WO2021171731A1 - 原料の処理装置および処理方法 - Google Patents

原料の処理装置および処理方法 Download PDF

Info

Publication number
WO2021171731A1
WO2021171731A1 PCT/JP2020/045676 JP2020045676W WO2021171731A1 WO 2021171731 A1 WO2021171731 A1 WO 2021171731A1 JP 2020045676 W JP2020045676 W JP 2020045676W WO 2021171731 A1 WO2021171731 A1 WO 2021171731A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
combustion chamber
carbon dioxide
chamber
gas
Prior art date
Application number
PCT/JP2020/045676
Other languages
English (en)
French (fr)
Inventor
貴行 井原
藤原 孝
三好 敬久
Original Assignee
荏原環境プラント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荏原環境プラント株式会社 filed Critical 荏原環境プラント株式会社
Priority to CN202080097457.2A priority Critical patent/CN115190955A/zh
Priority to US17/801,593 priority patent/US20230081521A1/en
Priority to KR1020227029233A priority patent/KR20220147600A/ko
Priority to EP20921253.9A priority patent/EP4112592A4/en
Publication of WO2021171731A1 publication Critical patent/WO2021171731A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C9/00Aliphatic saturated hydrocarbons
    • C07C9/02Aliphatic saturated hydrocarbons with one to four carbon atoms
    • C07C9/04Methane
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B51/00Destructive distillation of solid carbonaceous materials by combined direct and indirect heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • C25B15/081Supplying products to non-electrochemical reactors that are combined with the electrochemical cell, e.g. Sabatier reactor
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/022Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material for removing solid particulate material from the gasflow
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/02Combustion or pyrolysis
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/38Applying an electric field or inclusion of electrodes in the apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2200/00Waste incineration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a technique for treating raw materials such as combustible waste, and particularly to a combustion and pyrolysis / gasification treatment technique that does not release carbon dioxide into the atmosphere.
  • the present invention provides a treatment apparatus and a treatment method capable of theoretically setting the amount of carbon dioxide released into the atmosphere to 0 and contributing to the prevention of global warming.
  • a raw material processing device a flow bed furnace having a pyrolysis chamber and a combustion chamber partitioned by a partition wall inside, and an electrolysis device that electrolyzes water to generate hydrogen and oxygen.
  • a processing apparatus includes a part and a second fluidized gas supply line that guides the oxygen as a second fluidized gas to the combustion chamber.
  • the electrolyzer is electrically connected to a CO 2-free generator.
  • the first fluidized gas supply line is an oxygen-free gas supply line that supplies oxygen-free gas as the first fluidized gas into the pyrolysis chamber.
  • the processing apparatus further comprises a hydrogen holder for storing the hydrogen produced by the electrolyzer, the hydrogen holder being disposed between the electrolyzer and the metanation reactor. ing.
  • the processing apparatus further comprises an oxygen holder for storing oxygen generated by the electrolyzer, the oxygen holder being disposed between the electrolyzer and the combustion chamber. ..
  • the raw material is processed using a pyrolysis chamber and a combustion bed furnace having a combustion chamber inside, which is partitioned by a partition wall. Water is electrolyzed to generate hydrogen and oxygen, and the combustion is performed. While moving the fluid medium in the chamber to the pyrolysis chamber, the first fluidized gas is supplied to the pyrolysis chamber, the raw material is thermally decomposed in the thermal decomposition chamber, and the residue of the raw material is burned in the combustion chamber.
  • a method is provided in which methane is generated from the carbon dioxide discharged from the combustion chamber and the hydrogen, and a part of the carbon dioxide and the oxygen are supplied to the combustion chamber as a second fluidized gas.
  • the electrolysis of the water is carried out using CO 2-free power.
  • the first fluidized gas is an oxygen-free gas.
  • the treatment apparatus and treatment method according to the present invention can theoretically set the amount of carbon dioxide released into the atmosphere to zero.
  • FIG. 1 is a schematic view showing an embodiment of a processing device for processing a raw material such as combustible waste.
  • the treatment equipment shown in FIG. 1 includes a fluidized bed reactor 1 which is an incinerator of raw materials, an electrolysis apparatus 2 which electrolyzes water to generate hydrogen and oxygen, carbon dioxide discharged from the fluidized bed reactor 1, and It includes a metanation reactor 3 that produces methane from hydrogen produced by the electrolyzer 2.
  • the fluidized bed furnace 1 includes a thermal decomposition chamber 6 that thermally decomposes raw materials to generate thermal decomposition products such as hydrocarbons, and a combustion chamber 7 that burns the residue of the thermally decomposed raw materials.
  • the pyrolysis chamber 6 and the combustion chamber 7 are formed in one fluidized bed furnace 1. That is, the inside of the fluidized bed furnace 1 is partitioned into a thermal decomposition chamber 6 and a combustion chamber 7 by a partition wall 10.
  • the overall shape of the fluidized bed furnace 1 is not particularly limited, but has, for example, a cylindrical shape or a rectangular shape.
  • a fluid medium for example, silica sand
  • the pyrolysis chamber 6 and the combustion chamber 7 are connected to the first fluidized gas supply line 11 and the second fluidized gas supply line 12, respectively.
  • the first fluidized gas supply line 11 is connected to the first air box 15 located below the thermal decomposition chamber 6, and communicates with the thermal decomposition chamber 6 through the first air box 15.
  • the upper wall of the first wind box 15 is made of a perforated plate 15a.
  • the perforated plate 15a constitutes the hearth of the pyrolysis chamber 6.
  • the first fluidized gas supply line 11 supplies the first fluidized gas into the pyrolysis chamber 6 through the first air box 15 and causes the fluid medium in the pyrolysis chamber 6 to flow.
  • the flowing fluid medium forms the first fluidized bed 18 in the pyrolysis chamber 6.
  • the second fluidized gas supply line 12 is connected to the second air box 16 located below the combustion chamber 7, and communicates with the combustion chamber 7 through the second air box 16.
  • the upper wall of the second wind box 16 is made of a perforated plate 16a.
  • the perforated plate 16a constitutes the hearth of the combustion chamber 7.
  • the second fluidized gas supply line 12 uses a part of the carbon dioxide discharged from the combustion chamber 7 and the oxygen generated by the electrolyzer 2 as the second fluidized gas through the second air box 16 to the combustion chamber 7.
  • the flow medium in the combustion chamber 7 is made to flow.
  • the flowing fluid medium forms a second fluidized bed 19 in the combustion chamber 7.
  • the processing device includes a combustion exhaust gas transfer line 24 extending from an exhaust gas outlet 22 provided above the combustion chamber 7 to the metanation reactor 3. Further, the treatment apparatus includes a combustion exhaust gas transfer line 24 and a carbon dioxide return line 25 connected to the fluidized bed furnace 1. One end of the carbon dioxide return line 25 is connected to the combustion exhaust gas transfer line 24, and the other end of the carbon dioxide return line 25 is connected to the second air box 16. A part of the carbon dioxide generated in the combustion chamber 7 is returned to the combustion chamber 7 through the carbon dioxide return line 25, and the remaining carbon dioxide is sent to the metanation reactor 3 through the combustion exhaust gas transfer line 24. ..
  • the oxygen generated by the electrolyzer 2 is sent to the combustion chamber 7 through the oxygen transfer line 30 and the carbon dioxide return line 25.
  • One end of the oxygen transfer line 30 is connected to the electrolyzer 2, and the other end of the oxygen transfer line 30 is connected to the carbon dioxide return line 25.
  • Oxygen is mixed with carbon dioxide flowing through the carbon dioxide return line 25.
  • the mixture of carbon dioxide and oxygen flowing through the carbon dioxide return line 25 is guided into the combustion chamber 7 as the second fluidized gas, and causes the flow medium in the combustion chamber 7 to flow.
  • the second fluidized gas supply line 12 is composed of at least a part of the combustion exhaust gas transfer line 24, the carbon dioxide return line 25, and the oxygen transfer line 30.
  • the partition wall 10 extends downward from the upper wall 1a of the fluidized bed furnace 1.
  • the lower end of the partition wall 10 is not in contact with the hearth, and there is an opening 26 under the partition wall 10.
  • the opening 26 is located at the bottom of the pyrolysis chamber 6 and the combustion chamber 7, and the pyrolysis chamber 6 and the combustion chamber 7 communicate with each other through the opening 26.
  • the opening 26 allows the fluid medium heated in the combustion chamber 7 to move into the pyrolysis chamber 6.
  • the opening 26 is located below the interface (upper surface) of the first fluidized bed 18 and the second fluidized bed 19 in the pyrolysis chamber 6 and the combustion chamber 7.
  • a swirling flow of a flow medium is formed by a second fluidized gas composed of carbon dioxide and oxygen.
  • the second fluidized bed 19 is formed from the swirling flow of such a fluidized bed.
  • a part of the fluidized medium forming the swirling flow in the combustion chamber 7 flows into the thermal decomposition chamber 6 through the opening 26 and is mixed with the fluidized medium forming the first fluidized bed 18.
  • a swirling flow of the flow medium is formed by the first fluidized gas.
  • the first fluidized bed 18 is formed from the swirling flow of such a fluidized bed.
  • the pyrolysis chamber 6 and the combustion chamber 7 communicate with each other through the communication passage 35.
  • the arrow indicating the connecting passage 35 is drawn outside the fluidized bed furnace 1, but the connecting passage 35 is also located inside the fluidized bed furnace 1.
  • the pyrolysis chamber 6 and the combustion chamber 7 are drawn in a plane, but in reality, the pyrolysis chamber 6 and the combustion chamber 7 have a three-dimensional shape, and the pyrolysis chamber 6 has a three-dimensional shape. It can also be placed next to the combustion chamber 7. Therefore, the communication passage 35 may be composed of a simple opening.
  • the fluidized bed furnace 1 has a raw material supply port 37 that supplies raw materials such as waste and biomass into the thermal decomposition chamber 6.
  • the raw material charged into the thermal decomposition chamber 6 through the raw material supply port 37 receives heat from the fluidized medium and thermally decomposes while being agitated by the swirling flow of the fluidized medium forming the first fluidized bed 18.
  • some of the components contained in the raw material form a produced gas as a thermal decomposition product (for example, hydrocarbons CnHm, n and m are integers).
  • the generated gas is discharged from the thermal decomposition chamber 6 through the generated gas outlet 41 provided on the upper wall 1a of the fluidized bed furnace 1 forming the thermal decomposition chamber 6.
  • the generated gas outlet 41 communicates with the pyrolysis chamber 6.
  • the generated gas transfer line 45 is connected to the generated gas outlet 41.
  • the processing apparatus includes a cyclone 47 and a scrubber 48 connected to a production gas transfer line 45.
  • the cyclone 47 and the scrubber 48 are arranged in series along the production gas transfer line 45.
  • the generated gas discharged from the pyrolysis chamber 6 is sent to the cyclone 47 through the generated gas transfer line 45, and the cyclone 47 removes dust from the generated gas. Further, the produced gas is sent to the scrubber 48, and the produced gas is washed with water (water containing an alkaline chemical such as caustic soda may be used) in the scrubber 48.
  • the scrubber 48 may be configured to wash the produced gas with oil instead of water, or to wash the produced gas with water and oil.
  • the produced gas purified in this way can be used as a fuel gas, a chemical raw material, or the like. In some cases, one or both of the cyclone 47 and the scrubber 48 may not be provided.
  • the first fluidized gas supply line 11 of the present embodiment is an oxygen-free gas supply line.
  • the oxygen-free gas include a produced gas discharged from the pyrolysis chamber 6, a water vapor, an inert gas (for example, nitrogen gas), or methane produced by the metanation reactor 3.
  • the oxygen-free gas may be a mixture of at least two of a product gas, water vapor, an inert gas, and methane. In this embodiment, water vapor is used as the first fluidized gas.
  • the first fluidized gas a combination of the produced gas discharged from the thermal decomposition chamber 6 and the methane produced by the metanation reactor 3 is used. Since the first fluidized gas containing the combination of the produced gas and methane has a chemical composition close to that of the produced gas generated by the thermal decomposition of the raw material, the purity of the produced gas is increased. Further, when it is desired to contain a chemical substance containing an oxygen atom in the produced gas, the gasification reaction may be carried out in the pyrolysis chamber 6 by supplying the oxygen-containing gas to the empty tower portion of the pyrolysis chamber 6. good.
  • the residue of the raw material in the pyrolysis chamber 6 moves to the combustion chamber 7 through the communication passage 35 together with the flow medium.
  • the residue of the raw material burns in the presence of oxygen contained in the second fluidized gas while swirling with the fluidized medium forming the second fluidized bed 19.
  • the residue of the raw material releases heat energy while generating carbon dioxide as it burns, and heats the fluidized medium forming the second fluidized bed 19.
  • Carbon dioxide and excess oxygen are discharged from the combustion chamber 7 as combustion exhaust gas through the exhaust gas outlet 22.
  • the exhaust gas outlet 22 is provided on the upper wall 1a of the fluidized bed furnace 1 forming the combustion chamber 7.
  • the exhaust gas outlet 22 communicates with the combustion chamber 7.
  • a part of the heated flow medium flows into the thermal decomposition chamber 6 through the opening 26.
  • the heated fluid medium provides the amount of heat required for the thermal decomposition of the raw material, whereby the thermal decomposition of the raw material proceeds in the thermal decomposition chamber 6. Further, the fluid medium moves to the combustion chamber 7 through the communication passage 35 together with the residue of the raw material. In this way, the fluid medium circulates between the pyrolysis chamber 6 and the combustion chamber 7.
  • the raw material put into the pyrolysis chamber 6 is a flammable material containing carbon (C) such as waste plastic, wood, and biomass.
  • C carbon
  • the raw material does not burn in the thermal decomposition chamber 6 but is thermally decomposed. Since the raw material contains carbon, carbides (chars) are likely to be generated in the pyrolysis chamber 6.
  • the carbide (char) cannot be taken out from the pyrolysis chamber 6 as a generated gas, but has a high calorific value. A part of the raw material is discharged from the thermal decomposition chamber 6 as a generated gas, and the residue of the raw material is sent into the combustion chamber 7 as carbide (char). This carbide (char) has a high calorific value.
  • the carbide (char) generates high thermal energy when burned in the combustion chamber 7, and can heat the flow medium to a high temperature. A part of the heated fluid medium moves from the combustion chamber 7 to the thermal decomposition chamber 6 to thermally decompose the raw material.
  • a non-combustible material discharge port 50 is provided between the first wind box 15 and the second wind box 16. The relatively large incombustibles contained in the raw material are discharged from the incombustibles discharge port 50.
  • the residue of the raw material burns in the combustion chamber 7 to generate carbon dioxide.
  • Carbon dioxide is discharged from the combustion chamber 7 through the exhaust gas outlet 22, and is transferred to the metanation reactor 3 through the combustion exhaust gas transfer line 24.
  • Methanation reactor 3 the interior has a methanation catalyst (not shown), is reacted with carbon dioxide and hydrogen to produce methane and water (H 2 O).
  • methanation catalyst not shown
  • the produced methane is transferred through the methane transfer line 53, and the produced water is discharged from the metanation reactor 3 through the drain 54.
  • the treatment device includes a boiler 55 connected to the combustion exhaust gas transfer line 24, a temperature reducing tower 56, a dust collector 57, and a scrubber 58.
  • the boiler 55, the temperature reducing tower 56, the dust collector 57, and the scrubber 58 are arranged in series along the combustion exhaust gas transfer line 24.
  • the connection point between the carbon dioxide return line 25 and the combustion exhaust gas transfer line 24 is located on the downstream side of the dust collector 57.
  • the combustion exhaust gas discharged from the combustion chamber 7 is sent to the boiler 55 through the combustion exhaust gas transfer line 24, and the waste heat is recovered in the boiler 55.
  • the combustion exhaust gas is sent to the temperature reducing tower 56 through the combustion exhaust gas transfer line 24, and the combustion exhaust gas is cooled by the temperature reducing tower 56.
  • the temperature reducing tower 56 is an example of a cooler for cooling the combustion exhaust gas.
  • the combustion exhaust gas is further sent to the dust collector 57 through the combustion exhaust gas transfer line 24, and the dust collector 57 removes dust such as flying ash from the combustion exhaust gas.
  • a bug filter can be used as the dust collector 57.
  • the combustion exhaust gas is sent to the scrubber 58 through the combustion exhaust gas transfer line 24, and the combustion exhaust gas is washed with water (may be water containing an alkaline chemical such as caustic soda) at the scrubber 58.
  • the combustion exhaust gas purified in this way is sent to the metanation reactor 3.
  • At least one of the boiler 55, the temperature reducing tower 56, the dust collector 57, and the scrubber 58 may not be provided. For example, when heat recovery is not performed, the boiler 55 is not provided.
  • the electrolysis device 2 is a device that electrolyzes water into hydrogen and oxygen. Electrolyzer 2 is connected to a water supply line 60, water (H 2 O) is supplied to the electrolyzer 2 through the water supply line 60. The electrolyzer 2 is further electrically connected to the CO 2-free generator 62.
  • the CO 2- free generator 62 is a generator driven by renewable energy and does not generate carbon dioxide for power generation. Examples of renewable energies include solar, wind, hydro, geothermal, solar, and biomass (organic matter derived from animals and plants).
  • CO 2 free power generated by such a CO 2 free generator 62 is supplied to the electrolyzer 2.
  • CO 2 free generator 62 In order to absorb the power fluctuation amount of CO 2 free generator 62, CO 2 free generator 62 once the CO 2 free power generated by the reservoir to the battery (not shown), CO 2 from the storage battery to the electrolyzer 2 Free power may be supplied.
  • the electrolyzer 2 electrolyzes water with CO 2- free power to generate hydrogen and oxygen. Hydrogen is transferred to the metanation reactor 3 through the hydrogen transfer line 61, and oxygen is supplied to the combustion chamber 7 through the oxygen transfer line 30 and the carbon dioxide return line 25.
  • the hydrogen transfer line 61 extends from the electrolyzer 2 to the metanation reactor 3, and the oxygen transfer line 30 extends from the electrolyzer 2 to the carbon dioxide return line 25. In one embodiment, the oxygen transfer line 30 may extend from the electrolyzer 2 to the second airbox 16.
  • the processing apparatus includes a hydrogen holder 65 connected to the hydrogen transfer line 61, a hydrogen flow control valve 66 attached to the hydrogen transfer line 61, an oxygen holder 70 connected to the oxygen transfer line 30, and an oxygen transfer line 30. It includes an attached oxygen flow control valve 71.
  • the hydrogen holder 65 is located between the electrolyzer 2 and the metanation reactor 3, and the oxygen holder 70 is located between the electrolyzer 2 and the combustion chamber 7.
  • the hydrogen generated by the electrolyzer 2 is temporarily stored in the hydrogen holder 65 through the hydrogen transfer line 61.
  • the hydrogen flow rate control valve 66 is located between the hydrogen holder 65 and the methanation reactor 3. When the hydrogen flow rate control valve 66 is opened, the hydrogen in the hydrogen holder 65 is transferred to the metanation reactor 3 through the hydrogen transfer line 61 and the hydrogen flow rate control valve 66. Carbon dioxide and hydrogen are reacted in the methanation reactor 3, it is converted into methane and water (H 2 O).
  • the amount of hydrogen to be transferred to the metanational reactor 3 is the amount of methane produced by the reaction of the total amount of carbon dioxide and the total amount of hydrogen in the metanational reactor 3. Therefore, in order to transfer hydrogen to the metanation reactor 3 at an appropriate flow rate, the processing apparatus includes a carbon dioxide measuring device 75 for measuring the flow rate of carbon dioxide flowing into the metanation reactor 3 and a carbon dioxide flow rate. A control unit 80 for adjusting the opening degree of the hydrogen flow rate control valve 66 based on the measured value is provided. The carbon dioxide measuring instrument 75 is attached to the combustion exhaust gas transfer line 24 at a position immediately upstream of the metanational reactor 3. The carbon dioxide measuring instrument 75 has a configuration having both a flow meter and a densitometer.
  • the carbon dioxide measuring device 75 measures the flow rate of the combustion exhaust gas flowing through the combustion exhaust gas transfer line 24, further measures the concentration of carbon dioxide in the combustion exhaust gas, and determines carbon dioxide from the flow rate of the combustion exhaust gas and the concentration of carbon dioxide. It is configured to calculate the flow rate of.
  • the carbon dioxide measuring device 75 is electrically connected to the control unit 80, and the measured value of the carbon dioxide flow rate is sent to the control unit 80.
  • the control unit 80 adjusts the opening degree of the hydrogen flow rate control valve 66 based on the flow rate of carbon dioxide flowing into the metanation reactor 3 (that is, the measured value of the flow rate of carbon dioxide sent from the carbon dioxide measuring device 75). , It is configured to control the flow rate of hydrogen transferred to the metanation reactor 3. More specifically, when the flow rate of carbon dioxide is increasing, the control unit 80 operates the hydrogen flow rate control valve 66 to increase the flow rate of hydrogen, and when the flow rate of carbon dioxide is decreasing, the flow rate of carbon dioxide is decreasing. The control unit 80 operates the hydrogen flow rate control valve 66 to reduce the hydrogen flow rate. With such control, all of the carbon dioxide contained in the combustion exhaust gas can be reacted with hydrogen to generate methane. As a result, the amount of carbon dioxide released to the outside of the processing device is theoretically zero. Methane can be used as a fuel gas such as city gas.
  • the control unit 80 is composed of at least one computer.
  • the control unit 80 includes a storage device 80a in which the program is stored and an arithmetic unit 80b that executes an operation according to an instruction included in the program.
  • the storage device 80a includes a main storage device such as a RAM and an auxiliary storage device such as a hard disk drive (HDD) and a solid state drive (SSD).
  • Examples of the arithmetic unit 80b include a CPU (central processing unit) and a GPU (graphic processing unit).
  • the specific configuration of the control unit 80 is not limited to this embodiment.
  • the oxygen generated by the electrolyzer 2 is temporarily stored in the oxygen holder 70 through the oxygen transfer line 30.
  • the oxygen flow control valve 71 is located between the oxygen holder 70 and the carbon dioxide return line 25. When the oxygen flow rate control valve 71 is opened, the oxygen in the oxygen holder 70 is transferred to the combustion chamber 7 through the oxygen transfer line 30, the oxygen flow rate control valve 71, and the carbon dioxide return line 25. Oxygen is consumed in the combustion chamber 7 for burning the residue of the raw material.
  • the processing device is equipped with a thermometer 86 arranged in the combustion chamber 7.
  • a thermometer 86 is arranged, but a plurality of thermometers 86 arranged in the vertical direction may be provided.
  • the thermometer 86 is electrically connected to the control unit 80, and the measured value of the temperature in the combustion chamber 7 is sent to the control unit 80.
  • the control unit 80 is configured to adjust the opening degree of the oxygen flow control valve 71 based on the temperature in the combustion chamber 7 (that is, the measured value of the temperature in the combustion chamber 7 sent from the thermometer 86). .. More specifically, the control unit 80 opens the oxygen flow rate control valve 71 (that is, the flow rate of oxygen supplied to the combustion chamber 7) so that the temperature in the combustion chamber 7 is maintained within a predetermined range. ) Is adjusted.
  • the control unit 80 is an oxygen flow control valve based on the oxygen concentration at the exhaust gas outlet 22 of the combustion chamber 7 (that is, the measured value of the oxygen concentration at the exhaust gas outlet 22 sent from the oxygen concentration measuring instrument 87). It may be configured to adjust the opening degree of 71.
  • control unit 80 supplies the oxygen flow rate control valve 71 to the opening degree (that is, the combustion chamber 7) so that the oxygen concentration at the exhaust gas outlet 22 of the combustion chamber 7 is maintained within a predetermined range. It is configured to regulate the flow rate of oxygen produced.
  • Oxygen acts as an oxidizing agent that oxidizes carbon (C) contained in the residue of the raw material in the combustion chamber 7.
  • the amount of oxygen (O 2 ) in the combustion chamber 7 is slightly larger than the amount of carbon (C) contained in the residue of the raw material in the combustion chamber 7.
  • An amount of oxygen larger than such a theoretically optimum amount can absorb fluctuations in the amount of carbon in the combustion chamber 7, and can prevent the formation of carbon monoxide.
  • Carbon dioxide is produced by the reaction of carbon in the residue of the raw material with oxygen. Carbon dioxide forms combustion exhaust gas together with residual oxygen that has not been consumed in the reaction with carbon, and the combustion exhaust gas is discharged from the combustion chamber 7 through the exhaust gas outlet 22.
  • the methanation reaction is represented by the following formula (1)
  • the electrolysis reaction formula of water is represented by the following formula (2).
  • 4 equivalents of H 2 are required to convert 1 equivalent of CO 2 to CH 4.
  • 2 equivalents of O 2 are generated.
  • one equivalent of O 2 is required to burn one equivalent of carbon (C).
  • the ratio of oxygen to carbon is about 1.2 to 1.3, so 0.7 to 0.8 equivalents of O 2 becomes a surplus.
  • the surplus O 2 may be sold as oxygen gas, or may be used as a gas for this molten oxygen burner in the attached gasification melting furnace facility.
  • air is not used as the second fluidized gas for fluidizing the fluidized medium of the combustion chamber 7. Therefore, the combustion exhaust gas does not contain nitrogen, and the combustion exhaust gas containing a high concentration of carbon dioxide can be obtained.
  • the concentration of carbon dioxide in the combustion exhaust gas discharged from the combustion chamber 7 is 95% or more.
  • the remaining component in the flue gas is substantially oxygen.
  • CO 2- rich combustion exhaust gas can be obtained. A part of this CO 2- rich combustion exhaust gas is returned to the combustion chamber 7 as a second fluidized gas, and the rest is sent to the metanation reactor 3.
  • the fluidized bed furnace 1 includes two processing chambers, a pyrolysis chamber 6 and a combustion chamber 7.
  • the raw material is not burned in the thermal decomposition chamber 6, but is heated by a high-temperature fluid medium and thermally decomposed.
  • a production gas such as a high-calorie hydrocarbon is produced. Since the produced gas does not contain carbon dioxide, the produced gas can be obtained in a high yield.
  • the generated gas discharged from the pyrolysis chamber 6 can be recovered and used as a chemical material.
  • Components that are difficult to thermally decompose are sent to the combustion chamber 7 as raw material residues.
  • the residue of the raw material is burned in the presence of oxygen contained in the second fluidized gas to generate carbon dioxide.
  • the processing apparatus is used to separate carbon dioxide. No equipment is required, and the processing device can be made compact as a whole.
  • the metanational reactor 3 can be made compact.
  • the treatment apparatus according to the present embodiment can also suppress CO 2 emissions in the process of treating such biomass and combustible waste (CO 2- rich combustion exhaust gas obtained from the combustion chamber 7 can be converted into methane for chemical recycling). ..
  • FIG. 2 is a schematic diagram showing another embodiment of the processing apparatus. Since the configuration and operation of the present embodiment not particularly described are the same as those of the embodiment described with reference to FIG. 1, the duplicated description will be omitted.
  • the processing apparatus includes a generated gas return line 91 extending from the generated gas transfer line 45 to the first fluidized gas supply line 11. At least a part of the produced gas flowing through the produced gas transfer line 45 is supplied to the first fluidized gas supply line 11 through the produced gas return line 91.
  • the generated gas discharged from the pyrolysis chamber 6 is used as at least a part of the first fluidized gas which is an oxygen-free gas.
  • FIG. 3 is a schematic view showing still another embodiment of the processing apparatus. Since the configuration and operation of the present embodiment not particularly described are the same as those of the embodiment described with reference to FIG. 1, the duplicated description will be omitted.
  • the treatment apparatus includes a methane return line 92 extending from the methane transfer line 53 to the first fluidized gas supply line 11. At least a part of the methane flowing through the methane transfer line 53 is supplied to the first fluidized gas supply line 11 through the methane return line 92.
  • the methane discharged from the metanation reactor 3 is used as at least a part of the first fluidized gas which is an oxygen-free gas.
  • the above-mentioned technique of the present invention is applied not only to a fluidized bed furnace having a pyrolysis chamber and a combustion chamber inside, but also to an incinerator type fluidized bed furnace having a combustion chamber but not having a pyrolysis chamber inside. Can be done.
  • the flow of the combustion exhaust gas is in the order of a fluidized bed furnace, a boiler, a temperature reducing tower, a dust collector, and an attracting blower.
  • N 2 nitrogen
  • CO 2 , H 2 O, sulfur oxides, etc. are contained in the combustion exhaust gas. Includes nitrogen oxides, hydrogen chloride, etc.
  • CO 2 recovery equipment amine absorption method, CO 2 separation membrane method
  • the present invention can be used in a technique for treating raw materials such as combustible waste, and in particular, can be used in a combustion and thermal decomposition / gasification treatment technique that does not release carbon dioxide into the atmosphere.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Chimneys And Flues (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本発明は、可燃性廃棄物などの原料を処理するための技術に関し、特に二酸化炭素を大気中に放出しない燃焼および熱分解・ガス化処理技術に関する。処理装置は、仕切壁(10)で仕切られた熱分解室(6)および燃焼室(7)を内部に有する流動床炉(1)と、水を電気分解して水素と酸素を生成する電気分解装置(2)と、燃焼室(7)から排出された二酸化炭素と、水素からメタンを生成するメタネーション反応器(3)と、第1流動化ガスを熱分解室(6)内に供給する第1流動化ガス供給ライン(11)と、二酸化炭素の一部と、酸素を第2流動化ガスとして燃焼室(7)に導く第2流動化ガス供給ライン(12)を備えている。

Description

原料の処理装置および処理方法
 本発明は、可燃性廃棄物などの原料を処理するための技術に関し、特に二酸化炭素を大気中に放出しない燃焼および熱分解・ガス化処理技術に関する。
 二酸化炭素(CO)は、地球温暖化の原因となりうるため、二酸化炭素の排出量を減らすことが求められている。しかしながら、廃棄物処理システムなどの各種燃焼装置では、可燃物の燃焼に伴い二酸化炭素が必然的に生成されるため、二酸化炭素の大気中への放出量を削減することは重要な課題となっている。
 一方、燃焼装置から排出された二酸化炭素を回収し、地中などに貯留する試みもなされている。しかしながら、高濃度の二酸化炭素を回収するためには、燃焼装置から排出された二酸化炭素を含む燃焼排ガスを、さらに酸素で完全燃焼させるか、あるいは二酸化炭素を燃焼排ガスから分離する必要がある。このような処理サイクルは、付加的な設備を必要とし、費用も増大する。
特開2018-165388号公報
 そこで、本発明は、大気中に放出される二酸化炭素の量を理論的に0とすることができ、地球温暖化防止に寄与することができる処理装置および処理方法を提供する。
 一態様では、原料の処理装置であって、仕切壁で仕切られた熱分解室および燃焼室を内部に有する流動床炉と、水を電気分解して水素と酸素を生成する電気分解装置と、前記燃焼室から排出された二酸化炭素と、前記水素からメタンを生成するメタネーション反応器と、第1流動化ガスを前記熱分解室内に供給する第1流動化ガス供給ラインと、前記二酸化炭素の一部と、前記酸素を第2流動化ガスとして前記燃焼室に導く第2流動化ガス供給ラインを備えている、処理装置が提供される。
 一態様では、前記電気分解装置は、COフリー発電機に電気的に接続されている。
 一態様では、前記第1流動化ガス供給ラインは、前記第1流動化ガスとして酸素フリーガスを前記熱分解室内に供給する酸素フリーガス供給ラインである。
 一態様では、前記処理装置は、前記電気分解装置によって生成された水素を格納する水素ホルダをさらに備えており、前記水素ホルダは、前記電気分解装置と前記メタネーション反応器との間に配置されている。
 一態様では、前記処理装置は、前記電気分解装置によって生成された酸素を格納する酸素ホルダをさらに備えており、前記酸素ホルダは、前記電気分解装置と前記燃焼室との間に配置されている。
 一態様では、仕切壁で仕切られた熱分解室および燃焼室を内部に有する流動床炉を用いて原料を処理する方法であって、水を電気分解して水素と酸素を生成し、前記燃焼室内の流動媒体を前記熱分解室に移動させながら、第1流動化ガスを前記熱分解室に供給し、前記原料を前記熱分解室内で熱分解し、前記原料の残渣を前記燃焼室内で燃焼させ、前記燃焼室から排出された二酸化炭素と、前記水素からメタンを生成し、前記二酸化炭素の一部と前記酸素を第2流動化ガスとして前記燃焼室に供給する、方法が提供される。
 一態様では、前記水の電気分解は、COフリー電力を用いて行われる。
 一態様では、前記第1流動化ガスは、酸素フリーガスである。
 本発明によれば、燃焼室から排出された二酸化炭素と、電気分解装置によって生成された水素が反応し、メタンが生成される。したがって、本発明に係る処理装置および処理方法は,大気中に放出される二酸化炭素の量を理論的に0とすることができる。
処理装置の一実施形態を示す模式図である。 処理装置の他の実施形態を示す模式図である。 処理装置のさらに他の実施形態を示す模式図である。
 以下、本発明の実施形態について図面を参照して説明する。
 図1は、可燃性廃棄物などの原料を処理するための処理装置の一実施形態を示す模式図である。図1に示す処理装置は、原料の焼却炉である流動床炉1と、水を電気分解して水素と酸素を生成する電気分解装置2と、流動床炉1から排出された二酸化炭素、および電気分解装置2によって生成された水素からメタンを生成するメタネーション反応器3を備えている。
 流動床炉1は、原料を熱分解し、炭化水素などの熱分解生成物を生成する熱分解室6と、熱分解された原料の残渣を燃焼する燃焼室7を備えている。熱分解室6および燃焼室7は、1つの流動床炉1内に形成されている。すなわち、流動床炉1の内部は、仕切壁10によって熱分解室6と燃焼室7に仕切られている。流動床炉1の全体の形状は特に限定されないが、例えば円筒形または矩形を有している。
 熱分解室6および燃焼室7内には、流動媒体(例えば珪砂)が収容されている。流動媒体を流動させるために、熱分解室6および燃焼室7は、第1流動化ガス供給ライン11および第2流動化ガス供給ライン12にそれぞれ接続されている。
 第1流動化ガス供給ライン11は、熱分解室6の下方に位置する第1風箱15に接続されており、第1風箱15を通じて熱分解室6に連通している。第1風箱15の上壁は多孔板15aから構成されている。多孔板15aは、熱分解室6の炉床を構成する。第1流動化ガス供給ライン11は、第1流動化ガスを第1風箱15を通じて熱分解室6内に供給し、熱分解室6内の流動媒体を流動させる。流動する流動媒体は、第1流動床18を熱分解室6内に形成する。
 第2流動化ガス供給ライン12は、燃焼室7の下方に位置する第2風箱16に接続されており、第2風箱16を通じて燃焼室7に連通している。第2風箱16の上壁は多孔板16aから構成されている。多孔板16aは、燃焼室7の炉床を構成する。第2流動化ガス供給ライン12は、燃焼室7から排出された二酸化炭素の一部と、電気分解装置2によって生成された酸素を、第2流動化ガスとして第2風箱16を通じて燃焼室7内に供給し、燃焼室7内の流動媒体を流動させる。流動する流動媒体は、第2流動床19を燃焼室7内に形成する。
 処理装置は、燃焼室7の上方に設けられた排ガス出口22からメタネーション反応器3に延びる燃焼排ガス移送ライン24を備えている。さらに、処理装置は、燃焼排ガス移送ライン24および流動床炉1に接続された二酸化炭素戻りライン25を備えている。二酸化炭素戻りライン25の一端は、燃焼排ガス移送ライン24に接続されており、二酸化炭素戻りライン25の他端は、第2風箱16に接続されている。燃焼室7で発生した二酸化炭素の一部は、二酸化炭素戻りライン25を通って燃焼室7に戻され、残りの二酸化炭素は、燃焼排ガス移送ライン24を通ってメタネーション反応器3に送られる。
 電気分解装置2によって生成された酸素は、酸素移送ライン30および二酸化炭素戻りライン25を通って燃焼室7に送られる。酸素移送ライン30の一端は電気分解装置2に接続され、酸素移送ライン30の他端は二酸化炭素戻りライン25に接続されている。酸素は、二酸化炭素戻りライン25を流れる二酸化炭素に混合される。二酸化炭素戻りライン25を流れる二酸化炭素および酸素の混合体は、第2流動化ガスとして、燃焼室7内に導かれ、燃焼室7内の流動媒体を流動させる。本実施形態では、第2流動化ガス供給ライン12は、燃焼排ガス移送ライン24の一部と、二酸化炭素戻りライン25と、酸素移送ライン30から少なくとも構成されている。
 仕切壁10は、流動床炉1の上壁1aから下方に延びている。仕切壁10の下端は炉床に接していなく、仕切壁10の下に開口26がある。この開口26は、熱分解室6および燃焼室7の底部に位置しており、熱分解室6と燃焼室7は開口26を通じて互いに連通している。開口26は、燃焼室7内で加熱された流動媒体が熱分解室6内に移動することを許容する。開口26は、熱分解室6および燃焼室7内の第1流動床18および第2流動床19の界面(上面)よりも下方に位置している。
 燃焼室7内には、二酸化炭素および酸素からなる第2流動化ガスによって流動媒体の旋回流が形成される。第2流動床19は、このような流動媒体の旋回流から形成される。燃焼室7内で旋回流を形成する流動媒体の一部は、開口26を通って熱分解室6に流入し、第1流動床18を形成する流動媒体に混合される。熱分解室6内では、第1流動化ガスによって流動媒体の旋回流が形成される。第1流動床18は、このような流動媒体の旋回流から形成される。
 熱分解室6と燃焼室7は、連通路35を通じて互いに連通している。図1では連通路35を示す矢印は流動床炉1の外に描かれているが、連通路35も流動床炉1内に位置している。加えて、図1では、熱分解室6および燃焼室7は、平面的に描かれているが、実際には熱分解室6および燃焼室7は立体的な形状であり、熱分解室6は燃焼室7の隣に配置することも可能である。したがって、連通路35は単なる開口部から構成されていることもある。
 流動床炉1は、廃棄物、バイオマスなどの原料を熱分解室6内に供給する原料供給口37を有している。原料供給口37を通じて熱分解室6内に投入された原料は、第1流動床18を形成する流動媒体の旋回流によって撹拌されながら、流動媒体から熱を受け、熱分解する。熱分解の結果、原料に含まれる成分の一部は、熱分解生成物(例えば炭化水素CnHm、nおよびmは整数)としての生成ガスを形成する。生成ガスは、熱分解室6を形成する流動床炉1の上壁1aに設けられた生成ガス出口41を通って熱分解室6から排出される。生成ガス出口41は熱分解室6に連通している。
 生成ガス出口41には、生成ガス移送ライン45が接続されている。処理装置は、生成ガス移送ライン45に接続されたサイクロン47およびスクラバ48を備えている。サイクロン47およびスクラバ48は、生成ガス移送ライン45に沿って直列に並んでいる。熱分解室6から排出された生成ガスは、生成ガス移送ライン45を通ってサイクロン47に送られ、サイクロン47によって粉塵が生成ガスから除去される。さらに、生成ガスはスクラバ48に送られ、スクラバ48にて生成ガスが水(苛性ソーダ等のアルカリ薬剤を含んだ水でもよい)で洗浄される。スクラバ48は、水の代わりに油で生成ガスを洗浄する、あるいは水および油で生成ガスを洗浄する構成としてもよい。このようにして精製された生成ガスは、燃料ガス、化学原料などに使用することができる。サイクロン47およびスクラバ48のいずれか一方または両方が設けられない場合もある。
 本実施形態では、熱分解室6に供給される第1流動化ガスとして、酸素を含まない気体である酸素フリーガスが用いられている。したがって、本実施形態の第1流動化ガス供給ライン11は、酸素フリーガス供給ラインである。酸素フリーガスの例としては、熱分解室6から排出された生成ガス、水蒸気、不活性ガス(例えば窒素ガス)、またはメタネーション反応器3で生成されたメタンが挙げられる。酸素フリーガスは、生成ガス、水蒸気、不活性ガス、およびメタンのうちの少なくとも2つの混合物であってもよい。本実施形態では、水蒸気が第1流動化ガスとして使用されている。好ましくは、第1流動化ガスは、熱分解室6から排出された生成ガスと、メタネーション反応器3で生成されたメタンとの組み合わせが使用される。生成ガスとメタンとの組み合わせを含む第1流動化ガスは、原料の熱分解により発生した生成ガスに、化学組成が近いガスであるので、生成ガスの純度が高められる。また、生成ガス中に酸素原子を含む化学物質を含有させたいときは、熱分解室6の空塔部に含酸素ガスを供給することにより、熱分解室6内でガス化反応をさせてもよい。
 熱分解室6内の原料の残渣は、流動媒体とともに、連通路35を通って燃焼室7に移動する。原料の残渣は、第2流動床19を形成する流動媒体とともに旋回しながら、第2流動化ガスに含まれる酸素の存在下で燃焼する。原料の残渣は、燃焼とともに二酸化炭素を発生しながら、熱エネルギーを放出し、第2流動床19を形成する流動媒体を加熱する。二酸化炭素と、余剰の酸素は、燃焼排ガスとして、排ガス出口22を通って燃焼室7から排出される。排ガス出口22は、燃焼室7を形成する流動床炉1の上壁1aに設けられている。排ガス出口22は、燃焼室7に連通している。
 加熱された流動媒体の一部は、開口26を通って熱分解室6内に流入する。加熱された流動媒体は、原料の熱分解に必要な熱量を提供し、これにより原料の熱分解が熱分解室6内で進行する。さらに、流動媒体は、原料の残渣とともに連通路35を通って燃焼室7に移動する。このように、流動媒体は、熱分解室6と燃焼室7との間を循環する。
 熱分解室6に投入される原料は、廃プラスチック、木材、バイオマスなどの炭素(C)を含む可燃性材料である。原料は、熱分解室6内では燃焼せず、熱分解される。原料は、炭素を含むため、熱分解室6内で炭化物(チャー)が生成されやすい。炭化物(チャー)は、生成ガスとして熱分解室6から取り出すことができない反面、高い熱量を保有している。原料の一部は、生成ガスとして熱分解室6から排出され、原料の残渣は炭化物(チャー)として燃焼室7内に送られる。この炭化物(チャー)は高い熱量を有している。したがって、炭化物(チャー)は燃焼室7内で燃焼したときに高い熱エネルギーを発生し、流動媒体を高温に加熱することができる。加熱された流動媒体の一部は、燃焼室7から熱分解室6に移動し、原料を熱分解する。
 第1風箱15と第2風箱16との間には、不燃物排出口50が設けられている。原料中に含まれる比較的大きな不燃物は不燃物排出口50から排出される。
 原料の残渣は、燃焼室7内で燃焼し、二酸化炭素を発生する。二酸化炭素は、排ガス出口22を通じて燃焼室7から排出され、燃焼排ガス移送ライン24を通ってメタネーション反応器3に移送される。メタネーション反応器3は、その内部にメタネーション触媒(図示せず)を有しており、二酸化炭素と水素とを反応させてメタンと水(HO)を生成する。このように、メタネーション反応器3に流入した二酸化炭素と水素は、メタンと水に変換されるので、二酸化炭素は大気中に放出されない。生成されたメタンは、メタン移送ライン53を通って移送され、生成された水は、ドレイン54を通ってメタネーション反応器3から排出される。
 処理装置は、燃焼排ガス移送ライン24に接続されたボイラ55、減温塔56、集塵装置57、およびスクラバ58を備えている。ボイラ55、減温塔56、集塵装置57、およびスクラバ58は、燃焼排ガス移送ライン24に沿って直列に並んでいる。二酸化炭素戻りライン25と燃焼排ガス移送ライン24との接続点は、集塵装置57の下流側に位置している。
 燃焼室7から排出された燃焼排ガスは、燃焼排ガス移送ライン24を通ってボイラ55に送られ、ボイラ55にて廃熱が回収される。燃焼排ガスは、燃焼排ガス移送ライン24を通って減温塔56に送られ、減温塔56にて燃焼排ガスが冷却される。減温塔56は、燃焼排ガスを冷却するための冷却器の一例である。
 燃焼排ガスは、燃焼排ガス移送ライン24を通ってさらに集塵装置57に送られ、集塵装置57によって飛灰などの粉塵が燃焼排ガスから除去される。集塵装置57としては、例えば、バグフィルタを用いることができる。さらに、燃焼排ガスは、燃焼排ガス移送ライン24を通ってスクラバ58に送られ、スクラバ58にて燃焼排ガスが水(苛性ソーダ等のアルカリ薬剤を含んだ水でもよい)で洗浄される。このようにして精製された燃焼排ガスは、メタネーション反応器3に送られる。ボイラ55、減温塔56、集塵装置57、およびスクラバ58のうちの少なくとも1つは、設けられないこともある。例えば、熱回収をしない場合には、ボイラ55は設けられない。
 電気分解装置2は、水を水素と酸素に電気分解する装置である。電気分解装置2は、水供給ライン60に接続されており、水(HO)は水供給ライン60を通じて電気分解装置2に供給される。電気分解装置2は、さらにCOフリー発電機62に電気的に接続されている。COフリー発電機62は、再生可能エネルギーによって駆動される発電機であり、発電のために二酸化炭素を発生しない。再生可能エネルギーの例としては、太陽光、風力、水力、地熱、太陽熱、バイオマス(動植物に由来する有機物)などが挙げられる。本実施形態では、このようなCOフリー発電機62によって生成されたCOフリー電力が電気分解装置2に供給される。COフリー発電機62の発電量変動を吸収するために、COフリー発電機62によって生成されたCOフリー電力を一旦蓄電池(図示せず)に溜め、蓄電池から電気分解装置2にCOフリー電力を供給してもよい。
 電気分解装置2は、COフリー電力により水を電気分解し、水素と酸素を生成する。水素は、水素移送ライン61を通じてメタネーション反応器3に移送され、酸素は、酸素移送ライン30および二酸化炭素戻りライン25を通じて燃焼室7に供給される。水素移送ライン61は、電気分解装置2からメタネーション反応器3まで延びており、酸素移送ライン30は電気分解装置2から二酸化炭素戻りライン25まで延びている。一実施形態では、酸素移送ライン30は電気分解装置2から第2風箱16まで延びてもよい。
 処理装置は、水素移送ライン61に接続された水素ホルダ65と、水素移送ライン61に取り付けられた水素流量制御弁66と、酸素移送ライン30に接続された酸素ホルダ70と、酸素移送ライン30に取り付けられた酸素流量制御弁71を備えている。水素ホルダ65は、電気分解装置2とメタネーション反応器3との間に位置しており、酸素ホルダ70は、電気分解装置2と燃焼室7との間に位置している。
 電気分解装置2によって生成された水素は、水素移送ライン61を通って水素ホルダ65に一旦格納される。水素流量制御弁66は、水素ホルダ65とメタネーション反応器3との間に位置している。水素流量制御弁66を開くと、水素ホルダ65内の水素は水素移送ライン61および水素流量制御弁66を通ってメタネーション反応器3に移送される。二酸化炭素および水素は、メタネーション反応器3内で反応し、メタンと水(HO)に変換される。
 メタネーション反応器3に移送すべき水素の量は、メタネーション反応器3内の二酸化炭素の全量と水素の全量が反応してメタンが生成される量である。そこで、水素を適正な流量でメタネーション反応器3に移送するために、処理装置は、メタネーション反応器3に流入する二酸化炭素の流量を測定する二酸化炭素測定器75と、二酸化炭素の流量の測定値に基づいて水素流量制御弁66の開度を調節する制御部80を備えている。二酸化炭素測定器75は、メタネーション反応器3のすぐ上流の位置で、燃焼排ガス移送ライン24に取り付けられている。二酸化炭素測定器75は、流量計と濃度計を兼ね備えた構成を有している。すなわち、二酸化炭素測定器75は、燃焼排ガス移送ライン24を流れる燃焼排ガスの流量を測定し、さらに燃焼排ガス中の二酸化炭素の濃度を測定し、燃焼排ガスの流量と二酸化炭素の濃度から、二酸化炭素の流量を算定するように構成されている。二酸化炭素測定器75は制御部80に電気的に接続されており、二酸化炭素の流量の測定値は制御部80に送られるようになっている。
 制御部80は、メタネーション反応器3に流入する二酸化炭素の流量(すなわち二酸化炭素測定器75から送られた二酸化炭素の流量の測定値)に基づいて水素流量制御弁66の開度を調節し、メタネーション反応器3に移送される水素の流量を制御するように構成されている。より具体的には、二酸化炭素の流量が増加しているときは、制御部80は、水素流量制御弁66を操作して水素の流量を増加させ、二酸化炭素の流量が減少しているときは、制御部80は、水素流量制御弁66を操作して水素の流量を減少させる。このような制御により、燃焼排ガス中に含まれる二酸化炭素のすべてを水素と反応させ、メタンを生成することができる。結果として、処理装置外に放出される二酸化炭素が理論的に0となる。メタンは、都市ガスなどの燃料ガスとして使用することができる。
 制御部80は、少なくとも1台のコンピュータから構成される。制御部80は、プログラムが格納された記憶装置80aと、プログラムに含まれる命令に従って演算を実行する演算装置80bを備えている。記憶装置80aは、RAMなどの主記憶装置と、ハードディスクドライブ(HDD)、ソリッドステートドライブ(SSD)などの補助記憶装置を備えている。演算装置80bの例としては、CPU(中央処理装置)、GPU(グラフィックプロセッシングユニット)が挙げられる。ただし、制御部80の具体的構成は本実施形態に限定されない。
 電気分解装置2によって生成された酸素は、酸素移送ライン30を通って酸素ホルダ70に一旦格納される。酸素流量制御弁71は、酸素ホルダ70と二酸化炭素戻りライン25との間に位置している。酸素流量制御弁71を開くと、酸素ホルダ70内の酸素は、酸素移送ライン30、酸素流量制御弁71、および二酸化炭素戻りライン25を通って燃焼室7に移送される。酸素は、燃焼室7内で原料の残渣の燃焼に消費される。
 処理装置は、燃焼室7内に配置された温度計86を備えている。本実施形態では、1つの温度計86が配置されているが、縦方向に配列された複数の温度計86が設けられてもよい。温度計86は、制御部80に電気的に接続されており、燃焼室7内の温度の測定値は制御部80に送られるようになっている。
 制御部80は、燃焼室7内の温度(すなわち温度計86から送られた燃焼室7内の温度の測定値)に基づいて酸素流量制御弁71の開度を調節するように構成されている。より具体的には、制御部80は、燃焼室7内の温度が所定の範囲内に維持されるように、酸素流量制御弁71の開度(すなわち、燃焼室7に供給される酸素の流量)を調節するように構成される。一実施形態では、制御部80は、燃焼室7の排ガス出口22での酸素濃度(すなわち酸素濃度計測器87から送られた排ガス出口22での酸素濃度の測定値)に基づいて酸素流量制御弁71の開度を調節するように構成されていてもよい。より具体的には、制御部80は、燃焼室7の排ガス出口22での酸素濃度が所定の範囲内に維持されるように、酸素流量制御弁71の開度(すなわち、燃焼室7に供給される酸素の流量)を調節するように構成される。
 上述したように、燃焼室7から排出された二酸化炭素の一部は、電気分解装置2によって生成された酸素と混合され、燃焼室7に戻される。酸素は、燃焼室7内の原料の残渣に含まれる炭素(C)を酸化させる酸化剤として作用する。燃焼室7内の酸素(O)の量は、燃焼室7内の原料の残渣に含まれる炭素(C)の量よりも若干多い量である。このような理論上の最適量よりも多い量の酸素は、燃焼室7内の炭素量の変動を吸収することができ、一酸化炭素の生成を防止することができる。原料の残渣中の炭素と、酸素が反応して二酸化炭素が生成される。二酸化炭素は、炭素との反応に消費されなかった残余の酸素とともに燃焼排ガスを形成し、燃焼排ガスは排ガス出口22を通じて燃焼室7から排出される。
 メタネーション反応は、次の式(1)で表され、水の電気分解反応式は次の式(2)で表される。
   CO+4H→CH+2HO   (1)
   2HO→2H+O       (2)
 上記式(1)から分かるように、1当量のCOをCHに変換するためには、4当量のHが必要である。上記式(2)によれば、水の電気分解で4当量のHを得たときには2当量のOが生成される。
 流動床炉1の燃焼室7において、1当量の炭素(C)の燃焼には1当量のOが必要である。通常、廃棄物の燃焼プロセスでは、炭素に対する酸素の比率は1.2~1.3程度であるため、0.7~0.8当量のOが余剰となる。余剰のOは酸素ガスとして販売するか、あるいは併設されたガス化溶融炉設備において、この溶融酸素バーナ用のガスとして利用してもよい。
 本実施形態では、燃焼室7の流動媒体を流動化させるための第2流動化ガスとして、空気は使用されていない。したがって、燃焼排ガス中には窒素は含まれず、高濃度の二酸化炭素を含む燃焼排ガスが得られる。一例では、燃焼室7から排出される燃焼排ガス中の二酸化炭素の濃度は95%以上である。燃焼排ガス中の残りの成分は実質的に酸素である。このように、本実施形態によれば、COリッチな燃焼排ガスが得られる。このCOリッチな燃焼排ガスの一部は、第2流動化ガスとして燃焼室7に戻され、残りはメタネーション反応器3に送られる。
 上述したように、流動床炉1は、熱分解室6と燃焼室7の2つの処理室を備えている。原料は、熱分解室6内では燃焼はされず、高温の流動媒体により加熱され、熱分解する。その結果、高カロリーの炭化水素などの生成ガスが生成される。生成ガスは、二酸化炭素を含まないので、生成ガスを高収率で得ることができる。熱分解室6から排出された生成ガスは、回収され、化学材料として利用することができる。
 熱分解しにくい成分は、原料の残渣として燃焼室7に送られる。原料の残渣は、第2流動化ガスに含まれる酸素の存在下で燃焼され、二酸化炭素を発生する。このように、熱分解室6と燃焼室7の2つの処理室を備えた流動床炉1は、生成ガスから二酸化炭素を分離する必要がないので、処理装置は、二酸化炭素を分離するための機器は不要であり、処理装置を全体としてコンパクトにできる。
 原料に含まれる炭素の多くは、熱分解室6内で生成ガスとして分離される。したがって、燃焼室7から発生する二酸化炭素の量は、原料中の炭素のすべてを燃焼室7内で燃焼させる場合に比べて、少ない。したがって、メタネーション反応器3で水素と反応させるべき二酸化炭素の量は多くなく、結果としてメタネーション反応器3をコンパクトにできる。
 近年、再生可能電力の発電コストが急激に低下してきており、近い将来発電のための化石燃料消費は不要となることが想定される。しかしながら、社会生活を支えるモノとして、木材やプラスチックのような含炭素材料は将来にわたって必要であり、品質の劣化したモノは廃棄物として処理されなければならない。本実施形態に係る処理装置は、そうしたバイオマスや可燃性廃棄物を処理する過程でのCO排出も抑制できる(燃焼室7から得るCOリッチな燃焼排ガスをメタンに変換してケミカルリサイクルできる)。
 図2は、処理装置の他の実施形態を示す模式図である。特に説明しない本実施形態の構成および動作は、図1を参照して説明した実施形態と同じであるので、その重複する説明を省略する。図2に示すように、処理装置は、生成ガス移送ライン45から第1流動化ガス供給ライン11に延びる生成ガス戻りライン91を備えている。生成ガス移送ライン45を流れる生成ガスの少なくとも一部は、生成ガス戻りライン91を通って第1流動化ガス供給ライン11に供給される。本実施形態では、熱分解室6から排出された生成ガスは、酸素フリーガスである第1流動化ガスの少なくとも一部として使用される。
 図3は、処理装置のさらに他の実施形態を示す模式図である。特に説明しない本実施形態の構成および動作は、図1を参照して説明した実施形態と同じであるので、その重複する説明を省略する。図3に示すように、処理装置は、メタン移送ライン53から第1流動化ガス供給ライン11に延びるメタン戻りライン92を備えている。メタン移送ライン53を流れるメタンの少なくとも一部は、メタン戻りライン92を通って第1流動化ガス供給ライン11に供給される。本実施形態では、メタネーション反応器3から排出されたメタンは、酸素フリーガスである第1流動化ガスの少なくとも一部として使用される。
 上述した本発明の技術は、熱分解室および燃焼室を内部に有する流動床炉のみならず、燃焼室を有するが、熱分解室を内部に持たない焼却タイプの流動床炉にも適用することができる。この焼却タイプに本発明を適用する場合は、燃焼排ガスの流れは、流動床炉、ボイラ、減温塔、集塵器、誘引送風機という順序になる。通常、原料中の可燃分(水素、酸素、窒素、硫黄、塩素など)の全量を空気で燃焼させるため、燃焼排ガス中にはN(窒素)、CO、HO、硫黄酸化物、窒素酸化物、塩化水素等が含まれる。この燃焼排ガスからCOのみを回収するために、CO回収設備(アミン吸収法、CO分離膜法)が設けられる。
 上述した実施形態は、本発明が属する技術分野における通常の知識を有する者が本発明を実施できることを目的として記載されたものである。上記実施形態の種々の変形例は、当業者であれば当然になしうることであり、本発明の技術的思想は他の実施形態にも適用しうる。したがって、本発明は、記載された実施形態に限定されることはなく、特許請求の範囲によって定義される技術的思想に従った最も広い範囲に解釈されるものである。
 本発明は、可燃性廃棄物などの原料を処理する技術に利用可能であり、特に二酸化炭素を大気中に放出しない燃焼および熱分解・ガス化処理技術に利用可能である。
 1   流動床炉
 2   電気分解装置
 3   メタネーション反応器
 6   熱分解室
 7   燃焼室
10   仕切壁
11   第1流動化ガス供給ライン
12   第2流動化ガス供給ライン
15   第1風箱
16   第2風箱
18   第1流動床
19   第2流動床
22   排ガス出口
24   燃焼排ガス移送ライン
25   二酸化炭素戻りライン
30   酸素移送ライン
35   連通路
37   原料供給口
41   生成ガス出口
45   生成ガス移送ライン
47   サイクロン
48   スクラバ
50   不燃物排出口
53   メタン移送ライン
54   ドレイン
55   ボイラ
56   減温塔
57   集塵装置
58   スクラバ
60   水供給ライン
61   水素移送ライン
62   COフリー発電機
65   水素ホルダ
66   水素流量制御弁
70   酸素ホルダ
71   酸素流量制御弁
75   二酸化炭素測定器
80   制御部
86   温度計
87   酸素濃度計測器
91   生成ガス戻りライン
92   メタン戻りライン

