based on a multi-location acoustic response, the media playback system may identify an audio processing algorithm. For instance, a network device may identify an audio processing algorithm, and transmit to the playback device, data indicating the identified audio processing algorithm. In some examples, the network device identifies an audio processing algorithm that, when applied to the playback device, results in audio content output by the playback device having a target audio characteristic, such as a target frequency response at one or more locations in the room. The network device can identify the audio processing algorithm in various ways. In one case, the network device determines the audio processing algorithm based on the data indicating the detected audio content. In another case, the network device sends, to a computing device such as a server, data indicating the audio content detected at the various locations in the room, and receives, from the computing device, the audio processing algorithm after the server (or another computing device connected to the server) has determined the audio processing algorithm.
In some circumstances, performing a calibration process such as the one described above is not feasible or practical. For example, a listener might not have access to a network device that is capable of or configured for performing such a calibration process. As another example, a listener may choose not to calibrate the playback device because of they find the process of moving the microphone around the room inconvenient or otherwise burdensome.
Disclosed herein are systems and methods to help address these or other issues. In particular, a playback device in an environment is configured to calibrate itself with respect to the environment without using a network device to detect audio content at various locations in the room. To do so, the playback device leverages a database of calibration settings (e.g., audio processing algorithms) that have been generated for other playback devices using a calibration process, such as the process described above. Given a sufficiently large database of calibration settings, the database becomes statistically capable of providing a set of calibration settings that are appropriate for calibrating the playback device to account for the acoustic response of its environment.
In practice, such a database is populated with calibration settings by various playback devices performing a calibration process similar to the process described above. Namely, the database is populated by performing a calibration process for each playback device of a number of playback devices that involves each playback device outputting audio content in a room, moving a network device to various locations in the room to determine a multi-location acoustic response of the room, and determining the calibration settings based on the room's multi-location acoustic response. This process is repeated by a large number of users in a larger number of different rooms, thereby providing a statistically sufficient volume of different room responses and corresponding calibration settings.
Further, a playback device may include its own microphone, which the playback device uses to determine an acoustic response of the room different from the multi-location acoustic response of the room. While the playback device outputs audio content for determining the multi-location acoustic response of the room as described above, the playback device concurrently uses its own microphone to detect reflections of the audio content within the room and determines a different acoustic response of the room based on the detected reflections (as compared with the acoustic response determined based on the reflections detected by a network device). This acoustic response determined by the playback device may be referred to as a “localized acoustic response,” as the acoustic response is determined based on captured audio localized at the playback device, rather than at multiple locations throughout the room via the microphone of the network device. Data representing the localized acoustic response and data representing the calibration settings are then stored in the database and associated with one another. As a result, the database is populated with a number of records, each record corresponding to a respective playback device, and each record including data representing the respective playback device's localized acoustic response and the respective playback device's calibration settings for the localized acoustic response.
Once the database is populated, media playback systems can access the database to determine suitable calibration settings without requiring the use of a network device to first determine a multi-location acoustic response for a room in which the playback device(s) of that system are located. For instance, the playback device determines a localized acoustic response for the room by outputting audio content in the room and using a microphone of the playback device to detect reflections of the audio content within the room. The playback device then queries the database to identify a stored localized acoustic response that is substantially similar to, or that is most similar to, the localized acoustic response determined by the playback device. The playback device then applies to itself the identified calibration settings that are associated in the database with the identified localized acoustic response.
The above playback device calibration process may be initiated at various times and/or in various ways. In some examples, calibration of the playback device is initiated when the playback device is being set up for the first time, when the playback device plays music for the first time, or if the playback device has been moved to a new location. For instance, if the playback device is moved to a new location, calibration of the playback device may be initiated based on a detection of the movement or based on a user input indicating that the playback device has moved to a new location. In some examples, calibration of the playback device is initiated on demand via a controller device. Further, in some examples, calibration of the playback device is initiated periodically, or after a threshold amount of time has elapsed after a previous calibration, in order to account for changes to the environment of the playback device and/or changes to the database of calibration settings.
Accordingly, in some implementations, for example, a playback device outputs first audio content via one or more speakers of the playback device, and the playback device captures audio data representing reflections of the first audio content within a room in which the playback device is located via one or more microphones of the playback device. Based on the captured audio data, the playback device determines an acoustic response of the room in which the playback device is located. Further, the playback device establishes a connection with a database populated with a plurality of sets of stored audio calibration settings, each set associated with a respective stored acoustic room response of a plurality of stored acoustic room responses. The plurality of sets of stored audio calibration settings are determined based on multiple media playback systems each performing a respective audio calibration process, which includes (i) outputting, via a respective playback device within a respective room that is different from the room in which the playback device is located, respective audio content, (ii) while the respective playback device outputs the respective audio content, capturing, via a microphone of a respective network device in communication with the respective playback device, first respective audio data representing reflections of the respective audio content in the respective room while the respective network device is moving from a first physical location to a second physical location within the respective room, and (iii) based on the first respective audio data, determining a set of audio calibration settings for the respective playback device. Additionally, the plurality of stored acoustic room responses are determined based on the multiple media playback systems each performing a respective acoustic room response determination process, which includes (i) while the respective playback device outputs the respective audio content, capturing, via a microphone disposed in a housing of the respective playback device, second respective audio data representing reflections of the respective audio content in the respective room, and (ii) based on the second respective audio data, determining an acoustic response of the respective room. Once the playback device has established a connection with the database, the playback device queries the database for a stored acoustic room response that corresponds to the determined acoustic response of the room in which the playback device is located. Responsive to the query, the playback device applies to itself a particular set of stored audio calibration settings associated with the stored acoustic room response that corresponds to the determined acoustic response of the room in which the playback device is located. The playback device then outputs, via one or more of its speakers, second audio content using the particular set of audio calibration settings associated with the stored acoustic room response that corresponds to the determined acoustic response of the room in which the playback device is located.
While some examples described herein may refer to functions performed by given actors such as “users,” “listeners,” and/or other entities, it should be understood that this is for purposes of explanation only. The claims should not be interpreted to require action by any such example actor unless explicitly required by the language of the claims themselves.
In the Figures, identical reference numbers identify generally similar, and/or identical, elements. To facilitate the discussion of any particular element, the most significant digit or digits of a reference number refers to the Figure in which that element is first introduced. For example, element 110 a is first introduced and discussed with reference to FIG. 1A. Many of the details, dimensions, angles and other features shown in the Figures are merely illustrative of particular embodiments of the disclosed technology. Accordingly, other embodiments can have other details, dimensions, angles and features without departing from the spirit or scope of the disclosure. In addition, those of ordinary skill in the art will appreciate that further embodiments of the various disclosed technologies can be practiced without several of the details described below.
II. Suitable Operating Environment
FIG. 1A is a partial cutaway view of a media playback system 100 distributed in an environment 101 (e.g., a house). The media playback system 100 comprises one or more playback devices 110 (identified individually as playback devices 110 a-n), one or more network microphone devices (“NMDs”) 120 (identified individually as NMDs 120 a-c), and one or more control devices 130 (identified individually as control devices 130 a and 130 b).
As used herein the term “playback device” can generally refer to a network device configured to receive, process, and output data of a media playback system. For example, a playback device can be a network device that receives and processes audio content. In some embodiments, a playback device includes one or more transducers or speakers powered by one or more amplifiers. In other embodiments, however, a playback device includes one of (or neither of) the speaker and the amplifier. For instance, a playback device can comprise one or more amplifiers configured to drive one or more speakers external to the playback device via a corresponding wire or cable.
Moreover, as used herein the term NMD (i.e., a “network microphone device”) can generally refer to a network device that is configured for audio detection. In some embodiments, an NMD is a stand-alone device configured primarily for audio detection. In other embodiments, an NMD is incorporated into a playback device (or vice versa).
The term “control device” can generally refer to a network device configured to perform functions relevant to facilitating user access, control, and/or configuration of the media playback system 100.
Each of the playback devices 110 is configured to receive audio signals or data from one or more media sources (e.g., one or more remote servers, one or more local devices) and play back the received audio signals or data as sound. The one or more NMDs 120 are configured to receive spoken word commands, and the one or more control devices 130 are configured to receive user input. In response to the received spoken word commands and/or user input, the media playback system 100 can play back audio via one or more of the playback devices 110. In certain embodiments, the playback devices 110 are configured to commence playback of media content in response to a trigger. For instance, one or more of the playback devices 110 can be configured to play back a morning playlist upon detection of an associated trigger condition (e.g., presence of a user in a kitchen, detection of a coffee machine operation). In some embodiments, for example, the media playback system 100 is configured to play back audio from a first playback device (e.g., the playback device 100 a) in synchrony with a second playback device (e.g., the playback device 100 b). Interactions between the playback devices 110, NMDs 120, and/or control devices 130 of the media playback system 100 configured in accordance with the various embodiments of the disclosure are described in greater detail below with respect to FIGS. 1B-1H.
In the illustrated embodiment of FIG. 1A, the environment 101 comprises a household having several rooms, spaces, and/or playback zones, including (clockwise from upper left) a master bathroom 101 a, a master bedroom 101 b, a second bedroom 101 c, a family room or den 101 d, an office 101 e, a living room 101 f, a dining room 101 g, a kitchen 101 h, and an outdoor patio 101 i. While certain embodiments and examples are described below in the context of a home environment, the technologies described herein may be implemented in other types of environments. In some embodiments, for example, the media playback system 100 can be implemented in one or more commercial settings (e.g., a restaurant, mall, airport, hotel, a retail or other store), one or more vehicles (e.g., a sports utility vehicle, bus, car, a ship, a boat, an airplane), multiple environments (e.g., a combination of home and vehicle environments), and/or another suitable environment where multi-zone audio may be desirable.
The media playback system 100 can comprise one or more playback zones, some of which may correspond to the rooms in the environment 101. The media playback system 100 can be established with one or more playback zones, after which additional zones may be added, or removed to form, for example, the configuration shown in FIG. 1A. Each zone may be given a name according to a different room or space such as the office 101 e, master bathroom 101 a, master bedroom 101 b, the second bedroom 101 c, kitchen 101 h, dining room 101 g, living room 101 f, and/or the balcony 101 i. In some aspects, a single playback zone may include multiple rooms or spaces. In certain aspects, a single room or space may include multiple playback zones.
In the illustrated embodiment of FIG. 1A, the master bathroom 101 a, the second bedroom 101 c, the office 101 e, the living room 101 f, the dining room 101 g, the kitchen 101 h, and the outdoor patio 101 i each include one playback device 110, and the master bedroom 101 b and the den 101 d include a plurality of playback devices 110. In the master bedroom 101 b, the playback devices 110 l and 110 m may be configured, for example, to play back audio content in synchrony as individual ones of playback devices 110, as a bonded playback zone, as a consolidated playback device, and/or any combination thereof. Similarly, in the den 101 d, the playback devices 110 h-j can be configured, for instance, to play back audio content in synchrony as individual ones of playback devices 110, as one or more bonded playback devices, and/or as one or more consolidated playback devices. Additional details regarding bonded and consolidated playback devices are described below with respect to FIGS. 1B and 1E.
In some aspects, one or more of the playback zones in the environment 101 may each be playing different audio content. For instance, a user may be grilling on the patio 101 i and listening to hip hop music being played by the playback device 110 c while another user is preparing food in the kitchen 101 h and listening to classical music played by the playback device 110 b. In another example, a playback zone may play the same audio content in synchrony with another playback zone. For instance, the user may be in the office 101 e listening to the playback device 110 f playing back the same hip hop music being played back by playback device 110 c on the patio 101 i. In some aspects, the playback devices 110 c and 110 f play back the hip hop music in synchrony such that the user perceives that the audio content is being played seamlessly (or at least substantially seamlessly) while moving between different playback zones. Additional details regarding audio playback synchronization among playback devices and/or zones can be found, for example, in U.S. Pat. No. 8,234,395 entitled, “System and method for synchronizing operations among a plurality of independently clocked digital data processing devices,” which is incorporated herein by reference in its entirety.
a. Suitable Media Playback System
FIG. 1B is a schematic diagram of the media playback system 100 and a cloud network 102. For ease of illustration, certain devices of the media playback system 100 and the cloud network 102 are omitted from FIG. 1B. One or more communication links 103 (referred to hereinafter as “the links 103”) communicatively couple the media playback system 100 and the cloud network 102.
The links 103 can comprise, for example, one or more wired networks, one or more wireless networks, one or more wide area networks (WAN), one or more local area networks (LAN), one or more personal area networks (PAN), one or more telecommunication networks (e.g., one or more Global System for Mobiles (GSM) networks, Code Division Multiple Access (CDMA) networks, Long-Term Evolution (LTE) networks, 5G communication network networks, and/or other suitable data transmission protocol networks), etc. The cloud network 102 is configured to deliver media content (e.g., audio content, video content, photographs, social media content) to the media playback system 100 in response to a request transmitted from the media playback system 100 via the links 103. In some embodiments, the cloud network 102 is further configured to receive data (e.g. voice input data) from the media playback system 100 and correspondingly transmit commands and/or media content to the media playback system 100.
The cloud network 102 comprises computing devices 106 (identified separately as a first computing device 106 a, a second computing device 106 b, and a third computing device 106 c). The computing devices 106 can comprise individual computers or servers, such as, for example, a media streaming service server storing audio and/or other media content, a voice service server, a social media server, a media playback system control server, etc. In some embodiments, one or more of the computing devices 106 comprise modules of a single computer or server. In certain embodiments, one or more of the computing devices 106 comprise one or more modules, computers, and/or servers. Moreover, while the cloud network 102 is described above in the context of a single cloud network, in some embodiments the cloud network 102 comprises a plurality of cloud networks comprising communicatively coupled computing devices. Furthermore, while the cloud network 102 is shown in FIG. 1B as having three of the computing devices 106, in some embodiments, the cloud network 102 comprises fewer (or more than) three computing devices 106.
The media playback system 100 is configured to receive media content from the networks 102 via the links 103. The received media content can comprise, for example, a Uniform Resource Identifier (URI) and/or a Uniform Resource Locator (URL). For instance, in some examples, the media playback system 100 can stream, download, or otherwise obtain data from a URI or a URL corresponding to the received media content. A network 104 communicatively couples the links 103 and at least a portion of the devices (e.g., one or more of the playback devices 110, NMDs 120, and/or control devices 130) of the media playback system 100. The network 104 can include, for example, a wireless network (e.g., a WiFi network, a Bluetooth, a Z-Wave network, a ZigBee, and/or other suitable wireless communication protocol network) and/or a wired network (e.g., a network comprising Ethernet, Universal Serial Bus (USB), and/or another suitable wired communication). As those of ordinary skill in the art will appreciate, as used herein, “WiFi” can refer to several different communication protocols including, for example, Institute of Electrical and Electronics Engineers (IEEE) 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, 802.11ac, 802.11ad, 802.11af, 802.11ah, 802.11ai, 802.11aj, 802.11aq, 802.11ax, 802.11ay, 802.15, etc. transmitted at 2.4 Gigahertz (GHz), 5 GHz, and/or another suitable frequency.
In some embodiments, the network 104 comprises a dedicated communication network that the media playback system 100 uses to transmit messages between individual devices and/or to transmit media content to and from media content sources (e.g., one or more of the computing devices 106). In certain embodiments, the network 104 is configured to be accessible only to devices in the media playback system 100, thereby reducing interference and competition with other household devices. In other embodiments, however, the network 104 comprises an existing household communication network (e.g., a household WiFi network). In some embodiments, the links 103 and the network 104 comprise one or more of the same networks. In some aspects, for example, the links 103 and the network 104 comprise a telecommunication network (e.g., an LTE network, a 5G network). Moreover, in some embodiments, the media playback system 100 is implemented without the network 104, and devices comprising the media playback system 100 can communicate with each other, for example, via one or more direct connections, PANs, telecommunication networks, and/or other suitable communication links.
In some embodiments, audio content sources may be regularly added or removed from the media playback system 100. In some embodiments, for example, the media playback system 100 performs an indexing of media items when one or more media content sources are updated, added to, and/or removed from the media playback system 100. The media playback system 100 can scan identifiable media items in some or all folders and/or directories accessible to the playback devices 110, and generate or update a media content database comprising metadata (e.g., title, artist, album, track length) and other associated information (e.g., URIs, URLs) for each identifiable media item found. In some embodiments, for example, the media content database is stored on one or more of the playback devices 110, network microphone devices 120, and/or control devices 130.
In the illustrated embodiment of FIG. 1B, the playback devices 110 l and 110 m comprise a group 107 a. The playback devices 110 l and 110 m can be positioned in different rooms in a household and be grouped together in the group 107 a on a temporary or permanent basis based on user input received at the control device 130 a and/or another control device 130 in the media playback system 100. When arranged in the group 107 a, the playback devices 110 l and 110 m can be configured to play back the same or similar audio content in synchrony from one or more audio content sources. In certain embodiments, for example, the group 107 a comprises a bonded zone in which the playback devices 110 l and 110 m comprise left audio and right audio channels, respectively, of multi-channel audio content, thereby producing or enhancing a stereo effect of the audio content. In some embodiments, the group 107 a includes additional playback devices 110. In other embodiments, however, the media playback system 100 omits the group 107 a and/or other grouped arrangements of the playback devices 110.
The media playback system 100 includes the NMDs 120 a and 120 d, each comprising one or more microphones configured to receive voice utterances from a user. In the illustrated embodiment of FIG. 1B, the NMD 120 a is a standalone device and the NMD 120 d is integrated into the playback device 110 n. The NMD 120 a, for example, is configured to receive voice input 121 from a user 123. In some embodiments, the NMD 120 a transmits data associated with the received voice input 121 to a voice assistant service (VAS) configured to (i) process the received voice input data and (ii) transmit a corresponding command to the media playback system 100. In some aspects, for example, the computing device 106 c comprises one or more modules and/or servers of a VAS (e.g., a VAS operated by one or more of SONOS®, AMAZON®, GOOGLE® APPLE®, MICROSOFT®). The computing device 106 c can receive the voice input data from the NMD 120 a via the network 104 and the links 103. In response to receiving the voice input data, the computing device 106 c processes the voice input data (i.e., “Play Hey Jude by The Beatles”), and determines that the processed voice input includes a command to play a song (e.g., “Hey Jude”). The computing device 106 c accordingly transmits commands to the media playback system 100 to play back “Hey Jude” by the Beatles from a suitable media service (e.g., via one or more of the computing devices 106) on one or more of the playback devices 110.
b. Suitable Playback Devices
FIG. 1C is a block diagram of the playback device 110 a comprising an input/output 111. The input/output 111 can include an analog I/O 111 a (e.g., one or more wires, cables, and/or other suitable communication links configured to carry analog signals) and/or a digital I/O 111 b (e.g., one or more wires, cables, or other suitable communication links configured to carry digital signals). In some embodiments, the analog I/O 111 a is an audio line-in input connection comprising, for example, an auto-detecting 3.5 mm audio line-in connection. In some embodiments, the digital I/O 111 b comprises a Sony/Philips Digital Interface Format (S/PDIF) communication interface and/or cable and/or a Toshiba Link (TOSLINK) cable. In some embodiments, the digital I/O 111 b comprises an High-Definition Multimedia Interface (HDMI) interface and/or cable. In some embodiments, the digital I/O 111 b includes one or more wireless communication links comprising, for example, a radio frequency (RF), infrared, WiFi, Bluetooth, or another suitable communication protocol. In certain embodiments, the analog I/O 111 a and the digital 111 b comprise interfaces (e.g., ports, plugs, jacks) configured to receive connectors of cables transmitting analog and digital signals, respectively, without necessarily including cables.
The playback device 110 a, for example, can receive media content (e.g., audio content comprising music and/or other sounds) from a local audio source 105 via the input/output 111 (e.g., a cable, a wire, a PAN, a Bluetooth connection, an ad hoc wired or wireless communication network, and/or another suitable communication link). The local audio source 105 can comprise, for example, a mobile device (e.g., a smartphone, a tablet, a laptop computer) or another suitable audio component (e.g., a television, a desktop computer, an amplifier, a phonograph, a Blu-ray player, a memory storing digital media files). In some aspects, the local audio source 105 includes local music libraries on a smartphone, a computer, a networked-attached storage (NAS), and/or another suitable device configured to store media files. In certain embodiments, one or more of the playback devices 110, NMDs 120, and/or control devices 130 comprise the local audio source 105. In other embodiments, however, the media playback system omits the local audio source 105 altogether. In some embodiments, the playback device 110 a does not include an input/output 111 and receives all audio content via the network 104.
The playback device 110 a further comprises electronics 112, a user interface 113 (e.g., one or more buttons, knobs, dials, touch-sensitive surfaces, displays, touchscreens), and one or more transducers 114 (referred to hereinafter as “the transducers 114”). The electronics 112 is configured to receive audio from an audio source (e.g., the local audio source 105) via the input/output 111, one or more of the computing devices 106 a-c via the network 104 (FIG. 1B)), amplify the received audio, and output the amplified audio for playback via one or more of the transducers 114. In some embodiments, the playback device 110 a optionally includes one or more microphones 115 (e.g., a single microphone, a plurality of microphones, a microphone array) (hereinafter referred to as “the microphones 115”). In certain embodiments, for example, the playback device 110 a having one or more of the optional microphones 115 can operate as an NMD configured to receive voice input from a user and correspondingly perform one or more operations based on the received voice input.
In the illustrated embodiment of FIG. 1C, the electronics 112 comprise one or more processors 112 a (referred to hereinafter as “the processors 112 a”), memory 112 b, software components 112 c, a network interface 112 d, one or more audio processing components 112 g (referred to hereinafter as “the audio components 112 g”), one or more audio amplifiers 112 h (referred to hereinafter as “the amplifiers 112 h”), and power 112 i (e.g., one or more power supplies, power cables, power receptacles, batteries, induction coils, Power-over Ethernet (POE) interfaces, and/or other suitable sources of electric power). In some embodiments, the electronics 112 optionally include one or more other components 112 j (e.g., one or more sensors, video displays, touchscreens, battery charging bases).
The processors 112 a can comprise clock-driven computing component(s) configured to process data, and the memory 112 b can comprise a computer-readable medium (e.g., a tangible, non-transitory computer-readable medium, data storage loaded with one or more of the software components 112 c) configured to store instructions for performing various operations and/or functions. The processors 112 a are configured to execute the instructions stored on the memory 112 b to perform one or more of the operations. The operations can include, for example, causing the playback device 110 a to retrieve audio data from an audio source (e.g., one or more of the computing devices 106 a-c (FIG. 1B)), and/or another one of the playback devices 110. In some embodiments, the operations further include causing the playback device 110 a to send audio data to another one of the playback devices 110 a and/or another device (e.g., one of the NMDs 120). Certain embodiments include operations causing the playback device 110 a to pair with another of the one or more playback devices 110 to enable a multi-channel audio environment (e.g., a stereo pair, a bonded zone).
The processors 112 a can be further configured to perform operations causing the playback device 110 a to synchronize playback of audio content with another of the one or more playback devices 110. As those of ordinary skill in the art will appreciate, during synchronous playback of audio content on a plurality of playback devices, a listener will preferably be unable to perceive time-delay differences between playback of the audio content by the playback device 110 a and the other one or more other playback devices 110. Additional details regarding audio playback synchronization among playback devices can be found, for example, in U.S. Pat. No. 8,234,395, which was incorporated by reference above.
In some embodiments, the memory 112 b is further configured to store data associated with the playback device 110 a, such as one or more zones and/or zone groups of which the playback device 110 a is a member, audio sources accessible to the playback device 110 a, and/or a playback queue that the playback device 110 a (and/or another of the one or more playback devices) can be associated with. The stored data can comprise one or more state variables that are periodically updated and used to describe a state of the playback device 110 a. The memory 112 b can also include data associated with a state of one or more of the other devices (e.g., the playback devices 110, NMDs 120, control devices 130) of the media playback system 100. In some aspects, for example, the state data is shared during predetermined intervals of time (e.g., every 5 seconds, every 10 seconds, every 60 seconds) among at least a portion of the devices of the media playback system 100, so that one or more of the devices have the most recent data associated with the media playback system 100.
The network interface 112 d is configured to facilitate a transmission of data between the playback device 110 a and one or more other devices on a data network such as, for example, the links 103 and/or the network 104 (FIG. 1B). The network interface 112 d is configured to transmit and receive data corresponding to media content (e.g., audio content, video content, text, photographs) and other signals (e.g., non-transitory signals) comprising digital packet data including an Internet Protocol (IP)-based source address and/or an IP-based destination address. The network interface 112 d can parse the digital packet data such that the electronics 112 properly receives and processes the data destined for the playback device 110 a.
In the illustrated embodiment of FIG. 1C, the network interface 112 d comprises one or more wireless interfaces 112 e (referred to hereinafter as “the wireless interface 112 e”). The wireless interface 112 e (e.g., a suitable interface comprising one or more antennae) can be configured to wirelessly communicate with one or more other devices (e.g., one or more of the other playback devices 110, NMDs 120, and/or control devices 130) that are communicatively coupled to the network 104 (FIG. 1B) in accordance with a suitable wireless communication protocol (e.g., WiFi, Bluetooth, LTE). In some embodiments, the network interface 112 d optionally includes a wired interface 112 f (e.g., an interface or receptacle configured to receive a network cable such as an Ethernet, a USB-A, USB-C, and/or Thunderbolt cable) configured to communicate over a wired connection with other devices in accordance with a suitable wired communication protocol. In certain embodiments, the network interface 112 d includes the wired interface 112 f and excludes the wireless interface 112 e. In some embodiments, the electronics 112 excludes the network interface 112 d altogether and transmits and receives media content and/or other data via another communication path (e.g., the input/output 111).
The audio components 112 g are configured to process and/or filter data comprising media content received by the electronics 112 (e.g., via the input/output 111 and/or the network interface 112 d) to produce output audio signals. In some embodiments, the audio processing components 112 g comprise, for example, one or more digital-to-analog converters (DAC), audio preprocessing components, audio enhancement components, a digital signal processors (DSPs), and/or other suitable audio processing components, modules, circuits, etc. In certain embodiments, one or more of the audio processing components 112 g can comprise one or more subcomponents of the processors 112 a. In some embodiments, the electronics 112 omits the audio processing components 112 g. In some aspects, for example, the processors 112 a execute instructions stored on the memory 112 b to perform audio processing operations to produce the output audio signals.
The amplifiers 112 h are configured to receive and amplify the audio output signals produced by the audio processing components 112 g and/or the processors 112 a. The amplifiers 112 h can comprise electronic devices and/or components configured to amplify audio signals to levels sufficient for driving one or more of the transducers 114. In some embodiments, for example, the amplifiers 112 h include one or more switching or class-D power amplifiers. In other embodiments, however, the amplifiers include one or more other types of power amplifiers (e.g., linear gain power amplifiers, class-A amplifiers, class-B amplifiers, class-AB amplifiers, class-C amplifiers, class-D amplifiers, class-E amplifiers, class-F amplifiers, class-G and/or class H amplifiers, and/or another suitable type of power amplifier). In certain embodiments, the amplifiers 112 h comprise a suitable combination of two or more of the foregoing types of power amplifiers. Moreover, in some embodiments, individual ones of the amplifiers 112 h correspond to individual ones of the transducers 114. In other embodiments, however, the electronics 112 includes a single one of the amplifiers 112 h configured to output amplified audio signals to a plurality of the transducers 114. In some other embodiments, the electronics 112 omits the amplifiers 112 h.
The transducers 114 (e.g., one or more speakers and/or speaker drivers) receive the amplified audio signals from the amplifier 112 h and render or output the amplified audio signals as sound (e.g., audible sound waves having a frequency between about 20 Hertz (Hz) and 20 kilohertz (kHz)). In some embodiments, the transducers 114 can comprise a single transducer. In other embodiments, however, the transducers 114 comprise a plurality of audio transducers. In some embodiments, the transducers 114 comprise more than one type of transducer. For example, the transducers 114 can include one or more low frequency transducers (e.g., subwoofers, woofers), mid-range frequency transducers (e.g., mid-range transducers, mid-woofers), and one or more high frequency transducers (e.g., one or more tweeters). As used herein, “low frequency” can generally refer to audible frequencies below about 500 Hz, “mid-range frequency” can generally refer to audible frequencies between about 500 Hz and about 2 kHz, and “high frequency” can generally refer to audible frequencies above 2 kHz. In certain embodiments, however, one or more of the transducers 114 comprise transducers that do not adhere to the foregoing frequency ranges. For example, one of the transducers 114 may comprise a mid-woofer transducer configured to output sound at frequencies between about 200 Hz and about 5 kHz.
By way of illustration, SONOS, Inc. presently offers (or has offered) for sale certain playback devices including, for example, a “SONOS ONE,” “PLAY:1,” “PLAY:3,” “PLAY:5,” “PLAYBAR,” “PLAYBASE,” “CONNECT:AMP,” “CONNECT,” and “SUB.” Other suitable playback devices may additionally or alternatively be used to implement the playback devices of example embodiments disclosed herein. Additionally, one of ordinary skilled in the art will appreciate that a playback device is not limited to the examples described herein or to SONOS product offerings. In some embodiments, for example, one or more playback devices 110 comprises wired or wireless headphones (e.g., over-the-ear headphones, on-ear headphones, in-ear earphones). In other embodiments, one or more of the playback devices 110 comprise a docking station and/or an interface configured to interact with a docking station for personal mobile media playback devices. In certain embodiments, a playback device may be integral to another device or component such as a television, a lighting fixture, or some other device for indoor or outdoor use. In some embodiments, a playback device omits a user interface and/or one or more transducers. For example, FIG. 1D is a block diagram of a playback device 110 p comprising the input/output 111 and electronics 112 without the user interface 113 or transducers 114.
FIG. 1E is a block diagram of a bonded playback device 110 q comprising the playback device 110 a (FIG. 1C) sonically bonded with the playback device 110 i (e.g., a subwoofer) (FIG. 1A). In the illustrated embodiment, the playback devices 110 a and 110 i are separate ones of the playback devices 110 housed in separate enclosures. In some embodiments, however, the bonded playback device 110 q comprises a single enclosure housing both the playback devices 110 a and 110 i. The bonded playback device 110 q can be configured to process and reproduce sound differently than an unbonded playback device (e.g., the playback device 110 a of FIG. 1C) and/or paired or bonded playback devices (e.g., the playback devices 110 l and 110 m of FIG. 1B). In some embodiments, for example, the playback device 110 a is full-range playback device configured to render low frequency, mid-range frequency, and high frequency audio content, and the playback device 110 i is a subwoofer configured to render low frequency audio content. In some aspects, the playback device 110 a, when bonded with the first playback device, is configured to render only the mid-range and high frequency components of a particular audio content, while the playback device 110 i renders the low frequency component of the particular audio content. In some embodiments, the bonded playback device 110 q includes additional playback devices and/or another bonded playback device.
c. Suitable Network Microphone Devices (NMDs)
FIG. 1F is a block diagram of the NMD 120 a (FIGS. 1A and 1B). The NMD 120 a includes one or more voice processing components 124 (hereinafter “the voice components 124”) and several components described with respect to the playback device 110 a (FIG. 1C) including the processors 112 a, the memory 112 b, and the microphones 115. The NMD 120 a optionally comprises other components also included in the playback device 110 a (FIG. 1C), such as the user interface 113 and/or the transducers 114. In some embodiments, the NMD 120 a is configured as a media playback device (e.g., one or more of the playback devices 110), and further includes, for example, one or more of the audio components 112 g (FIG. 1C), the amplifiers 114, and/or other playback device components. In certain embodiments, the NMD 120 a comprises an Internet of Things (IoT) device such as, for example, a thermostat, alarm panel, fire and/or smoke detector, etc. In some embodiments, the NMD 120 a comprises the microphones 115, the voice processing 124, and only a portion of the components of the electronics 112 described above with respect to FIG. 1B. In some aspects, for example, the NMD 120 a includes the processor 112 a and the memory 112 b (FIG. 1B), while omitting one or more other components of the electronics 112. In some embodiments, the NMD 120 a includes additional components (e.g., one or more sensors, cameras, thermometers, barometers, hygrometers).
In some embodiments, an NMD can be integrated into a playback device. FIG. 1G is a block diagram of a playback device 110 r comprising an NMD 120 d. The playback device 110 r can comprise many or all of the components of the playback device 110 a and further include the microphones 115 and voice processing 124 (FIG. 1F). The playback device 110 r optionally includes an integrated control device 130 c. The control device 130 c can comprise, for example, a user interface (e.g., the user interface 113 of FIG. 1B) configured to receive user input (e.g., touch input, voice input) without a separate control device. In other embodiments, however, the playback device 110 r receives commands from another control device (e.g., the control device 130 a of FIG. 1B).
Referring again to FIG. 1F, the microphones 115 are configured to acquire, capture, and/or receive sound from an environment (e.g., the environment 101 of FIG. 1A) and/or a room in which the NMD 120 a is positioned. The received sound can include, for example, vocal utterances, audio played back by the NMD 120 a and/or another playback device, background voices, ambient sounds, etc. The microphones 115 convert the received sound into electrical signals to produce microphone data. The voice processing 124 receives and analyzes the microphone data to determine whether a voice input is present in the microphone data. The voice input can comprise, for example, an activation word followed by an utterance including a user request. As those of ordinary skill in the art will appreciate, an activation word is a word or other audio cue that signifying a user voice input. For instance, in querying the AMAZON® VAS, a user might speak the activation word “Alexa.” Other examples include “Ok, Google” for invoking the GOOGLE® VAS and “Hey, Siri” for invoking the APPLE® VAS.
After detecting the activation word, voice processing 124 monitors the microphone data for an accompanying user request in the voice input. The user request may include, for example, a command to control a third-party device, such as a thermostat (e.g., NEST® thermostat), an illumination device (e.g., a PHILIPS HUE® lighting device), or a media playback device (e.g., a Sonos® playback device). For example, a user might speak the activation word “Alexa” followed by the utterance “set the thermostat to 68 degrees” to set a temperature in a home (e.g., the environment 101 of FIG. 1A). The user might speak the same activation word followed by the utterance “turn on the living room” to turn on illumination devices in a living room area of the home. The user may similarly speak an activation word followed by a request to play a particular song, an album, or a playlist of music on a playback device in the home.
d. Suitable Control Devices
FIG. 1H is a partially schematic diagram of the control device 130 a (FIGS. 1A and 1B). As used herein, the term “control device” can be used interchangeably with “controller” or “control system.” Among other features, the control device 130 a is configured to receive user input related to the media playback system 100 and, in response, cause one or more devices in the media playback system 100 to perform an action(s) or operation(s) corresponding to the user input. In the illustrated embodiment, the control device 130 a comprises a smartphone (e.g., an iPhone™, an Android phone) on which media playback system controller application software is installed. In some embodiments, the control device 130 a comprises, for example, a tablet (e.g., an iPad™), a computer (e.g., a laptop computer, a desktop computer), and/or another suitable device (e.g., a television, an automobile audio head unit, an IoT device). In certain embodiments, the control device 130 a comprises a dedicated controller for the media playback system 100. In other embodiments, as described above with respect to FIG. 1G, the control device 130 a is integrated into another device in the media playback system 100 (e.g., one more of the playback devices 110, NMDs 120, and/or other suitable devices configured to communicate over a network).
The control device 130 a includes electronics 132, a user interface 133, one or more speakers 134, and one or more microphones 135. The electronics 132 comprise one or more processors 132 a (referred to hereinafter as “the processors 132 a”), a memory 132 b, software components 132 c, and a network interface 132 d. The processor 132 a can be configured to perform functions relevant to facilitating user access, control, and configuration of the media playback system 100. The memory 132 b can comprise data storage that can be loaded with one or more of the software components executable by the processor 132 a to perform those functions. The software components 132 c can comprise applications and/or other executable software configured to facilitate control of the media playback system 100. The memory 112 b can be configured to store, for example, the software components 132 c, media playback system controller application software, and/or other data associated with the media playback system 100 and the user.
The network interface 132 d is configured to facilitate network communications between the control device 130 a and one or more other devices in the media playback system 100, and/or one or more remote devices. In some embodiments, the network interface 132 is configured to operate according to one or more suitable communication industry standards (e.g., infrared, radio, wired standards including IEEE 802.3, wireless standards including IEEE 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, 802.15, 4G, LTE). The network interface 132 d can be configured, for example, to transmit data to and/or receive data from the playback devices 110, the NMDs 120, other ones of the control devices 130, one of the computing devices 106 of FIG. 1B, devices comprising one or more other media playback systems, etc. The transmitted and/or received data can include, for example, playback device control commands, state variables, playback zone and/or zone group configurations. For instance, based on user input received at the user interface 133, the network interface 132 d can transmit a playback device control command (e.g., volume control, audio playback control, audio content selection) from the control device 130 a to one or more of the playback devices 100. The network interface 132 d can also transmit and/or receive configuration changes such as, for example, adding/removing one or more playback devices 100 to/from a zone, adding/removing one or more zones to/from a zone group, forming a bonded or consolidated player, separating one or more playback devices from a bonded or consolidated player, among others.
The user interface 133 is configured to receive user input and can facilitate ‘control of the media playback system 100. The user interface 133 includes media content art 133 a (e.g., album art, lyrics, videos), a playback status indicator 133 b (e.g., an elapsed and/or remaining time indicator), media content information region 133 c, a playback control region 133 d, and a zone indicator 133 e. The media content information region 133 c can include a display of relevant information (e.g., title, artist, album, genre, release year) about media content currently playing and/or media content in a queue or playlist. The playback control region 133 d can include selectable (e.g., via touch input and/or via a cursor or another suitable selector) icons to cause one or more playback devices in a selected playback zone or zone group to perform playback actions such as, for example, play or pause, fast forward, rewind, skip to next, skip to previous, enter/exit shuffle mode, enter/exit repeat mode, enter/exit cross fade mode, etc. The playback control region 133 d may also include selectable icons to modify equalization settings, playback volume, and/or other suitable playback actions. In the illustrated embodiment, the user interface 133 comprises a display presented on a touch screen interface of a smartphone (e.g., an iPhone™, an Android phone). In some embodiments, however, user interfaces of varying formats, styles, and interactive sequences may alternatively be implemented on one or more network devices to provide comparable control access to a media playback system.
The one or more speakers 134 (e.g., one or more transducers) can be configured to output sound to the user of the control device 130 a. In some embodiments, the one or more speakers comprise individual transducers configured to correspondingly output low frequencies, mid-range frequencies, and/or high frequencies. In some aspects, for example, the control device 130 a is configured as a playback device (e.g., one of the playback devices 110). Similarly, in some embodiments the control device 130 a is configured as an NMD (e.g., one of the NMDs 120), receiving voice commands and other sounds via the one or more microphones 135.
The one or more microphones 135 can comprise, for example, one or more condenser microphones, electret condenser microphones, dynamic microphones, and/or other suitable types of microphones or transducers. In some embodiments, two or more of the microphones 135 are arranged to capture location information of an audio source (e.g., voice, audible sound) and/or configured to facilitate filtering of background noise. Moreover, in certain embodiments, the control device 130 a is configured to operate as playback device and an NMD. In other embodiments, however, the control device 130 a omits the one or more speakers 134 and/or the one or more microphones 135. For instance, the control device 130 a may comprise a device (e.g., a thermostat, an IoT device, a network device) comprising a portion of the electronics 132 and the user interface 133 (e.g., a touch screen) without any speakers or microphones.
III. Example Systems and Methods for Calibrating a Playback Device
