WO2009105926A1 - 10~50g/d高强聚乙烯纤维及其制法 - Google Patents
10~50g/d高强聚乙烯纤维及其制法 Download PDFInfo
- Publication number
- WO2009105926A1 WO2009105926A1 PCT/CN2008/001311 CN2008001311W WO2009105926A1 WO 2009105926 A1 WO2009105926 A1 WO 2009105926A1 CN 2008001311 W CN2008001311 W CN 2008001311W WO 2009105926 A1 WO2009105926 A1 WO 2009105926A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fiber
- strength
- polyethylene
- molecular weight
- polyethylene fiber
- Prior art date
Links
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/44—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
- D01F6/46—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyolefins
Definitions
- the invention belongs to the technical field of polymer materials, and particularly relates to a high-strength polyethylene fiber with a strength of 10 ⁇ 50g/d which is obtained by a melt spinning method and a preparation method thereof.
- High-strength polyethylene fiber is a high-strength and modulus synthetic fiber material produced by ultra-high molecular weight polyethylene with a molecular weight of more than 1 million.
- Internationally, high-strength polyethylene fiber, aramid fiber and carbon fiber are called three highs.
- Chinese patent CN1539033 discloses a high-strength polyethylene fiber having a strength of 15 cN/dtex or more, which is a polyethylene having a weight average molecular weight of 300,000 or less, a weight average molecular weight and a number average molecular weight of 4.0 Mw/Mn or less.
- the raw material is produced by melt spinning, and the production method is adopted, and the ultra-high viscosity of the melt makes it basically free of fluidity, thereby causing difficulty in spinning, and industrialized production is difficult.
- the method utilizes a solvent to dissolve the ultrahigh molecular weight polyethylene, so that the flexible polyethylene macromolecular chain is released from excessive entanglement under the dilution of the solvent, and the raw liquid is extruded through the spinning hole and then cooled to produce phase separation, thereby obtaining Folding the chain crystal and the nascent jelly filaments of the molecular network structure, and then desolvating and super-stretching to obtain high-strength polyethylene fibers having a straight chain structure.
- Dutch patent NL7900990 and U.S. Patent No. 4,344,908 disclose the use of decahydronaphthalene as a solvent to dissolve ultrahigh molecular weight polyethylene to prepare a spinning dope.
- the raw liquid is sprayed through a spinneret and cooled by air or water to form a nascent jelly filament.
- Desolventization and ultra-high heat drawing give high-strength polyethylene fibers with straight-chain crystals with a strength of up to 35 g/d.
- European Patent No. EP0064167, EP0205960, and U.S. Patent No. 4,430,577 disclose the use of kerosene or white oil as a solvent to dissolve ultrahigh molecular weight polyethylene to prepare a spinning dope, followed by freeze spinning, extraction, drying and ultra-hot stretching. High-strength polyethylene fibers having extended chain crystals were also obtained.
- ultrahigh molecular weight polyethylene fibers are prepared by melt spinning, using a single ultrahigh molecular weight polyethylene raw material, and the meltability of the melt after melting of a single ultrahigh molecular weight polyethylene is poor. It is mainly used to add flow modifiers or thinners, and solve this problem by ultra-high pressure spinning, which makes industrialization more difficult; When the amount of polyethylene is melt-spun, since the entanglement point between the molecular chains in the molten polymer is very large, the degree of crystal orientation is low, and high-strength fibers are not obtained.
- the object of the present invention is to provide a method for preparing high-strength polyethylene fibers by blending ultrahigh molecular weight polyethylene with low-density polyethylene by a strength of 15 to 50 g/d and a modulus of 400 to 2000 g/d.
- a high-strength polyethylene fiber of 10 to 50 g/d which is obtained by a melt spinning method, wherein the high-strength polyethylene fiber has a strength of 10 to 50 g/d and a modulus of 400 to 1000 g/d.
- the strength of the bare polyethylene fiber is 10 ⁇ 20g/d; or
- the strength of the high-strength polyethylene fiber is 20 ⁇ 30g/d; or
- the high-strength polyethylene fiber has a strength of 30 to 40 g/d; or
- the high-strength polyethylene fiber has a strength of 40 to 50 g/d.
