WO2009105926A1 - 10~50g/d高强聚乙烯纤维及其制法 - Google Patents

10~50g/d高强聚乙烯纤维及其制法 Download PDF

Info

Publication number
WO2009105926A1
WO2009105926A1 PCT/CN2008/001311 CN2008001311W WO2009105926A1 WO 2009105926 A1 WO2009105926 A1 WO 2009105926A1 CN 2008001311 W CN2008001311 W CN 2008001311W WO 2009105926 A1 WO2009105926 A1 WO 2009105926A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
strength
polyethylene
molecular weight
polyethylene fiber
Prior art date
Application number
PCT/CN2008/001311
Other languages
English (en)
French (fr)
Inventor
任意
Original Assignee
山东爱地高分子材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东爱地高分子材料有限公司 filed Critical 山东爱地高分子材料有限公司
Priority to AU2008351679A priority Critical patent/AU2008351679B2/en
Priority to US12/600,252 priority patent/US8188206B2/en
Priority to JP2010547025A priority patent/JP5244922B2/ja
Priority to EP08783516.1A priority patent/EP2151511B1/en
Publication of WO2009105926A1 publication Critical patent/WO2009105926A1/zh
Priority to US13/458,265 priority patent/US20120214946A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/46Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyolefins

Definitions

  • the invention belongs to the technical field of polymer materials, and particularly relates to a high-strength polyethylene fiber with a strength of 10 ⁇ 50g/d which is obtained by a melt spinning method and a preparation method thereof.
  • High-strength polyethylene fiber is a high-strength and modulus synthetic fiber material produced by ultra-high molecular weight polyethylene with a molecular weight of more than 1 million.
  • Internationally, high-strength polyethylene fiber, aramid fiber and carbon fiber are called three highs.
  • Chinese patent CN1539033 discloses a high-strength polyethylene fiber having a strength of 15 cN/dtex or more, which is a polyethylene having a weight average molecular weight of 300,000 or less, a weight average molecular weight and a number average molecular weight of 4.0 Mw/Mn or less.
  • the raw material is produced by melt spinning, and the production method is adopted, and the ultra-high viscosity of the melt makes it basically free of fluidity, thereby causing difficulty in spinning, and industrialized production is difficult.
  • the method utilizes a solvent to dissolve the ultrahigh molecular weight polyethylene, so that the flexible polyethylene macromolecular chain is released from excessive entanglement under the dilution of the solvent, and the raw liquid is extruded through the spinning hole and then cooled to produce phase separation, thereby obtaining Folding the chain crystal and the nascent jelly filaments of the molecular network structure, and then desolvating and super-stretching to obtain high-strength polyethylene fibers having a straight chain structure.
  • Dutch patent NL7900990 and U.S. Patent No. 4,344,908 disclose the use of decahydronaphthalene as a solvent to dissolve ultrahigh molecular weight polyethylene to prepare a spinning dope.
  • the raw liquid is sprayed through a spinneret and cooled by air or water to form a nascent jelly filament.
  • Desolventization and ultra-high heat drawing give high-strength polyethylene fibers with straight-chain crystals with a strength of up to 35 g/d.
  • European Patent No. EP0064167, EP0205960, and U.S. Patent No. 4,430,577 disclose the use of kerosene or white oil as a solvent to dissolve ultrahigh molecular weight polyethylene to prepare a spinning dope, followed by freeze spinning, extraction, drying and ultra-hot stretching. High-strength polyethylene fibers having extended chain crystals were also obtained.
  • ultrahigh molecular weight polyethylene fibers are prepared by melt spinning, using a single ultrahigh molecular weight polyethylene raw material, and the meltability of the melt after melting of a single ultrahigh molecular weight polyethylene is poor. It is mainly used to add flow modifiers or thinners, and solve this problem by ultra-high pressure spinning, which makes industrialization more difficult; When the amount of polyethylene is melt-spun, since the entanglement point between the molecular chains in the molten polymer is very large, the degree of crystal orientation is low, and high-strength fibers are not obtained.
  • the object of the present invention is to provide a method for preparing high-strength polyethylene fibers by blending ultrahigh molecular weight polyethylene with low-density polyethylene by a strength of 15 to 50 g/d and a modulus of 400 to 2000 g/d.
  • a high-strength polyethylene fiber of 10 to 50 g/d which is obtained by a melt spinning method, wherein the high-strength polyethylene fiber has a strength of 10 to 50 g/d and a modulus of 400 to 1000 g/d.
  • the strength of the bare polyethylene fiber is 10 ⁇ 20g/d; or
  • the strength of the high-strength polyethylene fiber is 20 ⁇ 30g/d; or
  • the high-strength polyethylene fiber has a strength of 30 to 40 g/d; or
  • the high-strength polyethylene fiber has a strength of 40 to 50 g/d.
  • the strength of the high-strength polyethylene fiber of the invention is 10 ⁇ 30g/d, it is mainly used in the civil field, such as but not limited to: 1) marine engineering such as ropes, cables, sails and fishing gear; 2) sports equipment supplies: such as helmets , skis, sail boards, fishing rods, rackets and bicycles, gliding boards, ultra-lightweight aircraft parts, etc.; 3) as a biomaterial: the fiber reinforced composite material is used in tray materials, medical implants and plastic sutures. It has good biocompatibility and durability, and has stable stability, does not cause allergies, and has been used clinically. Also used in medical gloves and other medical facilities.
  • the fiber and its composite materials can be used as 'pressure-resistant containers, conveyor belts, filter materials, automobile buffer boards, etc.; 1 ⁇ 2 construction can be used as wall, partition structure, etc., which can be used as reinforced cement composite materials. Improve the toughness of cement and improve its impact resistance.
  • the strength of the high-strength polyethylene fiber of the invention is 30 ⁇ 50g/d, it is mainly used in the military field, such as but not limited to: 1) Defense military equipment: protective clothing, helmets, bulletproof materials, helicopters, tanks and ships Armor shields, radar enclosures, missile covers, body armor, stab-resistant garments, shields, etc.; 2) Aerospace applications: wingtip structures for various aircraft, spacecraft structures and buoy aircraft.
  • the method for preparing the high-strength polyethylene fiber of 10 to 50 g/d is characterized in that the polyethylene raw material of the following weight ratio is produced by melt spinning:
  • the weight ratio of low density polyethylene to ultra high molecular weight polyethylene is 2 ⁇ 10: 1;