As discussed above, in some examples, a playback device is configured to calibrate itself to account for an acoustic response of a room in which the playback device is located. The playback device performs this self-calibration by leveraging a database that is populated with calibration settings that were determined for a number of other playback devices. In some embodiments, the calibration settings stored in the database are determined based on multi-location acoustic responses for the rooms of the other playback devices.
FIG. 2A depicts an example environment for using a multi-location acoustic response of a room to determine calibration settings for a playback device. As shown in FIG. 2A, a playback device 210 a and a network device 230 are located in a room 201 a. The playback device 210 a may be similar to any of the playback devices 110 depicted in FIGS. 1A-1E and 1G, and the network device 230 may be similar to any of the NMDs 120 or controllers 130 depicted in FIGS. 1A-1B and 1F-1H. One or both of the playback device 210 a and the network device 230 are in communication, either directly or indirectly, with a computing device 206. The computing device 206 may be similar to any of the computing devices 106 depicted in FIG. 1B. For instance, the computing device 206 may be a server located remotely from the room 201 a and connected to the playback device 210 a and/or the network device 230 over a wired or wireless communication network.
In practice, the playback device 210 a outputs audio content via one or more transducers (e.g., one or more speakers and/or speaker drivers) of the playback device 210 a. In one example, the audio content is output using a test signal or measurement signal representative of audio content that may be played by the playback device 210 a during regular use by a user. Accordingly, the audio content may include content with frequencies substantially covering a renderable frequency range of the playback device 210 a or a frequency range audible to a human. In one case, the audio content is output using an audio signal designed specifically for use when calibrating playback devices such as the playback device 210 a being calibrated in examples discussed herein. In another case, the audio content is an audio track that is a favorite of a user of the playback device 210 a, or a commonly played audio track by the playback device 210 a. Other examples are also possible.
While the playback device 210 a outputs the audio content, the network device 230 moves to various locations within the room 201 a. For instance, the network device 230 may move between a first physical location and a second physical location within the room 201 a. As shown in FIG. 2A, the first physical location may be the point (a), and the second physical location may be the point (b). While moving from the first physical location (a) to the second physical location (b), the network device 230 may traverse locations within the room 201 a where one or more listeners may experience audio playback during regular use of the playback device 210 a. For instance, as shown, the room 201 a includes a kitchen area and a dining area, and a path 208 between the first physical location (a) and the second physical location (b) covers locations within the kitchen area and dining area where one or more listeners may experience audio playback during regular use of the playback device 210 a.
In some examples, movement of the network device 230 between the first physical location (a) and the second physical location (b) may be performed by a user. In one case, a graphical display of the network device 230 may provide an indication to move the network device 230 within the room 201 a. For instance, the graphical display may display text, such as “While audio is playing, please move the network device through locations within the playback zone where you or others may enjoy music.” Other examples are also possible.
The network device 230 determines a multi-location acoustic response of the room 201 a. To facilitate this, while the network device 230 is moving between physical locations within the room 201 a, the network device 230 captures audio data representing reflections of the audio content output by the playback device 210 a in the room 201 a. For instance, the network device 230 may be a mobile device with a built-in microphone (e.g., microphone(s) 115 of network microphone device 120 a), and the network device 230 may use the built-in microphone to capture the audio data representing reflections of the audio content at multiple locations within the room 201 a.
The multi-location acoustic response is an acoustic response of the room 201 a based on the detected audio data representing reflections of the audio content at multiple locations in the room 201 a, such as at the first physical location (a) and the second physical location (b). The multi-location acoustic response may be represented as a spectral response, spatial response, or temporal response, among others. The spectral response may be an indication of how volume of audio sound captured by the microphone varies with frequency within the room 201 a. A power spectral density is an example representation of the spectral response. The spatial response may indicate how the volume of the audio sound captured by the microphone varies with direction and/or spatial position in the room 201 a. The temporal response may be an indication of how audio sound played by the playback device 210 a, e.g., an impulse sound or tone played by the playback device 210 a, changes within the room 201 a. The change may be characterized as a reverberation, delay, decay, or phase change of the audio sound.
The responses may be represented in various forms. For instance, the spatial response and temporal responses may be represented as room averages. Additionally, or alternatively, the multi-location acoustic response may be represented as a set of impulse responses or bi-quad filter coefficients representative of the acoustic response, among others. Values of the multi-location acoustic response may be represented in vector or matrix form.
Audio played by the playback device 210 a is adjusted based on the multi-location acoustic response of the room 201 a so as to offset or otherwise account for acoustics of the room 201 a indicated by the multi-location acoustic response. In particular, the multi-location acoustic response is used to identify calibration settings, which may include determining an audio processing algorithm. U.S. Pat. No. 9,706,323, incorporated by reference above, discloses various audio processing algorithms, which are contemplated herein.
In some examples, determining the audio processing algorithm involves determining an audio processing algorithm that, when applied to the playback device 210 a, causes audio content output by the playback device 210 a in the room 201 a to have a target frequency response. For instance, determining the audio processing algorithm may involve determining frequency responses at the multiple locations traversed by the network device while moving within the room 201 a and determining an audio processing algorithm that adjusts the frequency responses at those locations to more closely reflect target frequency responses. In one example, if one or more of the determined frequency responses has a particular audio frequency that is more attenuated than other frequencies, then determining the audio processing algorithm may involve determining an audio processing algorithm that increases amplification at the particular audio frequency. Other examples are possible as well.
In some examples, the audio processing algorithm takes the form of a filter or equalization. The filter or equalization may be applied by the playback device 210 a (e.g., via audio processing components 112 g). Alternatively, the filter or equalization may be applied by another playback device, the computing device 206, and/or the network device 230, which then provides the processed audio content to the playback device 210 a for output. The filter or equalization may be applied to audio content played by the playback device 210 a until such time that the filter or equalization is changed or is no longer valid for the room 201 a.
The audio processing algorithm may be stored in a database of the computing device 206 or may be calculated dynamically. For instance, in some examples, the network device 230 sends to the computing device 206 the detected audio data representing reflections of the audio content at multiple locations in the room 201 a, and receives, from the computing device 206, the audio processing algorithm after the computing device 206 has determined the audio processing algorithm. In other examples, the network device 230 determines the audio processing algorithm based on the detected audio data representing reflections of the audio content at multiple locations in the room 201 a.
Further, while the network device 230 captures audio data at multiple locations in the room 201 a for determining the multi-location acoustic response of the room 201 a, the playback device 210 a concurrently captures audio data at a stationary location for determining a localized acoustic response of the room 201 a. To facilitate this, the playback device 210 a may have one or more microphones, which may be fixed in location. For example, the one or more microphones may be co-located in or on the playback device 210 a (e.g., mounted in a housing of the playback device) or be co-located in or on an NMD proximate to the playback device 210 a. Additionally, the one or more microphones may be oriented in one or more directions. The one or more microphones detect audio data representing reflections of the audio content output by the playback device 210 a in the room 201 a, and this detected audio data is used to determine the localized acoustic response of the room 201 a.
The localized acoustic response is an acoustic response of the room 201 a based on the detected audio data representing reflections of the audio content at a stationary location in the room. The stationary location may be at the one or more microphones located on or proximate to the playback device 210 a, but could also be at the microphone of an NMD or a controller device proximate to the playback device 210 a.
The localized acoustic response may be represented as a spectral response, spatial response, or temporal response, among others. The spectral response may be an indication of how volume of audio sound captured by the microphone varies with frequency within the room 201 a. A power spectral density is an example representation of the spectral response. The spatial response may indicate how the volume of the audio sound captured by the microphone varies with direction and/or spatial position in the room 201 a. The temporal response may be an indication of how audio sound played by the playback device 210 a, e.g., an impulse sound or tone played by the playback device 210 a, changes within the room 201 a. The change may be characterized as a reverberation, delay, decay, or phase change of the audio sound. The spatial response and temporal response may be represented as averages in some instances. Additionally, or alternatively, the localized acoustic response may be represented as a set of impulse responses or bi-quad filter coefficients representative of the acoustic response, among others. Values of the localized acoustic response may be represented in vector or matrix form.
Similar to the multi-location acoustic response, the localized acoustic response of the room 201 a may be used to determine a set of calibration settings for the playback device 210 a. As such, calibration settings based on a multi-location acoustic response are referred to herein as “multi-location calibration settings,” and calibration settings based on a localized acoustic response are referred to herein as “localized calibration settings.” Further, like the multi-location calibration settings, the localized calibration settings are configured to offset or otherwise account for acoustic characteristics of the room 201 a. In some examples, the localized calibration settings, when applied to the playback device 210 a, cause audio content output by the playback device 210 a in the room 201 a to have a target frequency response. For instance, determining the localized calibration settings may involve determining an audio processing algorithm that adjusts a frequency response detected at or near the playback device 210 a to more closely reflect a target frequency response. In one example, if the detected frequency response has a particular audio frequency that is more attenuated than other frequencies, then determining the localized calibration settings may involve determining an audio processing algorithm that increases amplification at the particular audio frequency. Other examples are possible as well.
Like the multi-location calibration settings, the localized calibration settings of the room 201 a may be determined in various ways. In one case, the playback device 210 a determines the localized acoustic response based on the detected audio data representing audio reflections captured by the playback device 210 a within the room 201 a, and then the playback device 210 a determines the localized calibration settings based on the localized acoustic response of the room 201 a. In another case, the playback device 210 a sends the detected audio data to the network device 230, the network device 230 determines the localized acoustic response based on the detected audio data, and the network device 230 determines the localized calibration settings based on the localized acoustic response. In yet another case, the playback device 210 a or the network device 230 sends the detected audio data to the computing device 206, and the computing device 206 (or another device connected to the computing device 206) determines the localized acoustic response and the localized calibration settings.
Once the multi-location calibration settings for the playback device 210 a and the localized acoustic response of the room 201 a are determined, this data is then provided to a computing device, such as computing device 206, for storage in a database. For instance, the network device 230 may send the determined multi-location calibration settings to the computing device 206, and the playback device 210 a may send the localized acoustic response of the room 201 a to the computing device 206. In other examples, the network device 230 or the playback device 210 a sends both the determined multi-location calibration settings and the localized acoustic response of the room 201 a to the computing device 206. Other examples are possible as well.
FIG. 2B depicts an example database 250 for storing both the determined multi-location calibration settings for the playback device 210 a and the localized acoustic response of the room 201 a. The database 250 may be stored on a computing device, such as computing device 206, located remotely from the playback device 210 a and/or from the network device 230, or the database 250 may be stored on the playback device 210 a and/or the network device 230. The database 250 includes a number of records, and each record includes data representing multi-location calibrations settings (identified as “settings 1” through “settings 5”) for various playback devices as well as room responses (identified as “response 1” through “response 5”), such as localized acoustic responses, associated with the multi-location calibration settings. For the purpose of illustration, the database 250 only depicts five records (numbered 1-5), but in practice should include many more than five records to improve the accuracy of the calibration processes described in further detail below.
When the computing device 206 receives data representing the multi-location calibration settings for the playback device 210 a and data representing the localized acoustic response of the room 201 a, the computing device 206 stores the received data in a record of the database 250. As an example, the computing device 206 stores the received data in record # 1 of the database 250, such that “response 1” includes data representing the localized acoustic response of the room 201 a, and “settings 1” includes data representing the multi-location calibration settings for the playback device 210 a. In some cases, the database 250 also includes data representing respective multi-location acoustic responses associated with the localized acoustic responses and the corresponding multi-location calibration settings. For instance, if record # 1 of database 250 corresponds to playback device 210 a, then “response 1” may include data representing both the localized acoustic response of the room 201 a and the multi-location acoustic response of the room 201 a.
As further shown, in some examples, the database 250 includes data identifying a type of a playback device associate with each record. Playback device “type” refers to a model or revision of a model, as well as different models that are designed to produce similar audio output (e.g., playback devices with similar components), among other examples. The type of the playback device may be indicated when providing the calibration settings and room response data to the database 250. As an example, in addition to the network device 230 and/or the playback device 210 a sending data representing the multi-location calibration settings for the playback device 210 a and data representing the localized acoustic response of the room 201 a to the computing device 206, the network device 230 and/or the playback device 210 a also sends data representing a type of the playback device 210 a to the computing device. Examples of playback device types offered by Sonos, Inc. include, by way of illustration, various models of playback devices such as a “SONOS ONE,” “PLAY:1,” “PLAY:3,” “PLAY:5,” “PLAYBAR,” “PLAYBASE,” “CONNECT:AMP,” “CONNECT,” and “SUB,” among others.
In some examples, the data identifying the type of the playback device additionally or alternatively includes data identifying a configuration of the playback device. For instance, as described above in connection with FIG. 1E, a playback device may be a bonded or paired playback device configured to process and reproduce sound differently than an unbonded or unpaired playback device. Accordingly, in some examples, the data identifying the type of the playback device 210 a includes data identifying whether the playback device 210 a is in a bonded or paired configuration.
By storing in the database 250 data identifying the type of the playback device, the database 250 may be more quickly searched by filtering data based on playback device type, as described in further detail below. However, in some examples, the database 250 does not include data identifying the device type of the playback device associated with each record.
Each record of the database 250 corresponds to a historical playback device calibration process in which a particular playback device was calibrated by determining calibration settings based on a multi-location acoustic response, as described above in connection with FIG. 2A. The calibration processes are “historical” in the sense that they relate to multi-location calibration settings and localized acoustic responses determined for rooms with various types of acoustic characteristics previously determined and stored in the database 250. As additional iterations of the calibration process are performed, the resulting multi-location calibration settings and localized acoustic responses may be added to the database 250.
Other playback devices may leverage the historical multi-location calibration settings and localized acoustic responses stored in the database 250 in order to self-calibrate to account for the acoustic responses of the rooms in which they are located. In one example, a playback device determines a localized acoustic response of a room in which the device is located, and the playback device queries the database 250 to identify a record having a stored acoustic response that is similar to the determined acoustic response. The playback device then applies to itself the multi-location calibration settings stored in the database 250 that are associated with the identified record.
Efficacy of the applied calibration settings is influenced by a degree of similarity between the identified stored acoustic response in the database 250 and the determined acoustic response for the playback device being calibrated. In particular, if the acoustic responses are significantly similar or identical, then the applied calibration settings are more likely to accurately offset or otherwise account for an acoustic response of the room in which the playback device being calibrated is located (e.g., by achieving or approaching a target frequency response in the room, as described above). On the other hand, if the acoustic responses are relatively dissimilar, then the applied calibration settings are less likely to accurately account for an acoustic response of the room in which the playback device being calibrated is located. Accordingly, populating the database 250 with records corresponding to a significantly large number of historical calibration processes may be desirable so as to increase the likelihood of the database 250 including acoustic response data similar to an acoustic response of the room of the playback device presently being calibrated.
FIG. 2C depicts an example environment in which a playback device 210 b leverages the database 250 to perform a self-calibration process without determining a multi-location acoustic response of its room 201 b.
In one example, the self-calibration of the playback device 210 b may be initiated when the playback device 210 b is being set up for the first time in the room 201 b, when the playback device 210 b first outputs music or some other audio content, or if the playback device 210 b has been moved to a new location. For instance, if the playback device 210 b is moved to a new location, calibration of the playback device 210 b may be initiated based on a detection of the movement (e.g., via a global positioning system (GPS), one or more accelerometers, or wireless signal strength variations), or based on a user input indicating that the playback device 210 b has moved to a new location (e.g., a change in playback zone name associated with the playback device 210 b).
In another example, calibration of the playback device 210 b may be initiated via a controller device, such as the controller device 130 a depicted in FIG. 1H. For instance, a user may access a controller interface for the playback device 210 b to initiate calibration of the playback device 210 b. In one case, the user may access the controller interface, and select the playback device 210 b (or a group of playback devices that includes the playback device 210 b) for calibration. In some cases, a calibration interface may be provided as part of a playback device controller interface to allow a user to initiate playback device calibration. Other examples are also possible.
Further, in some examples, calibration of the playback device 210 b is initiated periodically, or after a threshold amount of time has elapsed after a previous calibration, in order to account for changes to the environment of the playback device 210 b. For instance, a user may change a layout of the room 201 b (e.g., by adding, removing, or rearranging furniture), thereby altering the acoustic response of the room 201 b. As a result, any calibration settings applied to the playback device 210 b before the room 201 b is altered may have a reduced efficacy of accounting for, or offsetting, the altered acoustic response of the room 201 b. Initiating calibration of the playback device 210 b periodically, or after a threshold amount of time has elapsed after a previous calibration, can help address this issue by updating the calibration settings at a later time (i.e., after the room 201 b is altered) so that the calibration settings applied to the playback device 210 b are based on the altered acoustic response of the room 201 b.
Additionally, because calibration of the playback device 210 b involves accessing and retrieving calibration settings from the database 250, as described in further detail below, initiating calibration of the playback device 210 b periodically, or after a threshold amount of time has elapsed after a previous calibration, may further improve a listening experience in the room 201 b by accounting for changes to the database 250. For instance, as users continue to calibrate various playback devices in various rooms, the database 250 continues to be updated with additional acoustic room responses and corresponding calibration settings. As such, a newly added acoustic response (i.e., an acoustic response that is added to the database 250 after the playback device 210 b has already been calibrated) may more closely resemble the acoustic response of the room 201 b. Thus, by initiating calibration of the playback device 210 b periodically, or after a threshold amount of time has elapsed after a previous calibration, the calibration settings corresponding to the newly added acoustic response may be applied to the playback device 210 b. Accordingly, in some examples, the playback device 210 b determines that at least a threshold amount of time has elapsed after the playback device 210 b has been calibrated, and, responsive to making such a determination, the playback device 210 b initiates a calibration process, such as the calibration processes described below.
When performing the calibration process, the playback device 210 b outputs audio content and determines a localized acoustic response of its room 201 b similarly to how playback device 210 a determined a localized acoustic response of room 201 a. For instance, the playback device 210 b outputs audio content, which may include music or one or more predefined tones, captures audio data representing reflections of the audio content within the room 201 b, and determines the localized acoustic response based on the captured audio data.
Causing the playback device 210 b to output spectrally rich audio content during the calibration process may yield a more accurate localized acoustic response of the room 201 b. Thus, in examples where the audio content includes predefined tones, the playback device 210 b may output predefined tones over a range of frequencies for determining the localized acoustic response of the room 201 b. And in examples where the audio content includes music, such as music played during normal use of the playback device 210 b, the playback device 210 b may determine the localized acoustic response based on audio data that is captured over an extended period of time. For instance, as the playback device 210 b outputs music, the playback device 210 b may continue to capture audio data representing reflections of the output music within the room 201 b until a threshold amount of data at a threshold amount of frequencies is captured. Depending on the spectral content of the output music, the playback device 210 b may capture the reflected audio data over the course of multiple songs, for instance, in order for the playback device 210 b to have captured the threshold amount of data at the threshold amount of frequencies. In this manner, the playback device 210 b gradually learns the localized acoustic response of the room 201 b, and once a threshold confidence in understanding of the localized acoustic response of the room 201 b is met, then the playback device 210 b uses the localized acoustic response of the room 201 b to determine calibration settings for the playback device 210 b, as described in further detail below.
The playback device 210 b may output the audio content at various volume levels. For instance, if audio characteristics such as acceptable volume ranges of the playback device 210 b are known, then the playback device 210 b or a controller device, such as the controller 130 a depicted in FIG. 1H, in communication with the playback device 210 b may cause the playback device 210 b to output the audio content at a volume that falls within the acceptable volume range of the playback device 210 b. However, there may be circumstances in which the acceptable volume range of the playback device 210 b is not known. For instance, the playback device 210 b may include an amplifier, such as the “CONNECT:AMP,” offered by Sonos, Inc., configured to output audio via connection to external speakers with unknown audio characteristics. Without knowing the audio characteristics of the speakers, the playback device 210 b could damage the speakers by attempting to drive the speakers with too high electrical current.
The above issue may be addressed in various ways. For instance, in some examples, the playback device 210 b is configured to apply a limit to the output volume or to the driver current. The limit may be set to a conservative value that is safe for most or virtually all speakers. In some embodiments, a user inputs into a controller device, for instance, information identifying or characterizing the speakers of the playback device 210 b. The information may include a manufacturer and/or model number of the speakers, a size of the speakers, a maximum rated current or wattage of the speakers, or any other information that could be used to characterize the audio capabilities of the speakers. The controller then uses the input information to set an appropriate output volume of the playback device 210 b. In some embodiments, the playback device 210 b is configured to measure an impedance curve of the speakers, and the playback device 210 b or the controller device sets the output volume of the playback device 210 b based on the measured impedance curve.
In some embodiments, the playback device 210 b varies the volume of the audio content while the playback device 210 b outputs the audio content. In one example, the playback device 210 b outputs the audio content at a first, lower volume and increases the volume of the audio content to a second, higher volume. The increase may be a gradual increase over time (i.e., over a first portion of the time period in which the playback device is outputting the audio content).
The playback device 210 b may determine when to stop increasing the volume based on various characteristics, such as a signal-to-noise ratio (SNR) of audio detected by the playback device 210 b while outputting the audio content. A determined acoustic room response may be more accurate if the audio used for determining the room response has a high SNR. Thus, in some examples, the playback device 210 b uses its microphone to capture audio data representing the output audio content within the room 201 b, and the playback device 210 b determines an SNR of the captured audio data. If the determined SNR is below a threshold SNR, then the playback device 210 b increases the volume of the output audio content. The playback device 210 b continues to increase the volume of the output audio content until the determined SNR exceeds the threshold SNR value. Similarly, in order to avoid outputting excessively loud audio content, in some embodiments the playback device 210 b decreases the volume of the output audio content responsive to determining that the SNR of the captured audio exceeds the threshold SNR value by a predetermined amount.
While outputting the audio content, the playback device 210 b uses one or more stationary microphones, which may be disposed in or on a housing of the playback device 210 b or may be co-located in or on an NMD proximate to the playback device 210 b, to capture audio data representing reflections of the audio content in the room 201 b. The playback device 210 b then uses the captured audio data to determine the localized acoustic response of the room 201 b. In line with the discussion above, the localized acoustic response may include a spectral response, spatial response, or temporal response, among others, and the localized acoustic response may be represented in vector or matrix form.
In some embodiments, determining the localized acoustic response of the room 201 b involves accounting for a self-response of the playback device 210 b or of a microphone of the playback device 210 b, for example, by processing the captured audio data representing reflections of the audio content in the room 201 b so that the captured audio data reduces or excludes the playback device's native influence on the audio reflections.
In one example, the self-response of the playback device 210 b is determined in an anechoic chamber, or is otherwise known based on a self-response of a similar playback device being determined in an anechoic chamber. In the anechoic chamber, audio content output by the playback device 210 b is inhibited from reflecting back toward the playback device 210 b, so that audio captured by a microphone of the playback device 210 b is indicative of the self-response of the playback device 210 b or of the microphone of the playback device 210 b. Knowing the self-response of the playback device 210 b or of the microphone of the playback device 210 b, the playback device 210 offsets such a self-response from the captured audio data representing reflections of the first audio content when determining the localized acoustic response of the room 201 b.
Once the localized acoustic response of the room 201 b is known, the playback device 210 b accesses the database 250 to determine a set of calibration settings to account for the acoustic response of the room 201 b. For example, the playback device 210 b establishes a connection with the computing device 206 and with the database 250 of the computing device 206, and the playback device 210 b queries the database 250 for a stored acoustic room response that corresponds to the determined localized acoustic response of the room 201 b.
In some examples, querying the database 250 involves mapping the determined localized acoustic response of the room 201 b to a particular stored acoustic room response in the database 250 that satisfies a threshold similarity to the localized acoustic response of the room 201 b. This mapping may involve comparing values of the localized acoustic response to values of the stored acoustic room responses and determining which of the stored acoustic room responses are similar to the localized acoustic response.
For example, in implementations where the acoustic responses are represented as vectors, the mapping may involve determining distances between the localized acoustic response vector and the stored acoustic response vectors. In such a scenario, the stored acoustic response vector having the smallest distance from the localized acoustic response vector of the room 201 b may be identified as satisfying the threshold similarity. In some examples, one or more values of the localized acoustic response of the room 201 b may be averaged and compared to corresponding averaged values of the stored acoustic responses of the database 250. In such a scenario, the stored acoustic response having averaged values closest to the averaged values of the localized acoustic response vector of the room 201 b may be identified as satisfying the threshold similarity. Other examples are possible as well.
As shown, the room 201 b depicted in FIG. 2C and the room 201 a depicted in FIG. 2A are similarly shaped and have similar layouts. Further, the playback device 210 b and the playback device 210 a are arranged in similar positions in their respective rooms. As such, when the localized room response determined by playback device 210 b for room 201 b is compared to the room responses stored in the database 250, the computing device 206 may determine that the localized room response determined by playback device 210 a for room 201 a has at least a threshold similarity to the localized room response determined by playback device 210 b for room 201 b.
In some examples, querying the database 250 involves querying only a portion of the database 250. For instance, as noted above, the database 250 may identify a type or configuration of playback device for which each record of the database 250 is generated. Playback devices of the same type or configuration may be more likely to have similar room responses and may be more likely to have compatible calibration settings. Accordingly, in some embodiments, when the playback device 210 b queries the database 250 for comparing the localized acoustic response of the room 201 b to the stored room responses of the database 250, the playback device 210 b might only compare the localized acoustic response of the room 201 b to stored room responses associated with playback devices of the same type or configuration as the playback device 210 b.
Once a stored acoustic room response of the database 250 is determined to be threshold similar to the localized acoustic response of the room 201 b, then the playback device 210 b identifies a set of calibration settings associated with the threshold similar stored acoustic room response. For instance, as shown in FIG. 2B, each stored acoustic room response is included as part of a record that also includes a set of calibration settings designed to account for the room response. As such, the playback device 210 b retrieves, or otherwise obtains from the database 250, the set of calibration settings that share a record with the threshold similar stored acoustic room response and applies the set of calibration settings to itself.
After applying the obtained calibration settings to itself, the playback device 210 b outputs, via its one or more transducers, second audio content using the applied calibration settings. Even though the applied calibration settings were determined for a different playback device calibrated in a different room, the localized acoustic response of the room 201 b is similar enough to the stored acoustic response that the second audio content is output in a manner that at least partially accounts for the acoustics of the room 201 b. For instance, with the applied calibration settings, the second audio content output by the playback device 210 b may have a frequency response, at one or more locations in the room 201 b, that is closer to a target frequency response than the first audio content.
In line with the discussion above, the playback device 210 b (or some other network device in communication with the playback device 210 b) may determine localized calibration settings based on the localized acoustic response. Accordingly, in some examples, before or while querying the database 250 for multi-location calibration settings, the playback device 210 b determines localized calibration settings based on the localized acoustic response of the room 201 b and applies the determined localized calibration settings to itself. And if the playback device 210 b successfully queries the database 250 for multi-location calibration settings by mapping the determined localized acoustic response of the room 201 b to a particular stored acoustic room response in the database 250 as described above, then the playback device 210 b transitions from applying the localized calibration settings to applying the multi-location calibration settings retrieved from the database 250.
FIG. 3A shows an example embodiment of a method 300 for establishing a database of calibration settings for playback devices, and FIG. 3B shows an example embodiment of a method 320 for calibrating a playback device using the database established according to method 300. Methods 300 and 320 can be implemented by any of the playback devices disclosed and/or described herein, or any other playback device now known or later developed.
Various embodiments of methods 300 and 320 include one or more operations, functions, and actions illustrated by blocks 302 through 312 and blocks 322 through 334. Although the blocks are illustrated in sequential order, these blocks may also be performed in parallel, and/or in a different order than the order disclosed and described herein. Also, the various blocks may be combined into fewer blocks, divided into additional blocks, and/or removed based upon a desired implementation.
In addition, for the methods 300 and 320 and for other processes and methods disclosed herein, the flowcharts show functionality and operation of one possible implementation of some embodiments. In this regard, each block may represent a module, a segment, or a portion of program code, which includes one or more instructions executable by one or more processors for implementing specific logical functions or steps in the process. The program code may be stored on any type of computer readable medium, for example, such as a storage device including a disk or hard drive. The computer readable medium may include non-transitory computer readable media, for example, such as tangible, non-transitory computer-readable media that stores data for short periods of time like register memory, processor cache, and Random Access Memory (RAM). The computer readable medium may also include non-transitory media, such as secondary or persistent long term storage, like read only memory (ROM), optical or magnetic disks, compact-disc read only memory (CD-ROM), for example. The computer readable media may also be any other volatile or non-volatile storage systems. The computer readable medium may be considered a computer readable storage medium, for example, or a tangible storage device. In addition, for the methods 300 and 320 and for other processes and methods disclosed herein, each block in FIGS. 3A and 3B may represent circuitry that is wired to perform the specific logical functions in the process.
Method 300 involves populating a database with a plurality of sets of stored audio calibration settings, each set associated with a respective stored acoustic room response of a plurality of stored acoustic room responses. The plurality of sets of stored audio calibration settings and the plurality of stored acoustic room responses are determined based on multiple media playback systems each performing a respective audio calibration process and a respective acoustic room response determination process represented by method 300.
Method 300 begins at block 302, which involves a respective playback device outputting respective audio content via one or more transducers (e.g., one or more speakers and/or speaker drivers) within a respective room. In line with the discussion above, the audio content may include content with frequencies substantially covering a renderable frequency range of the respective playback device or a frequency range audible to a human. In one case, the audio content is output using an audio signal created specifically for use when calibrating playback devices, such as the respective playback device. In another case, the audio content is an audio track that is a favorite of a user of the respective playback device, or a commonly played audio track by the respective playback device. Other examples are also possible.
At block 304, method 300 involves, while the respective playback device outputs the respective audio content, capturing, via a microphone of a respective mobile device in communication with the respective playback device, first respective audio data representing reflections of the respective audio content in the respective room while the respective mobile device is moving from a first physical location to a second physical location within the respective room.
At block 306, method 300 involves, while the respective playback device outputs the respective audio content, capturing, via a microphone disposed in a housing of the respective playback device, second respective audio data representing reflections of the respective audio content in the respective room.
At block 308, method 300 involves the respective playback device using the first respective audio data to determine a set of audio calibration settings for the respective playback device.
At block 310, method 300 involves the respective playback device using the second respective audio data to determine an acoustic response of the respective room.
At block 312, method 300 involves storing in the database the determined set of audio calibration settings for the respective playback device as well as the determined acoustic response of the respective room.
Turning now to FIG. 3B, method 320 involves a playback device using a database that is populated with a plurality of sets of stored audio calibration settings and associated sets of stored acoustic room responses to calibrate the playback device so that the audio output by the playback device accounts for the acoustics of a room in which the playback device is located. In some examples, the database used in method 320 is populated by a plurality of playback devices performing method 300.
Method 320 begins at block 322, which involves a playback device outputting first audio content via one or more transducers (e.g., one or more speakers and/or speaker drivers) of the playback device. In some examples, the first audio content is the same audio content output by the respective playback device at block 302 in method 300. However, in other examples, the first audio content is different than the audio content output by the respective playback device at block 302 in method 300.
In some embodiments, the playback device outputting the first audio content involves gradually increasing a volume level of the playback device while outputting the first audio content. Further, in some embodiments, method 320 further involves, while outputting the first audio content, measuring a signal-to-noise ratio of the first audio content to environmental noise in the room in which the playback device is located, and, when the signal-to-noise ratio exceeds a threshold value for calibration, ceasing to increase the volume level of the playback device and continuing to output the first audio content at the current volume level.
At block 324, method 320 involves capturing, via a microphone of the playback device, audio data representing reflections of the first audio content within a room in which the playback device is located. As noted above, instead of being moved around the room, the microphone of the playback device is disposed in or on a housing of the playback device or is co-located in or on an NMD proximate to the playback device.
At block 326, method 320 involves, based on the captured audio data, determining an acoustic response of the room in which the playback device is located. In some embodiments, a self-response of the playback device is pre-determined in an anechoic chamber, and determining the acoustic response of the room in which the playback device is located involves offsetting the self-response of the playback device from the captured audio data representing reflections of the first audio content. Further, in some embodiments, a self-response of the playback device's microphone is pre-determined in an anechoic chamber, and determining the acoustic response of the room in which the playback device is located involves offsetting the self-response of the microphone from the captured audio data representing reflections of the first audio content.
At block 328, method 320 involves establishing a connection with a database comprising a plurality of sets of stored audio calibration settings, each set associated with a respective stored acoustic room response of a plurality of stored acoustic room responses.
In line with the discussion above, the plurality of sets of stored audio calibration settings are determined, in some embodiments, based on multiple media playback systems each performing a respective audio calibration process comprising (i) outputting, via a respective playback device within a respective room that is different from the room in which the playback device is located, respective audio content, (ii) while the respective playback device outputs the respective audio content, capturing, via a microphone of a respective mobile device in communication with the respective playback device, first respective audio data representing reflections of the respective audio content in the respective room while the respective mobile device is moving from a first physical location to a second physical location within the respective room, and (iii) based on the first respective audio data, determining a set of audio calibration settings for the respective playback device.
In some embodiments, determining the set of audio calibration settings for the respective playback device involves (i) determining audio characteristics of the respective room based on the first respective audio data and (ii) determining respective audio calibration settings for the respective playback device that offset the determined audio characteristics of the respective room.
Further, in some embodiments, the plurality of stored acoustic room responses are determined based on the multiple media playback systems each performing a respective acoustic room response determination process comprising (i) while the respective playback device outputs the respective audio content, capturing, via a microphone disposed in a housing of the respective playback device, second respective audio data representing reflections of the respective audio content in the respective room, and (ii) based on the second respective audio data, determining an acoustic response of the respective room.
At block 330, method 320 involves querying the database for a stored acoustic room response that corresponds to the determined acoustic response of the room in which the playback device is located. In some embodiments, querying the database for the stored acoustic room response involves mapping the acoustic response of the room in which the playback device is located to a particular stored acoustic room response in the database that satisfies a threshold similarity to the acoustic response of the room in which the playback device is located.
At block 332, method 320 involves, responsive to the query, applying to the playback device a particular set of stored audio calibration settings associated with the stored acoustic room response that corresponds to the determined acoustic response of the room in which the playback device is located.
At block 334, method 320 involves outputting, via the one or more transducers of the playback device, second audio content using the particular set of audio calibration settings associated with the stored acoustic room response that corresponds to the determined acoustic response of the room in which the playback device is located.
IV. Conclusion
The above discussions relating to playback devices, controller devices, playback zone configurations, and media content sources provide only some examples of operating environments within which functions and methods described below may be implemented. Other operating environments and configurations of media playback systems, playback devices, and network devices not explicitly described herein may also be applicable and suitable for implementation of the functions and methods.
The description above discloses, among other things, various example systems, methods, apparatus, and articles of manufacture including, among other components, firmware and/or software executed on hardware. It is understood that such examples are merely illustrative and should not be considered as limiting. For example, it is contemplated that any or all of the firmware, hardware, and/or software aspects or components can be embodied exclusively in hardware, exclusively in software, exclusively in firmware, or in any combination of hardware, software, and/or firmware. Accordingly, the examples provided are not the only ways) to implement such systems, methods, apparatus, and/or articles of manufacture.
Additionally, references herein to “embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one example embodiment of an invention. The appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. As such, the embodiments described herein, explicitly and implicitly understood by one skilled in the art, can be combined with other embodiments.
The specification is presented largely in terms of illustrative environments, systems, procedures, steps, logic blocks, processing, and other symbolic representations that directly or indirectly resemble the operations of data processing devices coupled to networks. These process descriptions and representations are typically used by those skilled in the art to most effectively convey the substance of their work to others skilled in the art. Numerous specific details are set forth to provide a thorough understanding of the present disclosure. However, it is understood to those skilled in the art that certain embodiments of the present disclosure can be practiced without certain, specific details. In other instances, well known methods, procedures, components, and circuitry have not been described in detail to avoid unnecessarily obscuring aspects of the embodiments. Accordingly, the scope of the present disclosure is defined by the appended claims rather than the foregoing description of embodiments.
When any of the appended claims are read to cover a purely software and/or firmware implementation, at least one of the elements in at least one example is hereby expressly defined to include a tangible, non-transitory medium such as a memory, DVD, CD, Blu-ray, and so on, storing the software and/or firmware.