- the strength of the high-strength polyethylene fiber of the invention is 10 ⁇ 30g/d, it is mainly used in the civil field, such as but not limited to: 1) marine engineering such as ropes, cables, sails and fishing gear; 2) sports equipment supplies: such as helmets , skis, sail boards, fishing rods, rackets and bicycles, gliding boards, ultra-lightweight aircraft parts, etc.; 3) as a biomaterial: the fiber reinforced composite material is used in tray materials, medical implants and plastic sutures. It has good biocompatibility and durability, and has stable stability, does not cause allergies, and has been used clinically. Also used in medical gloves and other medical facilities.
- the fiber and its composite materials can be used as 'pressure-resistant containers, conveyor belts, filter materials, automobile buffer boards, etc.; 1 ⁇ 2 construction can be used as wall, partition structure, etc., which can be used as reinforced cement composite materials. Improve the toughness of cement and improve its impact resistance.
- the strength of the high-strength polyethylene fiber of the invention is 30 ⁇ 50g/d, it is mainly used in the military field, such as but not limited to: 1) Defense military equipment: protective clothing, helmets, bulletproof materials, helicopters, tanks and ships Armor shields, radar enclosures, missile covers, body armor, stab-resistant garments, shields, etc.; 2) Aerospace applications: wingtip structures for various aircraft, spacecraft structures and buoy aircraft.
- the method for preparing the high-strength polyethylene fiber of 10 to 50 g/d is characterized in that the polyethylene raw material of the following weight ratio is produced by melt spinning:
- the weight ratio of low density polyethylene to ultra high molecular weight polyethylene is 2 ⁇ 10: 1;
- the low density polyethylene has a molecular weight of 2.5 to 500,000;
- the molecular weight of the ultrafine molecular weight polyethylene is from 120 to 7 million.
- the method for preparing the 10 ⁇ 50g/d high-strength polyethylene fiber comprises the following steps: 1) mixing raw materials
- the step 1) is mixed, melted and added to a twin-screw extruder, and the melting temperature is 150 to 300 ° C to obtain a polyethylene melt;
- the polyethylene melt is sprayed through a spinneret on a spinning box, and the discharge speed is 3 ⁇ 5 m/miri, and the spun spinning is cooled by an air side blowing device, and the cold air temperature is 0 to 35°.
- the wind speed is 5 ⁇ 8 m / s, made of virgin fiber, and then stretched with a godet, the draw ratio is 2 ⁇ 10 times;
- the nascent fiber after stretching is fed into two oil baths containing glycerin through a godet.
- the fibers are stretched in the oil bath.
- the temperature of the oil bath is 50 ⁇ 150 ⁇ , and the total temperature in the oil bath The multiple is 3 to 20 times;
- the fiber stretched by the godet roller in the two oil baths is then washed into the water bath tank for washing at a temperature of 60 to 100 ° C, and an isohydric alcohol ether surfactant is added to the water washing liquid;
- the water-washed fiber is subjected to baking to remove the water contained in the fiber, and is wound into a cylinder to obtain a high-strength polyethylene fiber having a tensile strength of 10 to 50 g/d.
- the present invention does not require the addition of a flow modifier or diluent to the molten liquid; according to the mixing ratio of the present invention, the ultrahigh molecular weight polyethylene increases the strength of the intermolecular bond points of the low density polyethylene, making the post stretch more Easy to carry out;
- the product obtained by the invention has a tensile strength of 10 ⁇ 50g/d, a modulus of 400 ⁇ 2000g/d, a pass rate of 98%, and is applied to the civil or military field, and fully meets the requirements for use;
- the number average molecular weight of ultrahigh molecular weight polyethylene is 6 million, and the number average molecular weight of low density polyethylene is 25,000;
- blending and melting with a twin-screw extruder mixing a mixture of low-density polyethylene and ultra-high molecular weight polyethylene into a twin-screw extruder to melt and melt at a temperature of 150 to 300 ° C, thereby obtaining a a polyethylene melt suitable for extrusion stretching at a viscosity of 1000 to 3000 Pa.s;
- the high-strength polyethylene fiber of Example 1 was tested to have a tensile strength of 10 g/d, a modulus of 400 g/d, an elongation at break of 3.5%, and a yield of 99%.