  • the low density polyethylene has a molecular weight of 2.5 to 500,000;
  • the molecular weight of the ultrafine molecular weight polyethylene is from 120 to 7 million.
  • the method for preparing the 10 ⁇ 50g/d high-strength polyethylene fiber comprises the following steps: 1) mixing raw materials
  • the step 1) is mixed, melted and added to a twin-screw extruder, and the melting temperature is 150 to 300 ° C to obtain a polyethylene melt;
  • the polyethylene melt is sprayed through a spinneret on a spinning box, and the discharge speed is 3 ⁇ 5 m/miri, and the spun spinning is cooled by an air side blowing device, and the cold air temperature is 0 to 35°.
  • the wind speed is 5 ⁇ 8 m / s, made of virgin fiber, and then stretched with a godet, the draw ratio is 2 ⁇ 10 times;
  • the nascent fiber after stretching is fed into two oil baths containing glycerin through a godet.
  • the fibers are stretched in the oil bath.
  • the temperature of the oil bath is 50 ⁇ 150 ⁇ , and the total temperature in the oil bath The multiple is 3 to 20 times;
  • the fiber stretched by the godet roller in the two oil baths is then washed into the water bath tank for washing at a temperature of 60 to 100 ° C, and an isohydric alcohol ether surfactant is added to the water washing liquid;
  • the water-washed fiber is subjected to baking to remove the water contained in the fiber, and is wound into a cylinder to obtain a high-strength polyethylene fiber having a tensile strength of 10 to 50 g/d.
  • the present invention does not require the addition of a flow modifier or diluent to the molten liquid; according to the mixing ratio of the present invention, the ultrahigh molecular weight polyethylene increases the strength of the intermolecular bond points of the low density polyethylene, making the post stretch more Easy to carry out;
  • the product obtained by the invention has a tensile strength of 10 ⁇ 50g/d, a modulus of 400 ⁇ 2000g/d, a pass rate of 98%, and is applied to the civil or military field, and fully meets the requirements for use;
  • the number average molecular weight of ultrahigh molecular weight polyethylene is 6 million, and the number average molecular weight of low density polyethylene is 25,000;
  • blending and melting with a twin-screw extruder mixing a mixture of low-density polyethylene and ultra-high molecular weight polyethylene into a twin-screw extruder to melt and melt at a temperature of 150 to 300 ° C, thereby obtaining a a polyethylene melt suitable for extrusion stretching at a viscosity of 1000 to 3000 Pa.s;
  • the high-strength polyethylene fiber of Example 1 was tested to have a tensile strength of 10 g/d, a modulus of 400 g/d, an elongation at break of 3.5%, and a yield of 99%.
  • the number average molecular weight of ultrahigh molecular weight polyethylene is 5 million, and the number average molecular weight of low density polyethylene is 40,000;
  • blending and melting with a twin-screw extruder mixing a mixture of low-density polyethylene and ultra-high molecular weight polyethylene into a twin-screw extruder to melt and melt at a temperature of 150 to 300 ° C, thereby obtaining a a polyethylene melt suitable for extrusion stretching at a viscosity of 1000 to 3000 Pa.s; 4) Preparation of virgin fiber and stretching: The polyethylene melt is sprayed through the spinneret on the spinning box, the ejection speed is 5m/min, and the spun spinning is cooled by the air side blowing device, and the cold air temperature is formed. For 35 ° C, the wind speed is 8 m / s, then made of virgin fiber, and then stretched with a godet, the draw ratio is 4 times;
  • the high-strength polyethylene fiber of Example 2 was tested to have a tensile strength of 20 g/d, a modulus of 500 g/d, an elongation at break of 2.7%, and a yield of 99%.
  • the number average molecular weight of ultrahigh molecular weight polyethylene is 5 million, and the number average molecular weight of low density polyethylene is 30,000;
  • Blending and melting by using a twin-screw extruder mixing a mixture of low-density polyethylene and ultra-high molecular weight polyethylene into a twin-screw extruder to melt and melt at a temperature of 150-300 ° C, thereby obtaining a kind a viscosity of 1000 ⁇ 3000Pa.S suitable for extrusion-stretched polyethylene melt;
  • the washed fiber removes moisture contained in the fiber by drying, and The product was wound into a cylinder to obtain a high-strength polyethylene fiber having a tensile strength of 30 g/d.
  • the high-strength polyethylene fiber of Example 3 was found to have a tensile strength of 30 g/d, a modulus of 980 g/d, an elongation at break of 2.8%, and a yield of 98%.
  • Raw material selection The number average molecular weight of ultrahigh molecular weight polyethylene is 4 million, and the number average molecular weight of low density polyethylene is 30,000;
  • Blending and melting by using a twin-screw extruder mixing a mixture of low-density polyethylene and ultra-high molecular weight polyethylene into a twin-screw extruder to melt and melt, and the melting degree is 150-300 ⁇ , thereby obtaining a viscosity.
  • a polyethylene melt suitable for stretching
  • the washed fiber removes the water contained in the fiber by drying and is wound into a cylinder, which gives a high-strength polyethylene fiber with a tensile strength of 40 g/d. .
  • the high-strength polyethylene fiber of Example 4 was tested to have a tensile strength of 40 g/d, a modulus of 1500 g/d, an elongation at break of 2.9%, and a pass rate of 98.5%.
  • Raw material selection The number average molecular weight of ultrahigh molecular weight polyethylene is 5 million, and the number average molecular weight of low density polyethylene is 30,000;
  • Blending and melting by using a twin-screw extruder mixing a mixture of low-density polyethylene and ultra-high molecular weight polyethylene into a twin-screw extruder to melt and melt at a temperature of 150-300 ° C, thereby obtaining a kind a polyethylene melt having a viscosity suitable for stretching;
  • Preparation of virgin fiber and stretching The polyethylene melt is sprayed through the spinneret on the spinning box, the spraying speed is 4m/min, and the spun spinning is cooled by the air side blowing device, and the cold air temperature is formed. For 20 ° C, the wind speed is 6 m / s, then the nascent fiber, and then stretched with a godet, the draw ratio is 5 times;
  • the water-washed fibers are dried to remove moisture contained in the fibers, and are wound into a cylinder to obtain a bare polyethylene fiber having a tensile strength of 50 g/d.
  • the bare polyethylene fiber of Example 5 was found to have a tensile strength of 50 g/d, a modulus of 1800 g/d, and an elongation at break of 2.7 °/.
  • the pass rate is 99%.