Claims (20)

What is claimed is:
1. A playback device comprising:
a microphone;
a speaker;
one or more processors; and
tangible, non-transitory, computer-readable media storing instructions executable by the one or more processors to cause the playback device to perform operations comprising:
outputting, via the speaker, first audio content;
capturing, via the microphone, audio data representing reflections of the first audio content within a room in which the playback device is located;
based on the captured audio data, determining an acoustic response of the room in which the playback device is located;
establishing a connection with a database comprising a plurality of sets of stored audio calibration settings, each set associated with a respective stored acoustic room response of a plurality of stored acoustic room responses;
wherein the plurality of sets of stored audio calibration settings are determined based on multiple media playback systems each performing a respective audio calibration process comprising (i) outputting, via a respective playback device within a respective room that is different from the room in which the playback device is located, respective audio content, (ii) while the respective playback device outputs the respective audio content, capturing, via a microphone of a respective mobile device in communication with the respective playback device, first respective audio data representing reflections of the respective audio content in the respective room while the respective mobile device is moving from a first physical location to a second physical location within the respective room, and (iii) based on the first respective audio data, determining a set of audio calibration settings for the respective playback device;
wherein the plurality of stored acoustic room responses are determined based on the multiple media playback systems each performing a respective acoustic room response determination process comprising (i) while the respective playback device outputs the respective audio content, capturing, via a microphone disposed in a housing of the respective playback device, second respective audio data representing reflections of the respective audio content in the respective room, and (ii) based on the second respective audio data, determining an acoustic response of the respective room;
querying the database for a stored acoustic room response that corresponds to the determined acoustic response of the room in which the playback device is located;
responsive to the query, applying to the playback device a particular set of stored audio calibration settings associated with the stored acoustic room response that corresponds to the determined acoustic response of the room in which the playback device is located; and
outputting, via the speaker, second audio content using the particular set of audio calibration settings associated with the stored acoustic room response that corresponds to the determined acoustic response of the room in which the playback device is located.
2. The playback device of claim 1, wherein determining the set of audio calibration settings for the respective playback device comprises:
based on the first respective audio data, determining audio characteristics of the respective room; and
determining respective audio calibration settings for the respective playback device that offset the determined audio characteristics of the respective room.
3. The playback device of claim 1, wherein querying the database comprises:
mapping the acoustic response of the room in which the playback device is located to a particular stored acoustic room response in the database that satisfies a threshold similarity to the acoustic response of the room in which the playback device is located.
4. The playback device of claim 1, wherein a self-response of the playback device is pre-determined in an anechoic chamber, and wherein determining the acoustic response of the room in which the playback device is located comprises offsetting the self-response of the playback device from the captured audio data representing reflections of the first audio content.
5. The playback device of claim 1, wherein a self-response of the microphone is pre-determined in an anechoic chamber, and wherein determining the acoustic response of the room in which the playback device is located comprises offsetting the self-response of the microphone from the captured audio data representing reflections of the first audio content.
6. The playback device of claim 1, wherein outputting, via the speaker, the first audio content comprises gradually increasing a volume level of the playback device while outputting the first audio content, and wherein the operations further comprise:
while outputting the first audio content, measuring a signal-to-noise ratio of the first audio content to environmental noise in the room in which the playback device is located; and
when the signal-to-noise ratio exceeds a threshold value for calibration, ceasing to increase the volume level of the playback device and continuing to output the first audio content at the current volume level.
7. The playback device of claim 1, wherein the first audio content is different from the respective audio content.
8. Tangible, non-transitory, computer-readable media storing instructions executable by one or more processors to cause a playback device to perform operations comprising:
outputting, via a speaker of the playback device, first audio content;
capturing, via a microphone of the playback device, audio data representing reflections of the first audio content within a room in which the playback device is located;
based on the captured audio data, determining an acoustic response of the room in which the playback device is located;
establishing a connection with a database comprising a plurality of sets of stored audio calibration settings, each set associated with a respective stored acoustic room response of a plurality of stored acoustic room responses;
wherein the plurality of sets of stored audio calibration settings are determined based on multiple media playback systems each performing a respective audio calibration process comprising (i) outputting, via a respective playback device within a respective room that is different from the room in which the playback device is located, respective audio content, (ii) while the respective playback device outputs the respective audio content, capturing, via a microphone of a respective mobile device in communication with the respective playback device, first respective audio data representing reflections of the respective audio content in the respective room while the respective mobile device is moving from a first physical location to a second physical location within the respective room, and (iii) based on the first respective audio data, determining a set of audio calibration settings for the respective playback device;
wherein the plurality of stored acoustic room responses are determined based on the multiple media playback systems each performing a respective acoustic room response determination process comprising (i) while the respective playback device outputs the respective audio content, capturing, via a microphone disposed in a housing of the respective playback device, second respective audio data representing reflections of the respective audio content in the respective room, and (ii) based on the second respective audio data, determining an acoustic response of the respective room;
querying the database for a stored acoustic room response that corresponds to the determined acoustic response of the room in which the playback device is located;
responsive to the query, applying to the playback device a particular set of stored audio calibration settings associated with the stored acoustic room response that corresponds to the determined acoustic response of the room in which the playback device is located; and
outputting, via the speaker of the playback device, second audio content using the particular set of audio calibration settings associated with the stored acoustic room response that corresponds to the determined acoustic response of the room in which the playback device is located.
9. The tangible, non-transitory, computer-readable media of claim 8, wherein determining the set of audio calibration settings for the respective playback device comprises:
based on the first respective audio data, determining audio characteristics of the respective room; and
determining respective audio calibration settings for the respective playback device that offset the determined audio characteristics of the respective room.
10. The tangible, non-transitory, computer-readable media of claim 8, wherein querying the database comprises:
mapping the acoustic response of the room in which the playback device is located to a particular stored acoustic room response in the database that satisfies a threshold similarity to the acoustic response of the room in which the playback device is located.
11. The tangible, non-transitory, computer-readable media of claim 8, wherein a self-response of the playback device is pre-determined in an anechoic chamber, and wherein determining the acoustic response of the room in which the playback device is located comprises offsetting the self-response of the playback device from the captured audio data representing reflections of the first audio content.
12. The tangible, non-transitory, computer-readable media of claim 8, wherein a self-response of the microphone is pre-determined in an anechoic chamber, and wherein determining the acoustic response of the room in which the playback device is located comprises offsetting the self-response of the microphone from the captured audio data representing reflections of the first audio content.
13. The tangible, non-transitory, computer-readable media of claim 8, wherein outputting, via the speaker of the playback device, the first audio content comprises gradually increasing a volume level of the playback device while outputting the first audio content, and wherein the operations further comprise:
while outputting the first audio content, measuring a signal-to-noise ratio of the first audio content to environmental noise in the room in which the playback device is located; and
when the signal-to-noise ratio exceeds a threshold value for calibration, ceasing to increase the volume level of the playback device and continuing to output the first audio content at the current volume level.
14. The tangible, non-transitory, computer-readable media of claim 8, wherein the first audio content is different from the respective audio content.
15. A method comprising:
outputting, via a speaker of a playback device, first audio content;
capturing, via a microphone of the playback device, audio data representing reflections of the first audio content within a room in which the playback device is located;
based on the captured audio data, determining an acoustic response of the room in which the playback device is located;
establishing a connection with a database comprising a plurality of sets of stored audio calibration settings, each set associated with a respective stored acoustic room response of a plurality of stored acoustic room responses;
wherein the plurality of sets of stored audio calibration settings are determined based on multiple media playback systems each performing a respective audio calibration process comprising (i) outputting, via a respective playback device within a respective room that is different from the room in which the playback device is located, respective audio content, (ii) while the respective playback device outputs the respective audio content, capturing, via a microphone of a respective mobile device in communication with the respective playback device, first respective audio data representing reflections of the respective audio content in the respective room while the respective mobile device is moving from a first physical location to a second physical location within the respective room, and (iii) based on the first respective audio data, determining a set of audio calibration settings for the respective playback device;
wherein the plurality of stored acoustic room responses are determined based on the multiple media playback systems each performing a respective acoustic room response determination process comprising (i) while the respective playback device outputs the respective audio content, capturing, via a microphone disposed in a housing of the respective playback device, second respective audio data representing reflections of the respective audio content in the respective room, and (ii) based on the second respective audio data, determining an acoustic response of the respective room;
querying the database for a stored acoustic room response that corresponds to the determined acoustic response of the room in which the playback device is located;
responsive to the query, applying to the playback device a particular set of stored audio calibration settings associated with the stored acoustic room response that corresponds to the determined acoustic response of the room in which the playback device is located; and
outputting, via the speaker of the playback device, second audio content using the particular set of audio calibration settings associated with the stored acoustic room response that corresponds to the determined acoustic response of the room in which the playback device is located.
16. The method of claim 15, wherein determining the set of audio calibration settings for the respective playback device comprises:
based on the first respective audio data, determining audio characteristics of the respective room; and
determining respective audio calibration settings for the respective playback device that offset the determined audio characteristics of the respective room.
17. The method of claim 15, wherein querying the database comprises:
mapping the acoustic response of the room in which the playback device is located to a particular stored acoustic room response in the database that satisfies a threshold similarity to the acoustic response of the room in which the playback device is located.
18. The method of claim 15, wherein a self-response of the playback device is pre-determined in an anechoic chamber, and wherein determining the acoustic response of the room in which the playback device is located comprises offsetting the self-response of the playback device from the captured audio data representing reflections of the first audio content.
19. The method of claim 15, wherein a self-response of the microphone is pre-determined in an anechoic chamber, and wherein determining the acoustic response of the room in which the playback device is located comprises offsetting the self-response of the microphone from the captured audio data representing reflections of the first audio content.
20. The method of claim 15, wherein outputting, via the speaker of the playback device, the first audio content comprises gradually increasing a volume level of the playback device while outputting the first audio content, and wherein the operations further comprise:
while outputting the first audio content, measuring a signal-to-noise ratio of the first audio content to environmental noise in the room in which the playback device is located; and
when the signal-to-noise ratio exceeds a threshold value for calibration, ceasing to increase the volume level of the playback device and continuing to output the first audio content at the current volume level.
US16/115,524 2018-08-28 2018-08-28 Playback device calibration Active US10299061B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US16/115,524 US10299061B1 (en) 2018-08-28 2018-08-28 Playback device calibration
US16/401,981 US10582326B1 (en) 2018-08-28 2019-05-02 Playback device calibration
PCT/US2019/048366 WO2020046956A1 (en) 2018-08-28 2019-08-27 Playback device calibration
EP19765920.4A EP3844980A1 (en) 2018-08-28 2019-08-27 Playback device calibration
US16/796,496 US10848892B2 (en) 2018-08-28 2020-02-20 Playback device calibration
US16/949,951 US11350233B2 (en) 2018-08-28 2020-11-20 Playback device calibration
US17/804,372 US11877139B2 (en) 2018-08-28 2022-05-27 Playback device calibration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16/115,524 US10299061B1 (en) 2018-08-28 2018-08-28 Playback device calibration

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/401,981 Continuation US10582326B1 (en) 2018-08-28 2019-05-02 Playback device calibration

Publications (1)

Publication Number Publication Date
US10299061B1 true US10299061B1 (en) 2019-05-21

Family

ID=66541138

Family Applications (5)

Application Number Title Priority Date Filing Date
US16/115,524 Active US10299061B1 (en) 2018-08-28 2018-08-28 Playback device calibration
US16/401,981 Active US10582326B1 (en) 2018-08-28 2019-05-02 Playback device calibration
US16/796,496 Active US10848892B2 (en) 2018-08-28 2020-02-20 Playback device calibration
US16/949,951 Active US11350233B2 (en) 2018-08-28 2020-11-20 Playback device calibration
US17/804,372 Active US11877139B2 (en) 2018-08-28 2022-05-27 Playback device calibration

Family Applications After (4)

Application Number Title Priority Date Filing Date
US16/401,981 Active US10582326B1 (en) 2018-08-28 2019-05-02 Playback device calibration
US16/796,496 Active US10848892B2 (en) 2018-08-28 2020-02-20 Playback device calibration
US16/949,951 Active US11350233B2 (en) 2018-08-28 2020-11-20 Playback device calibration
US17/804,372 Active US11877139B2 (en) 2018-08-28 2022-05-27 Playback device calibration

Country Status (3)

Country Link
US (5) US10299061B1 (en)
EP (1) EP3844980A1 (en)
WO (1) WO2020046956A1 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190378504A1 (en) * 2018-06-12 2019-12-12 International Business Machines Corporation Cognitive agent disambiguation
US20200034743A1 (en) * 2017-02-17 2020-01-30 International Business Machines Corporation Bot-based data collection for detecting phone solicitations
US10622009B1 (en) * 2018-09-10 2020-04-14 Amazon Technologies, Inc. Methods for detecting double-talk
US10694309B1 (en) 2019-02-12 2020-06-23 Sonos, Inc. Systems and methods for authenticating and calibrating passive speakers with a graphical user interface
US10757058B2 (en) 2017-02-17 2020-08-25 International Business Machines Corporation Outgoing communication scam prevention
US10810510B2 (en) 2017-02-17 2020-10-20 International Business Machines Corporation Conversation and context aware fraud and abuse prevention agent
WO2020237576A1 (en) * 2019-05-30 2020-12-03 Harman International Industries, Incorporated Method and system for room calibration in a speaker system
US10869128B2 (en) 2018-08-07 2020-12-15 Pangissimo Llc Modular speaker system
WO2021010884A1 (en) * 2019-07-18 2021-01-21 Dirac Research Ab Intelligent audio control platform
WO2021030334A1 (en) 2019-08-12 2021-02-18 Sonos, Inc. Audio calibration of a portable playback device
US10986460B2 (en) 2011-12-29 2021-04-20 Sonos, Inc. Grouping based on acoustic signals
US11064306B2 (en) 2012-06-28 2021-07-13 Sonos, Inc. Calibration state variable
US11106423B2 (en) 2016-01-25 2021-08-31 Sonos, Inc. Evaluating calibration of a playback device
US11184726B2 (en) 2016-01-25 2021-11-23 Sonos, Inc. Calibration using listener locations
US11197112B2 (en) 2015-09-17 2021-12-07 Sonos, Inc. Validation of audio calibration using multi-dimensional motion check
US11206484B2 (en) 2018-08-28 2021-12-21 Sonos, Inc. Passive speaker authentication
US11212629B2 (en) 2016-04-01 2021-12-28 Sonos, Inc. Updating playback device configuration information based on calibration data
US11218827B2 (en) 2016-04-12 2022-01-04 Sonos, Inc. Calibration of audio playback devices
US11237792B2 (en) 2016-07-22 2022-02-01 Sonos, Inc. Calibration assistance
EP3930343A3 (en) * 2020-06-23 2022-02-23 Beijing Xiaomi Mobile Software Co., Ltd. Device control method and apparatus
US11337017B2 (en) 2016-07-15 2022-05-17 Sonos, Inc. Spatial audio correction
US11350233B2 (en) 2018-08-28 2022-05-31 Sonos, Inc. Playback device calibration
US11379179B2 (en) 2016-04-01 2022-07-05 Sonos, Inc. Playback device calibration based on representative spectral characteristics
US11432089B2 (en) 2016-01-18 2022-08-30 Sonos, Inc. Calibration using multiple recording devices
US11540073B2 (en) 2014-03-17 2022-12-27 Sonos, Inc. Playback device self-calibration
US11625219B2 (en) 2014-09-09 2023-04-11 Sonos, Inc. Audio processing algorithms
US11696081B2 (en) 2014-03-17 2023-07-04 Sonos, Inc. Audio settings based on environment
US11698770B2 (en) 2016-08-05 2023-07-11 Sonos, Inc. Calibration of a playback device based on an estimated frequency response
US11803350B2 (en) 2015-09-17 2023-10-31 Sonos, Inc. Facilitating calibration of an audio playback device
US20240056632A1 (en) * 2022-08-09 2024-02-15 Dish Network, L.L.C. Home audio monitoring for proactive volume adjustments

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10275138B2 (en) * 2014-09-02 2019-04-30 Sonos, Inc. Zone recognition
WO2021226628A2 (en) 2020-05-04 2021-11-11 Shure Acquisition Holdings, Inc. Intelligent audio system using multiple sensor modalities
US11830471B1 (en) * 2020-08-31 2023-11-28 Amazon Technologies, Inc. Surface augmented ray-based acoustic modeling

Citations (435)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US679889A (en) 1900-08-16 1901-08-06 Charles I Dorn Sand-line and pump or bailer connection.
US4306113A (en) 1979-11-23 1981-12-15 Morton Roger R A Method and equalization of home audio systems
US4342104A (en) 1979-11-02 1982-07-27 University Court Of The University Of Edinburgh Helium-speech communication
US4504704A (en) 1982-08-31 1985-03-12 Pioneer Electronic Corporation Loudspeaker system
US4592088A (en) 1982-10-14 1986-05-27 Matsushita Electric Industrial Co., Ltd. Speaker apparatus
US4631749A (en) 1984-06-22 1986-12-23 Heath Company ROM compensated microphone
US4694484A (en) 1986-02-18 1987-09-15 Motorola, Inc. Cellular radiotelephone land station
US4773094A (en) 1985-12-23 1988-09-20 Dolby Ray Milton Apparatus and method for calibrating recording and transmission systems
JPH02280199A (en) 1989-04-20 1990-11-16 Mitsubishi Electric Corp Reverberation device
US4995778A (en) 1989-01-07 1991-02-26 Krupp Maschinentechnik Gesellschaft Mit Beschrankter Haftung Gripping apparatus for transporting a panel of adhesive material
EP0505949A1 (en) 1991-03-25 1992-09-30 Nippon Telegraph And Telephone Corporation Acoustic transfer function simulating method and simulator using the same
US5218710A (en) 1989-06-19 1993-06-08 Pioneer Electronic Corporation Audio signal processing system having independent and distinct data buses for concurrently transferring audio signal data to provide acoustic control
JPH05199593A (en) 1992-01-20 1993-08-06 Matsushita Electric Ind Co Ltd Speaker measuring instrument
JPH05211700A (en) 1991-07-23 1993-08-20 Samsung Electron Co Ltd Method and device for correcting listening -space adaptive-frequency characteristic
US5255326A (en) 1992-05-18 1993-10-19 Alden Stevenson Interactive audio control system
US5323257A (en) 1991-08-09 1994-06-21 Sony Corporation Microphone and microphone system
JPH06327089A (en) 1993-05-11 1994-11-25 Yamaha Corp Acoustic characteristic correcting device
JPH0723490A (en) 1993-06-23 1995-01-24 Matsushita Electric Ind Co Ltd Digital sound field creating device
US5386478A (en) 1993-09-07 1995-01-31 Harman International Industries, Inc. Sound system remote control with acoustic sensor
US5440644A (en) 1991-01-09 1995-08-08 Square D Company Audio distribution system having programmable zoning features
US5553147A (en) 1993-05-11 1996-09-03 One Inc. Stereophonic reproduction method and apparatus
US5581621A (en) 1993-04-19 1996-12-03 Clarion Co., Ltd. Automatic adjustment system and automatic adjustment method for audio devices
EP0772374A2 (en) 1995-11-02 1997-05-07 Bang & Olufsen A/S Method and apparatus for controlling the performance of a loudspeaker in a room
JPH1069280A (en) 1996-06-17 1998-03-10 Yamaha Corp Sound field control unit and sound field controller
US5757927A (en) 1992-03-02 1998-05-26 Trifield Productions Ltd. Surround sound apparatus
US5910991A (en) 1996-08-02 1999-06-08 Apple Computer, Inc. Method and apparatus for a speaker for a personal computer for selective use as a conventional speaker or as a sub-woofer
US5923902A (en) 1996-02-20 1999-07-13 Yamaha Corporation System for synchronizing a plurality of nodes to concurrently generate output signals by adjusting relative timelags based on a maximum estimated timelag
US5939656A (en) 1997-11-25 1999-08-17 Kabushiki Kaisha Kawai Gakki Seisakusho Music sound correcting apparatus and music sound correcting method capable of achieving similar audibilities even by speaker/headphone
US6018376A (en) 1996-08-19 2000-01-25 Matsushita Electric Industrial Co., Ltd. Synchronous reproduction apparatus
US6032202A (en) 1998-01-06 2000-02-29 Sony Corporation Of Japan Home audio/video network with two level device control
US6111957A (en) 1998-07-02 2000-08-29 Acoustic Technologies, Inc. Apparatus and method for adjusting audio equipment in acoustic environments
US6256554B1 (en) 1999-04-14 2001-07-03 Dilorenzo Mark Multi-room entertainment system with in-room media player/dispenser
WO2001053994A2 (en) 2000-01-24 2001-07-26 Friskit, Inc. Streaming media search and playback system
WO2001082650A2 (en) 2000-04-21 2001-11-01 Keyhold Engineering, Inc. Self-calibrating surround sound system
US20010042107A1 (en) 2000-01-06 2001-11-15 Palm Stephen R. Networked audio player transport protocol and architecture
US20010043592A1 (en) 2000-01-07 2001-11-22 Ray Jimenez Methods and apparatus for prefetching an audio signal using an audio web retrieval telephone system
JP2002502193A (en) 1998-01-30 2002-01-22 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Generation of calibration signal for adaptive beamformer
US20020022453A1 (en) 2000-03-31 2002-02-21 Horia Balog Dynamic protocol selection and routing of content to mobile devices
US20020026442A1 (en) 2000-01-24 2002-02-28 Lipscomb Kenneth O. System and method for the distribution and sharing of media assets between media players devices
US6363155B1 (en) 1997-09-24 2002-03-26 Studer Professional Audio Ag Process and device for mixing sound signals
US6404811B1 (en) 1996-05-13 2002-06-11 Tektronix, Inc. Interactive multimedia system
US20020078161A1 (en) 2000-12-19 2002-06-20 Philips Electronics North America Corporation UPnP enabling device for heterogeneous networks of slave devices
US20020089529A1 (en) 2001-01-08 2002-07-11 Jeff Robbin Media player interface
EP1133896B1 (en) 1998-10-06 2002-08-28 Bang & Olufsen A/S Environment adaptable loudspeaker
US20020124097A1 (en) 2000-12-29 2002-09-05 Isely Larson J. Methods, systems and computer program products for zone based distribution of audio signals
US20020126852A1 (en) 2001-01-12 2002-09-12 Reza Kashani System and method for actively damping boom noise in a vibro-acoustic enclosure
US20020136414A1 (en) 2001-03-21 2002-09-26 Jordan Richard J. System and method for automatically adjusting the sound and visual parameters of a home theatre system
US20020146136A1 (en) 2001-04-05 2002-10-10 Carter Charles H. Method for acoustic transducer calibration
US6469633B1 (en) 1997-01-06 2002-10-22 Openglobe Inc. Remote control of electronic devices
US20030002689A1 (en) 2001-06-29 2003-01-02 Harris Corporation Supplemental audio content system with wireless communication for a cinema and related methods
US20030031334A1 (en) 2000-01-28 2003-02-13 Lake Technology Limited Sonic landscape system
US6522886B1 (en) 1999-11-22 2003-02-18 Qwest Communications International Inc. Method and system for simultaneously sharing wireless communications among multiple wireless handsets
JP2003143252A (en) 2001-11-05 2003-05-16 Toshiba Corp Mobile communication terminal
US6573067B1 (en) 1998-01-29 2003-06-03 Yale University Nucleic acid encoding sodium channels in dorsal root ganglia
US20030157951A1 (en) 2002-02-20 2003-08-21 Hasty William V. System and method for routing 802.11 data traffic across channels to increase ad-hoc network capacity
US6611537B1 (en) 1997-05-30 2003-08-26 Centillium Communications, Inc. Synchronous network for digital media streams
US20030161492A1 (en) 2002-02-26 2003-08-28 Miller Douglas Alan Frequency response equalization system for hearing aid microphones
US20030161479A1 (en) 2001-05-30 2003-08-28 Sony Corporation Audio post processing in DVD, DTV and other audio visual products
US20030179891A1 (en) 2002-03-25 2003-09-25 Rabinowitz William M. Automatic audio system equalizing
US6631410B1 (en) 2000-03-16 2003-10-07 Sharp Laboratories Of America, Inc. Multimedia wired/wireless content synchronization system and method
US6639989B1 (en) 1998-09-25 2003-10-28 Nokia Display Products Oy Method for loudness calibration of a multichannel sound systems and a multichannel sound system
US6643744B1 (en) 2000-08-23 2003-11-04 Nintendo Co., Ltd. Method and apparatus for pre-fetching audio data
WO2003093950A2 (en) 2002-05-06 2003-11-13 David Goldberg Localized audio networks and associated digital accessories
US20030235311A1 (en) 2002-06-21 2003-12-25 Lake Technology Limited Audio testing system and method
US20040024478A1 (en) 2002-07-31 2004-02-05 Hans Mathieu Claude Operating a digital audio player in a collaborative audio session
EP1389853A1 (en) 2002-08-14 2004-02-18 Sony International (Europe) GmbH Bandwidth oriented reconfiguration of wireless ad hoc networks
US6704421B1 (en) 1997-07-24 2004-03-09 Ati Technologies, Inc. Automatic multichannel equalization control system for a multimedia computer
US6721428B1 (en) 1998-11-13 2004-04-13 Texas Instruments Incorporated Automatic loudspeaker equalizer
US6757517B2 (en) 2001-05-10 2004-06-29 Chin-Chi Chang Apparatus and method for coordinated music playback in wireless ad-hoc networks
US20040131338A1 (en) 2002-11-19 2004-07-08 Kohei Asada Method of reproducing audio signal, and reproducing apparatus therefor
US6766025B1 (en) 1999-03-15 2004-07-20 Koninklijke Philips Electronics N.V. Intelligent speaker training using microphone feedback and pre-loaded templates
WO2004066673A1 (en) 2003-01-17 2004-08-05 1... Limited Set-up method for array-type sound system
US6778869B2 (en) 2000-12-11 2004-08-17 Sony Corporation System and method for request, delivery and use of multimedia files for audiovisual entertainment in the home environment
US6798889B1 (en) 1999-11-12 2004-09-28 Creative Technology Ltd. Method and apparatus for multi-channel sound system calibration
US20040237750A1 (en) 2001-09-11 2004-12-02 Smith Margaret Paige Method and apparatus for automatic equalization mode activation
US20050031143A1 (en) 2003-08-04 2005-02-10 Devantier Allan O. System for configuring audio system
US6862440B2 (en) 2002-05-29 2005-03-01 Intel Corporation Method and system for multiple channel wireless transmitter and receiver phase and amplitude calibration
US20050063554A1 (en) 2003-08-04 2005-03-24 Devantier Allan O. System and method for audio system configuration
JP2005086686A (en) 2003-09-10 2005-03-31 Fujitsu Ten Ltd Electronic equipment
US20050147261A1 (en) 2003-12-30 2005-07-07 Chiang Yeh Head relational transfer function virtualizer
US6916980B2 (en) 2002-04-23 2005-07-12 Kabushiki Kaisha Kawai Gakki Seisakusho Acoustic control system for electronic musical instrument
US20050157885A1 (en) 2004-01-16 2005-07-21 Olney Ross D. Audio system parameter setting based upon operator usage patterns
US6931134B1 (en) 1998-07-28 2005-08-16 James K. Waller, Jr. Multi-dimensional processor and multi-dimensional audio processor system
JP2005538633A (en) 2002-09-13 2005-12-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Calibration of the first and second microphones
US6985694B1 (en) 2000-09-07 2006-01-10 Clix Network, Inc. Method and system for providing an audio element cache in a customized personal radio broadcast
US20060008256A1 (en) 2003-10-01 2006-01-12 Khedouri Robert K Audio visual player apparatus and system and method of content distribution using the same
JP2006017893A (en) 2004-06-30 2006-01-19 Brother Ind Ltd Sound pressure frequency characteristic adjusting device, information communication system, and program
US6990211B2 (en) 2003-02-11 2006-01-24 Hewlett-Packard Development Company, L.P. Audio system and method
US20060026521A1 (en) 2004-07-30 2006-02-02 Apple Computer, Inc. Gestures for touch sensitive input devices
US7039212B2 (en) 2003-09-12 2006-05-02 Britannia Investment Corporation Weather resistant porting
US7058186B2 (en) 1999-12-01 2006-06-06 Matsushita Electric Industrial Co., Ltd. Loudspeaker device
US7072477B1 (en) 2002-07-09 2006-07-04 Apple Computer, Inc. Method and apparatus for automatically normalizing a perceived volume level in a digitally encoded file
JP2006180039A (en) 2004-12-21 2006-07-06 Yamaha Corp Acoustic apparatus and program
US20060195480A1 (en) 2005-02-28 2006-08-31 Michael Spiegelman User interface for sharing and searching playlists
US7103187B1 (en) 1999-03-30 2006-09-05 Lsi Logic Corporation Audio calibration system
US20060225097A1 (en) 2005-04-01 2006-10-05 Lawrence-Apfelbaum Marc J Technique for selecting multiple entertainment programs to be provided over a communication network
US7130616B2 (en) 2000-04-25 2006-10-31 Simple Devices System and method for providing content, management, and interactivity for client devices
US7130608B2 (en) 1999-12-03 2006-10-31 Telefonaktiegolaget Lm Ericsson (Publ) Method of using a communications device together with another communications device, a communications system, a communications device and an accessory device for use in connection with a communications device
KR20060116383A (en) 2005-05-09 2006-11-15 엘지전자 주식회사 Method and apparatus for automatic setting equalizing functionality in a digital audio player
US7143939B2 (en) 2000-12-19 2006-12-05 Intel Corporation Wireless music device and method therefor
US20070003067A1 (en) 2001-03-05 2007-01-04 Stefan Gierl Apparatus for multichannel sound reproduction system
US20070025559A1 (en) 2005-07-29 2007-02-01 Harman International Industries Incorporated Audio tuning system
WO2007016465A2 (en) 2005-07-29 2007-02-08 Klipsch, L.L.C. Loudspeaker with automatic calibration and room equalization
US20070032895A1 (en) 2005-07-29 2007-02-08 Fawad Nackvi Loudspeaker with demonstration mode
US20070038999A1 (en) 2003-07-28 2007-02-15 Rincon Networks, Inc. System and method for synchronizing operations among a plurality of independently clocked digital data processing devices
US7187947B1 (en) 2000-03-28 2007-03-06 Affinity Labs, Llc System and method for communicating selected information to an electronic device
JP2007068125A (en) 2005-09-02 2007-03-15 Nec Corp Signal processing method, apparatus and computer program
US20070086597A1 (en) 2005-10-18 2007-04-19 Sony Corporation Sound measuring apparatus and method, and audio signal processing apparatus
US20070116254A1 (en) 2005-11-17 2007-05-24 Microsoft Corporation Configuration of echo cancellation
US20070121955A1 (en) 2005-11-30 2007-05-31 Microsoft Corporation Room acoustics correction device
US7236773B2 (en) 2000-05-31 2007-06-26 Nokia Mobile Phones Limited Conference call method and apparatus therefor
JP2007271802A (en) 2006-03-30 2007-10-18 Kenwood Corp Content reproduction system and computer program
US7289637B2 (en) 2001-02-06 2007-10-30 Robert Bosch Gmbh Method for automatically adjusting the filter parameters of a digital equalizer and reproduction device for audio signals for implementing such a method
US7295548B2 (en) 2002-11-27 2007-11-13 Microsoft Corporation Method and system for disaggregating audio/visual components
US7312785B2 (en) 2001-10-22 2007-12-25 Apple Inc. Method and apparatus for accelerated scrolling
US20080002839A1 (en) 2006-06-28 2008-01-03 Microsoft Corporation Smart equalizer
KR20080011831A (en) 2006-07-31 2008-02-11 삼성전자주식회사 Apparatus and method for controlling equalizer equiped with audio reproducing apparatus
US20080065247A1 (en) 2006-09-07 2008-03-13 Technology, Patents & Licensing, Inc. Calibration of a Home Entertainment System Using a Wireless Home Entertainment Hub
US20080098027A1 (en) 2005-01-04 2008-04-24 Koninklijke Philips Electronics, N.V. Apparatus For And A Method Of Processing Reproducible Data
US20080136623A1 (en) 2006-12-06 2008-06-12 Russell Calvarese Audio trigger for mobile devices
US20080144864A1 (en) 2004-05-25 2008-06-19 Huonlabs Pty Ltd Audio Apparatus And Method
US7391791B2 (en) 2001-12-17 2008-06-24 Implicit Networks, Inc. Method and system for synchronization of content rendering
US20080175411A1 (en) 2007-01-19 2008-07-24 Greve Jens Player device with automatic settings
US20080232603A1 (en) 2006-09-20 2008-09-25 Harman International Industries, Incorporated System for modifying an acoustic space with audio source content
JP2008228133A (en) 2007-03-15 2008-09-25 Matsushita Electric Ind Co Ltd Acoustic system
US20080266385A1 (en) 2007-04-30 2008-10-30 Matthew David Smith Automatically calibrating a video conference system
US20080281523A1 (en) 2004-12-21 2008-11-13 Universitetet I Oslo Channel impulse response estimation
US20090003613A1 (en) 2005-12-16 2009-01-01 Tc Electronic A/S Method of Performing Measurements By Means of an Audio System Comprising Passive Loudspeakers
US7477751B2 (en) 2003-04-23 2009-01-13 Rh Lyon Corp Method and apparatus for sound transduction with minimal interference from background noise and minimal local acoustic radiation
US20090024662A1 (en) 2007-07-18 2009-01-22 Samsung Electronics Co., Ltd. Method of setting an equalizer in an apparatus to reproduce a media file and apparatus thereof
US7483538B2 (en) 2004-03-02 2009-01-27 Ksc Industries, Inc. Wireless and wired speaker hub for a home theater system
US7489784B2 (en) 2003-11-19 2009-02-10 Pioneer Corporation Automatic sound field correcting device and computer program therefor
US7490044B2 (en) 2004-06-08 2009-02-10 Bose Corporation Audio signal processing
CN101366177A (en) 2005-09-15 2009-02-11 博蒙特弗赖德曼公司 Audio dosage control
US20090047993A1 (en) 2007-08-14 2009-02-19 Vasa Yojak H Method of using music metadata to save music listening preferences
US20090063274A1 (en) 2007-08-01 2009-03-05 Dublin Iii Wilbur Leslie System and method for targeted advertising and promotions using tabletop display devices
EP2043381A2 (en) 2007-09-28 2009-04-01 Bang & Olufsen A/S A method and a system to adjust the acoustical performance of a loudspeaker
US7519188B2 (en) 2003-09-18 2009-04-14 Bose Corporation Electroacoustical transducing
US20090110218A1 (en) 2007-10-31 2009-04-30 Swain Allan L Dynamic equalizer
US7529377B2 (en) 2005-07-29 2009-05-05 Klipsch L.L.C. Loudspeaker with automatic calibration and room equalization
US20090138507A1 (en) 2007-11-27 2009-05-28 International Business Machines Corporation Automated playback control for audio devices using environmental cues as indicators for automatically pausing audio playback
US20090147134A1 (en) 2007-11-22 2009-06-11 Yamaha Corporation Audio signal supplying device, parameter providing system, television set, av system, speaker apparatus, and audio signal supplying method
US20090180632A1 (en) 2006-03-28 2009-07-16 Genelec Oy Method and Apparatus in an Audio System
CN101491116A (en) 2006-07-07 2009-07-22 贺利实公司 Method and apparatus for creating a multi-dimensional communication space for use in a binaural audio system
US7571014B1 (en) 2004-04-01 2009-08-04 Sonos, Inc. Method and apparatus for controlling multimedia players in a multi-zone system
US20090196428A1 (en) 2008-01-31 2009-08-06 Samsung Electronics Co., Ltd. Method of compensating for audio frequency characteristics and audio/video apparatus using the method
US20090202082A1 (en) 2002-06-21 2009-08-13 Audyssey Laboratories, Inc. System And Method For Automatic Multiple Listener Room Acoustic Correction With Low Filter Orders
JP2009188474A (en) 2008-02-04 2009-08-20 Canon Inc Sound reproducing apparatus and its control method
US7590772B2 (en) 2005-08-22 2009-09-15 Apple Inc. Audio status information for a portable electronic device
US20090252481A1 (en) 2008-04-07 2009-10-08 Sony Ericsson Mobile Communications Ab Methods, apparatus, system and computer program product for audio input at video recording
US7630501B2 (en) 2004-05-14 2009-12-08 Microsoft Corporation System and method for calibration of an acoustic system
US7630500B1 (en) 1994-04-15 2009-12-08 Bose Corporation Spatial disassembly processor
US20090304205A1 (en) 2008-06-10 2009-12-10 Sony Corporation Of Japan Techniques for personalizing audio levels
US20090316923A1 (en) 2008-06-19 2009-12-24 Microsoft Corporation Multichannel acoustic echo reduction
US7643894B2 (en) 2002-05-09 2010-01-05 Netstreams Llc Audio network distribution system
US7657910B1 (en) 1999-07-26 2010-02-02 E-Cast Inc. Distributed electronic entertainment method and apparatus
US7664276B2 (en) 2004-09-23 2010-02-16 Cirrus Logic, Inc. Multipass parametric or graphic EQ fitting
US7676044B2 (en) 2003-12-10 2010-03-09 Sony Corporation Multi-speaker audio system and automatic control method
EP2161950A2 (en) 2008-09-08 2010-03-10 Bang & Olufsen A/S Configuring a sound field
US7689305B2 (en) 2004-03-26 2010-03-30 Harman International Industries, Incorporated System for audio-related device communication
JP2010081124A (en) 2008-09-24 2010-04-08 Panasonic Electric Works Co Ltd Calibration method for intercom device
US20100095332A1 (en) 2008-10-09 2010-04-15 Christian Gran System and method for controlling media rendering in a network using a mobile device
US7720237B2 (en) 2004-09-07 2010-05-18 Audyssey Laboratories, Inc. Phase equalization for multi-channel loudspeaker-room responses
US20100128902A1 (en) 2008-11-22 2010-05-27 Mao-Liang Liu Combination equalizer and calibrator circuit assembly for audio system
US20100135501A1 (en) 2008-12-02 2010-06-03 Tim Corbett Calibrating at least one system microphone
EP2194471A1 (en) 2008-12-05 2010-06-09 Vestel Elektronik Sanayi ve Ticaret A.S. Dynamic prefetching method and system for metadata
US20100142735A1 (en) 2008-12-10 2010-06-10 Samsung Electronics Co., Ltd. Audio apparatus and signal calibration method thereof
US20100146445A1 (en) 2008-12-08 2010-06-10 Apple Inc. Ambient Noise Based Augmentation of Media Playback
US20100162117A1 (en) 2008-12-23 2010-06-24 At&T Intellectual Property I, L.P. System and method for playing media
US20100189203A1 (en) 2009-01-29 2010-07-29 Telefonaktiebolaget Lm Ericsson (Publ) Automatic Gain Control Based on Bandwidth and Delay Spread
US7769183B2 (en) 2002-06-21 2010-08-03 University Of Southern California System and method for automatic room acoustic correction in multi-channel audio environments
US20100195846A1 (en) 2009-01-14 2010-08-05 Rohm Co., Ltd. Automatic level control circuit
US7796068B2 (en) 2007-07-16 2010-09-14 Gmr Research & Technology, Inc. System and method of multi-channel signal calibration
US20100272270A1 (en) 2005-09-02 2010-10-28 Harman International Industries, Incorporated Self-calibrating loudspeaker system
US20100296659A1 (en) 2008-01-25 2010-11-25 Kawasaki Jukogyo Kabushiki Kaisha Sound device and sound control device
US20100303250A1 (en) 2006-03-28 2010-12-02 Genelec Oy Calibration Method and Device in an Audio System
US20100303248A1 (en) 2009-06-02 2010-12-02 Canon Kabushiki Kaisha Standing wave detection apparatus and method of controlling the same
US7853341B2 (en) 2002-01-25 2010-12-14 Ksc Industries, Inc. Wired, wireless, infrared, and powerline audio entertainment systems
US20100323793A1 (en) 2008-02-18 2010-12-23 Sony Computer Entertainment Europe Limited System And Method Of Audio Processing
US20110007905A1 (en) 2008-02-26 2011-01-13 Pioneer Corporation Acoustic signal processing device and acoustic signal processing method
US20110007904A1 (en) 2008-02-29 2011-01-13 Pioneer Corporation Acoustic signal processing device and acoustic signal processing method
US7925203B2 (en) 2003-01-22 2011-04-12 Qualcomm Incorporated System and method for controlling broadcast multimedia using plural wireless network connections
US20110087842A1 (en) 2009-10-12 2011-04-14 Microsoft Corporation Pre-fetching content items based on social distance
US20110091055A1 (en) 2009-10-19 2011-04-21 Broadcom Corporation Loudspeaker localization techniques
US7949707B2 (en) 1999-06-16 2011-05-24 Mosi Media, Llc Internet radio receiver with linear tuning interface
US20110135103A1 (en) 2009-12-09 2011-06-09 Nuvoton Technology Corporation System and Method for Audio Adjustment
US7961893B2 (en) 2005-10-19 2011-06-14 Sony Corporation Measuring apparatus, measuring method, and sound signal processing apparatus
JP2011123376A (en) 2009-12-11 2011-06-23 Canon Inc Acoustic processing device and method
US7970922B2 (en) 2006-07-11 2011-06-28 Napo Enterprises, Llc P2P real time media recommendations
US20110170710A1 (en) 2010-01-12 2011-07-14 Samsung Electronics Co., Ltd. Method and apparatus for adjusting volume
US7987294B2 (en) 2006-10-17 2011-07-26 Altec Lansing Australia Pty Limited Unification of multimedia devices
JP2011164166A (en) 2010-02-05 2011-08-25 D&M Holdings Inc Audio signal amplifying apparatus
US8014423B2 (en) 2000-02-18 2011-09-06 Smsc Holdings S.A.R.L. Reference time distribution over a network
US20110234480A1 (en) 2010-03-23 2011-09-29 Apple Inc. Audio preview of music
US20110235808A1 (en) 2010-03-29 2011-09-29 Homare Kon Audio Reproduction Device and Audio Reproduction Method
US8045952B2 (en) 1998-01-22 2011-10-25 Horsham Enterprises, Llc Method and device for obtaining playlist content over a network
US8045721B2 (en) 2006-12-14 2011-10-25 Motorola Mobility, Inc. Dynamic distortion elimination for output audio
JP2011217068A (en) 2010-03-31 2011-10-27 Yamaha Corp Sound field controller
US20110268281A1 (en) 2010-04-30 2011-11-03 Microsoft Corporation Audio spatialization using reflective room model
WO2011139502A1 (en) 2010-05-06 2011-11-10 Dolby Laboratories Licensing Corporation Audio system equalization for portable media playback devices
US8063698B2 (en) 2008-05-02 2011-11-22 Bose Corporation Bypassing amplification
US8074253B1 (en) 1998-07-22 2011-12-06 Touchtunes Music Corporation Audiovisual reproduction system
CN102318325A (en) 2009-02-11 2012-01-11 Nxp股份有限公司 Controlling an adaptation of a behavior of an audio device to a current acoustic environmental condition
US8103009B2 (en) 2002-01-25 2012-01-24 Ksc Industries, Inc. Wired, wireless, infrared, and powerline audio entertainment systems
US20120032928A1 (en) 2010-08-06 2012-02-09 Motorola, Inc. Methods and devices for determining user input location using acoustic sensing elements
US8116476B2 (en) 2007-12-27 2012-02-14 Sony Corporation Audio signal receiving apparatus, audio signal receiving method and audio signal transmission system
US8126172B2 (en) 2007-12-06 2012-02-28 Harman International Industries, Incorporated Spatial processing stereo system
US20120051558A1 (en) 2010-09-01 2012-03-01 Samsung Electronics Co., Ltd. Method and apparatus for reproducing audio signal by adaptively controlling filter coefficient
EP2429155A1 (en) 2010-09-13 2012-03-14 HTC Corporation Mobile electronic device and sound playback method thereof
US8139774B2 (en) 2010-03-03 2012-03-20 Bose Corporation Multi-element directional acoustic arrays
US8144883B2 (en) 2004-05-06 2012-03-27 Bang & Olufsen A/S Method and system for adapting a loudspeaker to a listening position in a room
US8160276B2 (en) 2007-01-09 2012-04-17 Generalplus Technology Inc. Audio system and related method integrated with ultrasound communication functionality
US8160281B2 (en) 2004-09-08 2012-04-17 Samsung Electronics Co., Ltd. Sound reproducing apparatus and sound reproducing method
US20120093320A1 (en) 2010-10-13 2012-04-19 Microsoft Corporation System and method for high-precision 3-dimensional audio for augmented reality
US8170260B2 (en) 2005-06-23 2012-05-01 Akg Acoustics Gmbh System for determining the position of sound sources
US8175297B1 (en) 2011-07-06 2012-05-08 Google Inc. Ad hoc sensor arrays
US8175292B2 (en) 2001-06-21 2012-05-08 Aylward J Richard Audio signal processing
US20120127831A1 (en) 2010-11-24 2012-05-24 Samsung Electronics Co., Ltd. Position determination of devices using stereo audio
US8194874B2 (en) 2007-05-22 2012-06-05 Polk Audio, Inc. In-room acoustic magnitude response smoothing via summation of correction signals
US20120140936A1 (en) 2009-08-03 2012-06-07 Imax Corporation Systems and Methods for Monitoring Cinema Loudspeakers and Compensating for Quality Problems
US20120148075A1 (en) 2010-12-08 2012-06-14 Creative Technology Ltd Method for optimizing reproduction of audio signals from an apparatus for audio reproduction
US20120183156A1 (en) 2011-01-13 2012-07-19 Sennheiser Electronic Gmbh & Co. Kg Microphone system with a hand-held microphone
US8229125B2 (en) 2009-02-06 2012-07-24 Bose Corporation Adjusting dynamic range of an audio system
US8233632B1 (en) 2011-05-20 2012-07-31 Google Inc. Method and apparatus for multi-channel audio processing using single-channel components
US8238578B2 (en) 2002-12-03 2012-08-07 Bose Corporation Electroacoustical transducing with low frequency augmenting devices
US8238547B2 (en) 2004-05-11 2012-08-07 Sony Corporation Sound pickup apparatus and echo cancellation processing method
US8243961B1 (en) 2011-06-27 2012-08-14 Google Inc. Controlling microphones and speakers of a computing device
US20120213391A1 (en) 2010-09-30 2012-08-23 Panasonic Corporation Audio reproduction apparatus and audio reproduction method
US20120215530A1 (en) 2009-10-27 2012-08-23 Phonak Ag Method and system for speech enhancement in a room
US8265310B2 (en) 2010-03-03 2012-09-11 Bose Corporation Multi-element directional acoustic arrays
US8264408B2 (en) 2007-11-20 2012-09-11 Nokia Corporation User-executable antenna array calibration
US20120237037A1 (en) 2011-03-18 2012-09-20 Dolby Laboratories Licensing Corporation N Surround
US20120243697A1 (en) 2009-02-10 2012-09-27 Frye Electronics, Inc. Multiple superimposed audio frequency test system and sound chamber with attenuated echo properties
US8281001B2 (en) 2000-09-19 2012-10-02 Harman International Industries, Incorporated Device-to-device network
US8279709B2 (en) 2007-07-18 2012-10-02 Bang & Olufsen A/S Loudspeaker position estimation
US8291349B1 (en) 2011-01-19 2012-10-16 Google Inc. Gesture-based metadata display
EP1825713B1 (en) 2004-11-22 2012-10-17 Bang & Olufsen A/S A method and apparatus for multichannel upmixing and downmixing
US20120263325A1 (en) 2011-04-14 2012-10-18 Bose Corporation Orientation-Responsive Acoustic Array Control
US20120269356A1 (en) 2011-04-20 2012-10-25 Vocollect, Inc. Self calibrating multi-element dipole microphone
US20120268145A1 (en) 2011-04-20 2012-10-25 Lokesh Chandra Current sensing apparatus and method for a capacitance-sensing device
US8300845B2 (en) 2010-06-23 2012-10-30 Motorola Mobility Llc Electronic apparatus having microphones with controllable front-side gain and rear-side gain
US8306235B2 (en) 2007-07-17 2012-11-06 Apple Inc. Method and apparatus for using a sound sensor to adjust the audio output for a device
US20120283593A1 (en) 2009-10-09 2012-11-08 Auckland Uniservices Limited Tinnitus treatment system and method
US20120288124A1 (en) 2011-05-09 2012-11-15 Dts, Inc. Room characterization and correction for multi-channel audio
US8325935B2 (en) 2007-03-14 2012-12-04 Qualcomm Incorporated Speaker having a wireless link to communicate with another speaker
US8325931B2 (en) 2008-05-02 2012-12-04 Bose Corporation Detecting a loudspeaker configuration
US8331585B2 (en) 2006-05-11 2012-12-11 Google Inc. Audio mixing
US8332414B2 (en) 2008-07-01 2012-12-11 Samsung Electronics Co., Ltd. Method and system for prefetching internet content for video recorders
US20130010970A1 (en) 2010-03-26 2013-01-10 Bang & Olufsen A/S Multichannel sound reproduction method and device
WO2013016500A1 (en) 2011-07-28 2013-01-31 Thomson Licensing Audio calibration system and method
US20130028443A1 (en) 2011-07-28 2013-01-31 Apple Inc. Devices with enhanced audio
US8379876B2 (en) 2008-05-27 2013-02-19 Fortemedia, Inc Audio device utilizing a defect detection method on a microphone array
US20130051572A1 (en) 2010-12-08 2013-02-28 Creative Technology Ltd Method for optimizing reproduction of audio signals from an apparatus for audio reproduction
US8392505B2 (en) 2008-09-26 2013-03-05 Apple Inc. Collaborative playlist management
US8391501B2 (en) 2006-12-13 2013-03-05 Motorola Mobility Llc Method and apparatus for mixing priority and non-priority audio signals
US20130066453A1 (en) 2010-05-06 2013-03-14 Dolby Laboratories Licensing Corporation Audio system equalization for portable media playback devices
US8401202B2 (en) 2008-03-07 2013-03-19 Ksc Industries Incorporated Speakers with a digital signal processor
US8433076B2 (en) 2010-07-26 2013-04-30 Motorola Mobility Llc Electronic apparatus for generating beamformed audio signals with steerable nulls
US20130108055A1 (en) 2008-11-14 2013-05-02 That Corporation Dynamic volume control and multi-spatial processing protection
US20130129102A1 (en) 2011-11-23 2013-05-23 Qualcomm Incorporated Acoustic echo cancellation based on ultrasound motion detection
US20130129122A1 (en) 2011-11-22 2013-05-23 Apple Inc. Orientation-based audio
US8452020B2 (en) 2008-08-20 2013-05-28 Apple Inc. Adjustment of acoustic properties based on proximity detection
US8463184B2 (en) 2005-05-12 2013-06-11 Robin Dua Wireless media system-on-chip and player
US8483853B1 (en) 2006-09-12 2013-07-09 Sonos, Inc. Controlling and manipulating groupings in a multi-zone media system
US8488799B2 (en) 2008-09-11 2013-07-16 Personics Holdings Inc. Method and system for sound monitoring over a network
US8503669B2 (en) 2008-04-07 2013-08-06 Sony Computer Entertainment Inc. Integrated latency detection and echo cancellation
US20130202131A1 (en) 2012-02-03 2013-08-08 Sony Corporation Signal processing apparatus, signal processing method, program,signal processing system, and communication terminal
US20130211843A1 (en) 2012-02-13 2013-08-15 Qualcomm Incorporated Engagement-dependent gesture recognition
US20130216071A1 (en) 2012-02-21 2013-08-22 Intertrust Technologies Corporation Audio reproduction systems and methods
US20130223642A1 (en) 2011-07-14 2013-08-29 Vivint, Inc. Managing audio output through an intermediary
US8527876B2 (en) 2008-06-12 2013-09-03 Apple Inc. System and methods for adjusting graphical representations of media files based on previous usage
US20130230175A1 (en) 2012-03-02 2013-09-05 Bang & Olufsen A/S System for optimizing the perceived sound quality in virtual sound zones
US20130259254A1 (en) 2012-03-28 2013-10-03 Qualcomm Incorporated Systems, methods, and apparatus for producing a directional sound field
US20130279706A1 (en) 2012-04-23 2013-10-24 Stefan J. Marti Controlling individual audio output devices based on detected inputs
US8577045B2 (en) 2007-09-25 2013-11-05 Motorola Mobility Llc Apparatus and method for encoding a multi-channel audio signal
US20130305152A1 (en) 2012-05-08 2013-11-14 Neil Griffiths Methods and systems for subwoofer calibration
US20130315405A1 (en) 2012-05-24 2013-11-28 Kabushiki Kaisha Toshiba Sound processor, sound processing method, and computer program product
US8600075B2 (en) 2007-09-11 2013-12-03 Samsung Electronics Co., Ltd. Method for equalizing audio, and video apparatus using the same
US20130329896A1 (en) 2012-06-08 2013-12-12 Apple Inc. Systems and methods for determining the condition of multiple microphones
US20130331970A1 (en) 2012-06-06 2013-12-12 Sonos, Inc Device Playback Failure Recovery and Redistribution
JP2013253884A (en) 2012-06-07 2013-12-19 Toshiba Corp Measurement device and program
US8620006B2 (en) 2009-05-13 2013-12-31 Bose Corporation Center channel rendering
US20140003622A1 (en) 2012-06-28 2014-01-02 Broadcom Corporation Loudspeaker beamforming for personal audio focal points
US20140003626A1 (en) 2012-06-28 2014-01-02 Apple Inc. Automatic audio equalization using handheld mode detection
US20140003623A1 (en) 2012-06-29 2014-01-02 Sonos, Inc. Smart Audio Settings
US20140003625A1 (en) 2012-06-28 2014-01-02 Sonos, Inc System and Method for Device Playback Calibration
US20140006587A1 (en) 2012-06-27 2014-01-02 Mieko Kusano Systems and methods for mobile music zones
US20140003635A1 (en) 2012-07-02 2014-01-02 Qualcomm Incorporated Audio signal processing device calibration
US20140016802A1 (en) 2012-07-16 2014-01-16 Qualcomm Incorporated Loudspeaker position compensation with 3d-audio hierarchical coding
US20140016786A1 (en) 2012-07-15 2014-01-16 Qualcomm Incorporated Systems, methods, apparatus, and computer-readable media for three-dimensional audio coding using basis function coefficients
US20140016784A1 (en) 2012-07-15 2014-01-16 Qualcomm Incorporated Systems, methods, apparatus, and computer-readable media for backward-compatible audio coding
US20140023196A1 (en) 2012-07-20 2014-01-23 Qualcomm Incorporated Scalable downmix design with feedback for object-based surround codec
US20140029201A1 (en) 2012-07-25 2014-01-30 Si Joong Yang Power package module and manufacturing method thereof
US20140037107A1 (en) 2012-08-01 2014-02-06 Sonos, Inc. Volume Interactions for Connected Playback Devices
US20140037097A1 (en) 2012-08-02 2014-02-06 Crestron Electronics, Inc. Loudspeaker Calibration Using Multiple Wireless Microphones
US20140052770A1 (en) 2012-08-14 2014-02-20 Packetvideo Corporation System and method for managing media content using a dynamic playlist
US20140064501A1 (en) 2012-08-29 2014-03-06 Bang & Olufsen A/S Method and a system of providing information to a user
WO2014032709A1 (en) 2012-08-29 2014-03-06 Huawei Technologies Co., Ltd. Audio rendering system
WO2014036121A1 (en) 2012-08-31 2014-03-06 Dolby Laboratories Licensing Corporation System for rendering and playback of object based audio in various listening environments
US20140079242A1 (en) 2012-09-17 2014-03-20 Research In Motion Limited Localization of a Wireless User Equipment (UE) Device Based on Single Beep per Channel Signatures
US20140084014A1 (en) 2012-09-27 2014-03-27 Creative Technology Ltd Electronic device
US20140086423A1 (en) 2012-09-25 2014-03-27 Gustavo D. Domingo Yaguez Multiple device noise reduction microphone array
US20140112481A1 (en) 2012-10-18 2014-04-24 Google Inc. Hierarchical deccorelation of multichannel audio
US20140119551A1 (en) 2011-07-01 2014-05-01 Dolby Laboratories Licensing Corporation Audio Playback System Monitoring
US20140126730A1 (en) 2012-11-07 2014-05-08 Fairchild Semiconductor Corporation Methods and apparatus related to protection of a speaker
US8731206B1 (en) 2012-10-10 2014-05-20 Google Inc. Measuring sound quality using relative comparison
US8755538B2 (en) 2008-06-30 2014-06-17 Dae Hoon Kwon Tuning sound feed-back device
EP2591617B1 (en) 2010-07-09 2014-06-18 Bang & Olufsen A/S Adaptive sound field control
US20140169569A1 (en) 2012-12-17 2014-06-19 Nokia Corporation Device Discovery And Constellation Selection
US20140180684A1 (en) 2012-12-20 2014-06-26 Strubwerks, LLC Systems, Methods, and Apparatus for Assigning Three-Dimensional Spatial Data to Sounds and Audio Files
US20140192986A1 (en) 2013-01-07 2014-07-10 Samsung Electronics Co., Ltd. Audio content playback method and apparatus for portable terminal
US20140219456A1 (en) 2013-02-07 2014-08-07 Qualcomm Incorporated Determining renderers for spherical harmonic coefficients
US20140219483A1 (en) 2013-02-01 2014-08-07 Samsung Electronics Co., Ltd. System and method for setting audio output channels of speakers
CN103988523A (en) 2011-07-19 2014-08-13 搜诺思公司 Shaping sound responsive to speaker orientation
US20140226823A1 (en) 2013-02-08 2014-08-14 Qualcomm Incorporated Signaling audio rendering information in a bitstream
US20140242913A1 (en) 2013-01-01 2014-08-28 Aliphcom Mobile device speaker control
US8831244B2 (en) 2011-05-10 2014-09-09 Audiotoniq, Inc. Portable tone generator for producing pre-calibrated tones
US20140267148A1 (en) 2013-03-14 2014-09-18 Aliphcom Proximity and interface controls of media devices for media presentations
US20140270282A1 (en) 2013-03-12 2014-09-18 Nokia Corporation Multichannel audio calibration method and apparatus
US20140270202A1 (en) 2013-03-12 2014-09-18 Motorola Mobility Llc Apparatus with Adaptive Audio Adjustment Based on Surface Proximity, Surface Type and Motion
US20140279889A1 (en) 2013-03-14 2014-09-18 Aliphcom Intelligent device connection for wireless media ecosystem
US20140273859A1 (en) 2013-03-14 2014-09-18 Aliphcom Intelligent device connection for wireless media ecosystem
US20140285313A1 (en) 2013-03-15 2014-09-25 Aliphcom Proximity sensing device control architecture and data communication protocol
US20140286496A1 (en) 2013-03-15 2014-09-25 Aliphcom Proximity sensing device control architecture and data communication protocol
US20140294200A1 (en) 2013-03-29 2014-10-02 Apple Inc. Metadata for loudness and dynamic range control
US8855319B2 (en) 2011-05-25 2014-10-07 Mediatek Inc. Audio signal processing apparatus and audio signal processing method
US8862273B2 (en) 2010-07-29 2014-10-14 Empire Technology Development Llc Acoustic noise management through control of electrical device operations
US20140310269A1 (en) 2013-02-04 2014-10-16 Tencent Technology (Shenzhen) Company Limited Method and system for performing an audio information collection and query
US20140323036A1 (en) 2013-04-29 2014-10-30 Motorola Mobility Llc Systems and Methods for Syncronizing Multiple Electronic Devices
US20140321670A1 (en) 2013-04-26 2014-10-30 Sony Corporation Devices, Methods and Computer Program Products for Controlling Loudness
US20140334644A1 (en) 2013-02-11 2014-11-13 Symphonic Audio Technologies Corp. Method for augmenting a listening experience
US20140341399A1 (en) 2013-05-14 2014-11-20 Logitech Europe S.A Method and apparatus for controlling portable audio devices
US20140344689A1 (en) 2013-05-14 2014-11-20 Google Inc. System for universal remote media control in a multi-user, multi-platform, multi-device environment
US20140355794A1 (en) 2013-05-29 2014-12-04 Qualcomm Incorporated Binaural rendering of spherical harmonic coefficients
US20140355768A1 (en) 2013-05-28 2014-12-04 Qualcomm Incorporated Performing spatial masking with respect to spherical harmonic coefficients
US8914559B2 (en) 2006-12-12 2014-12-16 Apple Inc. Methods and systems for automatic configuration of peripherals
US8930005B2 (en) 2012-08-07 2015-01-06 Sonos, Inc. Acoustic signatures in a playback system
US20150011195A1 (en) 2013-07-03 2015-01-08 Eric Li Automatic volume control based on context and location
US8934655B2 (en) 2011-04-14 2015-01-13 Bose Corporation Orientation-responsive use of acoustic reflection
US8934647B2 (en) 2011-04-14 2015-01-13 Bose Corporation Orientation-responsive acoustic driver selection
US20150016642A1 (en) 2013-07-15 2015-01-15 Dts, Inc. Spatial calibration of surround sound systems including listener position estimation
US20150023509A1 (en) 2013-07-18 2015-01-22 Harman International Industries, Inc. Apparatus and method for performing an audio measurement sweep
US20150032844A1 (en) 2013-07-29 2015-01-29 Bose Corporation Method and Device for Selecting a Networked Media Device
US20150031287A1 (en) 2013-03-13 2015-01-29 Hawk Yin Pang Radio signal pickup from an electrically conductive substrate utilizing passive slits
US20150036847A1 (en) 2013-07-30 2015-02-05 Thomas Alan Donaldson Acoustic detection of audio sources to facilitate reproduction of spatial audio spaces
US20150036848A1 (en) 2013-07-30 2015-02-05 Thomas Alan Donaldson Motion detection of audio sources to facilitate reproduction of spatial audio spaces
EP2835989A2 (en) 2013-08-09 2015-02-11 Samsung Electronics Co., Ltd System for tuning audio processing features and method thereof
US20150043736A1 (en) 2012-03-14 2015-02-12 Bang & Olufsen A/S Method of applying a combined or hybrid sound-field control strategy
US8965033B2 (en) 2012-08-31 2015-02-24 Sonos, Inc. Acoustic optimization
US8965546B2 (en) 2010-07-26 2015-02-24 Qualcomm Incorporated Systems, methods, and apparatus for enhanced acoustic imaging
WO2015024881A1 (en) 2013-08-20 2015-02-26 Bang & Olufsen A/S A system for and a method of generating sound
US20150063610A1 (en) 2013-08-30 2015-03-05 GN Store Nord A/S Audio rendering system categorising geospatial objects
US8984442B2 (en) 2006-11-17 2015-03-17 Apple Inc. Method and system for upgrading a previously purchased media asset
US20150078586A1 (en) 2013-09-16 2015-03-19 Amazon Technologies, Inc. User input with fingerprint sensor
US20150078596A1 (en) 2012-04-04 2015-03-19 Sonicworks, Slr. Optimizing audio systems
US8989406B2 (en) 2011-03-11 2015-03-24 Sony Corporation User profile based audio adjustment techniques
US8996370B2 (en) 2012-01-31 2015-03-31 Microsoft Corporation Transferring data via audio link
US20150100991A1 (en) 2012-05-08 2015-04-09 Actiwave Ab Implied media networks
EP2860992A1 (en) 2013-10-10 2015-04-15 Samsung Electronics Co., Ltd Audio system, method of outputting audio, and speaker apparatus
US9020153B2 (en) 2012-10-24 2015-04-28 Google Inc. Automatic detection of loudspeaker characteristics
US9021153B2 (en) 2008-02-20 2015-04-28 Mediatek Inc. Direct memory access system and method using the same
US20150149943A1 (en) 2010-11-09 2015-05-28 Sony Corporation Virtual room form maker
US20150146886A1 (en) 2013-11-25 2015-05-28 Apple Inc. Loudness normalization based on user feedback
US20150161360A1 (en) 2013-12-06 2015-06-11 Microsoft Corporation Mobile Device Generated Sharing of Cloud Media Collections
US9065929B2 (en) 2011-08-02 2015-06-23 Apple Inc. Hearing aid detection
US20150195666A1 (en) 2014-01-07 2015-07-09 Howard Massey Device, Method and Software for Measuring Distance To A Sound Generator By Using An Audible Impulse Signal.
US9084058B2 (en) 2011-12-29 2015-07-14 Sonos, Inc. Sound field calibration using listener localization
US20150201274A1 (en) 2013-02-28 2015-07-16 Google Inc. Stream caching for audio mixers
WO2015108794A1 (en) 2014-01-18 2015-07-23 Microsoft Technology Licensing, Llc Dynamic calibration of an audio system
US9100766B2 (en) 2009-10-05 2015-08-04 Harman International Industries, Inc. Multichannel audio system having audio channel compensation
US20150220558A1 (en) 2014-01-31 2015-08-06 EyeGroove, Inc. Methods and devices for modifying pre-existing media items
US20150229699A1 (en) 2014-02-10 2015-08-13 Comcast Cable Communications, Llc Methods And Systems For Linking Content
US20150260754A1 (en) 2014-03-17 2015-09-17 Plantronics, Inc. Sensor calibration based on device use state
US20150271616A1 (en) 2012-10-09 2015-09-24 Koninklijke Philips N.V. Method and apparatus for audio interference estimation
US20150281866A1 (en) 2014-03-31 2015-10-01 Bose Corporation Audio speaker
US20150289064A1 (en) 2014-04-04 2015-10-08 Oticon A/S Self-calibration of multi-microphone noise reduction system for hearing assistance devices using an auxiliary device
WO2015178950A1 (en) 2014-05-19 2015-11-26 Tiskerling Dynamics Llc Directivity optimized sound reproduction
US20150358756A1 (en) 2013-02-05 2015-12-10 Koninklijke Philips N.V. An audio apparatus and method therefor
US9215545B2 (en) 2013-05-31 2015-12-15 Bose Corporation Sound stage controller for a near-field speaker-based audio system
US9219460B2 (en) 2014-03-17 2015-12-22 Sonos, Inc. Audio settings based on environment
US20150382128A1 (en) 2014-06-30 2015-12-31 Microsoft Corporation Audio calibration and adjustment
US9231545B2 (en) 2013-09-27 2016-01-05 Sonos, Inc. Volume enhancements in a multi-zone media playback system
US20160007116A1 (en) 2013-03-07 2016-01-07 Tiskerling Dynamics Llc Room and program responsive loudspeaker system
US20160014536A1 (en) 2014-09-09 2016-01-14 Sonos, Inc. Playback Device Calibration
US20160011850A1 (en) 2012-06-28 2016-01-14 Sonos, Inc. Speaker Calibration User Interface
US20160014509A1 (en) 2014-07-09 2016-01-14 Blackberry Limited Communication device and method for adapting to audio accessories
US20160011846A1 (en) 2014-09-09 2016-01-14 Sonos, Inc. Audio Processing Algorithms
US20160021458A1 (en) 2013-03-11 2016-01-21 Apple Inc. Timbre constancy across a range of directivities for a loudspeaker
US20160021473A1 (en) 2014-07-15 2016-01-21 Sonavox Canada Inc. Wireless control and calibration of audio system
US20160021481A1 (en) 2013-03-05 2016-01-21 Tiskerling Dynamics Llc Adjusting the beam pattern of a speaker array based on the location of one or more listeners
US20160027467A1 (en) 2013-06-21 2016-01-28 Hello Inc. Room monitoring device with controlled recording
US20160029142A1 (en) 2013-03-14 2016-01-28 Apple Inc. Adaptive room equalization using a speaker and a handheld listening device
US20160035337A1 (en) 2013-08-01 2016-02-04 Snap Networks Pvt Ltd Enhancing audio using a mobile device
US20160037277A1 (en) 2014-07-30 2016-02-04 Panasonic Intellectual Property Management Co., Ltd. Failure detection system and failure detection method
US20160036881A1 (en) 2014-08-01 2016-02-04 Qualcomm Incorporated Computing device and method for exchanging metadata with peer devices in order to obtain media playback resources from a network service
US20160061597A1 (en) 2013-05-16 2016-03-03 Koninklijke Philips N.V. Determination of a room dimension estimate
US20160070526A1 (en) 2014-09-09 2016-03-10 Sonos, Inc. Playback Device Calibration
US9288597B2 (en) 2014-01-20 2016-03-15 Sony Corporation Distributed wireless speaker system with automatic configuration determination when new speakers are added
US9286384B2 (en) 2011-09-21 2016-03-15 Sonos, Inc. Methods and systems to share media
WO2016040324A1 (en) 2014-09-09 2016-03-17 Sonos, Inc. Audio processing algorithms and databases
US9300266B2 (en) 2013-02-12 2016-03-29 Qualcomm Incorporated Speaker equalization for mobile devices
US9319816B1 (en) 2012-09-26 2016-04-19 Amazon Technologies, Inc. Characterizing environment using ultrasound pilot tones
US20160140969A1 (en) 2014-11-14 2016-05-19 The Nielsen Company (Us), Llc Determining media device activation based on frequency response analysis
US20160165297A1 (en) 2013-07-17 2016-06-09 Telefonaktiebolaget L M Ericsson (Publ) Seamless playback of media content using digital watermarking
US20160192098A1 (en) 2014-03-17 2016-06-30 Sonos, Inc. Calibration Adjustment Based On Barrier
US20160212535A1 (en) * 2015-01-21 2016-07-21 Qualcomm Incorporated System and method for controlling output of multiple audio output devices
US20160239255A1 (en) 2015-02-16 2016-08-18 Harman International Industries, Inc. Mobile interface for loudspeaker optimization
US20160260140A1 (en) 2015-03-06 2016-09-08 Spotify Ab System and method for providing a promoted track display for use with a media content or streaming environment
US9467779B2 (en) 2014-05-13 2016-10-11 Apple Inc. Microphone partial occlusion detector
US9472201B1 (en) 2013-05-22 2016-10-18 Google Inc. Speaker localization by means of tactile input
US20160313971A1 (en) 2015-04-24 2016-10-27 Sonos, Inc. Volume Limit
US20160316305A1 (en) 2012-06-28 2016-10-27 Sonos, Inc. Speaker Calibration
US9489948B1 (en) 2011-11-28 2016-11-08 Amazon Technologies, Inc. Sound source localization using multiple microphone arrays
US20160330562A1 (en) 2014-01-10 2016-11-10 Dolby Laboratories Licensing Corporation Calibration of virtual height speakers using programmable portable devices
US20160366517A1 (en) 2015-06-15 2016-12-15 Harman International Industries, Inc. Crowd-sourced audio data for venue equalization
US9538305B2 (en) 2015-07-28 2017-01-03 Sonos, Inc. Calibration error conditions
US9560449B2 (en) 2014-01-17 2017-01-31 Sony Corporation Distributed wireless speaker system
EP3128767A2 (en) 2015-08-06 2017-02-08 Dolby Laboratories Licensing Corporation System and method to enhance speakers connected to devices with microphones
US20170069338A1 (en) 2015-09-08 2017-03-09 Bose Corporation Wireless Audio Synchronization
US20170083279A1 (en) 2014-09-09 2017-03-23 Sonos, Inc. Facilitating Calibration of an Audio Playback Device
WO2017049169A1 (en) 2015-09-17 2017-03-23 Sonos, Inc. Facilitating calibration of an audio playback device
US9609383B1 (en) 2015-03-23 2017-03-28 Amazon Technologies, Inc. Directional audio for virtual environments
US9615171B1 (en) 2012-07-02 2017-04-04 Amazon Technologies, Inc. Transformation inversion to reduce the effect of room acoustics
US20170142532A1 (en) 2015-11-13 2017-05-18 Bose Corporation Double-Talk Detection for Acoustic Echo Cancellation
US9674625B2 (en) 2011-04-18 2017-06-06 Apple Inc. Passive proximity detection
US9689960B1 (en) 2013-04-04 2017-06-27 Amazon Technologies, Inc. Beam rejection in multi-beam microphone systems
US20170207762A1 (en) 2016-01-19 2017-07-20 Apple Inc. Correction of unknown audio content
US9723420B2 (en) 2013-03-06 2017-08-01 Apple Inc. System and method for robust simultaneous driver measurement for a speaker system
US20170223447A1 (en) 2014-09-30 2017-08-03 Apple Inc. Multi-driver acoustic horn for horizontal beam control
US20170230772A1 (en) 2014-09-30 2017-08-10 Apple Inc. Method for creating a virtual acoustic stereo system with an undistorted acoustic center
US9743207B1 (en) 2016-01-18 2017-08-22 Sonos, Inc. Calibration using multiple recording devices
US20170257722A1 (en) 2016-03-03 2017-09-07 Thomson Licensing Apparatus and method for determining delay and gain parameters for calibrating a multi channel audio system
US9763018B1 (en) 2016-04-12 2017-09-12 Sonos, Inc. Calibration of audio playback devices
US20170280265A1 (en) 2014-09-30 2017-09-28 Apple Inc. Method to determine loudspeaker change of placement
US20170311108A1 (en) 2015-07-21 2017-10-26 Disney Enterprises Inc. Systems and Methods for Delivery of Personalized Audio

