WO2009096689A2 - 개량된 프로모터 및 이를 이용한 l-라이신의 생산 방법 - Google Patents

개량된 프로모터 및 이를 이용한 l-라이신의 생산 방법 Download PDF

Info

Publication number
WO2009096689A2
WO2009096689A2 PCT/KR2009/000381 KR2009000381W WO2009096689A2 WO 2009096689 A2 WO2009096689 A2 WO 2009096689A2 KR 2009000381 W KR2009000381 W KR 2009000381W WO 2009096689 A2 WO2009096689 A2 WO 2009096689A2
Authority
WO
WIPO (PCT)
Prior art keywords
vector
promoter
lysine
transformant
nucleic acid
Prior art date
Application number
PCT/KR2009/000381
Other languages
English (en)
French (fr)
Other versions
WO2009096689A3 (ko
Inventor
Chul Ha Kim
Jong Soo Choi
Sang Jo Lim
Hyung Joon Kim
Jun Ok Moon
Gey Hang Jeon
Jin Suk Sung
Original Assignee
Cj Cheiljedang Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40913399&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2009096689(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Cj Cheiljedang Corporation filed Critical Cj Cheiljedang Corporation
Priority to JP2010544231A priority Critical patent/JP5396403B2/ja
Priority to EP09705247.6A priority patent/EP2246415B1/en
Priority to BRPI0906752-3A priority patent/BRPI0906752B1/pt
Priority to CN200980103228.0A priority patent/CN103298930B/zh
Priority to US12/864,731 priority patent/US8426577B2/en
Publication of WO2009096689A2 publication Critical patent/WO2009096689A2/ko
Publication of WO2009096689A3 publication Critical patent/WO2009096689A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1217Phosphotransferases with a carboxyl group as acceptor (2.7.2)