Description

10〜50g/d高强聚乙烯纤维及其制法
技术领域
本发明属于高分子材料技术领域,具体涉及一种采用熔融纺丝法制得的强度为 10〜50g/d 的高强聚乙烯纤维及其制法。
背景技术
高强聚乙烯纤维, 是采用分子量在 100万以上的超高分子量聚乙烯生产的具有高强度和 模量的合成纤维材料, 在国际上将高强聚乙烯纤维、 芳纶、 碳纤维称之为三大高性能纤维材 料, 其中超高分子量聚乙烯纤维因具有 ^强度、 高模量、 低密度的特点, 所以在现代化战争 与防御装备、 宇航与航空方面发挥了极其重要的作用, 在民用领域也得到了越来越广泛的应 用, 其生产方法主要采用熔融挤出纺丝法和冻胶纺丝一超拉伸法等。
中国专利 CN1539033公开了一种强度为 15cN/dtex以上的高强度聚乙烯纤维, 该纤维是 以重均分子量在 300000以下、重均分子量和数均分子量之比在 4.0Mw/Mn以下的聚乙烯为原 料经熔融纺丝生产的, 采用此种生产方法, 由于熔体的超高粘度使其基本无流动性, 从而导 致紡丝的困难, 实现工业化生产比较困难。
自上世纪 70年代末期, 荷兰 DSM公司利用溶液冻胶纺丝一超拉伸的方法, 实现了超高 分子量聚乙烯的工业化生产。 这种方法是利用一种溶剂溶解超高分子量聚乙烯, 使柔性的聚 乙烯大分子链在溶剂的稀释下解除过度的缠结, 原液经喷丝孔挤出后经冷却产生相分离, 得 到具有折叠链片晶和缚结分子网络结构的初生冻胶丝, 后经脱溶剂以及超倍后拉伸得到具有 伸直链结构的高强聚乙烯纤维。
荷兰专利 NL7900990和美国专利 US4344908,公开了利用十氢奈作为溶剂溶解超高分子 量聚乙烯制备紡丝原液, 原液经喷丝板喷出后经空气或水冷却形成一种初生的冻胶丝, 经脱 溶剂和超倍热拉伸得到具有伸直链结晶的高强聚乙烯纤维, 强度最高可以达到 35g/d以上。
欧洲专利 EP0064167、 EP0205960, 以及美国专利 US430577, 公开了利用煤油或白油为 溶剂溶解超高分子量聚乙烯制备纺丝原液, 后经冻胶纺丝、萃取、干燥和超倍热拉伸等过程, 同样制得了具有伸直链结晶的高强聚乙烯纤维。
现有技术中釆用熔融纺丝法制备超高分子量聚乙烯纤维, 均是使用单一的超高分子量聚 乙烯原料, 单一的超高分子量聚乙烯熔融后熔体的流动性很差, 现有技术中主要采用添加流 动改性剂或者稀释剂, 并通过超高压纺丝解决此问题, 实现工业化比较困难; 而仅利用低分 子量的聚乙烯进行熔融纺丝时, 由于熔融聚合物中分子链间的缠结点非常多, 导致结晶取向 度程度低, 从而得不到高强度的纤维。
经检索, 未发现釆用共混熔融纺丝法制备强度为 10〜50g/d、 模量为 400〜2000g/d高强 聚乙烯纤维的公开文献。
发明内容
-本发明的目的在于提供一种强度为 15〜50g/d、模量为 400〜2000g/d、采用超高分子量聚 乙烯与低密度聚乙烯共混熔融制备高强聚乙烯纤维的方法。
本发明采用如下技术方案:
一种 lO〜50g/d高强聚乙烯纤维, '其特征是, 采用熔融纺丝法制得, 所述高强聚乙烯纤 维强度为 10〜50g/d、 模量为 400〜1000g/d。
所述髙强聚乙烯纤维强度为 10〜20g/d; 或
所述高强聚乙烯纤维强度为 20〜30g/d; 或
所述高强聚乙烯纤维强度为 30〜40g/d; 或
所述高强聚乙烯纤维强度为 40〜50g/d。
本发明的高强聚乙烯纤维强度为 10〜30g/d时,主要应用于民用领域,例如但不限于: 1 ) 绳索、缆绳、船帆和渔具等海洋工程; 2)体育器材用品: 如安全帽、滑雪板、帆轮板、钓竿、 球拍及自行车、滑翔板、 超轻量飞机零部件等; 3 )用作生物材料: 该纤维增强复合材料用于 牙托材料、 医用移植物和整形缝合等方面, 它的生物相容性和耐久性都较好, 并具有髙的稳 定性, 不会引起过敏, 已作临床应用。 还用于医用手套和其他医疗设施等方面。 4)工业上, 该纤维及其复合材料可用'作耐压容器、 传送带、 过滤材料、 汽车缓冲板等; ½筑方面可以用 作墙体、 隔板结构等, 用它作增强水泥复合材料可以改善水泥的韧度, 提高其抗冲击性能。
本发明的高强聚乙烯纤维强度为 30〜50g/d时, 主要用于军事领域, 例如但不限于: 1 ) 国防军需装备方面: 防护衣料、 头盔、 防弹材料、 直升飞机, 坦克和舰船的装甲防护板、 雷 达的防护外壳罩、 导弹罩、 防弹衣、 防刺衣、 盾牌等; 2) 航空航天方面的应用: 各种飞机 的翼尖结构、 飞船结构和浮标飞机等。
所述 10〜50g/d高强聚乙烯纤维的制法, 其特征是, 由下列重量比的聚乙烯原料经熔融 纺丝法制成:
低密度聚乙烯与超高分子量聚乙烯重量比为 2〜10: 1;
所述低密度聚乙烯分子量为 2.5〜50万; 所述超髙分子量聚乙烯的分子量为 120〜700万。
, 所述的 10〜50g/d高强聚乙烯纤维的制法, 具体包括如下步骤- 1 ) 原料混合
将低密度聚乙烯与超高分子量聚乙烯的按照重量比 2〜10: 1混合均匀;
2) 共混熔融
将步骤 1 ) 混合料, 加入双螺杆挤出机内共混熔融, 熔融温度为 150〜300°C, 制得聚乙 烯熔体;
3 ) 制备初生纤维并拉伸
所述聚乙烯熔体经紡丝箱上的喷丝板喷出, 喷出速度为 3〜5m/miri, 再经空气侧吹风装 置对喷出的紡丝冷却成型, 冷风温度为 0〜35°C, 风速为 5〜8米 /秒, 制成初生纤维, 再用导 丝辊拉伸, 拉伸倍数为 2〜10倍;
4) 进入两个油浴槽内进行拉伸
拉伸后的初生纤维, 先后经导丝辊送入盛有甘油的两个油浴槽内, 在油浴槽中纤维被均 勾的拉伸, 油浴温度为 50〜150Ό, 油浴中的总牵伸倍数为 3〜20倍;
5 ) 进入水洗浴槽, 去除纤维表面的油剂
经两个油浴槽内的导丝辊拉伸后的纤维,再进入水洗浴槽内进行水洗,水洗温度为 60〜 100°C, 水洗液中添加有异构醇醚类表面活性剂;
6) 干燥并制成高强聚乙烯纤维
经水洗后的纤维通过烘^ ^余去纤维中含有的水份, 并卷绕成筒, 即得到拉伸强度为 10〜 50g/d的高强聚乙烯纤维。
本发明具有如下的有益效果:
1 ) 本发明不需要在熔融液体中加入流动改性剂或稀释剂; 按照本发明的混合比例, 超 高分子量聚乙烯增加了低密度聚乙烯分子间缚结点的强度, 使后拉伸更容易进行;
2) 通过本发明制得的产品拉伸强度为 10〜50g/d, 模量为 400〜2000g/d, 合格率髙于 98%, 应用于民用或军事领域, 完全符合使用要求;
3 ) 本发明制得的强度在 30g/d以下的纤维填补了国内市场的空白;
4) 与目前的高强聚乙烯纤维的制备方法相比, 具有生产流程短、 设备相对简单、 原料 消耗少(溶剂)、 不需要超高压能耗低、 生产成本低, 并且单线产能易于提高, 可以实现大规 模工业化生产。
具体实施方式
实施例 1
1 )原料的选择: 超高分子量聚乙烯的数均相对分子量为 600万, 低密度聚乙烯的数均分 子量为 2.5万;
2) 原料混合: 低密度聚乙烯与超高分子量聚乙烯按照重量比为 10: 1混合, 搅拌均勾;
3 ) 釆用双螺杆挤出机共混熔融: 将低密度聚乙烯与超高分子量聚乙烯的混合物, 加入 双螺杆挤出机内共混熔融, 熔融温度为 150〜300°C, 从而获得一种粘度在 1000~3000Pa.S适 合挤出拉伸的聚乙烯熔体;
4) 制备初生纤维并拉伸: 聚乙烯熔体经纺丝箱上的喷丝板喷出, 喷出速度为 3m/min, 再经空气侧吹风装置对喷出的纺丝冷却成型, 冷风温度为 20Ό , 风速为 5米 /秒, 则制成初 生纤维, 再用导丝辊拉伸, 拉伸倍数为 2倍;
5 ) 进入两个油浴槽内进行拉伸: 纺丝成型的初生纤维, 先后经导丝辊送入盛有甘油的 两个油浴槽内, 在油浴槽中纤维被均匀的拉伸, 第一油浴槽内的温度为 115°C, 其导丝辊的 牵伸倍数为 4倍, 第二油浴槽内的温度为 130°C, 其导丝辊的牵伸倍数为 2倍; 在两个油浴 槽中的总拉伸倍数为 8倍;
6) 进入水洗浴槽, 去除纤维表面的油剂: 经两个油浴槽内的导丝辊拉伸后的纤维,再进 入水洗浴槽内进行水洗, 水洗浴槽内盛有含油异构醇醚表面活性剂的水, 水浴温度为 80°C, 在该水洗浴槽中拉伸纤维表面的油剂被去除;
7)干燥并制成高强聚乙烯纤维: 经水洗后的纤维通过烘干除去纤维中含有的水份, 并卷 绕成筒, 即得到拉伸强度为 15g/d的高强聚乙烯纤维。
实施例 1的高强聚乙烯纤维, 经检测, 其拉伸强度为 10g/d, 模量为 400g/d, 断裂伸长率 为 3.5%, 合格率为 99%。
实施例 2
1 )原料的选择: 超高分子量聚乙烯的数均相对分子量为 500万, 低密度聚乙烯的数均分 子量为 4万;
2) 原料混合:低密度聚乙烯与超高分子量聚乙烯的按照重量比为 8: 1混合,搅拌均匀;
3 ) 釆用双螺杆挤出机共混熔融: 将低密度聚乙烯与超高分子量聚乙烯的混合物, 加入 双螺杆挤出机内共混熔融,熔融温度为 150〜300°C,从而获得一种粘度在 1000〜3000Pa.S适 合挤出拉伸的聚乙烯熔体; 4) 制备初生纤维并拉伸: 聚乙烯熔体经紡丝箱上的喷丝板喷出, 喷出速度为 5m/min, 再经空气侧吹风装置对喷出的纺丝冷却成型, 冷风温度为 35°C, 风速为 8米 /秒, 则制成初 生纤维, 再用导丝辊拉伸, 拉伸倍数为 4倍;
5) 进入两个油浴槽内进行拉伸: 纺丝成型的初生纤维, 先后经导丝辊送入盛有甘油的 两个油浴槽内, 在油浴槽中纤维被均匀的拉伸, 第一油浴槽内的温度为 120°C, 其导丝辊的 牵伸倍数为 3倍, 第二油浴槽内的温度为 130°C, 其导丝辊的牵伸倍数为 3倍;
6) 进入水洗浴槽, 去除纤维表面的油剂: 经两个油浴槽内的导丝辊拉伸后的纤维, 再进 入水洗浴槽内进行水洗, 水洗浴槽内盛有含油异构醇醚表面活性剂的水, 水浴温度为 95°C , 该水洗浴槽中拉伸纤维表面的油剂被去除;
7)干燥并制成高强聚乙烯纤维: 经水洗后的纤维通过烘干除去纤维中含有的水份, 并卷 绕成筒, 即得到拉伸强度为 20g/d的高强聚乙烯纤维。
实施例 2的高强聚乙烯纤维, 经检测, 其拉伸强度为 20g/d, 模量为 500g/d, 断裂伸长率 为 2.7%, 合格率为 99%。
实施例 3
1 ) 原料的选择: 超高分子量聚乙烯的数均相对分子量为 500万, 低密度聚乙烯的数均 分子量为 3万;
2)原料混合: 低密度聚乙烯与超高分子量聚乙烯的按照重量比为 5: 1混合, 搅拌均匀;
3 ) 采用双螺杆挤出机共混熔融: 将低密度聚乙烯与超高分子量聚乙烯的混合物, 加入 双螺杆挤出机内共混熔融,熔融温度为 150— 300°C,从而获得一种粘度在 1000〜3000Pa.S适 合挤出拉伸的聚乙烯熔体;
4) 制备初生纤维并拉伸:该聚乙烯熔体经纺丝箱上的喷丝板喷出,喷出速度为 4m7miri, 再经空气侧吹风装置对喷出的紡丝冷却成型, 冷风温度为 25Ό, 风速为 6米 /秒, 则制成初生 纤维, 再用导丝辊拉伸, 拉伸倍数为 5倍;
5 ) 进入两个油浴槽内进行拉伸: 纺丝成型的初生纤维, 先后经导丝辊送入盛有甘油的 两个油浴槽内, 在油浴槽中纤维被均匀的拉伸, 第一袖浴槽内的温度为 100°C, 其导丝辊的 牵伸倍数为 3.5倍, 第二油浴槽内的温度为 130°C, 其导丝辊的牵伸倍数为 4倍;
6) 进入水洗浴槽, 去除纤维表面的油剂: 经两个油浴槽内的导丝辊拉伸后的纤维, 再 进入水洗浴槽内进行水洗,水洗浴槽内盛有含油异构醇醚表面活性剂的水,水浴温度为 90°C, 在该水洗浴槽中拉伸纤维表面的油剂被去除;
7) 干燥并制成高强聚乙烯纤维: 经水洗后的纤维通过烘干除去纤维中含有的水份, 并 卷绕成筒, 即得到拉伸强度为 30g/d的高强聚乙烯纤维。
实施例 3的高强聚乙烯纤维, 经检测, 其拉伸强度为 30g/d, 模量为 980g/d, 断裂伸长率 为 2.8%, 合格率为 98%。
实施例 4
1 )原料选择: 超高分子量聚乙烯的数均相对分子量为 400万, 低密度聚乙烯的数均分子 量为 3万;
2) 原料混合: 低密度聚乙烯与超高分子量聚乙烯按照重量比 4: 1混合, 搅拌均匀;
3 ) 采用双螺杆挤出机共混熔融: 将低密度聚乙烯与超高分子量聚乙烯的混合物, 加入 双螺杆挤出机内共混熔融, 熔融溘度为 150— 300Ό , 从而获得一种粘度适合拉伸的聚乙烯熔 体;
4)制备初生纤维并拉伸: 该聚乙烯熔体经纺丝箱上的喷丝板喷出, 喷出速度为 4m/min, 再经空气侧吹风装置对喷出的纺丝冷却成型, 冷风温度为 25°C, 风速为 6米 /秒, 则制成初生 纤维, 再用导丝辊拉伸, 拉伸倍数为 5倍;
5)进入两个油浴槽内进行拉伸: 纺丝成型的初生纤维, 先后经导丝辊送入盛有甘油的两 个油浴槽内, 在油浴槽中纤维被均匀的拉伸, 第一油浴槽内的温度为 115°C, 其导丝辊的牵 伸倍数为 4倍, 第二油浴槽内的温度为 13(TC, 其导丝辊的牵伸倍数为 4倍;
6)进入水洗浴槽, 去除纤维表面的油剂: 经两个油浴槽内的导丝辊拉伸后的纤维, 再进 入水洗浴槽内进行水洗, 水洗浴槽内盛有含油异构醇醚表面活性剂的水, 水浴温度为 90°C, 在该水洗浴槽中拉伸纤维表面的油剂被去除;
' 7)干燥并制成髙强聚乙烯纤维: 经水洗后的纤维通过烘干除去纤维中含有的水份, 并卷 绕成筒, '即得到拉伸强度为 40g/d的高强聚乙烯纤维。
实施例 4的高强聚乙烯纤维, 经检测, 其拉伸强度为 40g/d, 模量为 1500g/d, 断裂伸长 率为 2.9%, 合格率为 98.5%。
实施例 5
1 ) 原料选择: 超高分子量聚乙烯的数均相对分子量为 500万, 低密度聚乙烯的数均分 子量为 3万;
2) 原料混合:低密度聚乙烯与超高分子量聚乙烯按照重量比 3.5: 1的混合,搅拌均匀;
3 ) 采用双螺杆挤出机共混熔融: 将低密度聚乙烯与超高分子量聚乙烯的混合物, 加入 双螺杆挤出机内共混熔融, 熔融温度为 150— 300°C, 从而获得一种粘度适合拉伸的聚乙烯熔 体; 4) 制备初生纤维并拉伸: 聚乙烯熔体经纺丝箱上的喷丝板喷出, 喷出速度为 4m/min, 再经空气侧吹风装置对喷出的纺丝冷却成型, 冷风温度为 20°C, 风速为 6米 /秒, 则制成初生 纤维, 再用导丝辊拉伸, 拉伸倍数为 5倍;
5 ) 进入两个油浴槽内进行拉伸: 纺丝成型的初生纤维, 先后经导丝辊送入盛有甘油的 两个油浴槽内, 在油浴槽中纤维被均勾的拉伸, 第一油浴槽内的温度为 115 °C, 其导丝辊的 牵伸倍数为 4倍, 第二油浴槽内的温度为 130°C, 其导丝辊的牵伸倍数为 5倍;
6 )进入水洗浴槽, 去除纤维表面的油剂: 经两个油浴槽内的导丝辊拉伸后的纤维, 再进 入水洗浴槽内进行水洗, 水洗浴槽内盛有含油异构醇醚表面活性剂的水, 水浴温度为 90°C, 在该水洗浴槽中拉伸纤维表面的油剂被去除; ·
7) 干燥并制成高强聚乙烯纤维: 经水洗后的纤维通过烘干除去纤维中含有的水份, 并 卷绕成筒, 即得到拉伸强度为 50g/d的髙强聚乙烯纤维。
实施例 5的髙强聚乙烯纤维, 经检测, 其拉伸强度为 50g/d, 模量为 1800g/d, 断裂伸长 率为 2.7°/。, 合格率为 99%。
本发明上述实施例是对本发明的说明而不能限制本发明, 在与本发明权利要求书相当的 含义和范围内的任何改变和组合, 都应认为是在权利要求书的范围内。