Claims (8)

  1.  原料の処理装置であって、
     仕切壁で仕切られた熱分解室および燃焼室を内部に有する流動床炉と、
     水を電気分解して水素と酸素を生成する電気分解装置と、
     前記燃焼室から排出された二酸化炭素と、前記水素からメタンを生成するメタネーション反応器と、
     第1流動化ガスを前記熱分解室内に供給する第1流動化ガス供給ラインと、
     前記二酸化炭素の一部と、前記酸素を第2流動化ガスとして前記燃焼室に導く第2流動化ガス供給ラインを備えている、処理装置。
  2.  前記電気分解装置は、COフリー発電機に電気的に接続されている、請求項1に記載の処理装置。
  3.  前記第1流動化ガス供給ラインは、前記第1流動化ガスとして酸素フリーガスを前記熱分解室内に供給する酸素フリーガス供給ラインである、請求項1または2に記載の処理装置。
  4.  前記処理装置は、前記電気分解装置によって生成された水素を格納する水素ホルダをさらに備えており、
     前記水素ホルダは、前記電気分解装置と前記メタネーション反応器との間に配置されている、請求項1乃至3のいずれか一項に記載の処理装置。
  5.  前記処理装置は、前記電気分解装置によって生成された酸素を格納する酸素ホルダをさらに備えており、
     前記酸素ホルダは、前記電気分解装置と前記燃焼室との間に配置されている、請求項1乃至4のいずれか一項に記載の処理装置。
  6.  仕切壁で仕切られた熱分解室および燃焼室を内部に有する流動床炉を用いて原料を処理する方法であって、
     水を電気分解して水素と酸素を生成し、
     前記燃焼室内の流動媒体を前記熱分解室に移動させながら、第1流動化ガスを前記熱分解室に供給し、
     前記原料を前記熱分解室内で熱分解し、
     前記原料の残渣を前記燃焼室内で燃焼させ、
     前記燃焼室から排出された二酸化炭素と、前記水素からメタンを生成し、
     前記二酸化炭素の一部と前記酸素を第2流動化ガスとして前記燃焼室に供給する、方法。
  7.  前記水の電気分解は、COフリー電力を用いて行われる、請求項6に記載の方法。
  8.  前記第1流動化ガスは、酸素フリーガスである、請求項6または7に記載の方法。
PCT/JP2020/045676 2020-02-28 2020-12-08 原料の処理装置および処理方法 WO2021171731A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080097457.2A CN115190955A (zh) 2020-02-28 2020-12-08 原料的处理装置及处理方法
US17/801,593 US20230081521A1 (en) 2020-02-28 2020-12-08 Treatment apparatus and treatment method for raw material
KR1020227029233A KR20220147600A (ko) 2020-02-28 2020-12-08 원료의 처리 장치 및 처리 방법
EP20921253.9A EP4112592A4 (en) 2020-02-28 2020-12-08 DEVICE AND METHOD FOR TREATMENT OF FOOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020033408A JP7424861B2 (ja) 2020-02-28 2020-02-28 原料の処理装置
JP2020-033408 2020-02-28

Publications (1)

Publication Number Publication Date
WO2021171731A1 true WO2021171731A1 (ja) 2021-09-02

Family

ID=77489932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045676 WO2021171731A1 (ja) 2020-02-28 2020-12-08 原料の処理装置および処理方法

Country Status (6)

Country Link
US (1) US20230081521A1 (ja)
EP (1) EP4112592A4 (ja)
JP (1) JP7424861B2 (ja)
KR (1) KR20220147600A (ja)
CN (1) CN115190955A (ja)
WO (1) WO2021171731A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7437659B2 (ja) 2021-04-10 2024-02-26 株式会社プランテック 燃焼システム及び燃焼方法
WO2023112862A1 (ja) * 2021-12-14 2023-06-22 日立造船株式会社 廃棄物焼却設備
JP2023175328A (ja) * 2022-05-30 2023-12-12 株式会社プランテック 間欠運転焼却施設及びその運転方法
CN114955998A (zh) * 2022-06-21 2022-08-30 中科氢焱零碳人居科技(苏州)有限公司 一种天然气制氢反应器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185170A (ja) * 1996-12-25 1998-07-14 Ebara Corp 燃焼装置
WO2001038788A1 (fr) * 1999-11-19 2001-05-31 Kabushiki Kaisha Maruki Structure de pile
JP2001192877A (ja) * 2000-01-12 2001-07-17 Ishikawajima Harima Heavy Ind Co Ltd 水素ガス製造方法
JP2007528974A (ja) * 2003-07-25 2007-10-18 株式会社荏原製作所 ガス化システム
JP2008002725A (ja) * 2006-06-21 2008-01-10 Takayuki Ito 水素燃料燃焼装置及び運転方法
JP2017089916A (ja) * 2015-11-04 2017-05-25 Jfeエンジニアリング株式会社 廃棄物焼却及び水素製造装置並びに方法
JP2018165388A (ja) 2017-03-28 2018-10-25 東京瓦斯株式会社 水の利用方法及び水電解システム
JP2019037121A (ja) * 2017-08-10 2019-03-07 マルチン ゲーエムベーハー フュア ウムヴェルト ウント エネルギーテヒニーク 熱併給形コンバインド発電プラントを有する発電システム及び発電のための方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3853498A (en) * 1972-06-28 1974-12-10 R Bailie Production of high energy fuel gas from municipal wastes
FR3012468B1 (fr) * 2013-10-28 2016-03-11 Gdf Suez Dispositif et procede de production de gaz naturel de substitution et reseau le comportant

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185170A (ja) * 1996-12-25 1998-07-14 Ebara Corp 燃焼装置
WO2001038788A1 (fr) * 1999-11-19 2001-05-31 Kabushiki Kaisha Maruki Structure de pile
JP2001192877A (ja) * 2000-01-12 2001-07-17 Ishikawajima Harima Heavy Ind Co Ltd 水素ガス製造方法
JP2007528974A (ja) * 2003-07-25 2007-10-18 株式会社荏原製作所 ガス化システム
JP2008002725A (ja) * 2006-06-21 2008-01-10 Takayuki Ito 水素燃料燃焼装置及び運転方法
JP2017089916A (ja) * 2015-11-04 2017-05-25 Jfeエンジニアリング株式会社 廃棄物焼却及び水素製造装置並びに方法
JP2018165388A (ja) 2017-03-28 2018-10-25 東京瓦斯株式会社 水の利用方法及び水電解システム
JP2019037121A (ja) * 2017-08-10 2019-03-07 マルチン ゲーエムベーハー フュア ウムヴェルト ウント エネルギーテヒニーク 熱併給形コンバインド発電プラントを有する発電システム及び発電のための方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4112592A4

Also Published As

Publication number Publication date
JP7424861B2 (ja) 2024-01-30
EP4112592A4 (en) 2023-08-16
US20230081521A1 (en) 2023-03-16
EP4112592A1 (en) 2023-01-04
JP2021135024A (ja) 2021-09-13
CN115190955A (zh) 2022-10-14
KR20220147600A (ko) 2022-11-03

Similar Documents

Publication Publication Date Title
WO2021171731A1 (ja) 原料の処理装置および処理方法
Ruiz et al. Biomass gasification for electricity generation: Review of current technology barriers
US20080222956A1 (en) System for the Conversion of Coal to a Gas of Specified Composition
Makwana et al. Improving the properties of producer gas using high temperature gasification of rice husk in a pilot scale fluidized bed gasifier (FBG)
Moneti et al. Influence of the main gasifier parameters on a real system for hydrogen production from biomass
EP2799520B1 (en) Biomass gasification island process under high temperature and atmospheric pressure
US8246700B1 (en) Method and system for recycling flue gas
CA2610806A1 (en) A system for the conversion of carbonaceous feedstocks to a gas of a specified composition
KR20020055346A (ko) 바이오매스 원료에 의한 메탄올 제조방법 및 그 장치
KR20110052604A (ko) 바이오매스에서 저-타르 합성가스를 생산하는 방법 및 장치
JP6304856B2 (ja) 改良型三塔式循環流動層によるバイオマスのガス化方法
JP2007112873A (ja) ガス化燃料のガス化方法及び装置
JP2009120432A (ja) 循環流動層改質装置
KR20210083317A (ko) 탄소질 피드스톡을 처리하기 위한 시스템 및 방법
JP2014074144A (ja) 三塔式循環流動層による石炭/バイオマス共ガス化方法及びその装置
Lee et al. Effects of burner type on a bench-scale entrained flow gasifier and conceptual modeling of the system with Aspen Plus
JP6008082B2 (ja) ガス化装置及びガス化方法
JP3997524B2 (ja) 有機性廃棄物のガス化方法およびガス変換装置
JP2811593B2 (ja) 燃焼性気体生成物の製造方法
JP3559163B2 (ja) バイオマスと化石燃料を用いたガス化方法
JP7118341B2 (ja) 水素製造装置
JP6229115B2 (ja) 発電装置および発電方法
JP2008169320A (ja) 改質炉
Rokhman Modeling and numerical investigation of the process of vapor-oxygen gasification of solid fuels in a vertical flow reactor under pressure
JP7291677B2 (ja) 水性ガス生成システム、バイオマス発電システム及びバイオマス水素供給システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020921253

Country of ref document: EP

Effective date: 20220928