Family Cites Families (124)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3014423A (en) 1959-11-27 1961-12-26 Jersey Prod Res Co Apparatus for drilling boreholes with explosive charges
US3005228A (en) 1960-06-13 1961-10-24 Hollywood Appliances Inc Separable hinge
NL8300671A (en) 1983-02-23 1984-09-17 Philips Nv AUTOMATIC EQUALIZATION SYSTEM WITH DTF OR FFT.
US6760451B1 (en) 1993-08-03 2004-07-06 Peter Graham Craven Compensating filters
JP4392513B2 (en) 1995-11-02 2010-01-06 バン アンド オルフセン アクティー ゼルスカブ Method and apparatus for controlling an indoor speaker system
US7012630B2 (en) 1996-02-08 2006-03-14 Verizon Services Corp. Spatial sound conference system and apparatus
US5754774A (en) 1996-02-15 1998-05-19 International Business Machine Corp. Client/server communication system
JPH10307592A (en) 1997-05-08 1998-11-17 Alpine Electron Inc Data distributing system for on-vehicle audio device
TW392416B (en) 1997-08-18 2000-06-01 Noise Cancellation Tech Noise cancellation system for active headsets
CN100382657C (en) 1999-08-11 2008-04-16 微软公司 Compensation system and method for sound reproduction
US7092537B1 (en) 1999-12-07 2006-08-15 Texas Instruments Incorporated Digital self-adapting graphic equalizer and method
US7031476B1 (en) 2000-06-13 2006-04-18 Sharp Laboratories Of America, Inc. Method and apparatus for intelligent speaker
JP2002101500A (en) 2000-09-22 2002-04-05 Matsushita Electric Ind Co Ltd Sound field measurement device
US20020072816A1 (en) 2000-12-07 2002-06-13 Yoav Shdema Audio system
KR100423728B1 (en) 2001-12-11 2004-03-22 기아자동차주식회사 Vehicle Safety Device By Using Multi-channel Audio
JP4059478B2 (en) 2002-02-28 2008-03-12 パイオニア株式会社 Sound field control method and sound field control system
JP2003304590A (en) 2002-04-10 2003-10-24 Nippon Telegr & Teleph Corp <Ntt> Remote controller, sound volume adjustment method, and sound volume automatic adjustment system
US20050021470A1 (en) 2002-06-25 2005-01-27 Bose Corporation Intelligent music track selection
US20040071294A1 (en) 2002-10-15 2004-04-15 Halgas Joseph F. Method and apparatus for automatically configuring surround sound speaker systems
US20040114771A1 (en) 2002-12-12 2004-06-17 Mitchell Vaughan Multimedia system with pre-stored equalization sets for multiple vehicle environments
US20050069153A1 (en) 2003-09-26 2005-03-31 Hall David S. Adjustable speaker systems and methods
KR100678929B1 (en) 2003-11-24 2007-02-07 삼성전자주식회사 Method For Playing Multi-Channel Digital Sound, And Apparatus For The Same
US9374607B2 (en) 2012-06-26 2016-06-21 Sonos, Inc. Media playback system with guest access
US7574010B2 (en) 2004-05-28 2009-08-11 Research In Motion Limited System and method for adjusting an audio signal
US20060088174A1 (en) 2004-10-26 2006-04-27 Deleeuw William C System and method for optimizing media center audio through microphones embedded in a remote control
DE102004000043A1 (en) 2004-11-17 2006-05-24 Siemens Ag Method for selective recording of a sound signal
US9008331B2 (en) 2004-12-30 2015-04-14 Harman International Industries, Incorporated Equalization system to improve the quality of bass sounds within a listening area
JP4407571B2 (en) 2005-06-06 2010-02-03 株式会社デンソー In-vehicle system, vehicle interior sound field adjustment system, and portable terminal
US20070087686A1 (en) 2005-10-18 2007-04-19 Nokia Corporation Audio playback device and method of its operation
CN1984507A (en) 2005-12-16 2007-06-20 乐金电子(沈阳)有限公司 Voice-frequency/video-frequency equipment and method for automatically adjusting loundspeaker position
FI20060910A0 (en) 2006-03-28 2006-10-13 Genelec Oy Identification method and device in an audio reproduction system
JP4544190B2 (en) 2006-03-31 2010-09-15 ソニー株式会社 VIDEO / AUDIO PROCESSING SYSTEM, VIDEO PROCESSING DEVICE, AUDIO PROCESSING DEVICE, VIDEO / AUDIO OUTPUT DEVICE, AND VIDEO / AUDIO SYNCHRONIZATION METHOD
JP4725422B2 (en) 2006-06-02 2011-07-13 コニカミノルタホールディングス株式会社 Echo cancellation circuit, acoustic device, network camera, and echo cancellation method
US7702282B2 (en) 2006-07-13 2010-04-20 Sony Ericsoon Mobile Communications Ab Conveying commands to a mobile terminal through body actions
JP2008035254A (en) 2006-07-28 2008-02-14 Sharp Corp Sound output device and television receiver
US20080077261A1 (en) 2006-08-29 2008-03-27 Motorola, Inc. Method and system for sharing an audio experience
US20080214160A1 (en) 2007-03-01 2008-09-04 Sony Ericsson Mobile Communications Ab Motion-controlled audio output
US20100104114A1 (en) 2007-03-15 2010-04-29 Peter Chapman Timbral correction of audio reproduction systems based on measured decay time or reverberation time
WO2008120347A1 (en) 2007-03-29 2008-10-09 Fujitsu Limited Semiconductor device and bias generating circuit
US8493332B2 (en) 2007-06-21 2013-07-23 Elo Touch Solutions, Inc. Method and system for calibrating an acoustic touchscreen
DE102007032281A1 (en) 2007-07-11 2009-01-15 Austriamicrosystems Ag Reproduction device and method for controlling a reproduction device
US8175871B2 (en) 2007-09-28 2012-05-08 Qualcomm Incorporated Apparatus and method of noise and echo reduction in multiple microphone audio systems
US8042961B2 (en) 2007-12-02 2011-10-25 Andrew Massara Audio lamp
US8073176B2 (en) 2008-01-04 2011-12-06 Bernard Bottum Speakerbar
TW200948165A (en) 2008-05-15 2009-11-16 Asustek Comp Inc Sound system with acoustic calibration function
JP5125891B2 (en) 2008-08-28 2013-01-23 ヤマハ株式会社 Audio system and speaker device
US8325944B1 (en) 2008-11-07 2012-12-04 Adobe Systems Incorporated Audio mixes for listening environments
CN101478296B (en) 2009-01-05 2011-12-21 华为终端有限公司 Gain control method and apparatus in multi-channel system
US8626516B2 (en) 2009-02-09 2014-01-07 Broadcom Corporation Method and system for dynamic range control in an audio processing system
WO2010138311A1 (en) 2009-05-26 2010-12-02 Dolby Laboratories Licensing Corporation Equalization profiles for dynamic equalization of audio data
US8682002B2 (en) 2009-07-02 2014-03-25 Conexant Systems, Inc. Systems and methods for transducer calibration and tuning
US8995688B1 (en) 2009-07-23 2015-03-31 Helen Jeanne Chemtob Portable hearing-assistive sound unit system
US8565908B2 (en) 2009-07-29 2013-10-22 Northwestern University Systems, methods, and apparatus for equalization preference learning
EP2288178B1 (en) 2009-08-17 2012-06-06 Nxp B.V. A device for and a method of processing audio data
US20110150247A1 (en) 2009-12-17 2011-06-23 Rene Martin Oliveras System and method for applying a plurality of input signals to a loudspeaker array
JP5290949B2 (en) 2009-12-17 2013-09-18 キヤノン株式会社 Sound processing apparatus and method
KR20110072650A (en) 2009-12-23 2011-06-29 삼성전자주식회사 Audio apparatus and method for transmitting audio signal and audio system
AU2011219918B2 (en) 2010-02-24 2013-11-28 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus for generating an enhanced downmix signal, method for generating an enhanced downmix signal and computer program
KR102294460B1 (en) 2010-03-26 2021-08-27 돌비 인터네셔널 에이비 Method and device for decoding an audio soundfield representation for audio playback
JP5488128B2 (en) 2010-03-31 2014-05-14 ヤマハ株式会社 Signal processing device
US8611570B2 (en) 2010-05-25 2013-12-17 Audiotoniq, Inc. Data storage system, hearing aid, and method of selectively applying sound filters
CN102004823B (en) 2010-11-11 2012-09-26 浙江中科电声研发中心 Numerical value simulation method of vibration and acoustic characteristics of speaker
WO2012066541A2 (en) 2010-11-16 2012-05-24 Epos Development Ltd. System and method for object position estimation based on ultrasonic reflected signals
KR101873405B1 (en) 2011-01-18 2018-07-02 엘지전자 주식회사 Method for providing user interface using drawn patten and mobile terminal thereof
US9055382B2 (en) 2011-06-29 2015-06-09 Richard Lane Calibration of headphones to improve accuracy of recorded audio content
CN103636235B (en) 2011-07-01 2017-02-15 杜比实验室特许公司 Method and device for equalization and/or bass management of speaker arrays
KR101948645B1 (en) 2011-07-11 2019-02-18 삼성전자 주식회사 Method and apparatus for controlling contents using graphic object
US20130166227A1 (en) 2011-12-27 2013-06-27 Utc Fire & Security Corporation System and method for an acoustic monitor self-test
US9191699B2 (en) 2011-12-29 2015-11-17 Sonos, Inc. Systems and methods for connecting an audio controller to a hidden audio network
US8856272B2 (en) 2012-01-08 2014-10-07 Harman International Industries, Incorporated Cloud hosted audio rendering based upon device and environment profiles
EP2817977B1 (en) 2012-02-24 2019-12-18 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus for providing an audio signal for reproduction by a sound transducer, system, method and computer program
KR101267047B1 (en) 2012-03-30 2013-05-24 삼성전자주식회사 Apparatus and method for detecting earphone
US9882995B2 (en) 2012-06-25 2018-01-30 Sonos, Inc. Systems, methods, apparatus, and articles of manufacture to provide automatic wireless configuration
US9497544B2 (en) 2012-07-02 2016-11-15 Qualcomm Incorporated Systems and methods for surround sound echo reduction
US20140032329A1 (en) 2012-07-26 2014-01-30 Jvl Ventures, Llc Systems, methods, and computer program products for generating a feed message
US10111002B1 (en) 2012-08-03 2018-10-23 Amazon Technologies, Inc. Dynamic audio optimization
WO2014035902A2 (en) 2012-08-31 2014-03-06 Dolby Laboratories Licensing Corporation Reflected and direct rendering of upmixed content to individually addressable drivers
WO2014040667A1 (en) 2012-09-12 2014-03-20 Sony Corporation Audio system, method for sound reproduction, audio signal source device, and sound output device
FR2995754A1 (en) 2012-09-18 2014-03-21 France Telecom OPTIMIZED CALIBRATION OF A MULTI-SPEAKER SOUND RESTITUTION SYSTEM
EP2912748B1 (en) 2012-10-26 2020-02-26 MediaTek Singapore Pte Ltd. Wireless power transfer in-band communication system
CN104854552B (en) 2012-11-06 2019-04-30 天龙马兰士集团有限公司 Selectively coordinated audio player system
EP2747081A1 (en) 2012-12-18 2014-06-25 Oticon A/s An audio processing device comprising artifact reduction
US9247365B1 (en) 2013-02-14 2016-01-26 Google Inc. Impedance sensing for speaker characteristic information
EP2770635A1 (en) 2013-02-25 2014-08-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Equalization filter coefficient determinator, apparatus, equalization filter coefficient processor, system and methods
US9185199B2 (en) 2013-03-12 2015-11-10 Google Technology Holdings LLC Method and apparatus for acoustically characterizing an environment in which an electronic device resides
KR101751386B1 (en) 2013-03-15 2017-06-27 키사, 아이엔씨. Contactless ehf data communication
US9979438B2 (en) 2013-06-07 2018-05-22 Apple Inc. Controlling a media device using a mobile device
US9654073B2 (en) 2013-06-07 2017-05-16 Sonos, Inc. Group volume control
CN103491397B (en) 2013-09-25 2017-04-26 歌尔股份有限公司 Method and system for achieving self-adaptive surround sound
US9402095B2 (en) 2013-11-19 2016-07-26 Nokia Technologies Oy Method and apparatus for calibrating an audio playback system
US9590969B2 (en) 2014-03-13 2017-03-07 Ca, Inc. Identity verification services using private data
WO2015156775A1 (en) 2014-04-08 2015-10-15 Empire Technology Development Llc Sound verification
US20160119730A1 (en) 2014-07-07 2016-04-28 Project Aalto Oy Method for improving audio quality of online multimedia content
CN104284291B (en) 2014-08-07 2016-10-05 华南理工大学 The earphone dynamic virtual playback method of 5.1 path surround sounds and realize device
US9891881B2 (en) 2014-09-09 2018-02-13 Sonos, Inc. Audio processing algorithm database
US9196432B1 (en) 2014-09-24 2015-11-24 James Thomas O'Keeffe Smart electrical switch with audio capability
CN104219604B (en) 2014-09-28 2017-02-15 三星电子(中国)研发中心 Stereo playback method of loudspeaker array
US9832524B2 (en) 2014-11-18 2017-11-28 Caavo Inc Configuring television speakers
US9584915B2 (en) 2015-01-19 2017-02-28 Microsoft Technology Licensing, Llc Spatial audio with remote speakers
CN107211211A (en) 2015-01-21 2017-09-26 高通股份有限公司 For the system and method for the channel configuration for changing audio output apparatus collection
US9811212B2 (en) 2015-02-25 2017-11-07 Microsoft Technology Licensing, Llc Ultrasound sensing of proximity and touch
US9568994B2 (en) 2015-05-19 2017-02-14 Spotify Ab Cadence and media content phase alignment
US9813621B2 (en) 2015-05-26 2017-11-07 Google Llc Omnistereo capture for mobile devices
CN104967953B (en) 2015-06-23 2018-10-09 Tcl集团股份有限公司 A kind of multichannel playback method and system
US9544701B1 (en) 2015-07-19 2017-01-10 Sonos, Inc. Base properties in a media playback system
US9693165B2 (en) 2015-09-17 2017-06-27 Sonos, Inc. Validation of audio calibration using multi-dimensional motion check
CN105163221B (en) 2015-09-30 2019-06-28 广州三星通信技术研究有限公司 The method and its electric terminal of earphone active noise reduction are executed in electric terminal
US9653075B1 (en) 2015-11-06 2017-05-16 Google Inc. Voice commands across devices
US9648438B1 (en) 2015-12-16 2017-05-09 Oculus Vr, Llc Head-related transfer function recording using positional tracking
EP3182732A1 (en) 2015-12-18 2017-06-21 Thomson Licensing Apparatus and method for detecting loudspeaker connection or positionning errors during calibration of a multi channel audio system
US10206052B2 (en) 2015-12-22 2019-02-12 Bragi GmbH Analytical determination of remote battery temperature through distributed sensor array system and method
US10003899B2 (en) 2016-01-25 2018-06-19 Sonos, Inc. Calibration with particular locations
US9864574B2 (en) 2016-04-01 2018-01-09 Sonos, Inc. Playback device calibration based on representation spectral characteristics
US9860662B2 (en) 2016-04-01 2018-01-02 Sonos, Inc. Updating playback device configuration information based on calibration data
US10425730B2 (en) 2016-04-14 2019-09-24 Harman International Industries, Incorporated Neural network-based loudspeaker modeling with a deconvolution filter
US10125006B2 (en) 2016-05-19 2018-11-13 Ronnoco Coffee, Llc Dual compartment beverage diluting and cooling medium container and system
US10372406B2 (en) 2016-07-22 2019-08-06 Sonos, Inc. Calibration interface
US10459684B2 (en) 2016-08-05 2019-10-29 Sonos, Inc. Calibration of a playback device based on an estimated frequency response
US10783883B2 (en) 2016-11-03 2020-09-22 Google Llc Focus session at a voice interface device
EP3879297A1 (en) 2017-04-14 2021-09-15 Signify Holding B.V. A positioning system for determining a location of an object
US10455322B2 (en) 2017-08-18 2019-10-22 Roku, Inc. Remote control with presence sensor
KR102345926B1 (en) 2017-08-28 2022-01-03 삼성전자주식회사 Electronic Device for detecting proximity of external object using signal having specified frequency
US10614857B2 (en) 2018-07-02 2020-04-07 Apple Inc. Calibrating media playback channels for synchronized presentation
US10299061B1 (en) 2018-08-28 2019-05-21 Sonos, Inc. Playback device calibration

Patent Citations (490)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US679889A (en) 1900-08-16 1901-08-06 Charles I Dorn Sand-line and pump or bailer connection.
US4342104A (en) 1979-11-02 1982-07-27 University Court Of The University Of Edinburgh Helium-speech communication
US4306113A (en) 1979-11-23 1981-12-15 Morton Roger R A Method and equalization of home audio systems
US4504704A (en) 1982-08-31 1985-03-12 Pioneer Electronic Corporation Loudspeaker system
US4592088A (en) 1982-10-14 1986-05-27 Matsushita Electric Industrial Co., Ltd. Speaker apparatus
US4631749A (en) 1984-06-22 1986-12-23 Heath Company ROM compensated microphone
US4773094A (en) 1985-12-23 1988-09-20 Dolby Ray Milton Apparatus and method for calibrating recording and transmission systems
US4694484A (en) 1986-02-18 1987-09-15 Motorola, Inc. Cellular radiotelephone land station
US4995778A (en) 1989-01-07 1991-02-26 Krupp Maschinentechnik Gesellschaft Mit Beschrankter Haftung Gripping apparatus for transporting a panel of adhesive material
JPH02280199A (en) 1989-04-20 1990-11-16 Mitsubishi Electric Corp Reverberation device
US5218710A (en) 1989-06-19 1993-06-08 Pioneer Electronic Corporation Audio signal processing system having independent and distinct data buses for concurrently transferring audio signal data to provide acoustic control
US5440644A (en) 1991-01-09 1995-08-08 Square D Company Audio distribution system having programmable zoning features
US5761320A (en) 1991-01-09 1998-06-02 Elan Home Systems, L.L.C. Audio distribution system having programmable zoning features
EP0505949A1 (en) 1991-03-25 1992-09-30 Nippon Telegraph And Telephone Corporation Acoustic transfer function simulating method and simulator using the same
JPH05211700A (en) 1991-07-23 1993-08-20 Samsung Electron Co Ltd Method and device for correcting listening -space adaptive-frequency characteristic
US5323257A (en) 1991-08-09 1994-06-21 Sony Corporation Microphone and microphone system
JPH05199593A (en) 1992-01-20 1993-08-06 Matsushita Electric Ind Co Ltd Speaker measuring instrument
US5757927A (en) 1992-03-02 1998-05-26 Trifield Productions Ltd. Surround sound apparatus
US5255326A (en) 1992-05-18 1993-10-19 Alden Stevenson Interactive audio control system
US5581621A (en) 1993-04-19 1996-12-03 Clarion Co., Ltd. Automatic adjustment system and automatic adjustment method for audio devices
US5553147A (en) 1993-05-11 1996-09-03 One Inc. Stereophonic reproduction method and apparatus
JPH06327089A (en) 1993-05-11 1994-11-25 Yamaha Corp Acoustic characteristic correcting device
JPH0723490A (en) 1993-06-23 1995-01-24 Matsushita Electric Ind Co Ltd Digital sound field creating device
US5386478A (en) 1993-09-07 1995-01-31 Harman International Industries, Inc. Sound system remote control with acoustic sensor
US7630500B1 (en) 1994-04-15 2009-12-08 Bose Corporation Spatial disassembly processor
EP0772374A2 (en) 1995-11-02 1997-05-07 Bang & Olufsen A/S Method and apparatus for controlling the performance of a loudspeaker in a room
US5923902A (en) 1996-02-20 1999-07-13 Yamaha Corporation System for synchronizing a plurality of nodes to concurrently generate output signals by adjusting relative timelags based on a maximum estimated timelag
US6404811B1 (en) 1996-05-13 2002-06-11 Tektronix, Inc. Interactive multimedia system
JPH1069280A (en) 1996-06-17 1998-03-10 Yamaha Corp Sound field control unit and sound field controller
US6072879A (en) 1996-06-17 2000-06-06 Yamaha Corporation Sound field control unit and sound field control device
US5910991A (en) 1996-08-02 1999-06-08 Apple Computer, Inc. Method and apparatus for a speaker for a personal computer for selective use as a conventional speaker or as a sub-woofer
US6018376A (en) 1996-08-19 2000-01-25 Matsushita Electric Industrial Co., Ltd. Synchronous reproduction apparatus
US6469633B1 (en) 1997-01-06 2002-10-22 Openglobe Inc. Remote control of electronic devices
US6611537B1 (en) 1997-05-30 2003-08-26 Centillium Communications, Inc. Synchronous network for digital media streams
US6704421B1 (en) 1997-07-24 2004-03-09 Ati Technologies, Inc. Automatic multichannel equalization control system for a multimedia computer
US6363155B1 (en) 1997-09-24 2002-03-26 Studer Professional Audio Ag Process and device for mixing sound signals
US5939656A (en) 1997-11-25 1999-08-17 Kabushiki Kaisha Kawai Gakki Seisakusho Music sound correcting apparatus and music sound correcting method capable of achieving similar audibilities even by speaker/headphone
US6032202A (en) 1998-01-06 2000-02-29 Sony Corporation Of Japan Home audio/video network with two level device control
US8045952B2 (en) 1998-01-22 2011-10-25 Horsham Enterprises, Llc Method and device for obtaining playlist content over a network
US8050652B2 (en) 1998-01-22 2011-11-01 Horsham Enterprises, Llc Method and device for an internet radio capable of obtaining playlist content from a content server
US6573067B1 (en) 1998-01-29 2003-06-03 Yale University Nucleic acid encoding sodium channels in dorsal root ganglia
JP2002502193A (en) 1998-01-30 2002-01-22 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Generation of calibration signal for adaptive beamformer
US6111957A (en) 1998-07-02 2000-08-29 Acoustic Technologies, Inc. Apparatus and method for adjusting audio equipment in acoustic environments
US8074253B1 (en) 1998-07-22 2011-12-06 Touchtunes Music Corporation Audiovisual reproduction system
US6931134B1 (en) 1998-07-28 2005-08-16 James K. Waller, Jr. Multi-dimensional processor and multi-dimensional audio processor system
US6639989B1 (en) 1998-09-25 2003-10-28 Nokia Display Products Oy Method for loudness calibration of a multichannel sound systems and a multichannel sound system
EP1133896B1 (en) 1998-10-06 2002-08-28 Bang & Olufsen A/S Environment adaptable loudspeaker
US6721428B1 (en) 1998-11-13 2004-04-13 Texas Instruments Incorporated Automatic loudspeaker equalizer
US6766025B1 (en) 1999-03-15 2004-07-20 Koninklijke Philips Electronics N.V. Intelligent speaker training using microphone feedback and pre-loaded templates
US7103187B1 (en) 1999-03-30 2006-09-05 Lsi Logic Corporation Audio calibration system
US6256554B1 (en) 1999-04-14 2001-07-03 Dilorenzo Mark Multi-room entertainment system with in-room media player/dispenser
US7949707B2 (en) 1999-06-16 2011-05-24 Mosi Media, Llc Internet radio receiver with linear tuning interface
US7657910B1 (en) 1999-07-26 2010-02-02 E-Cast Inc. Distributed electronic entertainment method and apparatus
US6798889B1 (en) 1999-11-12 2004-09-28 Creative Technology Ltd. Method and apparatus for multi-channel sound system calibration
US6522886B1 (en) 1999-11-22 2003-02-18 Qwest Communications International Inc. Method and system for simultaneously sharing wireless communications among multiple wireless handsets
US7058186B2 (en) 1999-12-01 2006-06-06 Matsushita Electric Industrial Co., Ltd. Loudspeaker device
US7130608B2 (en) 1999-12-03 2006-10-31 Telefonaktiegolaget Lm Ericsson (Publ) Method of using a communications device together with another communications device, a communications system, a communications device and an accessory device for use in connection with a communications device
US20010042107A1 (en) 2000-01-06 2001-11-15 Palm Stephen R. Networked audio player transport protocol and architecture
US20010043592A1 (en) 2000-01-07 2001-11-22 Ray Jimenez Methods and apparatus for prefetching an audio signal using an audio web retrieval telephone system
US20020026442A1 (en) 2000-01-24 2002-02-28 Lipscomb Kenneth O. System and method for the distribution and sharing of media assets between media players devices
WO2001053994A2 (en) 2000-01-24 2001-07-26 Friskit, Inc. Streaming media search and playback system
US20030031334A1 (en) 2000-01-28 2003-02-13 Lake Technology Limited Sonic landscape system
US8014423B2 (en) 2000-02-18 2011-09-06 Smsc Holdings S.A.R.L. Reference time distribution over a network
US6631410B1 (en) 2000-03-16 2003-10-07 Sharp Laboratories Of America, Inc. Multimedia wired/wireless content synchronization system and method
US7187947B1 (en) 2000-03-28 2007-03-06 Affinity Labs, Llc System and method for communicating selected information to an electronic device
US20020022453A1 (en) 2000-03-31 2002-02-21 Horia Balog Dynamic protocol selection and routing of content to mobile devices
US20010038702A1 (en) 2000-04-21 2001-11-08 Lavoie Bruce S. Auto-Calibrating Surround System
WO2001082650A2 (en) 2000-04-21 2001-11-01 Keyhold Engineering, Inc. Self-calibrating surround sound system
US7130616B2 (en) 2000-04-25 2006-10-31 Simple Devices System and method for providing content, management, and interactivity for client devices
US7236773B2 (en) 2000-05-31 2007-06-26 Nokia Mobile Phones Limited Conference call method and apparatus therefor
US6643744B1 (en) 2000-08-23 2003-11-04 Nintendo Co., Ltd. Method and apparatus for pre-fetching audio data
US6985694B1 (en) 2000-09-07 2006-01-10 Clix Network, Inc. Method and system for providing an audio element cache in a customized personal radio broadcast
US8281001B2 (en) 2000-09-19 2012-10-02 Harman International Industries, Incorporated Device-to-device network
US6778869B2 (en) 2000-12-11 2004-08-17 Sony Corporation System and method for request, delivery and use of multimedia files for audiovisual entertainment in the home environment
US7143939B2 (en) 2000-12-19 2006-12-05 Intel Corporation Wireless music device and method therefor
US20020078161A1 (en) 2000-12-19 2002-06-20 Philips Electronics North America Corporation UPnP enabling device for heterogeneous networks of slave devices
US20020124097A1 (en) 2000-12-29 2002-09-05 Isely Larson J. Methods, systems and computer program products for zone based distribution of audio signals
US20020089529A1 (en) 2001-01-08 2002-07-11 Jeff Robbin Media player interface
US20020126852A1 (en) 2001-01-12 2002-09-12 Reza Kashani System and method for actively damping boom noise in a vibro-acoustic enclosure
US7289637B2 (en) 2001-02-06 2007-10-30 Robert Bosch Gmbh Method for automatically adjusting the filter parameters of a digital equalizer and reproduction device for audio signals for implementing such a method
US20070003067A1 (en) 2001-03-05 2007-01-04 Stefan Gierl Apparatus for multichannel sound reproduction system
US20020136414A1 (en) 2001-03-21 2002-09-26 Jordan Richard J. System and method for automatically adjusting the sound and visual parameters of a home theatre system
US7492909B2 (en) 2001-04-05 2009-02-17 Motorola, Inc. Method for acoustic transducer calibration
US20020146136A1 (en) 2001-04-05 2002-10-10 Carter Charles H. Method for acoustic transducer calibration
US6757517B2 (en) 2001-05-10 2004-06-29 Chin-Chi Chang Apparatus and method for coordinated music playback in wireless ad-hoc networks
US20030161479A1 (en) 2001-05-30 2003-08-28 Sony Corporation Audio post processing in DVD, DTV and other audio visual products
US8175292B2 (en) 2001-06-21 2012-05-08 Aylward J Richard Audio signal processing
US20030002689A1 (en) 2001-06-29 2003-01-02 Harris Corporation Supplemental audio content system with wireless communication for a cinema and related methods
US20040237750A1 (en) 2001-09-11 2004-12-02 Smith Margaret Paige Method and apparatus for automatic equalization mode activation
US7312785B2 (en) 2001-10-22 2007-12-25 Apple Inc. Method and apparatus for accelerated scrolling
JP2003143252A (en) 2001-11-05 2003-05-16 Toshiba Corp Mobile communication terminal
US8942252B2 (en) 2001-12-17 2015-01-27 Implicit, Llc Method and system synchronization of content rendering
US7391791B2 (en) 2001-12-17 2008-06-24 Implicit Networks, Inc. Method and system for synchronization of content rendering
US8103009B2 (en) 2002-01-25 2012-01-24 Ksc Industries, Inc. Wired, wireless, infrared, and powerline audio entertainment systems
US7853341B2 (en) 2002-01-25 2010-12-14 Ksc Industries, Inc. Wired, wireless, infrared, and powerline audio entertainment systems
US20030157951A1 (en) 2002-02-20 2003-08-21 Hasty William V. System and method for routing 802.11 data traffic across channels to increase ad-hoc network capacity
US20030161492A1 (en) 2002-02-26 2003-08-28 Miller Douglas Alan Frequency response equalization system for hearing aid microphones
US20170086003A1 (en) 2002-03-25 2017-03-23 Bose Corporation Automatic audio system equalizing
US20080069378A1 (en) 2002-03-25 2008-03-20 Bose Corporation Automatic Audio System Equalizing
US7483540B2 (en) 2002-03-25 2009-01-27 Bose Corporation Automatic audio system equalizing
CN1447624A (en) 2002-03-25 2003-10-08 伯斯有限公司 Automatic audio system equalization
EP1349427A2 (en) 2002-03-25 2003-10-01 Bose Corporation Automatic audio equalising system
US20030179891A1 (en) 2002-03-25 2003-09-25 Rabinowitz William M. Automatic audio system equalizing
US20120057724A1 (en) 2002-03-25 2012-03-08 Rabinowitz William M Automatic audio system equalizing
US6916980B2 (en) 2002-04-23 2005-07-12 Kabushiki Kaisha Kawai Gakki Seisakusho Acoustic control system for electronic musical instrument
US7742740B2 (en) 2002-05-06 2010-06-22 Syncronation, Inc. Audio player device for synchronous playback of audio signals with a compatible device
WO2003093950A2 (en) 2002-05-06 2003-11-13 David Goldberg Localized audio networks and associated digital accessories
US20070142944A1 (en) 2002-05-06 2007-06-21 David Goldberg Audio player device for synchronous playback of audio signals with a compatible device
US7835689B2 (en) 2002-05-06 2010-11-16 Syncronation, Inc. Distribution of music between members of a cluster of mobile audio devices and a wide area network
US8131390B2 (en) 2002-05-09 2012-03-06 Netstreams, Llc Network speaker for an audio network distribution system
US7643894B2 (en) 2002-05-09 2010-01-05 Netstreams Llc Audio network distribution system
US6862440B2 (en) 2002-05-29 2005-03-01 Intel Corporation Method and system for multiple channel wireless transmitter and receiver phase and amplitude calibration
US7769183B2 (en) 2002-06-21 2010-08-03 University Of Southern California System and method for automatic room acoustic correction in multi-channel audio environments
US8005228B2 (en) 2002-06-21 2011-08-23 Audyssey Laboratories, Inc. System and method for automatic multiple listener room acoustic correction with low filter orders
US20030235311A1 (en) 2002-06-21 2003-12-25 Lake Technology Limited Audio testing system and method
US20090202082A1 (en) 2002-06-21 2009-08-13 Audyssey Laboratories, Inc. System And Method For Automatic Multiple Listener Room Acoustic Correction With Low Filter Orders
US7072477B1 (en) 2002-07-09 2006-07-04 Apple Computer, Inc. Method and apparatus for automatically normalizing a perceived volume level in a digitally encoded file
US20040024478A1 (en) 2002-07-31 2004-02-05 Hans Mathieu Claude Operating a digital audio player in a collaborative audio session
EP1389853A1 (en) 2002-08-14 2004-02-18 Sony International (Europe) GmbH Bandwidth oriented reconfiguration of wireless ad hoc networks
JP2005538633A (en) 2002-09-13 2005-12-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Calibration of the first and second microphones
US20060032357A1 (en) 2002-09-13 2006-02-16 Koninklijke Philips Eoectronics N.V. Calibrating a first and a second microphone
US20040131338A1 (en) 2002-11-19 2004-07-08 Kohei Asada Method of reproducing audio signal, and reproducing apparatus therefor
US7295548B2 (en) 2002-11-27 2007-11-13 Microsoft Corporation Method and system for disaggregating audio/visual components
US8238578B2 (en) 2002-12-03 2012-08-07 Bose Corporation Electroacoustical transducing with low frequency augmenting devices
WO2004066673A1 (en) 2003-01-17 2004-08-05 1... Limited Set-up method for array-type sound system
US7925203B2 (en) 2003-01-22 2011-04-12 Qualcomm Incorporated System and method for controlling broadcast multimedia using plural wireless network connections
US6990211B2 (en) 2003-02-11 2006-01-24 Hewlett-Packard Development Company, L.P. Audio system and method
US7477751B2 (en) 2003-04-23 2009-01-13 Rh Lyon Corp Method and apparatus for sound transduction with minimal interference from background noise and minimal local acoustic radiation
US20070038999A1 (en) 2003-07-28 2007-02-15 Rincon Networks, Inc. System and method for synchronizing operations among a plurality of independently clocked digital data processing devices
US8234395B2 (en) 2003-07-28 2012-07-31 Sonos, Inc. System and method for synchronizing operations among a plurality of independently clocked digital data processing devices
US20050063554A1 (en) 2003-08-04 2005-03-24 Devantier Allan O. System and method for audio system configuration
US20050031143A1 (en) 2003-08-04 2005-02-10 Devantier Allan O. System for configuring audio system
JP2005086686A (en) 2003-09-10 2005-03-31 Fujitsu Ten Ltd Electronic equipment
US7039212B2 (en) 2003-09-12 2006-05-02 Britannia Investment Corporation Weather resistant porting
US7519188B2 (en) 2003-09-18 2009-04-14 Bose Corporation Electroacoustical transducing
US20060008256A1 (en) 2003-10-01 2006-01-12 Khedouri Robert K Audio visual player apparatus and system and method of content distribution using the same
US7489784B2 (en) 2003-11-19 2009-02-10 Pioneer Corporation Automatic sound field correcting device and computer program therefor
US7676044B2 (en) 2003-12-10 2010-03-09 Sony Corporation Multi-speaker audio system and automatic control method
US20050147261A1 (en) 2003-12-30 2005-07-07 Chiang Yeh Head relational transfer function virtualizer
US20050157885A1 (en) 2004-01-16 2005-07-21 Olney Ross D. Audio system parameter setting based upon operator usage patterns
US7483538B2 (en) 2004-03-02 2009-01-27 Ksc Industries, Inc. Wireless and wired speaker hub for a home theater system
US7689305B2 (en) 2004-03-26 2010-03-30 Harman International Industries, Incorporated System for audio-related device communication
US7571014B1 (en) 2004-04-01 2009-08-04 Sonos, Inc. Method and apparatus for controlling multimedia players in a multi-zone system
US8144883B2 (en) 2004-05-06 2012-03-27 Bang & Olufsen A/S Method and system for adapting a loudspeaker to a listening position in a room
US8238547B2 (en) 2004-05-11 2012-08-07 Sony Corporation Sound pickup apparatus and echo cancellation processing method
US7630501B2 (en) 2004-05-14 2009-12-08 Microsoft Corporation System and method for calibration of an acoustic system
US20080144864A1 (en) 2004-05-25 2008-06-19 Huonlabs Pty Ltd Audio Apparatus And Method
US7490044B2 (en) 2004-06-08 2009-02-10 Bose Corporation Audio signal processing
JP2006017893A (en) 2004-06-30 2006-01-19 Brother Ind Ltd Sound pressure frequency characteristic adjusting device, information communication system, and program
US20060026521A1 (en) 2004-07-30 2006-02-02 Apple Computer, Inc. Gestures for touch sensitive input devices
US7720237B2 (en) 2004-09-07 2010-05-18 Audyssey Laboratories, Inc. Phase equalization for multi-channel loudspeaker-room responses
US8160281B2 (en) 2004-09-08 2012-04-17 Samsung Electronics Co., Ltd. Sound reproducing apparatus and sound reproducing method
US7664276B2 (en) 2004-09-23 2010-02-16 Cirrus Logic, Inc. Multipass parametric or graphic EQ fitting
EP1825713B1 (en) 2004-11-22 2012-10-17 Bang & Olufsen A/S A method and apparatus for multichannel upmixing and downmixing
US20080281523A1 (en) 2004-12-21 2008-11-13 Universitetet I Oslo Channel impulse response estimation
JP2006180039A (en) 2004-12-21 2006-07-06 Yamaha Corp Acoustic apparatus and program
US20080098027A1 (en) 2005-01-04 2008-04-24 Koninklijke Philips Electronics, N.V. Apparatus For And A Method Of Processing Reproducible Data
US20060195480A1 (en) 2005-02-28 2006-08-31 Michael Spiegelman User interface for sharing and searching playlists
US20060225097A1 (en) 2005-04-01 2006-10-05 Lawrence-Apfelbaum Marc J Technique for selecting multiple entertainment programs to be provided over a communication network
KR20060116383A (en) 2005-05-09 2006-11-15 엘지전자 주식회사 Method and apparatus for automatic setting equalizing functionality in a digital audio player
US8463184B2 (en) 2005-05-12 2013-06-11 Robin Dua Wireless media system-on-chip and player
US8170260B2 (en) 2005-06-23 2012-05-01 Akg Acoustics Gmbh System for determining the position of sound sources
WO2007016465A2 (en) 2005-07-29 2007-02-08 Klipsch, L.L.C. Loudspeaker with automatic calibration and room equalization
US20070032895A1 (en) 2005-07-29 2007-02-08 Fawad Nackvi Loudspeaker with demonstration mode
US7529377B2 (en) 2005-07-29 2009-05-05 Klipsch L.L.C. Loudspeaker with automatic calibration and room equalization
US20070025559A1 (en) 2005-07-29 2007-02-01 Harman International Industries Incorporated Audio tuning system
US7590772B2 (en) 2005-08-22 2009-09-15 Apple Inc. Audio status information for a portable electronic device
US9560460B2 (en) 2005-09-02 2017-01-31 Harman International Industries, Incorporated Self-calibration loudspeaker system
US20100272270A1 (en) 2005-09-02 2010-10-28 Harman International Industries, Incorporated Self-calibrating loudspeaker system
US20140161265A1 (en) 2005-09-02 2014-06-12 Harman International Industries, Incorporated Self-calibration loudspeaker system
JP2007068125A (en) 2005-09-02 2007-03-15 Nec Corp Signal processing method, apparatus and computer program
US8577048B2 (en) 2005-09-02 2013-11-05 Harman International Industries, Incorporated Self-calibrating loudspeaker system
CN101366177A (en) 2005-09-15 2009-02-11 博蒙特弗赖德曼公司 Audio dosage control
US7949140B2 (en) 2005-10-18 2011-05-24 Sony Corporation Sound measuring apparatus and method, and audio signal processing apparatus
US20070086597A1 (en) 2005-10-18 2007-04-19 Sony Corporation Sound measuring apparatus and method, and audio signal processing apparatus
US7961893B2 (en) 2005-10-19 2011-06-14 Sony Corporation Measuring apparatus, measuring method, and sound signal processing apparatus
US20070116254A1 (en) 2005-11-17 2007-05-24 Microsoft Corporation Configuration of echo cancellation
US20070121955A1 (en) 2005-11-30 2007-05-31 Microsoft Corporation Room acoustics correction device
US20090003613A1 (en) 2005-12-16 2009-01-01 Tc Electronic A/S Method of Performing Measurements By Means of an Audio System Comprising Passive Loudspeakers
US8270620B2 (en) 2005-12-16 2012-09-18 The Tc Group A/S Method of performing measurements by means of an audio system comprising passive loudspeakers
US20090180632A1 (en) 2006-03-28 2009-07-16 Genelec Oy Method and Apparatus in an Audio System
US8798280B2 (en) 2006-03-28 2014-08-05 Genelec Oy Calibration method and device in an audio system
US20100303250A1 (en) 2006-03-28 2010-12-02 Genelec Oy Calibration Method and Device in an Audio System
JP2007271802A (en) 2006-03-30 2007-10-18 Kenwood Corp Content reproduction system and computer program
US8331585B2 (en) 2006-05-11 2012-12-11 Google Inc. Audio mixing
US20080002839A1 (en) 2006-06-28 2008-01-03 Microsoft Corporation Smart equalizer
CN101491116A (en) 2006-07-07 2009-07-22 贺利实公司 Method and apparatus for creating a multi-dimensional communication space for use in a binaural audio system
US7876903B2 (en) 2006-07-07 2011-01-25 Harris Corporation Method and apparatus for creating a multi-dimensional communication space for use in a binaural audio system
US7970922B2 (en) 2006-07-11 2011-06-28 Napo Enterprises, Llc P2P real time media recommendations
KR20080011831A (en) 2006-07-31 2008-02-11 삼성전자주식회사 Apparatus and method for controlling equalizer equiped with audio reproducing apparatus
US20080065247A1 (en) 2006-09-07 2008-03-13 Technology, Patents & Licensing, Inc. Calibration of a Home Entertainment System Using a Wireless Home Entertainment Hub
US8483853B1 (en) 2006-09-12 2013-07-09 Sonos, Inc. Controlling and manipulating groupings in a multi-zone media system
US20120275613A1 (en) 2006-09-20 2012-11-01 Harman International Industries, Incorporated System for modifying an acoustic space with audio source content
US20080232603A1 (en) 2006-09-20 2008-09-25 Harman International Industries, Incorporated System for modifying an acoustic space with audio source content
US7987294B2 (en) 2006-10-17 2011-07-26 Altec Lansing Australia Pty Limited Unification of multimedia devices
US8984442B2 (en) 2006-11-17 2015-03-17 Apple Inc. Method and system for upgrading a previously purchased media asset
US20080136623A1 (en) 2006-12-06 2008-06-12 Russell Calvarese Audio trigger for mobile devices
US8914559B2 (en) 2006-12-12 2014-12-16 Apple Inc. Methods and systems for automatic configuration of peripherals
US8391501B2 (en) 2006-12-13 2013-03-05 Motorola Mobility Llc Method and apparatus for mixing priority and non-priority audio signals
US8045721B2 (en) 2006-12-14 2011-10-25 Motorola Mobility, Inc. Dynamic distortion elimination for output audio
US8160276B2 (en) 2007-01-09 2012-04-17 Generalplus Technology Inc. Audio system and related method integrated with ultrasound communication functionality
US20080175411A1 (en) 2007-01-19 2008-07-24 Greve Jens Player device with automatic settings
US8325935B2 (en) 2007-03-14 2012-12-04 Qualcomm Incorporated Speaker having a wireless link to communicate with another speaker
JP2008228133A (en) 2007-03-15 2008-09-25 Matsushita Electric Ind Co Ltd Acoustic system
US20080266385A1 (en) 2007-04-30 2008-10-30 Matthew David Smith Automatically calibrating a video conference system
US8194874B2 (en) 2007-05-22 2012-06-05 Polk Audio, Inc. In-room acoustic magnitude response smoothing via summation of correction signals
US7796068B2 (en) 2007-07-16 2010-09-14 Gmr Research & Technology, Inc. System and method of multi-channel signal calibration
US8306235B2 (en) 2007-07-17 2012-11-06 Apple Inc. Method and apparatus for using a sound sensor to adjust the audio output for a device
US8279709B2 (en) 2007-07-18 2012-10-02 Bang & Olufsen A/S Loudspeaker position estimation
US20090024662A1 (en) 2007-07-18 2009-01-22 Samsung Electronics Co., Ltd. Method of setting an equalizer in an apparatus to reproduce a media file and apparatus thereof
US20090063274A1 (en) 2007-08-01 2009-03-05 Dublin Iii Wilbur Leslie System and method for targeted advertising and promotions using tabletop display devices
US20090047993A1 (en) 2007-08-14 2009-02-19 Vasa Yojak H Method of using music metadata to save music listening preferences
US8600075B2 (en) 2007-09-11 2013-12-03 Samsung Electronics Co., Ltd. Method for equalizing audio, and video apparatus using the same
US8577045B2 (en) 2007-09-25 2013-11-05 Motorola Mobility Llc Apparatus and method for encoding a multi-channel audio signal
EP2043381A2 (en) 2007-09-28 2009-04-01 Bang & Olufsen A/S A method and a system to adjust the acoustical performance of a loudspeaker
US20090110218A1 (en) 2007-10-31 2009-04-30 Swain Allan L Dynamic equalizer
US8264408B2 (en) 2007-11-20 2012-09-11 Nokia Corporation User-executable antenna array calibration
US20090147134A1 (en) 2007-11-22 2009-06-11 Yamaha Corporation Audio signal supplying device, parameter providing system, television set, av system, speaker apparatus, and audio signal supplying method
US20090138507A1 (en) 2007-11-27 2009-05-28 International Business Machines Corporation Automated playback control for audio devices using environmental cues as indicators for automatically pausing audio playback
US8126172B2 (en) 2007-12-06 2012-02-28 Harman International Industries, Incorporated Spatial processing stereo system
US8116476B2 (en) 2007-12-27 2012-02-14 Sony Corporation Audio signal receiving apparatus, audio signal receiving method and audio signal transmission system
US20100296659A1 (en) 2008-01-25 2010-11-25 Kawasaki Jukogyo Kabushiki Kaisha Sound device and sound control device
US8290185B2 (en) 2008-01-31 2012-10-16 Samsung Electronics Co., Ltd. Method of compensating for audio frequency characteristics and audio/video apparatus using the method
US20090196428A1 (en) 2008-01-31 2009-08-06 Samsung Electronics Co., Ltd. Method of compensating for audio frequency characteristics and audio/video apparatus using the method
JP2009188474A (en) 2008-02-04 2009-08-20 Canon Inc Sound reproducing apparatus and its control method
US20100323793A1 (en) 2008-02-18 2010-12-23 Sony Computer Entertainment Europe Limited System And Method Of Audio Processing
US9021153B2 (en) 2008-02-20 2015-04-28 Mediatek Inc. Direct memory access system and method using the same
US20110007905A1 (en) 2008-02-26 2011-01-13 Pioneer Corporation Acoustic signal processing device and acoustic signal processing method
US20110007904A1 (en) 2008-02-29 2011-01-13 Pioneer Corporation Acoustic signal processing device and acoustic signal processing method
US8401202B2 (en) 2008-03-07 2013-03-19 Ksc Industries Incorporated Speakers with a digital signal processor
US20090252481A1 (en) 2008-04-07 2009-10-08 Sony Ericsson Mobile Communications Ab Methods, apparatus, system and computer program product for audio input at video recording
US8503669B2 (en) 2008-04-07 2013-08-06 Sony Computer Entertainment Inc. Integrated latency detection and echo cancellation
US8063698B2 (en) 2008-05-02 2011-11-22 Bose Corporation Bypassing amplification
US8325931B2 (en) 2008-05-02 2012-12-04 Bose Corporation Detecting a loudspeaker configuration
US8379876B2 (en) 2008-05-27 2013-02-19 Fortemedia, Inc Audio device utilizing a defect detection method on a microphone array
US20090304205A1 (en) 2008-06-10 2009-12-10 Sony Corporation Of Japan Techniques for personalizing audio levels
US8527876B2 (en) 2008-06-12 2013-09-03 Apple Inc. System and methods for adjusting graphical representations of media files based on previous usage
US20090316923A1 (en) 2008-06-19 2009-12-24 Microsoft Corporation Multichannel acoustic echo reduction
US8755538B2 (en) 2008-06-30 2014-06-17 Dae Hoon Kwon Tuning sound feed-back device
US8332414B2 (en) 2008-07-01 2012-12-11 Samsung Electronics Co., Ltd. Method and system for prefetching internet content for video recorders
US8452020B2 (en) 2008-08-20 2013-05-28 Apple Inc. Adjustment of acoustic properties based on proximity detection
EP2161950A2 (en) 2008-09-08 2010-03-10 Bang & Olufsen A/S Configuring a sound field
US8488799B2 (en) 2008-09-11 2013-07-16 Personics Holdings Inc. Method and system for sound monitoring over a network
JP2010081124A (en) 2008-09-24 2010-04-08 Panasonic Electric Works Co Ltd Calibration method for intercom device
US8392505B2 (en) 2008-09-26 2013-03-05 Apple Inc. Collaborative playlist management
US20100095332A1 (en) 2008-10-09 2010-04-15 Christian Gran System and method for controlling media rendering in a network using a mobile device
US20130108055A1 (en) 2008-11-14 2013-05-02 That Corporation Dynamic volume control and multi-spatial processing protection
US20100128902A1 (en) 2008-11-22 2010-05-27 Mao-Liang Liu Combination equalizer and calibrator circuit assembly for audio system
US20100135501A1 (en) 2008-12-02 2010-06-03 Tim Corbett Calibrating at least one system microphone
EP2194471A1 (en) 2008-12-05 2010-06-09 Vestel Elektronik Sanayi ve Ticaret A.S. Dynamic prefetching method and system for metadata
US20100146445A1 (en) 2008-12-08 2010-06-10 Apple Inc. Ambient Noise Based Augmentation of Media Playback
US8977974B2 (en) 2008-12-08 2015-03-10 Apple Inc. Ambient noise based augmentation of media playback
EP2197220A2 (en) 2008-12-10 2010-06-16 Samsung Electronics Co., Ltd. Audio apparatus and signal calibration method thereof
US20100142735A1 (en) 2008-12-10 2010-06-10 Samsung Electronics Co., Ltd. Audio apparatus and signal calibration method thereof
US20100162117A1 (en) 2008-12-23 2010-06-24 At&T Intellectual Property I, L.P. System and method for playing media
US8819554B2 (en) 2008-12-23 2014-08-26 At&T Intellectual Property I, L.P. System and method for playing media
US20100195846A1 (en) 2009-01-14 2010-08-05 Rohm Co., Ltd. Automatic level control circuit
US20100189203A1 (en) 2009-01-29 2010-07-29 Telefonaktiebolaget Lm Ericsson (Publ) Automatic Gain Control Based on Bandwidth and Delay Spread
US8229125B2 (en) 2009-02-06 2012-07-24 Bose Corporation Adjusting dynamic range of an audio system
US20120243697A1 (en) 2009-02-10 2012-09-27 Frye Electronics, Inc. Multiple superimposed audio frequency test system and sound chamber with attenuated echo properties
CN102318325A (en) 2009-02-11 2012-01-11 Nxp股份有限公司 Controlling an adaptation of a behavior of an audio device to a current acoustic environmental condition
US8620006B2 (en) 2009-05-13 2013-12-31 Bose Corporation Center channel rendering
US20100303248A1 (en) 2009-06-02 2010-12-02 Canon Kabushiki Kaisha Standing wave detection apparatus and method of controlling the same
US20120140936A1 (en) 2009-08-03 2012-06-07 Imax Corporation Systems and Methods for Monitoring Cinema Loudspeakers and Compensating for Quality Problems
US9100766B2 (en) 2009-10-05 2015-08-04 Harman International Industries, Inc. Multichannel audio system having audio channel compensation
US20120283593A1 (en) 2009-10-09 2012-11-08 Auckland Uniservices Limited Tinnitus treatment system and method
US20110087842A1 (en) 2009-10-12 2011-04-14 Microsoft Corporation Pre-fetching content items based on social distance
US20110091055A1 (en) 2009-10-19 2011-04-21 Broadcom Corporation Loudspeaker localization techniques
US20120215530A1 (en) 2009-10-27 2012-08-23 Phonak Ag Method and system for speech enhancement in a room
US20110135103A1 (en) 2009-12-09 2011-06-09 Nuvoton Technology Corporation System and Method for Audio Adjustment
JP2011123376A (en) 2009-12-11 2011-06-23 Canon Inc Acoustic processing device and method
US20110170710A1 (en) 2010-01-12 2011-07-14 Samsung Electronics Co., Ltd. Method and apparatus for adjusting volume
JP2011164166A (en) 2010-02-05 2011-08-25 D&M Holdings Inc Audio signal amplifying apparatus
US8265310B2 (en) 2010-03-03 2012-09-11 Bose Corporation Multi-element directional acoustic arrays
US8139774B2 (en) 2010-03-03 2012-03-20 Bose Corporation Multi-element directional acoustic arrays
US20110234480A1 (en) 2010-03-23 2011-09-29 Apple Inc. Audio preview of music
US20130010970A1 (en) 2010-03-26 2013-01-10 Bang & Olufsen A/S Multichannel sound reproduction method and device
US20110235808A1 (en) 2010-03-29 2011-09-29 Homare Kon Audio Reproduction Device and Audio Reproduction Method
JP2011217068A (en) 2010-03-31 2011-10-27 Yamaha Corp Sound field controller
US20110268281A1 (en) 2010-04-30 2011-11-03 Microsoft Corporation Audio spatialization using reflective room model
CN102893633A (en) 2010-05-06 2013-01-23 杜比实验室特许公司 Audio system equalization for portable media playback devices
WO2011139502A1 (en) 2010-05-06 2011-11-10 Dolby Laboratories Licensing Corporation Audio system equalization for portable media playback devices
US20130066453A1 (en) 2010-05-06 2013-03-14 Dolby Laboratories Licensing Corporation Audio system equalization for portable media playback devices
US8300845B2 (en) 2010-06-23 2012-10-30 Motorola Mobility Llc Electronic apparatus having microphones with controllable front-side gain and rear-side gain
EP2591617B1 (en) 2010-07-09 2014-06-18 Bang & Olufsen A/S Adaptive sound field control
US8965546B2 (en) 2010-07-26 2015-02-24 Qualcomm Incorporated Systems, methods, and apparatus for enhanced acoustic imaging
US8433076B2 (en) 2010-07-26 2013-04-30 Motorola Mobility Llc Electronic apparatus for generating beamformed audio signals with steerable nulls
US8862273B2 (en) 2010-07-29 2014-10-14 Empire Technology Development Llc Acoustic noise management through control of electrical device operations
US20120032928A1 (en) 2010-08-06 2012-02-09 Motorola, Inc. Methods and devices for determining user input location using acoustic sensing elements
US20120051558A1 (en) 2010-09-01 2012-03-01 Samsung Electronics Co., Ltd. Method and apparatus for reproducing audio signal by adaptively controlling filter coefficient
EP2429155A1 (en) 2010-09-13 2012-03-14 HTC Corporation Mobile electronic device and sound playback method thereof
US20120213391A1 (en) 2010-09-30 2012-08-23 Panasonic Corporation Audio reproduction apparatus and audio reproduction method
US20120093320A1 (en) 2010-10-13 2012-04-19 Microsoft Corporation System and method for high-precision 3-dimensional audio for augmented reality
US20150149943A1 (en) 2010-11-09 2015-05-28 Sony Corporation Virtual room form maker
US20120127831A1 (en) 2010-11-24 2012-05-24 Samsung Electronics Co., Ltd. Position determination of devices using stereo audio
US20120148075A1 (en) 2010-12-08 2012-06-14 Creative Technology Ltd Method for optimizing reproduction of audio signals from an apparatus for audio reproduction
US20130051572A1 (en) 2010-12-08 2013-02-28 Creative Technology Ltd Method for optimizing reproduction of audio signals from an apparatus for audio reproduction
US20120183156A1 (en) 2011-01-13 2012-07-19 Sennheiser Electronic Gmbh & Co. Kg Microphone system with a hand-held microphone
US8291349B1 (en) 2011-01-19 2012-10-16 Google Inc. Gesture-based metadata display
US8989406B2 (en) 2011-03-11 2015-03-24 Sony Corporation User profile based audio adjustment techniques
US20120237037A1 (en) 2011-03-18 2012-09-20 Dolby Laboratories Licensing Corporation N Surround
US8934647B2 (en) 2011-04-14 2015-01-13 Bose Corporation Orientation-responsive acoustic driver selection
US8934655B2 (en) 2011-04-14 2015-01-13 Bose Corporation Orientation-responsive use of acoustic reflection
US20120263325A1 (en) 2011-04-14 2012-10-18 Bose Corporation Orientation-Responsive Acoustic Array Control
US9674625B2 (en) 2011-04-18 2017-06-06 Apple Inc. Passive proximity detection
US20120269356A1 (en) 2011-04-20 2012-10-25 Vocollect, Inc. Self calibrating multi-element dipole microphone
US20120268145A1 (en) 2011-04-20 2012-10-25 Lokesh Chandra Current sensing apparatus and method for a capacitance-sensing device
US20120288124A1 (en) 2011-05-09 2012-11-15 Dts, Inc. Room characterization and correction for multi-channel audio
US8831244B2 (en) 2011-05-10 2014-09-09 Audiotoniq, Inc. Portable tone generator for producing pre-calibrated tones
US8233632B1 (en) 2011-05-20 2012-07-31 Google Inc. Method and apparatus for multi-channel audio processing using single-channel components
US8855319B2 (en) 2011-05-25 2014-10-07 Mediatek Inc. Audio signal processing apparatus and audio signal processing method
US8243961B1 (en) 2011-06-27 2012-08-14 Google Inc. Controlling microphones and speakers of a computing device
US9462399B2 (en) 2011-07-01 2016-10-04 Dolby Laboratories Licensing Corporation Audio playback system monitoring
US20140119551A1 (en) 2011-07-01 2014-05-01 Dolby Laboratories Licensing Corporation Audio Playback System Monitoring
US8175297B1 (en) 2011-07-06 2012-05-08 Google Inc. Ad hoc sensor arrays
US20130223642A1 (en) 2011-07-14 2013-08-29 Vivint, Inc. Managing audio output through an intermediary
CN103988523A (en) 2011-07-19 2014-08-13 搜诺思公司 Shaping sound responsive to speaker orientation
US20140294201A1 (en) 2011-07-28 2014-10-02 Thomson Licensing Audio calibration system and method
WO2013016500A1 (en) 2011-07-28 2013-01-31 Thomson Licensing Audio calibration system and method
US20130028443A1 (en) 2011-07-28 2013-01-31 Apple Inc. Devices with enhanced audio
US9065929B2 (en) 2011-08-02 2015-06-23 Apple Inc. Hearing aid detection
US9286384B2 (en) 2011-09-21 2016-03-15 Sonos, Inc. Methods and systems to share media
US8879761B2 (en) 2011-11-22 2014-11-04 Apple Inc. Orientation-based audio
US20130129122A1 (en) 2011-11-22 2013-05-23 Apple Inc. Orientation-based audio
US20130129102A1 (en) 2011-11-23 2013-05-23 Qualcomm Incorporated Acoustic echo cancellation based on ultrasound motion detection
US9489948B1 (en) 2011-11-28 2016-11-08 Amazon Technologies, Inc. Sound source localization using multiple microphone arrays
US9084058B2 (en) 2011-12-29 2015-07-14 Sonos, Inc. Sound field calibration using listener localization
US8996370B2 (en) 2012-01-31 2015-03-31 Microsoft Corporation Transferring data via audio link
US20130202131A1 (en) 2012-02-03 2013-08-08 Sony Corporation Signal processing apparatus, signal processing method, program,signal processing system, and communication terminal
US20130211843A1 (en) 2012-02-13 2013-08-15 Qualcomm Incorporated Engagement-dependent gesture recognition
US20130216071A1 (en) 2012-02-21 2013-08-22 Intertrust Technologies Corporation Audio reproduction systems and methods
US20130230175A1 (en) 2012-03-02 2013-09-05 Bang & Olufsen A/S System for optimizing the perceived sound quality in virtual sound zones
US20150043736A1 (en) 2012-03-14 2015-02-12 Bang & Olufsen A/S Method of applying a combined or hybrid sound-field control strategy
US20130259254A1 (en) 2012-03-28 2013-10-03 Qualcomm Incorporated Systems, methods, and apparatus for producing a directional sound field
US20150078596A1 (en) 2012-04-04 2015-03-19 Sonicworks, Slr. Optimizing audio systems
US20130279706A1 (en) 2012-04-23 2013-10-24 Stefan J. Marti Controlling individual audio output devices based on detected inputs
US9524098B2 (en) 2012-05-08 2016-12-20 Sonos, Inc. Methods and systems for subwoofer calibration
US20150100991A1 (en) 2012-05-08 2015-04-09 Actiwave Ab Implied media networks
US20130305152A1 (en) 2012-05-08 2013-11-14 Neil Griffiths Methods and systems for subwoofer calibration
US20130315405A1 (en) 2012-05-24 2013-11-28 Kabushiki Kaisha Toshiba Sound processor, sound processing method, and computer program product
US20130331970A1 (en) 2012-06-06 2013-12-12 Sonos, Inc Device Playback Failure Recovery and Redistribution
US8903526B2 (en) 2012-06-06 2014-12-02 Sonos, Inc. Device playback failure recovery and redistribution
JP2013253884A (en) 2012-06-07 2013-12-19 Toshiba Corp Measurement device and program
US20130329896A1 (en) 2012-06-08 2013-12-12 Apple Inc. Systems and methods for determining the condition of multiple microphones
US20140006587A1 (en) 2012-06-27 2014-01-02 Mieko Kusano Systems and methods for mobile music zones
US9690271B2 (en) 2012-06-28 2017-06-27 Sonos, Inc. Speaker calibration
US20140003625A1 (en) 2012-06-28 2014-01-02 Sonos, Inc System and Method for Device Playback Calibration
US20140003622A1 (en) 2012-06-28 2014-01-02 Broadcom Corporation Loudspeaker beamforming for personal audio focal points
US20140003626A1 (en) 2012-06-28 2014-01-02 Apple Inc. Automatic audio equalization using handheld mode detection
US20160011850A1 (en) 2012-06-28 2016-01-14 Sonos, Inc. Speaker Calibration User Interface
US9106192B2 (en) 2012-06-28 2015-08-11 Sonos, Inc. System and method for device playback calibration
US20160316305A1 (en) 2012-06-28 2016-10-27 Sonos, Inc. Speaker Calibration
US9788113B2 (en) 2012-06-28 2017-10-10 Sonos, Inc. Calibration state variable
US20160014510A1 (en) 2012-06-28 2016-01-14 Sonos, Inc. Hybrid Test Tone for Space-Averaged Room Audio Calibration Using A Moving Microphone
US20160014511A1 (en) * 2012-06-28 2016-01-14 Sonos, Inc. Concurrent Multi-Loudspeaker Calibration with a Single Measurement
US20140003623A1 (en) 2012-06-29 2014-01-02 Sonos, Inc. Smart Audio Settings
US20150212788A1 (en) 2012-06-29 2015-07-30 Sonos, Inc. Smart Audio Settings
US9615171B1 (en) 2012-07-02 2017-04-04 Amazon Technologies, Inc. Transformation inversion to reduce the effect of room acoustics
US20140003635A1 (en) 2012-07-02 2014-01-02 Qualcomm Incorporated Audio signal processing device calibration
US20140016784A1 (en) 2012-07-15 2014-01-16 Qualcomm Incorporated Systems, methods, apparatus, and computer-readable media for backward-compatible audio coding
US20140016786A1 (en) 2012-07-15 2014-01-16 Qualcomm Incorporated Systems, methods, apparatus, and computer-readable media for three-dimensional audio coding using basis function coefficients
US20140016802A1 (en) 2012-07-16 2014-01-16 Qualcomm Incorporated Loudspeaker position compensation with 3d-audio hierarchical coding
US20140023196A1 (en) 2012-07-20 2014-01-23 Qualcomm Incorporated Scalable downmix design with feedback for object-based surround codec
US20140029201A1 (en) 2012-07-25 2014-01-30 Si Joong Yang Power package module and manufacturing method thereof
US8995687B2 (en) 2012-08-01 2015-03-31 Sonos, Inc. Volume interactions for connected playback devices
US20140037107A1 (en) 2012-08-01 2014-02-06 Sonos, Inc. Volume Interactions for Connected Playback Devices
US20140037097A1 (en) 2012-08-02 2014-02-06 Crestron Electronics, Inc. Loudspeaker Calibration Using Multiple Wireless Microphones
US8930005B2 (en) 2012-08-07 2015-01-06 Sonos, Inc. Acoustic signatures in a playback system
US20140052770A1 (en) 2012-08-14 2014-02-20 Packetvideo Corporation System and method for managing media content using a dynamic playlist
WO2014032709A1 (en) 2012-08-29 2014-03-06 Huawei Technologies Co., Ltd. Audio rendering system
US20140064501A1 (en) 2012-08-29 2014-03-06 Bang & Olufsen A/S Method and a system of providing information to a user
US8965033B2 (en) 2012-08-31 2015-02-24 Sonos, Inc. Acoustic optimization
WO2014036121A1 (en) 2012-08-31 2014-03-06 Dolby Laboratories Licensing Corporation System for rendering and playback of object based audio in various listening environments
US20150223002A1 (en) 2012-08-31 2015-08-06 Dolby Laboratories Licensing Corporation System for Rendering and Playback of Object Based Audio in Various Listening Environments
US20140079242A1 (en) 2012-09-17 2014-03-20 Research In Motion Limited Localization of a Wireless User Equipment (UE) Device Based on Single Beep per Channel Signatures
US20140086423A1 (en) 2012-09-25 2014-03-27 Gustavo D. Domingo Yaguez Multiple device noise reduction microphone array
US9319816B1 (en) 2012-09-26 2016-04-19 Amazon Technologies, Inc. Characterizing environment using ultrasound pilot tones
US20140084014A1 (en) 2012-09-27 2014-03-27 Creative Technology Ltd Electronic device
US20150271616A1 (en) 2012-10-09 2015-09-24 Koninklijke Philips N.V. Method and apparatus for audio interference estimation
US8731206B1 (en) 2012-10-10 2014-05-20 Google Inc. Measuring sound quality using relative comparison
US20140112481A1 (en) 2012-10-18 2014-04-24 Google Inc. Hierarchical deccorelation of multichannel audio
US9020153B2 (en) 2012-10-24 2015-04-28 Google Inc. Automatic detection of loudspeaker characteristics
US20140126730A1 (en) 2012-11-07 2014-05-08 Fairchild Semiconductor Corporation Methods and apparatus related to protection of a speaker
US20140169569A1 (en) 2012-12-17 2014-06-19 Nokia Corporation Device Discovery And Constellation Selection
US20140180684A1 (en) 2012-12-20 2014-06-26 Strubwerks, LLC Systems, Methods, and Apparatus for Assigning Three-Dimensional Spatial Data to Sounds and Audio Files
US20140242913A1 (en) 2013-01-01 2014-08-28 Aliphcom Mobile device speaker control
US20140192986A1 (en) 2013-01-07 2014-07-10 Samsung Electronics Co., Ltd. Audio content playback method and apparatus for portable terminal
US20140219483A1 (en) 2013-02-01 2014-08-07 Samsung Electronics Co., Ltd. System and method for setting audio output channels of speakers
US20140310269A1 (en) 2013-02-04 2014-10-16 Tencent Technology (Shenzhen) Company Limited Method and system for performing an audio information collection and query
US20150358756A1 (en) 2013-02-05 2015-12-10 Koninklijke Philips N.V. An audio apparatus and method therefor
US20140219456A1 (en) 2013-02-07 2014-08-07 Qualcomm Incorporated Determining renderers for spherical harmonic coefficients
US20140226823A1 (en) 2013-02-08 2014-08-14 Qualcomm Incorporated Signaling audio rendering information in a bitstream
US20140334644A1 (en) 2013-02-11 2014-11-13 Symphonic Audio Technologies Corp. Method for augmenting a listening experience
US9300266B2 (en) 2013-02-12 2016-03-29 Qualcomm Incorporated Speaker equalization for mobile devices
US20150201274A1 (en) 2013-02-28 2015-07-16 Google Inc. Stream caching for audio mixers
US20160021481A1 (en) 2013-03-05 2016-01-21 Tiskerling Dynamics Llc Adjusting the beam pattern of a speaker array based on the location of one or more listeners
US9723420B2 (en) 2013-03-06 2017-08-01 Apple Inc. System and method for robust simultaneous driver measurement for a speaker system
US20160007116A1 (en) 2013-03-07 2016-01-07 Tiskerling Dynamics Llc Room and program responsive loudspeaker system
US20160021458A1 (en) 2013-03-11 2016-01-21 Apple Inc. Timbre constancy across a range of directivities for a loudspeaker
EP2974382B1 (en) 2013-03-11 2017-04-19 Apple Inc. Timbre constancy across a range of directivities for a loudspeaker
US20140270282A1 (en) 2013-03-12 2014-09-18 Nokia Corporation Multichannel audio calibration method and apparatus
US20140270202A1 (en) 2013-03-12 2014-09-18 Motorola Mobility Llc Apparatus with Adaptive Audio Adjustment Based on Surface Proximity, Surface Type and Motion
US20150031287A1 (en) 2013-03-13 2015-01-29 Hawk Yin Pang Radio signal pickup from an electrically conductive substrate utilizing passive slits
US20160029142A1 (en) 2013-03-14 2016-01-28 Apple Inc. Adaptive room equalization using a speaker and a handheld listening device
US20140279889A1 (en) 2013-03-14 2014-09-18 Aliphcom Intelligent device connection for wireless media ecosystem
US9538308B2 (en) 2013-03-14 2017-01-03 Apple Inc. Adaptive room equalization using a speaker and a handheld listening device
US20140267148A1 (en) 2013-03-14 2014-09-18 Aliphcom Proximity and interface controls of media devices for media presentations
US20140273859A1 (en) 2013-03-14 2014-09-18 Aliphcom Intelligent device connection for wireless media ecosystem
US20140285313A1 (en) 2013-03-15 2014-09-25 Aliphcom Proximity sensing device control architecture and data communication protocol
US20140286496A1 (en) 2013-03-15 2014-09-25 Aliphcom Proximity sensing device control architecture and data communication protocol
US20140294200A1 (en) 2013-03-29 2014-10-02 Apple Inc. Metadata for loudness and dynamic range control
US9689960B1 (en) 2013-04-04 2017-06-27 Amazon Technologies, Inc. Beam rejection in multi-beam microphone systems
US20140321670A1 (en) 2013-04-26 2014-10-30 Sony Corporation Devices, Methods and Computer Program Products for Controlling Loudness
US20140323036A1 (en) 2013-04-29 2014-10-30 Motorola Mobility Llc Systems and Methods for Syncronizing Multiple Electronic Devices
US20140341399A1 (en) 2013-05-14 2014-11-20 Logitech Europe S.A Method and apparatus for controlling portable audio devices
US20140344689A1 (en) 2013-05-14 2014-11-20 Google Inc. System for universal remote media control in a multi-user, multi-platform, multi-device environment
US20160061597A1 (en) 2013-05-16 2016-03-03 Koninklijke Philips N.V. Determination of a room dimension estimate
US9472201B1 (en) 2013-05-22 2016-10-18 Google Inc. Speaker localization by means of tactile input
US20140355768A1 (en) 2013-05-28 2014-12-04 Qualcomm Incorporated Performing spatial masking with respect to spherical harmonic coefficients
US20140355794A1 (en) 2013-05-29 2014-12-04 Qualcomm Incorporated Binaural rendering of spherical harmonic coefficients
US9215545B2 (en) 2013-05-31 2015-12-15 Bose Corporation Sound stage controller for a near-field speaker-based audio system
US20160027467A1 (en) 2013-06-21 2016-01-28 Hello Inc. Room monitoring device with controlled recording
US20150011195A1 (en) 2013-07-03 2015-01-08 Eric Li Automatic volume control based on context and location
US20150016642A1 (en) 2013-07-15 2015-01-15 Dts, Inc. Spatial calibration of surround sound systems including listener position estimation
US20160165297A1 (en) 2013-07-17 2016-06-09 Telefonaktiebolaget L M Ericsson (Publ) Seamless playback of media content using digital watermarking
US20150023509A1 (en) 2013-07-18 2015-01-22 Harman International Industries, Inc. Apparatus and method for performing an audio measurement sweep
US20150032844A1 (en) 2013-07-29 2015-01-29 Bose Corporation Method and Device for Selecting a Networked Media Device
US20150036847A1 (en) 2013-07-30 2015-02-05 Thomas Alan Donaldson Acoustic detection of audio sources to facilitate reproduction of spatial audio spaces
US20150036848A1 (en) 2013-07-30 2015-02-05 Thomas Alan Donaldson Motion detection of audio sources to facilitate reproduction of spatial audio spaces
US20160035337A1 (en) 2013-08-01 2016-02-04 Snap Networks Pvt Ltd Enhancing audio using a mobile device
EP2835989A2 (en) 2013-08-09 2015-02-11 Samsung Electronics Co., Ltd System for tuning audio processing features and method thereof
WO2015024881A1 (en) 2013-08-20 2015-02-26 Bang & Olufsen A/S A system for and a method of generating sound
US20150063610A1 (en) 2013-08-30 2015-03-05 GN Store Nord A/S Audio rendering system categorising geospatial objects
US20150078586A1 (en) 2013-09-16 2015-03-19 Amazon Technologies, Inc. User input with fingerprint sensor
US9231545B2 (en) 2013-09-27 2016-01-05 Sonos, Inc. Volume enhancements in a multi-zone media playback system
EP2860992A1 (en) 2013-10-10 2015-04-15 Samsung Electronics Co., Ltd Audio system, method of outputting audio, and speaker apparatus
US20150146886A1 (en) 2013-11-25 2015-05-28 Apple Inc. Loudness normalization based on user feedback
US20150161360A1 (en) 2013-12-06 2015-06-11 Microsoft Corporation Mobile Device Generated Sharing of Cloud Media Collections
US20150195666A1 (en) 2014-01-07 2015-07-09 Howard Massey Device, Method and Software for Measuring Distance To A Sound Generator By Using An Audible Impulse Signal.
US20160330562A1 (en) 2014-01-10 2016-11-10 Dolby Laboratories Licensing Corporation Calibration of virtual height speakers using programmable portable devices
US9560449B2 (en) 2014-01-17 2017-01-31 Sony Corporation Distributed wireless speaker system
WO2015108794A1 (en) 2014-01-18 2015-07-23 Microsoft Technology Licensing, Llc Dynamic calibration of an audio system
US20150208184A1 (en) 2014-01-18 2015-07-23 Microsoft Corporation Dynamic calibration of an audio system
US9288597B2 (en) 2014-01-20 2016-03-15 Sony Corporation Distributed wireless speaker system with automatic configuration determination when new speakers are added
US20150220558A1 (en) 2014-01-31 2015-08-06 EyeGroove, Inc. Methods and devices for modifying pre-existing media items
US20150229699A1 (en) 2014-02-10 2015-08-13 Comcast Cable Communications, Llc Methods And Systems For Linking Content
US20150260754A1 (en) 2014-03-17 2015-09-17 Plantronics, Inc. Sensor calibration based on device use state
US20160192099A1 (en) 2014-03-17 2016-06-30 Sonos, Inc. Playback Device Setting Based On Distortion
US20160192098A1 (en) 2014-03-17 2016-06-30 Sonos, Inc. Calibration Adjustment Based On Barrier
US9219460B2 (en) 2014-03-17 2015-12-22 Sonos, Inc. Audio settings based on environment
US9743208B2 (en) 2014-03-17 2017-08-22 Sonos, Inc. Playback device configuration based on proximity detection
US20150281866A1 (en) 2014-03-31 2015-10-01 Bose Corporation Audio speaker
US20150289064A1 (en) 2014-04-04 2015-10-08 Oticon A/S Self-calibration of multi-microphone noise reduction system for hearing assistance devices using an auxiliary device
US9467779B2 (en) 2014-05-13 2016-10-11 Apple Inc. Microphone partial occlusion detector
WO2015178950A1 (en) 2014-05-19 2015-11-26 Tiskerling Dynamics Llc Directivity optimized sound reproduction
US20170105084A1 (en) 2014-05-19 2017-04-13 Apple Inc. Directivity optimized sound reproduction
US20160309276A1 (en) * 2014-06-30 2016-10-20 Microsoft Technology Licensing, Llc Audio calibration and adjustment
US20150382128A1 (en) 2014-06-30 2015-12-31 Microsoft Corporation Audio calibration and adjustment
US20160014509A1 (en) 2014-07-09 2016-01-14 Blackberry Limited Communication device and method for adapting to audio accessories
US20160021473A1 (en) 2014-07-15 2016-01-21 Sonavox Canada Inc. Wireless control and calibration of audio system
US20160037277A1 (en) 2014-07-30 2016-02-04 Panasonic Intellectual Property Management Co., Ltd. Failure detection system and failure detection method
US20160036881A1 (en) 2014-08-01 2016-02-04 Qualcomm Incorporated Computing device and method for exchanging metadata with peer devices in order to obtain media playback resources from a network service
WO2016040324A1 (en) 2014-09-09 2016-03-17 Sonos, Inc. Audio processing algorithms and databases
US20160011846A1 (en) 2014-09-09 2016-01-14 Sonos, Inc. Audio Processing Algorithms
US20160070526A1 (en) 2014-09-09 2016-03-10 Sonos, Inc. Playback Device Calibration
US20160073210A1 (en) 2014-09-09 2016-03-10 Sonos, Inc. Microphone Calibration
US20160014536A1 (en) 2014-09-09 2016-01-14 Sonos, Inc. Playback Device Calibration
US20170083279A1 (en) 2014-09-09 2017-03-23 Sonos, Inc. Facilitating Calibration of an Audio Playback Device
US9706323B2 (en) 2014-09-09 2017-07-11 Sonos, Inc. Playback device calibration
US20160014534A1 (en) 2014-09-09 2016-01-14 Sonos, Inc. Playback Device Calibration
US20170223447A1 (en) 2014-09-30 2017-08-03 Apple Inc. Multi-driver acoustic horn for horizontal beam control
US20170230772A1 (en) 2014-09-30 2017-08-10 Apple Inc. Method for creating a virtual acoustic stereo system with an undistorted acoustic center
US20170280265A1 (en) 2014-09-30 2017-09-28 Apple Inc. Method to determine loudspeaker change of placement
US20160140969A1 (en) 2014-11-14 2016-05-19 The Nielsen Company (Us), Llc Determining media device activation based on frequency response analysis
US20160212535A1 (en) * 2015-01-21 2016-07-21 Qualcomm Incorporated System and method for controlling output of multiple audio output devices
US20160239255A1 (en) 2015-02-16 2016-08-18 Harman International Industries, Inc. Mobile interface for loudspeaker optimization
US20160260140A1 (en) 2015-03-06 2016-09-08 Spotify Ab System and method for providing a promoted track display for use with a media content or streaming environment
US9609383B1 (en) 2015-03-23 2017-03-28 Amazon Technologies, Inc. Directional audio for virtual environments
US20160313971A1 (en) 2015-04-24 2016-10-27 Sonos, Inc. Volume Limit
US20160366517A1 (en) 2015-06-15 2016-12-15 Harman International Industries, Inc. Crowd-sourced audio data for venue equalization
US20170311108A1 (en) 2015-07-21 2017-10-26 Disney Enterprises Inc. Systems and Methods for Delivery of Personalized Audio
US9538305B2 (en) 2015-07-28 2017-01-03 Sonos, Inc. Calibration error conditions
EP3128767A2 (en) 2015-08-06 2017-02-08 Dolby Laboratories Licensing Corporation System and method to enhance speakers connected to devices with microphones
US20170069338A1 (en) 2015-09-08 2017-03-09 Bose Corporation Wireless Audio Synchronization
WO2017049169A1 (en) 2015-09-17 2017-03-23 Sonos, Inc. Facilitating calibration of an audio playback device
US20170142532A1 (en) 2015-11-13 2017-05-18 Bose Corporation Double-Talk Detection for Acoustic Echo Cancellation
US9743207B1 (en) 2016-01-18 2017-08-22 Sonos, Inc. Calibration using multiple recording devices
US20170207762A1 (en) 2016-01-19 2017-07-20 Apple Inc. Correction of unknown audio content
US20170257722A1 (en) 2016-03-03 2017-09-07 Thomson Licensing Apparatus and method for determining delay and gain parameters for calibrating a multi channel audio system
US9763018B1 (en) 2016-04-12 2017-09-12 Sonos, Inc. Calibration of audio playback devices

Non-Patent Citations (257)

* Cited by examiner, † Cited by third party
Title
"auEQ for the iPhone," Mar. 25, 2015, retrieved from the intemet: URL:https://web.archive.org/web20150325152629/ http://www.hotto.de/mobileapps/iphoneaueq.html [retrieved on Jun. 24, 2016], 6 pages.
"Constellation Acoustic System: a revolutionary breakthrough in acoustical design," Meyer Sound Laboratories, Inc. 2012, 32 pages.
"Constellation Microphones," Meyer Sound Laboratories, Inc. 2013, 2 pages.
"Denon 2003-2004 Product Catalog," Denon, 2003-2004, 44 pages.
Advisory Action dated Aug. 16, 2017, issued in connection with U.S. Appl. No. 14/481,505, filed Sep. 9, 2014, 3 pages.
Advisory Action dated Jul. 10, 2018, issued in connection with U.S. Appl. No. 15/056,553, filed Feb. 29, 2016, 3 pages.
Advisory Action dated Jul. 12, 2018, issued in connection with U.S. Appl. No. 15/166,241, filed May 26, 2016, 3 pages.
Advisory Action dated Jul. 12, 2018, issued in connection with U.S. Appl. No. 15/235,598, filed Aug. 12, 2016, 3 pages.
Advisory Action dated Jun. 19, 2018, issued in connection with U.S. Appl. No. 15/229,693, filed Aug. 5, 2016, 3 pages.
Advisory Action dated Sep. 19, 2017, issued in connection with U.S. Appl. No. 14/726921, filed Jun. 1, 2015, 3 pages.
An Overview of IEEE 1451.4 Transducer Electronic Data Sheets (TEDS) National Instruments, 19 pages.
AudioTron Quick Start Guide, Version 1.0, Mar. 2001, 24 pages.
AudioTron Reference Manual, Version 3.0, May 2002, 70 pages.
AudioTron Setup Guide, Version 3.0, May 2002, 38 pages.
Bluetooth. "Specification of the Bluetooth System: The ad hoc SCATTERNET for affordable and highly functional wireless connectivity," Core, Version 1.0 A, Jul. 26, 1999, 1068 pages.
Bluetooth. "Specification of the Bluetooth System: Wireless connections made easy," Core, Version 1.0 B, Dec. 1, 1999, 1076 pages.
Burger, Dennis, "Automated Room Correction Explained," hometheaterreview.com, Nov. 18, 2013, Retrieved Oct. 10, 2014, 3 pages.
Chinese Patent Office, First Office Action dated Aug. 11, 2017, issued in connection with Chinese Patent Application No. 201580013837.2, 8 pages.
Chinese Patent Office, First Office Action dated Nov. 20, 2018, issued in connection with Chinese Application No. 201580047998.3, 21 pages.
Chinese Patent Office, First Office Action dated Nov. 5, 2018, issued in connection with Chinese Application No. 201680044080.8, 5 pages.
Chinese Patent Office, First Office Action dated Sep. 25, 2017, issued in connection with Chinese Patent Application No. 201580013894.0, 9 pages.
Chinese Patent Office, Second Office Action with Translation dated Jan. 9, 2018, issued in connection with Chinese Patent Application No. 201580013837.2, 10 pages.
Corrected Notice of Allowability dated Jan. 19, 2017, issued in connection with U.S. Appl. No. 14/826873, filed Aug. 14, 2015, 11 pages.
Daddy, B., "Calibrating Your Audio with a Sound Pressure Level (SPL) Meter," Blue-ray.com, Feb. 22, 2008 Retrieved Oct. 10, 2014, 15 pages.
Dell, Inc. "Dell Digital Audio Receiver: Reference Guide," Jun. 2000, 70 pages.
Dell, Inc. "Start Here," Jun. 2000, 2 pages.
European Patent Office, European Examination Report dated May 11, 2018, issued in connection with European Application No. 16748186.0, 6 pages.
European Patent Office, European Extended Search Report dated Jun. 26, 2018, issued in connection with European Application No. 18171206.8, 9 pages.
European Patent Office, European Extended Search Report dated Oct. 16, 2018, issued in connection with European Application No. 17185193.4, 6 pages.
European Patent Office, European Extended Search Report dated Sep. 8, 2017, issued in connection with European Application No. 17000460.0, 8 pages.
European Patent Office, European Office Action dated Dec. 11, 2018, issued in connection with European Application No. 15778787.0, 6 pages.
European Patent Office, European Office Action dated Nov. 2, 2018, issued in connection with European Application No. 18171206.8, 6 pages.
European Patent Office, European Search Report dated Jan. 18, 2018, issued in connection with European Patent Application No. 17185193.4, 9 pages.
European Patent Office, Extended European Search Report dated Jan. 5, 2017, issued in connection with European Patent Application No. 15765555.6, 8 pages.
European Patent Office, Extended Search Report dated Apr. 26, 2017, issued in connection with European Application No. 15765548.1, 10 pages.
European Patent Office, Extended Search Report dated Jan. 25, 2017, issued in connection with European Application No. 15765548.1, 7 pages.
European Patent Office, Office Action dated Dec. 15, 2016, issued in connection with European Application No. 15766998.7, 7 pages.
European Patent Office, Office Action dated Jun. 13, 2017, issued in connection with European patent application No. 17000484.0, 10 pages.
European Patent Office, Office Action dated Nov. 12, 2018, issued in connection with European Application No. 17000460.0, 6 pages.
European Patent Office, Summons to Attend Oral Proceedings dated Nov. 15, 2018, issued in connection with European Application No. 16748186.0, 57 pages.
Final Office Action dated Apr. 18 2018, issued in connection with U.S. Appl. No. 15/056,553 filed Feb. 29, 2016, 8 pages.
Final Office Action dated Apr. 18, 2017, issued in connection with U.S. Appl. No. 14/678,263, filed Apr. 3, 2015, 16 pages.
Final Office Action dated Apr. 2, 2018, issued in connection with U.S. Appl. No. 15/166,241, filed May 26, 2016, 14 pages.
Final Office Action dated Apr. 3, 2017, issued in connection with U.S. Appl. No. 14/678,248, filed Apr. 3, 2015, 22 pages.
Final Office Action dated Apr. 3, 2018, issued in connection with U.S. Appl. No. 15/235,598, filed Aug. 12, 2016, 12 pages.
Final Office Action dated Dec. 18, 2014, issued in connection with U.S. Appl. No. 13/340,126, filed Dec. 29, 2011, 12 pages.
Final Office Action dated Dec. 6, 2018, issued in connection with U.S. Appl. No. 15/806,126, filed Nov. 7, 2017, 18 pages.
Final Office Action dated Feb. 5, 2018, issued in connection with U.S. Appl. No. 15/229,693, filed Aug. 5, 2016, 21 pages.
Final Office Action dated Jan. 19, 2017, issued in connection with U.S. Appl. No. 14/940,779, filed Nov. 13, 2015, 15 pages.
Final Office Action dated Jan. 25, 2018, issued in connection with U.S. Appl. No. 15/005496, filed Jan. 25, 2016, 17 pages.
Final Office Action dated Jul. 13, 2017, issued in connection with U.S. Appl. No. 14/726,921, filed Jun. 1, 2015, 10 pages.
Final Office Action dated Jun. 13, 2017, issued in connection with U.S. Appl. No. 14/481,505, filed Sep. 9, 2014, 22 pages.
Final Office Action dated Oct. 14, 2016, issued in connection with U.S. Appl. No. 14/682,182, filed Apr. 9, 2015, 16 pages.
Final Office Action dated Oct. 17, 2016, issued in connection with U.S. Appl. No. 14/678,248, filed Apr. 3, 2015, 22 pages.
Final Office Action dated Oct. 21, 2016, issued in connection with U.S. Appl. No. 14/696,014, filed Apr. 24, 2015, 13 pages.
First Action Interview Office Action dated Jul. 12, 2016, issued in connection with U.S. Appl. No. 14/481,514, filed Sep. 9, 2014, 10 pages.
First Action Interview Office Action dated Jun. 30, 2016, issued in connection with U.S. Appl. No. 14/481,505, filed Sep. 9, 2014, 9 pages.
First Action Interview Office Action dated Mar. 3, 2017, issued in connection with U.S. Appl. No. 14/726,921, filed Jun. 1, 2015, 9 pages.
First Action Interview Pilot Program Pre-Interview Communication dated Apr. 5, 2017, issued in connection with U.S. Appl. No. 14/793,190, filed Jul. 7, 2015, 4 pages.
First Action Interview Pilot Program Pre-Interview Communication dated Feb. 16, 2016, issued in connection with U.S. Appl. No. 14/681,465, filed Apr. 8, 2015, 5 pages.
First Action Interview Pilot Program Pre-Interview Communication dated Oct. 7, 2015, issued in connection with U.S. Appl. No. 14/216,306, filed Mar. 17, 2014, 5 pages.
Gonzalez et al., "Simultaneous Measurement of Multichannel Acoustic Systems," J. Audio Eng. Soc., 2004, pp. 26-42, vol. 52, No. 1/2.
International Bureau, International Preliminary Report on Patentability dated Sep. 29, 2016, issued in connection with International Application No. PCT/US2015/020993, filed Mar. 17, 2015, 8 pages.
International Bureau, International Preliminary Report on Patentability dated Sep. 29, 2016, issued in connection with International Application No. PCT/US2015/021000, filed Mar. 17, 2015, 9 pages.
International Bureau, International Preliminary Report on Patentability, dated Aug. 9, 2018, issued in connection with International Application No. PCT/US2017/014596, filed Jan. 23, 2017, 11 pages.
International Bureau, International Preliminary Report on Patentability, dated Sep. 24, 2015, issued in connection with International Application No. PCT/US2014/030560, filed Mar. 17, 2014, 7 pages.
International Searching Authority, International Preliminary Report on Patentability dated Mar. 23, 2017, issued in connection with International Patent Application No. PCT/US2015/048944, dated Sep. 8, 2015, 8 pages.
International Searching Authority, International Preliminary Report on Patentability dated Oct. 24, 2017, issued in connection with International Application No. PCT/US2016/028994 filed Apr. 22, 2016, 7 pages.
International Searching Authority, International Search Report and Written Opinion dated Jan. 24, 2017, issued in connection with International Application No. PCT/US2016/052264, filed Sep. 16, 2016, 17 pages.
International Searching Authority, International Search Report and Written Opinion dated Jul. 4, 2016, issued in connection with International Application No. PCT/US2016/028994, filed Apr. 22, 2016, 12 pages.
International Searching Authority, International Search Report and Written Opinion dated Jul. 5, 2016, issued in connection with International Application No. PCT/US2016/028997, filed Apr. 22, 2016, 13 pages.
International Searching Authority, International Search Report and Written Opinion dated Jun. 5, 2015, issued in connection with International Application No. PCT/US2015/021000, filed Mar. 17, 2015, 12 pages.
International Searching Authority, International Search Report and Written Opinion dated Nov. 18, 2015, issued in connection with International Application No. PCT/US2015/048954, filed Sep. 8, 2015, 11 pages.
International Searching Authority, International Search Report and Written Opinion dated Nov. 23, 2015, issued in connection with International Application No. PCT/US2015/048942, filed Sep. 8, 2015, 14 pages.
International Searching Authority, International Search Report and Written Opinion dated Nov. 23, 2015, issued in connection with International Application No. PCT/US2015/048944, filed Sep. 8, 2015, 12 pages.
International Searching Authority, International Search Report and Written Opinion dated Nov. 23, 2016, issued in connection with International Patent Application No. PCT/US2016/052266, filed Sep. 16, 2016, 11 pages.
International Searching Authority, International Search Report and Written Opinion dated Oct. 12, 2016, issued in connection with International Application No. PCT/US2016/041179 filed on Jul. 6, 2016, 9 pages.
International Searching Authority, International Search Report and Written Opinion dated Oct. 18, 2016, issued in connection with International Application No. PCT/US2016/043116, filed Jul. 20, 2016, 14 pages.
International Searching Authority, International Search Report and Written Opinion dated Oct. 18, 2016, issued in connection with International Application No. PCT/US2016/043840, filed Jul. 25, 2016, 14 pages.
International Searching Authority, International Search Report and Written Opinion dated Oct. 25, 2016, issued in connection with International Application No. PCT/US2016/043109, filed Jul. 20, 2016, 12 pages.
International Searching Authority, International Search Report and Written Opinion dated Sep. 25, 2017, issued in connection with International Application No. PCT/US2017/042191, filed Jul. 14, 2017, 16 pages.
Japanese Patent Office, English Translation of Office Action dated May 8, 2018, issued in connection with Japanese Application No. 2017-513241, 4 pages.
Japanese Patent Office, Japanese Office Action dated Oct. 3, 2017, issued in connection with Japanese Application No. 2017-501082, 7 pages.
Japanese Patent Office, Non-Final Office Action with Translation dated Apr. 25, 2017, issued in connection with Japanese Patent Application No. 2016-568888, 7 pages.
Japanese Patent Office, Non-Final Office Action with Translation dated Oct. 3, 2017, issued in connection with Japanese Patent Application No. 2017-501082, 3 pages.
Japanese Patent Office, Office Action dated Aug. 21, 2018, issued in connection with Japanese Application No. 2018-514418, 7 pages.
Japanese Patent Office, Office Action dated Jul. 24, 2018, issued in connection with Japanese Application No. 2018-514419, 5 pages.
Japanese Patent Office, Office Action dated Jun. 12, 2018, issued in connection with Japanese Application No. 2018-502729, 4 pages.
Japanese Patent Office, Office Action dated May 8, 2018, issued in connection with Japanese Application No. 2017-513241, 8 pages.
Japanese Patent Office, Office Action with English Summary dated Jul. 18, 2017, issued in connection with Japanese Patent Application No. 2017-513171, 4 pages.
Jo et al., "Synchronized One-to-many Media Streaming with Adaptive Playout Control," Proceedings of SPIE, 2002, pp. 71-82, vol. 4861.
John Mark and Paul Hufnagel "What is 1451.4, what are its uses and how does it work?" IEEE Standards Association, The IEEE 1451.4 Standard for Smart Transducers, 14pages.
Jones, Stephen, "Dell Digital Audio Receiver: Digital upgrade for your analog stereo," Analog Stereo, Jun. 24, 2000 retrieved Jun. 18, 2014, 2 pages.
Louderback, Jim, "Affordable Audio Receiver Furnishes Homes With MP3," TechTV Vault. Jun. 28, 2000 retrieved Jul. 10, 2014, 2 pages.
Microsoft Corporation, "Using Microsoft Outlook 2003," Cambridge College, 2003.
Motorola, "Simplefi, Wireless Digital Audio Receiver, Installation and User Guide," Dec. 31, 2001, 111 pages.
Mulcahy, John, "Room EQ Wizard: Room Acoustics Software," REW, 2014, retrieved Oct. 10, 2014, 4 pages.
Non-Final Action dated Jan. 29, 2016, issued in connection with U.S. Appl. No. 14/481,511, filed Sep. 9, 2014, 10 pages.
Non-Final Office Action dated Apr. 10, 2018, issued in connection with U.S. Appl. No. 15/909,529, filed Mar. 1, 2018, 8 pages.
Non-Final Office Action dated Apr. 11, 2017, issued in connection with U.S. Appl. No. 15/088,994, filed Apr. 1, 2016, 13 pages.
Non-Final Office Action dated Apr. 11, 2017, issued in connection with U.S. Appl. No. 15/089,004, filed Apr. 1, 2016, 9 pages.
Non-Final Office Action dated Apr. 2, 2018, issued in connection with U.S. Appl. No. 15/872,979, filed Jan. 16, 2018, 6 pages.
Non-Final Office Action dated Apr. 20, 2017, issued in connection with U.S. Appl. No. 15/005,853, filed Jan. 25, 2016, 8 pages.
Non-Final Office Action dated Aug. 2, 2017, issued in connection with U.S. Appl. No. 15/298,115, filed Oct. 19, 2016, 22 pages.
Non-Final Office Action dated Dec. 14, 2016, issued in connection with U.S. Appl. No. 14/481,505, filed Sep. 9, 2014, 19 pages.
Non-Final Office Action dated Dec. 18, 2018, issued in connection with U.S. Appl. No. 16/011,402, filed Jun. 18, 2018, 10 pages.
Non-Final Office Action dated Dec. 21, 2018, issued in connection with U.S. Appl. No. 16/181,213, filed on Nov. 5, 2018, 13 pages.
Non-Final Office Action dated Dec. 27, 2017, issued in connection with U.S. Appl. No. 15/357,520, filed Nov. 21, 2016, 28 pages.
Non-Final Office Action dated Dec. 7, 2015, issued in connection with U.S. Appl. No. 14/921,762, filed Oct. 23, 2015, 5 pages.
Non-Final Office Action dated Dec. 9, 2016, issued in connection with U.S. Appl. No. 14/678,248, filed Apr. 3, 2015, 22 pages.
Non-Final Office Action dated Feb. 18, 2016, issued in connection with U.S. Appl. No. 14/644,136, filed on Mar. 10, 2015, 10 pages.
Non-Final Office Action dated Feb. 2016, issued in connection with U.S. Appl. No. 14/481,522, filed Sep. 9, 2014, 12 pages.
Non-Final Office Action dated Feb. 27, 2018, issued in connection with U.S. Appl. No. 14/864,393, filed Sep. 24, 2015, 19 pages.
Non-Final Office Action dated Feb. 27, 2018, issued in connection with U.S. Appl. No. 15/718,556, filed Sep. 28, 2017, 19 pages.
Non-Final Office Action dated Jan. 4, 2017, issued in connection with U.S. Appl. No. 15/207,682, filed Jul. 12, 2016, 6 pages.
Non-Final Office Action dated Jan. 9, 2018, issued in connection with U.S. Appl. No. 15/698,283, filed Sep. 7, 2017, 18 pages.
Non-Final Office Action dated Jan. 9, 2018, issued in connection with U.S. Appl. No. 15/727,913, filed Oct. 9, 2017, 8 pages.
Non-Final Office Action dated Jul. 13, 2016, issued in connection with U.S. Appl. No. 14/940,779, filed Nov. 13, 2015, 16 pages.
Non-Final Office Action dated Jul. 27, 2016, issued in connection with U.S. Appl. No. 14/696,014, filed Apr. 24, 2015, 11 pages.
Non-Final Office Action dated Jul. 28, 2016, issued in connection with U.S. Appl. No. 14/884,001, filed Oct. 15, 2015, 8 pages.
Non-Final Office Action dated Jul. 3, 2018, issued in connection with U.S. Appl. No. 15/909,327, filed Mar. 1, 2018, 30 pages.
Non-Final Office Action dated Jul. 5, 2017, issued in connection with U.S. Appl. No. 14/481,522, filed Sep. 9, 2014, 8 pages.
Non-Final Office Action dated Jul. 6, 2016, issued in connection with U.S. Appl. No. 15/070,160, filed Mar. 15, 2016, 6 pages.
Non-Final Office Action dated Jul. 7, 2016, issued in connection with U.S. Appl. No. 15/066,049, filed Mar. 10, 2016, 6 pages.
Non-Final Office Action dated Jul. 8, 2016, issued in connection with U.S. Appl. No. 15/066,072, filed Mar. 10, 2016, 6 pages.
Non-Final Office Action dated Jun. 16, 2017, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 15 pages.
Non-Final Office Action dated Jun. 2, 2014, issued in connection with U.S. Appl. No. 13/340,126, filed Dec. 29, 2011, 14 pages.
Non-Final Office Action dated Jun. 2, 2017, issued in connection with U.S. Appl. No. 15/229,693, filed Aug. 5, 2016, 18 pages.
Non-Final Office Action dated Jun. 20, 2017, issued in connection with U.S. Appl. No. 15/207,682, filed Jul. 12 2016, 17 pages.
Non-Final Office Action dated Jun. 21, 2016, issued in connection with U.S. Appl. No. 14/678,248, filed Apr. 3, 2015, 10 pages.
Non-Final Office Action dated Jun. 22, 2018, issued in connection with U.S. Appl. No. 15/217,399, filed Jul. 22, 2016, 33 pages.
Non-Final Office Action dated Jun. 6, 2018, issued in connection with U.S. Appl. No. 15/005,496, filed Jan. 25, 2016, 16 pages.
Non-Final Office Action dated Mar. 1, 2017, issued in connection with U.S. Appl. No. 15/344,069, filed Nov. 4, 2016, 20 pages.
Non-Final Office Action dated Mar. 10, 2017, issued in connection with U.S. Appl. No. 14/997,868, filed Jan. 18, 2016, 10 pages.
Non-Final Office Action dated Mar. 14, 2017, issued in connection with U.S. Appl. No. 15/096,827, filed Apr. 12, 2016, 12 pages.
Non-Final Office Action dated Mar. 27, 2017, issued in connection with U.S. Appl. No. 15/211,835, filed Jul. 15, 2016, 30 pages.
Non-Final Office Action dated Mar. 27, 2018, issued in connection with U.S. Appl. No. 15/785,088, filed Oct. 16, 2017, 11 pages.
Non-Final Office Action dated Mar. 29, 2018, issued in connection with U.S. Appl. No. 15/716,313, filed Sep. 26, 2017, 16 pages.
Non-Final Office Action dated Mar. 7, 2017, issued in connection with U.S. Appl. No. 14/481,514, filed Sep. 9, 2014, 24 pages.
Non-Final Office Action dated May 15, 2018, issued in connection with U.S. Appl. No. 15/806,126, filed Nov. 7, 2017, 17 pages.
Non-Final Office Action dated May 30, 2017, issued in connection with U.S. Appl. No. 15/478,770, filed Apr. 4, 2017, 9 pages.
Non-Final Office Action dated Nov. 1, 2017, issued in connection with U.S. Appl. No. 15/235,598, filed Aug. 12, 2016, 15 pages.
Non-Final Office Action dated Nov. 16, 2018, issued in connection with U.S. Appl. No. 15/996,878, filed Jun. 4, 2018, 8 pages.
Non-Final Office Action dated Nov. 2, 2017, issued in connection with U.S. Appl. No. 15/166,241, filed May 26, 2016, 12 pages.
Non-Final Office Action dated Nov. 21, 2014, issued in connection with U.S. Appl. No. 13/536,493, filed Jun. 28, 2012, 20 pages.
Non-Final Office Action dated Nov. 28, 2017, issued in connection with U.S. Appl. No. 15/673,170, filed Aug. 9, 2017, 7 pages.
Non-Final Office Action dated Nov. 4, 2016, issued in connection with U.S. Appl. No. 14/826,856, filed Aug. 14, 2015, 10 pages.
Non-Final Office Action dated Nov. 6, 2018, issued in connection with U.S. Appl. No. 15/235,598, filed Aug. 12, 2016, 13 pages.
Non-Final Office Action dated Oct. 11, 2017, issued in connection with U.S. Appl. No. 15/480,265, filed Apr. 5, 2017, 8 pages.
Non-Final Office Action dated Oct. 11, 2018, issued in connection with U.S. Appl. No. 15/856,791, filed Dec. 28, 2017, 13 pages.
Non-Final Office Action dated Oct. 14, 2015, issued in connection with U.S. Appl. No. 14/216,325, filed Mar. 17, 2014, 7 pages.
Non-Final Office Action dated Oct. 2, 2017, issued in connection with U.S. Appl. No. 15/005,853, filed Jan. 25, 2016, 8 pages.
Non-Final Office Action dated Oct. 25, 2016, issued in connection with U.S. Appl. No. 14/864,506, filed Sep. 24, 2015, 9 pages.
Non-Final Office Action dated on Jul. 20, 2016, issued in connection with U.S. Appl. No. 14/682,182, filed Apr. 9, 2015, 13 pages.
Non-Final Office Action dated Sep. 10, 2018, issued in connection with U.S. Appl. No. 15/056,553, filed Feb. 29, 2016, 8 pages.
Non-Final Office Action dated Sep. 12, 2016, issued in connection with U.S. Appl. No. 14/811,587, filed Jul. 28, 2015, 24 pages.
Non-Final Office Action dated Sep. 19, 2017, issued in connection with U.S. Appl. No. 15/056,553, filed Feb. 29, 2016, 7 pages.
Non-Final Office Action dated Sep. 26, 2018, issued in connection with U.S. Appl. No. 15/229,693, filed Aug. 5, 2016, 25 pages.
Non-Final Office Action dated Sep. 28, 2018, issued in connection with U.S. Appl. No. 15/595,519, filed May 15, 2017, 12 pages.
Non-Final Office Action dated Sep. 7, 2016, issued in connection with U.S. Appl. No. 14/826,873, filed Aug. 14, 2015, 12 pages.
Non-Final Office Action filed Oct. 6, 2016, issued in connection with U.S. Appl. No. 14/678,263, filed Apr. 3, 2015, 30 pages.
Notice of Allowance dated Apr. 10, 2015, issued in connection with U.S. Appl. No. 13/536,493, filed on Jun. 28, 2012, 8 pages.
Notice of Allowance dated Apr. 12, 2016, issued in connection with U.S. Appl. No. 14/681,465, filed Apr. 8, 2015, 13 pages.
Notice of Allowance dated Apr. 19, 2017, issued in connection with U.S. Appl. No. 14/481,511, filed Sep. 9, 2014, 10 pages.
Notice of Allowance dated Apr. 20, 2017, issued in connection with U.S. Appl. No. 14/940,779, filed Nov. 13, 2015, 11 pages.
Notice of Allowance dated Apr. 25, 2017, issued in connection with U.S. Appl. No. 14/696,014, filed Apr. 24, 2015, 7 pages.
Notice of Allowance dated Apr. 25, 2017, issued in connection with U.S. Appl. No. 15/207,682, filed Jul. 12, 2016, 7 pages.
Notice of Allowance dated Apr. 4, 2017, issued in connection with U.S. Appl. No. 14/682,182, filed Apr. 9, 2015, 8 pages.
Notice of Allowance dated Apr. 5, 2018, issued in connection with U.S. Appl. No. 15/681,640, filed Aug. 21, 2017, 8 pages.
Notice of Allowance dated Aug. 10, 2018, issued in connection with U.S. Appl. No. 15/785,088, filed Oct. 16, 2017, 6 pages.
Notice of Allowance dated Aug. 19, 2016, issued in connection with U.S. Appl. No. 14/644,136, filed Mar. 10, 2015, 12 pages.
Notice of Allowance dated Aug. 23, 2018, issued in connection with U.S. Appl. No. 15/909,529, filed Mar. 1, 2018, 8 pages.
Notice of Allowance dated Aug. 28, 2017, issued in connection with U.S. Appl. No. 15/089,004, filed Apr. 1, 2016, 5 pages.
Notice of Allowance dated Aug. 29, 2018, issued in connection with U.S. Appl. No. 15/357,520, filed Nov. 21, 2016, 11 pages.
Notice of Allowance dated Aug. 29, 2018, issued in connection with U.S. Appl. No. 15/718,556, filed Sep. 28, 2017, 8 pages.
Notice of Allowance dated Aug. 30, 2017, issued in connection with U.S. Appl. No. 15/088,994, filed Apr. 1, 2016, 10 pages.
Notice of Allowance dated Aug. 31, 2018, issued in connection with U.S. Appl. No. 15/872,979, filed Jan. 16, 2018, 7 pages.
Notice of Allowance dated Aug. 31, 2018, issued in connection with U.S. Appl. No. 16/055,884, filed Aug. 6, 2018, 8 pages.
Notice of Allowance dated Dec. 11, 2018, issued in connection with U.S. Appl. No. 15/909,327, filed Mar. 1, 2018, 10 pages.
Notice of Allowance dated Dec. 12, 2016, issued in connection with U.S. Appl. No. 14/805,140, filed Jul. 21, 2015, 24 pages.
Notice of Allowance dated Dec. 12, 2017, issued in connection with U.S. Appl. No. 14/481,505, filed Sep. 9, 2014, 9 pages.
Notice of Allowance dated Dec. 17, 2018, issued in connection with U.S. Appl. No. 16/055,884, filed Aug. 6, 2018, 5 pages.
Notice of Allowance dated Dec. 21, 2016, issued in connection with U.S. Appl. No. 14/682,182, filed Apr. 9, 2015, 8 pages.
Notice of Allowance dated Dec. 29, 2017, issued in connection with U.S. Appl. No. 14/793,205, filed Jul. 7, 2015, 5 pages.
Notice of Allowance dated Dec. 30, 2016, issued in connection with U.S. Appl. No. 14/696,014, filed Apr. 24, 2015, 13 pages.
Notice of Allowance dated Dec. 7, 2015, issued in connection with U.S. Appl. No. 14/216,325, filed Mar. 17, 2014, 7 pages.
Notice of Allowance dated Feb. 1, 2018, issued in connection with U.S. Appl. No. 15/480,265, filed Apr. 5, 2017, 8 pages.
Notice of Allowance dated Feb. 13, 2017, issued in connection with U.S. Appl. No. 14/864,506, filed Sep. 24, 2015, 8 pages.
Notice of Allowance dated Feb. 21, 2018, issued in connection with U.S. Appl. No. 15/005,853, filed Jan. 25, 2016, 5 pages.
Notice of Allowance dated Feb. 26, 2016, issued in connection with U.S. Appl. No. 14/921,762, filed Oct. 23, 2015, 7 pages.
Notice of Allowance dated Feb. 27, 2017, issued in connection with U.S. Appl. No. 14/805,340, filed Jul. 21, 2015, 9 pages.
Notice of Allowance dated Jan. 30, 2017, issued in connection with U.S. Appl. No. 15/339,260, filed Oct. 31, 2016, 8 pages.
Notice of Allowance dated Jul. 10, 2018, issued in connection with U.S. Appl. No. 15/673,170, filed Aug. 9, 2017, 2 pages.
Notice of Allowance dated Jul. 11, 2017, issued in connection with U.S. Appl. No. 14/678,248, filed Apr. 3, 2015, 11 pages.
Notice of Allowance dated Jul. 21, 2017, issued in connection with U.S. Appl. No. 15/211,835, filed Jul. 15, 2016, 10 pages.
Notice of Allowance dated Jul. 26, 2016, issued in connection with U.S. Appl. No. 14/481,511, filed Sep. 39, 2014, 12 pages.
Notice of Allowance dated Jul. 27, 2017, issued in connection with U.S. Appl. No. 15/005,853, filed Jan. 25, 2016, 5 pages.
Notice of Allowance dated Jul. 28, 2017, issued in connection with U.S. Appl. No. 14/678,263, filed Apr. 3, 2015, 10 pages.
Notice of Allowance dated Jul. 28, 2017, issued in connection with U.S. Appl. No. 15/211,822, filed Jul. 15, 2016, 9 pages.
Notice of Allowance dated Jul. 29, 2016, issued in connection with U.S. Appl. No. 14/481,522, filed Sep. 39, 2014, 11 pages.
Notice of Allowance dated Jun. 15, 2017, issued in connection with U.S. Appl. No. 15/096,827, filed Apr. 12, 2016, 5 pages.
Notice of Allowance dated Jun. 16, 2017, issued in connection with U.S. Appl. No. 14/884,001, filed Oct. 15, 2015, 8 pages.
Notice of Allowance dated Jun. 19, 2017, issued in connection with U.S. Appl. No. 14/793,190, filed Jul. 7, 2015, 5 pages.
Notice of Allowance dated Jun. 22, 2017, issued in connection with U.S. Appl. No. 14/644,136, filed Mar. 10, 2015, 12 pages.
Notice of Allowance dated Jun. 23, 2016, issued in connection with U.S. Appl. No. 14/921,781, filed Oct. 23, 2015, 8 pages.
Notice of Allowance dated Jun. 27, 2017, issued in connection with U.S. Appl. No. 15/344,069, filed Nov. 34, 2016, 8 pages.
Notice of Allowance dated Jun. 3, 2016, issued in connection with U.S. Appl. No. 14/921,799, filed Oct. 23, 2015, 8 pages.
Notice of Allowance dated Jun. 6, 2018, issued in connection with U.S. Appl. No. 15/727,913, filed Oct. 9, 2017, 5 pages.
Notice of Allowance dated Mar. 11, 2015, issued in connection with U.S. Appl. No. 13/340,126, filed Dec. 29, 2011, 7 pages.
Notice of Allowance dated Mar. 15, 2017, issued in connection with U.S. Appl. No. 14/826,856, filed Aug. 14, 2015, 7 pages.
Notice of Allowance dated Mar. 28, 2018, issued in connection with U.S. Appl. No. 15/673,170, filed Aug. 9, 2017, 5 pages.
Notice of Allowance dated May 1, 2017, issued in connection with U.S. Appl. No. 14/805,140, filed Jul. 21, 2015, 13 pages.
Notice of Allowance dated May 17, 2017, issued in connection with U.S. Appl. No. 15/339,260, filed Oct. 31, 2016, 7 pages.
Notice of Allowance dated May 23, 2018, issued in connection with U.S. Appl. No. 15/698,283, filed Sep. 1, 2017, 8 pages.
Notice of Allowance dated May 24, 2017, issued in connection with U.S. Appl. No. 14/997,868, filed Jan. 18, 2016, 5 pages.
Notice of Allowance dated May 5, 2017, issued in connection with U.S. Appl. No. 14/826,873, filed Aug. 14, 2015, 5 pages.
Notice of Allowance dated May 8, 2018, issued in connection with U.S. Appl. No. 15/650,386, filed Jul. 14, 2017, 13 pages.
Notice of Allowance dated Nov. 13, 2017, issued in connection with U.S. Appl. No. 14/726,921, filed Jun. 1, 2015, 8 pages.
Notice of Allowance dated Nov. 2, 2016, issued in connection with U.S. Appl. No. 14/884,001, filed Oct. 15, 2015, 8 pages.
Notice of Allowance dated Nov. 20, 2017, issued in connection with U.S. Appl. No. 15/298,115, filed Oct. 19, 2016, 10 pages.
Notice of Allowance dated Nov. 24, 2017, issued in connection with U.S. Appl. No. 15/681,640, filed Aug. 21, 2017, 8 pages.
Notice of Allowance dated Nov. 4, 2016, issued in connection with U.S. Appl. No. 14/481,514, filed Sep. 9, 2014, 10 pages.
Notice of Allowance dated Nov. 9, 2016, issued in connection with U.S. Appl. No. 14/805,340, filed Jul. 21, 2015, 13 pages.
Notice of Allowance dated Oct. 15, 2018, issued in connection with U.S. Appl. No. 15/716,313, filed Sep. 26, 2017, 10 pages.
Notice of Allowance dated Oct. 16, 2017, issued in connection with U.S. Appl. No. 15/478,770, filed Apr. 4, 2017, 10 pages.
Notice of Allowance dated Oct. 23, 2017, issued in connection with U.S. Appl. No. 14/481,522, filed Sep. 9, 2014, 16 pages.
Notice of Allowance dated Oct. 25, 2016, issued in connection with U.S. Appl. No. 14/826,873, filed Aug. 14, 2015, 5 pages.
Notice of Allowance dated Oct. 26, 2016, issued in connection with U.S. Appl. No. 14/811,587, filed Jul. 28, 2015, 11 pages.
Notice of Allowance dated Oct. 29, 2015, issued in connection with U.S. Appl. No. 14/216,306, filed Mar. 17, 2014, 9 pages.
Notice of Allowance dated Oct. 4, 2018, issued in connection with U.S. Appl. No. 15/166,241, filed May 26, 2016, 7 pages.
Notice of Allowance dated Oct. 5, 2018, issued in connection with U.S. Appl. No. 16/115,524, filed Aug. 28, 2018, 10 pages.
Notice of Allowance dated Sep. 12, 2016, issued in connection with U.S. Appl. No. 15/066,072, filed Mar. 10, 2016, 7 pages.
Notice of Allowance dated Sep. 12, 2017, issued in connection with U.S. Appl. No. 15/207,682, filed Jul. 12, 2016, 8 pages.
Notice of Allowance dated Sep. 16, 2016, issued in connection with U.S. Appl. No. 15/066,049, filed Mar. 10, 2016, 7 pages.
Notice of Allowance dated Sep. 19, 2017, issued in connection with U.S. Appl. No. 14/793,205, filed Jul. 7, 2015, 16 pages.
Notice of Allowance dated Sep. 19, 2018, issued in connection with U.S. Appl. No. 14/864,393, filed Sep. 24, 2015, 10 pages.
Notice of Allowance dated Sep. 20, 2017, issued in connection with U.S. Appl. No. 14/481,514, filed Sep. 9, 2014, 10 pages.
Notice of Allowance dated Sep. 23, 2016, issued in connection with U.S. Appl. No. 15/070,160, filed Mar. 15, 2016, 7 pages.
Nternational Searching Authority, International Search Report and Written Opinion dated Aug. 3, 2017, in connection with International Application No. PCT/US2017014596, 20 pages.
Nternational Searching Authority, International Search Report and Written Opinion dated Jun. 16, 2015, issued in connection with International Application No. PCT/US2015/020993, filed Mar. 17, 2015, 11 pages.
Palm, Inc., "Handbook for the Palm VII Handheld," May 2000, 311 pages.
Papp Istvan et al. "Adaptive Microphone Array for Unknown Desired Speakers Transfer Function", The Journal of the Acoustical Society of America, American Institute of Physics for the Acoustical Society of America, New York, NY vol. 122, no. 2, 19 Jul. 2007, pp. 44-49.
Preinterview First Office Action dated Jul. 12, 2017, issued in connection with U.S. Appl. No. 14/793,205, filed Jul. 7, 2015, 5 pages.
Preinterview First Office Action dated May 17, 2016, issued in connection with U.S. Appl. No. 14/481,505, filed Sep. 9, 2014, 7 pages.
Preinterview First Office Action dated May 25, 2016, issued in connection with U.S. Appl. No. 14/481,514, filed Sep. 9, 2014, 7 pages.
Preinterview First Office Action dated Oct. 6, 2016, issued in connection with U.S. Appl. No. 14/726,921, filed Jun. 1, 2015, 6 pages.
Presentations at WinHEC 2000, May 2000, 138 pages.
PRISMIQ, Inc., "PRISMIQ Media Player User Guide," 2003, 44 pages.
Ross, Alex, "Wizards of Sound: Retouching acoustics, from the restaurant to the concert hall," The New Yorker, Feb. 23, 2015. Web. Feb. 26, 2015, 9 pages.
Supplemental Notice of Allowability dated Oct. 27, 2016, issued in connection with U.S. Appl. No. 14/481,511, filed Sep. 9, 2014, 6 pages.
United States Patent and Trademark Office, U.S. Appl. No. 60/490,768, filed Jul. 28, 2003, entitled "Method for synchronizing audio playback between multiple networked devices," 13 pages.
United States Patent and Trademark Office, U.S. Appl. No. 60/825,407, filed Sep. 12, 2006, entitled "Controlling and manipulating groupings in a multi-zone music or media system," 82 pages.
UPnP; "Universal Plug and Play Device Architecture," Jun. 8, 2000; version 1.0; Microsoft Corporation; pp. 1-54.
Wikipedia, Server(Computing) https://web.archive.org/web/20160703173710/https://en.wikipedia.org/wiki/Server_(computing), published Jul. 3, 2016, 7 pages.
Yamaha DME 64 Owner's Manual; copyright 2004, 80 pages.
Yamaha DME Designer 3.5 setup manual guide; copyright 2004, 16 pages.
Yamaha DME Designer 3.5 User Manual; Copyright 2004, 507 pages.

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10986460B2 (en) 2011-12-29 2021-04-20 Sonos, Inc. Grouping based on acoustic signals
US11910181B2 (en) 2011-12-29 2024-02-20 Sonos, Inc Media playback based on sensor data
US11290838B2 (en) 2011-12-29 2022-03-29 Sonos, Inc. Playback based on user presence detection
US11889290B2 (en) 2011-12-29 2024-01-30 Sonos, Inc. Media playback based on sensor data
US11849299B2 (en) 2011-12-29 2023-12-19 Sonos, Inc. Media playback based on sensor data
US11825289B2 (en) 2011-12-29 2023-11-21 Sonos, Inc. Media playback based on sensor data
US11825290B2 (en) 2011-12-29 2023-11-21 Sonos, Inc. Media playback based on sensor data
US11528578B2 (en) 2011-12-29 2022-12-13 Sonos, Inc. Media playback based on sensor data
US11197117B2 (en) 2011-12-29 2021-12-07 Sonos, Inc. Media playback based on sensor data
US11153706B1 (en) 2011-12-29 2021-10-19 Sonos, Inc. Playback based on acoustic signals
US11122382B2 (en) 2011-12-29 2021-09-14 Sonos, Inc. Playback based on acoustic signals
US11800305B2 (en) 2012-06-28 2023-10-24 Sonos, Inc. Calibration interface
US11064306B2 (en) 2012-06-28 2021-07-13 Sonos, Inc. Calibration state variable
US11368803B2 (en) 2012-06-28 2022-06-21 Sonos, Inc. Calibration of playback device(s)
US11516608B2 (en) 2012-06-28 2022-11-29 Sonos, Inc. Calibration state variable
US11516606B2 (en) 2012-06-28 2022-11-29 Sonos, Inc. Calibration interface
US11696081B2 (en) 2014-03-17 2023-07-04 Sonos, Inc. Audio settings based on environment
US11540073B2 (en) 2014-03-17 2022-12-27 Sonos, Inc. Playback device self-calibration
US11625219B2 (en) 2014-09-09 2023-04-11 Sonos, Inc. Audio processing algorithms
US11803350B2 (en) 2015-09-17 2023-10-31 Sonos, Inc. Facilitating calibration of an audio playback device
US11706579B2 (en) 2015-09-17 2023-07-18 Sonos, Inc. Validation of audio calibration using multi-dimensional motion check
US11197112B2 (en) 2015-09-17 2021-12-07 Sonos, Inc. Validation of audio calibration using multi-dimensional motion check
US11800306B2 (en) 2016-01-18 2023-10-24 Sonos, Inc. Calibration using multiple recording devices
US11432089B2 (en) 2016-01-18 2022-08-30 Sonos, Inc. Calibration using multiple recording devices
US11184726B2 (en) 2016-01-25 2021-11-23 Sonos, Inc. Calibration using listener locations
US11516612B2 (en) 2016-01-25 2022-11-29 Sonos, Inc. Calibration based on audio content
US11106423B2 (en) 2016-01-25 2021-08-31 Sonos, Inc. Evaluating calibration of a playback device
US11379179B2 (en) 2016-04-01 2022-07-05 Sonos, Inc. Playback device calibration based on representative spectral characteristics
US11212629B2 (en) 2016-04-01 2021-12-28 Sonos, Inc. Updating playback device configuration information based on calibration data
US11736877B2 (en) 2016-04-01 2023-08-22 Sonos, Inc. Updating playback device configuration information based on calibration data
US11218827B2 (en) 2016-04-12 2022-01-04 Sonos, Inc. Calibration of audio playback devices
US11889276B2 (en) 2016-04-12 2024-01-30 Sonos, Inc. Calibration of audio playback devices
US11337017B2 (en) 2016-07-15 2022-05-17 Sonos, Inc. Spatial audio correction
US11736878B2 (en) 2016-07-15 2023-08-22 Sonos, Inc. Spatial audio correction
US11531514B2 (en) 2016-07-22 2022-12-20 Sonos, Inc. Calibration assistance
US11237792B2 (en) 2016-07-22 2022-02-01 Sonos, Inc. Calibration assistance
US11698770B2 (en) 2016-08-05 2023-07-11 Sonos, Inc. Calibration of a playback device based on an estimated frequency response
US11178092B2 (en) 2017-02-17 2021-11-16 International Business Machines Corporation Outgoing communication scam prevention
US20200034743A1 (en) * 2017-02-17 2020-01-30 International Business Machines Corporation Bot-based data collection for detecting phone solicitations
US10757058B2 (en) 2017-02-17 2020-08-25 International Business Machines Corporation Outgoing communication scam prevention
US10783455B2 (en) * 2017-02-17 2020-09-22 International Business Machines Corporation Bot-based data collection for detecting phone solicitations
US10810510B2 (en) 2017-02-17 2020-10-20 International Business Machines Corporation Conversation and context aware fraud and abuse prevention agent
US10783886B2 (en) * 2018-06-12 2020-09-22 International Business Machines Corporation Cognitive agent disambiguation
US20190378504A1 (en) * 2018-06-12 2019-12-12 International Business Machines Corporation Cognitive agent disambiguation
US10869128B2 (en) 2018-08-07 2020-12-15 Pangissimo Llc Modular speaker system
US11877139B2 (en) 2018-08-28 2024-01-16 Sonos, Inc. Playback device calibration
US11206484B2 (en) 2018-08-28 2021-12-21 Sonos, Inc. Passive speaker authentication
US11350233B2 (en) 2018-08-28 2022-05-31 Sonos, Inc. Playback device calibration
US10622009B1 (en) * 2018-09-10 2020-04-14 Amazon Technologies, Inc. Methods for detecting double-talk
US11197115B2 (en) 2019-02-12 2021-12-07 Sonos, Inc. Systems and methods for authenticating and calibrating passive speakers with a graphical user interface
US10694309B1 (en) 2019-02-12 2020-06-23 Sonos, Inc. Systems and methods for authenticating and calibrating passive speakers with a graphical user interface
US11778404B2 (en) 2019-02-12 2023-10-03 Sonos, Inc. Systems and methods for authenticating and calibrating passive speakers with a graphical user interface
USD923638S1 (en) 2019-02-12 2021-06-29 Sonos, Inc. Display screen or portion thereof with transitional graphical user interface
USD960904S1 (en) 2019-02-12 2022-08-16 Sonos, Inc. Display screen with transitional graphical user interface
WO2020237576A1 (en) * 2019-05-30 2020-12-03 Harman International Industries, Incorporated Method and system for room calibration in a speaker system
US11924625B2 (en) 2019-05-30 2024-03-05 Harman International Industries, Incorporated Method and system for room calibration in a speaker system
WO2021010884A1 (en) * 2019-07-18 2021-01-21 Dirac Research Ab Intelligent audio control platform
US11374547B2 (en) 2019-08-12 2022-06-28 Sonos, Inc. Audio calibration of a portable playback device
US11728780B2 (en) 2019-08-12 2023-08-15 Sonos, Inc. Audio calibration of a portable playback device
WO2021030334A1 (en) 2019-08-12 2021-02-18 Sonos, Inc. Audio calibration of a portable playback device
US11922093B2 (en) 2020-06-23 2024-03-05 Beijing Xiaomi Mobile Software Co., Ltd. Device control method and apparatus
EP3930343A3 (en) * 2020-06-23 2022-02-23 Beijing Xiaomi Mobile Software Co., Ltd. Device control method and apparatus
US20240056632A1 (en) * 2022-08-09 2024-02-15 Dish Network, L.L.C. Home audio monitoring for proactive volume adjustments

Also Published As

Publication number Publication date
US10848892B2 (en) 2020-11-24
US20200196083A1 (en) 2020-06-18
US11877139B2 (en) 2024-01-16
US20220360928A1 (en) 2022-11-10
US20210076151A1 (en) 2021-03-11
US10582326B1 (en) 2020-03-03
US11350233B2 (en) 2022-05-31
US20200077219A1 (en) 2020-03-05
EP3844980A1 (en) 2021-07-07
WO2020046956A1 (en) 2020-03-05

Similar Documents

Publication Publication Date Title
US11877139B2 (en) Playback device calibration
US11778404B2 (en) Systems and methods for authenticating and calibrating passive speakers with a graphical user interface
US20230060042A1 (en) Audio conflict resolution
US11659323B2 (en) Systems and methods of user localization
US11728780B2 (en) Audio calibration of a portable playback device
US11356764B2 (en) Dynamic earbud profile
US11206484B2 (en) Passive speaker authentication
US20230362570A1 (en) Playback Device Self-Calibration Using PCA-Based Room Response Estimation
US11962994B2 (en) Sum-difference arrays for audio playback devices
US11809778B2 (en) Techniques for extending the lifespan of playback devices
US11528574B2 (en) Sum-difference arrays for audio playback devices

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4