Claims

WO 2009/105926 权 禾 ¾ 求 书 PCT/CN2008/001311
1. 一种 10〜50g/d高强聚乙烯纤维, 其特征是, 采用共混熔融纺丝法制得, 所述高强聚 乙烯纤维强度为 10〜50g/d、 模量为 400〜2000g/d。
2.根据权利要求 1所述的 10〜50g/d高强聚乙烯纤维, 其特征是, 所述高强聚乙烯纤维 强度为 10〜20g/d。
3.根据权利要求 1所述的 10〜50g/d高强聚乙烯纤维, 其特征是, 所述高强聚乙烯纤维 强度为 20〜30g/d。
4. 根据权利要求 1所述的 10〜50g/d高强聚乙烯纤维, 其特征是, 所述髙强聚乙烯纤维 强度为 30〜40g/d。
5.根据权利要求 1所述的 10〜50g/d高强聚乙烯纤维, 其特征是, 所述高强聚乙烯纤维 强度为 40〜50g/d。
6. 权利要求 1所述 10〜50g/d高强聚乙烯纤维的制法, 其特征是, 由下列重量比的聚乙 烯原料经熔融纺丝法制成:
低密度聚乙烯与超高分子量聚乙烯重量比为 2〜10: 1;
所述低密度聚乙烯分子量为 2.5〜20万;
所述超高分子量聚乙烯的分子量为 120〜700万。
7. 根据权利要求 6所述的 10〜50g/d高强聚乙烯纤维的制法,其特征是,包括如下步骤:
1 ) 原料混合
将低密度聚乙烯与超高分子量聚乙烯的按照重量比 2〜10: 1混合均匀;
2) 共混熔融
将步骤 1 ) 混合料, 加入双螺杆挤出机内共混熔融, 熔融温度为 150〜300°C, '制得聚乙 烯熔体;
3 ) 制备初生纤维并拉伸
所述聚乙烯熔体经纺丝箱上的喷丝板喷出, 喷出速度为 3〜5m/min, 再经空气侧吹风装 置对喷出的纺丝冷却成型, 冷风温度为 0〜35°C, 风速为 5〜8米 /秒, 制成初生纤维, 再用导 丝辊拉伸, 拉伸倍数为 2〜10倍;
4) 进入两个油浴槽内进行拉伸
拉伸后的初生纤维, 先后经导丝辊送入盛有甘油的两个油浴槽内, 在油浴槽中纤维被均 匀的拉伸, 油浴温度为 50〜150°C, 油浴中的总牵伸倍数为 3〜20倍; 5 ) 进入水洗浴槽, 去除纤维表面的油剂
经两个油浴槽内的导丝辊拉伸后的纤维,再进入水洗浴槽内进行水洗,水洗温度为 60〜 100°C , 水洗液中添加有表面活性剂, 所述表面活性剂是十二烷基苯磺酸钠、甘胆酸钠、十二 浣基硫酸钠、 三乙醇胺皂、 异构醇醚类表面活性剂中的一种;
6) 干燥并制成高强聚乙烯纤维
经水洗后的纤维通过干燥除去纤维中含有的水份, 并卷绕成筒, 即得到拉伸强度为 10〜 50g/d的高强聚乙烯纤维。
8. 权利要求 2或 3所述的 10〜5Qg/d高强聚乙烯纤维在民用技术领域内的应用, 其特征 是, 所述民用技术领域包括海洋工程、 体育器材用品、 生物材料、 医疗器械材料、 工业用材 料、 建筑用材料。
9.权利要求 4或 5所述的 10〜50g/d高强聚乙烯纤维在军事技术领域内的应用, 其特征 是, 所述军事技术领域包括防护装备、 航空航天材料。
PCT/CN2008/001311 2008-02-26 2008-07-14 10~50g/d高强聚乙烯纤维及其制法 WO2009105926A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2008351679A AU2008351679B2 (en) 2008-02-26 2008-07-14 10-50 g/d high strength polyethylene fiber and preparation method thereof
US12/600,252 US8188206B2 (en) 2008-02-26 2008-07-14 10-50 G/D high strength polyethylene fiber and preparation method thereof
JP2010547025A JP5244922B2 (ja) 2008-02-26 2008-07-14 強度が10−50g/dの高強度ポリエチレン繊維およびその製造方法
EP08783516.1A EP2151511B1 (en) 2008-02-26 2008-07-14 High strength polyethylene fiber and preparation method thereof
US13/458,265 US20120214946A1 (en) 2008-02-26 2012-04-27 10-50 g/d high strength polyethylene fiber and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810014185.6 2008-02-26
CN2008100141856A CN101230501B (zh) 2008-02-26 2008-02-26 一种采用超高分子量聚乙烯与低密度聚乙烯共混熔融制备高强聚乙烯纤维的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/458,265 Division US20120214946A1 (en) 2008-02-26 2012-04-27 10-50 g/d high strength polyethylene fiber and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2009105926A1 true WO2009105926A1 (zh) 2009-09-03

Family

ID=39897301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/001311 WO2009105926A1 (zh) 2008-02-26 2008-07-14 10~50g/d高强聚乙烯纤维及其制法

Country Status (6)

Country Link
US (2) US8188206B2 (zh)
EP (1) EP2151511B1 (zh)
JP (1) JP5244922B2 (zh)
CN (1) CN101230501B (zh)
AU (1) AU2008351679B2 (zh)
WO (1) WO2009105926A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104846451A (zh) * 2015-06-09 2015-08-19 淄博美标高分子纤维有限公司 一种直接制备超高分子量聚乙烯纤维的方法
TWI819389B (zh) * 2020-10-08 2023-10-21 南韓商可隆股份有限公司 具有改善收縮率的高強度聚乙烯紗線以及其製造方法