Definitions

  • the present invention relates to an improved promoter and a method for producing L-lysine using the same, in particular, operably linked to genes encoding aspartate kinase and aspartate semialdehyde dehydrogenase, and promoting promoter activity.
  • the present invention relates to a nucleic acid molecule derived from Corynebacterium glutamicum, a vector comprising such a nucleic acid molecule, a transformant transformed with the vector, and a method for producing L-lysine using the transformant.
  • Coryneform bacteria are traditionally the most widely used industrial microorganisms for the production of amino acids and nucleic acid-related substances, mainly L-lysine, L-threonine, L-arginine, L-threonine, And gram-positive bacteria used to produce chemicals having various uses in fields such as feed, pharmaceuticals, and foods including amino acids such as glutamic acid and various nucleic acids, and require biotin for growth. It has a characteristic of snapping at right angles during cell division, and its low degradation activity on the generated metabolite is one of the advantages of the bacteria.
  • Representative species include the genus Corynebacterium, including Corynebacterium glutamicum, the genus Brevibacterium, including Brevibacterium flavum, Athrobacter sp., And Microbacterium sp.
  • L-lysine is one of L-amino acids and is used commercially as a feed supplement for animals due to its ability to improve the quality of feed by increasing the absorption of other amino acids, and especially in human medicine as a component of injectable solutions. It is used in the pharmaceutical industry. Therefore, industrial production of lysine has become an economically important industrial process.
  • a method for improving the production efficiency of lysine a method of amplifying a gene on the lysine biosynthetic pathway or modifying a promoter of the gene to increase enzymatic activity on the biosynthetic pathway has been used.
  • Conventional corynebacterium strains with enhanced lysine biosynthesis related genes and L-lysine production methods using the same have been known.
  • US Pat. No. 6,746,855 discloses a culture of corynebacteria, in which a lysE gene (lysine excretion carrier gene) is enriched and additionally a gene selected from the group consisting of dapA gene, lysC gene, pyc gene and dapB gene is introduced.
  • U.S. Pat.No. 6,221,636 also discloses a DNA sequence encoding aspartokinase and a diaminopimelate decarboxylase that is substantially insensitive to feedback inhibition by L-lysine and L-threonine.
  • Corynebacteria transformed with recombinant DNA comprising a DNA sequence are disclosed.
  • coryneform bacteria that have improved expression by improving the promoter of lysC-asd operon, a gene that is considered to play a key role in the lysine biosynthesis pathway.
  • the present inventors have improved the lysC-asd operon promoter on the Corynebacterium chromosome through base substitution and introduced the improved promoter to increase the activity of aspartate kinase and aspartate semialdehyde dehydrogenase enzymes over intrinsic activity.
  • the present invention was able to provide a microorganism of the genus Corynebacterium.
  • Another object of the present invention is to provide a vector comprising a nucleic acid molecule having the promoter activity.
  • Still another object of the present invention is to provide a transformant transformed with the vector.
  • Still another object of the present invention is to provide a method for producing lysine, comprising culturing the above-described transformant.
  • Nucleic acid molecules derived from Corynebacterium glutamicum operably linked to the lysC-asd gene according to the present invention and having improved promoter activity exhibit high promoter activity compared to the native form, resulting in aspartate kinase and aspart It is possible to increase the production efficiency of lysine by increasing the enzymatic activity of tate semialdehyde dehydrogenase.
  • 1 is a diagram showing a vector pDZ for Corynebacterium chromosome insertion.
  • FIG. 2 is a diagram showing a vector for corynebacterium base substitution pDZ-lysCP1.
  • the present invention provides a coryne having improved promoter activity, operably linked with genes encoding aspartate kinase and aspartate semialdehyde dehydrogenase, and having a nucleotide sequence of SEQ ID NO: 2.
  • a bacterium glutamicum derived nucleic acid molecule is provided.
  • promoter refers to a non-ready nucleic acid sequence upstream of a coding region, that is, a polymerase, that contains a binding site for a polymerase and has a transcription initiation activity to an mRNA of a promoter subgene. Refers to a DNA region for initiating transcription of a gene and is located at the 5 'region of the mRNA transcription initiation site.
  • Corynebacterium glutamicum nucleic acid molecules having a promoter activity of the present invention are operably linked with genes encoding aspartate kinase and aspartate semialdehyde dehydrogenase.
  • the genes encoding aspartate kinase and aspartate semialdehyde dehydrogenase are the lysC and asd genes, respectively, and are the major genes on the biosynthetic pathway that produces lysine in bacteria of the genus Corynebacterium.
  • the lysC site contains two overlapping genes, lysC alpha and lysC beta, the third open-reading frame (ORF) is adjacent to the lysC site, and the start codon of the asd gene is 24bp at the end of the lysC ORF. Lower, it is known to be expressed as part of the lysC operon.
  • the term "operon” refers to a group of neighboring genes that are uniformly regulated by a working gene, a regulatory gene, a structural gene, or the like. That is, in the present invention, the lysC and asd genes are activated by the same promoter as the lysC-asd operon. This means that it can be adjusted.
  • operably linked means that the nucleic acid sequence having the promoter activity of the present invention initiates and mediates the transcription of genes encoding aspartate kinase and aspartate semialdehyde dehydrogenase. Means that the promoter sequence is functionally linked. This means that the nucleic acid sequence having the promoter activity of the present invention can be operably linked to the lysC-asd operon gene, thereby regulating the transcriptional activity of the operon gene.
  • the nucleic acid sequence having the promoter activity of the present invention is a modification of the promoter of lysC-asd operon in Corynebacterium glutamicum, and is characterized by having a higher promoter activity than a wild type promoter. In other words, it is intended to exhibit increased enzymatic activity than the intrinsic activity of the enzyme.
  • the intrinsic activity means the active state of the enzyme that the Corynebacteria genus has in its natural state.
  • Methods for improving to have higher promoter activity can be readily made by methods known in the art, preferably deleting, inserting, non-conserving or removing the promoter nucleic acid sequence of Corynebacterium glutamicum lysC-asd operon Conservative substitutions or combinations thereof induce and improve variations in sequence.
  • Promoter nucleic acid molecules of the invention can be isolated or prepared using standard molecular biology techniques. For example, it can be separated by PCR using the appropriate primer sequence. It can also be prepared using standard synthetic techniques using automated DNA synthesizers. In one specific embodiment, the present inventors use lysC-asd based on the NIH GenBank of the National Institutes of Health. A nucleotide sequence comprising the promoter region of the gene (NCBI accession number NCgl0247) was obtained (SEQ ID NO: 1), and four primers (SEQ ID NOs 3 to 6) were synthesized based thereon, followed by Corynebacterium glutamicum KFCC10881. The chromosomal DNA of was used as a template, and PCR was performed using the primers to obtain a nucleic acid molecule according to the present invention (SEQ ID NO: 2) including a promoter having a modified sequence in the main region.
  • SEQ ID NO: 2 nucleic acid molecule according to the present invention
  • the nucleic acid molecule having the Corynebacterium glutamicum promoter activity of the present invention is preferably useful as a promoter for gene expression in prokaryotic cells, in particular E. coli or Coryneform bacteria.
  • the term "coryneform bacterium” in the present invention is a concept including a microorganism of the genus Corynebacterium (Corynebacterium) or Brevibacterium (Brevibacterium).
  • coryneform bacterium Corynebacterium glutamicum ATCC13032, Corynebacterium thermoaminogenes amino to Ness (thermoaminogenes) FERM BP-1539, Brevibacterium Plastic boom (Brevibacterium flavum) ATCC 14067, Brevibacterium lactofermentum ( lactofermentum ) ATCC 13869 and L-amino acid producing mutants or strains prepared therefrom, for example Corynebacterium glutamicum KFCC10881, Corynebacterium glutamicum KFCC11001, preferably Corynebacterium Glutamicum KFCC 10881, but is not limited to these examples.
  • the present invention relates to a vector comprising a nucleic acid molecule having the above described improved promoter activity.
  • the term "vector” refers to a DNA preparation containing a nucleotide sequence of a gene operably linked to a suitable regulatory sequence to allow expression of the gene of interest in a suitable host.
  • the regulatory sequence includes a promoter capable of initiating transcription, any operator sequence for regulating such transcription, a sequence encoding a suitable mRNA ribosomal binding site, and a sequence regulating termination of transcription and translation.
  • the vector used in the present invention is not particularly limited as long as it is replicable in the host, and any vector known in the art may be used.
  • it may be a plasmid, phage particles, or simply a potential genomic insert, preferably pACYC177 (New England Biolab, GenBank accetion # X06402), but is not limited thereto.
  • pACYC177 New England Biolab, GenBank accetion # X06402
  • a vector of the present invention is introduced into a host cell such that the nucleic acid molecular sequence having promoter activity in the vector causes homologous recombination with the sequence of the promoter region of the endogeneous lysC-asd operon gene on the host cell genome and into the chromosome.
  • the vector of the present invention may further include a selection marker (selection market) for confirming whether the chromosome is inserted, the selection marker selects cells transformed with the vector, that is, confirming whether the target gene is inserted.
  • markers may be used that confer a selectable phenotype such as drug resistance, nutritional requirements, resistance to cytotoxic agents or expression of surface proteins. In an environment treated with a selective agent, only cells expressing a selection marker survive or exhibit different expression traits, so that transformed cells can be selected.
  • it may include a lacZ gene.
  • the inventors prepared a vector capable of replacing the promoter region of the lysC-asd operon gene of Corynebacterium glutamicum with a mutated promoter sequence to enhance promoter activity through homologous recombination. .
  • nucleic acid molecule comprising a promoter having a modified sequence in the promoter main region of the lysC-asd operon prepared to have high promoter activity as described above is inserted into an adapter site of the pDZ vector, thereby providing a sequence number
  • a vector pDZ-lysCP1 (FIG. 2) comprising the nucleic acid sequence of 2 was prepared.
  • the present invention relates to a transformant transformed with the vector described above.
  • transformation means that DNA is introduced into a host so that the DNA is replicable as an extrachromosomal factor or by chromosomal integration.
  • the transformant of the present invention is characterized in that after a vector is transformed into a host cell, the nucleic acid molecule sequence having promoter activity in the vector undergoes homologous recombination with the sequence of the promoter region of the endogeneous lysC-asd operon gene on the host cell genome. It can be inserted into a chromosome or retained in the form of a plasmid.
  • Methods for transforming a vector of the present invention include any method for introducing nucleic acids into cells, and can be carried out by selecting appropriate standard techniques as known in the art depending on the host cell. For example, electroporation, calcium phosphate (CaPO 4 ) precipitation, calcium chloride (CaCl 2 ) precipitation, microinjection, polyethylene glycol (PEG) method, DEAE-dextran method, cationic liposome method, and Lithium acetate-DMSO method;
  • the host cell it is preferable to use a host having high DNA introduction efficiency and a high expression efficiency of the introduced DNA, and all microorganisms including prokaryotic and eukaryotic can be used, preferably E. coli or coryneform bacteria, more preferably.
  • prokaryotic and eukaryotic can be used, preferably E. coli or coryneform bacteria, more preferably.
  • Corynebacterium glutamicum KFCC10881 may be used.
