WO2009102025A1 - セメント混和材、これを含むセメント組成物及びコンクリート - Google Patents

セメント混和材、これを含むセメント組成物及びコンクリート Download PDF

Info

Publication number
WO2009102025A1
WO2009102025A1 PCT/JP2009/052421 JP2009052421W WO2009102025A1 WO 2009102025 A1 WO2009102025 A1 WO 2009102025A1 JP 2009052421 W JP2009052421 W JP 2009052421W WO 2009102025 A1 WO2009102025 A1 WO 2009102025A1
Authority
WO
WIPO (PCT)
Prior art keywords
cement
concrete
water
cement admixture
self
Prior art date
Application number
PCT/JP2009/052421
Other languages
English (en)
French (fr)
Inventor
Toshiharu Kishi
Tae-Ho Ahn
Akira Hosoda
Kaoru Kobayashi
Original Assignee
The University Of Tokyo
National University Corporation Yokohama National University
East Japan Railway Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The University Of Tokyo, National University Corporation Yokohama National University, East Japan Railway Company filed Critical The University Of Tokyo
Priority to EP20090710317 priority Critical patent/EP2246315A4/en
Priority to US12/867,603 priority patent/US8105433B2/en
Priority to KR1020107020342A priority patent/KR101272408B1/ko
Priority to CN200980105275.9A priority patent/CN101952217B/zh
Publication of WO2009102025A1 publication Critical patent/WO2009102025A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S106/00Compositions: coating or plastic
    • Y10S106/04Bentonite