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7935283B2 (en) 2009-01-09 2011-05-03 Honeywell International Inc. Melt spinning blends of UHMWPE and HDPE and fibers made therefrom
CN102002769B (zh) * 2010-11-08 2012-12-12 宁波大成新材料股份有限公司 超高分子量聚乙烯纤维制备方法
KR101100824B1 (ko) * 2010-11-25 2012-01-02 송종복 고강도 단섬유의 제조방법
US9023450B2 (en) 2011-09-06 2015-05-05 Honeywell International Inc. High lap shear strength, low back face signature UD composite and the process of making
US9023451B2 (en) 2011-09-06 2015-05-05 Honeywell International Inc. Rigid structure UHMWPE UD and composite and the process of making
US9023452B2 (en) 2011-09-06 2015-05-05 Honeywell International Inc. Rigid structural and low back face signature ballistic UD/articles and method of making
KR101346316B1 (ko) 2011-09-19 2014-01-06 송종복 멀티 필라멘트사를 이용한 고강도 단섬유의 제조방법 및 그 단섬유
CN102433597B (zh) 2011-10-11 2014-09-17 北京同益中特种纤维技术开发有限公司 凝胶化预取向丝及其制备方法和超高分子量聚乙烯纤维及其制备方法
US9169581B2 (en) 2012-02-24 2015-10-27 Honeywell International Inc. High tenacity high modulus UHMW PE fiber and the process of making
US10132006B2 (en) * 2012-07-27 2018-11-20 Honeywell International Inc. UHMWPE fiber and method to produce
US10132010B2 (en) * 2012-07-27 2018-11-20 Honeywell International Inc. UHMW PE fiber and method to produce
CN103031615B (zh) * 2012-12-27 2014-12-03 中国纺织科学研究院 一种高强聚乙烯单丝及其制备方法
CN103155890B (zh) * 2013-03-19 2014-10-01 中国水产科学研究院东海水产研究所 一种聚烯烃耐磨节能网的制备方法
CN103757731B (zh) * 2013-12-11 2016-03-02 巢湖亚塑网具制造有限公司 一种耐酸碱渔网
CN103882554B (zh) * 2014-03-20 2016-07-06 剑乔科技江苏有限公司 一种超高分子量聚乙烯卷曲短纤维的制备方法
CN103866416B (zh) * 2014-03-20 2016-02-10 剑乔科技江苏有限公司 一种超高分子量聚乙烯有色纤维的制备方法
CN104109911B (zh) * 2014-07-02 2016-04-06 陕西省石油化工研究设计院 马来酰亚胺改性酚醛纤维的制备方法
CN104294401A (zh) * 2014-09-30 2015-01-21 中国石油化工股份有限公司 一种改性聚乙烯-超高分子量聚乙烯复合纤维的制备方法
US9909240B2 (en) * 2014-11-04 2018-03-06 Honeywell International Inc. UHMWPE fiber and method to produce
CN106381553A (zh) * 2015-04-24 2017-02-08 浙江美丝邦化纤有限公司 功能性锦纶6纤维的生产方法
CN106012045A (zh) * 2016-08-11 2016-10-12 潘忠宁 一种聚偏氟乙烯融纺纤维的制备方法
CN107034539A (zh) * 2017-05-27 2017-08-11 巢湖市天宇渔具有限公司 一种耐老化性渔用hspe的加工方法
CN107287672A (zh) * 2017-07-17 2017-10-24 巢湖市渔郎渔具有限公司 一种耐腐环保渔网线的制备方法
CN107237000A (zh) * 2017-07-17 2017-10-10 巢湖市渔郎渔具有限公司 一种高强度渔网线的加工工艺
DE102017129897A1 (de) * 2017-12-14 2019-06-19 Kiekert Ag Stellantrieb für kraftfahrzeugtechnische Anwendungen
CN108410063B (zh) * 2018-03-28 2020-11-13 连云港益众再生资源有限公司 一种汽车用改性pp再生材料及其制备方法
CN109208107A (zh) * 2018-09-06 2019-01-15 山东莱威新材料有限公司 一种超高分子量聚乙烯切膜纤维及其制备方法
CN110318116A (zh) * 2019-05-29 2019-10-11 长青藤高性能纤维材料有限公司 一种特高强超高分子量聚乙烯纤维的制备方法
CN111206296A (zh) * 2020-03-17 2020-05-29 东方交联电力电缆有限公司 超高分子量聚乙烯和全同立构聚丙烯共混物超抗拉强度纤维的制备方法
CN113652762A (zh) * 2021-08-30 2021-11-16 巢湖市翔宇渔具有限公司 一种防水生植物附着沉积渔网线的加工方法
CN115110163A (zh) * 2022-06-23 2022-09-27 东华大学 一种中分子量中强聚乙烯纤维的熔融纺丝制备方法、聚乙烯纤维、织成品及应用
CN114990721B (zh) * 2022-06-30 2023-07-21 中原工学院 一种高强度光热聚丙烯纤维及其制备方法和应用
CN115449909A (zh) * 2022-08-31 2022-12-09 浙江古纤道绿色纤维有限公司 一种再生功能性涤纶工业丝生产工艺

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7900990A (nl) 1979-02-08 1980-08-12 Stamicarbon Filamenten met grote treksterkte en modulus.
US4228118A (en) * 1977-11-03 1980-10-14 Monsanto Company Process for producing high tenacity polyethylene fibers
US4305770A (en) 1979-04-26 1981-12-15 Sea-Log Corporation Fabrication of fiber reinforced resin structures
US4344908A (en) 1979-02-08 1982-08-17 Stamicarbon, B.V. Process for making polymer filaments which have a high tensile strength and a high modulus
EP0064167A1 (en) 1981-04-30 1982-11-10 Allied Corporation Process for producing high tenacity, high modulus crystalline thermoplastic article and novel product fibers
EP0205960A2 (en) 1985-06-17 1986-12-30 AlliedSignal Inc. Very low creep, ultra high moduls, low shrink, high tenacity polyolefin fiber having good strength retention at high temperatures and method to produce such fiber
CN1439752A (zh) * 1998-06-04 2003-09-03 Dsm有限公司 高强度聚乙烯纤维制造方法
CN1448546A (zh) * 2002-04-01 2003-10-15 阎镇达 超高强度、超高模量聚乙烯纤维的纺制方法
CN1539033A (zh) 2001-08-08 2004-10-20 �����֯��ʽ���� 高强度聚乙烯纤维
CN1626705A (zh) * 2003-12-10 2005-06-15 林祥 Pe低成本高强度纤维及工业化生产工艺
CN1995496A (zh) * 2006-12-22 2007-07-11 中纺投资发展股份有限公司 超高分子量聚乙烯冻胶法连续直纺细旦丝生产方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841309B2 (ja) * 1974-11-27 1983-09-10 古河電気工業株式会社 ポリエチレンソセイブツ
US4455273A (en) * 1982-09-30 1984-06-19 Allied Corporation Producing modified high performance polyolefin fiber
DE3363610D1 (en) * 1982-12-28 1986-06-26 Mitsui Petrochemical Ind Process for producing stretched articles of ultrahigh-molecular-weight polyethylene
JP4337233B2 (ja) * 2000-05-02 2009-09-30 東洋紡績株式会社 高強度ポリエチレン繊維およびその製造方法
JP3389927B2 (ja) * 2000-05-29 2003-03-24 チッソ株式会社 ポリエチレン系複合繊維およびこれを用いた不織布

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4228118A (en) * 1977-11-03 1980-10-14 Monsanto Company Process for producing high tenacity polyethylene fibers
NL7900990A (nl) 1979-02-08 1980-08-12 Stamicarbon Filamenten met grote treksterkte en modulus.
US4344908A (en) 1979-02-08 1982-08-17 Stamicarbon, B.V. Process for making polymer filaments which have a high tensile strength and a high modulus
US4305770A (en) 1979-04-26 1981-12-15 Sea-Log Corporation Fabrication of fiber reinforced resin structures
EP0064167A1 (en) 1981-04-30 1982-11-10 Allied Corporation Process for producing high tenacity, high modulus crystalline thermoplastic article and novel product fibers
EP0205960A2 (en) 1985-06-17 1986-12-30 AlliedSignal Inc. Very low creep, ultra high moduls, low shrink, high tenacity polyolefin fiber having good strength retention at high temperatures and method to produce such fiber
CN1439752A (zh) * 1998-06-04 2003-09-03 Dsm有限公司 高强度聚乙烯纤维制造方法
CN1539033A (zh) 2001-08-08 2004-10-20 �����֯��ʽ���� 高强度聚乙烯纤维
CN1448546A (zh) * 2002-04-01 2003-10-15 阎镇达 超高强度、超高模量聚乙烯纤维的纺制方法
CN1626705A (zh) * 2003-12-10 2005-06-15 林祥 Pe低成本高强度纤维及工业化生产工艺
CN1995496A (zh) * 2006-12-22 2007-07-11 中纺投资发展股份有限公司 超高分子量聚乙烯冻胶法连续直纺细旦丝生产方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2151511A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104846451A (zh) * 2015-06-09 2015-08-19 淄博美标高分子纤维有限公司 一种直接制备超高分子量聚乙烯纤维的方法
CN104846451B (zh) * 2015-06-09 2019-03-22 淄博美标高分子纤维有限公司 一种直接制备超高分子量聚乙烯纤维的方法
TWI819389B (zh) * 2020-10-08 2023-10-21 南韓商可隆股份有限公司 具有改善收縮率的高強度聚乙烯紗線以及其製造方法

Also Published As

Publication number Publication date
US8188206B2 (en) 2012-05-29
EP2151511A1 (en) 2010-02-10
CN101230501B (zh) 2010-06-02
US20120214946A1 (en) 2012-08-23
AU2008351679A1 (en) 2009-09-03
US20100204427A1 (en) 2010-08-12
AU2008351679B2 (en) 2013-06-27
JP5244922B2 (ja) 2013-07-24
EP2151511B1 (en) 2015-02-18
JP2011513598A (ja) 2011-04-28
CN101230501A (zh) 2008-07-30
EP2151511A4 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
WO2009105926A1 (zh) 10~50g/d高强聚乙烯纤维及其制法
JP5244921B2 (ja) 1種の色彩を有する高強度ポリエチレン繊維および製法と応用
WO2012062053A1 (zh) 超高分子量聚乙烯纤维制备方法
WO2012117596A1 (ja) 高機能ポリエチレン繊維、及び染色高機能ポリエチレン繊維
CN106350882A (zh) 一种耐切割的超高分子量聚乙烯纤维、制备方法及其应用
CN102505158A (zh) 一种超高分子量聚乙烯纤维的高浓度制备方法
CN109385689A (zh) 一种共混超高分子量聚乙烯的纺丝方法
CN110093678A (zh) 超高分子量聚乙烯干法纺丝中熔体冻胶及固液分离的方法
CN109233062A (zh) 一种制备中强纤维的复合材料及其快速成型方法和应用
CN101718003B (zh) 超高分子量聚乙烯有色细旦纤维的生产方法
TW201608069A (zh) 高機能複絲
CN108277546A (zh) 一种防切割聚乙烯纤维的制备方法
CN103469343A (zh) 一种改善芳纶纤维中微纤之间相互作用力的方法
CN108004605A (zh) 一种中强多孔超高分子量聚乙烯纤维及制备方法
CN102702730A (zh) 一种纤维/长碳链尼龙原位复合材料及制备方法
CN110079872A (zh) 一种宽幅高强高模聚乙烯纤维的制备方法
CN113502555A (zh) 一种强力大于39cN/dtex超高分子量聚乙烯纤维的制备方法
CN108048946A (zh) 一种亲水阻燃聚酯纤维材料及其制备方法
CN104846451B (zh) 一种直接制备超高分子量聚乙烯纤维的方法
JP4952868B1 (ja) 高機能ポリエチレン繊維、及び染色高機能ポリエチレン繊維
CN108842196A (zh) 一种pbt/pp三维卷曲单孔纤维的制备方法
CN110144635A (zh) 用四氯乙烯萃取制备超高分子量聚乙烯纤维的方法及其产品
CN103910978B (zh) 一种可降解复合材料预浸带及其制备方法和用途
CN110820058B (zh) 一种民用高性能聚乙烯纤维的制备方法
CN115110163A (zh) 一种中分子量中强聚乙烯纤维的熔融纺丝制备方法、聚乙烯纤维、织成品及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08783516

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010547025

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2008783516

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12600252

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008351679

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2008351679

Country of ref document: AU

Date of ref document: 20080714

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12/MUMNP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE