WO2009104235A1 - 金型とその製造方法及びそれを用いて作製した成型品 - Google Patents

金型とその製造方法及びそれを用いて作製した成型品 Download PDF

Info

Publication number
WO2009104235A1
WO2009104235A1 PCT/JP2008/052620 JP2008052620W WO2009104235A1 WO 2009104235 A1 WO2009104235 A1 WO 2009104235A1 JP 2008052620 W JP2008052620 W JP 2008052620W WO 2009104235 A1 WO2009104235 A1 WO 2009104235A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
mold
substance
fluorocarbon
releasable
Prior art date
Application number
PCT/JP2008/052620
Other languages
English (en)
French (fr)
Inventor
小川 一文
Original Assignee
Ogawa Kazufumi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ogawa Kazufumi filed Critical Ogawa Kazufumi
Priority to US12/666,954 priority Critical patent/US8623127B2/en
Priority to PCT/JP2008/052620 priority patent/WO2009104235A1/ja
Publication of WO2009104235A1 publication Critical patent/WO2009104235A1/ja
Priority to US14/092,301 priority patent/US9174366B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/58Applying the releasing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/60Releasing, lubricating or separating agents
    • B29C33/62Releasing, lubricating or separating agents based on polymers or oligomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/60Releasing, lubricating or separating agents
    • B29C33/62Releasing, lubricating or separating agents based on polymers or oligomers
    • B29C33/64Silicone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping

Definitions

  • the present invention relates to a mold having a releasable composite film formed on the surface.
  • the mold here refers to a high-definition mold used for molding optical parts, mechanical parts, recording media, electronic parts, biochemical chips, medical supplies, etc. that cannot use a mold release agent with accuracy.
  • the present invention relates to a releasable mold in which a release agent that is not convenient when a release agent adheres to a product cannot be applied.
  • a chemisorbed liquid consisting of a fluorocarbon group-containing chlorosilane-based adsorbent and a non-aqueous organic solvent can be used for chemical adsorption in the liquid phase to form a monomolecular water-repellent chemisorbed film.
  • a fluorocarbon group-containing chlorosilane-based adsorbent and a non-aqueous organic solvent can be used for chemical adsorption in the liquid phase to form a monomolecular water-repellent chemisorbed film.
  • the principle of production of a chemisorbed monolayer in such a solution is to form a monolayer using a dehydrochlorination reaction between active hydrogen such as hydroxyl groups on the substrate surface and chlorosilyl groups of chlorosilane-based adsorbents. It is in. Japanese Patent Laid-Open No. 05-193056
  • the conventional chemical adsorption film uses only the chemical bond between the adsorbent and the substrate surface, it is poor in wear resistance when used as it is in a mold.
  • a monomolecular film made of only a fluorocarbon-based material is used, there is a problem that the surface energy is too small and the flowability and penetration of the molding material are deteriorated.
  • the present invention provides a mold that does not require a mold release agent and has an appropriate mold release function with controlled surface energy without damaging the processing shape of a high-definition mold and having high molding durability. Objective.
  • the mold of the present invention has a uniform film thickness at a nano level and a water / oil repellency fluorocarbon chemistry with controlled surface energy.
  • the gist is to form an adsorption film on the mold surface as a release film 3.
  • a release film As a result, even a mold having a nanometer-level ultrafine shape is excellent in fluidity and penetration of the molded product, so that high-speed and high-precision molding can be performed.
  • the first invention that is specifically provided is a mold having a highly durable releasable composite film formed on a surface thereof, wherein the coating film is mainly composed of a fluorocarbon group and a hydrocarbon group.
  • a releasable mold characterized in that it is a composite film comprising a long chain substance, a short chain substance mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group, and a substance mainly composed of a siloxane group. .
  • the molecular length of a long-chain substance mainly composed of a fluorocarbon group and a hydrocarbon group is composed mainly of a fluorocarbon group, a hydrocarbon group and a silyl group.
  • the long chain substance mainly composed of a fluorocarbon group and a hydrocarbon group has a side chain containing the fluorocarbon group and the hydrocarbon group.
  • a releasable mold characterized by the following.
  • a short-chain material mainly composed of a fluorocarbon group and a hydrocarbon group a short chain composed mainly of a fluorocarbon group, a hydrocarbon group, and a silyl group.
  • a releasable mold characterized in that a chain substance is bonded and fixed to the silica film and / or the mold surface via the silyl group in a silica film made of a substance mainly composed of a siloxane group. is there.
  • a long chain substance mainly composed of a fluorocarbon group and a hydrocarbon group a short chain composed mainly of a fluorocarbon group, a hydrocarbon group, and a silyl group.
  • a long-chain material mainly containing a fluorocarbon group and a hydrocarbon group, a fluorocarbon group, and a hydrocarbon group contained in the releasable composite film.
  • Releasability characterized in that the molecular composition ratio of the short chain substance mainly composed of silyl group and the substance mainly composed of siloxane group is 1:10:10 to 1: 0.1: 0.1 It is a mold.
  • a seventh invention is the mold according to any one of the first to sixth inventions, wherein a mold-release composite film is formed on the surface, and the coating film contains at least a fluorocarbon group and a hydrocarbon group as main components.
  • a releasable mold comprising a long-chain material that has a critical surface energy of 5 to 20 mN / m.
  • the long chain substance mainly composed of a fluorocarbon group and a hydrocarbon group is composed mainly of an organic fluorine-containing ether group or an organic fluorine-containing polyether group.
  • the organic fluorine-containing ether group or the organic fluorine-containing polyether group is a functional group represented by the following formula (Chemical Formula 1 or Chemical Formula 2): It is a releasable mold.
  • a tenth aspect of the invention is a releasable mold according to any one of the first to ninth aspects, wherein the releasable composite film is formed through a silica film.
  • the eleventh invention is a mold release mold according to any of the first to tenth inventions, wherein the composite film further contains a methylsilyl group.
  • a long-chain substance (1) having at least a fluorocarbon group and a hydrocarbon group as main components and an alkoxysilyl group, and a short chain having a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group as main components.
  • Form a releasable composite film by bringing the mold surface into contact with a composite film forming solution obtained by diluting a chain substance (2), a substance (3) mainly composed of alkoxysilyl groups, and a silanol condensation catalyst with an organic solvent. It is a manufacturing method of the mold release mold
  • a long chain substance (1) having at least a fluorocarbon group and a hydrocarbon group as main components and an alkoxysilyl group, and a short chain having a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group as main components.
  • a fourteenth invention is the twelfth and thirteenth invention according to the twelfth and thirteenth inventions, a long-chain substance (1) comprising a fluorocarbon group and a hydrocarbon group as main components and an alkoxysilyl group, a fluorocarbon group and a hydrocarbon group, and
  • the molecular mixing ratio of the short-chain substance (2) having an alkoxysilyl group as a main component and the substance (3) having an alkoxysilyl group as a main component is 1:10:10 to 1: 0.1: 0.1 It is a manufacturing method of the mold release mold
  • the organic fluorine-containing ether group or the organic group-containing substance is used as the long chain substance (1) comprising at least a fluorocarbon group and a hydrocarbon group as main components and an alkoxysilyl group.
  • a long-chain substance containing a fluorine polyether group and an alkoxysilyl group is used.
  • a substance represented by the following formula (Chemical Formula 3 or 4) is used as a long chain substance containing an organic fluorine-containing ether group or an organic fluorine-containing polyether group and an alkoxysilyl group.
  • a substance represented by the following formula (Chemical Formula 5) is used as a long chain substance containing an organic fluorine-containing ether group or an organic fluorine-containing polyether group and an alkoxysilyl group.
  • AO 3 Si (OSi (OA) 2 ) p OA (P is 0 or an integer, A is an alkyl group) ) Is used for producing a releasable mold.
  • the eighteenth invention is the twelfth to seventeenth invention, wherein instead of the silanol condensation catalyst, a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, an aminoalkylalkoxysilane compound, TiO 2 or the like is used. It is a manufacturing method of a mold release mold characterized by using a metal oxide.
  • the silanol condensation catalyst includes a ketimine compound, or a metal oxide such as an organic acid, aldimine compound, enamine compound, oxazolidine compound, aminoalkylalkoxysilane compound and / or TiO 2. This is a method for producing a releasable mold characterized by using a mixture of materials.
  • the twentieth invention is a method for producing a releasable mold according to the twelfth to nineteenth inventions, wherein a fluorocarbon organic solvent is used as the organic solvent.
  • the twenty-first invention is a method for producing a releasable mold according to any of the twelfth to twentieth inventions, wherein a silica film is formed on the mold surface in advance before forming the composite film.
  • the twenty-second aspect of the present invention is the method for producing a releasable mold according to any of the twelfth to twenty-first aspects of the present invention, wherein the composite film is heated at 250 to 450 ° C.
  • a twenty-third aspect of the invention is a method for producing a releasable mold according to the twelfth to twenty-first aspects of the invention, wherein after the formation of the composite film, treatment is further performed with a solution in which a substance containing a methylsilyl group is dissolved. .
  • the twenty-fourth invention is a molded product to which a release agent produced using the molds of claims 1 to 11 does not adhere.
  • the present invention mainly comprises a long-chain substance (1) mainly comprising at least a fluorocarbon group and a hydrocarbon group and containing an alkoxysilyl group, a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group.
  • the mold surface is brought into contact with a composite film forming solution obtained by diluting a short chain substance (2) as a component (2), a substance (3) containing an alkoxysilyl group as a main component and a silanol condensation catalyst with an organic solvent to release the mold.
  • a mold in which a highly durable releasable composite film is formed on a surface by a step of forming and a step of washing or wiping off an excess solution on the mold surface using an organic solvent comprises a long-chain material mainly composed of a fluorocarbon group and a hydrocarbon group, a short-chain material mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group, and a material mainly composed of a siloxane group.
  • the gist of the present invention is to provide a releasable mold characterized by being a composite film.
  • the molecular length of the long chain substance mainly composed of a fluorocarbon group and a hydrocarbon group is set to be more than twice the molecular length of the short chain substance mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group. It is convenient to improve the releasability.
  • the long-chain material mainly composed of a fluorocarbon group and a hydrocarbon group has a side chain containing a fluorocarbon group and a hydrocarbon group, so that the releasability can be further improved.
  • a long chain substance mainly composed of a fluorocarbon group and a hydrocarbon group and a short chain substance mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group are composed of a substance mainly composed of a siloxane group. Bonding and fixing to the silica film and / or the mold surface through the silyl group in the silica film is advantageous in that the molding durability can be improved.
  • a long chain substance mainly composed of a fluorocarbon group and a hydrocarbon group a short chain substance mainly composed of a fluorocarbon group, a hydrocarbon group and a silyl group, and a substance mainly composed of a siloxane group,
  • the molding durability can be advantageously improved.
  • the long-chain material mainly composed of a fluorocarbon group and a hydrocarbon group
  • the short-chain material mainly composed of a fluorocarbon group, a hydrocarbon group, and a silyl group, and a siloxane group contained in the releasable composite film.
  • the molecular composition ratio of the main component is 1:10:10 to 1: 0.1: 0.1
  • the flowability of the molded product can be controlled as well as the mold release performance, and the molding durability can be improved. It is convenient to improve.
  • the mold is provided with a releasable composite film on the surface, and the coating contains a long chain substance mainly composed of at least a fluorocarbon group and a hydrocarbon group and has a critical surface energy of 5
  • the coating contains a long chain substance mainly composed of at least a fluorocarbon group and a hydrocarbon group and has a critical surface energy of 5
  • the long chain material mainly composed of a fluorocarbon group and a hydrocarbon group is a long chain material mainly composed of an organic fluorine-containing ether group or an organic fluorine-containing polyether group, molding durability can be improved. Convenient.
  • the organic fluorine-containing ether group or the organic fluorine-containing polyether group is a functional group represented by the following formula (Chemical Formula 6 or Chemical Formula 7)
  • the flowability of the molded product can be controlled as well as the mold release performance. Convenient because it can improve durability.
  • the mold-releasing composite film is formed through a silica film because the molding durability can be further improved.
  • the composite film further contains a methylsilyl group, it is advantageous in that the flowability of the molded product can be controlled as well as the mold release performance and the molding durability can be improved.
  • a releasable mold characterized by the following.
  • a long-chain material (1) mainly containing a fluorocarbon group and a hydrocarbon group and containing an alkoxysilyl group, and a short-chain material containing a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group as main components When the molecular mixing ratio of 2) and the substance (3) having an alkoxysilyl group as a main component is 1:10:10 to 1: 0.1: 0.1, the mold release performance is controlled and the molded product is controlled. Conveniently, the fluidity can be controlled and the molding durability can be improved.
  • a long-chain substance (1) having at least a fluorocarbon group and a hydrocarbon group as main components and containing an alkoxysilyl group a long-chain substance containing an organic fluorine-containing ether group or an organic fluorine-containing polyether group and an alkoxysilyl group When used, it is convenient because the mold release performance can be controlled and the molding durability can be improved.
  • a substance represented by the following formula (Chemical Formula 8 or 9) is used as a long-chain substance containing an organic fluorine-containing ether group or an organic fluorine-containing polyether group and an alkoxysilyl group.
  • CF 3 — (CF 2 ) o — (CH 2 ) 2 —Si (OA) 3 (subscript o is a short chain substance (2) mainly composed of a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group.
  • AO 3 Si (OSi (OA) 2 ) p OA (P is 0 or an integer, A is an alkyl group) ) Is advantageous in that it can control the fluidity of the molded product as well as the mold release performance and can improve the molding durability.
  • the production time can be shortened. convenient.
  • the film uniformity can be improved, which is convenient. Furthermore, it is convenient to form a silica film on the mold surface in advance before forming the composite film because the density of the releasable composite film can be improved.
  • heating at 250 to 450 ° C. after the formation of the composite film is convenient for improving the molding durability. Further, after forming the composite film, it is convenient to control the fluidity of the molded product by treating with a solution in which a substance containing a methylsilyl group is further dissolved.
  • a molded product produced using the mold of the present invention is convenient as a food packaging material, clothing, or medical product because the release agent does not adhere to it.
  • a long chain substance, a fluorocarbon group, and a hydrocarbon group mainly composed of a fluorocarbon group and a hydrocarbon group are formed on the mold surface.
  • a releasable composite film containing a short-chain substance mainly composed of silyl group and a substance mainly composed of siloxane group it has high molding durability, high moldability and penetration, and mold release. There is an effect of providing a mold satisfying the properties at the same time.
  • the present invention provides a mold having high molding durability, high molding fluidity and penetration, and excellent mold release properties without using a mold release agent.
  • a long-chain substance (1) containing a hydrogen group as a main component and containing an alkoxysilyl group, a short-chain substance (2) containing a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group as main components and an alkoxysilyl group as a main component To form a releasable composite film by contacting the surface of the mold with a composite film forming solution obtained by diluting the substance (3) to be condensed with a silanol condensation catalyst with an organic solvent, or a fluorocarbon group and a hydrocarbon group.
  • the drawback of being weak against the abrasion of the conventional chemical adsorption film is improved, the molding durability is excellent, and the fluidity and penetration of the molded product in the mold, and the mold release property. Has the effect of providing an excellent mold.
  • an ultra-thin film having excellent film thickness uniformity can be obtained, so that it can be applied to the manufacture of molds for optical parts and the like that require nanometer level definition.
  • the molecular composition ratio means a molar ratio unless otherwise specified. Further, “%” not specifically mentioned means “% by weight”. In addition, this invention is not limited at all by these Examples.
  • a stainless steel mold 1 was prepared, washed thoroughly and dried.
  • a substance represented by the following formula (Chemical Formula 11) is used as the substance (1) containing an organic fluorine-containing ether group or an organic fluorine-containing polyether group and an alkoxysilyl group.
  • CF 3 — (CF 2 ) 7 — (CH 2 ) 2 —Si (OCH 3 ) 3 is used as the substance (2) mainly composed of a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group.
  • Si (OCH 3 ) 4 is used as the main component (3), and dibutyltin oxide is used as the silanol condensation catalyst, so that the amounts are 0.01, 0.01, 0.003, and 0.00005 M / L, respectively.
  • a pentafluorobutane solvent containing 30% dichloropentafluoropropane (chlorine-containing fluorocarbon solvent) to prepare a composite film forming solution.
  • This composite film forming solution was immersed in the stainless steel mold 1 in normal air (relative humidity 53%, 65% in another experiment). Immediately, the excess composite film forming solution on the surface is washed away with chloroform and taken out into the air.
  • the substance 4 composed mainly of an organic fluorine-containing polyether group and a silyl group and the fluorocarbon
  • the composition ratio of the substance 5 mainly composed of a group, a hydrocarbon group and a silyl group and the substance 6 mainly composed of a siloxane group is about 1: 1: 0.3, and the siloxane notation is between the fluorocarbon groups.
  • a composite film 7 having a thickness of about 5 nm was formed on the surface of the stainless steel mold 1.
  • the stainless steel mold surface contains many hydroxyl groups of adsorbed water and natural oxide, the organic fluorine-containing ether group, or the substance containing the organic fluorine-containing polyether group and the alkoxysilyl group.
  • the film thickness of the composite film at this time was on the order of nanometers, so the processing accuracy of the mold was not impaired at all.
  • the water droplet contact angle on the surface of the stainless steel mold is approximately 112 degrees (with a critical surface energy of about 8 mN / m) regardless of whether or not the cleaning process is performed. I was able to grant.
  • this composite film is covalently bonded to the mold surface via a siloxane bond, as shown in FIG. 3, in the wear test, after rubbed 6000 times under a load of 600 g / cm 2.
  • the water droplet contact angle could be maintained at 110 degrees or more. This condition corresponds to the condition of wiping the surface hundreds of thousands of times with fabric.
  • Example 1 For reference, in Example 1, the organic fluorine-containing ether group or the substance (1) containing the organic fluorine-containing polyether group and the alkoxysilyl group was not included, but the fluorocarbon group, the hydrocarbon group, and the alkoxysilyl group
  • the substance (2) whose main component is CF 3 — (CF 2 ) 7 — (CH 2 ) 2 —Si (OCH 3 ) 3 and the substance (3) whose main component is an alkoxysilyl group is Si (OCH 3 ) 4 , and the concentrations of the substance (2) mainly composed of fluorocarbon group, hydrocarbon group and alkoxysilyl group and the substance (3) mainly composed of alkoxysilyl group are 0.01 and 0, respectively.
  • the result of the water droplet contact angle change in the abrasion resistance test of the coating when the prototype was made under the same conditions as in Example 1 except for 0.003 M / L is shown in FIG.
  • Example 2 Furthermore, in Example 1, the organic fluorine-containing ether group, or the substance (1) containing an organic fluorine-containing polyether group and an alkoxysilyl group and the substance (3) containing an alkoxysilyl group as a main component are not included.
  • the substance (2) mainly composed of a fluorocarbon group, a hydrocarbon group, and an alkoxysilyl group is CF 3 — (CF 2 ) 7 — (CH 2 ) 2 —Si (OCH 3 ) 3.
  • the result of the water droplet contact angle change in the abrasion resistance test of the coating when all samples are manufactured under the same conditions as in Example 1 is shown in comparison with FIG.
  • composition ratio was approximately 1: 1: 1
  • film thickness was A composite film excellent in abrasion resistance having an initial water droplet contact angle of about 102 degrees (critical surface energy of about 20 mN / m) was formed at about 5 nm.
  • the surface energy of the stainless steel mold on which the releasable composite film is formed is determined by the organic fluorine-containing ether group or the substance (1) containing the organic fluorine-containing polyether group and the alkoxysilyl group, the fluorocarbon group and the hydrocarbon.
  • 1: 1: 1 to 1: 0.1: 0.1 because it substantially depends on the composition of the substance (2) having a main group and an alkoxysilyl group as a main component and the substance (3) having an alkoxysilyl group as a main component.
  • the surface energy could be controlled to about 20 to 5 mN / m by changing the charged composition within the range, and the fluidity and penetration of the molded product could be adjusted according to the molding material.
  • the silica film 8 formed in advance with a composition of 0: 0: 1 (FIG. 4)
  • the fluorination of the composite film is performed as compared with the case without the silica film.
  • the density of the carbon group could be improved, and the wear resistance was improved 2 to 3 times.
  • the wear resistance could be further improved by heating at 250 to 450 ° C. for about 30 minutes.
  • the heating temperature was 250 to 300 ° C., there was no problem even if heating was performed in normal air.
  • the heating temperature was 320 to 450 ° C., in an atmosphere substantially free of oxygen to prevent oxidation of the film. It was necessary to do in.
  • Example 1 after the immersion reaction, the non-aqueous organic solvent is evaporated without being washed out of the solution (in this case, when the stainless steel mold is heated at 60 to 100 ° C., the solvent is evaporated. It was possible to accelerate the evaporation time, and the organic fluorine-containing ether group, or the organic fluorine-containing polyether group and the silyl group-based substance, the fluorocarbon group, the hydrocarbon group, and the silyl group.
  • the composition ratio of the substance mainly composed of a group and the substance mainly composed of a siloxane group is approximately 1: 1: 0.3, and a composite film having a film thickness of approximately 30 nm can be formed on the surface of the stainless steel mold. It was.
  • the surface of the stainless steel mold contains a large number of hydroxyl groups of adsorbed water and natural oxide, so the organic fluorine-containing ether group or the organic fluorine-containing polyether is used.
  • ⁇ Si (1) of a substance (1) containing a group and an alkoxysilyl group, a substance (2) containing a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group as a main component and a substance (3) containing an alkoxysilyl group as a main component OCH 3 ) groups react with each other over the entire mold surface by the reaction of hydroxyl groups and adsorbed water on the stainless steel mold surface in the presence of a silanol condensation catalyst with dealcoholization (in this case, de-CH 3 OH).
  • Organic fluorine-containing ether group chemically bonded to the surface, or organic fluorine-containing polyether group and a substance mainly composed of silyl group, fluorocarbon group, hydrocarbon group and silyl group
  • Composite membranes containing a substance composed mainly of substance and siloxane groups containing as a main component was formed on the stainless steel surface of the mold.
  • the substance (2) having an alkoxysilyl group as a main component and the substance (3) having an alkoxysilyl group as a main component are hydrolyzed with moisture in the air to form an organic fluorine-containing material formed on the mold surface.
  • organic fluorine-containing ether group, or organic fluorine-containing polyether group and silyl group as the main component, fluorocarbon group, hydrocarbon group and silyl group as main components Polymeric composite membrane materials and siloxane groups containing a substance composed mainly of is formed in the stainless steel mold surfaces.
  • the film thickness of the composite film obtained at this time is on the order of several tens of nanometers, the processing accuracy of the mold is somewhat impaired, but it is at a level where there is no problem in molding of optical parts.
  • the water droplet contact angle on the surface of the stainless steel mold is approximately 105 degrees (critical surface energy is about 15 mN / m) regardless of whether or not the cleaning process is performed, and has a mold release property equal to or higher than that of a Teflon (registered trademark) coat. I was able to grant.
  • Example 1 a film was produced in the same manner except for the substance (2) mainly composed of a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group.
  • the composite film having a film thickness of about 5 nm including the organic fluorine-containing ether group or the organic fluorine-containing polyether group and the substance mainly composed of silyl group and the substance mainly composed of siloxane group is made of the stainless steel. Formed on the mold surface.
  • the processing accuracy of the mold was not impaired at all.
  • the water droplet contact angle on the surface of the stainless steel mold is approximately 108 degrees (critical surface energy is about 12 mN / m) regardless of whether or not the cleaning process is performed, and has a mold release property higher than that of the Teflon (registered trademark) coat. I was able to grant.
  • Example 1 a film was produced in the same manner except for the substance (3) having an alkoxysilyl group as a main component.
  • the film thickness of the organic fluorine-containing ether group, or the organic fluorine-containing polyether group and the substance mainly containing a silyl group, and the substance mainly containing a fluorocarbon group, a hydrocarbon group, and a silyl group are substantially reduced.
  • a 4 nm composite film could be formed on the surface of the stainless steel mold.
  • the processing accuracy of the mold was not impaired at all.
  • the contact angle of water droplets on the stainless steel mold surface is approximately 114 degrees (critical surface energy is about 6 mN / m) regardless of whether or not the cleaning process is performed, which is far superior to Teflon (registered trademark) Co. It was possible to impart releasability.
  • Example 1 a film was produced in the same manner except for the substance (2) mainly composed of fluorocarbon group, hydrocarbon group and alkoxysilyl group and the substance (3) mainly composed of alkoxysilyl group. .
  • a film having a film thickness of about 3 nm made of the organic fluorine-containing ether group or the substance (1) mainly composed of the organic fluorine-containing polyether group and the silyl group could be formed on the surface of the stainless steel mold.
  • the processing accuracy of the mold was not impaired at all.
  • the contact angle of the water droplets on the stainless steel mold surface is approximately 116 degrees (critical surface energy is about 5 mN / m) regardless of the presence or absence of the cleaning process, which is far superior to Teflon (registered trademark) Co. It was possible to impart releasability.
  • Example 2 In the abrasion test, although the deterioration was somewhat faster than that in Example 1, it was a coating that could be used at a practical level. In addition, although this film was excellent in mold release property, it turned out that compared with the composite film obtained in Example 1, the molding fluidity
  • Example 1 a ketimine compound or a metal oxide such as TiO 2 , an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound could be used in place of the above silanol condensation catalyst. .
  • the ketimine compound H3 from Japan Epoxy Resin and Silaace S340 from Chisso was used, but the performance was almost the same).
  • the reaction time could be shortened to 30 minutes.
  • Example 1 the above-mentioned silanol condensation catalyst and ketimine compound, or metal oxide such as TiO 2 , organic acid, aldimine compound, enamine compound, oxazolidine compound, and aminoalkylalkoxysilane compound are used at 1: 9 to 9:
  • the reaction time could be further shortened.
  • the above-mentioned silanol condensation catalyst concentration is halved in Example 1 and the above-mentioned ketimine compound (for example, S340) is mixed in an equimolar amount (1: 1), the reaction time is shortened to 20 minutes. did it.
  • a carboxylic acid metal salt a carboxylic acid ester metal salt, a carboxylic acid metal salt polymer, a carboxylic acid metal salt chelate, a titanate ester, and a titanate ester chelate are used. Is available.
  • the ketimine compound that can be used is not particularly limited.
  • the organic acid that can be used is not particularly limited.
  • the fluorocarbon-based organic solvent includes a chlorofluorocarbon-based solvent, Fluorinert (product of 3M), Afludo (product of Asahi Glass), etc., and these may be used alone or mixed well. If it is a thing, you may combine 2 or more types. Furthermore, an organic chlorine solvent such as chloroform may be added. Furthermore, as an adsorbing solvent, water and alcohol (the composition ratio of water and alcohol was 2: 1 to 10: 1 by volume, and the alcohol type was ethanol, but propanol, butanol, and ethylene glycol were also used. In the case of using a mixed solvent of 1), a silanol condensation catalyst or a co-catalyst such as ketimine cannot be used. A film could be formed.
  • organic solvent for washing it is possible to use a hydrocarbon solvent that does not contain water, or a fluorocarbon solvent or a silicone solvent, and those having a boiling point of 50 to 300 ° C. are particularly suitable. It was suitable.
  • Specific examples include petroleum naphtha, solvent naphtha, petroleum ether, petroleum benzine, isoparaffin, normal paraffin, decalin, industrial gasoline, kerosene, dimethyl silicone, phenyl silicone, alkyl-modified silicone, polyether silicone, etc. Can do.
  • CF 3 — (CF 2 ) o — (CH 2 ) 2 —Si (OA) 3 (subscript “o” is used as a substance (2) mainly composed of a fluorocarbon group, a hydrocarbon group and an alkoxysilyl group.
  • the following substances (1) to (18) were easy to use.
  • the substance (3) having an alkoxysilyl group as a main component (AO) 3 Si (OSi (OA) 2 ) p OA (p is 0 to 10, A is an alkyl group of a methyl group or a til group, OA May be Cl or NCO), but the following substances (1) to (14) are easy to use.
  • Si (OCH 3 ) 4 (2) SiH (OCH 3 ) 3 (3) SiH 2 (OCH 3 ) 2 (4) (CH 3 O) 3 Si (OSi (OCH 3 ) 2 ) m OCH 3 (5) Si (OC 2 H 5 ) 3 (6) SiH (OC 2 H 5 ) 3 (7) SiH 2 (OC 2 H 5 ) 2 (8) (H 5 C 2 O) 3 Si (OSi (OC 2 H 5 ) 2 ) m OC 2 H 5
  • m represents an integer of 1 to 6.
  • Example 1 shows the state which applied the mold release agent to the metal mold
  • Example 2 shows the state which formed the mold release monomolecular film on the metal mold
  • Example 1 the conceptual diagram which expanded the metal mold
  • Example 2 the conceptual diagram which expanded the metal mold

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

光学部品など、ナノレベルでの精度を必要とする金型成形において、従来のような形状の改良や離型剤をスプレー塗布するような方法では、離型剤膜厚にばらつきが生じるため、精度が悪くなる。さらに、成型品に離型剤が付着すると不都合な場合もある。しかしながら、離型剤を使用しない金型は、未だ実用化されていない。  本発明の金型は、ナノレベルで膜厚が均一で、且つ表面エネルギーを制御した撥水撥油性のフッ化炭素系化学吸着膜を、離型膜として金型表面に形成したものである。このことにより、ナノメートルレベルの超微細形状を有していても、成型物の流動性や入り込み性に優れ、高精度の成形を行えるようになる。さらに離型剤塗布が不要となり、離型剤が成型品に付着するのを防止できる。

Description

金型とその製造方法及びそれを用いて作製した成型品
 本発明は、表面に離型性複合膜が形成された金型に関するものである。
 なお、ここでいう金型とは、精度の上で離型剤が使用できない光学部品や機械部品、記録媒体、電子部品、バイオケミカルチップ、医療用品等の成型に用いる高精細金型や、成型品に離型剤が付着すると都合が悪い離型剤を適用できない離型性金型に関するものである。
 一般にフッ化炭素基含有クロロシラン系の吸着剤と非水系の有機溶媒よりなる化学吸着液を用い、液相で化学吸着して単分子膜状の撥水性化学吸着膜を形成できることはすでによく知られている(例えば、特許文献1参照。)。
 このような溶液中での化学吸着単分子膜の製造原理は、基材表面の水酸基などの活性水素とクロロシラン系の吸着剤のクロロシリル基との脱塩酸反応を用いて単分子膜を形成することにある。
特開平05-193056号 公報
 従来から、金型成形における離型性の改良は、金型そのものの形状や離型剤の改良に重点が置かれていた。しかしながら、光学部品など、ナノレベルでの精度を必要とする金型成形において、従来のような形状の改良や離型剤をスプレー塗布するような方法では、図1(a)に示したように、金型1表面に塗布された離型剤2の膜厚に数十~数百ナノメートル程度のばらつきが生じるため、金型の誤差は成形毎に常時生じてしまい、現実的でない。さらに、成型品に離型剤が付着すると不都合な場合もかなりある。しかしながら、離型剤を使用しない高精細金型は、未だ実用化されていない。
 一方、従来の化学吸着膜は吸着剤と基材表面との化学結合のみを用いているため、そのまま金型に用いると、耐摩耗性に乏しい。また、フッ化炭素系のみで出来た単分子膜を用いると表面エネルギーが小さすぎて成形材料の入り込み流動性及び入り込み性が悪くなるという課題があった。
 本発明は、前記課題に鑑み、高精細金型の加工形状を損なわず、表面エネルギーを制御した適度な離型機能を備え、且つ成形耐久性が高い離型剤不要金型を提供することを目的とする。
 前記目的を達成するため、本発明の金型は、図1(b)に示したように、ナノレベルで膜厚が均一で、且つ表面エネルギーを制御した撥水撥油性のフッ化炭素系化学吸着膜を離型膜3として金型表面に形成することを要旨とする。このことにより、ナノメートルレベルの超微細形状を有した金型でも、成型物の流動性及び入り込み性が優れ、高速、高精度の成形を行えるようにする。さらに、このような離型膜を形成しておくことにより、離型剤塗布が不要となり、離型剤が成型品に付着するのを防止できる。
 具体的に提供される第1の発明は、表面に高耐久性の離型性複合膜が形成された金型であって、前記被膜が、フッ化炭素基と炭化水素基を主成分とする長鎖物質とフッ化炭素基と炭化水素基とシリル基を主成分とする短鎖物質とシロキサン基を主成分とする物質を含む複合膜であることを特徴とする離型性金型である。
 第2の発明は、第1の発明に於いて、フッ化炭素基と炭化水素基を主成分とする長鎖物質の分子長がフッ化炭素基と炭化水素基とシリル基を主成分とする短鎖物質の分子長の2倍以上であることを特徴とする離型性金型である。
 第3の発明は、第1および2の発明に於いて、フッ化炭素基と炭化水素基を主成分とする長鎖物質がフッ化炭素基と炭化水素基を含む側鎖を持っていることを特徴とする離型性金型である。
 第4の発明は、第1乃至3の発明に於いて、フッ化炭素基と炭化水素基を主成分とする長鎖物質とフッ化炭素基と炭化水素基とシリル基を主成分とする短鎖物質が、シロキサン基を主成分とする物質よりなるシリカ膜中で前記シリル基を介して前記シリカ膜および/または金型表面に結合固定されていることを特徴とする離型性金型である。
 第5の発明は、第1乃至3の発明に於いて、フッ化炭素基と炭化水素基を主成分とする長鎖物質とフッ化炭素基と炭化水素基とシリル基を主成分とする短鎖物質とシロキサン基を主成分とする物質が、それぞれシリル基およびシロキサン基を介して互いにまたは個々に金型表面に結合固定されていることを特徴とする離型性金型である。
 第6の発明は、第1乃至5の発明に於いて、離型性複合膜に含まれるフッ化炭素基と炭化水素基を主成分とする長鎖物質とフッ化炭素基と炭化水素基とシリル基を主成分とする短鎖物質とシロキサン基を主成分とする物質の分子組成比が、1:10:10~1:0.1:0.1であることを特徴とする離型性金型である。
 第7の発明は、第1乃至6の発明に於いて、表面に離型性複合膜が形成された金型であって、前記被膜が、少なくともフッ化炭素基と炭化水素基を主成分とする長鎖物質を含み前記被膜の臨界表面エネルギーが5~20mN/mに制御されていることを特徴とする離型性金型である。
 第8の発明は、第1乃至7の発明に於いて、フッ化炭素基と炭化水素基を主成分とする長鎖物質が有機含フッ素エーテル基または有機含フッ素ポリエーテル基を主成分とする長鎖物質であることを特徴とする離型性金型である。
 第9の発明は、第1乃至8の発明に於いて、有機含フッ素エーテル基または有機含フッ素ポリエーテル基が下記式(化1または化2)に示した官能基であることを特徴とする離型性金型である。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 第10の発明は、第1乃至9の発明に於いて、離型性複合膜がシリカ膜を介して形成されていることを特徴とする離型性金型である。
 第11の発明は、第1乃至10の発明に於いて、複合膜がさらにメチルシリル基を含んでいることを特徴とする離型性金型である。
 第12の発明は、少なくともフッ化炭素基と炭化水素基を主成分とし且つアルコキシシリル基を含む長鎖物質(1)とフッ化炭素基および炭化水素基およびアルコキシシリル基を主成分とする短鎖物質(2)とアルコキシシリル基を主成分とする物質(3)とシラノール縮合触媒とを有機溶媒で希釈した複合膜形成溶液に金型表面を接触させて反応させ離型性複合膜を形成する工程を含むことを特徴とする離型性金型の製造方法である。
 第13の発明は、少なくともフッ化炭素基と炭化水素基を主成分とし且つアルコキシシリル基を含む長鎖物質(1)とフッ化炭素基および炭化水素基およびアルコキシシリル基を主成分とする短鎖物質(2)とアルコキシシリル基を主成分とする物質(3)とシラノール縮合触媒とを有機溶媒で希釈した複合膜形成溶液に金型表面を接触させて反応させ被膜を形成する工程と、前記金型表面の余分な溶液を有機溶媒を用いて洗浄除去またはふき取り除去する工程とを含むことを特徴とする離型性金型の製造方法である。
 第14の発明は、第12および13の発明に於いて、フッ化炭素基と炭化水素基を主成分とし且つアルコキシシリル基を含む長鎖物質(1)とフッ化炭素基および炭化水素基およびアルコキシシリル基を主成分とする短鎖物質(2)とアルコキシシリル基を主成分とする物質(3)の分子混合比を、1:10:10~1:0.1:0.1にしておくことを特徴とする離型性金型の製造方法である。
 第15の発明は、第12乃至14の発明に於いて、少なくともフッ化炭素基と炭化水素基を主成分とし且つアルコキシシリル基を含む長鎖物質(1)として有機含フッ素エーテル基または有機含フッ素ポリエーテル基およびアルコキシシリル基を含む長鎖物質を用いることを特徴とする離型性金型の製造方法である。
 第16の発明は、第15の発明に於いて、有機含フッ素エーテル基または有機含フッ素ポリエーテル基およびアルコキシシリル基を含む長鎖物質として下記式(化3または4)に示した物質を用い、
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする短鎖物質(2)としてCF3-(CF2o-(CH22-Si(OA)3(添え字のoは整数、Aはアルキル基、OAはClまたはNCOでも良い。)を用い、アルコキシシリルキ基を主成分とする物質(3)として(AO)3Si(OSi(OA)2pOA(pは0または整数、Aはアルキル基、OAはClまたはNCOでも良い。)を用いることを特徴とする離型性金型の製造方法である。
 第17の発明は、第15の発明に於いて、有機含フッ素エーテル基または有機含フッ素ポリエーテル基およびアルコキシシリル基を含む長鎖物質として、下記式(化5)に示した物質を用い、
Figure JPOXMLDOC01-appb-C000010
 フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする短鎖物質(2)としてCF3-(CF2o-(CH22-Si(OA)3(添え字のoは整数、Aはアルキル基。)を用い、アルコキシシリルキ基を主成分とする物質(3)として(AO)3Si(OSi(OA)2pOA(Pは0または整数、Aはアルキル基)を用いることを特徴とする離型性金型の製造方法である。
 第18の発明は、第12乃至17の発明に於いて、シラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物、あるいはTiO2等の金属酸化物を用いることを特徴とする離型性金型の製造方法である。
 第19の発明は、第12乃至17の発明に於いて、シラノール縮合触媒にケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物および/あるいはTiO2等の金属酸化物を混合して用いることを特徴とする離型性金型の製造方法である。
 第20の発明は、第12乃至19の発明に於いて、有機溶媒としてフッ化炭素系有機溶媒を用いることを特徴とする離型性金型の製造方法である。
 第21の発明は、第12乃至20の発明に於いて、複合膜形成前にあらかじめ金型表面にシリカ膜を形成しておくことを特徴とする離型性金型の製造方法である。
 第22の発明は、第12乃至21の発明に於いて、複合膜形成後、250~450℃で加熱することを特徴とする離型性金型の製造方法である。
 第23の発明は、第12乃至21の発明に於いて、複合膜形成後、さらにメチルシリル基を含んだ物質を溶かした溶液で処理することを特徴とする離型性金型の製造方法である。
 第24の発明は、請求項1乃至11の金型を用いて作製した離型剤が付着してない成型品である。
 さらに具体的説明すると、本発明は、少なくともフッ化炭素基と炭化水素基を主成分とし且つアルコキシシリル基を含む長鎖物質(1)とフッ化炭素基および炭化水素基およびアルコキシシリル基を主成分とする短鎖物質(2)とアルコキシシリル基を主成分とする物質(3)とシラノール縮合触媒とを有機溶媒で希釈した複合膜形成溶液に金型表面を接触させて反応させ離型性複合膜を形成する工程、あるいはフッ化炭素基と炭化水素基を主成分とし且つアルコキシシリル基を含む長鎖物質(1)とフッ化炭素基および炭化水素基およびアルコキシシリル基を主成分とする短鎖物質(2)とアルコキシシリル基を主成分とする物質(3)とシラノール縮合触媒とを有機溶媒で希釈した複合膜形成溶液に金型表面を接触させて反応させ被膜を形成する工程と、前記金型表面の余分な溶液を有機溶媒を用いて洗浄除去またはふき取り除去する工程とにより、表面に高耐久性の離型性複合膜が形成された金型であって、前記被膜が、フッ化炭素基と炭化水素基を主成分とする長鎖物質とフッ化炭素基と炭化水素基とシリル基を主成分とする短鎖物質とシロキサン基を主成分とする物質を含む複合膜であることを特徴とする離型性金型を提供することを要旨とする。
 ここで、フッ化炭素基と炭化水素基を主成分とする長鎖物質の分子長がフッ化炭素基と炭化水素基とシリル基を主成分とする短鎖物質の分子長の2倍以上にしておくと、離型性を向上できて都合がよい。
 また、フッ化炭素基と炭化水素基を主成分とする長鎖物質がフッ化炭素基と炭化水素基を含む側鎖を持っていると、さらに離型性を向上できて都合がよい。
また、フッ化炭素基と炭化水素基を主成分とする長鎖物質とフッ化炭素基と炭化水素基とシリル基を主成分とする短鎖物質が、シロキサン基を主成分とする物質よりなるシリカ膜中で前記シリル基を介して前記シリカ膜および/または金型表面に結合固定されていると、成形耐久性を向上できて都合がよい。
 また、フッ化炭素基と炭化水素基を主成分とする長鎖物質とフッ化炭素基と炭化水素基とシリル基を主成分とする短鎖物質とシロキサン基を主成分とする物質が、それぞれシリル基およびシロキサン基を介して互いにまたは個々に金型表面に結合固定されていると、成形耐久性を向上できて都合がよい。
 さらに、離型性複合膜に含まれるフッ化炭素基と炭化水素基を主成分とする長鎖物質とフッ化炭素基と炭化水素基とシリル基を主成分とする短鎖物質とシロキサン基を主成分とする物質の分子組成比が、1:10:10~1:0.1:0.1であると、離型性能の制御と共に成形物の流動性を制御でき、且つ成形耐久性を向上できて都合がよい。
 また、表面に離型性複合膜が形成された金型であって、前記被膜が、少なくともフッ化炭素基と炭化水素基を主成分とする長鎖物質を含み前記被膜の臨界表面エネルギーが5~20mN/mに制御されていると、離型性能の制御と共に成形物の流動性を制御でき、且つ成形耐久性を向上できて都合がよい。
 さらにまた、フッ化炭素基と炭化水素基を主成分とする長鎖物質が有機含フッ素エーテル基または有機含フッ素ポリエーテル基を主成分とする長鎖物質であると、成形耐久性を向上できて都合がよい。
 また、有機含フッ素エーテル基または有機含フッ素ポリエーテル基が下記式(化6または化7)に示した官能基であると、離型性能の制御と共に成形物の流動性を制御でき、且つ成形耐久性を向上できて都合がよい。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 また、離型性複合膜がシリカ膜を介して形成されていると、さらに成型耐久性を向上できて好都合である。
 さらにまた、複合膜がさらにメチルシリル基を含んでいると、離型性能の制御と共に成形物の流動性を制御でき、且つ成形耐久性を向上できて都合がよい。を特徴とする離型性金型である。
 さらにこのとき、フッ化炭素基と炭化水素基を主成分とし且つアルコキシシリル基を含む長鎖物質(1)とフッ化炭素基および炭化水素基およびアルコキシシリル基を主成分とする短鎖物質(2)とアルコキシシリル基を主成分とする物質(3)の分子混合比を、1:10:10~1:0.1:0.1にしておくと、離型性能の制御と共に成形物の流動性を制御でき、且つ成形耐久性を向上できて都合がよい。
 また、少なくともフッ化炭素基と炭化水素基を主成分とし且つアルコキシシリル基を含む長鎖物質(1)として有機含フッ素エーテル基または有機含フッ素ポリエーテル基およびアルコキシシリル基を含む長鎖物質を用いると、離型性能を制御でき且つ成形耐久性を向上できて都合がよい。
 さらに、有機含フッ素エーテル基または有機含フッ素ポリエーテル基およびアルコキシシリル基を含む長鎖物質として下記式(化8または9)に示した物質を用い、
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする短鎖物質(2)としてCF3-(CF2o-(CH22-Si(OA)3(添え字のoは整数、Aはアルキル基、OAはClまたはNCOでも良い。)を用い、アルコキシシリルキ基を主成分とする物質(3)として(AO)3Si(OSi(OA)2pOA(pは0または整数、Aはアルキル基、OAはClまたはNCOでも良い。)を用いると、離型性能の制御と共に成形物の流動性を制御でき、且つ成形耐久性を向上できて都合がよい。
 また、有機含フッ素エーテル基または有機含フッ素ポリエーテル基およびアルコキシシリル基を含む長鎖物質として、下記式(化10)に示した物質を用い、
Figure JPOXMLDOC01-appb-C000015
 フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする短鎖物質(2)としてCF3-(CF2o-(CH22-Si(OA)3(添え字のoは整数、Aはアルキル基。)を用い、アルコキシシリルキ基を主成分とする物質(3)として(AO)3Si(OSi(OA)2pOA(Pは0または整数、Aはアルキル基)を用いると、離型性能の制御と共に成形物の流動性を制御でき、且つ成形耐久性を向上できて都合がよい。
 さらにまた、シラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物、あるいはTiO2等の金属酸化物を用いると、製造時間を短縮できて都合がよい。
 また、シラノール縮合触媒にケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物および/あるいはTiO2等の金属酸化物を混合して用いると、さらに製造時間を短縮できて都合がよい。
 また、有機溶媒としてフッ化炭素系有機溶媒を用いると、被膜均一性を向上できて都合がよい。
 さらにまた、複合膜形成前にあらかじめ金型表面にシリカ膜を形成しておくこを、離型性複合膜の密度を向上できて都合がよい。
 また、複合膜形成後、250~450℃で加熱すると、成形耐久性を向上する上で都合がよい。
 また、複合膜形成後、さらにメチルシリル基を含んだ物質を溶かした溶液で処理すると、成形物流動性を制御する上で都合がよい。
 一方、本発明の金型を用いて作製した成型品は離型剤が付着しないので、食品包装資材や衣料品、医療品として好都合である。
 以上説明したように、本発明の離型性金型およびその製造方法では、金型表面に、フッ化炭素基と炭化水素基を主成分とする長鎖物質とフッ化炭素基と炭化水素基とシリル基を主成分とする短鎖物質とシロキサン基を主成分とする物質を含む離型性複合膜を形成することにより、高い成形耐久性と、高い成型物流動性及び入り込み性と離型性を同時に満足させた金型を提供できる効果がある。
 本発明は、高成形耐久性で且つ高い成型物流動性及び入り込み性があり、離型剤を用いなくとも離型性に優れた金型を提供するものであり、少なくともフッ化炭素基と炭化水素基を主成分とし且つアルコキシシリル基を含む長鎖物質(1)とフッ化炭素基および炭化水素基およびアルコキシシリル基を主成分とする短鎖物質(2)とアルコキシシリル基を主成分とする物質(3)とシラノール縮合触媒とを有機溶媒で希釈した複合膜形成溶液に金型表面を接触させて反応させ離型性複合膜を形成する工程、あるいはフッ化炭素基と炭化水素基を主成分とし且つアルコキシシリル基を含む長鎖物質(1)とフッ化炭素基および炭化水素基およびアルコキシシリル基を主成分とする短鎖物質(2)とアルコキシシリル基を主成分とする物質(3)とシラノール縮合触媒とを有機溶媒で希釈した複合膜形成溶液に金型表面を接触させて反応させ被膜を形成する工程と、前記金型表面の余分な溶液を有機溶媒を用いて洗浄除去またはふき取り除去する工程とにより、表面に高耐久性の離型性複合膜が形成された金型であって、前記被膜が、フッ化炭素基と炭化水素基を主成分とする長鎖物質とフッ化炭素基と炭化水素基とシリル基を主成分とする短鎖物質とシロキサン基を主成分とする物質を含む複合膜である離型性金型を提供するものである。
 前記離型性金型によれば、従来の化学吸着膜の摩耗に弱いという欠点を改良して、成形耐久性に優れ、且つ金型内での成型物流動性と入り込み性、および離型性に優れた金型を提供できる作用がある。また、前記製造方法によれば、膜厚均一性に優れた超薄膜が得られるため、ナノメートルレベルの精細度が必要な光学部品等の金型製造に適用できる作用もある。
 以下、本発明の離型剤が不要で且つ離型性に優れた金型(離型性金型)の詳細を実施例を用いて説明する。
 なお、以下の実施例においては、とくに記載していない限り分子組成比はモル比を意味する。また、特に記載のない%は重量%を意味する。なお、本願発明はこれら実施例によって何ら限定されるものではない。
 まず、ステンレス製の金型1を用意し、よく洗浄して乾燥した。一方、有機含フッ素エーテル基、または有機含フッ素ポリエーテル基およびアルコキシシリル基を含む物質(1)として下記式(化11)に示した物質を用い、
Figure JPOXMLDOC01-appb-C000016
 フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質(2)としてCF3-(CF27-(CH22-Si(OCH33を用い、アルコキシシリルキ基を主成分とする物質(3)としてSi(OCH34を用い、シラノール縮合触媒としてジブチル錫オキサイドを用い、それぞれ0.01、0.01、0.003、0.00005M/Lとなるようにジクロロペンタフルオロプロパン(塩素含有フッ化炭素系溶媒)30%含有ペンタフルオロブタン溶媒に溶解して複合膜形成溶液を作成した。
 この複合膜形成溶液に、普通の空気中で(相対湿度53%、別の実験では65%でも問題なかった。)で前記ステンレス製の金型1を漬浸して1時間反応させ、溶液から取り出してすぐに表面の余分な複合膜形成溶液をクロロホルムで洗浄除去し空気中に取り出すと、図2に示したような有機含フッ素ポリエーテル基とシリル基を主成分とする物質4とフッ化炭素基と炭化水素基とシリル基を主成分とする物質5とシロキサン基を主成分とする物質6の組成比が略1:1:0.3であり、フッ化炭素基間にシロキサン記が網目状に入った膜厚が略5nm程度の複合膜を前記ステンレス製の金型1の表面に形成できた。
 なお、ここで、ステンレス製の金型表面には、吸着水やナチュラルオキサイドの水酸基が多数含まれているので、前記有機含フッ素エーテル基、または有機含フッ素ポリエーテル基およびアルコキシシリル基を含む物質(1)とフッ化炭素基および炭化水素基およびアルコキシシリル基を主成分とする物質(2)とアルコキシシリル基を主成分とする物質(3)の≡Si(OCH3)基は、前記ステンレス製の金型表面の水酸基や吸着水がシラノール縮合触媒の存在下で脱アルコール(この場合は、脱CH3OH)反応して、金型表面全面に亘り互いにあるいは表面と化学結合した有機含フッ素エーテル基、または有機含フッ素ポリエーテル基とシリル基を主成分とする物質とフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質を含む複合膜が前記ステンレス製の金型表面に形成された。
 このときの複合膜の膜厚は、ナノメートル程度であったので、金型の加工精度を損なうことは全くなかった。また、ステンレス製の金型表面の水滴接触角は、洗浄工程の有無に関わらず、略112度(臨界表面エネルギーは8mN/m程度)であり、テフロン(登録商標)コート以上の離型性を付与できた。
 また、この複合膜は、金型表面とシロキサン結合を介して共有結合しているため、図3に示したように、摩耗試験では、加重600g/cm2の条件下で往復6000回のこすり後でも、水滴接触角は、110度以上を維持できた。この条件は、布地で表面を数十万回拭う条件に相当する。
(比較例1)
 参考として、実施例1に於いて、有機含フッ素エーテル基、または有機含フッ素ポリエーテル基およびアルコキシシリル基を含む物質(1)を含めず、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質(2)がCF3-(CF27-(CH22-Si(OCH33であり、アルコキシシリルキ基を主成分とする物質(3)がSi(OCH34であり、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質(2)とアルコキシシリルキ基を主成分とする物質(3)の濃度をそれぞれ0.01と0.003M/Lとし、他の条件は実施例1と全て同条件で試作した場合の被膜の耐摩耗試験における水滴接触角変化の結果を図3に比較して示す。
(比較例2)
 さらに、実施例1に於いて、有機含フッ素エーテル基、または有機含フッ素ポリエーテル基およびアルコキシシリル基を含む物質(1)とアルコキシシリルキ基を主成分とする物質(3)を含めず、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質(2)がCF3-(CF27-(CH22-Si(OCH33であり、他の条件は実施例1と全て同条件で試作した場合の被膜の耐摩耗試験における水滴接触角変化の結果を図3に比較して示す。
 図3より、有機含フッ素エーテル基、または有機含フッ素ポリエーテル基およびアルコキシシリル基を含む物質(1)を除けば、初期値の水滴接触角はほぼ同じであるが、耐摩耗性がかなり劣化することが判る。
また、有機含フッ素エーテル基、または有機含フッ素ポリエーテル基およびアルコキシシリル基を含む物質(1)とアルコキシシリルキ基を主成分とする物質(3)の両方を除けば、さらに耐摩耗性が大幅に劣化することが判る。
 また、余分な複合膜形成溶液をエタノールを含むウエスでふき取った場合には、膜厚が略15nmとなり、初期水滴接触角が略110度(臨界表面エネルギーは8mN/m程度)の複合膜を形成できた。また、このときの、耐摩耗性は、洗浄した場合と大きな違いはなかった。
 また、メトキシ基の代わりにエトキシ基、あるいは反応は異なるがClやNCO基でもほぼ同様に製膜できた。
 それぞれの濃度を0.01、0.01、0.01、0.00005M/Lとし、その他の条件を同じとして作成した場合には、組成比が略1:1:1であり、膜厚が略5nm程度で、初期水滴接触角が略102度(臨界表面エネルギーは20mN/m程度)の耐摩耗性に優れた複合膜を形成できた。
 ここで、離型性複合膜を形成したステンレス金型の表面エネルギーは、有機含フッ素エーテル基、または有機含フッ素ポリエーテル基およびアルコキシシリル基を含む物質(1)とフッ化炭素基および炭化水素基およびアルコキシシリル基を主成分とする物質(2)とアルコキシシリル基を主成分とする物質(3)の組成にほぼ依存するので、1:1:1~1:0.1:0.1の範囲で仕込み組成を変えれば、表面エネルギーを20~5mN/m程度に制御でき、成形素材に合わせて成型物の流動性と入り込み性を調節できた。
 さらに、あらかじめ0:0:1の組成で形成した被膜(以後、シリカ膜8という。)を介して複合形を形成した(図4)場合、シリカ膜がない場合に比べて複合膜のフッ化炭素基の密度を向上でき、さらに2~3倍耐摩耗性が向上した。
 またここで、複合膜形成後、250~450℃で30分程度加熱するとさらに耐摩耗性を向上できた。なお、加熱温度が250~300℃であれば、通常の空気中で加熱しても問題なかったが、320~450℃であれば、被膜の酸化を防ぐため実質的に酸素を含まない雰囲気中で行う必要があった。
 実施例1に於いて、漬浸反応後、溶液から取り出して洗浄せずに前記非水系有機溶媒を蒸発させる(この場合、60乃至100℃でステンレス製の金型を加熱すると、溶媒の蒸発を早めることが可能であり、蒸発時間を短縮できた。)と、有機含フッ素エーテル基、または有機含フッ素ポリエーテル基とシリル基を主成分とする物質とフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質の組成比が略1:1:0.3であり、膜厚が略30nmの複合膜が前記ステンレス製の金型表面に形成できた。
 なお、ここで、複合膜形成用溶液中では、ステンレス製の金型表面には、吸着水やナチュラルオキサイドの水酸基が多数含まれているので、前記有機含フッ素エーテル基、または有機含フッ素ポリエーテル基およびアルコキシシリル基を含む物質(1)とフッ化炭素基および炭化水素基およびアルコキシシリル基を主成分とする物質(2)とアルコキシシリル基を主成分とする物質(3)の≡Si(OCH3)基は、前記ステンレス製の金型表面の水酸基や吸着水がシラノール縮合触媒の存在下で脱アルコール(この場合は、脱CH3OH)反応して、金型表面全面に亘り互いにあるいは表面と化学結合した有機含フッ素エーテル基、または有機含フッ素ポリエーテル基とシリル基を主成分とする物質とフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質を含む複合膜が前記ステンレス製の金型表面に形成した。
 さらに、空気中に取り出し溶媒を蒸発させると、金型表面に残った有機含フッ素エーテル基、または有機含フッ素ポリエーテル基およびアルコキシシリル基を含む物質(1)とフッ化炭素基および炭化水素基およびアルコキシシリル基を主成分とする物質(2)とアルコキシシリル基を主成分とする物質(3)は、空気中の水分と互いに加水分解して、前記金型表面に形成された有機含フッ素エーテル基、または有機含フッ素ポリエーテル基とシリル基を主成分とする物質とフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質を含む複合膜と一体化して、有機含フッ素エーテル基、または有機含フッ素ポリエーテル基とシリル基を主成分とする物質とフッ化炭素基と炭化水素基とシリル基を主成分とする物質とシロキサン基を主成分とする物質を含むポリマー状の複合膜が前記ステンレス製の金型表面に形成した。
 このとき得られる複合膜の膜厚は、数十ナノメートルレベルとなるので、金型の加工精度を多少損なうが光学部品の成形でも問題ないレベルであった。また、ステンレス製の金型表面の水滴接触角は、洗浄工程の有無に関わらず、略105度(臨界表面エネルギーは15mN/m程度)であり、テフロン(登録商標)コート以上の離型性を付与できた。
 また、摩耗試験結果は、実施例1に比べて10倍程度改善されていた。
 実施例1において、フッ化炭素基および炭化水素基およびアルコキシシリル基を主成分とする物質(2)を除いて同様の方法で被膜を製造した。
この場合、やはり有機含フッ素エーテル基、または有機含フッ素ポリエーテル基とシリル基を主成分とする物質とシロキサン基を主成分とする物質を含む膜厚が略5nmの複合膜が前記ステンレス製の金型表面に形成できた。
 このとき、複合膜の膜厚は、ナノメートル程度であったので、金型の加工精度を損なうことは全くなかった。また、ステンレス製の金型表面の水滴接触角は、洗浄工程の有無に関わらず、略108度(臨界表面エネルギーは12mN/m程度)であり、テフロン(登録商標)コート以上の離型性を付与できた。
 また、摩耗試験では、実施例1と同様の結果を得た。
 実施例1において、アルコキシシリル基を主成分とする物質(3)を除いて同様の方法で被膜を製造した。
 この場合、当然有機含フッ素エーテル基、または有機含フッ素ポリエーテル基とシリル基を主成分とする物質とフッ化炭素基と炭化水素基とシリル基を主成分とする物質を含む膜厚が略4nmの複合膜が前記ステンレス製の金型表面に形成できた。
 このとき、複合膜の膜厚は、やはりナノメートル程度であったので、金型の加工精度を損なうことは全くなかった。また、ステンレス製の金型表面の水滴接触角は、洗浄工程の有無に関わらず、略114度(臨界表面エネルギーは6mN/m程度)であり、テフロン(登録商標)コーに比べると格段に優れた離型性を付与できた。
 また、摩耗試験では、実施例1と比べて多少劣化が早かったが、ほぼ同様の結果を得た。
 実施例1において、フッ化炭素基および炭化水素基およびアルコキシシリル基を主成分とする物質(2)とアルコキシシリル基を主成分とする物質(3)を除いて同様の方法で被膜を製造した。
 この場合、当然有機含フッ素エーテル基、または有機含フッ素ポリエーテル基とシリル基を主成分とする物質(1)で膜厚が略3nmの被膜が前記ステンレス製の金型表面に形成できた。
 このとき、複合膜の膜厚は、やはりナノメートル程度であったので、金型の加工精度を損なうことは全くなかった。また、ステンレス製の金型表面の水滴接触角は、洗浄工程の有無に関わらず、略116度(臨界表面エネルギーは5mN/m程度)であり、テフロン(登録商標)コーに比べると格段に優れた離型性を付与できた。
 摩耗試験では、実施例1と比べて多少劣化が早かったが、実用レベルで使用できる被膜であった。
 なお、この被膜は、離型性は優れていたが、実施例1で得た複合膜に比べて、金型内での成型物流動性と入り込み性が多少悪くなることが判明した。
 さらに、実施例1において、上述のシラノール縮合触媒の代わりに、ケチミン化合物、又は、TiO2等の金属酸化物、有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物が利用できた。
 例えば、実施例1に置いて前述のシラノール縮合触媒の代わりに、ケチミン化合物(ジャパンエポキシレジン社のH3、およびチッソ社のサイラエースS340を用いてみたが、性能はほぼ同じであった。)を同じ濃度で用いた場合、反応時間を30分まで短縮できた。
 さらに、実施例1において、前述のシラノール縮合触媒とケチミン化合物、又は、TiO2等の金属酸化物、有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を1:9~9:1で混合して用いると、さらにさらに反応時間を短縮できた。
 具体的には、実施例1に置いて上述のシラノール縮合触媒濃度を半分にして、上述のケチミン化合物(例えば、S340)を等モル混合した場合(1:1)、反応時間を20分まで短縮できた。
 以上に述べた全ての実施例に於いて、シラノール縮合触媒として、カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステル及びチタン酸エステルキレート類が利用可能である。さらに具体的には、酢酸第1錫、ジブチル錫ジラウレート、ジブチル錫ジオクテート、ジブチル錫ジアセテート、ジオクチル錫ジラウレート、ジオクチル錫ジオクテート、ジオクチル錫ジアセテート、ジオクタン酸第1錫、ナフテン酸鉛、ナフテン酸コバルト、2-エチルヘキセン酸鉄、ジオクチル錫ビスオクチリチオグリコール酸エステル塩、ジオクチル錫マレイン酸エステル塩、ジブチル錫マレイン酸塩ポリマー、ジメチル錫メルカプトプロピオン酸塩ポリマー、ジブチル錫ビスアセチルアセテート、ジオクチル錫ビスアセチルラウレート、テトラブチルチタネート、テトラノニルチタネート、及びビス(アセチルアセトニル)ジープロピルチタネートを用いることが可能である。
 また、利用できるケチミン化合物は特に限定されるものではないが、例えば、2,5,8-トリアザ-1,8-ノナジエン、3,11-ジメチル-4,7,10-トリアザ-3,10-トリデカジエン、2,10-ジメチル-3,6,9-トリアザ-2,9-ウンデカジエン、2,4,12,14-テトラメチル-5,8,11-トリアザ-4,11-ペンタデカジエン、2,4,15,17-テトラメチル-5,8,11,14-テトラアザ-4,14-オクタデカジエン、2,4,20,22-テトラメチル-5,12,19-トリアザ-4,19-トリエイコサジエン等がある。
 また、利用できる有機酸としても特に限定されるものではないが、例えば、ギ酸、あるいは酢酸、プロピオン酸、ラク酸、マロン酸等があり、ほぼ同様の効果があった。
 なお、複合膜形成溶液の溶媒を蒸発させて被膜を形成する場合には、複合膜形成溶液に用いる非水系の溶媒の沸点は、低いほど早く蒸発除去できるので都合がよいが、取扱いの上では50~150℃程度がよかった。
 一方、後洗浄を行う場合には、複合膜形成溶液に用いるフッ化炭素系有機溶媒の沸点は、高いほど安定しているが、取扱いの上では150~350℃程度がよかった。
 なお、前記フッ化炭素系有機溶媒には、フロン系溶媒や、フロリナート(3M社製品)、アフルード(旭ガラス社製品)等があるが、これらは1種単独で用いても良いし、良く混ざるものなら2種以上を組み合わせてもよい。さらに、クロロホルム等有機塩素系の溶媒を添加しても良かった。さらにまた、吸着溶媒として、水とアルコール(水とアルコールの組成比は、体積比で2:1~10:1で、アルコールの種類は、エタノールが良かったが、プロパノールやブタノール、エチレングリコールでも使用可能であった。)の混合溶媒を用いる場合には、シラノール縮合触媒や助触媒であるケチミン等は使用できないが、触媒無しでも超音波分散しておけば1時間程度で良好な化学吸着単分子膜を形成できた。
 さらに、洗浄用の有機溶媒としては、水を含まない炭化水素系溶媒、あるいはフッ化炭素系溶媒やシリコーン系溶媒を用いることが可能であるが、特に沸点が50~300℃のものが使用に適していた。
 具体的に使用可能なものは、石油ナフサ、ソルベントナフサ、石油エーテル、石油ベンジン、イソパラフィン、ノルマルパラフィン、デカリン、工業ガソリン、灯油、ジメチルシリコーン、フェニルシリコーン、アルキル変性シリコーン、ポリエーテルシリコーン等を挙げることができる。
 さらにまた、有機含フッ素エーテル基、または有機含フッ素ポリエーテル基およびアルコキシシリル基を含む物質(1)には、下記式(化12または13)が利用できた。また、耐光性は多少悪くなるが、下記式(化14)で示される物質が利用できたが、何れも平均分子量は2000~5000程度のものが利用しやすかった。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 さらに具体的には、下記式(化15)や式(化16)で示される物質が利用できた。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 また、フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする物質(2)としてCF3-(CF2o-(CH22-Si(OA)3(添え字のoは1~10の整数、Aは、メチル基やチル基のアルキル基。)が挙げられるが、具体的には、以下に示す物質(1)-(18)が使用しやすかった。
 (1) CF3CH2O(CH215Si(OCH33
(2) CF3(CH22Si(CH32(CH2 )15Si(OCH33
(3) CF3(CH26Si(CH32(CH2 )9 Si(OCH33
(4) CF3COO(CH215Si(OCH33
(5) CF3(CF27(CH22Si(OCH33
(6) CF3(CF25(CH22Si(OCH33
(7) CF3(CF2764Si(OCH33
(8) CF3CH2O(CH215Si(OC253
(9) CF3(CH22Si(CH32(CH2 )15Si(OC253
(10) CF3(CH26Si(CH32(CH2 )9 Si(OC253
(11) CF3COO(CH215Si(OC253
(12) CF3(CF27(CH22Si(OC253
(13) CF3(CF25(CH22Si(OC373
(14) CF3(CF2764Si(OC253
(15) (CF3(CF27(CH222Si(OCH32
(16) (CF3(CF25(CH222Si(OCH32
(17) (CF3(CF27(CH223SiOCH3
(18) (CF3(CF25(CH223SiOCH3
 さらにまた、アルコキシシリル基を主成分とする物質(3)として(AO)3Si(OSi(OA)2pOA(pは0~10、Aは、メチル基やチル基のアルキル基、OAはClまたはNCOでも良い。)が挙げられるが、以下に示す物質(1)-(14)が使用しやすかった。
(1)Si(OCH34
(2)SiH(OCH33
(3)SiH2(OCH32
(4)(CH3O)3Si(OSi(OCH32mOCH3
(5)Si(OC253
(6)SiH(OC253
(7)SiH2(OC252
(8)(H52O)3Si(OSi(OC252mOC25
ここで、mは、1~6整数を表す。
従来の金型断面(a)と本発明の金型断面(b)の概念図。(a)は、金型表面に離型剤を塗布した状態、(b)は、金型表面に離型性単分子膜を形成した状態を示す。 実施例1において、離型性の複合膜が形成された金型断面を分子レベルまで拡大した概念図。 本発明の実施例1で得られた離型性金型と比較例1および2で得られた離型性金型の耐摩耗性試験結果を水滴接触角の変化で比較して示した図。 実施例2において、シリカ膜を介して離型性の複合膜が形成された金型断面を分子レベルまで拡大した概念図。
符号の説明
1 金型
2 塗布された離型剤
3 本発明の離型膜
4 有機含フッ素エーテル基、または有機含フッ素ポリエーテル基とシリル基を主成分とする物質(1)
5 フッ化炭素基および炭化水素基およびアルコキシシリル基を主成分とする物質(2)
6 アルコキシシリル基を主成分とする物質(3)
 離型性の複合膜
 シリカ膜

Claims (24)

  1.  表面に高耐久性の離型性複合膜が形成された金型であって、前記被膜が、フッ化炭素基と炭化水素基を主成分とする長鎖物質とフッ化炭素基と炭化水素基とシリル基を主成分とする短鎖物質とシロキサン基を主成分とする物質を含む複合膜であることを特徴とする離型性金型。
  2.  フッ化炭素基と炭化水素基を主成分とする長鎖物質の分子長がフッ化炭素基と炭化水素基とシリル基を主成分とする短鎖物質の分子長の2倍以上であることを特徴とする請求項1に記載の離型性金型。
  3.  フッ化炭素基と炭化水素基を主成分とする長鎖物質がフッ化炭素基と炭化水素基を含む側鎖を持っていることを特徴とする請求項1および2に記載の離型性金型。
  4.  フッ化炭素基と炭化水素基を主成分とする長鎖物質とフッ化炭素基と炭化水素基とシリル基を主成分とする短鎖物質が、シロキサン基を主成分とする物質よりなるシリカ膜中で前記シリル基を介して前記シリカ膜および/または金型表面に結合固定されていることを特徴とする請求項1乃至3に記載の離型性金型。
  5.  フッ化炭素基と炭化水素基を主成分とする長鎖物質とフッ化炭素基と炭化水素基とシリル基を主成分とする短鎖物質とシロキサン基を主成分とする物質が、それぞれシリル基およびシロキサン基を介して互いにまたは個々に金型表面に結合固定されていることを特徴とする請求項1乃至3に記載の離型性金型。
  6.  離型性複合膜に含まれるフッ化炭素基と炭化水素基を主成分とする長鎖物質とフッ化炭素基と炭化水素基とシリル基を主成分とする短鎖物質とシロキサン基を主成分とする物質の分子組成比が、1:10:10~1:0.1:0.1であることを特徴とする請求項1乃至5に記載の離型性金型。
  7.  表面に離型性複合膜が形成された金型であって、前記被膜が、少なくともフッ化炭素基と炭化水素基を主成分とする長鎖物質を含み前記被膜の臨界表面エネルギーが5~20mN/mに制御されていることを特徴とする請求項1乃至6に記載の離型性金型。
  8.  フッ化炭素基と炭化水素基を主成分とする長鎖物質が有機含フッ素エーテル基または有機含フッ素ポリエーテル基を主成分とする長鎖物質であることを特徴とする請求項1乃至7に記載の離型性金型。
  9.  有機含フッ素エーテル基または有機含フッ素ポリエーテル基が下記式(化1または化2)に示した官能基であることを特徴とする請求項1乃至8に記載の離型性金型。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
  10.  離型性複合膜がシリカ膜を介して形成されていることを特徴とする請求項1乃至9に記載の離型性金型。
  11.  複合膜がさらにメチルシリル基を含んでいることを特徴とする請求項1乃至10に記載の離型性金型。
  12.  少なくともフッ化炭素基と炭化水素基を主成分とし且つアルコキシシリル基を含む長鎖物質(1)とフッ化炭素基および炭化水素基およびアルコキシシリル基を主成分とする短鎖物質(2)とアルコキシシリル基を主成分とする物質(3)とシラノール縮合触媒とを有機溶媒で希釈した複合膜形成溶液に金型表面を接触させて反応させ離型性複合膜を形成する工程を含むことを特徴とする離型性金型の製造方法。
  13.  少なくともフッ化炭素基と炭化水素基を主成分とし且つアルコキシシリル基を含む長鎖物質(1)とフッ化炭素基および炭化水素基およびアルコキシシリル基を主成分とする短鎖物質(2)とアルコキシシリル基を主成分とする物質(3)とシラノール縮合触媒とを有機溶媒で希釈した複合膜形成溶液に金型表面を接触させて反応させ被膜を形成する工程と、前記金型表面の余分な溶液を有機溶媒を用いて洗浄除去またはふき取り除去する工程とを含むことを特徴とする離型性金型の製造方法。
  14.  フッ化炭素基と炭化水素基を主成分とし且つアルコキシシリル基を含む長鎖物質(1)とフッ化炭素基および炭化水素基およびアルコキシシリル基を主成分とする短鎖物質(2)とアルコキシシリル基を主成分とする物質(3)の分子混合比を、1:10:10~1:0.1:0.1にしておくことを特徴とする請求項12および13に記載の離型性金型の製造方法。
  15.  少なくともフッ化炭素基と炭化水素基を主成分とし且つアルコキシシリル基を含む長鎖物質(1)として有機含フッ素エーテル基または有機含フッ素ポリエーテル基およびアルコキシシリル基を含む長鎖物質を用いることを特徴とする請求項12乃至14に記載の離型性金型の製造方法。
  16.  有機含フッ素エーテル基または有機含フッ素ポリエーテル基およびアルコキシシリル基を含む長鎖物質として下記式(化3または4)に示した物質を用い、
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする短鎖物質(2)としてCF3-(CF2o-(CH22-Si(OA)3(添え字のoは整数、Aはアルキル基、OAはClまたはNCOでも良い。)を用い、アルコキシシリルキ基を主成分とする物質(3)として(AO)3Si(OSi(OA)2pOA(pは0または整数、Aはアルキル基、OAはClまたはNCOでも良い。)を用いることを特徴とする請求項15に記載の離型性金型の製造方法。
  17.  有機含フッ素エーテル基または有機含フッ素ポリエーテル基およびアルコキシシリル基を含む長鎖物質として、下記式(化5)に示した物質を用い、
    Figure JPOXMLDOC01-appb-C000005
    フッ化炭素基と炭化水素基とアルコキシシリル基を主成分とする短鎖物質(2)としてCF3-(CF2o-(CH22-Si(OA)3(添え字のoは整数、Aはアルキル基。)を用い、アルコキシシリルキ基を主成分とする物質(3)として(AO)3Si(OSi(OA)2pOA(Pは0または整数、Aはアルキル基。)を用いることを特徴とする請求項15に記載の離型性金型の製造方法。
  18.  シラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物、あるいはTiO2等の金属酸化物を用いることを特徴とする請求項12乃至17に記載の離型性金型の製造方法。
  19.  シラノール縮合触媒にケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物および/あるいはTiO2等の金属酸化物を混合して用いることを特徴とする請求項12乃至17に記載の離型性金型の製造方法。
  20.  有機溶媒としてフッ化炭素系有機溶媒を用いることを特徴とする請求項12乃至19に記載の離型性金型の製造方法。
  21.  複合膜形成前にあらかじめ金型表面にシリカ膜を形成しておくことを特徴とする請求項12乃至20に記載の離型性金型の製造方法。
  22.  複合膜形成後、250~450℃で加熱することを特徴とする請求項12乃至21に記載の離型性金型の製造方法。
  23.  複合膜形成後、さらにメチルシリル基を含んだ物質を溶かした溶液で処理することを特徴とする請求項12乃至21に記載の離型性金型の製造方法。
  24.  請求項1乃至11の金型を用いて作製した離型剤が付着してない成型品。
PCT/JP2008/052620 2008-02-18 2008-02-18 金型とその製造方法及びそれを用いて作製した成型品 WO2009104235A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/666,954 US8623127B2 (en) 2008-02-18 2008-02-18 Metal mold, process for manufacturing the same, and molded article produced using the mold
PCT/JP2008/052620 WO2009104235A1 (ja) 2008-02-18 2008-02-18 金型とその製造方法及びそれを用いて作製した成型品
US14/092,301 US9174366B2 (en) 2008-02-18 2013-11-27 Metal mold, process for manufacturing the same, and molded article produced using the mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/052620 WO2009104235A1 (ja) 2008-02-18 2008-02-18 金型とその製造方法及びそれを用いて作製した成型品

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/666,954 A-371-Of-International US8623127B2 (en) 2008-02-18 2008-02-18 Metal mold, process for manufacturing the same, and molded article produced using the mold
US14/092,301 Division US9174366B2 (en) 2008-02-18 2013-11-27 Metal mold, process for manufacturing the same, and molded article produced using the mold

Publications (1)

Publication Number Publication Date
WO2009104235A1 true WO2009104235A1 (ja) 2009-08-27

Family

ID=40985130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/052620 WO2009104235A1 (ja) 2008-02-18 2008-02-18 金型とその製造方法及びそれを用いて作製した成型品

Country Status (2)

Country Link
US (2) US8623127B2 (ja)
WO (1) WO2009104235A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015514307A (ja) * 2012-03-19 2015-05-18 エーファウ・グループ・エー・タルナー・ゲーエムベーハー ボンディング圧を圧力伝達する圧力伝達プレート
CN109454779A (zh) * 2018-12-06 2019-03-12 河南省科学院高新技术研究中心 一种塑料制品隔离脱模剂及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6913523B2 (ja) * 2017-06-13 2021-08-04 住友化学株式会社 芳香族ポリエステル粒子および芳香族ポリエステル粒子の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230215A (ja) * 1992-02-21 1993-09-07 Showa Denko Kk フッ素含有ポリオルガノシルセスキオキサンとその製造方法
JP2000026608A (ja) * 1999-04-28 2000-01-25 Asahi Glass Co Ltd フルオロシリコ―ン共重合体オイル
JP2005280020A (ja) * 2004-03-29 2005-10-13 Kazufumi Ogawa 金型とその製造方法及びそれを用いて作成した成型品

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4118235A (en) * 1975-09-18 1978-10-03 Daikin Kogyo Co., Ltd. Mold release agent
US4681714A (en) * 1985-12-27 1987-07-21 Dow Corning Corporation Multiple release mold coating
DE3779940T2 (de) * 1986-03-28 1993-02-18 Daikin Ind Ltd Zusammensetzung eines formtrennmittels.
US5240774A (en) * 1990-10-25 1993-08-31 Matsushita Electric Industrial Co., Ltd. Fluorocarbon-based coating film and method of manufacturing the same
JP2500178B2 (ja) 1991-07-26 1996-05-29 松下電器産業株式会社 基材表面の撥水撥油処理方法
WO1993019918A1 (en) * 1992-03-30 1993-10-14 Daikin Industries, Ltd. Mold release composition
US5219925A (en) * 1992-07-21 1993-06-15 Tse Industries, Inc. Mold release composition and method of coating a mold core
JPH08337654A (ja) * 1995-06-14 1996-12-24 Matsushita Electric Ind Co Ltd 化学吸着膜の製造方法及びこれに用いる化学吸着液
JP2002270541A (ja) * 2001-03-08 2002-09-20 Matsushita Electric Ind Co Ltd モールド、モールドの製造方法及びパターン形成方法
DE502004000020D1 (de) * 2003-07-10 2005-08-11 Wacker Chemie Gmbh Vernetzbare Siloxan-Harnstoff-Copolymere

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230215A (ja) * 1992-02-21 1993-09-07 Showa Denko Kk フッ素含有ポリオルガノシルセスキオキサンとその製造方法
JP2000026608A (ja) * 1999-04-28 2000-01-25 Asahi Glass Co Ltd フルオロシリコ―ン共重合体オイル
JP2005280020A (ja) * 2004-03-29 2005-10-13 Kazufumi Ogawa 金型とその製造方法及びそれを用いて作成した成型品

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015514307A (ja) * 2012-03-19 2015-05-18 エーファウ・グループ・エー・タルナー・ゲーエムベーハー ボンディング圧を圧力伝達する圧力伝達プレート
CN109454779A (zh) * 2018-12-06 2019-03-12 河南省科学院高新技术研究中心 一种塑料制品隔离脱模剂及其制备方法
CN109454779B (zh) * 2018-12-06 2020-11-03 河南省科学院高新技术研究中心 一种塑料制品隔离脱模剂及其制备方法

Also Published As

Publication number Publication date
US9174366B2 (en) 2015-11-03
US20100301191A1 (en) 2010-12-02
US8623127B2 (en) 2014-01-07
US20140087068A1 (en) 2014-03-27

Similar Documents

Publication Publication Date Title
JP4444713B2 (ja) 離型性金型とその製造方法、及び成型品の製造方法
JP5233006B2 (ja) 金型とその製造方法及びそれを用いて作製した成型品
JP5741435B2 (ja) 撥水膜形成用組成物、撥水膜付き基体およびその製造方法並びに輸送機器用物品
US6277485B1 (en) Antisoiling coatings for antireflective surfaces and methods of preparation
JP5950399B2 (ja) 有機−無機透明ハイブリッド皮膜とその製造方法
EP2720808B1 (en) Hydrophobic hydrocarbon coatings
JP2014503380A (ja) 疎水性フッ素化コーティング
JP4746032B2 (ja) チタン酸化物粒子の分散液、チタン酸化物薄膜、有機機能膜形成用溶液、有機機能膜形成基体及びその製造方法
EP3312242B1 (en) Protective coating composition with mixed functionalities
JP6881458B2 (ja) 撥水膜形成用組成物、撥水膜、撥水膜付き基体及び物品
TW200804978A (en) Treated substratum with hydrophilic region and water-repellent region and process for producing the same
WO2013061747A1 (ja) 被膜付き基板の製造方法
JP5526393B2 (ja) 撥水撥油防汚性複合膜形成溶液とそれを用いた撥水撥油防汚性複合膜の製造方法とそれを用いた撥水撥油防汚性複合膜
JP5050190B2 (ja) 微粒子とその製造方法
WO2009104235A1 (ja) 金型とその製造方法及びそれを用いて作製した成型品
JP5092130B2 (ja) 撥水撥油防汚性ガラス板とその製造方法及びそれを用いた自動車
WO2012081524A1 (ja) 含フッ素化合物、コーティング用組成物、撥水層付き基材およびその製造方法
US20100136237A1 (en) Solvent for cleaning of organic thin film
JP5422855B2 (ja) 転写ロールとその製造方法およびそれを用いて製造したフィルムまたはシート
JP2008279398A (ja) 撥水撥油防汚性表面を有する部材とその撥水撥油防汚性表面の製造方法。
JP5391497B2 (ja) 金型とそれを用いた成型品の製造方法
JPH04255307A (ja) 成形用部材およびその製造方法
JP5589215B2 (ja) 太陽エネルギー利用装置とその製造方法
CN111936442A (zh) 修饰固体表面的方法
WO2009104236A1 (ja) 撥水撥油防汚性ガラス板とその製造方法及びそれを用いた自動車

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08711444

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12666954

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08711444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP