WO2009098936A1 - 燃料ガス精製設備、発電システム及び燃料合成システム - Google Patents

燃料ガス精製設備、発電システム及び燃料合成システム Download PDF

Info

Publication number
WO2009098936A1
WO2009098936A1 PCT/JP2009/050811 JP2009050811W WO2009098936A1 WO 2009098936 A1 WO2009098936 A1 WO 2009098936A1 JP 2009050811 W JP2009050811 W JP 2009050811W WO 2009098936 A1 WO2009098936 A1 WO 2009098936A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel gas
fuel
power generation
furnace
carbonizer
Prior art date
Application number
PCT/JP2009/050811
Other languages
English (en)
French (fr)
Inventor
Makoto Kawase
Kazuyoshi Ichikawa
Maromu Ohtaka
Hiroshi Morita
Original Assignee
Central Research Institute Of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute Of Electric Power Industry filed Critical Central Research Institute Of Electric Power Industry
Priority to EP09707179A priority Critical patent/EP2243815A4/en
Priority to CN2009801035221A priority patent/CN101932678A/zh
Priority to US12/865,868 priority patent/US8636818B2/en
Priority to JP2009552428A priority patent/JP5366147B2/ja
Publication of WO2009098936A1 publication Critical patent/WO2009098936A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0643Gasification of solid fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/52Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with liquids; Regeneration of used liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/52Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with liquids; Regeneration of used liquids
    • C01B3/54Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with liquids; Regeneration of used liquids including a catalytic reaction
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • C10J3/62Processes with separate withdrawal of the distillation products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • C10J3/64Processes with decomposition of the distillation products
    • C10J3/66Processes with decomposition of the distillation products by introducing them into the gasification zone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/26Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension
    • F02C3/28Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension using a separate gas producer for gasifying the fuel before combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/021Control of components of the fuel supply system
    • F02D19/022Control of components of the fuel supply system to adjust the fuel pressure, temperature or composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0215Mixtures of gaseous fuels; Natural gas; Biogas; Mine gas; Landfill gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0227Means to treat or clean gaseous fuels or fuel systems, e.g. removal of tar, cracking, reforming or enriching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0485Composition of the impurity the impurity being a sulfur compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0986Catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1207Heating the gasifier using pyrolysis gas as fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • C10J2300/1606Combustion processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/1646Conversion of synthesis gas to energy integrated with a fuel cell
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1656Conversion of synthesis gas to chemicals
    • C10J2300/1659Conversion of synthesis gas to chemicals to liquid hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1671Integration of gasification processes with another plant or parts within the plant with the production of electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/72Application in combination with a steam turbine
    • F05D2220/722Application in combination with a steam turbine as part of an integrated gasification combined cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/75Application in combination with equipment using fuel having a low calorific value, e.g. low BTU fuel, waste end, syngas, biomass fuel or flare gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/30Pyrolysing
    • F23G2201/301Treating pyrogases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/30Pyrolysing
    • F23G2201/303Burning pyrogases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/30Pyrolysing
    • F23G2201/304Burning pyrosolids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2206/00Waste heat recuperation
    • F23G2206/10Waste heat recuperation reintroducing the heat in the same process, e.g. for predrying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a fuel gas purification facility, a power generation system, and a fuel synthesis system, and in particular, removes, purifies, and purifies unburned components, ash, impurities, and the like contained in a pyrolysis gas generated by gasifying biomass. This is useful when applied to the obtained fuel gas.
  • biomass as energy has attracted attention.
  • a method of using the energy of biomass a method of directly burning biomass to obtain heat / electric energy, a method of obtaining fuel gas by thermal decomposition, or the like is known.
  • FIG. 7 is a schematic configuration diagram of a power generation system including a fuel gas purification facility for purifying a fuel gas from biomass according to the prior art.
  • the carbonizer 1 heats the supplied biomass to produce pyrolysis gas and carbide, and supplies them into the furnace 2.
  • the furnace 2 is composed of a lower gasification / combustion section and an upper gas reforming section.
  • the carbide supplied from the carbonizer 1 is partially burned by separately supplied air or oxygen, and a high-temperature gas is generated.
  • the high-temperature gas is sent to the upper gas reforming section.
  • the pyrolysis gas supplied from the carbonizer 1 is reformed in a high-temperature field using a high-temperature gas to produce a crude gas containing ash and impurities.
  • the crude gas is desulfurized and dedusted by the gas purifier 10 to purify the fuel gas mainly composed of carbon monoxide and hydrogen.
  • the fuel gas produced in this way is supplied to power generation means 20 constituted by, for example, a gas turbine, a fuel cell, etc., and the power generation means 20 generates power using this fuel gas.
  • the fuel gas is used as a raw material for the synthetic liquid fuel.
  • waste heat generated by the power generation means 20 is sent to the carbonizer 1 and used as a heat source for heating the biomass.
  • the conventional gas purification apparatus 10 is composed of a dedusting device, a COS conversion device, a desulfurization device, a gas cooling device, a gas cleaning device, and the like in order to remove ash, tar, and impurities in the crude gas. .
  • the equipment configuration for performing gas purification is complicated, it is difficult to improve the operability of the equipment, and the cost is high.
  • an object of the present invention is to provide a fuel gas purification facility having a simple configuration capable of purifying a high-calorie fuel gas from biomass. It is another object of the present invention to provide a power generation system having a fuel gas purification facility with a simple configuration capable of purifying high-calorie fuel gas from biomass, and a fuel synthesis system.
  • a first aspect of the present invention includes: a carbonizer that pyrolyzes biomass to generate pyrolysis gas and carbide; a carbide generated by the carbonizer; A furnace that burns, a sealed container that is disposed in the furnace and contains molten carbonate melted by heat of the carbide burned in the furnace, and the pyrolysis gas generated in the carbonizer An introduction pipe arranged to be introduced into the molten carbonate in a sealed container, and a pyrolysis gas sent from the introduction pipe and circulated through the molten carbonate was purified by reaction with the molten carbonate.
  • the fuel gas refining equipment includes a fuel gas supply pipe arranged to send the fuel gas to the outside of the furnace from the closed container.
  • pyrolysis gas and carbide are generated from biomass, and the pyrolysis gas is refined with molten carbonate to become fuel gas.
  • This fuel gas has a higher calorie per unit volume than before.
  • the pyrolysis gas is purified in the sealed container by the heat of the carbide burned in the furnace, it is not necessary to provide a conventional large-scale gas purification apparatus. Thereby, cost reduction of a power generation system can be achieved.
  • the carbonizer in the fuel gas purification facility described in the first aspect, is configured to thermally decompose the biomass by waste heat of the furnace. It is in the fuel gas purification facility.
  • the waste heat of the furnace is effectively used for the thermal decomposition of the carbide, the energy efficiency of the entire fuel gas refining facility can be improved.
  • a third aspect of the present invention is a fuel gas purification facility according to the first or second aspect, wherein the sealed container is disposed in the furnace.
  • the sealed container is disposed in the furnace, the thermal energy of the carbide burned in the furnace is most efficiently given to the carbonate in the sealed container. Further, since the sealed container is disposed in the furnace, it is not necessary to provide any gas purification equipment outside the furnace, so that the entire space can be saved.
  • a hydroxide supply means for supplying a hydroxide to the molten carbonate is provided. It is in a fuel gas purification facility characterized by
  • the hydroxide supply means when the hydroxide is supplied to the molten carbonate in the sealed container by the hydroxide supply means, carbon dioxide and hydroxide contained in the molten carbonate or fuel gas (pyrolysis gas). Reacts to produce carbonate. That is, when hydroxide is supplied to the sealed container, the same effect as that of supplying carbonate to the sealed container is obtained. Further, since the hydroxide absorbs carbon dioxide and becomes a carbonate, the emission amount of carbon dioxide can be reduced.
  • the fuel gas purification facility according to any one of the first to fourth aspects, wherein the molten carbonate contains a catalyst. In the facilities.
  • the chemical reaction between the pyrolysis gas and the molten carbonate is promoted by the catalyst contained in the molten carbonate.
  • the pyrolysis gas can be purified more quickly.
  • a bubble subdividing means for subdividing the bubbles of the pyrolysis gas that has flowed through the molten carbonate is provided. It is in a fuel gas purification facility characterized by
  • the bubbles of the pyrolysis gas introduced into the molten carbonate are subdivided by the bubble subdividing means, and the surface area of the bubbles becomes larger than before the subdivision.
  • the pyrolysis gas bubbles come into contact with the molten carbonate in a larger contact area. For this reason, reaction of pyrolysis gas and molten carbonate is accelerated
  • the fuel gas refining facility according to any one of the first to sixth aspects, wherein the carbonizer is in contact with an outer surface of the furnace. Located in the purification facility.
  • the waste heat of the furnace is directly transferred to the carbonizer.
  • the waste heat of the furnace can be effectively used as the heat source of the carbonizer more efficiently than the case where the waste heat of the furnace is indirectly used via a heat exchanger or the like.
  • purification equipment can be improved.
  • the fuel gas purification facility according to any one of the first to seventh aspects, and power generation means for generating power using the fuel gas from the fuel gas supply pipe.
  • the power generation system is characterized by that.
  • power can be generated using the high-calorie fuel gas purified by the fuel gas purification facility.
  • the power generation means includes a high-temperature fuel cell including a fuel electrode to which fuel gas from the fuel gas supply pipe is sent.
  • the power generation system is characterized by
  • a high calorie fuel gas can be supplied to a molten carbonate fuel cell or a solid oxide fuel cell that requires a high operating temperature.
  • the power generation means includes a gas engine that operates by fuel gas from the fuel gas supply pipe, and power generation that is activated by the operation of the gas engine.
  • a power generation system comprising a machine.
  • power can be generated using a gas engine.
  • the power generation means includes a turbine combustor that combusts fuel gas from the fuel gas supply pipe, and a combustion gas from the turbine combustor. And a gas turbine that drives the generator by obtaining power by expansion of the power generation system.
  • power can be generated using a gas turbine.
  • a twelfth aspect of the present invention is the power generation system according to any one of the eighth to eleventh aspects, wherein the carbonizer is configured to thermally decompose the biomass by waste heat of the power generation means.
  • the power generation system is characterized by
  • the waste heat of the power generation means is effectively used for the thermal decomposition of carbide, the energy efficiency of the entire power generation system can be improved.
  • a thirteenth aspect of the present invention is a fuel gas purification facility described in any one of the first to seventh aspects, a liquid fuel synthesizing apparatus that synthesizes liquid fuel from the fuel gas from the fuel gas supply pipe,
  • a fuel synthesizing system comprising: a water supply means for supplying water into the carbonizer or the sealed container so as to adjust a moisture ratio of fuel gas supplied to the outside of the furnace.
  • the ratio of the fuel gas carbon monoxide and hydrogen can be adjusted to a ratio suitable for the liquid fuel to be synthesized by adjusting the water supply means. Thereby, a desired liquid fuel can be manufactured.
  • the carbonizer is configured to thermally decompose the biomass by waste heat of the liquid fuel synthesizing apparatus.
  • the fuel synthesis system is featured.
  • the waste heat of the liquid fuel synthesizing apparatus is effectively used for the thermal decomposition of carbide, the energy efficiency of the entire fuel synthesizing system can be improved.
  • a fuel gas refining facility having a simple configuration capable of refining a high calorie fuel gas from biomass is provided. Furthermore, a power generation system having the fuel gas purification facility and a fuel synthesis system are provided.
  • FIG. 1 is a schematic configuration diagram of a power generation system including a fuel gas purification facility according to Embodiment 1.
  • FIG. It is a schematic block diagram of a fuel synthesis system provided with the fuel gas refinement
  • FIG. It is a schematic perspective view of the carbonizer and furnace which concern on Embodiment 3.
  • FIG. 1 is a schematic configuration diagram of a power generation system including a fuel gas purification facility according to the first embodiment.
  • the fuel gas refining facility includes a carbonizer 1 that thermally decomposes biomass, a furnace 2 that burns carbide, a closed vessel 3 that is disposed in the furnace 2, and a carbonizer 1.
  • a carbonizer 1 that thermally decomposes biomass
  • a furnace 2 that burns carbide
  • a closed vessel 3 that is disposed in the furnace 2
  • a carbonizer 1 that is supplied to the power generation means 20.
  • a fuel gas supply pipe 6 and sodium hydroxide supply means 8 (indicated as “NaOH supply means” in the figure) for supplying sodium hydroxide (NaOH) to the sealed container 3 are provided.
  • the carbonizer 1 is supplied with woody biomass, waste biomass such as municipal waste, and mixed biomass thereof.
  • the carbonizer 1 steams and burns biomass and pyrolyzes it to generate pyrolysis gas and carbide.
  • Pyrolysis gas is composed of volatile components in biomass, and is mainly composed of carbon monoxide, hydrogen, water, hydrocarbons, tar, and the like.
  • the carbide is a so-called char such as carbon or charcoal.
  • the furnace 2 has a hollow inside, and is composed of a lower gasification / combustion part 2a and an upper container arrangement part 2b.
  • the carbide supplied from the carbonizer 1 through the carbide introduction pipe 7 is burned by air or oxygen separately introduced into the gasification / combustion unit 2a, thereby generating high-temperature gas.
  • the hot gas is guided to the upper container arrangement portion 2b. Note that ash having a relatively low melting point in the burned carbide is discharged as molten slag from the bottom of the furnace 2.
  • An airtight container 3 is disposed in the container placement portion 2 b of the furnace 2.
  • the inside of the sealed container 3 is separated from the space inside the furnace 2, and carbonate 4 is accommodated in the inside. Since the sealed container 3 is disposed in the container placement portion 2b filled with the above-described high temperature gas, the carbonate 4 in the sealed container 3 is heated and melted by the heat of the high temperature gas.
  • the molten carbonate 4 is referred to as molten carbonate 4.
  • molten carbonate 4 of the present invention various alkali metal carbonates such as lithium carbonate (Li 2 CO 3 ), sodium carbonate (Na 2 CO 3 ), and potassium carbonate (K 2 CO 3 ) are used singly or in combination. Things can be used.
  • carbonates such as magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and cerium (Ce) can be used as the molten carbonate. .
  • the carbonizer 1 and the sealed container 3 are connected via an introduction pipe 5.
  • One end of the introduction pipe 5 is arranged at the upper part of the carbonization machine 1 so that the pyrolysis gas purified by the carbonization machine 1 is introduced, and the other end of the introduction pipe 5 is in the molten carbonate 4 in the sealed container 3. It is arranged in.
  • the pyrolysis gas generated in the carbonizer 1 is supplied into the molten carbonate 4 in the sealed container 3 through the introduction pipe 5.
  • the pyrolysis gas sent through the introduction pipe 5 flows through the molten carbonate 4 in the sealed container 3.
  • the pyrolysis gas reacts with the molten carbonate 4 to remove impurities and purify the fuel gas from the pyrolysis gas.
  • Typical impurity elements in the pyrolysis gas include sulfur (S) content, halogen (F, Cl) content, and nitrogen (N). From these elements, in a high-temperature reducing atmosphere, hydrogen sulfide (H 2 S), representative impurity gases such as hydrogen chloride (HCl), hydrogen fluoride (HF), and ammonia (NH 3 ) are generated.
  • H 2 S produced in a reducing atmosphere is taken into molten carbonate 4 as S 2 ⁇ , and HCl and HF are converted to alkali carbonate (M 2 S) as molten metal 4 as Cl ⁇ and F ⁇ .
  • the chlorine content is captured as alkali metal chloride (MCl) and the fluorine content is captured as alkali metal fluoride (MF).
  • unburned matter and ash contained in the pyrolysis gas introduced from the carbonizer 1 can be collected in the sealed container 3 because the molten carbonate 4 is liquid. Furthermore, tar contained in the pyrolysis gas also reacts with the molten carbonate 4 and is decomposed.
  • the pyrolysis gas generated in the carbonizer 1 is purified by the molten carbonate 4, and the fuel gas mainly composed of carbon monoxide and hydrogen is purified.
  • the molten carbonate 4 may contain a catalyst.
  • the chemical reaction between the pyrolysis gas and the molten carbonate 4 is promoted by the catalyst, and the pyrolysis gas can be purified more quickly.
  • a metal, an alloy, a metal oxide, or nickel ceramics can be used as this catalyst.
  • metals include nickel (Ni), copper (Cu), iron (Fe), vanadium (V), tungsten (W), titanium (Ti), cobalt (Co), tin (Sn), magnesium (Mg) , Ruthenium (Ru), palladium (Pd), and zinc (Zn).
  • An alloy consists of two or more of these metals, and a metal oxide is a composite oxide in which these metals are oxidized or two or more of these metals are oxidized.
  • the catalyst is preferably contained in the molten carbonate 4 as a powder.
  • the sealed container 3 and the power generation means 20 are connected via the fuel gas supply pipe 6.
  • One end of the fuel gas supply pipe 6 is disposed in the upper part of the sealed container 3, and the other end of the fuel gas supply pipe 6 is connected to the power generation means 20.
  • the fuel gas purified in the sealed container 3 is supplied to the power generation means 20 outside the furnace 2 through the fuel gas supply pipe 6.
  • the power generation means 20 is composed of, for example, a molten carbonate fuel cell (MCFC) provided with a fuel electrode through which fuel gas from the fuel gas supply pipe 6 is sent.
  • MCFC molten carbonate fuel cell
  • MCFC is generally one that is highly efficient and can use carbon monoxide as a fuel among fuel cells.
  • the power generation means 20 is not particularly limited as long as it generates power using the fuel gas from the fuel gas supply pipe 6.
  • the power generation means 20 may be composed of a gas engine that is operated by fuel gas from the fuel gas supply pipe 6 and a generator that is activated by the operation of the gas engine.
  • the power generation means 20 includes a turbine combustor that combusts the fuel gas from the fuel gas supply pipe 6, and a gas turbine that drives the generator by obtaining power by expansion of the combustion gas from the turbine combustor. It may be comprised from these.
  • the power generation means 20 and the carbonizer 1 are configured such that waste heat generated in the power generation means 20 becomes a heat source for the carbonizer 1 that heats biomass via a heat exchanger (not shown) or the like. ing. Thereby, the energy efficiency of the whole power generation system can be improved. Further, the furnace 2 and the carbonizer 1 are configured such that the waste heat generated in the furnace 2 becomes a heat source for the carbonizer 1 that heats the biomass via a heat exchanger (not shown) or the like. . Thereby, the energy efficiency of the whole power generation system can be further improved.
  • Sodium hydroxide supply means 8 which is an example of a hydroxide supply means, is configured to supply sodium hydroxide to molten carbonate 4.
  • a hydroxide supply means is configured to supply sodium hydroxide to molten carbonate 4.
  • sodium hydroxide is supplied to the molten carbonate 4
  • the carbon dioxide in the molten carbonate 4 reacts with sodium hydroxide to produce sodium carbonate (carbonate).
  • the fuel gas is continuously refined with the molten carbonate 4 without supplying sodium hydroxide, sulfur alkali metal or the like is accumulated in the sealed container 3 and the molten carbonate 4 is reduced. It is necessary to replace the carbonate 4 as appropriate.
  • the molten carbonate 4 or sulfur alkali metal in the sealed container 3 is discharged to the outside through a discharge pipe (not shown) connecting the inside and the outside of the sealed container 3 and the new carbonate is sealed. It is necessary to supply the container 3.
  • sodium hydroxide is appropriately supplied to the molten carbonate 4 so that the fuel gas is purified by the molten carbonate 4 and the carbonate is supplied to the sealed container 3. The effect of.
  • carbon dioxide contained in the molten carbonate 4 or the fuel gas (pyrolysis gas) is absorbed by sodium hydroxide and becomes sodium carbonate, the amount of carbon dioxide emitted can be reduced.
  • the molten carbonate 4 in the sealed container 3 is replaced, it is not limited to the case where the carbonate is supplied indirectly by supplying hydroxide to the molten carbonate 4 as described above. You may supply in the airtight container 3.
  • FIG. The carbonate referred to here may contain water or baking soda.
  • the hydroxide supply means is not limited to one supplying sodium hydroxide, and lithium hydroxide, magnesium hydroxide, potassium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide, or cerium hydroxide is used. It may be supplied. In short, if the hydroxide supply means is configured to supply hydroxide capable of reacting with carbon dioxide in the molten carbonate 4 to form carbonate to the molten carbonate 4 in the sealed container 3. Good.
  • pyrolysis gas and carbide are generated from biomass by the carbonizer 1, and the carbide melts the carbonate in the sealed container 3 to form the molten carbonate 4. While it is burned to form, the pyrolysis gas is purified by molten carbonate 4 to become fuel gas, and the fuel gas is supplied to the power generation means 20.
  • the pyrolysis gas is purified in the airtight container 3 arranged in the furnace 2 in this way, it is not necessary to provide an apparatus for purifying the fuel gas outside the furnace 2. Thereby, space saving of a power generation system can be achieved.
  • an apparatus having a complicated configuration as in the conventional gas purification apparatus 10 is not required, the operability of the facility can be improved, and furthermore, the cost associated with the power generation system can be reduced by eliminating the need for such an apparatus. Can be reduced.
  • the sealed container 3 is disposed in the furnace 2, but is not necessarily disposed in the furnace 2.
  • the whole or part of the sealed container is disposed outside the furnace 2, and the thermal energy of the carbide burned in the furnace 2 is supplied to the sealed container disposed outside the furnace 2 through a heat exchanger or the like. May be. Even in this case, high-calorie fuel gas is refined and electric power can be generated using this fuel gas.
  • the fuel gas purification equipment of the present invention purifies high-calorie fuel gas, and therefore, particularly, high-temperature fuel cells such as molten carbonate fuel cells (MCFC) and solid oxide fuel cells (SOFC). ) Is useful when applied to a power generation system using power generation means.
  • MCFC molten carbonate fuel cells
  • SOFC solid oxide fuel cells
  • the power generation system configured to supply the fuel gas produced by the fuel gas purification facility to the power generation means 20 has been described.
  • the fuel synthesis system that synthesizes liquid fuel using the fuel gas as a raw material. Will be described.
  • FIG. 2 is a schematic configuration diagram of a fuel synthesis system including a fuel gas purification facility according to the second embodiment.
  • symbol is attached
  • the difference between the present embodiment and the first embodiment is that a liquid fuel synthesizing device 30 that synthesizes liquid fuel using the fuel gas supplied from the fuel gas supply pipe 6 as a raw material, and a moisture supply means that supplies moisture to the carbonizer 1 31.
  • the liquid fuel synthesizing device 30 is a device that synthesizes hydrocarbon liquid fuels such as methanol, dimethyl ether, gasoline, kerosene, and light oil from fuel gas.
  • This liquid fuel is generally known to be obtained by synthesizing a gas mainly composed of hydrogen and carbon monoxide at a temperature and pressure suitable for the reaction in the presence of a catalyst.
  • the moisture supply means 31 is configured to supply moisture into the carbonizer 1. By adjusting the amount of moisture supplied into the carbonizer 1, the moisture ratio of the fuel gas supplied from the fuel gas supply pipe 6 to the liquid fuel synthesizing device 30 can be adjusted.
  • the fuel gas manufactured by the fuel synthesizing system according to the present embodiment has a desired ratio of carbon monoxide and hydrogen constituting the fuel gas.
  • the water supply means 31 may be adjusted so that the ratio of carbon monoxide to hydrogen in the fuel gas is a ratio suitable for the liquid fuel.
  • the fuel synthesizing system according to the present embodiment has the flexibility to produce a desired type of liquid fuel.
  • the moisture supply means 31 is not limited to supplying moisture into the carbonizer 1, and may be, for example, in the sealed container 3 or may supply moisture to the introduction pipe 5 or the fuel gas supply pipe 6. Good.
  • the water supply means 31 may be configured to add water to the fuel gas (pyrolysis gas) before the fuel gas is supplied to the liquid fuel synthesizing device 30.
  • the furnace 2 and the carbonizer 1 are configured such that the waste heat generated in the furnace 2 becomes a heat source for the carbonizer 1 that heats the biomass via a heat exchanger (not shown) or the like. . This further improves the energy efficiency of the entire fuel synthesis system.
  • Embodiment 3 the carbonizer 1 is provided apart from the furnace 2, and the waste heat of the furnace 2 is configured to be indirectly given to the carbonizer 1 via a heat exchanger or the like. It is not limited to such a case.
  • FIG. 3 is a schematic perspective view of a carbonizer and a furnace according to the third embodiment
  • FIG. 4 is a schematic configuration diagram of a power generation system including a fuel gas purification facility according to the third embodiment.
  • symbol is attached
  • the carbonizer 1 ⁇ / b> A is formed in a cylindrical shape, and is attached to the furnace 2 so that the inner surface thereof is in contact with the outer surface of the furnace 2.
  • the carbonizer 1 ⁇ / b> A includes an upper fixing part 41, a lower fixing part 42, and a main body part 43.
  • the upper fixing part 41 and the lower fixing part 42 are fixed to the furnace 2, and the main body part 43 is supported by the upper fixing part 41 and the lower fixing part 42.
  • the main body 43 is formed in a cylindrical shape, and its inner surface is in contact with the outer surface of the furnace 2. Further, bearings (not shown) are provided between the main body portion 43 and the upper fixing portion 41 and between the main body portion 43 and the lower fixing portion 42, and the main body portion 43 is centered on the furnace 2. It rotates, and the inner surface of the main body 43 is configured to slide on the outer surface of the furnace 2.
  • the waste heat of the furnace 2 is directly transferred to the internal space 44 into which the biomass 47 of the main body 43 is charged. For this reason, the waste heat of the furnace 2 can be effectively used as a heat source of the carbonizer 1A more efficiently than when the waste heat of the furnace 2 is indirectly used via a heat exchanger or the like.
  • screw blades 45 formed in a spiral shape with the furnace 2 as the center are provided.
  • the screw blade 45 receives the biomass 47 from the biomass introduction pipe 46 that communicates with the inside 44 and rotates together with the main body 43 to slowly convey the received biomass 47 to the lower portion of the main body 43. For this reason, sufficient heat can be given to the biomass 47, and pyrolysis gas can be obtained more reliably.
  • the introduction pipe 5 communicates with the main body 43, and the pyrolysis gas is guided to the molten carbonate 4 of the sealed container 3 through the introduction pipe 5.
  • the carbide introduction pipe 7 is also communicated with the main body 43, and the carbide is guided to the furnace 2 through the carbide introduction pipe 7.
  • the waste heat of the furnace 2 is directly used as a heat source for the carbonizer 1A. It has come to be used. For this reason, the waste heat of the furnace 2 can be used efficiently, and the thermal efficiency of the fuel gas purification facility or the entire power generation system can be improved.
  • this embodiment demonstrated the electric power generation system provided with a fuel gas refinement
  • the pyrolysis gas is purified by reacting with the molten carbonate 4.
  • the airtight container 3 may be provided with bubble subdividing means.
  • FIG. 5 is a schematic configuration diagram of a power generation system including a fuel gas purification facility according to the fourth embodiment.
  • symbol is attached
  • the hermetic container 3 is provided with a stirrer 50 which is an example of bubble subdividing means.
  • the agitator 50 includes a power unit (not shown), a shaft 51 attached to the power unit, and a propeller 52 attached to the tip of the shaft 51.
  • the shaft 51 is attached to the sealed container 3 with the propeller 52 immersed in the molten carbonate 4 of the sealed container 3. Thereby, the shaft 51 is rotated by the drive by the power unit, and the propeller 52 is rotated in the molten carbonate 4 along with this.
  • the bubbles of the pyrolysis gas introduced into the molten carbonate 4 are finely divided, and the bubbles are subdivided.
  • the pyrolysis gas bubbles come into contact with the molten carbonate 4 in a larger contact area. For this reason, the reaction between the pyrolysis gas and the molten carbonate 4 is promoted, and the pyrolysis gas can be purified more quickly.
  • the fuel gas purification facility provided with the stirrer 50 is illustrated based on the third embodiment.
  • the agitator 50 may be provided in the sealed container 3 in a fuel gas purification facility in which the carbonizer is not in contact with the outer surface of the furnace.
  • the agitator 50 may be provided in the sealed container 3. .
  • the pyrolysis gas bubbles are refined by the stirrer 50, whereby the pyrolysis gas can be purified more quickly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Industrial Gases (AREA)

Abstract

バイオマスを熱分解して熱分解ガス及び炭化物を生成する炭化機1と、炭化機1から供給された炭化物を燃焼する火炉2と、火炉2内に配設されると共に火炉2内で燃焼した炭化物の熱により溶融した溶融炭酸塩4を収容する密閉容器3と、熱分解ガスを密閉容器3の溶融炭酸塩4中に導入するように配設された導入管5と、導入管5から送られて溶融炭酸塩4を流通した熱分解ガスが溶融炭酸塩4との反応により精製されたものである燃料ガスを密閉容器3内から火炉2外部へ送るように配設された燃料ガス供給管6とを具備する。

Description

燃料ガス精製設備、発電システム及び燃料合成システム
 本発明は、燃料ガス精製設備、発電システム及び燃料合成システムに関し、特に、バイオマスをガス化することにより生じる熱分解ガスに含まれる未燃分、灰分、不純物等を除去、精製し、精製して得られた燃料ガスを利用する場合に適用して有用なものである。
 近年、バイオマスをエネルギーとして利用することが注目されている。バイオマスのエネルギーの利用方法としては、バイオマスを直接燃焼させて熱・電気エネルギーを得る方法、または熱分解によって燃料ガスを得る方法等が知られている。
 図7は、従来技術に係るバイオマスから燃料ガスを精製する燃料ガス精製設備を備える発電システムの概略構成図である。
 図示するように、炭化機1は、供給されたバイオマスを加熱して熱分解ガスと炭化物とを生成し、これらを火炉2内に供給する。火炉2は、下部のガス化・燃焼部と、上部のガス改質部とから構成されている。下部のガス化・燃焼部では、炭化機1から供給された炭化物が別途供給された空気又は酸素により部分燃焼されることにより高温ガスが発生し、該高温ガスは上部のガス改質部へと導かれる。上部のガス改質部では、炭化機1から供給された熱分解ガスが、高温ガスによる高温場で改質されて、灰分・不純物を含む粗ガスが製造される。そして、粗ガスは、ガス精製装置10により脱硫・脱塵され、一酸化炭素や水素を主成分とする燃料ガスが精製される。
 このようにして製造された燃料ガスは、例えばガスタービンや燃料電池等から構成される発電手段20に供給され、発電手段20は、この燃料ガスを用いて発電する。他にも、燃料ガスは、合成液体燃料の原料としても用いられる。
 なお、発電手段20で生じた廃熱は、炭化機1に送られてバイオマスを加熱する熱源として利用されている。
 ここで、従来のガス精製装置10は、粗ガス中の灰分、タール、不純物を除去するために、脱塵装置、COS変換装置、脱硫装置、ガス冷却装置、ガス洗浄装置等から構成されている。このため、ガス精製を行うための設備構成が複雑化し、設備の運用性を高めることが困難で、コストが高くなっていた。
 また、火炉2のガス化・燃焼部で炭化物を燃焼するために、空気や窒素を外部から火炉2に供給しているので、燃料ガス(粗ガス)がこれらの空気や窒素等で希釈され、燃料ガスの単位体積あたりのカロリーが低下してしまう。
 なお、上記従来技術と同種の技術を開示する刊行物として次の特許文献1が存在する。
特開2006-2042号公報
 本発明は、かかる事情に鑑み、バイオマスから高カロリーの燃料ガスを精製し得る簡素な構成の燃料ガス精製設備を提供することを目的とする。また、バイオマスから高カロリーの燃料ガスを精製し得る簡素な構成の燃料ガス精製設備を有する発電システム、及び燃料合成システムを提供することを目的とする。
 上記目的を達成するための本発明の第1の態様は、バイオマスを熱分解して熱分解ガス及び炭化物を生成する炭化機と、前記炭化機により生成された炭化物が供給されると共に該炭化物を燃焼する火炉と、前記火炉内に配設されると共に前記火炉内で燃焼した前記炭化物の熱により溶融した溶融炭酸塩を収容する密閉容器と、前記炭化機で生成された前記熱分解ガスを前記密閉容器の前記溶融炭酸塩中に導入するように配設された導入管と、前記導入管から送られて前記溶融炭酸塩を流通した熱分解ガスが前記溶融炭酸塩との反応により精製されたものである燃料ガスを前記密閉容器内から前記火炉外部へ送るように配設された燃料ガス供給管とを具備することを特徴とする燃料ガス精製設備にある。
 かかる第1の態様では、バイオマスから熱分解ガスと炭化物とが生成され、熱分解ガスは溶融炭酸塩で精製されて燃料ガスとなる。この燃料ガスは、単位体積あたりのカロリーが従来よりも高いものとなる。この際、火炉で燃焼された炭化物の熱により密閉容器中で熱分解ガスの精製が行われるので、従来のような大掛かりなガス精製装置を設ける必要がない。これにより、発電システムの低コスト化を図ることができる。
 本発明の第2の態様は、第1の態様に記載する燃料ガス精製設備において、前記炭化機は、前記火炉の廃熱により前記バイオマスの熱分解をするように構成されていることを特徴とする燃料ガス精製設備にある。
 かかる第2の態様では、火炉の廃熱を炭化物の熱分解に有効利用するため、燃料ガス精製設備全体のエネルギー効率を向上することができる。
 本発明の第3の態様は、第1又は第2の態様に記載する燃料ガス精製設備において、前記密閉容器は前記火炉内に配設されていることを特徴とする燃料ガス精製設備にある。
 かかる第3の態様では、密閉容器は火炉内に配設されているので、火炉内で燃焼された炭化物の熱エネルギーが最も効率的に密閉容器の炭酸塩に与えられる。また、密閉容器が火炉内に配設されていることから、火炉外部にガス精製設備を一切設ける必要がないため、全体の省スペース化を図ることができる。
 本発明の第4の態様は、第1~第3の態様の何れか一つに記載する燃料ガス精製設備において、前記溶融炭酸塩に水酸化物を供給する水酸化物供給手段を具備することを特徴とする燃料ガス精製設備にある。
 かかる第4の態様は、水酸化物供給手段により密閉容器中の溶融炭酸塩に水酸化物が供給されると、溶融炭酸塩または燃料ガス(熱分解ガス)に含まれる二酸化炭素と水酸化物とが反応して、炭酸塩が生成される。すなわち、密閉容器に水酸化物を供給すると、密閉容器に炭酸塩を供給したのと同様の効果が得られる。また、水酸化物は二酸化炭素を吸収して炭酸塩となるので、二酸化炭素の排出量を低減することができる。
 本発明の第5の態様は、第1~第4の何れか一つの態様に記載する燃料ガス精製設備において、前記溶融炭酸塩には、触媒が含まれていることを特徴とする燃料ガス精製設備にある。
 かかる第5の態様では、溶融炭酸塩に含まれる触媒により、熱分解ガスと溶融炭酸塩との化学反応が促進される。これにより、熱分解ガスをより早く精製することができる。
 本発明の第6の態様は、第1~第5の何れか一つの態様に記載する燃料ガス精製設備において、前記溶融炭酸塩を流通した熱分解ガスの気泡を細分する気泡細分手段を備えることを特徴とする燃料ガス精製設備にある。
 かかる第6の態様では、溶融炭酸塩に導入された熱分解ガスの気泡が気泡細分手段により細分化され、気泡の表面積は、細分化前に比べて大きくなる。この表面積が大きくなった分だけ、熱分解ガスの気泡は、より大きな接触面積で溶融炭酸塩と接触することになる。このため、熱分解ガスと溶融炭酸塩との反応が促進され、より早く熱分解ガスを精製することができる。
 本発明の第7の態様は、第1~第6の何れか一つの態様に記載する燃料ガス精製設備において、前記炭化機は、前記火炉の外面に当接していることを特徴とする燃料ガス精製設備にある。
 かかる第7の態様では、火炉の廃熱が炭化機に直接的に伝熱するようになっている。このため、熱交換機等を介して間接的に火炉の廃熱を利用する場合よりも効率的に火炉の廃熱を炭化機の熱源として有効利用することができる。これにより、燃料ガス精製設備全体の熱効率を向上させることができる。
 本発明の第8の態様は、第1~第7の態様の何れか一つに記載する燃料ガス精製設備と、前記燃料ガス供給管からの燃料ガスを用いて発電する発電手段とを具備することを特徴とする発電システムにある。
 かかる第8の態様では、燃料ガス精製設備で精製された高カロリーの燃料ガスを用いて発電することができる。
 本発明の第9の態様は、第8の態様に記載する発電システムにおいて、前記発電手段は、前記燃料ガス供給管からの燃料ガスが送られる燃料極を備えた高温型の燃料電池を備えることを特徴とする発電システムにある。
 かかる第9の態様では、高い運転温度を要する溶融炭酸塩形燃料電池や固体酸化物形燃料電池に高カロリーの燃料ガスを供給することができる。
 本発明の第10の態様は、第8の態様に記載する発電システムにおいて、前記発電手段は、前記燃料ガス供給管からの燃料ガスにより作動するガスエンジンと、該ガスエンジンの作動により発動する発電機とを備えることを特徴とする発電システムにある。
 かかる第10の態様では、ガスエンジンを用いて発電することができる。
 本発明の第11の態様は、第8の態様に記載する発電システムにおいて、前記発電手段は、前記燃料ガス供給管からの燃料ガスを燃焼するタービン燃焼器と、該タービン燃焼器からの燃焼ガスの膨張により動力を得ることで発電機の駆動を行うガスタービンとを備えることを特徴とする発電システムにある。
 かかる第11の態様では、ガスタービンを用いて発電することができる。
 本発明の第12の態様は、第8~第11の何れか一つの態様に記載する発電システムにおいて、前記炭化機は、前記発電手段の廃熱により前記バイオマスの熱分解をするように構成されていることを特徴とする発電システムにある。
 かかる第12の態様では、発電手段の廃熱を炭化物の熱分解に有効利用するため、発電システム全体のエネルギー効率を向上することができる。
 本発明の第13の態様は、第1~第7の何れか一つの態様に記載する燃料ガス精製設備と、前記燃料ガス供給管からの燃料ガスから液体燃料を合成する液体燃料合成装置と、前記火炉外部へ供給される燃料ガスの水分の比率を調節し得るように前記炭化機又は前記密閉容器内に水を供給する水分供給手段とを具備することを特徴とする燃料合成システムにある。
 かかる第13の態様では、水分供給手段を調節することで、燃料ガスの一酸化炭素と水素との比率を、合成する液体燃料に適した比率とすることができる。これにより、所望の液体燃料を製造し得る。
 本発明の第14の態様は、第13の態様に記載する燃料合成システムにおいて、前記炭化機は、前記液体燃料合成装置の廃熱により前記バイオマスの熱分解をするように構成されていることを特徴とする燃料合成システムにある。
 かかる第14の態様では、液体燃料合成装置の廃熱を炭化物の熱分解に有効利用するため、燃料合成システム全体のエネルギー効率を向上することができる。
 本発明によれば、バイオマスから高カロリーの燃料ガスを精製し得る簡素な構成の燃料ガス精製設備が提供される。更に、該燃料ガス精製設備を有する発電システム、及び燃料合成システムが提供される。
実施形態1に係る燃料ガス精製設備を備える発電システムの概略構成図である。 実施形態2に係る燃料ガス精製設備を備える燃料合成システムの概略構成図である。 実施形態3に係る炭化機及び火炉の概略斜視図である。 実施形態3に係る燃料ガス精製設備を備える発電システムの概略構成図である。 実施形態4に係る燃料ガス精製設備を備える発電システムの概略構成図である。 実施形態4に係る燃料ガス精製設備を備える発電システムの概略構成図である。 従来技術に係るバイオマスから燃料ガスを精製する燃料ガス精製設備を備える発電システムの概略構成図である。
符号の説明
1、1A   炭化機
2      火炉
2a     ガス化・燃焼部
2b     容器配置部
3      密閉容器
4      溶融炭酸塩(炭酸塩)
5      導入管
6      燃料ガス供給管
7      炭化物導入管
8      水酸化ナトリウム供給手段
10     ガス精製装置
20     発電手段
30     液体燃料合成装置
31     水分供給手段
41      上側固定部
42      下側固定部
43      本体部
44      内部空間
45      スクリュー羽根
46      バイオマス導入管
47      バイオマス
50      攪拌機(気泡細分手段)
 〈実施形態1〉
 以下、本発明を実施するための最良の形態について説明する。なお、本実施形態の説明は例示であり、本発明は以下の説明に限定されない。
 図1は、実施形態1に係る燃料ガス精製設備を備える発電システムの概略構成図である。
 図示するように、実施形態1に係る燃料ガス精製設備は、バイオマスを熱分解する炭化機1と、炭化物を燃焼する火炉2と、火炉2内に配設された密閉容器3と、炭化機1から熱分解ガスを密閉容器3内に導入する導入管5と、炭化機1から炭化物を火炉2に導入する炭化物導入管7と、密閉容器3で精製された燃料ガスを発電手段20に供給する燃料ガス供給管6と、密閉容器3に水酸化ナトリウム(NaOH)を供給する水酸化ナトリウム供給手段8(図では、「NaOH供給手段」と表記した。)とを具備している。
 炭化機1には、木質系バイオマス、都市ゴミ等の廃棄物系バイオマスおよびこれらの混合バイオマス等が供給される。炭化機1は、バイオマスを蒸し焼きして熱分解し、熱分解ガスと炭化物とを生成する。熱分解ガスは、バイオマス中の揮発分から構成され、主に一酸化炭素、水素、水、炭化水素、タール等からなる。一方、炭化物は、炭素、炭等のいわゆるチャーである。
 火炉2は、内部が空洞になっており、下部のガス化・燃焼部2aと、上部の容器配置部2bとから構成されている。ガス化・燃焼部2aでは、炭化機1から炭化物導入管7を介して供給された炭化物が、ガス化・燃焼部2aに別途導入された空気又は酸素により燃焼されることにより高温ガスが発生し、該高温ガスは上部の容器配置部2bへと導かれる。なお、燃焼した炭化物のうち比較的融点の低い灰分は、火炉2底部から溶融スラグとして排出される。
 火炉2の容器配置部2bには、密閉容器3が配設されている。密閉容器3の内部は火炉2内部の空間とは隔てられており、該内部には炭酸塩4が収容されている。密閉容器3は、前記した高温ガスが充満した容器配置部2bに配設されているため、密閉容器3内の炭酸塩4は高温ガスの熱により加熱され、溶融する。以後、この溶融した炭酸塩4を溶融炭酸塩4という。
 本発明の溶融炭酸塩4としては、炭酸リチウム(LiCO)、炭酸ナトリウム(NaCO)、炭酸カリウム(KCO)等の各種アルカリ金属炭酸塩を、単独又は複数混合したものを用いることができる。また、上記アルカリ金属炭酸塩の他に、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、セリウム(Ce)等の炭酸塩を溶融炭酸塩として用いることも可能である。
 炭化機1と密閉容器3とは、導入管5を介して接続されている。導入管5の一端は、炭化機1で精製された熱分解ガスが導入されるように炭化機1の上部に配され、導入管5の他端は、密閉容器3内の溶融炭酸塩4中に配されている。炭化機1で生じた熱分解ガスは、導入管5を介して密閉容器3内の溶融炭酸塩4中に供給される。
 このように導入管5を介して送られた熱分解ガスは、密閉容器3中の溶融炭酸塩4を流通する。このとき、熱分解ガスは溶融炭酸塩4との反応により、次に詳言するように、不純物が取り除かれ、熱分解ガスから燃料ガスが精製される。
 熱分解ガス中における代表的な不純物元素としては、硫黄(S)分、ハロゲン(F、Cl)分、窒素(N)が挙げられ、これらの元素から高温の還元雰囲気では、硫化水素(HS)、塩化水素(HCl)、フッ化水素(HF)、アンモニア(NH)等の代表的な不純物ガスが発生する。
 本実施形態における溶融炭酸塩4(ここではアルカリ金属炭酸塩、MCO、M=Li、Na、K)を用いた上記不純物の除去メカニズムを以下に説明する。
 還元雰囲気下で生じたHSは、S2―として溶融炭酸塩4中に取り込まれ、硫化アルカリ金属(MS)として、HCl、HFは、Cl、Fとして溶融炭酸塩4に取り込まれ、塩素分は塩化アルカリ金属(MCl)として、フッ素分はフッ化アルカリ金属(MF)として捕捉される。
 また、炭化機1から導入される熱分解ガスに含まれる未燃分、灰分は、溶融炭酸塩4が液体であるため、密閉容器3内で集塵可能である。更に熱分解ガスに含まれるタールも同様に、溶融炭酸塩4と反応し、分解される。
 このように、炭化機1で生じた熱分解ガスは溶融炭酸塩4により精製され、一酸化炭素や水素を主成分とする燃料ガスが精製される。
 なお、溶融炭酸塩4には、触媒が含まれていてもよい。触媒により熱分解ガスと溶融炭酸塩4との化学反応が促進され、熱分解ガスをより早く精製することができる。この触媒としては、金属、合金、金属酸化物、又はニッケルセラミックスを用いることができる。金属の例としては、ニッケル(Ni)、銅(Cu)、鉄(Fe)、バナジウム(V)、タングステン(W)、チタン(Ti)、コバルト(Co)、錫(Sn)、マグネシウム(Mg)、ルテニウム(Ru)、パラジウム(Pd)、亜鉛(Zn)を挙げることができる。合金は、これらの金属の2種以上からなり、金属酸化物は、これらの金属がそれぞれ酸化したもの若しくはこれらの金属の2種以上が酸化したものである複合酸化物である。触媒は、粉体として溶融炭酸塩4に含まれていることが好ましい。
 一方、密閉容器3と発電手段20とは、燃料ガス供給管6を介して接続されている。燃料ガス供給管6の一端は、密閉容器3内の上部に配され、燃料ガス供給管6の他端は発電手段20に接続されている。この燃料ガス供給管6を介して、密閉容器3内で精製された燃料ガスは火炉2外部の発電手段20に供給される。
 発電手段20は、例えば、燃料ガス供給管6からの燃料ガスが送られる燃料極を備えた溶融炭酸塩形燃料電池(MCFC)から構成されている。MCFCは、一般に、燃料電池の中でも、高効率で、かつ一酸化炭素を燃料として利用可能なものである。
 なお、発電手段20としては、燃料ガス供給管6からの燃料ガスを用いて発電するものであれば特に限定されない。例えば、発電手段20は、燃料ガス供給管6からの燃料ガスにより作動するガスエンジンと、該ガスエンジンの作動により発動する発電機とから構成されていてもよい。他にも、発電手段20は、燃料ガス供給管6からの燃料ガスを燃焼するタービン燃焼器と、該タービン燃焼器からの燃焼ガスの膨張により動力を得ることで発電機の駆動を行うガスタービンとから構成されていてもよい。
 また、発電手段20と炭化機1とは、発電手段20で生じた廃熱が、熱交換器(図示せず)等を介して、バイオマスを加熱する炭化機1の熱源となるように構成されている。これにより、発電システム全体のエネルギーの効率を改善できる。また、火炉2と炭化機1とは、火炉2で生じた廃熱が、熱交換器(図示せず)等を介して、バイオマスを加熱する炭化機1の熱源となるように構成されている。これにより、更に発電システム全体のエネルギー効率を改善できる。
 水酸化物供給手段の一例である水酸化ナトリウム供給手段8は、溶融炭酸塩4に水酸化ナトリウムを供給するよう構成されている。溶融炭酸塩4に水酸化ナトリウムが供給されると、溶融炭酸塩4中の二酸化炭素が水酸化ナトリウムと反応して、炭酸ナトリウム(炭酸塩)が生成される。
 ちなみに、水酸化ナトリウムを供給することなく溶融炭酸塩4で燃料ガスの精製を続けると、密閉容器3では、硫黄アルカリ金属等が蓄積され、溶融炭酸塩4が減少するので、密閉容器3の溶融炭酸塩4を適宜取替える必要がある。例えば、密閉容器3内部と外部とを接続する排出管(図示せず)を介して、密閉容器3内の溶融炭酸塩4や硫黄アルカリ金属等を外部へ排出すると共に、新たな炭酸塩を密閉容器3に供給する必要がある。しかしながら、本発明の燃料ガス精製設備では、水酸化ナトリウムを溶融炭酸塩4に適宜供給することで、溶融炭酸塩4で燃料ガスを精製しつつ、密閉容器3に炭酸塩を供給したのと同様の効果を得られる。さらに、溶融炭酸塩4又は燃料ガス(熱分解ガス)に含まれる二酸化炭素は水酸化ナトリウムに吸収されて炭酸ナトリウムとなるので、二酸化炭素の排出量を低減することができる。
 また、密閉容器3の溶融炭酸塩4を取替える際には、上記のように溶融炭酸塩4に水酸化物を供給して間接的に炭酸塩を供給する場合に限定されず、直接炭酸塩を密閉容器3内に供給してもよい。なお、ここでいう炭酸塩は、水分や重曹を含んでいてもよい。
 また、水酸化物供給手段としては、水酸化ナトリウムを供給するものに限られず、水酸化リチウム、水酸化マグネシウム、水酸化カリウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム、又は水酸化セリウムを供給するものであってもよい。要するに、水酸化物供給手段は、溶融炭酸塩4中の二酸化炭素と反応して炭酸塩を生成しうる水酸化物を密閉容器3内の溶融炭酸塩4に供給するように構成されていればよい。
 以上に説明した構成の燃料ガス精製設備を備える発電システムでは、炭化機1によってバイオマスから熱分解ガスと炭化物とが生成され、炭化物は密閉容器3内の炭酸塩を溶融させて溶融炭酸塩4を形成するために燃焼される一方、熱分解ガスは溶融炭酸塩4で精製されて燃料ガスとなり、燃料ガスは発電手段20に供給される。
 このように火炉2内に配設された密閉容器3内で、熱分解ガスの精製が行われるので、燃料ガスを精製する装置を火炉2外部に設ける必要がない。これにより、発電システムの省スペース化を図ることができる。また、従来技術のガス精製装置10の如く複雑な構成の装置が不要となるため、設備の運用性を高めることができ、更に、このような装置が不要となる分、発電システムに係るコストを削減できる。なお、本実施形態では、密閉容器3は火炉2内に配設されていたが、必ずしも火炉2内に配設する必要はない。例えば、密閉容器の全体又は一部を火炉2外部に配設し、火炉2で燃焼された炭化物の熱エネルギーを、熱交換器等を介して火炉2外部に配設された密閉容器に供給してもよい。この場合でも、高カロリーの燃料ガスが精製され、この燃料ガスを用いて発電できる。
 更に、火炉2内部の空間とは隔てられた密閉容器3内部で熱分解ガスから燃料ガスに精製されるため、燃料ガスは、炭化物の燃焼に用いられる空気や窒素などにより希釈されることはない。また前記したように、燃料ガスは不純物が取り除かれている。これらのことから、単位体積あたりのカロリーが従来よりも高い燃料ガスを燃料ガス供給管6から供給することができる。このように、本発明の燃料ガス精製設備は、高カロリーの燃料ガスを精製するので、特に、高温型の燃料電池、例えば溶融炭酸塩形燃料電池(MCFC)や固体酸化物形燃料電池(SOFC)を発電手段として用いる発電システムに適用して有用である。
 〈実施形態2〉
 実施形態1では、燃料ガス精製設備により製造された燃料ガスを発電手段20に供給するよう構成した発電システムについて説明したが、本実施形態では、燃料ガスを原料として液体燃料を合成する燃料合成システムについて説明する。
 図2は、実施形態2に係る燃料ガス精製設備を備える燃料合成システムの概略構成図である。なお、実施形態1と同一のものには同一の符号を付し、重複する説明は省略する。
 本実施形態と実施形態1との相違点は、燃料ガス供給管6から供給される燃料ガスを原料として液体燃料を合成する液体燃料合成装置30と、炭化機1に水分を供給する水分供給手段31とを具備する点にある。
 液体燃料合成装置30は、燃料ガスからメタノール、ジメチルエーテル、ガソリン、灯油、軽油等の炭化水素液体燃料を合成する装置である。この液体燃料は、一般に、水素と一酸化炭素を主成分とするガスを反応に適した温度、圧力とし、触媒の存在下で合成反応させることにより得られることが知られている。
 水分供給手段31は、炭化機1内部に水分を供給するように構成されている。炭化機1内部に水分を供給する量を調節することで、燃料ガス供給管6から液体燃料合成装置30に供給される燃料ガスの水分の比率を調節することが可能となっている。このようにして本実施形態の燃料合成システムで製造された燃料ガスは、燃料ガスを構成する一酸化炭素と水素との比率が所望の比率に設定されたものとなっている。
 どの種別の液体燃料を合成するかは、原料となる一酸化炭素と水素との比率により決まる。したがって、特定の液体燃料を合成する場合は、燃料ガスの一酸化炭素と水素との比率が、当該液体燃料に適した比率となるように、水分供給手段31を調節すればよい。このように、本実施形態の燃料合成システムは、所望する種別の液体燃料を製造し得る柔軟性を有している。
 なお、水分供給手段31は、炭化機1内部に水分を供給する場合に限定されず、例えば密閉容器3内でもよいし、導入管5や燃料ガス供給管6に対して水分を供給してもよい。要するに、水分供給手段31は、液体燃料合成装置30に燃料ガスが供給される前に、燃料ガス(熱分解ガス)に水分を添加できる構成であればよい。
 また、火炉2と炭化機1とは、火炉2で生じた廃熱が、熱交換器(図示せず)等を介して、バイオマスを加熱する炭化機1の熱源となるように構成されている。これにより、更に燃料合成システム全体のエネルギー効率を改善できる。
 〈実施形態3〉
 実施形態1及び実施形態2では、炭化機1は、火炉2から離れて設けられ、火炉2の廃熱が熱交換機等を介して間接的に炭化機1に与えられるように構成されていたが、このような場合に限定されない。
 図3は、実施形態3に係る炭化機及び火炉の概略斜視図であり、図4は、実施形態3に係る燃料ガス精製設備を備える発電システムの概略構成図である。なお、実施形態1と同一のものには同一の符号を付し、重複する説明は省略する。
 図3及び図4に示すように、炭化機1Aは、円筒状に形成されており、その内面が火炉2の外面に当接するように火炉2に取り付けられている。
 具体的には、炭化機1Aは、上側固定部41と下側固定部42と本体部43とから構成されている。上側固定部41及び下側固定部42は、火炉2に固定されており、本体部43は、これらの上側固定部41と下側固定部42とに支持されている。
 本体部43は、円筒状に形成されており、その内面が火炉2の外面に当接している。また、本体部43と上側固定部41との間、及び本体部43と下側固定部42との間にはベアリング(図示せず)が設けられており、本体部43は火炉2を中心として回動し、本体部43の内面は、火炉2の外面を摺動するようになっている。
 このように、本体部43は火炉2に当接しているので、火炉2の廃熱が本体部43のバイオマス47が投入される内部空間44に直接的に伝熱するようになっている。このため、熱交換機等を介して間接的に火炉2の廃熱を利用する場合よりも効率的に火炉2の廃熱を炭化機1Aの熱源として有効利用することができる。
 また、本体部43の内部空間44には、火炉2を中心とする螺旋状に形成されたスクリュー羽根45が設けられている。スクリュー羽根45は、内部44に連通するバイオマス導入管46からバイオマス47を受け取り、本体部43と一緒に回動することで、受け取ったバイオマス47をゆっくりと本体部43の下部に搬送する。このため、バイオマス47に十分な熱を与えることができ、より確実に熱分解ガスを得ることができる。
 なお、本体部43には、導入管5が連通しており、この導入管5を介して熱分解ガスが密閉容器3の溶融炭酸塩4に導かれるようになっている。また、本体部43には、炭化物導入管7も連通しており、この炭化物導入管7を介して炭化物が火炉2に導かれるようになっている。
 以上に説明したように、本実施形態に係る燃料ガス精製設備を備える発電システムでは、炭化機1Aが火炉2に当接しているため、火炉2の廃熱が直接的に炭化機1Aの熱源として用いられるようになっている。このため、火炉2の廃熱を効率よく利用することができ、燃料ガス精製設備ないしは発電システム全体の熱効率を向上することができる。
 なお、本実施形態では、燃料ガス精製設備を備える発電システムについて説明したが、燃料合成システムにおいても、炭化機を火炉に当接させてもよい。この場合においても、火炉2の廃熱を効率よく利用することができ、燃料合成システム全体の熱効率を向上することができる。
 〈実施形態4〉
 実施形態1~実施形態3では、熱分解ガスは溶融炭酸塩4と反応することで精製されたが、この反応を促進するために密閉容器3に気泡細分手段を設けてもよい。
 図5は、実施形態4に係る燃料ガス精製設備を備える発電システムの概略構成図である。なお、実施形態3と同一のものには同一の符号を付し、重複する説明は省略する。
 図示するように、密閉容器3には、気泡細分手段の一例である攪拌機50が取り付けられている。攪拌機50は、動力部(図示せず)と、この動力部に取り付けられたシャフト51と、シャフト51の先端に取り付けられたプロペラ52とから構成されている。シャフト51は、プロペラ52が密閉容器3の溶融炭酸塩4内に浸された状態で密閉容器3に取り付けられている。これにより、動力部による駆動によりシャフト51が回動し、これに伴いプロペラ52が溶融炭酸塩4内で回動するようになっている。
 このようにプロペラ52が溶融炭酸塩4内で回動すると、溶融炭酸塩4に導入された熱分解ガスの気泡が細かく分割され、気泡が細分化される。この表面積が大きくなった分だけ、熱分解ガスの気泡は、より大きな接触面積で溶融炭酸塩4と接触することになる。このため、熱分解ガスと溶融炭酸塩4との反応が促進され、より早く熱分解ガスを精製することができる。
 なお、本実施形態では、燃料ガス精製設備を備える発電システムについて説明したが、燃料合成システムにおいても、密閉容器3に攪拌機50を設けてもよい。この場合においても、熱分解ガスの気泡は微細化されることにより、より早く熱分解ガスを精製することができる。
 また、本実施形態では、実施形態3をベースとして攪拌機50を設けた燃料ガス精製設備を例示したが、図6に示すように、実施形態1をベースとして攪拌機50を設けた燃料ガス精製設備としてもよい。すなわち、炭化機が火炉の外面に当接していない燃料ガス精製設備において、密閉容器3に攪拌機50を設けてもよい。その他にも、密閉容器3が火炉2の外部にある場合、例えば、密閉容器の全体又は一部を火炉2外部に配設した燃料ガス精製設備において、密閉容器3に攪拌機50を設けてもよい。いずれの燃料ガス精製設備でも熱分解ガスの気泡は攪拌機50により微細化され、これにより、より早く熱分解ガスを精製することができる。
 バイオマスをガス化して燃料や液体燃料の原料として用いる設備を使用、製造、販売する産業分野で有効に利用し得る。

Claims (14)

  1.  バイオマスを熱分解して熱分解ガス及び炭化物を生成する炭化機と、
     前記炭化機により生成された炭化物が供給されると共に該炭化物を燃焼する火炉と、
     前記火炉内で燃焼した前記炭化物の熱により溶融した溶融炭酸塩を収容する密閉容器と、
     前記炭化機で生成された前記熱分解ガスを前記密閉容器の前記溶融炭酸塩中に導入するように配設された導入管と、
     前記導入管から送られて前記溶融炭酸塩を流通した熱分解ガスが前記溶融炭酸塩との反応により精製されたものである燃料ガスを前記密閉容器内から前記火炉外部へ送るように配設された燃料ガス供給管とを具備する
    ことを特徴とする燃料ガス精製設備。
  2.  請求項1に記載する燃料ガス精製設備において、
     前記炭化機は、前記火炉の廃熱により前記バイオマスの熱分解をするように構成されている
    ことを特徴とする燃料ガス精製設備。
  3.  請求項1又は請求項2に記載する燃料ガス精製設備において、
     前記密閉容器は前記火炉内に配設されている
    ことを特徴とする燃料ガス精製設備。
  4.  請求項1~請求項3の何れか一項に記載する燃料ガス精製設備において、
     前記溶融炭酸塩に水酸化物を供給する水酸化物供給手段を具備する
    ことを特徴とする燃料ガス精製設備。
  5.  請求項1~請求項4の何れか一項に記載する燃料ガス精製設備において、
     前記溶融炭酸塩には、触媒が含まれている
    ことを特徴とする燃料ガス精製設備。
  6.  請求項1~請求項5の何れか一項に記載する燃料ガス精製設備において、
     前記溶融炭酸塩を流通した熱分解ガスの気泡を細分する気泡細分手段を備える
    ことを特徴とする燃料ガス精製設備。
  7.  請求項1~請求項6の何れか一項に記載する燃料ガス精製設備において、
     前記炭化機は、前記火炉の外面に当接している
    ことを特徴とする燃料ガス精製設備。
  8.  請求項1~請求項7の何れか一項に記載する燃料ガス精製設備と、
     前記燃料ガス供給管からの燃料ガスを用いて発電する発電手段とを具備する
    ことを特徴とする発電システム。
  9.  請求項8に記載する発電システムにおいて、
     前記発電手段は、前記燃料ガス供給管からの燃料ガスが送られる燃料極を備えた高温型の燃料電池を備える
    ことを特徴とする発電システム。
  10.  請求項8に記載する発電システムにおいて、
     前記発電手段は、前記燃料ガス供給管からの燃料ガスにより作動するガスエンジンと、該ガスエンジンの作動により発動する発電機とを備える
    ことを特徴とする発電システム。
  11.  請求項8に記載する発電システムにおいて、
     前記発電手段は、前記燃料ガス供給管からの燃料ガスを燃焼するタービン燃焼器と、該タービン燃焼器からの燃焼ガスの膨張により動力を得ることで発電機の駆動を行うガスタービンとを備える
    ことを特徴とする発電システム。
  12.  請求項8~請求項11の何れか一項に記載する発電システムにおいて、
     前記炭化機は、前記発電手段の廃熱により前記バイオマスの熱分解をするように構成されている
    ことを特徴とする発電システム。
  13.  請求項1~請求項7の何れか一項に記載する燃料ガス精製設備と、
     前記燃料ガス供給管からの燃料ガスから液体燃料を合成する液体燃料合成装置と、
     前記火炉外部へ供給される燃料ガスの水分の比率を調節し得るように前記炭化機又は前記密閉容器内に水を供給する水分供給手段とを具備する
    ことを特徴とする燃料合成システム。
  14.  請求項13に記載する燃料合成システムにおいて、
     前記炭化機は、前記液体燃料合成装置の廃熱により前記バイオマスの熱分解をするように構成されている
    ことを特徴とする燃料合成システム。
PCT/JP2009/050811 2008-02-05 2009-01-21 燃料ガス精製設備、発電システム及び燃料合成システム WO2009098936A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09707179A EP2243815A4 (en) 2008-02-05 2009-01-21 FUEL GAS CLEANER, ENERGY GENERATION SYSTEM AND FUEL SYNTHESIS SYSTEM
CN2009801035221A CN101932678A (zh) 2008-02-05 2009-01-21 燃料气体精制设备、发电系统及燃料合成系统
US12/865,868 US8636818B2 (en) 2008-02-05 2009-01-21 Fuel gas purification apparatus, power generation system, and fuel synthesis system
JP2009552428A JP5366147B2 (ja) 2008-02-05 2009-01-21 燃料ガス精製設備、発電システム及び燃料合成システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008025597 2008-02-05
JP2008-025597 2008-02-05

Publications (1)

Publication Number Publication Date
WO2009098936A1 true WO2009098936A1 (ja) 2009-08-13

Family

ID=40952014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050811 WO2009098936A1 (ja) 2008-02-05 2009-01-21 燃料ガス精製設備、発電システム及び燃料合成システム

Country Status (5)

Country Link
US (1) US8636818B2 (ja)
EP (1) EP2243815A4 (ja)
JP (1) JP5366147B2 (ja)
CN (1) CN101932678A (ja)
WO (1) WO2009098936A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010184972A (ja) * 2009-02-10 2010-08-26 Central Res Inst Of Electric Power Ind 燃料ガス精製装置、発電システム及び燃料合成システム
JP2010184973A (ja) * 2009-02-10 2010-08-26 Central Res Inst Of Electric Power Ind 燃料ガス精製装置、発電システム及び燃料合成システム
CN102454432A (zh) * 2010-10-14 2012-05-16 林一六 发电系统
JP2013184986A (ja) * 2012-03-05 2013-09-19 Central Research Institute Of Electric Power Industry 燃料ガス精製装置、発電システム及び燃料合成システム
US9574493B2 (en) 2012-01-10 2017-02-21 Ichiroku HAYASHI Electricity-generating system

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8992639B2 (en) * 2010-10-20 2015-03-31 Peter Rugg Process for purifying solid carboniferous fuels prior to combustion, liquefaction or gasification using a rotary chamber
FI20115147L (fi) * 2011-02-16 2012-08-17 Upm Kymmene Corp Menetelmä ja laitteisto mustan väripigmentin valmistamiseksi
JP5756231B2 (ja) * 2012-05-18 2015-07-29 株式会社ジャパンブルーエナジー バイオマスのガス化装置
CA2923215A1 (en) * 2013-09-05 2015-03-12 Ag Energy Solutions, Inc. Apparatuses, systems, mobile gasification systems, and methods for gasifying residual biomass
US9005536B1 (en) 2014-05-01 2015-04-14 ARK Power Dynamics, LLC Apparatus and method for conversion of solid waste into synthetic oil, gas, and fertilizer
US20160068770A1 (en) * 2014-09-04 2016-03-10 Ag Energy Solutions, Inc. Apparatuses, systems, staging hoppers, and methods for controlling continuous feed of feedstock to a gasifier
US9631151B2 (en) 2014-09-04 2017-04-25 Ag Energy Solutions, Inc. Apparatuses, systems, tar crackers, and methods for gasifying having at least two modes of operation
EP3239274B1 (en) * 2014-12-24 2020-06-24 Takahashi Seisakusho Inc. Water gas generation system and method for supplying combustion gas to said system
EP3874010A4 (en) * 2018-10-29 2022-08-03 Arb Pyrolysis, LLC SYSTEMS AND METHODS FOR PROCESSING A CARBONATED RAW MATERIAL
CN115210177A (zh) * 2019-11-29 2022-10-18 皇家墨尔本理工大学 热解和碳沉积的方法和系统
GR1009990B (el) * 2020-07-27 2021-04-26 Αλεξανδρος Χρηστου Παπαδοπουλος Συστημα προστασιας απο την κλιματικη αλλαγη με μοναδες ηλεκτροπαραγωγης αρνητικων εκπομπων διοξειδιου του ανθρακα
CN114147016A (zh) * 2021-12-09 2022-03-08 广东南方碱业股份有限公司 一种碳化塔清洗系统
US11827859B1 (en) 2022-05-03 2023-11-28 NuPhY, Inc. Biomass gasifier system with rotating distribution manifold

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169497A (ja) * 1993-12-14 1995-07-04 Mitsubishi Heavy Ind Ltd 高温作動型燃料電池の運転方法
JPH10235128A (ja) * 1997-02-24 1998-09-08 Toshiba Corp 乾式脱硫装置およびそれを用いた発電プラント
JPH1142421A (ja) * 1997-05-26 1999-02-16 Toshiba Corp 脱硫装置およびそれを用いた発電プラント
JP2000140621A (ja) * 1998-11-09 2000-05-23 Meidensha Corp バイオマス熱分解生成ガス処理方法及びその装置
JP2002093452A (ja) * 2000-09-11 2002-03-29 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池発電設備の不純物ガス除去方法及びその不純物ガス除去装置
JP2003243019A (ja) * 2002-02-18 2003-08-29 Mitsubishi Materials Corp 廃棄物発電システム
JP2006002042A (ja) 2004-06-17 2006-01-05 Central Res Inst Of Electric Power Ind バイオマス炭化・ガス化システムおよび炭化・ガス化方法
WO2006022687A2 (en) * 2004-08-03 2006-03-02 The Regents Of The Universtiy Of California Steam pyrolysis as a process to enhance the hydro-gasification of carbonaceous materials
JP2008101066A (ja) * 2006-10-17 2008-05-01 Central Res Inst Of Electric Power Ind 燃料ガス精製設備及び発電設備

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147591A (ja) 1974-10-10 1976-04-23 Texaco Development Corp
USH1539H (en) * 1993-11-12 1996-06-04 Shell Oil Company Method of reducing hydrogen chloride in synthesis gas
EP0880992B1 (en) * 1997-05-26 2004-12-15 Kabushiki Kaisha Toshiba Desulfurization apparatus
EP1187892B1 (de) 1999-06-09 2004-12-29 Technische Universität München Lehrstuhl für Thermische Kraftanlagen Vorrichtung zur vergasung kohlenstoffhaltiger einsatzstoffe
DE19926202C1 (de) 1999-06-09 2001-02-22 Tech Uni Muenchen Lehrstuhl Fu Vorrichtung zur Vergasung biogener Einsatzstoffe
DE19930071C2 (de) * 1999-06-30 2001-09-27 Wolfgang Krumm Verfahren und Vorrichtung zur Pyrolyse und Vergasung von organischen Stoffen und Stoffgemischen
US6576210B2 (en) * 2000-05-19 2003-06-10 Integrated Environmental Technologies, Llc Method for complete destruction of carbon in high temperature plasma waste treatment systems
CN1286214A (zh) * 2000-09-25 2001-03-07 四川华泰投资有限责任公司 在以天然气水蒸汽转化的合成气为原料的合成工艺中调节合成气氢碳成分比的方法
US6680137B2 (en) * 2000-11-17 2004-01-20 Future Energy Resources Corporation Integrated biomass gasification and fuel cell system
CN1151574C (zh) * 2002-04-16 2004-05-26 上海交通大学 熔融碳酸盐燃料电池蒸汽轮机联合发电系统
FI20030241A (fi) * 2003-02-17 2004-08-18 Fortum Oyj Menetelmä synteesikaasun tuottamiseksi
US20050247553A1 (en) * 2004-03-23 2005-11-10 Central Research Institute Of Electric Power Industry Carbonization and gasification of biomass and power generation system
US7854775B2 (en) * 2006-05-12 2010-12-21 InEn Tec, LLC Combined gasification and vitrification system
US8118892B2 (en) * 2006-05-12 2012-02-21 Inentec Llc Gasification system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169497A (ja) * 1993-12-14 1995-07-04 Mitsubishi Heavy Ind Ltd 高温作動型燃料電池の運転方法
JPH10235128A (ja) * 1997-02-24 1998-09-08 Toshiba Corp 乾式脱硫装置およびそれを用いた発電プラント
JPH1142421A (ja) * 1997-05-26 1999-02-16 Toshiba Corp 脱硫装置およびそれを用いた発電プラント
JP2000140621A (ja) * 1998-11-09 2000-05-23 Meidensha Corp バイオマス熱分解生成ガス処理方法及びその装置
JP2002093452A (ja) * 2000-09-11 2002-03-29 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池発電設備の不純物ガス除去方法及びその不純物ガス除去装置
JP2003243019A (ja) * 2002-02-18 2003-08-29 Mitsubishi Materials Corp 廃棄物発電システム
JP2006002042A (ja) 2004-06-17 2006-01-05 Central Res Inst Of Electric Power Ind バイオマス炭化・ガス化システムおよび炭化・ガス化方法
WO2006022687A2 (en) * 2004-08-03 2006-03-02 The Regents Of The Universtiy Of California Steam pyrolysis as a process to enhance the hydro-gasification of carbonaceous materials
JP2008101066A (ja) * 2006-10-17 2008-05-01 Central Res Inst Of Electric Power Ind 燃料ガス精製設備及び発電設備

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010184972A (ja) * 2009-02-10 2010-08-26 Central Res Inst Of Electric Power Ind 燃料ガス精製装置、発電システム及び燃料合成システム
JP2010184973A (ja) * 2009-02-10 2010-08-26 Central Res Inst Of Electric Power Ind 燃料ガス精製装置、発電システム及び燃料合成システム
CN102454432A (zh) * 2010-10-14 2012-05-16 林一六 发电系统
US9574493B2 (en) 2012-01-10 2017-02-21 Ichiroku HAYASHI Electricity-generating system
JP2013184986A (ja) * 2012-03-05 2013-09-19 Central Research Institute Of Electric Power Industry 燃料ガス精製装置、発電システム及び燃料合成システム

Also Published As

Publication number Publication date
JPWO2009098936A1 (ja) 2011-05-26
US8636818B2 (en) 2014-01-28
US20100326087A1 (en) 2010-12-30
EP2243815A4 (en) 2012-12-05
JP5366147B2 (ja) 2013-12-11
CN101932678A (zh) 2010-12-29
EP2243815A1 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
JP5366147B2 (ja) 燃料ガス精製設備、発電システム及び燃料合成システム
JP6313292B2 (ja) 統合された電気分解槽および炭化水素ガス化反応器からの水素製造
JP4679212B2 (ja) 高温リフォーマー
US20060127718A1 (en) Fuel cell, operating method thereof, sintering furnace, and power generator
CA2528691C (en) Fuel cell, operating method thereof, sintering furnace, and power generator
KR100440845B1 (ko) 석유 연료 연소식 일체형 복합 사이클 발전 시스템 및 방법
JP4981439B2 (ja) 固体燃料ガス化ガス利用プラント
CA2651920A1 (en) Combined gasification and vitrification system
WO2021171731A1 (ja) 原料の処理装置および処理方法
WO1999055618A1 (en) Method and apparatus for the production of synthesis gas
US20170152763A1 (en) Reactor
JP2010184972A (ja) 燃料ガス精製装置、発電システム及び燃料合成システム
JP2007238670A (ja) ガス浄化装置及び方法、ガス化システム、ガス化発電システム
JP2007229563A (ja) 有機性廃棄物の処理方法
JP2012101986A (ja) Coの製造方法及びその装置
JP5441101B2 (ja) 燃料ガス精製装置、発電システム及び燃料合成システム
JP2008101066A (ja) 燃料ガス精製設備及び発電設備
JP5875067B2 (ja) 燃料ガス精製装置、発電システム及び燃料合成システム
JP3776692B2 (ja) 廃棄物のガス化処理設備及びこれを利用したガス化発電設備
JP2000239672A (ja) 水素ガス等の製造方法及びその装置
JP2008169320A (ja) 改質炉
JP4817269B2 (ja) 脱硫装置及び発電システム
JP2001026788A (ja) 合成ガスの製造方法及びその製造装置
EP2666845A1 (en) Gas producing apparatus
WO2021010314A1 (ja) ガス化システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980103522.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09707179

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009552428

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12865868

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009707179

Country of ref document: EP