  • the transformant transformed with the vector of the present invention by homologous recombination, by replacing the promoter region of the lysC-asd operon gene of Corynebacterium glutamicum with a mutated promoter sequence to enhance promoter activity, thereby the lysC-asd operon
  • the gene will have an improved promoter, which is characterized by an increase in the enzymatic activity of aspartate kinase and aspartate semialdehyde dehydrogenase over its natural form.
  • the vector pDZ-lysCP1 comprising a nucleic acid molecule having a promoter activity of SEQ ID NO: 2 in accordance with the present invention is transformed into Corynebacterium glutamicum KFCC10881 to reduce the lysC-asd promoter activity.
  • Enhanced transformants were prepared.
  • the transformant obtained by transforming pDZ-lysCP1 (KFCC10881-lysCP1) is named CA01-0135, and as of January 18, 2008, the Korean Culture Center of Microorganisms (hereinafter referred to as "KCCM"). (Abbreviated as) and deposited with accession number KCCM10919P.
  • the present invention relates to a method for producing lysine comprising culturing the above-described transformant.
  • the enzymatic activity of aspartate kinase and aspartate semialdehyde dehydrogenase is increased compared to the natural form.
  • Aspartate kinase and aspartate semialdehyde dehydrogenase are the most important enzymes on the biosynthetic pathway of lysine, so that the transformants of the present invention can be cultured to increase the production efficiency of lysine.
  • Cultivation of the transformant in the present invention can be carried out according to well-known methods, conditions such as culture temperature, incubation time and pH of the medium can be appropriately adjusted.
  • These known culture methods are described in Chmiel; Bioreatechnik 1. Einbowung in die Biovonstechnik (Gustav Fischer Verlag, Stuttgart, 1991), and Storhas; Bioreaktoren und periphere bamboo (Vieweg Verlag, Braunschweig / Wiesbaden, 1994).
  • the culture method includes a batch culture, continuous culture and fed-batch culture, preferably a batch process or an injection batch or a repeated batch batch process (fed batch or Repeated fed batch process) may be cultured continuously, but is not limited thereto.
  • the culture medium used should suitably meet the requirements of the particular strain.
  • Culture media for various microorganisms are known (eg, "Manual of Methods for General Bacteriology” from American Society for Bacteriology (Washington D.C., USA, 1981)).
  • Carbon sources in the medium include sugars and carbohydrates (e.g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose), fats and fats (e.g. soybean oil, sunflower seed oil, peanut oil and coconut oil). ), Fatty acids such as palmitic acid, stearic acid and linoleic acid, alcohols such as glycerol and ethanol, organic acids such as acetic acid, and the like.
  • sugars and carbohydrates e.g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose
  • fats and fats e.g. soybean oil, sunflower seed oil, peanut oil and coconut oil.
  • Nitrogen sources can be nitrogen-containing organic compounds such as peptone, yeast extract, gravy, malt extract, corn steep liquor, soybean meal and urea, or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and nitrate Ammonium) can be used, and these materials can also be used individually or as a mixture. Potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium containing salts can be used as the phosphorus source.
  • the culture medium may contain metal salts necessary for growth (eg, magnesium sulfate or iron sulfate), and finally, essential growth-promoting substances such as amino acids and vitamins may be used in addition to the substances mentioned above.
  • Suitable precursors may further be added to the culture medium.
  • the feed material may be added to the culture all at once or may be appropriately supplied during the culture.
  • the pH of the culture can be adjusted by appropriate use of a basic compound (eg sodium hydroxide, potassium hydroxide or ammonia) or an acidic compound (eg phosphoric acid or sulfuric acid).
  • Foaming can be controlled using foaming agents such as fatty acid polyglycol esters.
  • Oxygen or oxygen-containing gas mixtures, such as air, may be introduced into the culture to maintain aerobic conditions.
  • Incubation temperature is usually 20 to 45 °C, preferably 25 to 40 °C. Incubation is continued until the maximum amount of L-amino acid desired is produced. For this purpose it is usually achieved in 10 to 160 hours.
  • L-lysine may be excreted in culture medium or contained in cells.
  • the production method of lysine comprising the step of culturing the above-described transformant of the present invention may further comprise a method for recovering the lysine produced in the culturing step.
  • the method for recovering L-lysine can separate L-lysine from cells or culture medium by methods well known in the art. Examples of L-lysine recovery methods include, but are not limited to, filtration, anion exchange chromatography, crystallization, and HPLC.
  • a recombinant vector is prepared to replace the promoter of the lysC-asd operon gene of Corynebacterium glutamicum, a lysine producing strain with an improved promoter through homologous recombination, and the vector is corynebacterium glutamime.
  • Corynebacterium glutamicum KFCC10881 strain used in the present invention is a S- (2-aminoethyl) cysteine (S-) produced by artificial variation using Corynebacterium glutamicum wild strain (ATCC13032) as a parent strain.
  • (2-aminoethyl) cysteine hereinafter referred to as AEC
  • AEC (2-aminoethyl) cysteine
  • homoserine leaky homoserine leaky
  • Example 1 Preparation of a recombinant vector for promoter improvement
  • a vector pDZ for corynebacterium chromosome insertion was prepared using E. coli cloning vector pACYC177 (New England Biolab, GenBank accetion # X06402) as a base vector.
  • the pACYC177 vector was treated with AcuI and BanI restriction enzymes and then blunt-terminated via Klenow enzyme treatment.
  • the lacZ gene derived from Escherichia coli to be used as a selection marker was prepared by amplifying from the genomic DNA of Escherichia coli K12 W3110 to include its own promoter by PCR, followed by 5 'terminal phosphorylation and smoothing through T4 DNA polymerase and polynucleotide kinase treatment. Two kinds of DNA fragments prepared as described above were conjugated, and an adapter sequence containing a number of restriction enzyme recognition sites artificially synthesized into the restriction enzyme BamHI site of the conjugated circular DNA molecule was inserted to corynebacter. A vector pDZ for indium chromosome insertion was completed. 1 is a diagram showing a vector pDZ for Corynebacterium chromosome insertion.
  • a recombinant vector was prepared to improve the promoter of the lysC-asd operon gene derived from Corynebacterium glutamicum, which is a lysine producing strain.
  • lysC-asd based on the NIH GenBank of the National Institutes of Health.
  • a nucleotide sequence (SEQ ID NO: 1) containing a promoter region of the gene (NCBI accession number NCgl0247) was obtained, and a DNA fragment (SEQ ID NO: 2) containing a promoter having a modified sequence at the main portion was obtained.
  • Modified promoter sequences are designed based on promoter consensus sequences generally known in microorganisms.
  • the primer for preparing the modified promoter sequence synthesized four primers (Table 1, SEQ ID NO: 3 to 6) based on the nucleotide sequence.
  • PCR was performed using the chromosomal DNA of Corynebacterium glutamicum KFCC10881 as a template to obtain a promoter sequence of the lysC-asd operon gene derived from Corynebacterium glutamicum as a primer. It was.
  • the polymerase was PfuUltra TM high-trust DNA polymerase (Stratagene), and PCR conditions were denatured 96 ° C., 30 seconds; Annealing 53 ° C., 30 seconds; And 30 degreeC of the polymerization reaction 72 degreeC and 30 second was repeated. As a result, a 300 bp DNA fragment containing a substitution site at one end was obtained.
  • lysCP1-1 was amplified using SEQ ID NOs: 3 and 6 as primers
  • lysCP1-2 was amplified using SEQ ID NOs: 4 and 5 as primers.
  • the amplified product was previously mixed with a pDZ vector prepared by digestion with XbaI restriction enzyme and cloned using an In-fusion Cloning Kit (TAKARA) to obtain a pDZ-lysCP1 vector.
  • TAKARA In-fusion Cloning Kit
  • FIG. 2 is a diagram showing a Corynebacterium chromosome substitution vector pDZ-lysCP1 containing lysCP1 corresponding to SEQ ID NO: 2.
  • the recombinant vector prepared above was transformed into the lysine producing strain Corynebacterium glutamicum KFCC10881, and the promoter sequence of the strain chromosome. And by replacing homologous recombination of the promoter sequence on the vector, the improved promoter sequence was inserted into the chromosome.
  • Corynebacterium glutamicum KFCC10881 for Corynebacterium glutamicum KFCC10881 which is the recombinant vector Corynebacterium chromosome replacement vector pDZ-lysCP1 containing the DNA fragment having the recombinant vector improved promoter sequence prepared in Example 1 above.
  • Corynebacterium chromosome replacement vector pDZ-lysCP1 containing the DNA fragment having the recombinant vector improved promoter sequence prepared in Example 1 above.
  • chromosomal insertion of the vector was made possible by checking whether it was blue in solid media, including X-gal (5-bromo-4-chloro-3-indolyl- ⁇ -D-galactosid).
  • the primary chromosome-inserted strains were shaken in nutrient medium (30 ° C., 8 hours), diluted from 10 ⁇ 4 to 10 ⁇ 10 , respectively, and plated on solid medium containing X-gal. While most colonies showed blue color, white colonies appearing at a low rate, and thus, strains in which the nucleotide sequence was substituted in the main region of the promoter of the lysC-asd operon were selected by secondary crossover.
  • the strains selected as described above were finally selected through a process of confirming base substitution through PCR and a sequence sequence of a corresponding region.
  • Promoter base substitution of the strain transformed with the pDZ-lysCP1 vector was confirmed by sequencing the target site by performing PCR using SEQ ID NOs: 4 and 7 as primers.
  • the lysine producer Corynebacterium glutamicum KFCC10881-lysCP1 containing the base substituted in the promoter major part of the lysC-asd gene on the chromosome was obtained through the second crossing process.
  • Cultures cultured up to the log phase were inoculated in 50 ml of the following seed media such that the OD 600 value was 0.3, and then cultured until the OD 600 value reached about 15.
  • the cells were collected from the culture by centrifugation (5,000 rpm, 15 minutes), washed twice with 0.1% Tris.HCl (pH8.0) buffer, and then washed with 160 of 610 nm in the same buffer solution. Suspended. After adding 1.25 g of glass beads per 1.5 ml of the suspension, the cells were crushed for 6 minutes using a bead beater. The supernatant was collected by centrifugation (15,000 rpm, 20 minutes) and the protein concentration was quantified by the Bradford method (Bradford, MM 1976. Anal. Biochem. 72: 248-254), followed by aspartate kinase enzyme activity. Used as crude protein solution for measurement.
  • Aspartate kinase enzyme activity was measured in a reaction solution containing 0.1 M Tris.HCl (pH8.0), 0.01 M MgCl 2 , 0.6 M Hydroxylamine.HCl (pH7.0), 4 mM ATP, and 0.2 M Aspartate.
  • the reaction was initiated by the addition of 0.05 ml crude protein solution. After reaction at 30 ° C. for 30 minutes, Stop solution (10% FeCl 2 , 3.3% TCA, 0.7N HCl) was added to terminate the reaction. The supernatant was collected by centrifugation, and the absorbance was measured at 540 nm.
  • Aspartite kinase enzyme active unit (U) was defined as aspartate hydroxamate nmole produced by 1 mg of protein for 1 minute.
  • Corynebacterium glutamicum KFCC10881-lysCP1 strains were found to exhibit 5.08-fold increased aspartate kinase activity compared to parental strain KFCC10881 (Table 2).
  • Corynebacterium glutamicum parent strains KFCC10881 and KFCC10881-lysCP1 were inoculated in a 250 ml corner-baffle flask containing 25 ml of the following species medium and shaken at 200 rpm for 20 hours at 30 ° C.
  • a 250 ml corner-baffle flask containing 24 ml of the following production medium was inoculated with 1 ml of seed culture and shaken at 30 ° C. for 120 hours (200 rpm).
  • Corynebacterium glutamicum-derived nucleic acid molecules with improved promoter activity according to the present invention exhibit higher promoter activity compared to the native form, increasing the enzyme activity of aspartate kinase and aspartate semialdehyde dehydrogenase. It is possible to increase the biosynthetic efficiency of lysine, thereby producing a high yield of L- lysine, a kind of L-amino acid useful in the industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 아스파르테이트 키나제 및 아스파르테이트 세미알데히드 디히드로게나제를 암호화하는 유전자와 작동가능하게 연결되고, 개량된 프로모터 활성을 갖는 코리네박테리움 글루타미쿰 유래의 핵산 분자, 이러한 핵산 분자를 포함하는 벡터, 이러한 벡터로 형질전환된 형질전환체 및 이러한 형질전환체를 사용하여 L-라이신을 생산하는 방법을 제공한다.

Description

개량된 프로모터 및 이를 이용한 L-라이신의 생산 방법
본 발명은 개량된 프로모터 및 이를 이용한 L-라이신의 생산 방법에 관한 것으로서, 구체적으로는 아스파르테이트 키나제 및 아스파르테이트 세미알데히드 디히드로게나제를 암호화하는 유전자와 작동가능하게 연결되고, 프로모터 활성을 갖는, 코리네박테리움 글루타미쿰 유래의 핵산 분자, 이러한 핵산 분자를 포함하는 벡터, 이러한 벡터로 형질전환된 형질전환체 및 이러한 형질전환체를 사용하여 L-라이신을 생산하는 방법에 관한 것이다.
코리네형 세균은 전통적으로 아미노산과 핵산관련물질의 생산에 가장 널리 이용되는 산업용 미생물로서, 주로 L-라이신(lysine), L-트레오닌(threonine), L-아르기닌(arginine), L-쓰레오닌, 및 글루탐산 등의 아미노산 및 각종 핵산을 포함한 사료, 의약품 및 식품 등의 분야에서 다양한 용도를 갖는 화학물질을 생산하는데 이용되는 그람양성세균이며, 생육에 비오틴을 요구한다. 세포분열시 직각으로 굽어지는 특징(snapping)을 가지고 있으며, 생성된 대사물질에 대한 분해활성이 낮은 것도 이 균이 가지는 장점 중 하나이다. 대표적인 균종으로는 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum)을 포함한 코리네박테리움 속, 브레비박테리움 플라붐(Brevibacterium flavum)을 포함한 브레비박테리움 속, 아쓰로박터 종(Athrobacter sp.), 및 마이크로박테리움 종 (Microbacterium sp.) 등이 있다.
L-라이신은 L-아미노산의 하나로서, 기타 아미노산의 흡수를 증가시킴으로써 사료의 질을 향상시킬 수 있는 능력으로 인해 동물 사료 보충물로서 상업적으로 사용되고 있고, 인체 의학에서는 특히 주입용 용액제의 성분으로서 사용되며, 제약 산업에도 사용되고 있다. 그러므로, 라이신을 산업적으로 생산하는 것은 경제적으로 중요한 산업 공정이 되어 왔다.
라이신의 생산 효율을 개선시키기 위한 방법으로 라이신 생합성 경로 상의 유전자를 증폭시키거나 유전자의 프로모터를 변형시켜, 생합성 경로 상의 효소활성을 증대시키는 방법이 이용되어 왔다. 종래 라이신 생합성 관련 유전자가 강화된 코리네박테리움 균주 및 이를 이용한 L-라이신 생산방법이 알려져 있었다. 예를 들면, 미국특허 제6,746,855호에는 lysE 유전자 (라이신 배출 캐리어 유전자)가 강화되고, dapA 유전자, lysC 유전자, pyc 유전자 및 dapB 유전자로 구성되는 군으로부터 선택된 유전자가 추가적으로 도입된 코리네박테리아를 배양하여 L-라이신을 생산하는 방법이 개시되어 있다. 또한, 미국특허 제6,221,636호에는 L-라이신 및 L-쓰레오닌에 의하여 피드백 저해에 실질적으로 탈감작화된 (insensitive) 아스파토키나제를 코딩하는 DNA 서열 및 디아미노피멜레이트 디카르복실라제를 코딩하는 DNA 서열을 포함하는 재조합 DNA로 형질전환된 코리네박테리아가 개시되어 있다.
이러한 코리네형 세균을 유전공학적 또는 대사공학적 기술을 이용하여 목적 물질들을 고역가로 생산할 수 있는 균주로 개발하기 위해서는, 균주 내에서 여러 가지 대사과정에 관련된 유전자의 발현을 선택적으로 조절할 수 있어야 한다. 이러한 조절을 위해서는, 조절 유전자의 하나로서 DNA 분자 상에 RNA 합성 효소가 결합하여 전사(transcription)를 시작하는 부위인 프로모터의 활성을 조절하는 것이 중요하다.
그러나, 현재까지 라이신 생합성 경로 중 가장 핵심적인 역할을 담당하는 것으로 여겨지는 유전자인 lysC-asd 오페론의 프로모터를 개량하여 발현율을 높인 코리네형 세균에 대해서는 개시된 바가 없다.
본 발명자는 코리네박테리움 염색체 상의 lysC-asd 오페론 프로모터를 염기치환을 통해 개량시키고, 개량된 프로모터를 도입시켜 아스파르테이트 키나제 및 아스파르테이트 세미알데히드 디히드로게나제 효소의 활성이 내재적 활성보다 증가되어 있는 코리네박테리움 속 미생물을 제공할 수 있게 되어 본 발명을 완성하였다.
본 발명의 목적은 개량된 프로모터 활성을 갖는 코리네박테리움 글루타미쿰 유래 핵산 분자를 제공하는 것이다.
본 발명의 다른 목적은 상기 프로모터 활성을 갖는 핵산 분자를 포함하는 벡터를 제공하는 것이다.
본 발명의 또 다른 목적은 상기한 벡터로 형질전환된 형질전환체를 제공하는 것이다.
본 발명의 또 다른 목적은 상기한 형질전환체를 배양하는 단계를 포함하는 라이신의 생산 방법을 제공하는 것이다.
본 발명에 따른 lysC-asd 유전자와 작동가능하게 연결되고, 개량된 프로모터 활성을 갖는 코리네박테리움 글루타미쿰 유래의 핵산 분자는, 천연형에 비해 높은 프로모터 활성을 나타내어 아스파르테이트 키나제 및 아스파르테이트 세미알데히드 디히드로게나제의 효소활성을 증가시켜 라이신의 생산 효율을 높일 수 있다.
도 1은 코리네박테리움 염색체 삽입용 벡터 pDZ를 나타내는 도면이다.
도 2는 코리네박테리움 염기치환용 벡터 pDZ-lysCP1을 나타내는 도면이다.
하나의 양태로서, 본 발명은 아스파르테이트 키나제 및 아스파르테이트 세미알데히드 디히드로게나제를 암호화하는 유전자와 작동가능하게 연결되고, 서열번호 2의 뉴클레오타이드 서열을 가지는, 개량된 프로모터 활성을 갖는 코리네박테리움 글루타미쿰 유래 핵산 분자에 관한 것이다.
본 발명에서 용어 "프로모터"란 폴리머라제에 대한 결합 부위를 포함하고 프로모터 하위 유전자의 mRNA로의 전사 개시 활성을 가지는, 암호화 영역의 상위(upstream)의 비해독된 핵산서열, 즉, 폴리머라제가 결합하여 유전자의 전사를 개시하도록 하는 DNA 영역을 말하며, mRNA 전사 개시부위의 5' 부위에 위치한다.
본 발명의 프로모터 활성을 갖는 코리네박테리움 글루타미쿰 핵산 분자는 아스파르테이트 키나제 및 아스파르테이트 세미알데히드 디히드로게나제를 암호화하는 유전자와 작동 가능하게 연결된다. 아스파르테이트 키나제 및 아스파르테이트 세미알데히드 디히드로게나제를 암호화하는 유전자는 각각 lysC 및 asd 유전자로서, 코리네박테리움 속 세균에서 라이신을 생산하는 생합성 경로 상의 주요한 유전자들이다. 코리네형 세균에서 lysC 부위는 두 개의 중첩되는 유전자, lysC 알파 및 lysC 베타를 포함하고, 3번째 ORF(open-reading frame)는 lysC 부위에 인접하여 있으며, asd 유전자의 시작 코돈은 lysC ORF 끝에서 24bp 하위에 있는 것으로, lysC 오페론의 부분으로서 발현되는 것으로 알려져 있다. 상기 용어 "오페론"이란 작동유전자·조절유전자 및 구조유전자 등에 의하여 통일적으로 조절되어 있는 서로 이웃한 유전자군을 일컫는 것으로, 즉, 본 발명에서 lysC 및 asd 유전자는 lysC-asd 오페론으로서 동일한 프로모터에 의해 활성이 조절될 수 있음을 의미한다.
또한, 상기 용어 "작동 가능하게 연결"이란 본 발명의 프로모터 활성을 갖는 핵산 서열이 아스파르테이트 키나제 및 아스파르테이트 세미알데히드 디히드로게나제를 암호화하는 유전자의 전사를 개시 및 매개하도록, 상기 유전자 서열과 프로모터 서열이 기능적으로 연결되어 있는 것을 의미한다. 이는 본 발명의 프로모터 활성을 갖는 핵산 서열이 lysC-asd 오페론 유전자와 작동가능하게 연결되어, 상기 오페론 유전자의 전사 활성을 조절할 수 있음을 의미하는 것이다.
본 발명의 프로모터 활성을 갖는 핵산 서열은 코리네박테리움 글루타미쿰에서 lysC-asd 오페론의 프로모터를 개량시킨 것으로서, 천연형(wild type) 프로모터보다 높은 프로모터 활성을 가지도록 한 것을 특징으로 한다. 즉, 효소의 내재적 활성보다 증가된 효소활성을 나타내도록 한 것이다. 여기서 내재적 활성이란 코리네박테리아속 미생물이 천연의 상태로 가지고 있는 효소의 활성상태를 의미한다. 더 높은 프로모터 활성을 가지도록 개량시키는 방법은 당업계에 알려진 방법에 의해 용이하게 이루어질 수 있으며, 바람직하게는 코리네박테리움 글루타미쿰 lysC-asd 오페론의 프로모터 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 서열상의 변이를 유도하여 개량시킨다.
본 발명의 프로모터 핵산 분자는 표준 분자 생물학 기술을 이용하여 분리 또는 제조할 수 있다. 예를 들어, 적절한 프라이머 서열을 이용하여 PCR을 통해 분리할 수 있다. 또한, 자동화된 DNA 합성기를 이용하는 표준 합성 기술을 이용하여 제조할 수도 있다. 구체적인 일 실시예에서 본 발명자는 미국 국립 보건원의 유전자은행 (NIH GenBank)을 근거로 하여 lysC-asd 유전자 (NCBI 등록번호 NCgl0247)의 프로모터 부위를 포함하는 염기서열을 확보하고(서열번호 1), 이에 근거하여 네 개의 프라이머 (서열번호 3 ~ 6)를 합성한 후, 코리네박테리움 글루타미쿰 KFCC10881의 염색체 DNA를 주형으로 하고, 상기 프라이머들을 이용하여 PCR을 수행하여, 주요부위에 변형된 서열을 가지는 프로모터를 포함하는 본 발명에 따른 핵산 분자를 (서열번호 2) 확보하였다.
본 발명의 코리네박테리움 글루타미쿰 프로모터 활성을 가지는 핵산 분자는 바람직하게는 원핵세포, 특히 대장균 또는 코리네형 세균에서의 유전자 발현을 위한 프로모터로 유용하다. 본 발명에서 용어 "코리네형 세균"은 코리네박테리움(Corynebacterium) 또는 브레비박테리움(Brevibacterium) 속의 미생물을 포함하는 개념이다. 이러한 코리네형 세균은 코리네박테리움 글루타미쿰 ATCC13032, 코리네박테리움 써모아미노게네스 (thermoaminogenes) FERM BP-1539, 브레비박테리움 플라붐 (Brevibacterium flavum) ATCC 14067, 브레비박테리움 락토페르멘툼 (lactofermentum) ATCC 13869 및 이들로부터 제조된 L-아미노산 생산 돌연변이체 또는 균주, 예를 들면, 코리네박테리움 글루타미쿰 KFCC10881, 코리네박테리움 글루타미쿰 KFCC11001을 포함하며, 바람직하게 코리네박테리움 글루타미쿰 KFCC 10881이지만, 이들 예에 한정되는 것은 아니다.
또 다른 양태로서, 본 발명은 상기한 개량된 프로모터 활성을 갖는 핵산 분자를 포함하는 벡터에 관한 것이다.
본 발명의 용어 "벡터"는 적합한 숙주 내에서 목적 유전자를 발현시킬 수 있도록 적합한 조절 서열에 작동 가능하게 연결된 유전자의 염기서열을 함유하는 DNA 제조물을 의미한다. 상기 조절 서열은 전사를 개시할 수 있는 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합 부위를 코딩하는 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함한다.
