JP7118341B2 - 水素製造装置 - Google Patents

水素製造装置 Download PDF

Info

Publication number
JP7118341B2
JP7118341B2 JP2020134523A JP2020134523A JP7118341B2 JP 7118341 B2 JP7118341 B2 JP 7118341B2 JP 2020134523 A JP2020134523 A JP 2020134523A JP 2020134523 A JP2020134523 A JP 2020134523A JP 7118341 B2 JP7118341 B2 JP 7118341B2
Authority
JP
Japan
Prior art keywords
fluidized bed
hydrogen
gas
hydrogen production
production apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020134523A
Other languages
English (en)
Other versions
JP2022030460A (ja
Inventor
香津雄 堤
敦司 堤
彰敏 菅原
朋弘 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TSUTSUMI HYDROGEN LABORATORY, INC.
Takasago Thermal Engineering Co Ltd
Hokkaido Electric Power Co Inc
University of Tokyo NUC
Original Assignee
TSUTSUMI HYDROGEN LABORATORY, INC.
Takasago Thermal Engineering Co Ltd
Hokkaido Electric Power Co Inc
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TSUTSUMI HYDROGEN LABORATORY, INC., Takasago Thermal Engineering Co Ltd, Hokkaido Electric Power Co Inc, University of Tokyo NUC filed Critical TSUTSUMI HYDROGEN LABORATORY, INC.
Priority to JP2020134523A priority Critical patent/JP7118341B2/ja
Publication of JP2022030460A publication Critical patent/JP2022030460A/ja
Application granted granted Critical
Publication of JP7118341B2 publication Critical patent/JP7118341B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Description

本発明は、熱化学的方法により水素ガスを製造する装置に関し、詳しくは流動層を用いて原材料から水素ガスを製造する水素製造装置に関する。
水素は、化学工業及び石油精製などに使用される重要な工業ガスであるばかりでなく、近年では、環境負荷物質を生成しないクリーンエネルギーとして、水素エネルギーが重要な役割を果たすと期待されている。そのため、水素製造技術の開発は幅広く進められている。水素の製造方法は、大別して、電気化学的方法と熱化学的方法とがある。
電気化学的な方法として、電気エネルギーを用いて水の電気分解により水素を生成する方法がある。中でも、太陽光発電、風力発電および水力発電等の自然エネルギーから得られた電力を利用して水素を製造する方法は、二酸化炭素を発生しないため、環境負荷が小さいといわれている。
熱化学的方法には、水蒸気改質法、部分酸化法、自己熱改質法がある。水蒸気改質法は、天然ガスやナフサなどの化石燃料を高温・触媒の存在する環境下で水蒸気と反応させて合成ガスを得る方法である。例えば、石炭等の化石燃料を流動層によりガス化を行い、シフト反応で水素ガスを生成する技術が広く知られている。また、赤熱したコークスに水蒸気を吹き付けて一酸化炭素と水素ガスの混合気体を得る方法が知られている。
特許文献1には、熱化学的方法として、炭素を含む原材料をガス化する流動層ガス炉と、流動層ガス炉内に設置された燃料電池と、流動層ガス炉でガス化された生成ガスから水素を生成するシフト反応器を有し、シフト反応器にて生成された水素ガスを用いて燃料電池で発電するガス化設備が開示されている。
また特許文献2には、石炭ガス化炉で生成されたガス化ガスが、シフト反応器において水素ガスに改質されて、燃料電池に供給して発電するとともに、ガスタービンに供給されて発電する技術が開示されている。
国際公開第2013/005699号公報 特開2008-291081号公報 特公平5-87757号公報
本発明は、流動層ガス化炉を用いて、有機化合物やバイオマス、石炭などの原材料を水蒸気に接触させて二酸化炭素と水素に変換する装置に関する。流動層ガス化炉において、流動層内に仕切部材を設けて熱回収室の流動物質を燃焼室に還流するようにした2室流動層を有する内部循環型流動層炉を用いたものが知られている(例えば、特許文献3)。
公知の多くの流動層ガス化炉において、原材料となる化石燃料をガス化するために必要な熱を原材料の一部を燃焼させることにより得ている。本来製品として取り出すべき水素ガスの一部が原材料の燃焼により熱に変換され、生成される水素ガスの量が減少する。この結果、原材料に含まれる炭素分が十分に利用されていると言えない。
また、多くの流動層ガス化炉において、原材料の部分燃焼により原材料表面の炭素がグラファイト化して、原材料の表面に被膜ができてガス化反応の進行を阻害するという問題がある。
流動層ガス化炉において、原材料が過度に加熱されると原材料の焼けが生じることがある。原材料が急速加熱されると、脱水や分解が昇温に追いつかず、揮発分がすぐに除去され、二次的な炭化ないしは縮合が起こらないので炭化物の収率が低下して、代わりにタールなどが増収される。更に、タール分が原材料表面に付着するとガス化の促進を阻害することになる。
本発明の目的は、上記課題を解決するためになされたものであり、原材料に含まれる炭素分の水素への変換率を上げることにより、資源の有効利用を図ることが可能な水素製造装置を提供することにある。また、ガス化に必要な熱を原材料の部分燃焼によらず熱損失が少ない、エネルギー変換効率が高い水素製造装置を提供する。
前記した目的を達成するために、本発明に係る水素製造装置は、原材料を加熱して揮発分と固形分に分離する下降流移動層と、前記固形分を加熱して第1生成ガスを生成するバブリング流動層とを有し、前記下降流移動層と前記バブリング流動層とが仕切部材で区切られた内部循環型流動層を備えている。そして、本発明に係る水素製造装置は、前記固形分の加熱手段が前記バブリング流動層内に配置されている。
下降流移動層とバブリング流動層をまとめて流動層と称することがある。この構成において、下降流移動層に供給される原材料として、炭素、炭化水素、または炭素と炭化水素の混合物およびバイオマスおよび家畜の糞尿等が考えられる。原材料は炭素源であって、還元材でもある。原材料は好ましくはホッパー等から下降流移動層内に投入される。
本発明に係る水素製造装置は、前記バブリング流動層に水蒸気を供給することにより前記バブリング流動層の流動化を図る。この構成によれば、流動層ガス化炉の底部にウインドボックスがあり、ウインドボックスから流動媒体の流動化に必要な蒸気をバブリング流動層に吹き込む。
本発明に係る水素製造装置は、前記固形分をガス化するのに必要な熱を前記固形分の部分燃焼によらず前記加熱手段による。この構成によれば、原材料は部分燃焼せずにガス化されるので、ガス化の効率が優れている。
本発明に係る水素製造装置は、前記加熱手段が燃料電池である。この構成によれば、燃料電池がバブリング流動層内に設置されているので、燃料電池が発電反応に際して発生する熱は無駄なく直接流動媒体を介してバブリング流動層に伝達され、効果的に流動層ガス炉内の固形物のガス化に必要な熱を供給する。
本発明に係る水素製造装置は、前記加熱手段が電気ヒーターである。また、本発明に係る水素製造装置は、前記加熱手段がチューブ式熱交換器である。これら加熱手段も流動層ガス炉内の固形物のガス化に必要な熱を供給する。
本発明に係る水素製造装置は、前記水蒸気が流量調節手段を介して、前記下降流移動層に供給可能となっている。また、本発明に係る水素製造装置は、前記流量調節手段が、前記下降流移動層に設けた温度検出手段の出力に応じて調節される。この構成によれば、下降流移動層に流れる水蒸気の量を調節して、下降流移動層において炭素表面が緻密化してガス化反応を阻害することを防ぐことができる。
本発明に係る水素製造装置は、前記バブリング流動層に空気および酸素を供給しない。この構成によれば、バブリング流動層の浮遊懸濁のための気体として、水蒸気を用い、空気を用いないことを特徴とする。空気をバブリング流動層に供給すれば、原材料の部分燃焼によりエネルギー損失を招く。更に空気に含まれる窒素も加熱すことになりこの点においてもエネルギー損失が発生する。
本発明に係る水素製造装置は、前記第1生成ガスおよび前記揮発分を熱分解してなる第2生成ガスがシフト反応器に導いて水素ガスを生成する。この構成によれば、燃料電池の電極反応を阻害する恐れのある一酸化炭素を除去することができる。
本発明に係る水素製造装置は、前記第1生成ガスおよび前記第2生成ガスに含まれるタール分を除去するタール分解装置が前記シフト反応器の前段に設けられている。
本発明に係る水素製造装置は、前記シフト反応器からの水素が前記燃料電池に供給されると共に、系外に取り出し可能となっている。また、本発明に係る水素製造装置は、前記燃料電池の発電の際に生じた蒸気を、前記バブリング流動層に供給する。
本発明に係る水素製造装置は、前記原材料および前記固形分のガス化に必要な熱を前記原材料および前記固形分の部分燃焼によらない。
本発明に係る水素製造装置は、前記バブリング流動層に供給された酸素ガスによる前記固形分の部分燃焼により生じた熱により前記第1生成ガスが生成される。
原材料を加熱して揮発分と固形分に分離する下降流移動層と、前記固形分を加熱して第1生成ガスを生成するバブリング流動層とを有し、前記下降流移動層と前記バブリング流動層とが仕切部材で区切られた内部循環型バブリング流動層であって、前記バブリング流動層内に加熱手段を配置して水素製造装置を構成してもよい。
一般の流動層ガス化炉においては、炉の底部にあるウインドボックスから空気を吹き込むことにより、高温の砂などの流動媒体を層内で熱風により流動化させ、その中で原材料等を熱分解することによりガス化を行っている。空気を送風機等で流動層内に送り込めば、空気に含まれる酸素により原材料が燃焼する。発電に燃焼過程が関与すれば、エクセルギー損失が発生して、エクセルギー率ΔG/ΔHの低下を招く。また流動化に空気を使えば、窒素も加熱することとなる。しかし、本発明に係る水素製造における流動層ガス化炉において、流動化は、燃料電池の発電反応により生じた蒸気を用いている。流動化のために空気を外部から取り入れることは行っていないので、エクセルギー率ΔG/ΔHの値の低下を防ぐことができる。
本発明によれば原材料および固形分の部分燃焼をすることなくガス化に必要な熱を得ているので、原材料に含まれる炭素分の水素への変換率を上げることにより、資源の有効利用を図ることが可能である。また、原材料の急速な加熱を防ぐことにより、ガス化の促進を阻害することがない。
更に、燃料電池からの発電により発生した熱を利用することにより熱損失が少なく、エネルギー効率が高い水素製造を提供する。
第1の実施形態に係る水素製造装置の基本的構成図である。 第2の実施形態に係る水素製造装置の基本的構成図である。 第3の実施形態に係る水素製造装置の基本的構成図である。 電力と水素を併産する電力-水素のコプロダクションのフローシートである。
以下、本発明に係る実施形態を図面に従って説明するが、本発明はこれら実施形態に限定されるものではない。
図1は本発明の第1の実施形態に係る水素製造装置の基本的構成を示す図である。流動層ガス化炉2は、作動気体の取り入れ口となるウインドボックス3、ウインドボックス3の上方に位置するバブリング流動層8と下降流移動層7、並びにバブリング流動層8および下降流移動層7の上方に位置するフリーボード10を主な構成要素として備えている。
ウインドボックス3とバブリング流動層8および下降流移動層7とは分散板4により仕切られている。分散板4は下降流移動層7からバブリング流動層8へと傾斜しており、固形分のバブリング流動層8への移動を助ける。
図1の左側のバブリング流動層8と右側の下降流移動層7は仕切部材9により区分されている。仕切部材9の下部には下部開口部12があり、上部には上部空間13を有している。バブリング流動層8内の作動媒体の移動速度を下降流移動層7内の作動媒体の移動速度よりも速くして、流動物質を図1の太字の矢印の方向に循環するようにしてある。
流動層ガス化炉2にはその下部からウインドボックス3を経由して水蒸気Sが供給され、バブリング流動層8において流動媒体5を浮遊懸濁する。流動媒体5を浮遊懸濁する作動流体に空気を用いると、空気中の酸素により原材料が部分燃焼し、空気に含まれる窒素も加熱することになりエネルギー損失が生じる。なお、水蒸気Sは水素を生成するための水(HO)の供給源となる。
バブリング流動層8には燃料電池6が配置されている。ここに燃料電池6としては、ガス化の熱源となるので高温度で作動するものが好ましい。具体的には、800~1,000℃の動作温度を必要とする固体酸化物形燃料電池(SOFC)が好ましい。
固形燃料である原材料Gは、下降流移動層7の原材料投入部11から下降流移動層7に投入される。原材料Gとしては、炭素、炭化水素または有機物およびこれらの混合物であればよい。本実施形態ではバイオマスを使用するが、バイオマス以外の石炭等の化石燃料であってもよい。メタノールおよびエタノールであってもよく、プラスチック等の高分子化合物であってもよい。食用油や重質油であってもよい。
下降流移動層7は移動層を形成しており、原材料投入部11から供給された原材料Gは、下降流移動層7の中を降下する。
原材料Gは、下降流移動層7を降下の過程で、バブリング流動層8からの熱で加熱されることにより熱分解されて、揮発分と固形分とに分かれる。揮発分にはタール分および炭化水素が含まれていて、フリーボード10に送り出され熱分解を受けて水蒸気で還元されて一酸化炭素と水素ガスを主成分とする第2生成ガスを生成する。固形分は固定カーボンである炭素を含んでおり、仕切部材9の下部に設けた下部開口部12からバブリング流動層8に送り出される。
バブリング流動層8には,適当な大きさの砂などからなる固体粒子が流動媒体5としてその内部に配備されている。バブリング流動層8には水蒸気Sがウインドボックス3を経由して送り込まれ、分散板4上で固体粒子からなる流動媒体5を浮遊懸濁させて流動化させる。流動媒体5は珪砂、アルミナまたは鉄粒子等の粉粒体、もしくはこれらの混合物である。また、流動媒体5には、水を還元して水素を製造する触媒が担持されていてもよい。これらの触媒としては、例えば、灰分、ナトリウム、カリウムおよびカルシュームが挙げられる。流動媒体5にアルミナを担持してもよい。流動媒体5は、バブリング流動層8において、炭素への伝熱を行う働きを有する。
下降流移動層7からバブリング流動層8に送られてきた固形分には、炭素、流動媒体5および灰分等が含まれており、このうち炭素は、900℃~1000℃の温度域で熱分解を受け、水で還元されて二酸化炭素と水素を主成分とする第1生成ガスを生成する。バブリング流動層8における反応を(1)式に示す。このガス化の反応は還元であり反応に必要な熱(Q)は、流動媒体中5に設置された燃料電池6から供給される。
Q+C+2H2O → CO2+2H2 (1)
固形分の加熱手段として燃料電池6の代わりに電気ヒーターを用いてもよい。また、灯油やガス等の化石燃料の燃焼ガスをチューブ内に導く方式の熱交換器を用いてもよい。
燃料電池等の加熱手段はバブリング流動層8内に設ける必要がある。これら加熱手段を下降流移動層7に設けると、下降流移動層7の温度が高くなり投入された原材料に“焼け”が生じて水素の収量の低減につながるからである。
バブリング流動層8でのガス化に際して、固形分にタールが付着しているとガス化反応を阻害する。しかし、下降流移動層7でタール分が分離されて固形分にはタール分がほとんど付着していないので、ガス化反応がタールにより阻害されることはない。
バブリング流動層8への水蒸気の供給量を下降流移動層7への水蒸気の供給量よりも大きくするようにすることにより、バブリング流動層8の流動物質は仕切部材9を越えて上部空間13から下降流移動層7へ流入し、下降流移動層7の流動物質は仕切部材9の下部からバブリング流動層8に還流することになる。これによりバブリング流動層8と下降流移動層7とからなる内部循環型流動層が形成される。すなわち、バブリング流動層8の物質の移動速度を下降流移動層7のそれよりも速くすることにより移動物質の循環が保たれる。
バブリング流動層8で固形分から生成された第1生成ガスおよび下降流移動層7で分離されフリーボード10で熱分解された第2生成ガスには二酸化炭素、水蒸気、一酸化炭素、水素、ダストが含まれており、これら生成ガスはフリーボード部10を経由してガスクリーニング装置22に送られる。
ガスクリーニング装置22に送られた生成ガス(以下、ことわらない限り単に生成ガスと称す)は、ガスクリーニング装置22の入口で概ね400℃~650℃の温度となっている。
ガスクリーニング装置22としてはサイクロン方式の集塵機を用いることができるが、フィルター方式の集塵機を採用してもよい。フィルター方式は集塵性が高い点から好ましい。400℃~650℃の温度域では、ガスクリーニング装置22としてバグフィルターを用いることができるが、サイクロンを用い、更にその下流にセラミックフィルターを配置してもよい。
ガスクリーニング装置22で除去された灰及びアルカリ金属塩類等の固形分は排出路(図示せず)から系外に排出される。灰分等が除去された生成ガスは、シフト反応器23に送られる。ガスクリーニング装置22とシフト反応器23の間に、生成ガス中に含まれる塩化水素や硫化水素といった腐食性ガスを除去するための腐食性ガス除去装置(図示せず)を設けてもよい。
シフト反応器23の内部であって、生成ガスが流通する配管内に、反応速度を高めるための触媒、例えばマグネタイト(Fe)もしくは白金等が充填されている。燃料電池6での発電反応により生じた高温の蒸気が、シフト反応器23に供給されてもよい。この高温の水蒸気の有する水分を用いて、シフト反応器23は、生成ガス中の一酸化炭素と水を反応させて、水素ガスを生成する。この反応式を(2)式に示す。
CO + H2O → H2 + CO2 (2)
シフト反応器23で処理された生成ガスは、IDF24を経て、次段のCO2分離装置25で、二酸化炭素が分離除去されて、二酸化炭素は系外に排出される。水素ガスは次段の水素分離装置26に送られる。
水素分離装置26で、水素ガスは水蒸気と分離されて、水素タンク27に貯蔵される。水素分離装置26からの水素ガスは、燃料電池6のアノード(負極)に供給され発電に資することが可能である。
燃料電池6から発生する熱は、ガス化反応の吸熱分にほぼ等しいので、この熱をバブリング流動層8におけるガス化の熱源に用いることができる。これにより、流動層ガス化炉において、炭素を部分燃焼させることなくガス化が可能となるので、エネルギー効率の高い発電が達成できる。
下降流移動層7の温度が所定の温度より高くなると固形分の炭素表面はグラファイト化してガス化反応を阻害する。もしくは固形分表面が緻密化してガス化の進行を阻害する。本発明の第1の実施形態の変形例は、係る課題に対応するものであって、本発明の第1の実施形態に、以下に説明する新たな要素を付加したものである。
分散板4の下方であって下降流移動層7の下方に流量調節手段14が配されている。ウインドボックス3から供給される水蒸気Sの一部が流量調節手段14を経由して下降流移動層7に供給可能となっている。すなわち、分散板4の上流に設置された流量調節手段14により、下降流移動層7に流れる水蒸気量が調節可能になっている。
下降流移動層7には温度検出器(図示せず)が備えられていて、下降流移動層7の温度が所定の温度を超えると流量調整装置(図示せず)は流量調節手段14を操作して下降流移動層7に流入する水蒸気Sの量を増やす。下降流移動層7に流入する水蒸気Sの量が増加すると下降流移動層7の温度は低下する。水蒸気量の調節は自動制御装置を用いて行ってもよく、人手で行ってもよい。温度検出器は熱電対や測温抵抗体であってもよく、非接触式の温度計であってもよい。
本発明の第2の実施形態に係る水素製造装置の構成を図2に示す。図2の構成例は図1の構成にタール分解装置21を付加したものであって、第1の実施形態との相違点を説明する。
下降流移動層7で分離された揮発分を含む熱分解ガスには炭化水素を主成分とするタール分を含んでいる。タール分は燃料電池6の動作に悪影響を与えるばかりでなく、燃料電池6を損傷するおそれがある。更に、炭素もしくは炭化水素にタールが付着していると、シフト反応が進みにくいという問題もある。そこで、シフト反応器23の前段にタール分解装置21を設置することが望ましい。
タール分解装置21では、熱分解ガスと第1生成ガスが高温のニッケル系もしくはコバルト系触媒を担持したハニカム通路に流通されることで、熱分解性の不純物であるタール・芳香族炭化水素等の不飽和炭化水素及びダイオキシン類等の有機塩素化合物が熱分解により除去されて、次段のガスクリーニング装置22に送られる。
ガスクリーニング装置22以降のプロセスは第1の実施形態と同様であるので説明を省略する。
本発明の第3の実施形態に係る水素製造装置の構成を図3に示す。図3の構成例において特徴的なことは、第1の実施形態の構成において、バブリング流動層に設置した燃料電池を省略したものである。以下、第1の実施形態との相違点を中心に説明する。
固形分の加熱手段として燃料電池の代わりに固形分の部分燃焼による熱を利用することができる。この場合、供給する酸素ガス量を調整することにより、水素ガスの収容量は低下するが、熱効率と水素の収益効率のバランスを図ることができる。ウインドボックス103を経由してバブリング流動層108に水蒸気Sとともに酸素ガスが供給される。酸素ガスはバブリング流動層108で固形分の部分燃焼に寄与して、バブリング流動層108における固形分のガス化に必要な熱を供給する。
図4に、電力と水素を併産する、電力-水素のコプロダクションのフローシートを示す。図中の数値は石炭の持つエネルギーを100とした場合の、各段階におけるエネルギーを示しており、カッコ内の数値は、エネルギー割合とエクセルギー割合を示す。図4に示すように電力-水素のコプロダクションは、エネルギー損失がない。
燃料電池を使用して水素を電気エネルギーに変換するときには水素の発熱量の17%が熱となって発生する。この熱を利用して石炭、石油、バイオマス、天然ガスで水を還元して水素を製造すれば、熱の発生を抑えることができ、発電効率を上げることが可能となる。
本発明に係る発電装置は、商用電力系統の発電所における発電装置として好適に用いることができる。また、自家発電設備における発電装置やマイクログリッドに接続する発電装置としても好適に用いることができる。
G 原材料
S 水蒸気
2 流動層ガス化炉
3 ウインドボックス
4 分散板
5 流動媒体
6 燃料電池
7 下降流移動層
8 バブリング流動層
9 仕切部材
10 フリーボード部
11 原材料投入部
12 下部開口部
13 上部空間
14 流量調節手段
21 タール分解装置
22 ガスクリーニング装置(集塵機)
23 シフト反応器
24 IDF
25 CO2分離装置
26 水素分離装置
27 水素タンク

Claims (12)

  1. 炭素を含む 原材料を加熱して揮発分と固形分に分離する下降流移動層と、
    水蒸気と 前記固形分を加熱して第1生成ガスを生成するバブリング流動層とを有し、
    前記下降流移動層と前記バブリング流動層とが仕切部材で区切られた内部循環型流動層であり、
    前記固形分の加熱手段が前記固形分の部分燃焼によらず、前記バブリング流動層内に配置された電気ヒーターもしくはチューブ式熱交換器であり、
    前記第1生成ガスをシフト反応器にて水素ガスを生成する水素製造装置。
  2. 前記バブリング流動層に水蒸気を供給することにより前記バブリング流動層の流動化を図る請求項1に記載の水素製造装置。
  3. 前記水蒸気が流量調節手段を介して、前記下降流移動層に供給可能となっている請求項2に記載の水素製造装置。
  4. 前記流量調節手段が、前記下降流移動層に設けた温度検出手段の出力に応じて調節される請求項3に記載の水素製造装置。
  5. 前記バブリング流動層に空気および酸素を供給しない請求項4に記載の水素製造装置。
  6. 前記第1生成ガスおよび前記揮発分を熱分解してなる第2生成ガスがシフト反応器に導いて水素ガスを生成する請求項2~5のいずれか一項に記載の水素製造装置。
  7. 前記第1生成ガスおよび前記第2生成ガスに含まれるタール分を除去するタール分解装置が前記シフト反応器の前段に設けられている請求項6に記載の水素製造装置。
  8. 前記シフト反応器からの水素が燃料電池に供給されると共に、系外に取り出し可能となっている請求項6に記載の水素製造装置。
  9. 燃料電池 の発電の際に生じた蒸気を、前記バブリング流動層に供給する請求項8に記載の水素製造装置。
  10. 前記原材料および前記固形分のガス化に必要な熱を前記原材料および前記固形分の部分燃焼によらない請求項2~9のいずれか一項に記載の水素製造装置。
  11. 下降流移動層において炭素を含む原材料を加熱して揮発分と固形分に分離するとともに、
    バブリング流動層において水蒸気と前記固形分を加熱して第1生成ガスを生成し、
    前記第1生成ガスを生成するのに必要な熱を前記原材料および前記固形分の部分燃焼によらず前記バブリング流動層に配置された電気ヒーターもしくはチューブ式熱交換器により、
    前記第1生成ガスをシフト反応器 により水素ガスを生成する水素製造方法。
  12. シフト反応器 からの水素ガスを燃料電池に供給すると共に、系外に取り出し可能となっている請求項11に記載の水素製造方法。
JP2020134523A 2020-08-07 2020-08-07 水素製造装置 Active JP7118341B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020134523A JP7118341B2 (ja) 2020-08-07 2020-08-07 水素製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020134523A JP7118341B2 (ja) 2020-08-07 2020-08-07 水素製造装置

Publications (2)

Publication Number Publication Date
JP2022030460A JP2022030460A (ja) 2022-02-18
JP7118341B2 true JP7118341B2 (ja) 2022-08-16

Family

ID=80324722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020134523A Active JP7118341B2 (ja) 2020-08-07 2020-08-07 水素製造装置

Country Status (1)

Country Link
JP (1) JP7118341B2 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003226501A (ja) 2002-02-07 2003-08-12 Ebara Corp 水素製造システム
US20050036940A1 (en) 2003-08-11 2005-02-17 Membrane Reactor Technologies Ltd. Internally circulating fluidized bed membrane reactor system
JP2005272782A (ja) 2004-03-26 2005-10-06 Idemitsu Kosan Co Ltd 流動層炉におけるタールの除去方法
JP2009120432A (ja) 2007-11-14 2009-06-04 Ihi Corp 循環流動層改質装置
DE102009030542A1 (de) 2009-06-25 2010-12-30 Highterm Research Gmbh Wirbelschichtreaktor zur Erzeugung von Produktgas aus kohlenstoffhaltigen Einsatzstoffen
DE102009030543A1 (de) 2009-06-25 2010-12-30 Highterm Research Gmbh Wirbelschichtreaktor zur Erzeugung von Produktgas aus kohlenstoffhaltigen Einsatzstoffen
WO2013005699A1 (ja) 2011-07-05 2013-01-10 国立大学法人 東京大学 発電装置および発電方法
JP2015145340A (ja) 2009-09-10 2015-08-13 国立大学法人 東京大学 カーボンナノチューブ及び水素の同時製造方法、並びに、カーボンナノチューブ及び水素の同時製造装置
JP2017137212A (ja) 2016-02-03 2017-08-10 エクセルギー・パワー・システムズ株式会社 発電装置および発電方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07505570A (ja) * 1992-03-06 1995-06-22 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼイション ガス製品の製造方法
JPH06240268A (ja) * 1993-02-19 1994-08-30 Ube Ind Ltd 流動床改質装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003226501A (ja) 2002-02-07 2003-08-12 Ebara Corp 水素製造システム
US20050036940A1 (en) 2003-08-11 2005-02-17 Membrane Reactor Technologies Ltd. Internally circulating fluidized bed membrane reactor system
JP2005272782A (ja) 2004-03-26 2005-10-06 Idemitsu Kosan Co Ltd 流動層炉におけるタールの除去方法
JP2009120432A (ja) 2007-11-14 2009-06-04 Ihi Corp 循環流動層改質装置
DE102009030542A1 (de) 2009-06-25 2010-12-30 Highterm Research Gmbh Wirbelschichtreaktor zur Erzeugung von Produktgas aus kohlenstoffhaltigen Einsatzstoffen
DE102009030543A1 (de) 2009-06-25 2010-12-30 Highterm Research Gmbh Wirbelschichtreaktor zur Erzeugung von Produktgas aus kohlenstoffhaltigen Einsatzstoffen
JP2015145340A (ja) 2009-09-10 2015-08-13 国立大学法人 東京大学 カーボンナノチューブ及び水素の同時製造方法、並びに、カーボンナノチューブ及び水素の同時製造装置
WO2013005699A1 (ja) 2011-07-05 2013-01-10 国立大学法人 東京大学 発電装置および発電方法
JP2017137212A (ja) 2016-02-03 2017-08-10 エクセルギー・パワー・システムズ株式会社 発電装置および発電方法

Also Published As

Publication number Publication date
JP2022030460A (ja) 2022-02-18

Similar Documents

Publication Publication Date Title
KR100887137B1 (ko) 탄화물 열분해 개질 방법 및 그 장치
JP4986080B2 (ja) バイオマスガス化装置
JP3933105B2 (ja) 流動層ガス化システム
JP5114412B2 (ja) 固体燃料の分離型流動層ガス化方法およびガス化装置
Makwana et al. Improving the properties of producer gas using high temperature gasification of rice husk in a pilot scale fluidized bed gasifier (FBG)
JP5630626B2 (ja) 有機物原料のガス化装置及び方法
JP4835581B2 (ja) 循環流動層改質装置
JP2015025145A (ja) バイオマスから低タール合成ガスを製造する方法および装置
JP2007112873A (ja) ガス化燃料のガス化方法及び装置
JP7424861B2 (ja) 原料の処理装置
JP2014074144A (ja) 三塔式循環流動層による石炭/バイオマス共ガス化方法及びその装置
JP2004204106A (ja) 有機物のガス化装置
JP7118341B2 (ja) 水素製造装置
JP5286529B2 (ja) 発電装置および発電方法
JP2009102594A (ja) ガス化炉システム
Stasiek et al. Small scale gasification of biomass and municipal wastes for heat and electricity production using HTAG technology
JP6229115B2 (ja) 発電装置および発電方法
JP3559163B2 (ja) バイオマスと化石燃料を用いたガス化方法
JP2006335937A (ja) 有機化合物の加熱装置
JP7291677B2 (ja) 水性ガス生成システム、バイオマス発電システム及びバイオマス水素供給システム
RU136800U1 (ru) Газификатор твердого топлива
EP4151706A1 (en) A method and a device to produce low-tar- and low-dust product gas
JP4993460B2 (ja) 炭素質原料の熱分解方法
WO2024056997A1 (en) Gasification
CN102876388A (zh) 以包含高温蒸汽的混合气体作为气化剂的生物质高温气化系统及气化工艺

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210915

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210915

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220628

R150 Certificate of patent or registration of utility model

Ref document number: 7118341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150