Definitions

  • the present invention relates to a cement admixture, a cement composition containing the cement admixture, and concrete.
  • Concrete used for construction of a structure includes cement, water, aggregate, and the like, and has a property of hardening by a hydration reaction.
  • This hardened concrete tended to be cracked easily due to stress applied or volume change caused by temperature change or drying.
  • water easily enters through the concrete, causing water leakage and the like, causing problems such as a decrease in durability of the structure and a deterioration in aesthetic appearance.
  • water leakage due to cracking becomes a problem, but in this case, since repair work for cracking is difficult, the cost becomes high.
  • measures have been taken such as injecting fillers after repairs and repairing them, or applying concrete waterproofing and waterproofing to prevent the structure from being affected by cracks. Yes.
  • the present invention has been made to meet such demands, and provides a cement admixture that can form concrete that has sufficient self-healing properties and that can maintain good self-healing properties over a long period of time.
  • the purpose is to do.
  • Another object of the present invention is to provide a cement composition containing such a cement admixture and concrete using the cement composition.
  • the cement admixture of the present invention is characterized by containing an expansion material and a swellable alumina silicate.
  • the cement admixture of the present invention when incorporated in a cement composition and applied as concrete, can impart excellent self-healing property to such concrete, and can maintain this self-healing property over a long period of time. . Although this factor is not clear, it is presumed as follows.
  • the expandable material in the cement admixture of the present invention generates a hydrate having an expandability by a hydration reaction with water in the cracked portion when cracking occurs in the concrete.
  • the crack can be filled by expansion.
  • swellable alumina silicate in cement admixture also swells by producing crystalline hydrate by hydration reaction with water, and insoluble precipitates are formed by combining with hydrate from expansion material. Can be formed.
  • the swellable alumina silicate immediately swells and fills the voids in the concrete first, so that the hydrate in the concrete can precipitate. Decrease.
  • the swellable alumina silicate contained in the cement admixture absorbs moisture at the initial stage of solidification of the concrete. Therefore, when this cement composition containing alumina silicate is applied to concrete and solidified, it can suppress the hydration of the expansion material and leave an unreacted expansion material. Therefore, since this solidified concrete contains a larger amount of unreacted expansion material than in the past, self-healing based on the above-described mechanism can be maintained well over a long period of time. Even if a crack occurs after the period has elapsed, the crack can be repaired quickly.
  • action of this invention is not necessarily limited to these.
  • the cement admixture of the present invention preferably further contains magnesium silicate.
  • the concrete using the cement composition containing the alumina silicate having the swelling property as described above may cause a decrease in fluidity due to quick moisture absorption, but the cement composition contains magnesium silicate.
  • the fluidity can be appropriately increased and it becomes easy to place concrete.
  • magnesium silicate can increase the stability of hydrates formed from swellable alumina silicate, so that the chemical stability of the precipitate filling the cracked portion is increased and the self-repairing property is further improved. be able to.
  • the cement admixture preferably further contains calcium phosphate.
  • Calcium phosphate can react with components in the hydrate of cement to generate a hydrate having a high binding force, and can refine the structure of the cement hydrate. Therefore, by including calcium phosphate, even when cracks occur in the concrete, it is possible to form a dense hydrate as described above at the cracked site, and the water-stopping performance of the concrete after self-healing is further increased. To improve.
  • the cement admixture further contains a compound having a carbonate group and calcium oxide.
  • these components in the cement admixture can react with each other to form a carbonate compound having low solubility in water when water is present when cracks occur in the concrete. Therefore, according to the cement admixture containing the carbonate group-containing compound and calcium oxide, the cracked portion of the concrete is more easily repaired, and the self-healing performance is further enhanced.
  • the cement admixture further contains a water reducing agent.
  • a water reducing agent By including the water reducing agent, the hydration reaction of the expansion material in the cement when solidifying the concrete can be delayed, so that the self-healing performance of the concrete can be maintained for a longer period.
  • the present invention also provides a cement composition containing cement and the cement admixture of the present invention. Furthermore, the concrete containing the cement composition of the said invention, water, and an aggregate is provided. Since the concrete containing the cement composition of the present invention includes the cement admixture of the present invention, as described above, the concrete can exhibit excellent self-healing when applied to concrete, and after the concrete is solidified. Even after a long period of time, the self-healing property can be exhibited well.
  • the cement admixture of the present embodiment contains an expansion material and a swellable alumina silicate.
  • the expandable material is a component having a property of expanding upon contact with water, and as the expandable material, a material that expands by generating crystals by a hydration reaction is preferable.
  • a cement-based expansion material that produces crystals of ettringite or calcium hydroxide by a hydration reaction can be exemplified.
  • the expansion material include CSA (calcium sulfoaluminate), CaO, and CaSO 4 .
  • the cement composition may include a single type of expansion material or a combination of a plurality of types.
  • the expansion material is preferably contained in an amount of 4 to 6% by mass in the cement composition containing cement and a cement admixture.
  • the alumina silicate which has swelling property is an alumina silicate which has the characteristic which swells by absorption of a water
  • a bentonite is mentioned.
  • the bentonite those having a cation such as Na + , Ca + , Mg + and K + can be applied without particular limitation.
  • Na + -type bentonite Na-bentonite is particularly preferable because it is excellent in the above-described swelling property, can suppress the occurrence of cracks in the concrete itself, and can impart a good property of maintaining self-healing properties.
  • the cement admixture of a preferred embodiment preferably contains a combination of other components in addition to the expandable material and the swellable alumina silicate.
  • magnesium silicate is mentioned as another component.
  • Magnesium silicate makes it possible to sufficiently maintain the fluidity of concrete even when moisture is absorbed by the addition of alumina silicate having swelling properties such as bentonite during the preparation of concrete. Therefore, the addition of magnesium silicate makes the concrete easy to handle.
  • Magnesium silicate can also enhance the stability of hydrates formed from swellable alumina silicate, thus improving the chemical stability of precipitates filling the cracks and further improving self-healing properties. be able to.
  • the cement admixture may contain a magnesium compound other than magnesium silicate.
  • magnesite (MgCO 3 ) and dolomite (CaMg (CO 3 ) 2 ) can form highly stable Mg—Si-based hydrates and CaCO 3 hydrates at cracked parts of concrete, and self This is preferable because it contributes to improvement of repairability.
  • Talc is particularly useful as a component to be contained in a cement admixture because it often contains a combination of the above-mentioned suitable components having magnesium and carbonate groups in addition to magnesium silicate.
  • calcium phosphate is also preferable.
  • the form of calcium phosphate is not particularly limited, and a first calcium phosphate (Ca (H 2 PO 4 ) 2 ), a second calcium phosphate (CaHPO 4 ), a third calcium phosphate (Ca 3 (PO 4 ) 2 ) and the like are appropriately selected and applied. can do.
  • Calcium phosphate is preferably contained in the cement composition in an amount of 0.3 to 1% by mass.
  • dicalcium phosphate is produced in the cement hydrate and reacts with calcium hydroxide in the concrete containing the cement composition, and hydroxyapatite (for example, Ca 10 (PO 2 ) 6 (OH) having a high binding strength. 2 ) and a dense hydrate can be formed in the cracked portion. Therefore, dicalcium phosphate is particularly preferable because it can impart high self-healing properties to concrete.
  • a compound having a carbonate group and calcium oxide in combination.
  • a metal carbonate is suitable as the compound having a carbonic acid group.
  • a salt having a carbonate group is preferable, and NaHCO 3 (soda soda) is particularly preferable because it is inexpensive and easily available and has excellent properties for repairing cracks in concrete.
  • the compound having a carbonate group is preferably contained in the cement composition so as to be 10% by mass or less, and more preferably contained so as to satisfy 0.01 to 3% by mass.
  • the cement admixture further contains a water reducing agent.
  • a water reducing agent a well-known thing as a water reducing agent used for concrete, such as a water reducing agent, AE water reducing agent, a high performance water reducing agent, a high performance AE water reducing agent, can be applied without a restriction
  • the polycarboxylic acid-based water reducing agent can suppress the decrease in the fluidity of the concrete accompanying the addition of the above-described swellable alumina silicate, and maintains the fluidity to improve the workability. It is also suitable from the viewpoint.
  • the water reducing agent is preferably contained in the cement composition in an amount of 0.8 to 3.0% by mass.
  • the water reducing agent is not included as a cement admixture, but may be added when preparing concrete using a cement composition as described later.
  • the cement admixture may further contain an inorganic cement crystal growth agent that promotes the formation of cement crystals in addition to the above-described components.
  • the inorganic cement crystal growth agent include a Portland cement composition and a water-soluble silicic fluoride composed of at least one of fine silica, water glass, magnesium silicofluoride or magnesia, and silicic fluoride containing silica.
  • the thing which has a composition to include is mentioned (refer patent 25212274).
  • a preferred embodiment of the cement composition comprises cement and the cement admixture of the present invention as described above.
  • Portland cement other mixed cements and the like can be applied without particular limitation.
  • Examples of Portland cement include low heat Portland cement, ordinary Portland cement, early-strength Portland cement, ultra-early strong Portland cement, moderately hot Portland cement, and sulfate-resistant Portland cement.
  • Examples of the mixed cement include blast furnace cement, silica cement, fly ash cement and the like.
  • Portland cement is preferable, and ordinary Portland cement, moderately hot Portland cement, or low heat Portland cement is particularly preferable.
  • the cement composition preferably contains 80 to 95% by mass of cement, and contains the above-mentioned cement admixture as a component other than this.
  • the concrete of this embodiment includes a cement composition containing the above-described cement admixture of the present invention, water, and aggregate.
  • the aggregate used for the concrete include coarse aggregate and fine aggregate.
  • coarse aggregate and fine aggregate are usually called concrete, and what added only fine aggregate is usually called mortar. Concrete shall include both of these.
  • the coarse aggregate include river gravel, sea gravel, mountain gravel, crushed stone, and slag crushed stone.
  • the fine aggregate include river sand, sea sand, and mountain sand. Note that coarse aggregates and fine aggregates can be distinguished by ordinary classification (sieving or the like).
  • the amount of water contained in such concrete is preferably 25 to 60% by mass, more preferably 40 to 50% by mass when the cement composition is 100% by mass. If the amount of water exceeds 60% by mass, a large amount of water may remain in the concrete after solidification, resulting in insufficient strength, and excessive expansion of the expansion material in the cement admixture. It may become difficult to maintain the self-healing property for a long time due to progress. It should be noted that even if the amount of water is less than 25% by mass, there is no particular problem with the solidification of the concrete and its properties after curing, but when the high-performance water reducing agent (admixture) is not used, etc. Mixing may be difficult. For example, when forming high strength concrete or high fluidity concrete, the amount of water may be less than 25% by mass.
  • the content of the cement composition in the concrete is preferably 300 to 1000 kg, more preferably 400 to 800 kg per 1 m 3 , for example, in the case where the cement composition is normally classified as mortar as described above. Further, in the case of those normally classified as concrete, it is preferably 200 to 700 kg, more preferably 300 to 450 kg per 1 m 3 of the concrete.
  • the content of the cement composition is within these ranges, the solidification of the concrete by the cement composition is favorably generated, and excellent strength is obtained, and unreacted expansion material or the like suitably remains in the concrete. An excellent self-healing property can be obtained and the self-healing property can be maintained over a long period of time.
  • the content of fine aggregate in the concrete is preferably 1000 to 1700 kg per 1 m 3 of, for example, those normally classified as mortar. 1200 to 1500 kg is more preferable.
  • it is preferably 700 to 1000 kg per 1 m 3 of the concrete, more preferably 800 to 900 kg, and the content of coarse aggregate is 800 to 1100 kg per 1 m 3 of concrete. And is more preferably 850 to 950 kg.
  • Such concrete can be obtained, for example, by adding the cement admixture to cement to form a cement composition, and adding water and aggregate to the cement composition.
  • the concrete of the present invention only needs to contain the cement admixture in its composition, for example, some of the components contained in the cement admixture are not contained in the cement composition. It may be added at the time of production.
  • the concrete after solidification is cracked by the expanding material in the cement admixture and the alumina silicate having swelling property. Even if this occurs, the cracked portion can be repaired by the formation of precipitates resulting from hydration of these components.
  • the cement admixture contains swellable alumina silicate, the hydration of the expansion material and the like in the solidification of the concrete is suppressed, and the solidified concrete has a large amount of unreacted expansion material remaining. Become. Therefore, such concrete has good self-healing property after solidification, and can maintain this self-healing property well over a long period of time.
  • the cement admixture further includes magnesium silicate, calcium phosphate, a combination of a compound having a carbonate group and calcium oxide, or other components such as a water reducing agent
  • self-healing as described above can be further improved.
  • the self-healing property can be further maintained, and the effects of the present invention can be obtained better.
  • the concrete of the present invention containing such a cement admixture is excellent in the property of recovering the water-stopping performance itself even if cracking occurs after solidification, and can maintain such a property for a long time.
  • it is extremely suitable for structures such as underground structures and tunnels where water leakage is likely to occur and repair is difficult.
  • samples 1, 2 and 6 do not have the composition of the cement admixture of the present invention, and thus correspond to comparative examples of the present invention, and other samples correspond to examples of the present invention.
  • Table 1 it was confirmed that in the samples of the examples, the cracks were clogged with precipitates and self-healing progressed, whereas in the comparative example, self-healing did not progress. It was.
  • the cracked portion is clogged with precipitates after 3 days from the start of curing in water, and this precipitate has the color that the original cement has. It was also found close to.
  • the unit of the numerical value shown in Table 3 is kg / m 3 in all cases except for the unit specified in the table.
  • N and L described in the column of cement indicate the type of cement, as shown below. Further, other components described in the table are as follows.
  • High performance AE water reducing agent Polycarboxylic acid
  • cracks were introduced into the concrete portion at the age of 7 days.
  • the crack was generated by applying a tensile force to the sample for evaluation.
  • the crack width of the concrete portion of the sample for evaluation was fixed at 0.1 mm, 0.2 mm, and 0.4 mm.
  • sample no. No. 23 corresponds to an example of the present invention. Since 21 and 22 do not satisfy the composition of the present invention, they correspond to comparative examples. From the results shown in Table 3, sample No. 23 is a sample No. of Comparative Example. Compared with 21 and 22, it was confirmed that it had excellent water-stopping properties and a large reduction in crack width, and had excellent self-healing properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

 本発明は、十分な自己治癒性を有するとともに、長期にわたって自己治癒性を良好に維持することが可能なコンクリートを形成できるセメント混和材を提供することを目的とする。本発明のセメント混和材は、膨張材と、膨潤性を有するアルミナシリケートとを含有する。このセメント混和材は、セメントと組み合わせてセメント組成物を形成する。また、このセメント組成物と、水と、骨材とを混合して自己治癒性に優れるコンクリートが提供される。

Description

セメント混和材、これを含むセメント組成物及びコンクリート
本発明は、セメント混和材、これを含むセメント組成物及びコンクリートに関する。
構造物の構築に用いられるコンクリートは、セメント、水、骨材等を含み、水和反応によって硬化する性質を有する。この硬化後のコンクリートは、応力が作用したり、温度変化や乾燥等により体積変化が生じたりすることによって、ひび割れが発生し易い傾向にあった。このようなひび割れが発生すると、コンクリートを通って水が浸入し易くなり、漏水等の原因となるほか、構造物の耐久性の低下や、美観の悪化といった問題が生じることになる。また、例えば地下構造物の場合にもひび割れによる漏水が問題となるが、この場合、ひび割れの補修工事が困難であるため、コストが割高となる。従来は、ひび割れの発生後に充填剤を注入して修復を行ったり、ひび割れが発生しても構造物に影響を与えないようにコンクリートに防水工、止水工を施したりする対策がとられている。
しかし、上述した修復や防水工、止水工等の対策は、必然的にコストの増加や構造物建造の際の工期の長期化等を招くこととなるため、できるだけ省略できることが望ましい。そこで、ひび割れが発生してもこれを自ら修復できる自己治癒コンクリートが開発されている(例えば、特許文献1、2参照)。これらのコンクリートは、自らひび割れを修復できる特性を有していることから、上述したような修復や防水工、止水工等を行わなかった場合であっても止水性能や耐久性を維持することができる。
特許第3658568号公報 特開2005-239482号公報
近年、上述したような自己治癒コンクリートに対しては、ひび割れ後の止水性能の更なる向上が求められている。また、構造物に用いられる場合、打設後の間もない期間だけでなく、長期間が経過した後にひび割れが生じた場合であっても、十分な自己治癒性を発揮し得ることも求められている。
そこで、本発明はこのような要求に応えるべくなされたものであり、十分な自己治癒性を有するとともに、長期にわたって自己治癒性を良好に維持することが可能なコンクリートを形成できるセメント混和材を提供することを目的とする。本発明はまた、かかるセメント混和材を含むセメント組成物、及び、このセメント組成物を用いたコンクリートを提供することを目的とする。
上記目的を達成するために、本発明のセメント混和材は、膨張材と、膨潤性を有するアルミナシリケートとを含有することを特徴とする。
本発明のセメント混和材は、セメント組成物に含有させてコンクリートとして適用した場合、かかるコンクリートに対して優れた自己治癒性を付与でき、また長期にわたってこの自己治癒性を維持することを可能とする。この要因については明らかではないものの、次のように推測される。
すなわち、本発明のセメント混和材中の膨張材は、コンクリートにひび割れが生じた際に、ひび割れ部において、水との水和反応により膨張性を有する水和物を生成し、この水和物の膨張によってひび割れ部を充填することができる。また、セメント混和材中の膨潤性を有するアルミナシリケートも、水との水和反応により結晶性の水和物を生成して膨潤し、膨張材による水和物と組み合わされて不溶性の析出物を形成することができる。これらを含むコンクリートにおいて、ひび割れ部に水が浸入した際には、まず、膨潤性を有するアルミナシリケートが即座に膨潤してコンクリート中の空隙を先に埋め、コンクリートにおける水和物が析出可能な空間を減少させる。そして、これに続いて、膨張材から溶出する成分がコンクリート中に析出することなく拡散によってひび割れ部に移動することで、ひび割れ部を選択的に充填するという優れた効果を発揮することができると考えられる。その結果、本発明のセメント混和材を含むセメント組成物を用いたコンクリートによれば、ひび割れが発生したとしても、膨張材及び膨潤性を有するアルミナシリケートの両方の作用によってひび割れが十分に修復され、止水性能が良好に維持されるようになる。
また、セメント混和材に含まれている膨潤性を有するアルミナシリケートは、コンクリートの固化の初期段階には水分を吸収する。したがって、このアルミナシリケートを含むセメント組成物は、コンクリートに適用して固化させる際に、膨張材の水和を抑制することができ、未反応の膨張材を残すことができる。したがって、この固化後のコンクリートは、未反応の膨張材を従来に比して多く含むものとなるため、上述したようなメカニズムに基づく自己治癒性を長期にわたって良好に維持することができるほか、長期間経過後にひび割れが生じた場合であっても、このひび割れを素早く修復することができる。ただし、本発明の作用は必ずしもこれらに限定されない。
上記本発明のセメント混和材は、マグネシウムシリケートを更に含有することが好ましい。上記のような膨潤性を有するアルミナシリケートを含むセメント組成物を用いたコンクリートは、素早く水分吸収が生じるため流動性が低下する場合があるが、セメント組成物がマグネシウムシリケートを含むことで、コンクリートの流動性を適切に高めることができ、コンクリートの打設等を行い易くなる。また、マグネシウムシリケートは、膨潤性を有するアルミナシリケートから生成する水和物の安定性を高めることができるため、ひび割れ部を充填する析出物の化学的安定性を高めて自己修復性を更に向上させることができる。
また、セメント混和材は、リン酸カルシウムを更に含有することが好ましい。リン酸カルシウムは、セメントの水和物中の成分と反応して、結合力が高い水和物を生成することができ、セメント水和物の構造を緻密化することができる。したがって、リン酸カルシウムを含むことで、コンクリートにひび割れが生じた場合であってもこのひび割れ部位に上記のような緻密な水和物を形成することができ、自己治癒後のコンクリートの止水性能が更に向上するようになる。
さらに、セメント混和材は、炭酸基を有する化合物、及び、酸化カルシウムを更に含有すると一層好ましい。セメント混和材におけるこれらの成分は、コンクリートにひび割れが生じた場合に水が存在すると、互いに反応して水への溶解性が低い炭酸化合物を形成することができる。したがって、炭酸基を有する化合物、及び、酸化カルシウムを含むセメント混和材によれば、コンクリートのひび割れ部分がより修復され易くなり、自己治癒性能が更に高められる。
さらにまた、セメント混和材は、減水剤を更に含有すると好ましい。減水剤を含むことで、コンクリートを固化させる際のセメント中の膨張材の水和反応を遅延させることができるため、コンクリートの自己治癒性能をより長期にわたって維持することが可能となる。
また、本発明は、セメントと、上記本発明のセメント混和材とを含有するセメント組成物を提供する。さらに、上記本発明のセメント組成物と、水と、骨材とを含有するコンクリートを提供する。本発明のセメント組成物を含むコンクリートは、上記本発明のセメント混和材を含むことから、上述したように、コンクリートに適用した場合に優れた自己治癒性を発揮し得るほか、そのコンクリートの固化後、長期間経過後であっても自己治癒性を良好に発揮し得るものとなる。
本発明によれば、コンクリートに対して優れた自己治癒性を付与でき、また長期にわたってこの自己治癒性を良好に維持することが可能なセメント混和材を提供することが可能となる。また、このようなセメント混和材を含み、高い自己治癒性を有するとともに自己治癒性を長く良好に維持できるセメント組成物及びこれを含むコンクリートを提供することが可能となる。
以下、本発明の好適な実施の形態について説明する。
まず、好適な実施形態のセメント混和材について説明する。本実施形態のセメント混和材は、膨張材と、膨潤性を有するアルミナシリケートとを含有するものである。膨張材は、水との接触により膨張する性質を有する成分であり、かかる膨張材としては、水和反応により結晶を生じて膨張するものが好適である。例えば、水和反応によりエトリンガイトや水酸化カルシウムの結晶を生じるセメント系膨張材が例示できる。膨張材としては、例えばCSA(カルシウムサルホアルミネート)、CaO、CaSO等が挙げられる。セメント組成物は、膨張材として、単一種のものを含んでいてもよく、複数種のものを組み合わせて含んでいてもよい。この膨張材は、セメント及びセメント混和材を含むセメント組成物中、4~6質量%含まれることが好ましい。
また、膨潤性を有するアルミナシリケートは、水分の吸収により膨潤する特性を有するアルミナシリケートであり、例えば、ベントナイトが挙げられる。ベントナイトとしては、Na、Ca、Mg、K等の陽イオンを有するものを特に制限なく適用できる。なかでも、上述した膨潤性に優れており、コンクリートのひび割れの発生自体を抑制できるほか、自己治癒性を維持する特性を良好に付与できるNa型のベントナイト(Na-ベントナイト)が特に好ましい。
好適な実施形態のセメント混和材は、膨張材及び膨潤性を有するアルミナシリケートに加えて、他の成分を組み合わせて含むと好ましい。他の成分としては、まず、マグネシウムシリケートが挙げられる。マグネシウムシリケートは、コンクリートの調製時にベントナイト等の膨潤性を有するアルミナシリケートの添加により水分が吸収されても、コンクリートの流動性を十分に維持することを可能とする。したがって、マグネシウムシリケートの添加により、コンクリートの取り扱い性が良好となる。また、マグネシウムシリケートは、膨潤性を有するアルミナシリケートから生成する水和物の安定性を高めることもできるため、ひび割れ部を充填する析出物の化学的安定性を高めて自己修復性を更に向上させることができる。
また、セメント混和材には、マグネシウムシリケート以外のマグネシウム化合物を含んでいてもよい。特に、マグネサイト(MgCO)やドロマイト(CaMg(CO)は、コンクリートのひび割れ部位に安定性の高いMg-Si系水和物やCaCO水和物を形成することができ、自己修復性の向上に寄与するため好ましい。タルクは、マグネシウムシリケートに加えて、マグネシウムや炭酸基を有する上記のような好適な成分を組み合わせて含む場合が多いことから、セメント混和材に含有させる成分として特に有用である。
セメント混和材に添加する他の成分としては、リン酸カルシウムも好ましい。リン酸カルシウムの形態は特に制限されず、第1リン酸カルシウム(Ca(HPO)、第2リン酸カルシウム(CaHPO)、第3リン酸カルシウム(Ca(PO)等を適宜選択して適用することができる。リン酸カルシウムは、セメント組成物中、0.3~1質量%含まれていると好ましい。
なかでも、第2リン酸カルシウムは、セメント組成物を含むコンクリートにおいて、セメント水和物中に生じや水酸化カルシウムを反応し、結合力が高いハイドロキシアパタイト(例えば、Ca10(PO(OH))を生じて、ひび割れ部に緻密な水和物を形成することができる。したがって、第2リン酸カルシウムは、コンクリートに高い自己修復性を付与することが可能であるため、特に好ましい。
また、他の成分としては、炭酸基を有する化合物及び酸化カルシウムを組み合わせて含有するとより好ましい。まず、炭酸基を有する化合物としては、金属の炭酸塩が好適であり、例えば、LiCO(炭酸リチウム)、NaCO(炭酸ナトリウム)、KCO(炭酸カリウム)、MgCO(炭酸マグネシウム)、LiHCO(炭酸水素リチウム)、NaHCO(炭酸水素ナトリウム)、KHCO(炭酸水素カリウム)、Mg(HCO(炭酸水素マグネシウム)等が挙げられる。なかでも、炭酸基を有する塩が好ましく、NaHCO(重曹)が、安価で入手が容易であり、しかもコンクリートのひび割れを修復する特性に優れることから特に好ましい。この炭酸基を有する化合物は、セメント組成物中で、10質量%以下となるように含まれていると好ましく、0.01~3質量%を満たすように含まれているとより好ましい。
一方、酸化カルシウム(CaO)は、水との反応によりCa(OH)を生じるが、この反応は体積膨張であり、上述した膨張材としても機能する。したがって、混和材が膨張材としてCaOを含む場合は、CaOが膨張材と添加剤の両方として機能し得る程度の含有量とすればよい。炭酸基を有する化合物とCaOを組み合わせて含むことで、コンクリートにひび割れが生じた場合、これらの両成分の反応によるCaCO等の安定性の高い反応物を形成でき、一層優れた自己治癒性が得られるようになる。
さらに、セメント混和材は、減水剤を更に含有すると好適である。減水剤としては、減水剤、AE減水剤、高性能減水剤、高性能AE減水剤等のコンクリートに用いられる減水剤として公知のものを制限なく適用できる。なかでも、ポリカルボン酸系の減水剤は、上述した膨潤性を有するアルミナシリケートの添加に伴うコンクリートの流動性の低下を抑制することができ、流動性を良好に維持して作業性を向上させる観点からも好適である。減水剤は、セメント組成物中、0.8~3.0質量%含まれると好ましい。なお、減水剤は、セメント混和材として含まれるのではなく、後述するようにセメント組成物を用いてコンクリートを調製する際に添加してもよい。
さらに、セメント混和材は、上述した各成分に加え、セメント結晶の生成を促進する無機質セメント結晶増殖剤を更に含んでいてもよい。この無機質セメント結晶増殖剤としては、例えば、ポルトランドセメント組成物と、微細シリカ、水ガラス、ケイフッ化マグネシウム又はマグネシア、及び、シリカを含むケイフッ化物のうちの少なくとも一種からなる水溶性ケイフッ化物と、を含む組成を有するものが挙げられる(特許2521274号公報参照)。このようなセメント結晶増殖材は、コンクリートにひび割れが生じた場合、このひび割れ部分に浸透してこの部分に結晶を生じさせることができる。したがって、かかるセメント結晶増殖材を更に含むことで、コンクリートの自己修復性を一層向上させることができる。
好適な実施形態のセメント組成物は、セメントと、上述したような本発明のセメント混和材とを含むものである。セメントとしては、ポルトランドセメントやその他の混合セメント等を特に制限なく適用できる。ポルトランドセメントとしては、低熱ポルトランドセメント、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、耐硫酸塩ポルトランドセメント等が挙げられる。また、混合セメントとしては、高炉セメント、シリカセメント、フライアッシュセメント等が挙げられる。セメントとしては、ポルトランドセメントが好ましく、なかでも普通ポルトランドセメント、中庸熱ポルトランドセメント又は低熱ポルトランドセメントが好ましい。セメント組成物は、セメントを80~95質量%含み、これ以外の成分として上述したセメント混和材を組み合わせて含むことが好適である。
次に、コンクリートの好適な実施形態について説明する。
本実施形態のコンクリートは、上述した本発明のセメント混和材を含むセメント組成物と、水と、骨材とを含むものである。コンクリートに用いる骨材としては、粗骨材や細骨材が挙げられる。ここで、セメント組成物に、骨材として粗骨材と細骨材との両方を加えたものは通常コンクリートと呼ばれ、細骨材のみを加えたものは通常モルタルと呼ばれるが、本発明のコンクリートは、これらの両方を含むこととする。粗骨材としては、川砂利、海砂利、山砂利、砕石、スラグ砕石等が挙げられ、細骨材としては、川砂、海砂、山砂等が挙げられる。なお、粗骨材と細骨材とは、通常の分類(ふるい分け等)によって区別することができる。
このようなコンクリートに含まれる水の量は、セメント組成物を100質量%としたとき、25~60質量%となる量であると好ましく、40~50質量%となる量であるとより好ましい。この水の量が60質量%を超えると、固化後のコンクリート中に多量の水が残ってしまい、強度が不十分となるおそれがあるほか、セメント混和材中の膨張材の水和が過度に進行してしまうなどにより、自己治癒性を長期に維持するのが困難となる場合がある。なお、水の量が25質量%を下回っても、コンクリートの固化やその硬化後の性状には特に支障はないが、高性能減水剤(混和剤)を用いない場合等において、作業時にコンクリートの練り混ぜが困難となることもある。例えば高強度のコンクリートや高流動コンクリートを形成する場合などは、水の量が25質量%を下回ってもよい。
また、コンクリート中のセメント組成物の含有量は、例えば、上述したように通常モルタルに分類されるものの場合、その1mあたり、300~1000kgであると好ましく、400~800kgであるとより好ましい。また、通常コンクリートに分類されるものの場合、当該コンクリート1mあたり、200~700kgであると好ましく、300~450kgであるとより好ましい。セメント組成物の含有量がこれらの範囲であると、セメント組成物によるコンクリートの固化が良好に生じ、優れた強度が得られるほか、コンクリート中に未反応の膨張材等が好適に残存して、優れた自己治癒性が得られるとともに、長期にわたって自己治癒性を維持することが可能となる。
さらに、このようなコンクリートにおいて十分な強度を得る観点からは、コンクリート中の細骨材の含有量は、例えば、通常モルタルに分類されるものの場合、その1mあたり、1000~1700kgであると好ましく、1200~1500kgであるとより好ましい。また、通常コンクリートに分類されるものの場合、当該コンクリート1mあたり700~1000kgであると好ましく、800~900kgであるとより好ましく、また、粗骨材の含有量は、コンクリート1mあたり800~1100kgであると好ましく、850~950kgであるとより好ましい。
このようなコンクリートは、例えば、セメントに対して上記セメント混和材を加えてセメント組成物とし、これに水や骨材を加えて混合することにより得ることができる。ただし、本発明のコンクリートは、その組成中に上記セメント混和材を含むものであればよいため、例えば、セメント混和材に含まれる一部の成分が、セメント組成物には含まれずに、コンクリートの作製時に添加されたものであってもよい。
上述したような構成を有する本発明のセメント混和材を含むセメント組成物を用いたコンクリートによれば、まず、セメント混和材中の膨張材及び膨潤性を有するアルミナシリケートにより、固化後のコンクリートにひび割れが生じた場合であっても、これらの成分の水和等に起因する析出物の形成によってひび割れ部を修復することができる。また、セメント混和材が膨潤性を有するアルミナシリケートを含むことから、コンクリートの固化における膨張材等の水和が抑制されており、固化後のコンクリートは未反応の膨張材等が多く残存したものとなる。したがって、このようなコンクリートは、固化後に良好な自己治癒性を有するほか、この自己治癒性を長期にわたって良好に維持することができる。
特に、セメント混和材がマグネシウムシリケート、リン酸カルシウム、炭酸基を有する化合物と酸化カルシウムとの組み合わせ、又は、減水剤等の他の成分を更に含むことで、上述したような自己治癒性が更に向上したり、また自己治癒性を更に維持したりすることが可能となり、本発明の効果が一層良好に得られるようになる。
したがって、このようなセメント混和材を含む本発明のコンクリートは、固化後にひび割れが生じたとしても、止水性能を自ら回復する特性に優れ、またこのような特性を長く維持することができることから、例えば、地下構造物、トンネル等の漏水が発生し易く、また補修が困難であった構造物に対して極めて好適である。
以下、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
[セメント組成物による自己治癒性の評価]
(セメント組成物の調製;サンプルNo.1~18)
 下記表1に示す各成分を配合して、サンプルNo.1~18のセメント組成物を調製した。なお、下記表1中の各成分は次の通りである。また、表中の数値の単位は、セメント組成物全量中の該当成分の重量%である。
OPC :普通ポルトランドセメント
CSA :カルシウムサルホアルミネート、DENKA CSA#20
Na-Ben:Na-ベントナイト、HOJUN(Super clay)
タルク :日本タルク、汎用タルク(SSS)
フライアッシュ:ジェイペック、フライアッシュII種
(評価)
 まず、上述したサンプルNo.1~18の各セメント組成物に、それぞれセメント組成物に対する水の割合(%、重量基準)が45%となるように水を混合し、セメント組成物を固化させた。セメント組成物の水和がほとんど完了したと判断される120日経過後の各サンプルに、幅0.2~0.3mmのひび割れを発生させた後、再び水中にて養生を行った。
そして、このように養生を行った各サンプルのひび割れ形成部について観察を行い、自己治癒の程度について評価を行った。得られた結果を表1に示す。なお、表1中のA~Dの評価は、次の基準に基づいて行った。
A:ひび割れ部が析出物で急速に充填され、析出物の化学的安定性が極めて高い。
B:ひび割れ部が析出物でゆっくりと充填され、析出物の化学的安定性が高い。
C:ひび割れ部が析出物で充填されるが、析出物の化学的安定性は、さほど高くない。
D:ひび割れ部に析出物が充填せずに、ひび割れの自己治癒効果がない。
Figure JPOXMLDOC01-appb-T000001
表1中、サンプル1、2及び6は、本発明のセメント混和材の組成を有していないため本発明の比較例に該当し、それ以外のサンプルが本発明の実施例に該当する。表1に示すように、実施例のサンプルは、いずれもひび割れ部が析出物により閉塞され、自己治癒が進んでいたのに対し、比較例のサンプルは、自己治癒が進んでいないことが確認された。また、特に、評価がAであったサンプルは、水中での養生開始から3日後にひび割れ部が析出物により閉塞しており、また、この析出物は、もとのセメントが有している色に近いことも判明した。
以上の結果から、実施例のセメント組成物によれば、良好な自己治癒性が得られることが判明した。このようなセメント組成物での結果から、このセメント組成物をコンクリートに適用しても優れた自己治癒性が得られると推測される。
[コンクリートによる自己治癒性の評価]
(コンクリートの調製;サンプルNo.19)
 下記表2に示す各成分を配合してサンプルNo.19のコンクリートを調製した。表2中の数値は、コンクリート1mあたりの各成分の含有量(kg)であり、セメント組成物の欄に付した括弧内の数値は、セメント組成物中の該当成分の含有割合(重量%)である。表2中の各成分は、上記表1に示したものと同じものを用いた。また、減水剤のSP-IIIは、遅延効果を有する高性能減水剤(シーカメント1100NT)である。
Figure JPOXMLDOC01-appb-T000002
(コンクリートの調製;サンプルNo.20)
 また、比較例のコンクリートのサンプルとして、セメント組成物を、上記サンプルNo.1のものに代えたこと以外は、サンプルNo.19と同様にしてサンプルNo.20のコンクリートを調製した。
(評価)
 上記で得られたサンプルNo.19及び20のコンクリートを28日養生した後、これに幅0.1~0.3mmのひび割れを導入し、更に水中でこれらの養生を行った。その結果、サンプルNo.20のコンクリートでは、ひび割れ導入後、28日養生を行ってもひび割れ部に析出物が生じていなかった。これに対し、サンプルNo.19のコンクリートでは、ひび割れ導入後、3日の養生でひび割れ部に析出物が生じ、22日の養生では、幅0.22mmのひび割れ部分も完全に閉塞していることが確認された。
[コンクリートによる止水性の評価]
(コンクリートの調製;サンプルNo.21~23)
 下記表3に示す各成分を配合して、サンプルNo.21~23のコンクリートを調製した。
Figure JPOXMLDOC01-appb-T000003
なお、表3中に示した数値の単位は、表中に単位を明記しているものを除いていずれもkg/mである。また、表3中、セメントの欄に記載したN及びLはセメントの種類を示しており、以下に示すとおりである。さらに、表中に記したその他の成分も次に示すとおりである。
N:普通ポルドランドセメント(密度=3.15g/cm
L:低熱ポルドランドセメント(密度=3.24g/cm
膨張材:エトリンガイト系(密度=3.12g/cm、比表面積3000cm/g)
Z1:無機質セメント結晶増殖材
細骨材:千葉県君津市法木産陸砂(密度=2.65g/cm
粗骨材:埼玉県秩父郡両親村産砕石(密度=2.66g/cm
高性能AE減水剤:ポリカルボン酸系
(評価)
 まず、各コンクリートのサンプルについて下記の養生をそれぞれ行うことで、各種の評価用サンプルを得た。この評価用サンプルとしては、10cm×10cm×40cmの直方体形状のコンクリートを作製した。コンクリートは、材齢7日まで封緘した状態で保管した。硬化中の膨張コンクリートには、PC鋼棒により外的に拘束を与えた。
次いで、各評価用サンプルに対し、材齢7日において、それぞれコンクリート部分にひび割れを導入した。ひび割れは、評価用サンプルに引張力を作用させて発生させた。評価用サンプルのコンクリート部分のひび割れ幅は、0.1mm、0.2mm、0.4mmに固定した。
そして、ひび割れの固定後、ひび割れ間に常に水が流れる状態として、ひび割れの治癒性状を観察した。この際、1mの水頭を与えた。また、評価用サンプルに作用する動水勾配は、10m/mであった。この評価においては、(1)常時透水状態にして前述の透水量を測定して得られた止水性の評価に加え、(2)常時透水状態にしてひび割れ部をマイクロスコープにより観察し、そのひび割れ幅が減少する度合いについても評価した。得られた評価結果をそれぞれ表4に示す。なお、表4中の評価は、以下の基準に基づいて行ったものである。
(1)止水性の評価
A:7日間で透水量が初期透水量の50分の1以下となる場合
B:7日間で透水量が初期透水量の50分の1よりも大きく10分の1以下となる場合
C:7日間で透水量が初期透水量の10分の1よりも大きく2分の1以下となる場合
D:7日間で透水量を初期透水量の2分の1以下にすることができない場合
(2)ひび割れ幅の評価
A:28日間でひび割れ幅が0.1mm以上減少した場合
B:28日間でひび割れ幅の減少が0.05mm以上0.1mm未満であった場合
C:28日間でひび割れ幅の減少が0.025mm以上0.5mm未満であった場合
D:28日間でのひび割れ幅の減少が0.025mm未満であった場合
Figure JPOXMLDOC01-appb-T000004
表4中、サンプルNo.23は本発明の実施例に該当し、サンプルNo.21及び22は、本発明の組成を満たしていないため比較例に該当する。表3に示す結果より、実施例のサンプルNo.23は、比較例のサンプルNo.21及び22と比較して、止水性に優れ、またひび割れ幅の減少度合いも大きく、優れた自己治癒性を有していることが確認された。

Claims (7)

  1. 膨張材と、膨潤性を有するアルミナシリケートと、を含有する、ことを特徴とするセメント混和材。
  2. マグネシウムシリケートを更に含有する、ことを特徴とする請求項1記載のセメント混和材。
  3. リン酸カルシウムを更に含有する、ことを特徴とする請求項1又は2記載のセメント混和材。
  4. 炭酸基を有する化合物、及び、酸化カルシウムを更に含有する、ことを特徴とする請求項1~3のいずれか一項に記載のセメント混和材。
  5. 減水剤を更に含有する、ことを特徴とする請求項1~4のいずれか一項に記載のセメント混和材。
  6. セメントと、請求項1~5のいずれか一項に記載のセメント混和材と、を含有することを特徴とするセメント組成物。
  7. 請求項6記載のセメント組成物と、水と、骨材と、を含有する、ことを特徴とするコンクリート。
PCT/JP2009/052421 2008-02-14 2009-02-13 セメント混和材、これを含むセメント組成物及びコンクリート WO2009102025A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20090710317 EP2246315A4 (en) 2008-02-14 2009-02-13 CEMENT MIXTURE AND CEMENT COMPOSITION AND CONCRETE CONTAINING CEMENT MIXTURE
US12/867,603 US8105433B2 (en) 2008-02-14 2009-02-13 Cement admixture, and cement composition and concrete containing the cement admixture
KR1020107020342A KR101272408B1 (ko) 2008-02-14 2009-02-13 시멘트 혼화재, 이것을 포함하는 시멘트 조성물 및 콘크리트
CN200980105275.9A CN101952217B (zh) 2008-02-14 2009-02-13 水泥外加剂、含有该外加剂的水泥组合物和混凝土

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008033548A JP5388020B2 (ja) 2008-02-14 2008-02-14 セメント混和材、これを含むセメント組成物及びコンクリート
JP2008-033548 2008-02-14

Publications (1)

Publication Number Publication Date
WO2009102025A1 true WO2009102025A1 (ja) 2009-08-20

Family

ID=40957055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052421 WO2009102025A1 (ja) 2008-02-14 2009-02-13 セメント混和材、これを含むセメント組成物及びコンクリート

Country Status (6)

Country Link
US (1) US8105433B2 (ja)
EP (1) EP2246315A4 (ja)
JP (1) JP5388020B2 (ja)
KR (1) KR101272408B1 (ja)
CN (1) CN101952217B (ja)
WO (1) WO2009102025A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101087700B1 (ko) 2010-02-26 2011-11-30 인하대학교 산학협력단 콘크리트 균열 보수용 충진재 및 이를 이용한 보수방법
JP5536530B2 (ja) * 2010-05-10 2014-07-02 電気化学工業株式会社 膨潤性自己治癒セメント混和材及びセメント組成物
JP5633780B2 (ja) * 2010-05-11 2014-12-03 株式会社大林組 誘発ひび割れの止水構造及びそれに用いる誘発ひび割れ用止水部材並びに誘発ひび割れ止水構造の構築方法
JP5888887B2 (ja) 2011-07-01 2016-03-22 国立大学法人 東京大学 コンクリート構造物における漏水を伴うひび割れ用補修材料及び該補修材料を用いた該ひび割れの補修方法
JP5856443B2 (ja) * 2011-11-11 2016-02-09 国立大学法人 東京大学 セメント混和材およびセメント組成物
KR101248960B1 (ko) * 2012-11-29 2013-04-03 한국건설기술연구원 자기장을 이용한 자기치유 기능을 갖는 아스팔트 혼합물 및 그의 균열 보수방법
JP6067367B2 (ja) * 2012-12-21 2017-01-25 太平洋マテリアル株式会社 水硬性組成物
KR101713828B1 (ko) 2014-11-04 2017-03-10 (주)에스엠테크 무시멘트 촉진형 혼화제 및 이를 포함하는 무시멘트 조성물
CN104692693B (zh) * 2015-02-05 2017-06-20 江苏苏博特新材料股份有限公司 一种改性氧化钙类膨胀熟料、其制备方法及其应用
CN106007442B (zh) * 2016-05-18 2018-02-09 同济大学 用于蒸养水泥基材料裂缝自愈合的矿物外加剂及其制备
CN106082797B (zh) * 2016-06-06 2018-05-15 长安大学 一种提高铜渣粉在水泥砂/净浆中分散均匀性的方法
CN106431167B (zh) * 2016-08-31 2019-05-24 湖南志洲新型干混建材有限公司 一种用于水泥基材料的多元膨胀材料
US10620065B2 (en) * 2016-12-01 2020-04-14 Ut-Battelle, Llc Cement having stress-indicating properties
CN106946518B (zh) * 2017-01-09 2019-11-15 华南理工大学 一种速凝水泥基渗透结晶型自修复防水材料及其制备方法
NO20171617A1 (en) * 2017-10-11 2019-04-12 Restone As Composition of a cement additive material and application thereof to improve properties of cementitious products
KR102230734B1 (ko) 2018-09-05 2021-03-22 (주)에스엠테크 비소성 시멘트 콘크리트용 반응 촉진제 및 이를 포함하는 비소성 시멘트 콘크리트 조성물
KR20200030224A (ko) 2018-09-12 2020-03-20 (주)에스엠테크 비소성 시멘트 콘크리트용 반응 촉진제 및 이를 포함하는 비소성 시멘트 콘크리트 조성물
KR102035523B1 (ko) * 2019-03-12 2019-10-24 세움건설 주식회사 균열 치유형 방수제 조성물
JP7351232B2 (ja) * 2020-02-12 2023-09-27 信越化学工業株式会社 押出成形用水硬性組成物、押出成形体の製造方法及び押出成形体

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2521274B2 (ja) 1987-01-24 1996-08-07 ジャパン・ザイペックス株式会社 コンクリ−ト劣化抑止結晶増殖剤
JP2000272943A (ja) * 1999-03-25 2000-10-03 Denki Kagaku Kogyo Kk セメント混和材、セメント組成物、及びグラウト材
JP2000280223A (ja) * 1999-03-31 2000-10-10 Denki Kagaku Kogyo Kk コンクリート管体製造用の内面仕上げ材
JP2004292201A (ja) * 2003-03-26 2004-10-21 Denki Kagaku Kogyo Kk コンクリート用混和材及びコンクリート組成物
JP2005035836A (ja) * 2003-07-14 2005-02-10 Denki Kagaku Kogyo Kk セメントコンクリート用混和材
JP3658568B2 (ja) 2002-03-13 2005-06-08 東日本旅客鉄道株式会社 コンクリート
JP2005239482A (ja) 2004-02-26 2005-09-08 East Japan Railway Co 自己治癒コンクリート
JP2006219320A (ja) * 2005-02-09 2006-08-24 Denki Kagaku Kogyo Kk 遠心力成形助剤、コンクリート、それを用いたヒューム管の製造方法、及びヒューム管。
JP2006248887A (ja) * 2005-02-14 2006-09-21 Dc Co Ltd セメント組成物

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8818113D0 (en) * 1988-07-29 1988-09-01 Blue Circle Ind Plc Reinforced cementitious compositions
US5338349A (en) * 1992-08-27 1994-08-16 Firecomp, Inc. Fire resistant and high temperature insulating composition
JPH08217502A (ja) * 1995-02-08 1996-08-27 Denki Kagaku Kogyo Kk セメント混和材及びセメント組成物
JP3922733B2 (ja) * 1995-02-23 2007-05-30 電気化学工業株式会社 セメント急結材及びセメント組成物
FR2800061B1 (fr) * 1999-10-25 2001-12-28 Rhodia Chimie Sa ACCELERATEUR DE PRISE POUR LIANT HYDRAULIQUE A BASE DE COMPOSEES DE l'ALUMINIUM ET DE POLYOLS
JP4562929B2 (ja) * 2001-02-14 2010-10-13 独立行政法人農業・食品産業技術総合研究機構 セメント組成物
US7087109B2 (en) * 2002-09-25 2006-08-08 Z Corporation Three dimensional printing material system and method
US6957702B2 (en) * 2003-04-16 2005-10-25 Halliburton Energy Services, Inc. Cement compositions with improved mechanical properties and methods of cementing in a subterranean formation
CN100347249C (zh) * 2003-05-08 2007-11-07 同济大学 建筑用水泥基渗透结晶型防水材料及其制备方法
CN100427423C (zh) * 2006-08-07 2008-10-22 武汉理工大学 高抗裂自愈合混凝土掺和料及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2521274B2 (ja) 1987-01-24 1996-08-07 ジャパン・ザイペックス株式会社 コンクリ−ト劣化抑止結晶増殖剤
JP2000272943A (ja) * 1999-03-25 2000-10-03 Denki Kagaku Kogyo Kk セメント混和材、セメント組成物、及びグラウト材
JP2000280223A (ja) * 1999-03-31 2000-10-10 Denki Kagaku Kogyo Kk コンクリート管体製造用の内面仕上げ材
JP3658568B2 (ja) 2002-03-13 2005-06-08 東日本旅客鉄道株式会社 コンクリート
JP2004292201A (ja) * 2003-03-26 2004-10-21 Denki Kagaku Kogyo Kk コンクリート用混和材及びコンクリート組成物
JP2005035836A (ja) * 2003-07-14 2005-02-10 Denki Kagaku Kogyo Kk セメントコンクリート用混和材
JP2005239482A (ja) 2004-02-26 2005-09-08 East Japan Railway Co 自己治癒コンクリート
JP2006219320A (ja) * 2005-02-09 2006-08-24 Denki Kagaku Kogyo Kk 遠心力成形助剤、コンクリート、それを用いたヒューム管の製造方法、及びヒューム管。
JP2006248887A (ja) * 2005-02-14 2006-09-21 Dc Co Ltd セメント組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2246315A4

Also Published As

Publication number Publication date
CN101952217A (zh) 2011-01-19
EP2246315A1 (en) 2010-11-03
EP2246315A4 (en) 2013-12-04
JP5388020B2 (ja) 2014-01-15
KR20100126736A (ko) 2010-12-02
CN101952217B (zh) 2015-08-26
US8105433B2 (en) 2012-01-31
US20110132231A1 (en) 2011-06-09
KR101272408B1 (ko) 2013-06-07
JP2009190937A (ja) 2009-08-27

Similar Documents

Publication Publication Date Title
JP5388020B2 (ja) セメント混和材、これを含むセメント組成物及びコンクリート
JP5574956B2 (ja) 耐硫酸塩高炉スラグ微粉末と耐硫酸塩セメント及びその製造方法
JP6258697B2 (ja) 速硬性グラウト組成物
KR20160092258A (ko) 도로 및 교면 포장층 조성물
HRP20140812T1 (hr) Postupak za proizvodnju betonskih dijelova i struktura
JP2006131488A (ja) 耐酸性グラウト組成物
JP2009167042A (ja) 耐海水性セメントアスファルトモルタル用急硬性セメントおよびそれを用いた耐海水性セメントアスファルトモルタル
KR100643524B1 (ko) 단면복구용 모르타르 및 이를 이용한 단면복구방법
JP5019912B2 (ja) 耐硫酸塩セメント
Ramezanianpour Sulfate Resistance and Properties of Portland-Limestone Cements
KR101565119B1 (ko) 도로 및 교면 방수층 조성물
JP2007332010A (ja) セメント組成物及びこれを含むコンクリート
JP6067367B2 (ja) 水硬性組成物
JP5155846B2 (ja) セメント用膨張材組成物
KR20140017247A (ko) 내염성 시멘트를 포함하는 반강성 도로포장용 고내구성 시멘트와 이를 가진 주입 시공한 고내구성 반강성 도로포장 시공방법
JP3936933B2 (ja) グラウト用セメント組成物、グラウト用モルタル組成物、及びグラウト材料
JP4201265B2 (ja) 超速硬・高流動モルタル組成物および超速硬・高流動モルタル
JP2006027937A (ja) グラウト用セメント組成物及びグラウト材料
JP6639917B2 (ja) コンクリート、およびコンクリートの製造方法
JP7005719B1 (ja) 補修モルタル材料、補修モルタル組成物及び硬化体
JP6956468B2 (ja) 速硬性グラウト組成物
JP6101108B2 (ja) セメント混和材およびセメント組成物
JP6764702B2 (ja) 水硬性組成物
JP4535723B2 (ja) 中込材
JP7503011B2 (ja) 急結剤用カルシウムアルミネート、および発泡型急結剤

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980105275.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09710317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009710317

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009710317

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107020342

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12867603

Country of ref document: US