본 발명에서 사용되는 벡터는 숙주 중에서 복제가능한 것이면 특별히 한정되지 않으며 당 업계에 알려진 임의의 벡터를 이용할 수 있다. 예컨대 플라스미드, 파지 입자, 또는 간단하게 잠재적 게놈 삽입물일 수 있으며, 바람직하게는 pACYC177 (New England Biolab, GenBank accetion # X06402)을 사용할 수 있으나, 이에 제한되는 것은 아니다. 벡터는 적당한 숙주 내로 형질전환된 후, 숙주 게놈과 무관하게 복제되거나 기능할 수 있으며, 게놈 그 자체에 통합될 수 있다.
구체적으로, 본 발명의 벡터는 숙주 세포 내로 도입시켜 벡터 내의 프로모터 활성을 갖는 핵산 분자 서열이 숙주 세포 게놈 상의 내생적(endogeneous) lysC-asd 오페론 유전자의 프로모터 부위의 서열과 상동 재조합을 일으키며, 염색체 내로 삽입될 수 있다. 그러므로 본 발명의 벡터는 상기 염색체 삽입 여부를 확인하기 위한 선별 마커(selection market)를 추가로 포함할 수 있는데, 선별 마커는 벡터로 형질전환된 세포를 선별, 즉, 목적 유전자의 삽입 여부를 확인하기 위한 것으로, 약물 내성, 영양 요구성, 세포 독성제에 대한 내성 또는 표면 단백질의 발현과 같은 선택가능 표현형을 부여하는 마커들이 사용될 수 있다. 선택제(selective agent)가 처리된 환경에서는 선별 마커를 발현하는 세포만 생존하거나, 다른 표현 형질을 나타내므로, 형질전환된 세포를 선별할 수 있다. 바람직하게는 lacZ 유전자를 포함할 수 있다.
본 발명의 구체적인 실시 양태에서, 본 발명자는 상동 재조합을 통해 코리네박테리움 글루타미쿰의 lysC-asd 오페론 유전자의 프로모터 부위를 프로모터 활성이 증진되도록 변이된 프로모터 서열로 대체시킬 수 있는 벡터를 제조하였다. 먼저, 대장균 클로닝용 벡터 pACYC177를 제한 효소 처리하여 평활말단화 한 후, lacZ 유전자를 삽입시키기 위해, 대장균K12W3110 게놈 DNA로부터 PCR을 통해 자체 프로모터를 포함하도록 lacZ 유전자를 증폭한 후, 다수 개의 제한효소 인식 부위를 포함하는 아답터 서열을 삽입하여, 코리네박테리움 염색체 삽입용 벡터 pDZ를 제조하였다(도 1). 이후, 상기에서 기술한 바와 같이 높은 프로모터 활성을 가지도록 제조된, lysC-asd 오페론의 프로모터 주요부위에 변형된 서열을 가지는 프로모터를 포함하는 핵산 분자를 상기 pDZ 벡터의 아답터 부위에 삽입시켜, 서열번호 2의 핵산 서열을 포함하는 벡터 pDZ-lysCP1(도 2)을 제조하였다.
또 다른 양태로서, 본 발명은 상기한 벡터로 형질전환된 형질전환체에 관한 것이다.
본 발명의 용어 "형질전환"은 DNA를 숙주로 도입하여 DNA가 염색체외 인자로서 또는 염색체 통합완성에 의해 복제가능하게 되는 것을 의미한다. 본 발명의 형질전환체는 벡터가 숙주 세포 내로 형질전환된 후, 벡터 내의 프로모터 활성을 갖는 핵산 분자 서열이 숙주 세포 게놈 상의 내생적(endogeneous) lysC-asd 오페론 유전자의 프로모터 부위의 서열과 상동 재조합을 일으키며 염색체 내로 삽입되거나, 플라스미드 형태로 보유할 수 있다.
본 발명의 벡터를 형질전환시키는 방법은 핵산을 세포 내로 도입하는 어떤 방법도 포함되며, 숙주세포에 따라 당 분야에서 공지된 바와 같이 적합한 표준 기술을 선택하여 수행할 수 있다. 예를 들어, 전기천공법(electroporation), 인산칼슘(CaPO4) 침전, 염화칼슘(CaCl2) 침전, 미세주입법(microinjection), 폴리에틸렌글리콜(PEG)법, DEAE-덱스트란법, 양이온 리포좀법, 및 초산 리튬-DMSO법 등이 있다.
상기 숙주 세포로는 DNA의 도입효율이 높고, 도입된 DNA의 발현 효율이 높은 숙주를 사용하는 것이 좋은데, 원핵 및 진핵을 포함한 모든 미생물이 사용 가능하며, 바람직하게는 대장균이나 코리네형 세균, 더욱 바람직하게는 코리네박테리움 클루타미쿰 KFCC10881을 사용할 수 있다.
본 발명의 벡터로 형질전환된 형질전환체는 상동 재조합을 통해 코리네박테리움 글루타미쿰의 lysC-asd 오페론 유전자의 프로모터 부위를 프로모터 활성이 증진되도록 변이된 프로모터 서열로 대체됨으로써, lysC-asd 오페론 유전자는 개량된 프로모터를 가지게 되며, 이를 통해 아스파르테이트 키나제 및 아스파르테이트 세미알데히드 디히드로게나제의 효소 활성이 천연형보다 증가되는 특징을 가진다.
본 발명의 구체적인 실시예에서는, 본 발명에 따른 서열번호 2로 구성되는 프로모터 활성을 가진 핵산 분자를 포함하는 벡터 pDZ-lysCP1을 코리네박테리움 글루타미쿰 KFCC10881에 형질전환시켜 lysC-asd 프로모터 활성이 증진된 형질전환체를 제조하였다. 본 발명에서는 pDZ-lysCP1을 형질전환시켜 얻은 형질전환체 (KFCC10881-lysCP1)를 CA01-0135로 명명하고, 2008년 1월 18일자로 한국미생물보존센터(Korean Culture center of Microorganisms, 이하, "KCCM"으로 약칭함)에 수탁번호 KCCM10919P로 기탁하였다.
또 다른 양태로서, 본 발명은 상기한 형질전환체를 배양하는 단계를 포함하는 라이신의 생산 방법에 관한 것이다.
본 발명의 형질전환체는 아스파르테이트 키나제 및 아스파르테이트 세미알데히드 디히드로게나제의 효소 활성이 천연형보다 증가되어 있다. 아스파르테이트 키나제 및 아스파르테이트 세미알데히드 디히드로게나제는 라이신의 생합성 경로 상의 가장 핵심적인 효소들이므로, 본 발명의 형질전환체를 배양시켜 라이신의 생산 효율을 높일 수 있다.
본 발명에서 형질전환체의 배양은 널리 공지된 방법에 따라서 수행될 수 있고, 배양 온도, 배양 시간 및 배지의 pH 등의 조건은 적절하게 조절될 수 있다. 이들 공지된 배양 방법은 문헌[Chmiel; Bioprozesstechnik 1. Einfuhrung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991), 및 Storhas; Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig / Wiesbaden, 1994)]에 상세히 기술되어 있다. 또한, 배양 방법에는 회분식 배양(batch culture), 연속식 배양(continuous culture) 및 유가식 배양(fed-batch culture)이 포함되며, 바람직하게는 배치 공정 또는 주입 배치 또는 반복 주입 배치 공정 (fed batch or repeated fed batch process)에서 연속식으로 배양할 수 있으나, 이에 제한되는 것은 아니다.
사용되는 배양 배지는 특정한 균주의 요구 조건을 적절하게 충족시켜야 한다. 다양한 미생물에 대한 배양 배지는 공지되어 있다(예를 들면, "Manual of Methods for General Bacteriology" from American Society for Bacteriology (Washington D.C., USA, 1981)). 배지 내 탄소 공급원은 당 및 탄수화물(예: 글루코오스, 슈크로오스, 락토오스, 프럭토오스, 말토오스, 몰라세, 전분 및 셀룰로오스), 유지 및 지방(예: 대두유, 해바라기씨유, 땅콩유 및 코코넛유), 지방산(예: 팔미트산, 스테아르산 및 리놀레산), 알콜(예: 글리세롤 및 에탄올) 및 유기산(예: 아세트산) 등을 이용할 수 있다. 이들 물질은 개별적으로 또는 혼합물로서 사용될 수 있다. 질소 공급원은 질소-함유 유기 화합물(예: 펩톤, 효모 추출액, 육즙, 맥아 추출액, 옥수수 침지액, 대두 박분 및 우레아), 또는 무기 화합물(예: 황산암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄)을 이용할 수 있으며, 이들 물질 또한 개별적으로 또는 혼합물로서 사용될 수 있다. 인 공급원으로서 인산이수소칼륨 또는 인산수소이칼륨 또는 상응하는 나트륨 함유 염을 이용할 수 있다. 또한, 배양 배지는 성장에 필수적인 금속염(예: 황산마그네슘 또는 황산철)을 함유할 수 있으며, 최종적으로, 아미노산 및 비타민과 같은 필수 성장-촉진 물질을 상기 언급한 물질 외에 사용할 수 있다. 적합한 전구체를 상기 배양 배지에 추가로 가할 수 있다. 상기 공급 물질은 배양물에 한번에 모두 가하거나, 배양중 적절하게 공급할 수 있다.
배양물의 pH는 염기성 화합물(예: 수산화나트륨, 수산화칼륨 또는 암모니아) 또는 산성 화합물(예: 인산 또는 황산)을 적절히 사용하여 조절할 수 있다. 발포는 지방산 폴리글리콜 에스테르와 같은 거포제를 사용하여 조절할 수 있다. 산소 또는 산소-함유 가스 혼합물, 예를 들어 공기를 배양물 중으로 도입시켜 호기성 조건을 유지시킬 수 있다. 배양 온도는 통상적으로 20 내지 45℃, 바람직하게는 25 내지 40℃이다. 배양은 원하는 L-아미노산의 생성량이 최대로 얻어질 때까지 계속한다. 이러한 목적으로 보통 10 내지 160 시간에서 달성된다. L-라이신은 배양 배지 중으로 배출되거나, 세포 중에 포함되어 있을 수 있다.
한편, 본 발명의 상기한 형질전환체를 배양하는 단계를 포함하는 라이신의 생산 방법은 상기 배양하는 단계에서 생성되는 라이신을 회수하는 방법을 추가로 포함할 수 있다. L-라이신을 회수하는 방법은 당업계에 널리 알려져 있는 방법으로 세포 또는 배양 배지로부터 L-라이신을 분리해낼 수 있다. L-라이신 회수 방법의 예로서, 여과, 음이온 교환 크로마토그래피, 결정화 및 HPLC 등의 방법이 있으나, 이들 예에 한정되는 것은 아니다.
이하, 하기 실시예에 의해 본 발명을 좀더 구체적으로 설명한다. 그러나, 이들 실시예는 본 발명을 예시적으로 실시하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
본 실시예에서는 라이신 생산균주인 코리네박테리움 글루타미쿰의 lysC-asd 오페론 유전자의 프로모터를 상동 재조합을 통해 개량된 프로모터로 치환시키기 위한 재조합 벡터를 제작하고, 상기 벡터를 코리네박테리움 글루타미쿰 KFCC10881 균주에 형질전환시켜 염색체 상의 프로모터가 개량된 균주를 얻음으로써, 라이신 생산 효율이 높아진 균주를 제조하였다.
본 발명에서 이용하는 코리네박테리움 글루타미쿰 KFCC10881 균주는 코리네박테리움 글루타미쿰 야생주(ATCC13032)를 모균주로 하여 인공 변이법을 통해 제작된 S- (2-아미노에틸) 시스테인 (S-(2-aminoethyl) cysteine, 이하 AEC)에 대한 내성 및 호모세린 유출 (homoserine leaky)의 특징을 갖는 균주이다(한국 등록특허 0159812호, 한국 등록특허 0397322호 참고).
실시예 1: 프로모터 개량용 재조합 벡터의 제작
(1) 염색체 삽입용 벡터(pDZ)의 제작
본 실시예에서는 대장균 클로닝용 벡터 pACYC177 (New England Biolab, GenBank accetion # X06402)를 기본 벡터로 사용하여, 코리네박테리움 염색체 삽입용 벡터 pDZ를 제작하였다.
pACYC177 벡터를 AcuI 및 BanI 제한 효소로 처리한 후, 클레나우 효소처리를 통하여 평활말단화하였다. 선별 마커로 사용될 대장균 유래의 lacZ 유전자는 대장균 K12 W3110의 게놈 DNA로부터 PCR을 통하여 자체 프로모터를 포함하도록 증폭한 후, T4 DNA 폴리머라제 및 폴리뉴클레오티드 키나제 처리를 통하여 5' 말단 인산화 및 평활화함으로써 준비하였다. 이상과 같이 준비한 2종의 DNA 단편을 접합하였으며, 접합된 환상 DNA 분자의 제한효소 BamHI 부위로 인위적으로 합성한 다수의 제한효소 인식 부위를 포함하고 있는 아답터 (adaptor) 서열을 삽입하여, 코리네박테리움 염색체 삽입용 벡터 pDZ를 완성하였다. 도 1은 코리네박테리움 염색체 삽입용 벡터 pDZ를 나타내는 도면이다.
(2) lysC-asd 오페론 유전자의 프로모터를 개량하기 위한 재조합 벡터 제작
본 실시예에서는 라이신을 생산하는 균주인 코리네박테리움 글루타미쿰 유래 lysC-asd 오페론 유전자의 프로모터를 개량하기 위한 재조합 벡터를 제작하였다.
먼저, 미국 국립 보건원의 유전자은행 (NIH GenBank)을 근거로 하여 lysC-asd 유전자 (NCBI 등록번호 NCgl0247)의 프로모터 부위를 포함하는 염기서열(서열번호 1)을 확보하였으며, 주요부위에 변형된 서열을 가지는 프로모터를 포함하는 DNA 조각(서열번호 2)을 확보하였다. 변형 프로모터 서열은 일반적으로 미생물에서 알려진 프로모터 컨센서스(consensus) 서열을 기반으로 고안하였다.
또한, 상기 변형된 프로모터 서열을 제조하기 위한 프라이머는 상기 염기서열에 근거하여 네 개의 프라이머 (표 1, 서열번호 3 ~ 6)를 합성하였다.
표 1
프라이머 염기서열 서열번호
lysC/PF CCG GGG ATC CTC TAG ACC ATC TTT TGG GGT GCG GAG C 3
lysC/PR GCA GGT CGA CTC TAG ACT CAA TAG CCA TGG CGA CGA G  4
lysC/P1F AGT TTA TTG TGG TAG AGT TG 5
lysC/P1R CAA CTC TAC CAC AAT AAA CT 6
lysC/P1mut GAC ACA GTT TAT TGT 7
코리네박테리움 글루타미쿰 유래 lysC-asd 오페론 유전자의 프로모터 서열을 얻기 위해 코리네박테리움 글루타미쿰 KFCC10881의 염색체 DNA를 주형으로 하고, 상기 표 1에 표기된 올리고뉴클레오티드 쌍을 프라이머로 하여 PCR을 수행하였다. 중합효소는 PfuUltra TM 고-신뢰 DNA 폴리머라제 (Stratagene)를 사용하였으며, PCR 조건은 변성 96℃, 30초; 어닐링 53℃, 30초; 및 중합반응 72℃, 30초를 30회 반복하였다. 그 결과, 치환부위를 한쪽 말단에 포함하고 있는 300 bp DNA 단편을 얻었다. lysCP1-1는 서열번호 3과 6을 프라이머로 사용하여 증폭된 것이며, lysCP1-2는 서열번호 4와 5를 프라이머로 사용하여 증폭된 것이다. 상기 증폭 산물을 미리 XbaI 제한효소로 절단하여 준비한 pDZ 벡터와 혼합하여 In-fusion Cloning Kit (TAKARA)를 이용, 클로닝하여 pDZ-lysCP1벡터를 얻었다.
도 2는 서열번호 2에 해당하는 lysCP1을 포함하고 있는 코리네박테리움 염색체 치환용 벡터 pDZ-lysCP1을 나타내는 도면이다.
실시예2 : 재조합 벡터의 코리네박테리움 글루타미쿰 균주 내로의 삽입
본 실시예에서는 코리네박테리움의 염색체상 lysC-asd 오페론 프로모터를 개량하기 위해, 상기에서 제작한 재조합 벡터를 라이신 생산균주인 코리네박테리움 글루타미쿰 KFCC10881에 형질전환시켜, 균주 염색체의 프로모터 서열과 상기한 벡터 상의 프로모터 서열을 상동 재조합을 통해 치환시킴으로써, 염색체 내로 상기한 개량 프로모터 서열을 삽입시켰다.
상기 실시예 1에서 제조한 재조합 벡터들 개량 프로모터 서열을 가지는 DNA 단편을 포함하고 있는 상기한 재조합 벡터인 코리네박테리움 염색체 치환용 벡터 pDZ-lysCP1을 코리네박테리움 글루타미쿰 KFCC10881에 전기펄스법으로 형질전환한 후 (Appl. Microbiol.Biotechnol. (1999) 52:541-545에 의한 형질전환법 이용), 카나마이신 (kanamycin) 25 mg/L를 함유한 선별 배지에서 염색체상의 동 유전자와 상동성에 의해 삽입된 균주를 선별하였다.
벡터의 성공적인 염색체 삽입은 X-gal (5-브로모-4-클로로-3-인돌릴-β-D-갈락토시드)을 포함한 고체배지에서 푸른색을 나타내는가 여부를 확인함으로써 가능하였다. 1차 염색체 삽입된 균주를 영양 배지에서 진탕배양 (30℃, 8시간)한 후, 각각 10-4으로부터 10-10까지 희석하여, X-gal을 포함하고 있는 고체배지에 도말하였다. 대부분의 콜로니가 푸른색을 나타내는데 반해 낮은 비율로 나타나는 백색의 콜로니를 선별함으로써, 2차 교차 (crossover)에 의해 lysC-asd 오페론의 프로모터의 주요부위에 염기서열이 치환된 균주를 선별하였다. 이상과 같이 선별된 균주는 PCR을 통한 염기치환 여부 확인 및 해당 지역에 대한 염기서열 확인 과정을 거쳐 최종 선정되었다. pDZ-lysCP1 벡터로 형질전환된 균주의 프로모터 염기치환 여부는 서열번호 4와 7을 프라이머로 사용하여 PCR을 수행함으로써, 목적 부위에 대한 염기서열 분석을 통하여 최종 확인하였다.
이를 통해 최종적으로, 2차 교차 과정을 거쳐 염색체상에서 lysC-asd 유전자의 프로모터 주요부위에 치환된 염기를 포함하고 있는 라이신 생산주 코리네박테리움 글루타미쿰 KFCC10881-lysCP1을 얻었다.
실시예 3: lysC-asd 프로모터 개량 균주에서의 아스파르테이트 키나제 효소 활성의 측정
모균주로 이용한 코리네박테리움 글루타미쿰 KFCC10881 균주 및 실시예 2에서 최종적으로 제작된 L-라이신 생산균주인 코리네박테리움 글루타미쿰 KFCC10881-lysCP1 균주의 아스파르테이트 기나제 효소 활성을 측정하기 위해 하기와 같은 방법으로 배양하고, 배양액으로부터 단백질을 분리하여 아스파르테이트 기나제 효소 활성을 측정하였다.
대수기까지 배양한 배양액을 OD600 값이 0.3이 되도록 하기의 종 배지 50 ml 에 접종한 후, OD600 값이 약 15에 이를 때까지 배양하였다. 배양액으로부터 원심분리(5,000 rpm, 15분)를 통하여 균체를 수거하여, 0.1% Tris.HCl (pH8.0) 완충용액으로 2회 세척한 후, 동 완충용액으로 610 nm의 탁도가 160 가량이 되도록 현탁하였다. 현탁액 1.5 ml당 1.25 g의 글래스 비드(glass bead)를 첨가한 후, 비드 비터(bead beater)를 이용, 6분간 균체를 파쇄하였다. 원심분리 (15,000 rpm, 20분)를 통하여 상층액을 수거, 브레드포드 방법(Bradford, M.M 1976. Anal. Biochem. 72:248-254)에 의한 단백질 농도를 정량한 후, 아스파르테이트 키나제 효소 활성 측정을 위한 조단백질 용액으로 사용하였다.
아스파르테이트 키나제 효소활성의 측정은 0.1 M Tris.HCl(pH8.0), 0.01 M MgCl2, 0.6 M Hydroxylamine.HCl (pH7.0), 4 mM ATP, 0.2 M Aspartate를 포함하고 있는 반응액에 0.05 ml의 조단백질용액을 첨가함으로써 반응을 개시하였다. 30℃에서 30분간 반응 후, Stop 용액 (10% FeCl2, 3.3% TCA, 0.7N HCl)을 첨가, 반응을 종료하였으며, 원심분리를 통해 상층액을 수거, 540 nm에서 흡광도를 측정하였다. 아스파테르이트 키나제 효소 활성 단위 (U)는 1분간 1 mg의 단백질이 생성한 아스파르테이트 하이드록사메이트 nmole로 정의하였다.
코리네박테리움 글루타미쿰 KFCC10881-lysCP1 균주는 모균주 KFCC10881에 비해 5.08배 증가된 아스파르테이트 키나제 활성을 나타냄을 확인하였다(표 2).
표 2
균주 아스파르테이트 키나제 활성 (mU) Folds
KFCC10881 13.5 1.00
KFCC10881-lysCP1 68.6 5.08
* 종 배지 (pH 7.0)
원당 20 g, 펩톤 10 g, 효모추출물 5 g, 요소 1.5 g, KH2PO4 4 g, K2HPO4 8 g, MgSO4 7H2O 0.5 g, 바이오틴 100 ㎍, 티아민 HCl 1000 ㎍, 칼슘-판토텐산 2000 ㎍, 니코틴아마이드 2000 ㎍ (증류수 1 리터 기준)
실시예 4: lysC-asd 프로모터 개량 균주에서의 라이신 생산
모균주로 이용한 코리네박테리움 글루타미쿰 KFCC10881 균주 및 실시예 2에서 최종적으로 제작된 L-라이신 생산균주인 코리네박테리움 글루타미쿰 KFCC10881-lysCP1 균주를 L-라이신 생산을 위해 아래와 같은 방법으로 배양하였다.
하기의 종 배지 25 ml를 함유하는 250 ml 코너-바플 플라스크에 코리네박테리움 글루타미쿰 모균주 KFCC10881 및 KFCC10881-lysCP1을 접종하고 30 ℃에서 20 시간 동안 200 rpm으로 진탕 배양하였다. 하기의 생산 배지 24 ml를 함유하는 250 ml 코너-바플 플라스크에 1 ml의 종 배양액을 접종하고 30 ℃에서 120 시간 동안 (200 rpm)으로 진탕 배양하였다.
배양 종료 후 HPLC를 이용한 방법에 의해 L-라이신의 생산량을 측정하였다. 코리네박테리움 글루타미쿰 KFCC10881 및 KFCC10881-lysCP1에 대한 배양액 중의 L-라이신 함량에 대한 결과는 아래 표 3과 같았다.
표 3
균주 라이신(g/l)
뱃치 1 뱃치 2 뱃치 3
KFCC10881 43 42.5 42.7
KFCC10881-lysCP1 45.3 45.2 45.7
* 종 배지 (pH 7.0)
원당 20 g, 펩톤 10 g, 효모추출물 5 g, 요소 1.5 g, KH2PO4 4 g, K2HPO4 8 g, MgSO4 7H2O 0.5 g, 바이오틴 100 ㎍, 티아민 HCl 1000 ㎍, 칼슘-판토텐산 2000 ㎍, 니코틴아마이드 2000 ㎍ (증류수 1 리터 기준)
* 생산 배지 (pH 7.0)
포도당 100 g, (NH4)2SO4 40 g, 대두 단백질 2.5 g, 옥수수 침지 고형분 (Corn Steep Solids) 5 g, 요소 3 g, KH2PO4 1 g, MgSO4 7H2O 0.5 g, 바이오틴 100 ㎍, 티아민 염산염 1000 ㎍, 칼슘-판토텐산 2000 ㎍, 니코틴아마이드 3000 ㎍, CaCO3 30 g (증류수 1리터 기준)
상기의 표 3에서 나타낸 바와 같이, 아스파르테이트 키나제 활성이 5배 이상 강화된 KFCC10881-lysCP1 균주는 모균주 KFCC10881에 비해 라이신 생산 효율이 5% 이상 증가 되었음을 확인할 수 있었다.
본 발명에 따른 개량된 프로모터 활성을 갖는 코리네박테리움 글루타미쿰 유래 핵산 분자는, 천연형에 비해 높은 프로모터 활성을 나타내어 아스파르테이트 키나제 및 아스파르테이트 세미알데히드 디히드로게나제의 효소 활성을 증가시켜 라이신의 생합성 효율을 증가시킬 수 있으며, 이를 통해, 산업에 유용한 L-아미노산의 일종인 L-라이신을 고수율로 생산해낼 수 있다.
Figure PCTKR2009000381-appb-I000001

Claims (10)

  1. 아스파르테이트 키나제 및 아스파르테이트 세미알데히드 디히드로게나제를 암호화하는 유전자와 작동가능하게 연결되고, 서열번호 2의 뉴클레오타이드 서열을 가지는, 개량된 프로모터 활성을 갖는 핵산 분자.
  2. 제1항의 개량된 프로모터 활성을 갖는 핵산 분자를 포함하는 벡터.
  3. 제2항에 있어서, 상기 벡터는 도 2에 나타낸 pDZ-lysCP1인 벡터.
  4. 제2항의 벡터로 형질전환된 형질전환체.
  5. 제4항에 있어서, 상기 형질전환체는 코리네박테리움 속 또는 브레비박테리움 속인 형질전환체.
  6. 제4항에 있어서. CA01-0135로 명명된 수탁번호 KCCM10919P인 형질전환체.
  7. 제4항에 있어서, 제1항의 개량된 프로모터 활성을 갖는 핵산 분자가 염색체 내에 상동 재조합으로 삽입되는 것을 특징으로 하는 형질전환체.
  8. 제4항에 있어서, 제1항의 개량된 프로모터 활성을 갖는 핵산 분자를 플라스미드 형태로 보유하고 있는 것을 특징으로 하는 형질전환체.
  9. 제4항의 형질전환체를 배양하는 단계를 포함하는 라이신의 생산 방법.
  10. 제9항에 있어서, 상기 배양하는 단계에서 생성되는 라이신을 회수하는 방법을 추가로 포함하는 라이신의 생산 방법.
PCT/KR2009/000381 2008-01-28 2009-01-23 개량된 프로모터 및 이를 이용한 l-라이신의 생산 방법 WO2009096689A2 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010544231A JP5396403B2 (ja) 2008-01-28 2009-01-23 改良されたプロモーターおよびこれを用いたl−リシンの生産方法
EP09705247.6A EP2246415B1 (en) 2008-01-28 2009-01-23 Improved promoter and a production method for l-lysine using the same
BRPI0906752-3A BRPI0906752B1 (pt) 2008-01-28 2009-01-23 Promotor aprimorado e método para a produção de l-lisina usando o mesmo
CN200980103228.0A CN103298930B (zh) 2008-01-28 2009-01-23 改进的启动子和用其产生l-赖氨酸的方法
US12/864,731 US8426577B2 (en) 2008-01-28 2009-01-23 Promoter and a production method for L-lysine using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0008620 2008-01-28
KR1020080008620A KR100930203B1 (ko) 2008-01-28 2008-01-28 개량된 프로모터 및 이를 이용한 l-라이신의 생산 방법

Publications (2)

Publication Number Publication Date
WO2009096689A2 true WO2009096689A2 (ko) 2009-08-06
WO2009096689A3 WO2009096689A3 (ko) 2009-10-29

Family

ID=40913399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/000381 WO2009096689A2 (ko) 2008-01-28 2009-01-23 개량된 프로모터 및 이를 이용한 l-라이신의 생산 방법

Country Status (7)

Country Link
US (1) US8426577B2 (ko)
EP (1) EP2246415B1 (ko)
JP (1) JP5396403B2 (ko)
KR (1) KR100930203B1 (ko)
CN (1) CN103298930B (ko)
BR (1) BRPI0906752B1 (ko)
WO (1) WO2009096689A2 (ko)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011182779A (ja) * 2010-03-05 2011-09-22 Cj Cheiljedang Corp 改良されたプローモーターおよびそれを用いたl−リシンの生産方法
WO2012134253A2 (en) 2011-04-01 2012-10-04 Cj Cheiljedang Corporation Corynebacterium sp. transformed with a fructokinase gene derived from escherichia sp. and process for preparing l-amino acid using the same
WO2013081296A1 (ko) 2011-12-01 2013-06-06 씨제이제일제당 (주) L-아미노산 및 리보플라빈을 동시에 생산하는 미생물 및 이를 이용한 l-아미노산 및 리보플라빈을 생산하는 방법
WO2014148743A1 (ko) 2013-03-20 2014-09-25 씨제이제일제당 (주) 퓨트레신 생산 재조합 미생물 및 이를 이용한 퓨트레신 생산방법
EP3109318A1 (en) 2015-06-24 2016-12-28 Cj Cheiljedang Corporation Microorganisms for producing putrescine or ornithine and process for producing putrescine or ornithine using them
WO2017159976A1 (ko) 2016-03-15 2017-09-21 씨제이제일제당 (주) 퓨트레신을 생산하는 미생물 및 이를 이용한 퓨트레신 생산 방법
WO2018093033A1 (ko) 2016-11-15 2018-05-24 씨제이제일제당 (주) L-라이신을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-라이신의 생산방법
WO2018230978A1 (ko) 2017-06-14 2018-12-20 씨제이제일제당 (주) 신규 폴리펩타이드 및 이를 이용한 오르니틴계 산물 생산방법
WO2018230977A1 (ko) 2017-06-14 2018-12-20 씨제이제일제당 (주) 신규 폴리펩타이드 및 이를 이용한 오르니틴계 산물 생산방법
WO2019004779A2 (ko) 2017-06-30 2019-01-03 씨제이제일제당 (주) 신규한 o-숙시닐 호모세린 트랜스퍼라제 변이체 및 이를 이용한 o-숙시닐 호모세린의 제조방법
WO2019004780A2 (ko) 2017-06-30 2019-01-03 씨제이제일제당 (주) 신규한 o-숙시닐 호모세린 트랜스퍼라제 변이체 및 이를 이용한 o-숙시닐 호모세린의 제조방법
WO2019017706A2 (ko) 2017-07-19 2019-01-24 씨제이제일제당 (주) 퓨트레신을 생산하는 미생물 및 이를 이용한 퓨트레신 생산방법
WO2019035612A1 (ko) 2017-08-16 2019-02-21 씨제이제일제당 (주) 마이코스포린 유사 아미노산을 생산하는 미생물 및 이를 이용한 마이코스포린 유사 아미노산의 생산방법
WO2019164351A1 (ko) 2018-02-23 2019-08-29 씨제이제일제당 (주) 마이코스포린 유사 아미노산을 생산하는 미생물 및 이를 이용한 마이코스포린 유사 아미노산의 생산방법
US10633679B2 (en) 2014-04-25 2020-04-28 Cj Cheiljedang Corporation Microorganisms for producing diamine and process for producing diamine using them
US10640753B2 (en) 2015-07-20 2020-05-05 Cj Cheiljedang Corporation Microorganisms for producing putrescine or ornithine and process for producing putrescine or ornithine using them
US10640797B2 (en) 2014-04-25 2020-05-05 Cj Cheiljedang Corporation Microorganisms for producing diamine and process for producing diamine using them
WO2020218736A1 (ko) 2019-04-22 2020-10-29 씨제이제일제당 (주) L-히스티딘 생산능이 강화된 미생물 및 이를 이용한 히스티딘 생산방법
WO2020218737A1 (ko) 2019-04-22 2020-10-29 씨제이제일제당 (주) L-쓰레오닌 생산능이 강화된 미생물 및 이를 이용한 쓰레오닌 생산방법
WO2020226341A1 (ko) 2019-05-09 2020-11-12 씨제이제일제당 (주) L-아미노산을 생산하는 미생물 및 이를 이용한 l-아미노산을 생산하는 방법
WO2021133030A1 (ko) 2019-12-23 2021-07-01 씨제이제일제당 (주) 사이토크롬 c 활성이 강화된 l-아미노산 생산 미생물 및 이를 이용한 l-아미노산 생산방법
WO2022035011A1 (ko) 2020-08-13 2022-02-17 씨제이제일제당 (주) 퓨트레신 생산 미생물 및 이를 이용한 퓨트레신 생산방법

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101348461B1 (ko) 2010-12-08 2014-01-08 씨제이제일제당 (주) 퓨트레신을 생산하는 미생물 및 이를 이용하여 퓨트레신을 생산하는 방법
EP2796555B1 (en) 2011-12-21 2018-08-29 Cj Cheiljedang Corporation Method for producing l-lysine using microorganisms having ability to produce l-lysine
KR101498630B1 (ko) 2013-10-28 2015-03-04 씨제이제일제당 주식회사 L-라이신 생산능이 향상된 코리네박테리움 속 미생물 및 이를 이용한 l-라이신 생산방법
KR101601404B1 (ko) 2014-04-09 2016-03-09 씨제이제일제당 (주) L-라이신 생산능을 갖는 미생물 및 이를 이용한 l-라이신 생산 방법
KR101835935B1 (ko) 2014-10-13 2018-03-12 씨제이제일제당 (주) L-아르기닌을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-아르기닌의 제조 방법
KR101632642B1 (ko) 2015-01-29 2016-06-22 씨제이제일제당 주식회사 신규한 프로모터 및 그의 용도
KR101677368B1 (ko) * 2015-04-02 2016-11-18 씨제이제일제당 (주) 신규 프로모터 및 이의 용도
CN110283823B (zh) * 2016-08-31 2023-05-12 Cj第一制糖株式会社 新型启动子及其应用
EP3533875B1 (en) 2016-09-01 2023-02-15 Ningxia Eppen Biotech Co. Ltd Corynebacterium for producing l-lysine by fermentation
CN106318964B (zh) * 2016-09-01 2017-07-18 宁夏伊品生物科技股份有限公司 棒杆菌发酵生产l‑赖氨酸的方法及其启动子改造
KR102472559B1 (ko) 2019-06-28 2022-12-01 씨제이제일제당 주식회사 황 함유 아미노산 또는 그 유도체의 제조방법
KR102472558B1 (ko) 2019-06-28 2022-12-01 씨제이제일제당 주식회사 황 함유 아미노산 또는 그 유도체 제조방법
CN110951662B (zh) * 2019-12-26 2024-03-12 新疆梅花氨基酸有限责任公司 一种高产赖氨酸的棒状细菌及其构建方法与应用
WO2022191357A1 (ko) * 2021-03-09 2022-09-15 대상 주식회사 L-라이신 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-라이신의 생산 방법
WO2022231049A1 (ko) * 2021-04-30 2022-11-03 대상 주식회사 L-라이신 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-라이신의 생산 방법
KR102339264B1 (ko) * 2021-05-07 2021-12-14 씨제이제일제당 주식회사 신규 프로모터 및 이의 용도
KR102339271B1 (ko) * 2021-05-07 2021-12-14 씨제이제일제당 주식회사 신규 프로모터 및 이의 용도

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0159812B1 (ko) 1995-12-20 1998-11-16 손경식 코리네박테리움 글루타미컴 씨에이치 77 및 이 균주를 이용한 l-라이신의 제조 방법
US6221636B1 (en) 1996-12-05 2001-04-24 Ajinomoto Co., Inc. Method for producing L-lysine
KR100397322B1 (ko) 2000-12-30 2003-09-06 씨제이 주식회사 엘-라이신의 제조방법
US6746855B2 (en) 1999-07-07 2004-06-08 Dégussa-Hüls Aktiengesellschaft L-lysine-producing corynebacteria and process for the preparation of L-lysine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100653742B1 (ko) * 2004-12-30 2006-12-05 씨제이 주식회사 신규한 l-라이신-유도성 프로모터
DE102006026328A1 (de) * 2006-06-02 2008-01-03 Evonik Degussa Gmbh Verfahren zur Herstellung eines L-Lysin enthaltenden Futtermitteladditivs
DE102006032634A1 (de) * 2006-07-13 2008-01-17 Evonik Degussa Gmbh Verfahren zur Herstellung von L-Aminosäuren
WO2008033001A1 (en) * 2006-09-15 2008-03-20 Cj Cheiljedang Corporation A corynebacteria having enhanced l-lysine productivity and a method of producing l-lysine using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0159812B1 (ko) 1995-12-20 1998-11-16 손경식 코리네박테리움 글루타미컴 씨에이치 77 및 이 균주를 이용한 l-라이신의 제조 방법
US6221636B1 (en) 1996-12-05 2001-04-24 Ajinomoto Co., Inc. Method for producing L-lysine
US6746855B2 (en) 1999-07-07 2004-06-08 Dégussa-Hüls Aktiengesellschaft L-lysine-producing corynebacteria and process for the preparation of L-lysine
KR100397322B1 (ko) 2000-12-30 2003-09-06 씨제이 주식회사 엘-라이신의 제조방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
APPL. MICROBIOL. BIOTECHNOL, vol. 52, 1999, pages 541 - 545
BRADFORD, M.M, ANAL. BIOCHEM., vol. 72, 1976, pages 248 - 254
See also references of EP2246415A4

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011182779A (ja) * 2010-03-05 2011-09-22 Cj Cheiljedang Corp 改良されたプローモーターおよびそれを用いたl−リシンの生産方法
EP2371947A1 (en) * 2010-03-05 2011-10-05 CJ CheilJedang Corporation Enhanced promoter and method for producing L-lysine usinge the same
US8329434B2 (en) 2010-03-05 2012-12-11 Cj Cheiljedang Corporation Enhanced promoter and method for producing L-lysine using the same
WO2012134253A2 (en) 2011-04-01 2012-10-04 Cj Cheiljedang Corporation Corynebacterium sp. transformed with a fructokinase gene derived from escherichia sp. and process for preparing l-amino acid using the same
WO2013081296A1 (ko) 2011-12-01 2013-06-06 씨제이제일제당 (주) L-아미노산 및 리보플라빈을 동시에 생산하는 미생물 및 이를 이용한 l-아미노산 및 리보플라빈을 생산하는 방법
WO2014148743A1 (ko) 2013-03-20 2014-09-25 씨제이제일제당 (주) 퓨트레신 생산 재조합 미생물 및 이를 이용한 퓨트레신 생산방법
US10640798B2 (en) 2014-04-25 2020-05-05 Cj Cheiljedang Corporation Microorganisms for producing diamine and process for producing diamine using them
US10640797B2 (en) 2014-04-25 2020-05-05 Cj Cheiljedang Corporation Microorganisms for producing diamine and process for producing diamine using them
US10633679B2 (en) 2014-04-25 2020-04-28 Cj Cheiljedang Corporation Microorganisms for producing diamine and process for producing diamine using them
EP3109318A1 (en) 2015-06-24 2016-12-28 Cj Cheiljedang Corporation Microorganisms for producing putrescine or ornithine and process for producing putrescine or ornithine using them
US11053525B2 (en) 2015-06-24 2021-07-06 Cj Cheiljedang Corporation Microorganisms for producing putrescine or ornithine and process for producing putrescine or ornithine using them
US10815464B2 (en) 2015-07-20 2020-10-27 Cj Cheiljedang Corporation Microorganisms for producing putrescine and process for producing putrescine using them
US11268074B2 (en) 2015-07-20 2022-03-08 Cj Cheiljedang Corporation Microorganisms for producing putrescine or ornithine and process for producing putrescine or ornithine using them
US11365400B2 (en) 2015-07-20 2022-06-21 Cj Cheiljedang Corporation Microorganism for producing ornithine and process for producing ornithine using them
US10640753B2 (en) 2015-07-20 2020-05-05 Cj Cheiljedang Corporation Microorganisms for producing putrescine or ornithine and process for producing putrescine or ornithine using them
US11124812B2 (en) 2016-03-15 2021-09-21 Cj Cheiljedang Corporation Putrescine-producing microorganism and method for producing putrescine using the same
WO2017159976A1 (ko) 2016-03-15 2017-09-21 씨제이제일제당 (주) 퓨트레신을 생산하는 미생물 및 이를 이용한 퓨트레신 생산 방법
WO2018093033A1 (ko) 2016-11-15 2018-05-24 씨제이제일제당 (주) L-라이신을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-라이신의 생산방법
WO2018230978A1 (ko) 2017-06-14 2018-12-20 씨제이제일제당 (주) 신규 폴리펩타이드 및 이를 이용한 오르니틴계 산물 생산방법
WO2018230977A1 (ko) 2017-06-14 2018-12-20 씨제이제일제당 (주) 신규 폴리펩타이드 및 이를 이용한 오르니틴계 산물 생산방법
US10982245B2 (en) 2017-06-30 2021-04-20 Cj Cheiljedang Corporation O-succinyl homoserine transferase mutant and method for producing O-succinyl homoserine using same
WO2019004780A2 (ko) 2017-06-30 2019-01-03 씨제이제일제당 (주) 신규한 o-숙시닐 호모세린 트랜스퍼라제 변이체 및 이를 이용한 o-숙시닐 호모세린의 제조방법
WO2019004779A2 (ko) 2017-06-30 2019-01-03 씨제이제일제당 (주) 신규한 o-숙시닐 호모세린 트랜스퍼라제 변이체 및 이를 이용한 o-숙시닐 호모세린의 제조방법
WO2019017706A2 (ko) 2017-07-19 2019-01-24 씨제이제일제당 (주) 퓨트레신을 생산하는 미생물 및 이를 이용한 퓨트레신 생산방법
WO2019035612A1 (ko) 2017-08-16 2019-02-21 씨제이제일제당 (주) 마이코스포린 유사 아미노산을 생산하는 미생물 및 이를 이용한 마이코스포린 유사 아미노산의 생산방법
WO2019164351A1 (ko) 2018-02-23 2019-08-29 씨제이제일제당 (주) 마이코스포린 유사 아미노산을 생산하는 미생물 및 이를 이용한 마이코스포린 유사 아미노산의 생산방법
WO2020218737A1 (ko) 2019-04-22 2020-10-29 씨제이제일제당 (주) L-쓰레오닌 생산능이 강화된 미생물 및 이를 이용한 쓰레오닌 생산방법
WO2020218736A1 (ko) 2019-04-22 2020-10-29 씨제이제일제당 (주) L-히스티딘 생산능이 강화된 미생물 및 이를 이용한 히스티딘 생산방법
WO2020226341A1 (ko) 2019-05-09 2020-11-12 씨제이제일제당 (주) L-아미노산을 생산하는 미생물 및 이를 이용한 l-아미노산을 생산하는 방법
WO2021133030A1 (ko) 2019-12-23 2021-07-01 씨제이제일제당 (주) 사이토크롬 c 활성이 강화된 l-아미노산 생산 미생물 및 이를 이용한 l-아미노산 생산방법
WO2022035011A1 (ko) 2020-08-13 2022-02-17 씨제이제일제당 (주) 퓨트레신 생산 미생물 및 이를 이용한 퓨트레신 생산방법

Also Published As

Publication number Publication date
BRPI0906752A2 (pt) 2015-10-27
US20100317067A1 (en) 2010-12-16
WO2009096689A3 (ko) 2009-10-29
JP5396403B2 (ja) 2014-01-22
KR20090082702A (ko) 2009-07-31
KR100930203B1 (ko) 2009-12-07
US8426577B2 (en) 2013-04-23
EP2246415B1 (en) 2013-05-22
EP2246415A2 (en) 2010-11-03
BRPI0906752B1 (pt) 2021-10-13
EP2246415A4 (en) 2011-06-01
CN103298930B (zh) 2015-01-14
CN103298930A (zh) 2013-09-11
JP2011510625A (ja) 2011-04-07

Similar Documents

Publication Publication Date Title
WO2009096689A2 (ko) 개량된 프로모터 및 이를 이용한 l-라이신의 생산 방법
JP6695308B2 (ja) L−リジン生産能の向上したコリネバクテリウム属およびそれを用いたl−リジン生産方法
WO2009096690A2 (ko) 개량된 프로모터 및 이를 이용한 l-라이신의 생산 방법
KR101226384B1 (ko) 개량된 프로모터 및 이를 이용한 l-라이신의 생산 방법
WO2013095071A2 (ko) L-라이신 생산능을 갖는 미생물을 이용하여 l-라이신을 생산하는 방법
WO2011004962A2 (ko) 외래종 유래의 글리세르알데하이드-3-포스페이트 디하이드로지나제의 활성을 획득한 코리네박테리움 속의 l-라이신 생산방법
WO2016171392A1 (ko) 글루코네이트 리프레서 변이체, 이를 포함하는 l-라이신을 생산하는 미생물 및 이를 이용한 l-라이신 생산방법
WO2022124671A1 (ko) 쉬와넬라 오네이덴시스 유래 단백질을 발현하는 미생물, 및 이를 이용한 l-아미노산 생산 방법
WO2022231049A1 (ko) L-라이신 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-라이신의 생산 방법
KR100798118B1 (ko) 메틸말로네이트 세미알데하이드 디하이드로게나제 코딩유전자의 기능 결실에 의한 엘-라이신 생산능이 향상된코리네박테리아 및 이를 이용한 엘-라이신 생산 방법
WO2022191358A1 (ko) L-라이신 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-라이신의 생산 방법
WO2016036191A1 (ko) L-라이신 생산능이 향상된 미생물 및 이를 이용한 l-라이신 생산방법
WO2022124670A1 (ko) 쉬와넬라 아틀란티카 유래 단백질을 발현하는 미생물, 및 이를 이용한 l-아미노산 생산 방법
WO2016060437A1 (ko) L-아르기닌을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-아르기닌의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09705247

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2009705247

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010544231

Country of ref document: JP

Ref document number: 12864731

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0906752

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100727