- the number average molecular weight of ultrahigh molecular weight polyethylene is 5 million, and the number average molecular weight of low density polyethylene is 40,000;
- blending and melting with a twin-screw extruder mixing a mixture of low-density polyethylene and ultra-high molecular weight polyethylene into a twin-screw extruder to melt and melt at a temperature of 150 to 300 ° C, thereby obtaining a a polyethylene melt suitable for extrusion stretching at a viscosity of 1000 to 3000 Pa.s; 4) Preparation of virgin fiber and stretching: The polyethylene melt is sprayed through the spinneret on the spinning box, the ejection speed is 5m/min, and the spun spinning is cooled by the air side blowing device, and the cold air temperature is formed. For 35 ° C, the wind speed is 8 m / s, then made of virgin fiber, and then stretched with a godet, the draw ratio is 4 times;
- the high-strength polyethylene fiber of Example 2 was tested to have a tensile strength of 20 g/d, a modulus of 500 g/d, an elongation at break of 2.7%, and a yield of 99%.
- the number average molecular weight of ultrahigh molecular weight polyethylene is 5 million, and the number average molecular weight of low density polyethylene is 30,000;
- Blending and melting by using a twin-screw extruder mixing a mixture of low-density polyethylene and ultra-high molecular weight polyethylene into a twin-screw extruder to melt and melt at a temperature of 150-300 ° C, thereby obtaining a kind a viscosity of 1000 ⁇ 3000Pa.S suitable for extrusion-stretched polyethylene melt;
- the washed fiber removes moisture contained in the fiber by drying, and The product was wound into a cylinder to obtain a high-strength polyethylene fiber having a tensile strength of 30 g/d.
- the high-strength polyethylene fiber of Example 3 was found to have a tensile strength of 30 g/d, a modulus of 980 g/d, an elongation at break of 2.8%, and a yield of 98%.
- Raw material selection The number average molecular weight of ultrahigh molecular weight polyethylene is 4 million, and the number average molecular weight of low density polyethylene is 30,000;
- Blending and melting by using a twin-screw extruder mixing a mixture of low-density polyethylene and ultra-high molecular weight polyethylene into a twin-screw extruder to melt and melt, and the melting degree is 150-300 ⁇ , thereby obtaining a viscosity.
- a polyethylene melt suitable for stretching
- the washed fiber removes the water contained in the fiber by drying and is wound into a cylinder, which gives a high-strength polyethylene fiber with a tensile strength of 40 g/d. .
- the high-strength polyethylene fiber of Example 4 was tested to have a tensile strength of 40 g/d, a modulus of 1500 g/d, an elongation at break of 2.9%, and a pass rate of 98.5%.
- Raw material selection The number average molecular weight of ultrahigh molecular weight polyethylene is 5 million, and the number average molecular weight of low density polyethylene is 30,000;
- Blending and melting by using a twin-screw extruder mixing a mixture of low-density polyethylene and ultra-high molecular weight polyethylene into a twin-screw extruder to melt and melt at a temperature of 150-300 ° C, thereby obtaining a kind a polyethylene melt having a viscosity suitable for stretching;
- Preparation of virgin fiber and stretching The polyethylene melt is sprayed through the spinneret on the spinning box, the spraying speed is 4m/min, and the spun spinning is cooled by the air side blowing device, and the cold air temperature is formed. For 20 ° C, the wind speed is 6 m / s, then the nascent fiber, and then stretched with a godet, the draw ratio is 5 times;
- the water-washed fibers are dried to remove moisture contained in the fibers, and are wound into a cylinder to obtain a bare polyethylene fiber having a tensile strength of 50 g/d.
- the bare polyethylene fiber of Example 5 was found to have a tensile strength of 50 g/d, a modulus of 1800 g/d, and an elongation at break of 2.7 °/.
- the pass rate is 99%.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Artificial Filaments (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08783516.1A EP2151511B1 (en) | 2008-02-26 | 2008-07-14 | High strength polyethylene fiber and preparation method thereof |
US12/600,252 US8188206B2 (en) | 2008-02-26 | 2008-07-14 | 10-50 G/D high strength polyethylene fiber and preparation method thereof |
AU2008351679A AU2008351679B2 (en) | 2008-02-26 | 2008-07-14 | 10-50 g/d high strength polyethylene fiber and preparation method thereof |
JP2010547025A JP5244922B2 (ja) | 2008-02-26 | 2008-07-14 | 強度が10−50g/dの高強度ポリエチレン繊維およびその製造方法 |
US13/458,265 US20120214946A1 (en) | 2008-02-26 | 2012-04-27 | 10-50 g/d high strength polyethylene fiber and preparation method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810014185.6 | 2008-02-26 | ||
CN2008100141856A CN101230501B (zh) | 2008-02-26 | 2008-02-26 | 一种采用超高分子量聚乙烯与低密度聚乙烯共混熔融制备高强聚乙烯纤维的方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/458,265 Division US20120214946A1 (en) | 2008-02-26 | 2012-04-27 | 10-50 g/d high strength polyethylene fiber and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009105926A1 true WO2009105926A1 (zh) | 2009-09-03 |
Family
ID=39897301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2008/001311 WO2009105926A1 (zh) | 2008-02-26 | 2008-07-14 | 10~50g/d高强聚乙烯纤维及其制法 |
Country Status (6)
Country | Link |
---|---|
US (2) | US8188206B2 (zh) |
EP (1) | EP2151511B1 (zh) |
JP (1) | JP5244922B2 (zh) |
CN (1) | CN101230501B (zh) |
AU (1) | AU2008351679B2 (zh) |
WO (1) | WO2009105926A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104846451A (zh) * | 2015-06-09 | 2015-08-19 | 淄博美标高分子纤维有限公司 | 一种直接制备超高分子量聚乙烯纤维的方法 |
TWI819389B (zh) * | 2020-10-08 | 2023-10-21 | 南韓商可隆股份有限公司 | 具有改善收縮率的高強度聚乙烯紗線以及其製造方法 |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7935283B2 (en) | 2009-01-09 | 2011-05-03 | Honeywell International Inc. | Melt spinning blends of UHMWPE and HDPE and fibers made therefrom |
CN102002769B (zh) | 2010-11-08 | 2012-12-12 | 宁波大成新材料股份有限公司 | 超高分子量聚乙烯纤维制备方法 |
KR101100824B1 (ko) * | 2010-11-25 | 2012-01-02 | 송종복 | 고강도 단섬유의 제조방법 |
US9023451B2 (en) | 2011-09-06 | 2015-05-05 | Honeywell International Inc. | Rigid structure UHMWPE UD and composite and the process of making |
US9023450B2 (en) | 2011-09-06 | 2015-05-05 | Honeywell International Inc. | High lap shear strength, low back face signature UD composite and the process of making |
US9023452B2 (en) | 2011-09-06 | 2015-05-05 | Honeywell International Inc. | Rigid structural and low back face signature ballistic UD/articles and method of making |
KR101346316B1 (ko) | 2011-09-19 | 2014-01-06 | 송종복 | 멀티 필라멘트사를 이용한 고강도 단섬유의 제조방법 및 그 단섬유 |
CN102433597B (zh) * | 2011-10-11 | 2014-09-17 | 北京同益中特种纤维技术开发有限公司 | 凝胶化预取向丝及其制备方法和超高分子量聚乙烯纤维及其制备方法 |
US9169581B2 (en) * | 2012-02-24 | 2015-10-27 | Honeywell International Inc. | High tenacity high modulus UHMW PE fiber and the process of making |
US10132010B2 (en) * | 2012-07-27 | 2018-11-20 | Honeywell International Inc. | UHMW PE fiber and method to produce |
US10132006B2 (en) * | 2012-07-27 | 2018-11-20 | Honeywell International Inc. | UHMWPE fiber and method to produce |
CN103031615B (zh) * | 2012-12-27 | 2014-12-03 | 中国纺织科学研究院 | 一种高强聚乙烯单丝及其制备方法 |
CN103155890B (zh) * | 2013-03-19 | 2014-10-01 | 中国水产科学研究院东海水产研究所 | 一种聚烯烃耐磨节能网的制备方法 |
CN103757731B (zh) * | 2013-12-11 | 2016-03-02 | 巢湖亚塑网具制造有限公司 | 一种耐酸碱渔网 |
CN103882554B (zh) * | 2014-03-20 | 2016-07-06 | 剑乔科技江苏有限公司 | 一种超高分子量聚乙烯卷曲短纤维的制备方法 |
CN103866416B (zh) * | 2014-03-20 | 2016-02-10 | 剑乔科技江苏有限公司 | 一种超高分子量聚乙烯有色纤维的制备方法 |
CN104109911B (zh) * | 2014-07-02 | 2016-04-06 | 陕西省石油化工研究设计院 | 马来酰亚胺改性酚醛纤维的制备方法 |
CN104294401A (zh) * | 2014-09-30 | 2015-01-21 | 中国石油化工股份有限公司 | 一种改性聚乙烯-超高分子量聚乙烯复合纤维的制备方法 |
US9909240B2 (en) | 2014-11-04 | 2018-03-06 | Honeywell International Inc. | UHMWPE fiber and method to produce |
CN104862811B (zh) * | 2015-04-24 | 2017-01-04 | 浙江美丝邦化纤有限公司 | 一种功能性锦纶6纤维的生产方法 |
CN106012045A (zh) * | 2016-08-11 | 2016-10-12 | 潘忠宁 | 一种聚偏氟乙烯融纺纤维的制备方法 |
CN107034539A (zh) * | 2017-05-27 | 2017-08-11 | 巢湖市天宇渔具有限公司 | 一种耐老化性渔用hspe的加工方法 |
CN107287672A (zh) * | 2017-07-17 | 2017-10-24 | 巢湖市渔郎渔具有限公司 | 一种耐腐环保渔网线的制备方法 |
CN107237000A (zh) * | 2017-07-17 | 2017-10-10 | 巢湖市渔郎渔具有限公司 | 一种高强度渔网线的加工工艺 |
DE102017129897A1 (de) * | 2017-12-14 | 2019-06-19 | Kiekert Ag | Stellantrieb für kraftfahrzeugtechnische Anwendungen |
CN108410063B (zh) * | 2018-03-28 | 2020-11-13 | 连云港益众再生资源有限公司 | 一种汽车用改性pp再生材料及其制备方法 |
CN109208107A (zh) * | 2018-09-06 | 2019-01-15 | 山东莱威新材料有限公司 | 一种超高分子量聚乙烯切膜纤维及其制备方法 |
CN110318116A (zh) * | 2019-05-29 | 2019-10-11 | 长青藤高性能纤维材料有限公司 | 一种特高强超高分子量聚乙烯纤维的制备方法 |
CN111206296A (zh) * | 2020-03-17 | 2020-05-29 | 东方交联电力电缆有限公司 | 超高分子量聚乙烯和全同立构聚丙烯共混物超抗拉强度纤维的制备方法 |
CN113652762A (zh) * | 2021-08-30 | 2021-11-16 | 巢湖市翔宇渔具有限公司 | 一种防水生植物附着沉积渔网线的加工方法 |
CN114805868B (zh) * | 2022-04-06 | 2024-05-14 | 浙江中聚材料有限公司 | 一种聚烯烃纤维强化层及其在太阳能电池胶膜中的应用 |
CN115110163A (zh) * | 2022-06-23 | 2022-09-27 | 东华大学 | 一种中分子量中强聚乙烯纤维的熔融纺丝制备方法、聚乙烯纤维、织成品及应用 |
CN114990721B (zh) * | 2022-06-30 | 2023-07-21 | 中原工学院 | 一种高强度光热聚丙烯纤维及其制备方法和应用 |
CN115449909A (zh) * | 2022-08-31 | 2022-12-09 | 浙江古纤道绿色纤维有限公司 | 一种再生功能性涤纶工业丝生产工艺 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL7900990A (nl) | 1979-02-08 | 1980-08-12 | Stamicarbon | Filamenten met grote treksterkte en modulus. |
US4228118A (en) * | 1977-11-03 | 1980-10-14 | Monsanto Company | Process for producing high tenacity polyethylene fibers |
US4305770A (en) | 1979-04-26 | 1981-12-15 | Sea-Log Corporation | Fabrication of fiber reinforced resin structures |
US4344908A (en) | 1979-02-08 | 1982-08-17 | Stamicarbon, B.V. | Process for making polymer filaments which have a high tensile strength and a high modulus |
EP0064167A1 (en) | 1981-04-30 | 1982-11-10 | Allied Corporation | Process for producing high tenacity, high modulus crystalline thermoplastic article and novel product fibers |
EP0205960A2 (en) | 1985-06-17 | 1986-12-30 | AlliedSignal Inc. | Very low creep, ultra high moduls, low shrink, high tenacity polyolefin fiber having good strength retention at high temperatures and method to produce such fiber |
CN1439752A (zh) * | 1998-06-04 | 2003-09-03 | Dsm有限公司 | 高强度聚乙烯纤维制造方法 |
CN1448546A (zh) * | 2002-04-01 | 2003-10-15 | 阎镇达 | 超高强度、超高模量聚乙烯纤维的纺制方法 |
CN1539033A (zh) | 2001-08-08 | 2004-10-20 | �����֯��ʽ���� | 高强度聚乙烯纤维 |
CN1626705A (zh) * | 2003-12-10 | 2005-06-15 | 林祥 | Pe低成本高强度纤维及工业化生产工艺 |
CN1995496A (zh) * | 2006-12-22 | 2007-07-11 | 中纺投资发展股份有限公司 | 超高分子量聚乙烯冻胶法连续直纺细旦丝生产方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5841309B2 (ja) * | 1974-11-27 | 1983-09-10 | 古河電気工業株式会社 | ポリエチレンソセイブツ |
US4455273A (en) * | 1982-09-30 | 1984-06-19 | Allied Corporation | Producing modified high performance polyolefin fiber |
EP0115192B2 (en) * | 1982-12-28 | 1992-07-22 | Mitsui Petrochemical Industries, Ltd. | Process for producing stretched filaments of ultrahigh-molecular-weight polyethylene |
JP4337233B2 (ja) * | 2000-05-02 | 2009-09-30 | 東洋紡績株式会社 | 高強度ポリエチレン繊維およびその製造方法 |
JP3389927B2 (ja) * | 2000-05-29 | 2003-03-24 | チッソ株式会社 | ポリエチレン系複合繊維およびこれを用いた不織布 |
-
2008
- 2008-02-26 CN CN2008100141856A patent/CN101230501B/zh active Active
- 2008-07-14 AU AU2008351679A patent/AU2008351679B2/en not_active Ceased
- 2008-07-14 WO PCT/CN2008/001311 patent/WO2009105926A1/zh active Application Filing
- 2008-07-14 EP EP08783516.1A patent/EP2151511B1/en not_active Not-in-force
- 2008-07-14 JP JP2010547025A patent/JP5244922B2/ja not_active Expired - Fee Related
- 2008-07-14 US US12/600,252 patent/US8188206B2/en not_active Expired - Fee Related
-
2012
- 2012-04-27 US US13/458,265 patent/US20120214946A1/en not_active Abandoned
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4228118A (en) * | 1977-11-03 | 1980-10-14 | Monsanto Company | Process for producing high tenacity polyethylene fibers |
NL7900990A (nl) | 1979-02-08 | 1980-08-12 | Stamicarbon | Filamenten met grote treksterkte en modulus. |
US4344908A (en) | 1979-02-08 | 1982-08-17 | Stamicarbon, B.V. | Process for making polymer filaments which have a high tensile strength and a high modulus |
US4305770A (en) | 1979-04-26 | 1981-12-15 | Sea-Log Corporation | Fabrication of fiber reinforced resin structures |
EP0064167A1 (en) | 1981-04-30 | 1982-11-10 | Allied Corporation | Process for producing high tenacity, high modulus crystalline thermoplastic article and novel product fibers |
EP0205960A2 (en) | 1985-06-17 | 1986-12-30 | AlliedSignal Inc. | Very low creep, ultra high moduls, low shrink, high tenacity polyolefin fiber having good strength retention at high temperatures and method to produce such fiber |
CN1439752A (zh) * | 1998-06-04 | 2003-09-03 | Dsm有限公司 | 高强度聚乙烯纤维制造方法 |
CN1539033A (zh) | 2001-08-08 | 2004-10-20 | �����֯��ʽ���� | 高强度聚乙烯纤维 |
CN1448546A (zh) * | 2002-04-01 | 2003-10-15 | 阎镇达 | 超高强度、超高模量聚乙烯纤维的纺制方法 |
CN1626705A (zh) * | 2003-12-10 | 2005-06-15 | 林祥 | Pe低成本高强度纤维及工业化生产工艺 |
CN1995496A (zh) * | 2006-12-22 | 2007-07-11 | 中纺投资发展股份有限公司 | 超高分子量聚乙烯冻胶法连续直纺细旦丝生产方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2151511A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104846451A (zh) * | 2015-06-09 | 2015-08-19 | 淄博美标高分子纤维有限公司 | 一种直接制备超高分子量聚乙烯纤维的方法 |
CN104846451B (zh) * | 2015-06-09 | 2019-03-22 | 淄博美标高分子纤维有限公司 | 一种直接制备超高分子量聚乙烯纤维的方法 |
TWI819389B (zh) * | 2020-10-08 | 2023-10-21 | 南韓商可隆股份有限公司 | 具有改善收縮率的高強度聚乙烯紗線以及其製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2011513598A (ja) | 2011-04-28 |
EP2151511A1 (en) | 2010-02-10 |
EP2151511B1 (en) | 2015-02-18 |
AU2008351679B2 (en) | 2013-06-27 |
EP2151511A4 (en) | 2011-08-03 |
JP5244922B2 (ja) | 2013-07-24 |
US20120214946A1 (en) | 2012-08-23 |
AU2008351679A1 (en) | 2009-09-03 |
CN101230501B (zh) | 2010-06-02 |
US20100204427A1 (en) | 2010-08-12 |
CN101230501A (zh) | 2008-07-30 |
US8188206B2 (en) | 2012-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009105926A1 (zh) | 10~50g/d高强聚乙烯纤维及其制法 | |
JP5244921B2 (ja) | 1種の色彩を有する高強度ポリエチレン繊維および製法と応用 | |
WO2012062053A1 (zh) | 超高分子量聚乙烯纤维制备方法 | |
WO2012117596A1 (ja) | 高機能ポリエチレン繊維、及び染色高機能ポリエチレン繊維 | |
CN106350882A (zh) | 一种耐切割的超高分子量聚乙烯纤维、制备方法及其应用 | |
CN102505158A (zh) | 一种超高分子量聚乙烯纤维的高浓度制备方法 | |
CN101886295A (zh) | 一种超高分子量聚乙烯有色纤维及制备方法 | |
CN104357939B (zh) | 一种含氯高性能杂环芳纶及其制备方法和应用 | |
CN108277546A (zh) | 一种防切割聚乙烯纤维的制备方法 | |
CN109385689A (zh) | 一种共混超高分子量聚乙烯的纺丝方法 | |
CN110093678A (zh) | 超高分子量聚乙烯干法纺丝中熔体冻胶及固液分离的方法 | |
CN109233062A (zh) | 一种制备中强纤维的复合材料及其快速成型方法和应用 | |
CN101718003B (zh) | 超高分子量聚乙烯有色细旦纤维的生产方法 | |
CN108004605A (zh) | 一种中强多孔超高分子量聚乙烯纤维及制备方法 | |
CN113502555A (zh) | 一种强力大于39cN/dtex超高分子量聚乙烯纤维的制备方法 | |
CN108048946A (zh) | 一种亲水阻燃聚酯纤维材料及其制备方法 | |
CN104846451B (zh) | 一种直接制备超高分子量聚乙烯纤维的方法 | |
JP4952868B1 (ja) | 高機能ポリエチレン繊維、及び染色高機能ポリエチレン繊維 | |
CN108842196A (zh) | 一种pbt/pp三维卷曲单孔纤维的制备方法 | |
CN110820058B (zh) | 一种民用高性能聚乙烯纤维的制备方法 | |
CN110144635A (zh) | 用四氯乙烯萃取制备超高分子量聚乙烯纤维的方法及其产品 | |
CN103910978B (zh) | 一种可降解复合材料预浸带及其制备方法和用途 | |
CN112941648B (zh) | 一种制造高强、高模聚乙烯纤维的方法 | |
CN115110163A (zh) | 一种中分子量中强聚乙烯纤维的熔融纺丝制备方法、聚乙烯纤维、织成品及应用 | |
CN110424065A (zh) | 一种箱包用的轻质高强纤维及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08783516 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010547025 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008783516 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12600252 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008351679 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2008351679 Country of ref document: AU Date of ref document: 20080714 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12/MUMNP/2010 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |