KR102472559B1 - 황 함유 아미노산 또는 그 유도체의 제조방법 - Google Patents

황 함유 아미노산 또는 그 유도체의 제조방법 Download PDF

Info

Publication number
KR102472559B1
KR102472559B1 KR1020190077999A KR20190077999A KR102472559B1 KR 102472559 B1 KR102472559 B1 KR 102472559B1 KR 1020190077999 A KR1020190077999 A KR 1020190077999A KR 20190077999 A KR20190077999 A KR 20190077999A KR 102472559 B1 KR102472559 B1 KR 102472559B1
Authority
KR
South Korea
Prior art keywords
sulfur
amino acid
protein
activity
containing amino
Prior art date
Application number
KR1020190077999A
Other languages
English (en)
Other versions
KR20210002260A (ko
Inventor
최솔
김희주
노진아
이진남
이한형
이선영
김상준
심지현
Original Assignee
씨제이제일제당 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당 주식회사 filed Critical 씨제이제일제당 주식회사
Priority to KR1020190077999A priority Critical patent/KR102472559B1/ko
Priority to PCT/KR2020/008415 priority patent/WO2020263043A1/ko
Priority to CN202080059719.6A priority patent/CN114787369B/zh
Priority to EP20830519.3A priority patent/EP3978615A4/en
Priority to US17/597,007 priority patent/US20220315963A1/en
Priority to JP2021577707A priority patent/JP7439142B2/ja
Priority to BR112021026486A priority patent/BR112021026486A2/pt
Publication of KR20210002260A publication Critical patent/KR20210002260A/ko
Application granted granted Critical
Publication of KR102472559B1 publication Critical patent/KR102472559B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0051Oxidoreductases (1.) acting on a sulfur group of donors (1.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/12Methionine; Cysteine; Cystine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/34Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y108/00Oxidoreductases acting on sulfur groups as donors (1.8)
    • C12Y108/05Oxidoreductases acting on sulfur groups as donors (1.8) with a quinone or similar compound as acceptor (1.8.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/14Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with reduced flavin or flavoprotein as one donor, and incorporation of one atom of oxygen (1.14.14)
    • C12Y114/14005Alkanesulfonate monooxygenase (1.14.14.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/15Corynebacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

본 출원은 ssuD 유전자에 의해 코딩되는 단백질 활성이 내재적 활성에 비하여 강화된 미생물을 티오설페이트를 포함하는 배지에서 배양하는 것을 포함하는, 황 함유 아미노산 또는 황 함유 아미노산 유도체의 제조방법에 관한 것이다.

Description

황 함유 아미노산 또는 그 유도체의 제조방법{A method of producing sulfur-containing amino acids and derivatives thereof}
본 출원은 ssuD 유전자에 의해 코딩되는 단백질 활성이 내재적 활성에 비하여 강화된 미생물을 티오설페이트를 포함하는 배지에서 배양하는 것을 포함하는, 황 함유 아미노산 또는 황 함유 아미노산 유도체의 제조방법에 관한 것이다.
L-아미노산은 브레비박테리움(Brevibacterium) 속, 코리네박테리움(Corynebacterium) 속, 에스케리키아(Escherichia) 속 등에 속하는 미생물을 사용한 발효방법에 의해 공업적으로 생산되고 있다. 이러한 제조방법에는 자연계로부터 분리된 균주 또는 당해 균주의 인공변이주, 또는 재조합 DNA 기술에 의해 L-아미노산 생합성에 관여하는 효소의 활성이 증대하도록 변이된 미생물 등이 사용되고 있다.
한편 황 함유 아미노산(sulfur-containing)은 동물 사료, 식품 첨가제, 의약용 수액제 및 의약품의 합성 원료 등으로 사용되며, 이러한 황 함유 아미노산 및 이의 유도체를 생물학적으로 생산하기 위한 연구가 이루어져 왔다.
예로, 독일 공개특허공보 DE 10,305,774 A1에서는 에스케리키아 콜라이(Escherichia coli)의 게놈 유전자상의 metJ 유전자를 제거하고, L-메티오닌 방출 인자(exporter)인 YjeH 단백질을 과발현(over-expression)시킴으로써 0.8 g/L의 L-메티오닌을 생산했음을 보고하였다. 또한, 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)의 L-메티오닌 방출 인자인 BrnF와 BrnE 폴리펩티드를 보고하였다(C. Troschel, et al, Journal of Bacteriology, p.3786-3794, June 2005).
한편, 황 함유 아미노산을 생산함에 있어서, 황원의 환원력에 따라 미생물 내 소모되는 NADPH 의 양이 달라진다. 예를 들면, sulfide는 NADPH를 요구하지 않으므로 이론적으로 수율이 가장 높고, sulfate는 4개의 NADPH를 요구하므로 이론적으로 수율이 낮다. 하지만 sulfide는 세포 손상을 일으키는 것으로 알려져 있어, 안정도가 낮다는 단점이 있다. 따라서, NADPH 요구량이 낮고, 세포 내 안정도가 높은 황원으로서, 티오설페이트가 황 함유 아미노산 생산에 사용되는 경우에는 높은 생산 수율을 기대해 볼 수 있다. 하지만 코리네박테리움 속 미생물에서 이를 효율적으로 이용할 수 있는 연구가 미비한 상태이다.
이러한 배경 하에, 본 발명자들은 ssuD 유전자에 의해 코딩되는 단백질이 티오설페이트의 이용에 관여한다는 것을 새롭게 규명하였으며, 이의 활성을 강화한 미생물이 티오설페이트를 황원으로 이용하여 황 함유 아미노산 생산능이 강화된다는 것을 확인함으로써 본 발명을 완성하였다.
본 출원의 목적은 ssuD 유전자에 의해 코딩되는 단백질 활성이 내재적 활성에 비하여 강화된 미생물을 티오설페이트를 포함하는 배지에서 배양하는 것을 포함하는, 황 함유 아미노산 또는 황 함유 아미노산 유도체의 제조방법을 제공하는 것이다.
본 출원의 다른 목적은 ssuD 유전자에 의해 코딩되는 단백질 활성이 내재적 활성에 비하여 강화된, 황 함유 아미노산 또는 황 함유 아미노산 유도체 생산용 미생물을 제공하는 것이다.
본 출원의 또 다른 목적은 ssuD 유전자에 의해 코딩되는 단백질 활성이 내재적 활성에 비하여 강화된 미생물, 또는 이의 배양물; 및 티오설페이트를 포함하는, 황 함유 아미노산 또는 황 함유 아미노산 유도체 제조용 조성물을 제공하는 것이다.
이를 구체적으로 설명하면 다음과 같다. 한편, 본 출원에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 출원에서 개시된 다양한 요소들의 모든 조합이 본 출원의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 출원의 범주가 제한된다고 볼 수 없다.
또한, 당해 기술분야의 통상의 지식을 가진 자는 통상의 실험만을 사용하여 본 출원에 기재된 본 출원의 특정 양태에 대한 다수의 등가물을 인지하거나 확인할 수 있다. 또한, 이러한 등가물은 본 출원에 포함되는 것으로 의도된다.
본 출원의 하나의 양태는 ssuD 유전자에 의해 코딩되는 단백질 활성이 내재적 활성에 비하여 강화된 미생물을 티오설페이트를 포함하는 배지에서 배양하는 것을 포함하는, 황 함유 아미노산 또는 황 함유 아미노산 유도체의 제조방법을 제공한다. 본 출원은 유전적으로 변형된 미생물을 티오설페이트를 포함하는 배지에서 배양하는 것을 포함하는, 황 함유 아미노산 또는 황 함유 아미노산 유도체의 제조방법을 제공하며, 상기 미생물은 유전적 변형 이전의 미생물에 비하여 ssuD 유전자에 의해 코딩되는 단백질 활성이 증가되는 유전적 변형을 포함하는 것일 수 있다. 본 출원의 일 구현예로, 상기 방법은 황 함유 아미노산 또는 황 함유 아미노산 유도체의 생산을 증가시키는 방법일 수 있다.
상기 제조방법은 ssuD 유전자에 의해 코딩되는 단백질 활성이 내재적 활성에 비하여 강화된 미생물 또는 이의 배양물을 티오설페이트와 접촉시키는 것을 포함할 수 있다.
본 출원은 ssuD 유전자에 의해 코딩되는 단백질이 티오설페이트 사용에 관여한다는 것을 새롭게 규명한 것에 특징이 있다.
본 출원에서, 'ssuD 유전자에 의해 코딩되는 단백질'은 ssuD 유전자가 코딩하는 단백질, 또는 ssuD 유전자에 의해 발현되는 단백질로서, 'SsuD 단백질"로 지칭될 수 있다 (이하 "SsuD 단백질"로 언급됨). 종래에 SsuD 단백질은 설포네이트(sulfonate, R-SO3)을 분해하는 단백질로 알려져 있으며, 구체적으로는, 알칸설포네이트 모노옥시제네이즈(alkanesulfonate monooxygenase) 중의 하나로서, 설포네이트 모노옥시제네이즈로 알려져 있다. 그러나, 상기 SsuD 단백질이 유기 황산염이 아닌, 티오설페이트 이용에 관여하는지는 전혀 알려진 바 없다.
본 출원에 이르러, 상기 SsuD 단백질이 티오설페이트의 이용에도 관여하며, 구체적으로는, 티오설페이트를 환원시키는 환원효소로서의 기능을 수행한다는 사실을 새롭게 규명하였으며, SsuD 단백질의 활성을 강화함으로써 황 함유 아미노산 생산량을 증가시킬 수 있음을 확인하였다. 따라서, 본 출원의 일 구현예는, 티오설페이트를 이용하여 황 함유 아미노산 생산을 위한 SsuD 단백질의 용도를 제공한다. 상기 SsuD 단백질은 티오설페이트 환원 효소로 사용될 수 있다. 또한, 본 출원의 일 구현예는 강화된 SsuD 단백질 활성을 갖는, 황 함유 아미노산 또는 황 함유 아미노산 유도체 생산용 미생물, 또는 황 함유 아미노산 또는 황 함유 아미노산 유도체 생산을 위한 미생물의 용도를 제공한다. 또한, 본 출원의 다른 구현예는 SsuD 단백질 활성이 내재적 활성에 비하여 강화된 미생물, 또는 이의 배양물; 및 티오설페이트를 포함하는, 황 함유 아미노산 또는 황 함유 아미노산 유도체 제조용 조성물을 제공한다.
본 출원의 SsuD 단백질은 ssuD 유전자에 의하여 코딩되는 단백질일 수 있으며, 이는'SsuD 단백질' 또는 '티오설페이트 환원효소'로 언급되거나, 종래에 알려진'알칸설포네이트 모노옥시제네이즈'로 언급될 수 있다. 일 구현예로, 본 출원의 SsuD 단백질은, 코리네박테리움 속 유래의 '설포네이트 모노옥시제네이즈' 또는 '티오설페이트 환원효소'일 수 있고, 구체적으로, 코리네박테리움 속 유래 LLM class flavin-dependent oxidoreductase로 명명된 단백질일 수 있으며, 보다 구체적으로는 코리네박테리움 글루타미쿰 유래의 SsuD 단백질일 수 있으나, 이에 제한되지 않는다. 상기 SsuD 단백질의 서열은 공지된 데이터베이스 NCBI 등에서 그 서열을 확인할 수 있다.
일 구현예로, 상기 SsuD 단백질은 서열번호 43의 아미노산 서열을 포함하거나, 또는 서열번호 43의 아미노산 서열과 적어도 80%, 90%, 92%, 94%, 95%, 96%, 97%, 98% 또는 99% 상동성 또는 동일성을 가지는 아미노산 서열을 포함할 수 있다. 또한, 상기 상동성 또는 동일성을 가지며, 상기 폴리펩타이드에 상응하는 효능을 나타내는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 가지더라도 본 출원의 범위 내에 포함됨은 자명하다.
더불어, 공지의 유전자 서열로부터 조제될 수 있는 프로브, 예를 들면, 상기 폴리펩타이드를 암호화하는 염기서열의 전체 또는 일부에 대한 상보 서열과 엄격한 조건 하에 하이브리드화되는 폴리뉴클레오티드에 의해 코딩되는 폴리펩타이드로서, 설포네이트 모노옥시제네이즈 활성을 갖는 동시에 티오설페이트 환원 활성을 갖는 폴리펩타이드도 제한 없이 포함될 수 있다.
즉, 본 출원에서 '특정 서열번호로 기재된 아미노산 서열을 포함하는 단백질 또는 폴리펩타이드', '특정 서열번호로 기재된 아미노산 서열로 이루어진 단백질 또는 폴리펩타이드' 또는 '특정 서열번호로 기재된 아미노산 서열을 갖는 단백질 또는 폴리펩타이드'라고 기재되어 있더라도, 해당 서열번호의 아미노산 서열로 이루어진 폴리펩타이드와 동일 혹은 상응하는 활성을 가지는 경우라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 아미노산 서열을 갖는 단백질도 본 출원에서 사용될 수 있음은 자명하다. 예를 들어, 상기 아미노산 서열 N-말단 그리고/또는 C-말단에 단백질의 기능을 변경하지 않는 서열 추가, 자연적으로 발생할 수 있는 돌연변이, 이의 잠재성 돌연변이 (silent mutation) 또는 보존적 치환을 가지는 경우이다.
상기 "보존적 치환(conservative substitution)"은 한 아미노산을 유사한 구조적 및/또는 화학적 성질을 갖는 또 다른 아미노산으로 치환시키는 것을 의미한다. 이러한 아미노산 치환은 일반적으로 잔기의 극성, 전하, 용해도, 소수성, 친수성 및/또는 양친매성(amphipathic nature)에서의 유사성에 근거하여 발생할 수 있다. 예를 들면, 양으로 하전된 (염기성) 아미노산은 알지닌, 라이신, 및 히스티딘을 포함하고; 음으로 하전된 (산성) 아미노산은 글루탐산 및 아스파르트산을 포함하고; 방향족 아미노산은 페닐알라닌, 트립토판 및 타이로신을 포함하고, 소수성 아미노산은 알라닌, 발린, 이소류신, 류신, 메티오닌, 페닐알라닌, 타이로신 및 트립토판을 포함한다.
상기 SsuD 단백질은, 서열번호 8의 폴리뉴클레오티드 서열에 의해 코딩되는 것일 수 있으나, 이에 제한되지 않는다.
본 출원에서 용어 "폴리뉴클레오티드"는 DNA 또는 RNA 분자를 포괄적으로 포함하는 의미를 가지며, 폴리뉴클레오티드에서 기본 구성 단위인 뉴클레오티드는 천연 뉴클레오티드 뿐만 아니라, 당 또는 염기 부위가 변형된 유사체도 포함할 수 있다(Scheit, Nucleotide Analogs, John Wiley, New York(1980); Uhlman 및 Peyman, Chemical Reviews, 90:543-584(1990) 참조).
상기 폴리뉴클레오티드는 본 출원의 SsuD 단백질을 코딩하는 폴리뉴클레오티드 또는 본 출원의 SsuD 단백질과 적어도 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% 또는 100% 상동성 또는 동일성을 갖는 폴리펩타이드를 암호화하는 폴리뉴클레오티드일 수 있다. 구체적으로, 서열번호 43의 아미노산 서열과 80% 이상의 상동성 또는 동일성을 갖는 아미노산 서열을 포함하는 단백질을 코딩하는 폴리뉴클레오티드는 서열번호 8의 염기서열과 적어도 80%, 적어도 80%, 90%, 92%, 94%, 95%, 96%, 97%, 98% 또는 99% 상동성 또는 동일성을 가지는 폴리뉴클레오티드 일 수 있다.
또한, 코돈 축퇴성 (codon degeneracy)에 의해 서열번호 43과 80% 이상의 상동성 또는 동일성을 갖는 아미노산 서열을 포함하는 단백질로 번역될 수 있는 폴리뉴클레오티드 역시 포함될 수 있음은 자명하다. 또는 공지의 유전자 서열로부터 조제될 수 있는 프로브, 예를 들면, 상기 염기 서열의 전체 또는 일부에 대한 상보 서열과 엄격한 조건 하에 하이드리드화하여, 서열번호 43의 아미노산 서열과 80% 이상의 동일성을 갖는 아미노산 서열을 포함하는 단백질을 코딩하는 폴리뉴클레오티드 서열이라면 제한없이 포함될 수 있다. 상기 "엄격한 조건"이란 폴리뉴클레오티드 간의 특이적 혼성화를 가능하게 하는 조건을 의미한다. 이러한 조건은 문헌 (예컨대, J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; F.M. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York)에 구체적으로 기재되어 있다. 예를 들어, 상동성 또는 동일성이 높은 유전자끼리, 70% 이상, 80% 이상, 구체적으로는 85% 이상, 구체적으로는 90% 이상, 보다 구체적으로는 95% 이상, 더욱 구체적으로는 97% 이상, 특히 구체적으로는 99% 이상의 상동성 또는 동일성을 갖는 유전자끼리 하이브리드화하고, 그보다 상동성 또는 동일성이 낮은 유전자끼리 하이브리드화하지 않는 조건, 또는 통상의 써던 하이브리드화의 세척 조건인 60℃, 1×SSC, 0.1% SDS, 구체적으로는 60℃, 0.1×SSC, 0.1% SDS, 보다 구체적으로는 68℃, 0.1×SSC, 0.1% SDS에 상당하는 염 농도 및 온도에서, 1회, 구체적으로는 2회 내지 3회 세정하는 조건을 열거할 수 있다.
혼성화는 비록 혼성화의 엄격도에 따라 염기 간의 미스매치 (mismatch)가 가능할지라도, 두 개의 폴리뉴클레오티드가 상보적 서열을 가질 것을 요구한다. 용어, "상보적"은 서로 혼성화가 가능한 뉴클레오티드 염기 간의 관계를 기술하는데 사용된다. 예를 들면, DNA에 관하여, 아데노신은 티민에 상보적이며 시토신은 구아닌에 상보적이다. 따라서, 본 출원은 또한 실질적으로 유사한 폴리뉴클레오티드 서열뿐만 아니라 전체 서열에 상보적인 단리된 폴리뉴클레오티드 단편을 포함할 수 있다.
구체적으로, 상동성 또는 동일성을 가지는 폴리뉴클레오티드는 55 ℃의 Tm 값에서 혼성화 단계를 포함하는 혼성화 조건을 사용하고 상술한 조건을 사용하여 탐지할 수 있다. 또한, 상기 Tm 값은 60 ℃, 63 ℃ 또는 65 ℃일 수 있으나, 이에 제한되는 것은 아니고 그 목적에 따라 당업자에 의해 적절히 조절될 수 있다.
폴리뉴클레오티드를 혼성화하는 적절한 엄격도는 폴리뉴클레오티드의 길이 및 상보성 정도에 의존하고 변수는 해당기술분야에 잘 알려져 있다.
본 출원에서 용어 "상동성(homology)" 또는 "동일성(identity)"은 두 개의 주어진 아미노산 서열 또는 염기 서열과 관련된 정도를 의미하며 백분율로 표시될 수 있다. 용어 상동성 및 동일성은 종종 상호교환적으로 이용될 수 있다.
보존된 (conserved) 폴리뉴클레오티드 또는 폴리펩타이드의 서열 상동성 또는 동일성은 표준 배열 알고리즘에 의해 결정되며, 사용되는 프로그램에 의해 확립된 디폴트 갭 페널티가 함께 이용될 수 있다. 실질적으로, 상동성을 갖거나 (homologous) 또는 동일한 (identical) 서열은 중간 또는 높은 엄격한 조건(stringent conditions)에서 일반적으로 서열 전체 또는 전체-길이의 적어도 약 50%, 60%, 70%, 80% 또는 90% 이상으로 하이브리드할 수 있다. 하이브리드화는 폴리뉴클레오티드에서 코돈 대신 축퇴 코돈을 함유하는 폴리뉴클레오티드 또한 고려된다.
임의의 두 폴리뉴클레오티드 또는 폴리펩타이드 서열이 상동성, 유사성 또는 동일성을 갖는지 여부는 예를 들어, Pearson et al (1988)[Proc. Natl. Acad. Sci. USA 85]: 2444에서와 같은 디폴트 파라미터를 이용하여 "FASTA" 프로그램과 같은 공지의 컴퓨터 알고리즘을 이용하여 결정될 수 있다. 또는, EMBOSS 패키지의 니들만 프로그램(EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277)(버전 5.0.0 또는 이후 버전)에서 수행되는 바와 같은, 니들만-운치(Needleman-Wunsch) 알고리즘(Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453)이 사용되어 결정될 수 있다. (GCG 프로그램 패키지 (Devereux, J., et al, Nucleic Acids Research 12: 387 (1984)), BLASTP, BLASTN, FASTA (Atschul, [S.] [F.,] [ET AL, J MOLEC BIOL 215]: 403 (1990); Guide to Huge Computers, Martin J. Bishop, [ED.,] Academic Press, San Diego,1994, 및 [CARILLO ETA/.](1988) SIAM J Applied Math 48: 1073을 포함한다). 예를 들어, 국립 생물공학 정보 데이터베이스 센터의 BLAST, 또는 ClustalW를 이용하여 상동성, 유사성 또는 동일성을 결정할 수 있다.
폴리뉴클레오티드 또는 폴리펩타이드의 상동성, 유사성 또는 동일성은 예를 들어, Smith and Waterman, Adv. Appl. Math (1981) 2:482 에 공지된 대로, 예를 들면, Needleman et al. (1970), J Mol Biol.48 : 443과 같은 GAP 컴퓨터 프로그램을 이용하여 서열 정보를 비교함으로써 결정될 수 있다. 요약하면, GAP 프로그램은 두 서열 중 더 짧은 것에서의 기호의 전체 수로, 유사한 배열된 기호(즉, 뉴클레오티드 또는 아미노산)의 수를 나눈 값으로 정의한다. GAP 프로그램을 위한 디폴트 파라미터는 (1) 일진법 비교 매트릭스(동일성을 위해 1 그리고 비-동일성을 위해 0의 값을 함유함) 및 Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation, pp. 353-358 (1979)에 의해 개시된 대로, Gribskov et al(1986) Nucl. Acids Res. 14: 6745의 가중된 비교 매트릭스 (또는 EDNAFULL(NCBI NUC4.4의 EMBOSS 버전) 치환 매트릭스); (2) 각 갭을 위한 3.0의 페널티 및 각 갭에서 각 기호를 위한 추가의 0.10 페널티 (또는 갭 개방 패널티 10, 갭 연장 패널티 0.5); 및 (3) 말단 갭을 위한 무 페널티를 포함할 수 있다. 따라서, 본원에서 사용된 것으로서, 용어 "상동성" 또는 "동일성"은 서열들간의 관련성(relevance)를 나타낸다.
상기 "ssuD 유전자에 의해 코딩되는 단백질 또는 SsuD 단백질의 활성 강화 또는 증가"는 ssuD 유전자에 의해 코딩되는 단백질 활성이 증가되는 유전적 변형으로 언급될 수 있으며, 이는 상기 단백질의 활성이 내재적 활성에 비해 강화된 것을 의미할 수 있다.
본 출원에서, 용어 "단백질의 활성이 내재적 활성에 비하여 강화"한다는 것은, "활성 증가"로도 표현될 수 있으며, 유전적 변형 이전의 (prior to a genetic modification) 미생물 또는 비변형 (non-modified or unmodified) 미생물이 가진 단백질의 내재적 활성이 변형 전 활성에 비하여 향상된 것을 의미한다. 본 출원의 용어 "내재적"은 자연적, 또는 인위적 요인에 의한 유전적 변이로 미생물의 형질이 변화하는 경우, 형질 변화 전 모균주가 본래 가지고 있던 상태를 의미한다. 상기 활성 증가는, 외래의 단백질을 도입하는 것과, 내재적인 단백질의 활성 강화를 모두 포함할 수 있다. 상기 단백질의 활성 증가/강화는, 유전자의 발현 증가/강화에 의해 달성될 수 있다.
구체적으로, 본 출원에서 활성 강화는,
1) 상기 단백질을 암호화하는 폴리뉴클레오티드의 카피수 증가,
2) 상기 폴리뉴클레오티드의 발현이 증가하도록 발현조절 서열의 변형,
3) 상기 단백질의 활성이 강화되도록 염색체 상의 폴리뉴클레오티드 서열의 변형,
4) 상기 단백질의 활성을 나타내는 외래 폴리뉴클레오티드 또는 상기 폴리뉴클레오티드의 코돈 최적화된 변이형 폴리뉴클레오티드의 도입, 또는
5) 이의 조합에 의해 강화되도록 변형하는 방법 등에 의하여 수행될 수 있으나, 이에 제한되지 않는다.
상기 1) 폴리뉴클레오티드의 카피수 증가는, 특별히 이에 제한되지 않으나, 벡터에 작동 가능하게 연결된 형태로 수행되거나, 숙주세포 내의 염색체 내로 삽입됨으로써 수행될 수 있다. 구체적으로, 숙주와 무관하게 복제되고 기능할 수 있는 벡터에 본원의 단백질을 암호화하는 폴리뉴클레오티드가 작동 가능하게 연결되어 숙주세포 내에 도입됨으로써 수행될 수 있거나, 숙주세포 내의 염색체 내로 상기 폴리뉴클레오티드를 삽입시킬 수 있는 벡터에 상기 폴리뉴클레오티드가 작동 가능하게 연결되어 숙주세포 내에 도입됨으로써 상기 숙주세포의 염색체 내 상기 폴리뉴클레오티드의 카피수를 증가시키는 방법으로 수행될 수 있다.
다음으로, 2) 폴리뉴클레오티드의 발현이 증가하도록 발현조절 서열의 변형은, 특별히 이에 제한되지 않으나, 상기 발현조절 서열의 활성을 더욱 강화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 서열상의 변이를 유도하여 수행하거나, 더욱 강한 활성을 가지는 핵산 서열로 교체함에 의하여 수행될 수 있다. 상기 발현조절 서열은, 특별히 이에 제한되지 않으나 프로모터, 오퍼레이터 서열, 리보좀 결합 부위를 코딩하는 서열, 전사 및 해독의 종결을 조절하는 서열 등을 포함할 수 있다.
상기 폴리뉴클레오티드 발현 단위의 상부에는 본래의 프로모터 대신 강력한 이종 프로모터가 연결될 수 있는데, 상기 강력한 프로모터의 예로는 CJ7 프로모터(대한민국 등록특허 제0620092호 및 WO2006/065095), lysCP1 프로모터(WO2009/096689), spl1 프로모터, spl7 프로모터, spl13 프로모터 (대한민국 등록특허 제1783170호), gapA 프로모터, EF-Tu 프로모터, groEL 프로모터, aceA 혹은 aceB 프로모터 등이 있으나, 이에 한정되지 않는다. 아울러, 3) 염색체 상의 폴리뉴클레오티드 서열의 변형은, 특별히 이에 제한되지 않으나, 상기 폴리뉴클레오티드 서열의 활성을 더욱 강화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 발현조절 서열상의 변이를 유도하여 수행하거나, 더욱 강한 활성을 갖도록 개량된 폴리뉴클레오티드 서열로 교체함에 의하여 수행될 수 있다.
또한, 4) 외래 폴리뉴클레오티드 서열의 도입은, 상기 단백질과 동일/유사한 활성을 나타내는 단백질을 암호화하는 외래 폴리뉴클레오티드, 또는 이의 코돈 최적화된 변이형 폴리뉴클레오티드를 숙주세포 내로 도입하여 수행될 수 있다. 상기 외래 폴리뉴클레오티드는 상기 단백질과 동일/유사한 활성을 나타내는 한 그 유래나 서열에 제한 없이 사용될 수 있다. 또한 도입된 상기 외래 폴리뉴클레오티드가 숙주세포 내에서 최적화된 전사, 번역이 이루어지도록 이의 코돈을 최적화하여 숙주세포 내로 도입할 수 있다. 상기 도입은 공지된 형질전환 방법을 당업자가 적절히 선택하여 수행될 수 있으며, 숙주 세포 내에서 상기 도입된 폴리뉴클레오티드가 발현됨으로써 단백질이 생성되어 그 활성이 증가될 수 있다.
마지막으로, 5) 상기 1) 내지 4)의 조합에 의해 강화되도록 변형하는 방법은, 상기 단백질을 암호화하는 폴리뉴클레오티드의 카피수 증가, 이의 발현이 증가하도록 발현조절 서열의 변형, 염색체 상의 상기 폴리뉴클레오티드 서열의 변형 및 상기 단백질의 활성을 나타내는 외래 폴리뉴클레오티드 또는 이의 코돈 최적화된 변이형 폴리뉴클레오티드의 변형 중 하나 이상의 방법을 함께 적용하여 수행될 수 있다.
본 출원의 용어 "벡터"는 적합한 숙주 내에서 목적 단백질을 발현시킬 수 있도록 적합한 조절 서열에 작동 가능하게 연결된 상기 목적 단백질을 코딩하는 폴리뉴클레오티드 서열을 함유하는 DNA 제조물을 의미한다. 상기 조절 서열은 전사를 개시할 수 있는 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합부위를 코딩하는 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함할 수 있다. 벡터는 적당한 숙주세포 내로 형질전환된 후, 숙주 게놈과 무관하게 복제되거나 기능할 수 있으며, 게놈 그 자체에 통합될 수 있다. 일례로 세포 내 염색체 삽입용 벡터를 통해 염색체 내에 목적 단백질을 코딩하는 폴리뉴클레오티드를 변이된 폴리뉴클레오티드로 교체시킬 수 있다. 상기 폴리뉴클레오티드의 염색체 내로의 삽입은 당업계에 알려진 임의의 방법, 예를 들면, 상동재조합에 의하여 이루어질 수 있으나, 이에 한정되지는 않는다.
본 출원의 벡터는 특별히 한정되지 않으며, 당업계에 알려진 임의의 벡터를 이용할 수 있다. 통상 사용되는 벡터의 예로는 천연 상태이거나 재조합된 상태의 플라스미드, 코스미드, 바이러스 및 박테리오파지를 들 수 있다. 예를 들어, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, 및 Charon21A 등을 사용할 수 있으며, 플라스미드 벡터로서 pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계 및 pET계 등을 사용할 수 있다. 구체적으로는 pDZ, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC 벡터 등을 사용할 수 있다.
본 출원의 용어 "형질전환"은 표적 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 벡터를 숙주세포 내에 도입하여 숙주세포 내에서 상기 폴리뉴클레오티드가 코딩하는 단백질이 발현할 수 있도록 하는 것을 의미한다. 형질전환된 폴리뉴클레오티드는 숙주세포 내에서 발현될 수 있기만 한다면, 숙주세포의 염색체 내에 삽입되어 위치하거나 염색체 외에 위치하거나 상관없이 이들 모두를 포함할 수 있다. 또한, 상기 폴리뉴클레오티드는 표적 단백질을 코딩하는 DNA 및 RNA를 포함한다. 상기 폴리뉴클레오티드는 숙주세포 내로 도입되어 발현될 수 있는 것이면, 어떠한 형태로 도입되는 것이든 상관없다. 예를 들면, 상기 폴리뉴클레오티드는 자체적으로 발현되는데 필요한 모든 요소를 포함하는 유전자 구조체인 발현 카세트 (expression cassette)의 형태로 숙주세포에 도입될 수 있다. 상기 발현 카세트는 통상 상기 폴리뉴클레오티드에 작동 가능하게 연결되어 있는 프로모터 (promoter), 전사 종결신호, 리보좀 결합부위 및 번역 종결신호를 포함할 수 있다. 상기 발현 카세트는 자체 복제가 가능한 발현 벡터 형태일 수 있다. 또한, 상기 폴리뉴클레오티드는 그 자체의 형태로 숙주세포에 도입되어 숙주세포에서 발현에 필요한 서열과 작동 가능하게 연결되어 있는 것일 수도 있으며, 이에 한정되지 않는다.
또한, 본 출원의 용어 "작동 가능하게 연결"된 것이란 본원의 목적 단백질을 코딩하는 폴리뉴클레오티드의 전사를 개시 및 매개하도록 하는 프로모터 서열과 상기 유전자 서열이 기능적으로 연결되어 있는 것을 의미한다.
본 출원의 벡터를 형질전환 시키는 방법은 핵산을 세포 내로 도입하는 어떤 방법도 포함되며, 숙주세포에 따라 당 분야에서 공지된 바와 같이 적합한 표준 기술을 선택하여 수행할 수 있다. 예를 들어, 전기천공법 (electroporation), 인산칼슘 (CaPO4) 침전, 염화칼슘 (CaCl2) 침전, 미세주입법 (microinjection), 폴리에틸렌 글리콜 (PEG)법, DEAE-덱스트란법, 양이온 리포좀법, 및 초산 리튬-DMSO법 등이 있으나, 이에 제한되지 않는다.
상기 미생물은 L-아미노산을 생산하는 미생물일 수 있다.
본 출원의 용어 "L-아미노산을 생산하는 미생물"은 자연적으로 L-아미노산 생산능을 가지고 있는 미생물 또는 L-아미노산의 생산능이 없는 모균주에 L-아미노산의 생산능이 부여된 미생물을 의미한다. 예를 들어, 상기 L-아미노산을 생산하는 미생물은 아미노산 생합성 경로가 강화되거나, 분해경로가 약화된 미생물일 수 있다. 예를 들면 상기 L-아미노산을 생산하는 미생물은 L-메티오닌을 생산하는 미생물일 수 있으며, L-메티오닌 생합성 경로가 강화된 미생물 일 수 있다. 예를 들면, 상기 L-아미노산을 생산하는 미생물은 McbR(methionine and cysteine biosynthesis repressor protein) 또는 MetJ 단백질이 활성 감소 또는 불활성화되거나, 메티오닌 합성효소(MetH), 또는 설파이트 환원효소(CysI)의 활성이 강화되어 메티오닌 생산능이 강화 및/또는 부가된 미생물일 수 있다. 또는, 그 외의 L-아미노산 생합성경로의 효소를 암호화하는 유전자의 발현을 증진시키거나 분해경로의 효소를 약화/불활성화시킨 미생물일 수 있다.
구체적으로, L-아미노산 생합성 경로를 강화하거나 분해 경로를 약화/불활성시키기 위해 발현을 조절할 수 있는 단백질 또는 유전자의 예시는 다음과 같다. 단백질, 단백질을 코딩하는 대표적인 유전자, 대표적인 EC number 순으로 기재하였으며 단백질은 첫 글자를 대문자로, 유전자는 이탤릭체로 표기하였다. 예를 들어, Rdl2p, GlpE, PspE, YgaP, ThiI, YbbB, SseA, YnjE, YceA, YibN, NCgl0671, NCgl1369, NCgl2616, NCgl0053, NCgl0054, NCGl2678, NCgl2890 등의 티오설페이트 황전이효소(thiosulphate sulphurtransferase); 설파이트 환원효소, cysI; 티오설페이트/설페이트 수송 시스템(thiosulphate/sulphate transport system), cysPUWA (EC 3.6.3.25); 3'-포스포아데노신 5'-포스포설페이트 환원효소 (3′-phosphoadenosine 5′'-phosphosulphate reductase), cysH (EC 1.8.4.8); 설파이트 환원효소(sulphite reductase), cysJI (EC 1.8.1.2); 시스테인 합성효소 A (cysteine synthase), cysK (EC 2.5.1.47); 시스테인 합성효소 B, cysM (EC 2.5.1.47); 세린 아세틸트랜스퍼라제(serine acetyltransferase), cysE (EC 2.3.1.30); 글리신 절단 시스템(glycine cleavage system), gcvTHP-lpd (EC 2.1.2.10, EC 1.4.4.2, EC 1.8.1.4); 리포일 합성효소(lipoyl synthase), lipA (EC 2.8.1.8); 리포일 단백질 리가아제(lipoyl protein ligase), lipB (EC 2.3.1.181); 포스포글리세레이트 디하이드로게나아제(phosphoglycerate dehydrogenase), serA (EC 1.1.1.95); 3-포스포세린 포스파타아제(3-phosphoserine phosphatase), serB (EC 3.1.3.3); 3-포스포세린/포스포하이드록시트레오닌 아미노트랜스퍼라제(3-phosphoserine/phosphohydroxythreonine aminotransferase), serC (EC 2.6.1.52); 세린 하이드록시메틸트랜스퍼라제(serine hydroxymethyltransferase), glyA (EC 2.1.2.1); 아스파토키나아제 I(aspartokinase I)(EC 2.7.2.4); 호모세린 디하이드로게나아제 I (homoserine dehydrogenase I), thrA (EC 1.1.1.3); 아스파테이트 키나아제(aspartate kinase), lysC (EC 2.7.2.4); 호모세린 디하이드로게나아제(homoserine dehydrogenase), hom (EC 1.1.1.3); 호모세린 O-아세틸트랜스퍼라제(homoserine O-acetyltransferase), metX (EC 2.3.1.31); 호모세린 O-석시닐트랜스퍼라제(homoserine O-succinyltransferase), metA (EC 2.3.1.46); 시스타티오닌 감마-합성효소(cystathionine gamma-synthase), metB (EC 2.5.1.48); β-C-S-리아제(β-C-S-lyase), aecD (EC 4.4.1.8, beta-lyase); 시스타티오닌 베타-리아제(cystathionine beta-lyase), metC (EC 4.4.1.8); B12-독립적 호모시스테인 S-메틸트랜스퍼라제(B12-independent homocysteine S-methyltransferase), metE (EC 2.1.1.14); 메티오닌 합성효소, metH (EC 2.1.1.13); 메틸렌테트라하이드로폴레이트 환원효소(methylenetetrahydrofolate reductase), metF (EC 1.5.1.20); L-methionine 외수송체 BrnFE; 발린 외수송체 YgaZH(B2682, B2683), ygaZH(b2682. b2683); 외수송체 YjeH ,b4141; 피리딘 뉴클레오티드 트랜스하이드로게나아제 PntAB, pntAB (EC 1.6.1.2); O-석시닐호모세린 설프하이드릴라아제(O-succinylhomoserine sulfhydrylase), MetZ(EC 2.5.1.48); 및 포스포엔올피루베이트 카르복실라아제(phosphoenolpyruvate carboxylase), Pyc (EC 4.1.1.31) 중에서 선택된 하나 이상의 단백질 또는 시스템을 구성하는 일부 단백질의 활성 강화 또는 이를 코딩하는 폴리뉴클레오티드가 과발현되어 L-아미노산 생합성 경로를 강화하거나 분해 경로를 약화시킬 수 있다. 또는, 글루코스 6-인산 이성화효소, pgi (EC 5.3.1.9); 호모세린 키나아제, thrB (EC 2.7.1.39); S-아데노실메티오닌 합성효소, metK (EC 2.5.1.6); 다이하이드로다이피콜리네이트(dihydrodipicolinate) 합성효소, dapA (EC 4.2.1.52); 포스포엔올파이루베이트 카르복실키나아제, pck (EC 4.1.1.49);, 포밀테트라하이드로폴레이트 하이드롤라아제(formyltetrahydrofolate hydrolase), purU (EC 3.5.1.10); 파이루베이트 키나아제 I, pykF (EC 2.7.1.40); 파이루베이트 키나아제II, pykA (EC 2.7.1.40); 시스타티오닌 γ-리아제, cg3086(EC 4.4.1.1); 시스타티오닌 β-합성효소, cg2344 (EC 4.2.1.22); 조절단백질 Cg3031, cg3031; 메티오닌-시스테인 생합성 억제인자 (methionine and cysteine biosynthesis repressor protein) McbR, mcbR; L-메티오닌 합성 전사조절인자 (Met transcriptional repressor protein), metJ; L-메티오닌 수송체 MetQNI, metQ, metN, metI; N-아실트랜스퍼라제, yncA; sRNA fnrS; 및 L-메티오닌 수송체, metP로 구성된 군에서 선택된 하나 이상의 단백질의 활성이 불활성화 또는 약화되거나 또는 상기 단백질을 코딩하는 유전자의 발현이 억제 또는 제거된 것일 수 있다.
다만 이는 한 가지 예에 불과하며, 다양한 공지의 L-아미노산 생합성경로의 효소를 암호화하는 유전자의 발현을 증진시키거나 분해경로의 효소를 약화/불활성화시킨 미생물일 수 있으나, 이에 한정되지 않는다. 상기의 L-아미노산을 생산하는 미생물은 공지의 다양한 방법을 적용하여 제조될 수 있다.
본 출원의 용어 "단백질 활성의 약화/불활성화"는 효소 또는 단백질의 발현이 천연의 야생형 균주, 모균주 또는 해당 단백질이 비변형된 균주에 비하여 전혀 발현이 되지 않거나 또는 발현이 되더라도 그 활성이 없거나 감소된 것을 의미한다. 이때, 상기 감소는 상기 단백질을 암호화하는 유전자의 변이, 발현조절서열의 변형, 유전자 일부 또는 전체의 결손 등으로 단백질의 활성이 본래 미생물이 가지고 있는 단백질의 활성에 비해 감소한 경우와, 이를 암호화하는 유전자의 발현 저해 또는 번역(translation) 저해 등으로 세포 내에서 전체적인 단백질의 활성 정도가 천연형 균주 또는 변형전의 균주에 비하여 낮은 경우, 이들의 조합 역시 포함하는 개념이다. 본 출원에 있어서, 상기 불활성화/약화는 당해 분야에 잘 알려진 다양한 방법의 적용으로 달성될 수 있다. 상기 방법의 예로, 1) 상기 단백질을 암호화하는 상기 유전자의 전체 또는 일부를 결실시키는 방법; 2) 상기 단백질을 암호화하는 상기 유전자의 발현이 감소하도록 발현 조절 서열의 변형, 3) 상기 단백질의 활성이 제거 또는 약화되도록 단백질을 암호화하는 상기 유전자 서열의 변형, 4) 상기 단백질을 암호화하는 상기 유전자의 전사체에 상보적으로 결합하는 안티센스 올리고뉴클레오티드(예컨대, 안티센스 RNA)의 도입; 5) 상기 단백질을 암호화하는 상기 유전자의 사인-달가르노(Shine-Dalgarno) 서열 앞단에 사인-달가르노 서열과 상보적인 서열을 부가하여 2차 구조물을 형성시켜 리보솜(ribosome)의 부착을 불가능하게 만드는 방법; 6) 상기 단백질을 암호화하는 상기 유전자의 폴리뉴클레오티드 서열의 ORF(open reading frame)의 3' 말단에 반대 방향으로 전사되는 프로모터를 부가하는 방법(Reverse transcription engineering, RTE) 등이 있으며, 이들의 조합으로도 달성할 수 있으나, 이에 특별히 제한되는 것은 아니며, 당업계에 공지된 불활성화 방법을 적절히 선택하여 적용할 수 있다.
상기 미생물은 코리네박테리움 속(Corynebacterium sp.), 에스케리키아 속(Escherichia sp.) 또는 락토바실러스 속(Lactobacillus sp.) 미생물일 수 있으나 이에 제한되지 않는다. 본 출원의 목적상, 상기 미생물은 SsuD 단백질의 내재적 활성이 강화되거나, 외래 SsuD 단백질의 도입으로 L-아미노산 및/또는 이의 유도체의 생산능이 증가되는 것이면 제한 없이 포함될 수 있다.
상기 L-아미노산 및/또는 이의 유도체는 황 함유 아미노산 및/또는 황 함유 아미노산의 유도체일 수 있다.
본 출원의 "코리네박테리움 속 미생물"은 모든 코리네박테리움 속 미생물을 포함할 수 있다. 구체적으로, 코리네박테리움 글루타미쿰(Corynebacterium glutamicum), 코리네박테리움 크루디락티스(Corynebacterium crudilactis), 코리네박테리움 데세르티(Corynebacterium deserti), 코리네박테리움 이피시엔스(Corynebacterium efficiens), 코리네박테리움 칼루내(Corynebacterium callunae), 코리네박테리움 스테셔니스(Corynebacterium stationis), 코리네박테리움 싱굴라레(Corynebacterium singulare), 코리네박테리움 할로톨레란스(Corynebacterium halotolerans), 코리네박테리움 스트리아툼(Corynebacterium striatum), 코리네박테리움 암모니아게네스(Corynebacterium ammoniagenes), 코리네박테리움 폴루티솔리(Corynebacterium pollutisoli), 코리네박테리움 이미탄스(Corynebacterium imitans), 코리네박테리움 테스투디노리스(Corynebacterium testudinoris) 또는 코리네박테리움 플라베스센스(Corynebacterium flavescens)일 수 있고, 더욱 구체적으로는 코리네박테리움 글루타미쿰(Corynebacterium glutamicum), 코리네박테리움 칼루내(Corynebacterium callunae), 코리네박테리움 크레나툼(Corynebacterium crenatum), 또는 코리네박테리움 데세르티(Corynebacterium deserti)일 수 있다.
본 출원의 "에스케리키아 속 미생물"은 모든 에스케리키아 속 미생물을 포함할 수 있다. 구체적으로, 에스케리키아 콜라이(Escherichia coli)일 수 있으나, 이에 제한되지 않는다.
한편, 상기 코리네박테리움 속 또는 에스케리키아 속 미생물이 L-아미노산을 생산할 수 있음은 이미 알려져 있었으나, 이의 생산능이 현저히 낮으며 생산 기작에 작용하는 유전자나 기작 원리가 모두 밝혀지지는 않은 상태이다. 따라서, 본 출원의 'L-아미노산을 생산하는 미생물'은 천연의 야생형 미생물 자체, L-아미노산 생산 기작과 관련된 유전자의 활성을 강화시키거나 약화/불활성시켜 향상된 L-아미노산 생산능을 가지게 된 미생물, 또는 외부 유전자의 활성을 도입 또는 강화시켜 향상된 L-아미노산 생산능을 가지게 된 미생물을 의미한다. 본 출원의 미생물의 배양물은 본 출원의 미생물을 배지에서 배양하여 제조된 것일 수 있다.
본 출원의 용어 "배양"은 상기 미생물을 적당히 조절된 환경 조건에서 생육시키는 것을 의미한다. 본원의 배양과정은 당업계에 알려진 적당한 배지와 배양조건에 따라 이루어질 수 있다. 이러한 배양 과정은 선택되는 균주에 따라 당업자가 용이하게 조정하여 사용할 수 있다. 상기 미생물을 배양하는 단계는, 특별히 이에 제한되지 않으나, 공지된 회분식 배양방법, 연속식 배양방법, 유가식 배양방법 등에 의해 수행될 수 있다. 이때, 배양조건은, 특별히 이에 제한되지 않으나, 염기성 화합물(예: 수산화나트륨, 수산화칼륨 또는 암모니아) 또는 산성 화합물(예: 인산 또는 황산)을 사용하여 적정 pH(예컨대, pH 5 내지 9, 구체적으로는 pH 7 내지 9)를 조절할 수 있다. 또한, 배양 중에는 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있고, 또한, 배양물의 호기 상태를 유지하기 위하여, 배양물 내로 산소 또는 산소 함유 기체를 주입하거나 혐기 및 미호기 상태를 유지하기 위해 기체의 주입 없이 혹은 질소, 수소 또는 이산화탄소 가스를 주입할 수 있다. 배양온도는 25 ℃ 내지 40 ℃, 구체적으로는 30℃ 내지 37 ℃를 유지할 수 있으나, 이에 제한되지 않는다. 배양기간은 원하는 유용 물질의 생산량이 수득될 때까지 계속될 수 있으며, 구체적으로는 약 0.5 시간 내지 60 시간 동안 배양할 수 있으나, 이에 제한되지 않는다. 아울러, 사용되는 배양용 배지는 탄소 공급원으로는 당 및 탄수화물(예: 글루코오스, 슈크로오스, 락토오스, 프럭토오스, 말토오스, 몰라세, 전분 및 셀룰로오스), 유지 및 지방(예: 대두유, 해바라기씨유, 땅콩유 및 코코넛유), 지방산(예: 팔미트산, 스테아르산 및 리놀레산), 알코올 (예: 글리세롤 및 에탄올) 및 유기산(예: 아세트산) 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 질소 공급원으로는 질소-함유 유기 화합물(예: 펩톤, 효모 추출액, 육즙, 맥아 추출액, 옥수수 침지액, 대두 박분 및 우레아), 또는 무기 화합물(예: 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄) 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 인 공급원으로 인산 이수소칼륨, 인산수소이칼륨, 이에 상응하는 나트륨 함유 염 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 또한, 배지에는 기타 금속염, 아미노산 및 비타민과 같은 필수성장-촉진 물질을 포함할 수 있다.
본 출원의 용어 "황원(suphur source)"은, "황 공급원"과 상호 교환적으로 사용되며, 황 함유성 아미노산 생산에 사용될 수 있는 황 원소를 포함하는 물질을 의미한다.
미생물을 배양함에 있어서, 황원은 미생물 내 대사 반응 경로를 결정하는 중요한 인자일 수 있다. 하지만 다양한 황원에 대하여 어떠한 인자가 이를 운반하는지, 어떠한 인자가 이를 분해하는지에 대하여 명확하게 밝혀져 있지 않다. 예를 들면, 야생형 코리네박테리움 글루타미쿰이 다양한 황원을 이용할 수 있다는 점은 알려져 있으나, 이들 중에서 SsuABC 단백질은 sulfate 나 sulfite 운반에는 관여하지 않으며, 지방족 설포네이트 (aliphatic sulfonate) 운반에 관여한다고 알려져 있을 뿐이다. (D. J. Koch, C. Ruckert, D. A. Rey, A. Mix, A. Puhler, J. Kalinowski. 2005. Role of the ssu and seu Genes of Corynebacterium glutamicum ATCC 13032 in Utilization of Sulfonates and Sulfonate Esters as Sulfur Sources. AEM.71.10.6104-6114.2005) 즉, 황원을 세포 내로 운반하는 단백질은 기질 특이성을 갖는다. 또한, 황원이 세포 내로 운반된 이후에도 황원의 구조 및 작용기에 따라, 이를 분해하는 효소도 상이하며, 이를 이용하는 대사 경로 또한 달라질 수 있다. 예를 들면, sulfate를 황원으로 이용하는 경우에는 CysZ 가 이를 운반하며, 이후 sulfide 생성까지 CysDN, CysH 및 CysI 가 관여하는 것으로 알려져 있다. (Bolten, Christoph J., Hartwig Schroder, Jeroen Dickschat, and Christoph Wittmann. Towards Methionine Overproduction in Corynebacterium glutamicum Methanethiol and Dimethyldisulfide as Reduced Sulfur Sources. J. Microbiol. Biotechnol. (2010), 20(8), 1196-1203) 하지만, 황-함유 아미노산을 생산함에 있어서, 티오설페이트를 황원으로 이용하는 경우 어떠한 인자가 이를 운반하고, 분해하는지에 관하여 명확하게 밝혀져 있지 않았다. 본 출원은 티오설페이트를 이용하는 단백질을 규명한 것에 의의가 있다.
본 출원의 목적상, 상기 황원은 티오설페이트를 의미하는 것일 수 있다. 본 출원에서 황원은, 구체적으로 암모늄티오설페이트 또는 소디움티오설페이트와 같은 티오설페이트를 포함할 수 있으며, 또는 아황산염(sulfite), H2S와 같은 환원된 원료, 설파이드, 설파이드 유도체, 메틸머캅탄, 티오글리콜라이트, 티오시아네이트 및 티오유레아와 같은 유기 및 무기 황 함유성 화합물과 티오설페이트의 혼합물 형태일 수 있다. 또는 황원으로서 티오설페이트 이외의 물질은 포함하지 않을 수 있다.
본 출원의 용어, "황 함유 아미노산" 또는 "황 함유 아미노산 유도체"는 황 원소를 포함하는 아미노산 또는 이의 유도체로, 구체적으로는 메티오닌(methionine), 시스테인(cysteine), 시스틴(cystine), 란티오닌(lanthionine), 호모시스테인(homocysteine), 호모시스틴(homocystine), 호모란티오닌(homolanthionine), 및 타우린(taurine) 중에서 선택되는 어느 하나일 수 있으나, 황을 포함하는 아미노산 및 이의 유도체라면 본 출원의 범위에 제한 없이 포함된다.
상기 방법은 상기 미생물 또는 배양 배지로부터 황 함유 아미노산 또는 황 함유 아미노산 유도체를 회수하는 것을 포함할 수 있다.
상기 회수하는 단계는 본 출원의 미생물의 배양 방법, 예를 들어 회분식, 연속식 또는 유가식 배양 방법 등에 따라 당해 기술 분야에 공지된 적합한 방법을 이용하여 배지로부터 목적하는 황 함유 아미노산 또는 황 함유 아미노산 유도체를 회수할 수 있다. 예컨대 원심분리, 여과, 결정화 단백질 침전제에 의한 처리(염석법), 추출, 초음파 파쇄, 한외여과, 투석법, 분자체 크로마토그래피(겔여과), 흡착크로마토그래피, 이온교환 크로마토그래피, 친화도 크로마토그래피 등의 각종 크로마토그래피, HPLC 및 이들의 방법을 조합하여 사용될 수 있으나, 이들 예에 한정되는 것은 아니다.
상기 회수 단계는 추가적인 정제 공정을 포함할 수 있다. 상기 정제공정은 당해 기술분야에 공지된 적합한 방법을 이용할 수 있다.
본 출원의 다른 하나의 양태는 ssuD 유전자에 의해 코딩되는 단백질 활성이 내재적 활성에 비하여 강화된, 황 함유 아미노산 또는 황 함유 아미노산 유도체 생산용 미생물을 제공한다.
본 출원의 다른 하나의 양태는 ssuD 유전자에 의해 코딩되는 단백질 활성이 내재적 활성에 비하여 강화된 미생물, 또는 이의 배양물; 및 티오설페이트를 포함하는, 황 함유 아미노산 또는 황 함유 아미노산 유도체 제조용 조성물을 제공한다.
ssuD 유전자에 의해 코딩되는 단백질, 미생물, 배양물, 티오설페이트 및 황 함유 아미노산에 대해서는 전술한 바와 같다.
상기 조성물에는 황 함유 아미노산 또는 황 함유 아미노산 유도체 제조를 보조할 수 있는 임의의 성분을 추가로 포함할 수 있으며, 이러한 성분은 당업계에 공지되어 있는 것으로부터 적절히 선택할 수 있다.
본 출원의 미생물, 조성물 및 이를 이용한 황 함유 아미노산 또는 황 함유 아미노산의 제조방법을 이용하여, 황 함유 아미노산 또는 이의 유도체를 대량생산할 수 있어, 황 함유 아미노산 또는 이의 유도체를 포함하는 유용산물 생산에 유용하게 사용될 수 있다.
이하 본 출원을 실시예 및 실험예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예 및 실험예는 본 출원을 예시적으로 설명하기 위한 것으로 본 출원의 범위가 이들 실시예 및 실험예에 한정되는 것은 아니다.
실시예 1: mcbR 유전자 결손을 위한 제조합 벡터 제작
먼저, 대표적인 황 함유 아미노산인 메티오닌 생산 균주를 제작하기 위해, 코리네박테리움 글루타미쿰 ATCC13032 균주를 가지고, 기 공지된 메티오닌 시스테인 전사 조절인자 단백질을 코딩하는 mcbR (J. Biotechnol. 103:51-65, 2003) 의 불활성화를 위해 벡터를 제작하였다.
구체적으로, mcbR 유전자를 코리네박테리움 ATCC13032 염색체 상에서 결손시키기 위하여 하기의 방법으로 재조합 플라스미드 벡터를 제작하였다.
미국 국립보건원의 유전자은행(NIH Genbank)에 보고된 염기서열에 근거하여 코리네박테리움 글루타미쿰의 mcbR 유전자 및 주변서열(서열번호 1)을 확보하였다.
코리네박테리움 글루타미쿰 ATCC 13032의 염색체 DNA를 주형으로 하여 서열번호 2 및 서열번호 3, 서열번호 4 및 서열번호 5의 프라이머를 이용하여 PCR을 수행하였다. PCR 조건은 95 ℃에서 5분간 변성 후, 95℃ 30초 변성, 53℃ 30초 어닐링, 72℃ 30초 중합을 30회 반복한 후, 72℃에서 7분간 중합반응을 수행하였다. 그 결과 각각 700bp DNA 단편들을 수득하였다.
코리네박테리움 글루타미쿰 내에서 복제가 불가능한 pDZ 벡터(대한민국 특허 등록번호 제10-0924065호)와 상기 증폭한 mcbR 유전자 단편들을 염색체 도입용 제한효소 SmaI 으로 처리한 뒤, isothermal assembly cloning 반응 후, 대장균 DH5α에 형질전환하고 카나마이신(25mg/ℓ)이 포함된 LB 고체배지에 도말하였다. PCR을 통해 목적한 유전자들의 결손된 단편이 삽입된 벡터로 형질 전환된 콜로니를 선별한 후 플라스미드 추출법을 이용하여 플라스미드를 획득하였고 pDZ-△mcbR 이라 명명하였다.
실시예 2: mcbR 유전자가 결손된 균주 제작 및 배양
상기 실시예 1에서 제작된 pDZ-△mcbR 벡터를 염색체 상에서의 상동 재조합에 의해 ATCC13032 균주에 각각 전기천공법으로 형질전환시켰다(van der Rest et al., Appl Microbiol Biotechnol 52:541-545, 1999). 그 후, 수크로오즈를 포함하고 있는 고체배지에서 2차 재조합을 하였다. 2차 재조합이 완료된 상기 코리네박테리움 글루타미쿰 형질전환주를 대상으로 서열번호 6, 7을 이용하여 PCR법을 통하여 mcbR 유전자가 결손된 균주를 확인하였고, 이 재조합 균주를 CM02-0618이라고 명명하였다.
상기 CM02-0618은 부다페스트조약 하의 수탁기관인 한국미생물보존센터에 2019년 1월 4일자로 기탁하여 수탁번호 KCCM12425P를 부여받았다.
상기 제작된 CM02-0618 균주의 L-메티오닌 생산능을 분석하기 위해 모균주인 코리네박테리움 글루타미쿰 ATCC13032 균주와 함께 아래와 같은 방법으로 배양하였다.
하기의 종배지 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 코리네박테리움 글루타미쿰 ATCC13032과 코리네박테리움 글루타미쿰 CM02-0618을 접종하고, 30 ℃에서 20 시간 동안, 200 rpm으로 진탕 배양하였다. 그런 다음, 생산 배지 24 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 1 ㎖의 종 배양액을 접종하고 30 ℃에서 48시간 동안, 200 rpm에서 진탕 배양하였다. 상기 종 배지와 생산 배지의 조성은 각각 하기와 같다. 생산 배지에서 황원으로는 티오설페이트의 일종인 (NH4)2S2O3를 이용하였다.
<종배지 (pH 7.0)>
포도당 20 g, 펩톤 10 g, 효모추출물 5 g, 요소 1.5 g, KH2PO4 4 g, K2HPO4 8 g, MgSO4·7H2O 0.5 g, 바이오틴 100 ㎍, 티아민 HCl 1000 ㎍, 칼슘-판토텐산 2000 ㎍, 니코틴아미드 2000 ㎍, (증류수 1 리터 기준)
<생산배지 (pH 8.0)>
포도당 50 g, (NH4)2S2O3 12 g, Yeast extract 5 g, KH2PO4 1 g, MgSO4·7H2O 1.2 g, 바이오틴 100 ㎍, 티아민 염산염 1000 ㎍, 칼슘-판토텐산 2000 ㎍, 니코틴아미드 3000 ㎍, CaCO3 30 g, 시아노코발라민 (Vitamin B12) 1 ㎍ (증류수 1리터 기준).
상기 배양 방법으로 배양하여 배양액 중의 L-메티오닌 농도를 분석하여 표 1에 나타내었다.
야생형 및 mcbR이 제거된 균주의 L-메티오닌 생산능 확인
균주 L-메티오닌(g/L)
Corynebacterium glutamicum ATCC 13032 (야생형) 0.00
CM02-0618 0.04
그 결과, mcbR 단독 제거 균주에서 대조군 균주 대비 L-메티오닌 생산능이 0.04g/L 향상되었음을 확인할 수 있었다. 또한, 티오설페이트를 단독 황원으로 사용하여도 메티오닌을 생산하는 것을 확인하였다. 이를 통해 티오설페이트 이용에 관여하는 단백질이 코리네박테리움 속 미생물에도 존재할 것이라 추측하였다.
실시예 3: 전사체 분석을 통한 티오설페이트 이용에 관여하는 유전자 선별
코리네박테리움 균주의 티오설페이트에 특이적인 단백질은 알려진 것이 없다. 하지만 실시예 2에서 확인한 바와 같이, CM02-0618 균주의 경우 티오설페이트를 단독 황 source로 사용했을 때, 메티오닌을 생산하는 것을 확인하였는바, 티오설페이트 이용에 관여하는 단백질을 선별하기 위한 실험을 수행하였다.
구체적으로, 실시예 2에서 제조한 CM02-0618 균주를 황 Source만 다르게 (Ammonium sulfate 및 ammonium thiosulfate)하여 배양한 후, Transcriptome (RNA level을 분석) 분석을 수행하였다. 배양 방법은 실시예 2와 동일하다.
CM02-0618 균주의 암모늄황산염 및 암모늄티오설페이트 조건에서의 주요 유전자 전사체 실험 결과.
AMS (signal) ATS (signal) Log2 ratio (ATS/AMS)
SsuD(Ncgl1173) 3691 55539 2.71
실험 결과, 기존 설포네이트 모노옥시제네이즈(monooxygenase)라고 알려져 있는 SsuD (Ncgl1173) 를 코딩하는 유전자의 RNA level이 매우 증가한 것을 알 수 있었다.
이를 통해, SsuD 단백질은 황산염(sulfate)에는 반응하지 않고, 티오설페이트에 특이적으로 반응한 것을 확인하였는 바, 상기 단백질이 티오설페이트를 이용하는 데 관여할 것임을 확인하였다.
실시예 4: ssuD 유전자 결손 균주 효과 확인
실시예 3에서 티오설페이트에 특이적으로 반응하는 단백질로 선별한 SsuD의 불활성화 효과를 확인하기 위해 ssuD 유전자를 결손시키고자 벡터를 제작하였다.
실시예 4-1: ssuD 유전자 결손을 위한 벡터 제작
ssuD 유전자를 코리네박테리움 ATCC13032 염색체 상에서 결손시키기 위하여 하기의 방법으로 재조합 플라스미드 벡터를 제작하였다.
미국 국립보건원의 유전자은행(NIH Genbank)에 보고된 염기서열에 근거하여 코리네박테리움 글루타미쿰의 ssuD 유전자 및 주변서열(서열번호 8)을 확보하였다.
결손된 ssuD 유전자를 획득하기 위한 목적으로, 코리네박테리움 글루타미쿰 ATCC 13032의 염색체 DNA를 주형으로 하여 서열번호 9 및 서열번호 10, 서열번호 11 및 서열번호 12의 프라이머를 이용하여 PCR을 수행하였다. PCR 조건은 95 ℃에서 5분간 변성 후, 95℃ 30초 변성, 53℃ 30초 어닐링, 72℃ 30초 중합을 30회 반복한 후, 72℃에서 7분간 중합반응을 수행하였다. 그 결과 각각 700bp DNA 단편들을 수득하였다.
코리네박테리움 글루타미쿰 내에서 복제가 불가능한 pDZ 벡터(대한민국 특허 등록번호 제10-0924065호)와 상기 증폭한 ssuD 유전자 단편들을 염색체 도입용 제한효소 SmaI 으로 처리한 뒤, isothermal assembly cloning 반응 후, 대장균 DH5α에 형질전환하고 카나마이신(25mg/ℓ)이 포함된 LB 고체배지에 도말하였다. PCR을 통해 목적한 유전자들의 결손된 단편이 삽입된 벡터로 형질 전환된 콜로니를 선별한 후 플라스미드 추출법을 이용하여 플라스미드를 획득하였고 pDZ-△SsuD 라 명명하였다.
실시예 4-2: ssuD 유전자가 결손된 균주 제작 및 배양
실시예 4-1에서 제작한 pDZ-△SsuD 벡터를 염색체 상에서의 상동 재조합에 의해 13032/△mcbR 균주에 각각 전기천공법으로 형질전환시켰다(van der Rest et al., Appl Microbiol Biotechnol 52:541-545, 1999). 그 후, 수크로오즈를 포함하고 있는 고체배지에서 2차 재조합을 하였다. 2차 재조합이 완료된 상기 코리네박테리움 글루타미쿰 형질전환주를 대상으로 서열번호 13, 14를 이용하여 PCR법을 통하여 mcbR 유전자가 결손된 균주를 확인하였고, 본 재조합 균주를 코리네박테리움 글루타미쿰 CM02-0618/ΔSsuD 라 명명하였다.
실시예 4-3: ssuD 유전자가 결손된 균주의 메티오닌 생산능 분석
상기 제작된 CM02-0618/ΔSsuD 균주의 L-메티오닌 생산능을 분석하기 위해 모균주인 코리네박테리움 글루타미쿰 ATCC13032 균주와 함께 아래와 같은 방법으로 배양하였다.
하기의 종배지 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 코리네박테리움 글루타미쿰 ATCC13032과 발명 균주 코리네박테리움 글루타미쿰 CM02-0618, 제작된 CM02-0618/ΔSsuD 를 접종하고, 30 ℃에서 20 시간 동안, 200 rpm으로 진탕 배양하였다. 그런 다음, 생산 배지 24 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 1 ㎖의 종 배양액을 접종하고 30 ℃에서 48시간 동안, 200 rpm에서 진탕 배양하였다. 상기 종 배지와 생산 배지의 조성은 각각 하기와 같다.
<종배지 (pH 7.0)>
포도당 20 g, 펩톤 10 g, 효모추출물 5 g, 요소 1.5 g, KH2PO4 4 g, K2HPO4 8 g, MgSO4·7H2O 0.5 g, 바이오틴 100 ㎍, 티아민 HCl 1000 ㎍, 칼슘-판토텐산 2000 ㎍, 니코틴아미드 2000 ㎍ (증류수 1 리터 기준)
<생산배지 (pH 8.0)>
포도당 50 g, (NH4)2S2O3 12 g, Yeast extract 5 g, KH2PO4 1 g, MgSO4·7H2O 1.2 g, 바이오틴 100 ㎍, 티아민 염산염 1000 ㎍, 칼슘-판토텐산 2000 ㎍, 니코틴아미드 3000 ㎍, CaCO3 30 g (증류수 1리터 기준).
상기 배양 방법으로 배양하여 배양액 중의 L-메티오닌 농도를 분석하여 표 3에 나타내었다.
ssuD 유전자가 제거된 균주의 L-메티오닌 생산능 확인
균주 L-메티오닌(g/L)
CM02-0618 0.04
CM02-0618/ΔSsuD 0.02
그 결과, ssuD 유전자를 제거함에 따라 대조군 균주 대비 L-메티오닌 생산능이 약 50% 수준으로 감소되는 것을 확인할 수 있었다. 이를 통해 SsuD 단백질이 티오설페이트 이용에 관여하는 단백질이라는 것을 확인하였다.
실시예 5: ssuD 유전자 발현이 증가된 균주 제작 및 배양
실시예3에서 티오설페이트에 특이적으로 반응하는 단백질로 선별한 SsuD의 활성강화를 위해 벡터를 제작하였다.
실시예 5-1: ssuD 유전자 발현 증가를 위한 벡터 제작
ssuD 유전자를 코리네박테리움 ATCC13032 염색체 상에서 추가 삽입시키기 위하여 하기의 방법으로 재조합 플라스미드 벡터를 제작하였다.
먼저 ssuD 유전자를 삽입하기 위해 Ncgl1464 (Transposase)를 제거하기 위한 벡터를 제작하였다.
미국 국립보건원의 유전자은행(NIH Genbank)에 보고된 염기서열에 근거하여 코리네박테리움 글루타미쿰의 Ncgl1464 및 주변 서열 (서열번호 15)을 확보하였다. Ncgl1464 유전자를 결손시키기 위해, 코리네박테리움 글루타미쿰 ATCC 13032의 염색체 DNA를 주형으로 하여 서열번호 16 및 서열번호 17, 서열번호 18 및 서열번호 19의 프라이머를 이용하여 PCR을 수행하였다. PCR 조건은 95 ℃에서 5분간 변성 후, 95℃ 30초 변성, 53℃ 30초 어닐링, 72℃ 30초 중합을 30회 반복한 후, 72℃에서 7분간 중합반응을 수행하였다. 그 결과 각각 DNA 단편들을 수득하였다.
코리네박테리움 글루타미쿰 내에서 복제가 불가능한 pDZ 벡터(대한민국 특허 등록번호 제10-0924065호)와 상기 증폭한 Ncgl1464 유전자 단편들을 염색체 도입용 제한효소 SmaI 으로 처리한 뒤, isothermal assembly cloning 반응 후, 대장균 DH5α에 형질전환하고 카나마이신(25mg/ℓ)이 포함된 LB 고체배지에 도말하였다. PCR을 통해 목적한 유전자들의 결손된 단편이 삽입된 벡터로 형질 전환된 콜로니를 선별한 후 플라스미드 추출법을 이용하여 플라스미드를 획득하였고 pDZ-△Ncgl1464 이라 명명하였다.
다음으로, ssuD 유전자 단편을 획득하기 위한 목적으로, 코리네박테리움 글루타미쿰 ATCC 13032의 염색체 DNA를 주형으로 하여 서열번호 20 및 서열번호 21을 이용하여 PCR을 수행하였다. 또한 ssuD 유전자의 발현 강화를 위해 PgapA 프로모터를 사용하였으며, 이를 획득하기 위한 목적으로 코리네박테리움 글루타미쿰 ATCC 13032 염색체 DNA를 주형으로 하여 서열번호 22, 23를 이용하여 PCR을 수행하였다. PCR 조건은 95 ℃에서 5분간 변성 후, 95℃ 30초 변성, 53℃ 30초 어닐링, 72℃ 30초 중합을 30회 반복한 후, 72℃에서 7분간 중합반응을 수행하였다. 그 결과 ssuD 유전자 단편 및 gapA 프로모터 단편을 획득할 수 있었다.
코리네박테리움 글루타미쿰 내에서 복제가 불가능한 pDZ-△Ncgl1464 벡터를 제한효소 ScaI 으로 처리한 뒤, 상기 증폭한 2개의 DNA 단편들과 같이 IST 반응 후, 대장균 DH5α에 형질전환하고 카나마이신(25mg/ℓ)이 포함된 LB 고체배지에 도말하였다. PCR을 통해 목적한 유전자가 삽입된 벡터로 형질 전환된 콜로니를 선별한 후 플라스미드 추출법을 이용하여 플라스미드를 획득하였고 pDZ-△Ncgl1464-PgapASsuD 라 명명하였다.
실시예 5-2: ssuD 유전자 발현이 강화된 균주 제작 및 배양
실시예 5-1에서 제작된 pDZ-△Ncgl1464 및 pDZ-△Ncgl1464-PgapASsuD, 벡터를 염색체 상에서의 상동 재조합에 의해 CM02-0618균주에 각각 전기천공법으로 형질전환시켰다(van der Rest et al., Appl Microbiol Biotechnol 52:541-545, 1999). 그 후, 수크로오즈를 포함하고 있는 고체배지에서 2차 재조합을 하였다. 2차 재조합이 완료된 상기 코리네박테리움 글루타미쿰 형질전환주를 대상으로 서열번호 24, 25을 이용하여 PCR법을 통하여 Ncgl1464가 결손된 균주 및 Ncgl1164가 결손되면서 ssuD 유전자가 삽입된 균주를 확인하였다. Ncgl1464가 결손된 균주는 CM02-0618/ΔNcgl1464 라 명명하고, Ncgl1164가 결손되면서 ssuD 유전자가 삽입된 균주는 CM02-0736 라 명명하였다
상기 CM02-0736은 부다페스트조약 하의 수탁기관인 한국미생물보존센터에 2019년 5월 2일자로 기탁하여 수탁번호 KCCM12512P를 부여받았다.
실시예 5-3: ssuD 유전자 발현이 강화된 균주의 메티오닌 생산능 분석
상기 제작된 CM02-0618/ΔNcgl1464 및 CM02-0736 균주들의 L-메티오닌 생산능을 분석하기 위해 모균주인 CM02-0618 균주와 함께 아래와 같은 방법으로 배양하였다.
하기의 종배지 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 CM02-0618, CM02-0618 /ΔNcgl1464, 및 CM02-0736 를 각각 접종하고, 30 ℃에서 20 시간 동안, 200 rpm으로 진탕 배양하였다. 그런 다음, 생산 배지 24 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 1 ㎖의 종 배양액을 접종하고 30 ℃에서 48시간 동안, 200 rpm에서 진탕 배양하였다. 상기 종 배지와 생산 배지의 조성은 각각 하기와 같다.
<종배지 (pH 7.0)>
포도당 20 g, 펩톤 10 g, 효모추출물 5 g, 요소 1.5 g, KH2PO4 4 g, K2HPO4 8 g, MgSO4·7H2O 0.5 g, 바이오틴 100 ㎍, 티아민 HCl 1000 ㎍, 칼슘-판토텐산 2000 ㎍, 니코틴아미드 2000 ㎍ (증류수 1 리터 기준)
<생산배지 (pH 8.0)>
포도당 50 g, (NH4)2S2O3 12 g, Yeast extract 5 g, KH2PO4 1 g, MgSO4·7H2O 1.2 g, 바이오틴 100 ㎍, 티아민 염산염 1000 ㎍, 칼슘-판토텐산 2000 ㎍, 니코틴아미드 3000 ㎍, CaCO3 30 g, 코발라민 (Vitamin B12) 1 ㎍ (증류수 1리터 기준).
상기 배양 방법으로 배양하여 배양액 중의 L-메티오닌 농도를 분석하여 표 4에 나타내었다.
ssuD의 발현이 증가된 균주의 L-메티오닌 생산능 확인
균주 L-메티오닌(g/L)
CM02-0618 0.04
CM02-0618/ΔNcgl1464 0.04
CM02-0736 0.06
그 결과, ssuD 유전자 발현을 강화함에 따라 대조군 균주 대비 L-메티오닌 생산능이 50% 정도 증가하는 것을 확인할 수 있었다. 실시예 4에서 확인한 것과 마찬가지로, 이를 통해 SsuD 단백질이 티오설페이트 이용에 관여하는 단백질이라는 사실을 알 수 있었다.
실시예 6: 티오설페이트와 다른 설포네이트(sulfonate)와의 비교 배양.
SsuD 단백질은 본래, 설포네이트의 디설포네이션(desulfonation)에 관여하는 단백질로 알려져 있다. 설포네이트(sulfonate)는 R-SO3로 이루어져 있으며 이때의 R은 Organic group 인데, 티오설페이트는 S-SO3로 이루어져 있기 때문에 설포네이트와는 다르다.
이에, 설포네이트와의 비교 실험을 통해 황원으로 티오설페이트를 이용하는 경우가 메티오닌 생산에 얼마나 더 효과적인지 확인하고자 하였다.
하기의 종배지 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 코리네박테리움 글루타미쿰 CM02-0618 및 CM02-0736 를 접종하고, 30 ℃에서 20 시간 동안, 200 rpm으로 진탕 배양하였다. 그 다음, 생산 배지 24 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 1 ㎖의 종 배양액을 접종하고 30 ℃에서 48시간 동안, 200 rpm에서 진탕 배양하였다. 상기 종 배지와 생산 배지의 조성은 각각 하기와 같다.
<종배지 (pH 7.0)>
포도당 20 g, 펩톤 10 g, 효모추출물 5 g, 요소 1.5 g, KH2PO4 4 g, K2HPO4 8 g, MgSO4·7H2O 0.5 g, 바이오틴 100 ㎍, 티아민 HCl 1000 ㎍, 칼슘-판토텐산 2000 ㎍, 니코틴아미드 2000 ㎍ (증류수 1 리터 기준)
<생산배지 (pH 8.0)>
포도당 50 g, (NH4)2S2O3 12 g 또는 Methanesulfonate 12 g 또는 Ethanesulfonate 12 g (황원에 따라서), Yeast extract 5 g, KH2PO4 1 g, MgSO4·7H2O 1.2 g, 바이오틴 100 ㎍, 티아민 염산염 1000 ㎍, 칼슘-판토텐산 2000 ㎍, 니코틴아미드 3000 ㎍, CaCO3 30 g, 코발라민 (Vitamin B12) 1 ㎍ (증류수 1리터 기준).
상기 배양 방법으로 배양하여 배양액 중의 L-메티오닌 농도를 분석하여 표 5에 나타내었다.
다양한 설포네이트를 황원으로 하여 티오설페이트와의 메티오닌 생산능 비교
균주 황원 L-메티오닌(g/L)
CM02-0618 티오설페이트 0.04
Metanesulfonate 0.01
ethanesulfonate 0.01
CM02-0736 티오설페이트 0.06
Metanesulfonate 0.01
ethanesulfonate 0.02
실험 결과, 각각의 균주에서 티오설페이트를 황원으로 이용한 경우, 설포네이트를 황원으로 이용한 경우에 비해 메티오닌 생산량이 최대 600% 증가하였다.
이를 통해, 티오설페이트를 황원으로 이용하는 경우 메티오닌 생산량이 가장 많음을 확인하였으며, SsuD 단백질의 활성 강화가 이러한 메티오닌 생산량 증가에 관여한다는 것을 확인하였다.
실시예 7: mcbR 이 결손되지 않고 metH, cysI발현이 강화된 메티오닌 생산 균주 제작
실시예 7-1: metH, cysI 를 동시에 강화하는 재조합 벡터 제작
본 출원의 SsuD 단백질 활성 강화 및 티오설페이트를 황원으로 사용할 경우 다양한 황 함유 아미노산을 제조할 수 있는지 확인하기 위해, 다른 메티오닌 생산 균주에 상기 구성을 적용하고자 하였다. 이에, mcbR이 결손되지 않은 메티오닌 생산 균주를 제작하기 위해, ATCC13032 균주를 토대로, 기 공지된 메티오닌 합성 효소를 코딩하는 metH (Ncgl1450), 설파이트 환원 효소를 코딩하는 cysI (Ncgl2718)의 발현을 동시에 강화하기 위해 벡터를 제작하였다.
구체적으로, metH cysI 유전자를 코리네박테리움 ATCC13032 염색체 상에서 추가 삽입시키기 위하여 하기의 방법으로 재조합 플라스미드 벡터를 제작하였다. 미국 국립보건원의 유전자은행(NIH Genbank)에 보고된 염기서열에 근거하여 코리네박테리움 글루타미쿰의 metH 유전자 및 주변서열(서열번호 26)과 cysI 유전자 및 주변서열(서열번호 27)을 확보하였다.
먼저 이들을 삽입하기 위해 Ncgl1021 (Transposase)를 제거하기 위한 벡터를 제작하였다. 미국 국립보건원의 유전자은행(NIH Genbank)에 보고된 염기서열에 근거하여 코리네박테리움 글루타미쿰의 Ncgl1021 및 주변 서열 (서열번호 28)을 확보하였다. 결손된 Ncgl1021 유전자를 획득하기 위한 목적으로, 코리네박테리움 글루타미쿰 ATCC 13032의 염색체 DNA를 주형으로 하여 서열번호 29 및 서열번호 30, 서열번호 31 및 서열번호 32의 프라이머를 이용하여 PCR을 수행하였다. PCR 조건은 95 ℃에서 5분간 변성 후, 95℃ 30초 변성, 53℃ 30초 어닐링, 72℃ 30초 중합을 30회 반복한 후, 72℃에서 7분간 중합반응을 수행하였다. 그 결과 각각 DNA 단편들을 수득하였다. 코리네박테리움 글루타미쿰 내에서 복제가 불가능한 pDZ 벡터(대한민국 특허 등록번호 제10-0924065호)와 상기 증폭한 Ncgl1021 유전자 단편들을 염색체 도입용 제한효소 XbaI 으로 처리한 뒤, isothermal assembly cloning 반응 후, 대장균 DH5α에 형질전환하고 카나마이신(25mg/ℓ)이 포함된 LB 고체배지에 도말하였다. PCR을 통해 목적한 유전자들의 결손된 단편이 삽입된 벡터로 형질 전환된 콜로니를 선별한 후 플라스미드 추출법을 이용하여 플라스미드를 획득하였고 pDZ-△Ncgl1021 이라 명명하였다.
다음 metH cysI 유전자를 획득하기 위한 목적으로, 코리네박테리움 글루타미쿰 ATCC 13032의 염색체 DNA를 주형으로 하여 서열번호 33 및 서열번호 34, 서열번호 35 및 서열번호 36의 프라이머를 이용하여 PCR을 수행하였고, 또한 metH 유전자의 발현 강화를 위해 Pcj7 프로모터 및 cysI 유전자의 발현 강화를 위해 Pspl1 프로모터를 사용하였으며, 이를 획득하기 위한 목적으로 먼저 Pcj7의 경우 코리네박테리움 암모니아게세스 ATCC 6872 염색체 DNA를 주형으로 하여 서열번호 37, 38을 이용하여 PCR을 수행하였고, Pspl1은 기 공지된 spl1-GFP (KR 10-1783170 B1) 벡터 DNA를 주형으로 하여 서열번호 39, 40를 이용하여 PCR을 수행하였다. PCR 조건은 95 ℃에서 5분간 변성 후, 95℃ 30초 변성, 53℃ 30초 어닐링, 72℃ 30초 중합을 30회 반복한 후, 72℃에서 7분간 중합반응을 수행하였다. 그 결과 metH 유전자 및 cysI, Pcj7 프로모터(한국등록특허 10-0620092호) 및 Pspl1 프로모터(한국등록특허 10-1783170호) DNA 단편을 확보하였다.
코리네박테리움 글루타미쿰 내에서 복제가 불가능한 pDZ-△Ncgl1021 벡터를 제한효소 ScaI 으로 처리한 뒤, 상기 증폭한 4개의 DNA 단편들을 염색체 도입용 제한효소 ScaI 으로 처리한 뒤, IST 반응 후, 대장균 DH5α에 형질전환하고 카나마이신(25mg/ℓ)이 포함된 LB 고체배지에 도말하였다. PCR을 통해 목적한 유전자들의 결손된 단편이 삽입된 벡터로 형질 전환된 콜로니를 선별한 후 플라스미드 추출법을 이용하여 플라스미드를 획득하였고 pDZ-△Ncgl1021-Pcj7metH-Pspl1cysI 라 명명하였다.
실시예 7-2: L-메티오닌 생산 균주 개발 및 이를 이용한 L-메티오닌 생산 확인
실시예 7-1에서 제작된 pDZ-△Ncgl1021 및 pDZ-△Ncgl1021-Pcj7metH-Pspl1cysI 벡터를 염색체 상에서의 상동 재조합에 의해 ATCC13032 균주에 각각 전기천공법으로 형질전환시켰다(van der Rest et al., Appl Microbiol Biotechnol 52:541-545, 1999). 그 후, 수크로오즈를 포함하고 있는 고체배지에서 2차 재조합을 하였다. 2차 재조합이 완료된 상기 코리네박테리움 글루타미쿰 형질전환주를 대상으로 서열번호 41, 42를 이용하여 Pcj7-metH-Pspl1cysI 유전자 삽입을 확인하였다. 본 재조합 균주들은 각각 코리네박테리움 글루타미쿰 13032/ΔNcgl1021, CM02-0753 이라 명명하였다.
상기 제작된 13032/ΔNcgl1021, CM02-0753 균주의 L-메티오닌 생산능을 분석하기 위해 모균주인 코리네박테리움 글루타미쿰 ATCC13032 균주와 함께 아래와 같은 방법으로 배양하였다.
하기의 종배지 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 코리네박테리움 글루타미쿰 ATCC13032과 발명 균주 코리네박테리움 글루타미쿰 13032/ΔNcgl1021, CM02-0753 을 접종하고, 30 ℃에서 20 시간 동안, 200 rpm으로 진탕 배양하였다. 그런 다음, 생산 배지 24 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 1 ㎖의 종 배양액을 접종하고 30 ℃에서 48시간 동안, 200 rpm에서 진탕 배양하였다. 상기 종 배지와 생산 배지의 조성은 각각 하기와 같다.
<종배지 (pH 7.0)>
포도당 20 g, 펩톤 10 g, 효모추출물 5 g, 요소 1.5 g, KH2PO4 4 g, K2HPO4 8 g, MgSO4·7H2O 0.5 g, 바이오틴 100 ㎍, 티아민 HCl 1000 ㎍, 칼슘-판토텐산 2000 ㎍, 니코틴아미드 2000 ㎍ (증류수 1 리터 기준)
<생산배지 (pH 8.0)>
포도당 50 g, (NH4)2S2O3 12 g, Yeast extract 5 g, KH2PO4 1 g, MgSO4·7H2O 1.2 g, 바이오틴 100 ㎍, 티아민 염산염 1000 ㎍, 칼슘-판토텐산 2000 ㎍, 니코틴아미드 3000 ㎍, CaCO3 30 g, 코발라민 (Vitamin B12) 1 ㎍ (증류수 1리터 기준).
상기 배양 방법으로 배양하여 배양액 중의 L-메티오닌 농도를 분석하여 표 6에 나타내었다.
mcbR이 존재하는 균주의 L-메티오닌 생산능 확인
균주 L-메티오닌(g/L)
Corynebacterium glutamicum ATCC 13032 (야생형) 0
13032/ΔNcgl1021 0
CM02-0753 0.03
그 결과, mcbR은 그대로 존재하고, metH cysI 과발현 균주는 대조군 균주 대비 L-메티오닌 생산능이 향상되었음을 확인 할 수 있었다.
이를 통해 mcbR이 결손되지 않고 metH cysI 과발현 균주 역시 메티오닌 생산능이 있음을 확인하였으며 이하의 실험에 사용하였다.
실시예 8: mcbR 이 존재하는 L-메티오닌 생산주 기반 SsuD 활성 강화균주 개발 및 L-메티오닌 생산능 확인
실시예 7에서 제작한 메티오닌 생산균주를 기반으로 하여 SsuD 단백질활성을 강화한 균주를 제작한 후, L-메티오닌 생산능을 확인하였다.
실시예 8-1: SsuD 강화 균주 제작
구체적으로, 실시예 5에서 제작된 pDZ-△Ncgl464-PgapASsuD 벡터를 염색체 상에서의 상동 재조합에 의해 실시예 7의 CM02-0753균주에 전기천공법으로 형질전환시켰다(van der Rest et al., Appl Microbiol Biotechnol 52:541-545, 1999). 그 후, 수크로오즈를 포함하고 있는 고체배지에서 2차 재조합을 하였다.
2차 재조합이 완료된 상기 코리네박테리움 글루타미쿰 형질전환주를 대상으로 서열번호 23, 24를 이용하여 Ncgl1464 자리에 PgapA-SsuD 유전자가 잘 삽입됐는지 확인하였다. 제작된 재조합 균주를 코리네박테리움 글루타미쿰 CM02-0756 라 명명하였다.
상기 CM02-0756은 부다페스트조약 하의 수탁기관인 한국미생물보존센터에 2019년 5월 2일자로 기탁하여 수탁번호 KCCM12513P를 부여받았다.
실시예 8-2: 제작된 균주의 메티오닌 생산능 확인
실시예 7의 CM02-0753와 실시예 8-1에서 제작된 CM02-0756의 L-메티오닌 생산능을 분석하기 위해 아래와 같은 방법으로 배양하였다.
하기의 종배지 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 코리네박테리움 글루타미쿰 CM02-0753, CM02-0756 를 접종하고, 30 ℃에서 20 시간 동안, 200 rpm으로 진탕 배양하였다. 그런 다음, 생산 배지 24 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 1 ㎖의 종 배양액을 접종하고 30 ℃에서 48시간 동안, 200 rpm에서 진탕 배양하였다. 상기 종 배지와 생산 배지의 조성은 각각 하기와 같다.
<종배지 (pH 7.0)>
포도당 20 g, 펩톤 10 g, 효모추출물 5 g, 요소 1.5 g, KH2PO4 4 g, K2HPO4 8 g, MgSO4·7H2O 0.5 g, 바이오틴 100 ㎍, 티아민 HCl 1000 ㎍, 칼슘-판토텐산 2000 ㎍, 니코틴아미드 2000 ㎍ (증류수 1 리터 기준)
<생산배지 (pH 8.0)>
포도당 50 g, (NH4)2S2O3 12 g, Yeast extract 5 g, KH2PO4 1 g, MgSO4·7H2O 1.2 g, 바이오틴 100 ㎍, 티아민 염산염 1000 ㎍, 칼슘-판토텐산 2000 ㎍, 니코틴아미드 3000 ㎍, CaCO3 30 g, 코발라민 (Vitamin B12) 1 ㎍ (증류수 1리터 기준).
상기 배양 방법으로 배양하여 배양액 중의 L-메티오닌 농도를 분석하여 표 7에 나타내었다.
mcbR이 존재하는 균주의ssuD 유전자 과발현 시 L-메티오닌 생산능 확인
균주 L-메티오닌(g/L)
CM02-0753 0.03
CM02-0756 0.05
그 결과, mcbR이 존재하는 메티오닌 균주에서도 SsuD 활성을 강화하였을 때, 티오설페이트를 황원으로 사용 시, 메티오닌 수율이 증가하는 것을 확인 할 수 있었다.
이와 같은 결과는 본 출원에서 새롭게 기능을 확인한 티오설페이트의 사용에 관여하는 단백질인 SsuD 활성을 강화시켰을 때, 황원인 티오설페이트를 기반으로 황 함유 아미노산 또는 황 함유 아미노산 유도체를 제조할 수 있음을 시사하는 것이다.
이상의 설명으로부터, 본 출원이 속하는 기술분야의 당업자는 본 출원이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 출원의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 출원의 범위에 포함되는 것으로 해석되어야 한다.
한국미생물보존센터(국외) KCCM12425P 20190104 한국미생물보존센터(국외) KCCM12512P 20190502 한국미생물보존센터(국외) KCCM12513P 20190502
<110> CJ CheilJedang Corporation <120> A method of producing sulfur-containing amino acids and derivatives thereof <130> KPA190476-KR <160> 43 <170> KoPatentIn 3.0 <210> 1 <211> 2642 <212> DNA <213> Corynebacterium glutamicum <400> 1 ctcccgcgca ctgctgcaat ccgcaccgtg cccaatgatg gtggttcgcc cacctgagaa 60 gattaagaag tagtttcttt taagtttcga tgccccggtt tcctgatttt gtgcagggag 120 gccggggcat tggtgtttgc gggttagttc gggccattcg aaagggagaa accaagggca 180 gccagacaga cgtgccaaga atctggattt ccgccaggtt ttggcacgcc cgtctggttt 240 aggcaatgag ataccgaaca cacgtgccaa aagttcggct ttttcgccga tcttgtcacg 300 cctgcctggt ttgtcttgta aagagtgatt tcatggccga gactcctaaa agtttgacct 360 cacaggattg cttctaaggg cctctccaat ctccactgag gtacttaatc cttccgggga 420 attcgggcgc ttaaatcgag aaattaggcc atcacctttt aataacaata caatgaataa 480 ttggaatagg tcgacacctt tggagcggag ccggttaaaa ttggcagcat tcaccgaaag 540 aaaaggagaa ccacatgctt gccctaggtt ggattacatg gatcattatt ggtggtctag 600 ctggttggat tgcctccaag attaaaggca ctgatgctca gcaaggaatt ttgctgaaca 660 tagtcgtcgg tattatcggt ggtttgttag gcggctggct gcttggaatc ttcggagtgg 720 atgttgccgg tggcggcttg atcttcagct tcatcacatg tctgattggt gctgtcattt 780 tgctgacgat cgtgcagttc ttcactcgga agaagtaatc tgctttaaat ccgtagggcc 840 tgttgatatt tcgatatcaa caggcctttt ggtcattttg gggtggaaaa agcgctagac 900 ttgcctgtgg attaaaacta tacgaaccgg tttgtctata ttggtgttag acagttcgtc 960 gtatcttgaa acagaccaac ccgaaaggac gtggccgaac gtggctgcta gcgcttcagg 1020 caagagtaaa acaagtgccg gggcaaaccg tcgtcgcaat cgaccaagcc cccgacagcg 1080 tctcctcgat agcgcaacca accttttcac cacagaaggt attcgcgtca tcggtattga 1140 tcgtatcctc cgtgaagctg acgtggcgaa ggcgagcctc tattcccttt tcggatcgaa 1200 ggacgccttg gttattgcat acctggagaa cctcgatcag ctgtggcgtg aagcgtggcg 1260 tgagcgcacc gtcggtatga aggatccgga agataaaatc atcgcgttct ttgatcagtg 1320 cattgaggaa gaaccagaaa aagatttccg cggctcgcac tttcagaatg cggctagtga 1380 gtaccctcgc cccgaaactg atagcgaaaa gggcattgtt gcagcagtgt tagagcaccg 1440 cgagtggtgt cataagactc tgactgattt gctcactgag aagaacggct acccaggcac 1500 cacccaggcg aatcagctgt tggtgttcct tgatggtgga cttgctggat ctcgattggt 1560 ccacaacatc agtcctcttg agacggctcg cgatttggct cggcagttgt tgtcggctcc 1620 acctgcggac tactcaattt agtttcttca ttttccgaag gggtatcttc gttgggggag 1680 gcgtcgataa gccccttctt tttagcttta acctcagcgc gacgctgctt taagcgctgc 1740 atggcggcgc ggttcatttc acgttgcgtt tcgcgcctct tgttcgcgat ttctttgcgg 1800 gcctgttttg cttcgttgat ttcggcagta cgggttttgg tgagttccac gtttgttgcg 1860 tgaagcgttg aggcgttcca tggggtgaga atcatcaggg cgcggttttt gcgtcgtgtc 1920 cacaggaaga tgcgcttttc tttttgtttt gcgcggtaga tgtcgcgctg ctctaggtgg 1980 tgcactttga aatcgtcggt aagtgggtat ttgcgttcca aaatgaccat catgatgatt 2040 gtttggagga gcgtccacag gttgttgctg acccaataga gtgcgattgc tgtggggaat 2100 ggtcctgtga ggccaaggga cagtgggaag atcggcgcga ggatcgacat cacgatcatg 2160 aacttcagca tgccgttaga gaatccggat gcgtaatcgt tggtttggaa gctgcggtac 2220 atggacatcg ccatgttgat tgcggtgagg attgcggctg tgatgaacag tggcaaaacg 2280 aaactaagaa cttccgcctg cgtggtgctc aaatatttta gctgctcagt gggcatcgaa 2340 acataagcgg gcagaggcac attgctcacg cgaccagcga ggaaagattc cacttcctca 2400 ggagttagga agccgatcga ctggaagacg ggattttcca aaccaccttc agggcgagcc 2460 atgcggagaa gtgcccagta aagaccaagg acaatcggta tctggatcag cccaggcaca 2520 caacctgcca gcgggttaat gccgtattcc ttattcaaat cattctggcg cttctgcaac 2580 tcccgaatgg acgcttcatc gtactttccc ttgtattctt cccggagcgc agcgcggtga 2640 gg 2642 <210> 2 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 tcgagctcgg tacccctgcc tggtttgtct tgta 34 <210> 3 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 cggaaaatga agaaagttcg gccacgtcct ttcgg 35 <210> 4 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 aggacgtggc cgaactttct tcattttccg aaggg 35 <210> 5 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 ctctagagga tccccgtttc gatgcccact gagca 35 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 aatctggatt tccgccaggt 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 cttcctaact cctgaggaag 20 <210> 8 <211> 3146 <212> DNA <213> Corynebacterium glutamicum <400> 8 ccatggagaa cctggagaat gaggtgctgc gtcgttccac gcaggttccg gtgattgttc 60 tcgtgggtac cccgcgcagc cctgattcgg agcagttgaa gtcggatctg accacgcttg 120 ctgctgaaag tggcaggaag ttcattttcg gttatgtcaa tgctgatacc gatgctgatg 180 tggcccaggt gtttggggtg cagggcttgc cgtcggtgat tgctgtggca gcgggacgcc 240 ctctggctga tttccagggc ggacagccag cggatgcact aaagcagtgg actgatcagg 300 tggttcaggc tgtgggtgga cagctggaag gactgccaga ggaggccaca gacggcgaac 360 aagaagacgc tcctgtggaa gacccccgct tcgatgctgc cactgatgct ctaaaccgtg 420 gcgctttcga tgaggcgatt gcggtttatg agtccatttt ggcgcaggag ccaaacaacg 480 ctgatgcgaa gcaggcacgc gataccgcaa agctgttggg ccggcttgcc acggtggatc 540 cttcggtgga tgttgtcgct gctgcagatg ctgatccaac aaacgttgat ctggcctaca 600 cagcagctga cgcggctgtt gttgcgggtg atcctgaggc tgcctttgat cgtttaattg 660 ctctgctgac catcagcgct ggcgatcaga agaatcaggt gaaggaacgt ttgctggagc 720 tgtttggcat gtttgagacc gccgatcccc gtgtgctgca ggcgcgagga aagatggcca 780 gcgcgctgtt ctaaaaccac tctctatcca gaaaaatata gaccgcttag tcttttccag 840 gactaagtgg tctacatttt tacccaaaat gcagctcacg caatagacat ctcggtctat 900 atacttgcca ccttcgcgcc ctgcaaatcc ccacactact tatatccagc ccgaaaataa 960 tacttctctc tagacgaagc ggtctgttta agtatgtgcc atgacattaa ctttccattg 1020 gttcctatcc acttcaggcg attcccgcgg catcatcggc ggcggtcacg gtgcagaaaa 1080 atccggcacc tcccgcgaat tgagccacag ctacctcaag cagttggcgc tagctgccga 1140 gaccaacggt tttgaatctg tcctgacacc aacgggcacg tggtgcgaag atgcgtggat 1200 tactgacgct tctttgattg aggcgacaaa acgcttgaag ttcctcgttg cgcttcgccc 1260 tgggcagatt ggacctacgc tgtctgctca aatggcttct actttccagc gtctgtctgg 1320 caaccgtttg ctgatcaatg tggtcaccgg tggggaagat gcggagcagc gtgcgtttgg 1380 tgatttcttg aacaaggagg agcgctacgc ccgtaccgga gaattcttgg atatcgtgag 1440 ccgcttgtgg cgaggcgaaa ccgtcacgca ccacggtgaa cacctgcagg tggagcaagc 1500 tagccttgcg catccgccag agattattcc ggagattctt tttggtggat cgtcgccagc 1560 tgcaggtgag gtggctgcac gttatgcgga cacctatctc acgtggggtg aaactcccga 1620 tcaggtggcg cagaaaatca actggatcaa cgagctagca gcacagcgcg gccgggaact 1680 gcgccatgga atccgcttcc atgtgatcac ccgcgatacg tctgaagaag catgggtggt 1740 ggcagagaag ttgattagcg gggtcactcc agaacaggtc gctaaggctc aagccgggtt 1800 tgcaacgtct aagtcggagg ggcagcgccg gatggctgag ctgcacagca agggtcgtgc 1860 ctttactagt ggctcaactg ctcgtgatct ggaggtgtat cccaatgtgt gggcaggcgt 1920 cggtttgctt cgcggaggtg caggaacagc ccttgtgggc tcgcatgaag aggtcgccga 1980 tcgcatcgaa gaatacgcag cactcggctt ggatcagttt gtactgtcgg gttatccaaa 2040 cttggaggag gccttccact tcggtgaggg tgtgattccg gagctgctgc gccgcggtgt 2100 ggatatcaaa aatcaagaat cacgagtttt ggaacctgtt gggtaaacgg gaagaacgag 2160 acgtcgataa gcaaatttct taaggaacct gacatgacta caaccttgac tcgccccaaa 2220 atcgcgctgc ccgcgcgcat ctattcaccg cttgcggtgc ttgttttctg gcagctcggc 2280 tcgagcctgg gcgccatccc ggagcggatt ctgccggcac caaccacgat cttggccgcc 2340 agctgggagg tcgccacaaa tggcacgctt ctcgacgccc tcctcgtctc aagccaacgc 2400 gtccttctag gcttcgccct cggtgctgtc ctaggcattt ccctaggtgt attgacaggc 2460 atgtccagat ttgcagacac cgccgttgat ccgctcattc aagctgcccg cgcgctgcct 2520 cacctgggtc ttgtgccgct gtttatcatc tggttcggta tcggtgagct gccgaaagta 2580 ctgattatta gcctcggcgt gctgtatccg ctgtacctca acaccgccag cgggttcagg 2640 caaattgatc caaagcttct ggaagccggc cacgtgatgg gcttcggatt tttccagagg 2700 ttgcggacca tcatcattcc ttctgccgcg ccgcaacttt ttgtcggcct gcgccaagca 2760 agtgcggccg cctggctctc actgatcgtg gcggaacagg tcaacgcccg cgaaggactc 2820 ggcttcctca tcaacaatgc gcgcgatttt taccgcaccg acctcgttat tttcggcctc 2880 attgtctacg ccagcctcgg tctgctgtct gaagcgctga tcagagcttg ggaacgtcac 2940 accttccgct accgaaacgc ataagaaagt tgctcgccat gactgccaca ttgtcactca 3000 aacccgcagc cactgtccgt ggattgcgca aatcatacgg aactaaagaa gtcctccaag 3060 gaatcgacct caccatcaac tgcggcgaag taaccgcgct gatcggacgc tcaggttcag 3120 gaaaatccac catcctgcgc gtgttg 3146 <210> 9 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 tcgagctcgg taccctggtt caggctgtgg gtgga 35 <210> 10 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 tcttcccgta gtactggcac atacttaaac agacc 35 <210> 11 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 gtatgtgcca gtactacggg aagaacgaga cgtcg 35 <210> 12 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 ctctagagga tcccctcgcg cgcattgttg atgag 35 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 ccaggtgttt ggggtgcagg 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 aatccacgga cagtggctgc 20 <210> 15 <211> 3161 <212> DNA <213> Corynebacterium glutamicum <400> 15 agacgattct ggaaggccac tttcttttga tcctggcggc gatttttcgg tgcttggtag 60 cggaatgtca atcgagacca agcgtccccc ggcgggtcga ttttttggtc tcgaatgaca 120 gtttcgctct ctggaaactc tcagtgtcag gtcagtggtg aaccaccatc cttagcaagg 180 agttcatcat gtccatcccc ttctcagtcc ttcaggacta cctggatctg atcagtcccg 240 aagccttacc ccagatccca cagcccccgg cccctgcccc cacagcaccc cagctaccac 300 cggcgccgga cccacacagc atcgagtggc cgatcttccc accagatcga atctccgcca 360 acgggcgacg ctactacgag ccacaaacac gactcgagtt catgcggatc tacaccaccc 420 tgccgcacgg ctaccgccag cccttcctta aagccaacaa catcggccac tgcaccgttc 480 gaacctggct agcagcaata agcaccttca gccgacttcc ccatgctttt gatgatgccc 540 accgcttcgg gatcgaacgc accaccccag tcgacgatgt caccacacta acggctgatg 600 acaaacgtga cctggtcata ggatacttag ctcaaccaca cggtcagggc cagcaattcc 660 tcacgtttta ccaactccgt aagcacacca tcatggcctg gtgcgccgct atgaccgacg 720 gggacttaga cgctgatatc tcaccccgcc agatcgggtt gatgaccacc cgaaccgtgg 780 tcgaaatcgt tcgactacgc cacatgattg cccaacaact agaaagagcc acgatcatgg 840 aaaacgagta cctcaaagaa atcgcagcgc tgaagaaaga actcgcgcac tacaagcaaa 900 aagaccatca gaatcaaatg gtgatcgata tcttgggaaa agctattggg accaggccca 960 atcctggcga gggcttagac gaggaggacg ccacctaaac gtggatgagc aacgcgcctt 1020 tgatcaagga ctcaaggaag aaaacacctt gatcacagat ctcaccacct gtgccaggct 1080 gagccataac aaggcattac ggctgatcaa gctgtcgaaa tcaacggcgt attaccgcaa 1140 caagccgcgt ccccgtcctg caccgaaacc tgtcctgcag gccgtgccag caccaacagc 1200 acctggtgtg gaacccacac cagagccttg gcaggggaag gagccagcag tgtcgtcggt 1260 gcgtcaagcg ttggcagaac acgaacgcca gttcattgtt gatgcgatca ccgcgtaccc 1320 acaactgagc gttagtgggg tgtttaacat gttgtttaac aaaggcatct accgcgcatc 1380 actacgtaca tggtggcgtg ttgccaagca gcacaagttg ttacacaaag accgagtcag 1440 tgccctgtcc ccggggaaac gatcaccaac gccacgggtt aagccgaggt tggaagcaac 1500 acagcctggt caggtggtgt gttgggatgt gacgttcttg ccgtcgctgg tacgtggtaa 1560 gacctatgcg ttgcatctgg cgattgattt gttttcccgc aagattgttg gggcgaaggt 1620 cgcgccgacg gaaaatacct ccaccgcggt ggagttgtta acgcaggtgt tagcggataa 1680 tccgggtgtg gtgacggtgc attcggataa tgggtcggcg atgacatcga cgagggtgcg 1740 gcggttgtta gcggatcatg gtgtggcgtt gtcgttgatt cggccgcggg tgagtgatga 1800 taatgcgttt gtggagtcgg tgtttcatac gttgaagtat cggccgtttt atccgaaggt 1860 gtttgcatcg atggatcagg cccgggtgtg ggtggaggag tttgtggtgt attacaacac 1920 ggttcatccg cattctggtg tggctgggca tactccgcag tcggtgtttg atggtagttg 1980 gagggcggct cataggttgc gtgtgcaggc gttggatgcc cattaccggc agttcccgca 2040 gcggtatgtg gggcggccgg tggttcagga agttgctggt gtggtgcgtc ttaatggtgc 2100 gcgtgatgat gggtctgtac aggagagggt tggtggtgta gcgtcgctgt taagtgcttg 2160 agttagcatg tgttcttatc gcccccctgg ttcacaaacc cctggcagcg agcggaaaag 2220 tgcattttta ggccaagggc cctcggatct tcgagcgctt tggtctcttt tgcacgtctg 2280 accgaaccag atcacctaga aacgccaaag gccccgcaag tatcaaacct gcggggcctt 2340 tgaggtacct gtttcctatt ttgttgactt aggaagctgc gcacggcgga taaccaaacc 2400 gcacagcaag gcagccactc cccacgcggt gagccagaac tgctccacga cataaacctg 2460 aatagttgga agcaaacgac ttacgatcac cagggctaca gcgatgctca aagaaatgat 2520 ctgtgtcttt gagcttggct cgtacttgct ggtggtagcg aatgcgccga gaatgatcga 2580 ggcaacgagg atcagaagga atcctggagt gatcacaaat gggctcagca tgccggcggt 2640 aaacagctca attgctgcaa acaccaacaa aaccagacct aaggctacga aagctccacc 2700 gatgcggatt gctgccggaa ctttacgcca gctggcacgg ccttcgaggc tggtgagctt 2760 ttttaatgat cttcccgatg ctgaactcat aatgtgacat accctactag ttctcgtacc 2820 atccccacac aattgacctg ccaagagtgt ggaaatacag gttgaagcct agaacagtgg 2880 gggtagcgtc gggggcgatg tcgagttttt ccacatcaag tgcatgaact gcgaagaggt 2940 aacggtgcgg tgcgtggcca gctggaggtt gcgctccgta gaagccacgc ttgccggaat 3000 cacccttgag ggaaactacg ccttcgatgc cgccgagggt ttcatcgcca gcaccggtgg 3060 ggatctccgt gacagttgtg gggatgttaa acactgccca gtgccagaaa ccagcgccgg 3120 ttggggcatc tgggtcgagg caggtgatcg cgagggattt g 3161 <210> 16 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 tcgagctcgg tacccttttt tggtctcgaa tgaca 35 <210> 17 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 catgctaaca gtactgttta ggtggcgtcc tcctc 35 <210> 18 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 gtatgtgcca gtactacggg aagaacgaga cgtcg 35 <210> 19 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 ctctagagga tcccctcgcg cgcattgttg atgag 35 <210> 20 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 tagaggagac acaacatgac attaactttc cattg 35 <210> 21 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 acacatgcta acagtttacc caacaggttc caaaa 35 <210> 22 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 cgccacctaa acagtgaagc ctaaaaacga ccgag 35 <210> 23 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 gaaagttaat gtcatgttgt gtctcctcta aagat 35 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 ctggcggcga tttttcggtg 20 <210> 25 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 cgcgatcacc tgcctcgacc 20 <210> 26 <211> 5666 <212> DNA <213> Corynebacterium glutamicum <400> 26 tgtcatgctt ccggaggtgc gcagggctcg agactccgga aagctatttg ccactccgat 60 gtttgggtca ctcgacgaga tacgtgctga tcacctaatt tggtgcacag ggtttcggcc 120 ggcgattagg ccagttcgtc aacttctcaa acacggacaa ccaaaggttc ctggtcttta 180 tttagtaggc tacggagatt ggacgggacc tgggtctgcg actatcacag gggtcgggct 240 ttatgccaag cgagcagcca aagagattgc cgcgtcagtc ggcaaagtcg ttaaatagtt 300 tgaaggctaa gaacttaatg ttaaagcgaa aattgttttg acacctcaac taatgcagcg 360 atgcgttctt tccagaatgc tttcatgaca gggatgctgt cttgatcagg caggcgtctg 420 tgctggatgc cgaagctgga tttattgtcg cctttggagg tgaagttgac gctcactcga 480 gaatcatcgg ccaaccattt ggcattgaat gttctaggtt cggaggcgga ggttttctca 540 attagtgcgg gatcgagcca ctgcgcccgc aggtcatcgt ctccgaagag cttccacact 600 ttttcgaccg gcaggttaag ggttttggag gcattggccg cgaacccatc gctggtcatc 660 ccgggtttgc gcatgccacg ttcgtattca taaccaatcg cgatgccttg agcccaccag 720 ccactgacat caaagttgtc cacgatgtgc tttgcgatgt gggtgtgagt ccaagaggtg 780 gcttttacgt cgtcaagcaa ttttagccac tcttcccacg gctttccggt gccgttgagg 840 atagcttcag gggacatgcc tggtgttgag ccttgcggag tggagtcagt catgcgaccg 900 agactagtgg cgctttgcct gtgttgctta ggcggcgttg aaaatgaact acgaatgaaa 960 agttcgggaa ttgtctaatc cgtactaagc tgtctacaca atgtctactt cagttacttc 1020 accagcccac aacaacgcac attcctccga atttttggat gcgttggcaa accatgtgtt 1080 gatcggcgac ggcgccatgg gcacccagct ccaaggcttt gacctggacg tggaaaagga 1140 tttccttgat ctggaggggt gtaatgagat tctcaacgac acccgccctg atgtgttgag 1200 gcagattcac cgcgcctact ttgaggcggg agctgacttg gttgagacca atacttttgg 1260 ttgcaacctg ccgaacttgg cggattatga catcgctgat cgttgccgtg agcttgccta 1320 caagggcact gcagtggcta gggaagtggc tgatgagatg gggccgggcc gaaacggcat 1380 gcggcgtttc gtggttggtt ccctgggacc tggaacgaag cttccatcgc tgggccatgc 1440 accgtatgca gatttgcgtg ggcactacaa ggaagcagcg cttggcatca tcgacggtgg 1500 tggcgatgcc tttttgattg agactgctca ggacttgctt caggtcaagg ctgcggttca 1560 cggcgttcaa gatgccatgg ctgaacttga tacattcttg cccattattt gccacgtcac 1620 cgtagagacc accggcacca tgctcatggg ttctgagatc ggtgccgcgt tgacagcgct 1680 gcagccactg ggtatcgaca tgattggtct gaactgcgcc accggcccag atgagatgag 1740 cgagcacctg cgttacctgt ccaagcacgc cgatattcct gtgtcggtga tgcctaacgc 1800 aggtcttcct gtcctgggta aaaacggtgc agaataccca cttgaggctg aggatttggc 1860 gcaggcgctg gctggattcg tctccgaata tggcctgtcc atggtgggtg gttgttgtgg 1920 caccacacct gagcacatcc gtgcggtccg cgatgcggtg gttggtgttc cagagcagga 1980 aacctccaca ctgaccaaga tccctgcagg ccctgttgag caggcctccc gcgaggtgga 2040 gaaagaggac tccgtcgcgt cgctgtacac ctcggtgcca ttgtcccagg aaaccggcat 2100 ttccatgatc ggtgagcgca ccaactccaa cggttccaag gcattccgtg aggcaatgct 2160 gtctggcgat tgggaaaagt gtgtggatat tgccaagcag caaacccgcg atggtgcaca 2220 catgctggat ctttgtgtgg attacgtggg acgagacggc accgccgata tggcgacctt 2280 ggcagcactt cttgctacca gctccacttt gccaatcatg attgactcca ccgagccaga 2340 ggttattcgc acaggccttg agcacttggg tggacgaagc atcgttaact ccgtcaactt 2400 tgaagacggc gatggccctg agtcccgcta ccagcgcatc atgaaactgg taaagcagca 2460 cggtgcggcc gtggttgcgc tgaccattga tgaggaaggc caggcacgta ccgctgagca 2520 caaggtgcgc attgctaaac gactgattga cgatatcacc ggcagctacg gcctggatat 2580 caaagacatc gttgtggact gcctgacctt cccgatctct actggccagg aagaaaccag 2640 gcgagatggc attgaaacca tcgaagccat ccgcgagctg aagaagctct acccagaaat 2700 ccacaccacc ctgggtctgt ccaatatttc cttcggcctg aaccctgctg cacgccaggt 2760 tcttaactct gtgttcctca atgagtgcat tgaggctggt ctggactctg cgattgcgca 2820 cagctccaag attttgccga tgaaccgcat tgatgatcgc cagcgcgaag tggcgttgga 2880 tatggtctat gatcgccgca ccgaggatta cgatccgctg caggaattca tgcagctgtt 2940 tgagggcgtt tctgctgccg atgccaagga tgctcgcgct gaacagctgg ccgctatgcc 3000 tttgtttgag cgtttggcac agcgcatcat cgacggcgat aagaatggcc ttgaggatga 3060 tctggaagca ggcatgaagg agaagtctcc tattgcgatc atcaacgagg accttctcaa 3120 cggcatgaag accgtgggtg agctgtttgg ttccggacag atgcagctgc cattcgtgct 3180 gcaatcggca gaaaccatga aaactgcggt ggcctatttg gaaccgttca tggaagagga 3240 agcagaagct accggatctg cgcaggcaga gggcaagggc aaaatcgtcg tggccaccgt 3300 caagggtgac gtgcacgata tcggcaagaa cttggtggac atcattttgt ccaacaacgg 3360 ttacgacgtg gtgaacttgg gcatcaagca gccactgtcc gccatgttgg aagcagcgga 3420 agaacacaaa gcagacgtca tcggcatgtc gggacttctt gtgaagtcca ccgtggtgat 3480 gaaggaaaac cttgaggaga tgaacaacgc cggcgcatcc aattacccag tcattttggg 3540 tggcgctgcg ctgacgcgta cctacgtgga aaacgatctc aacgaggtgt acaccggtga 3600 ggtgtactac gcccgtgatg ctttcgaggg cctgcgcctg atggatgagg tgatggcaga 3660 aaagcgtggt gaaggacttg atcccaactc accagaagct attgagcagg cgaagaagaa 3720 ggcggaacgt aaggctcgta atgagcgttc ccgcaagatt gccgcggagc gtaaagctaa 3780 tgcggctccc gtgattgttc cggagcgttc tgatgtctcc accgatactc caaccgcggc 3840 accaccgttc tggggaaccc gcattgtcaa gggtctgccc ttggcggagt tcttgggcaa 3900 ccttgatgag cgcgccttgt tcatggggca gtggggtctg aaatccaccc gcggcaacga 3960 gggtccaagc tatgaggatt tggtggaaac tgaaggccga ccacgcctgc gctactggct 4020 ggatcgcctg aagtctgagg gcattttgga ccacgtggcc ttggtgtatg gctacttccc 4080 agcggtcgcg gaaggcgatg acgtggtgat cttggaatcc ccggatccac acgcagccga 4140 acgcatgcgc tttagcttcc cacgccagca gcgcggcagg ttcttgtgca tcgcggattt 4200 cattcgccca cgcgagcaag ctgtcaagga cggccaagtg gacgtcatgc cattccagct 4260 ggtcaccatg ggtaatccta ttgctgattt cgccaacgag ttgttcgcag ccaatgaata 4320 ccgcgagtac ttggaagttc acggcatcgg cgtgcagctc accgaagcat tggccgagta 4380 ctggcactcc cgagtgcgca gcgaactcaa gctgaacgac ggtggatctg tcgctgattt 4440 tgatccagaa gacaagacca agttcttcga cctggattac cgcggcgccc gcttctcctt 4500 tggttacggt tcttgccctg atctggaaga ccgcgcaaag ctggtggaat tgctcgagcc 4560 aggccgtatc ggcgtggagt tgtccgagga actccagctg cacccagagc agtccacaga 4620 cgcgtttgtg ctctaccacc cagaggcaaa gtactttaac gtctaacacc tttgagaggg 4680 aaaactttcc cgcacattgc agatcgtgcc actttaacta aggttgacgg catgattaag 4740 gcgattttct gggacatgga cggcacgatg gtggactctg agccacagtg gggcattgct 4800 acctacgagc tcagcgaagc catgggccgc cgcctcaccc cggagctccg ggaactcacc 4860 gtcggctcga gcctgccgcg caccatgcgc ttatgcgcag agcacgcagg cattacattg 4920 agcgacgcgg actacgagcg ctaccgggct ggcatgttcg cccgggtcca tgagcttttc 4980 gacgaatccc tcgtcccaaa tccaggcgtc accgaactcc tgacagagtt gaaggccctc 5040 gagatcccca tgttggtcac caccaacaca gagcgcgatc tcgcgacccg ttcagtcgca 5100 gccgtgggaa atgagttctt catcggttct atcgctggtg atgaagtccc aacagcaaag 5160 ccagcccccg acatgtacct cgaagcagca cgacgtgtgg gctttgaccc atcagagtgc 5220 ctcgtgttcg aagattccta caacggcatg ctgggcgctg ttactgcagg ttgccgcgtc 5280 attggtctgc acccagaaga agtccaagcg ccagaaggtg tagtgccttt gcgttccctc 5340 cacggtaaaa actctttcga aggtgtcacc gctgagatgg tcactgcctg gtaccaccag 5400 atcgagccgg caggtgtcgc aaaataaaac caggtggggg agtgaaatta ttcgactaat 5460 atcctccccc aaacacacat tgataactgt tgtgtggaag aatgtaccga gtgaagacat 5520 ttgactcgct gtacgaagaa cttcttaacc gtgctcagac ccgccctgaa gggtctggaa 5580 ccgtggccgc cttggataaa ggcatccatc atctaggtaa gaaggtcatc gaagaagccg 5640 gagaggtctg gattgcagcc gagtat 5666 <210> 27 <211> 3613 <212> DNA <213> Corynebacterium glutamicum <400> 27 tcctgtgggg tgaacttgac ctgtgctggg ccacgacgtc cgaaaacgtg cacttcagtg 60 gccttgtttt ctttgaggga gtcgtagacg ttgtcggaaa tttcggtgac tttgagctcg 120 tcgcctgtct tagccaggat gcgggctacg tcgaggccga cgttaccaac gccgataaca 180 gcgacggact gtgcagacag atcccaggag cgctcgaagc gtgggttgcc gtcgtagaag 240 ccaacgaact cgccggcacc gaaggagcct tctgcttcaa ttccggggat gttgaggtcg 300 cggtctgcaa ctgcgccggt ggagaacacg actgcatcgt agtagtcgcg gagttcttcg 360 acggtgatgt ctttgccgat ttcaatgtta ccgagcaggc gcaggcgtgg cttgtccaac 420 acgttgtgca gggacttaac gatgcccttg atgcgtgggt ggtctggagc aacgccgtaa 480 cggatgagtc cgaacggtgc aggcatttgc tcgaaaaggt caacgaacac ttcgcgctct 540 tcattgcgga tgaggaggtc ggatgcgtaa atgccagcag ggccagctcc gatgacggct 600 acgcgcaggg gagttgtcat gtgtttgaag ttgcctttcg tgagcccttt tatggaaaca 660 agggtgtgaa aatcaagtag ttaaaggtgt ttcaagtcca ggctgtttaa cactcctaga 720 ccgcttggtc tgtaaacgta gcagcgaaat gcgacaatgc gaagactttt gcttaattaa 780 attcaaactc catgaaaaaa ctagacagat cggtctatta tattcacggt gaacctaacc 840 taatatcccc aggttaattc atttaaacgg gcattaggtg actccattgc tttcagtctc 900 atgaatctaa tggttggtct agacagagcg gtacgtctaa gtttgcggat agatcaaacc 960 gagtgacatg tacttcacta gctctttaag gattaactcc ccatgacaac aaccaccgga 1020 agtgcccggc cagcacgtgc cgccaggaag cctaagcccg aaggccaatg gaaaatcgac 1080 ggcaccgagc cgcttaacca tgccgaggaa attaagcaag aagaacccgc ttttgctgtc 1140 aagcagcggg tcattgatat ttactccaag cagggttttt cttccattgc accggatgac 1200 attgccccac gctttaagtg gttgggcatt tacacccagc gtaagcagga tctgggcggt 1260 gaactgaccg gtcagcttcc tgatgatgag ctgcaggatg agtacttcat gatgcgtgtg 1320 cgttttgatg gcggactggc ttcccctgag cgcctgcgtg ccgtgggtga aatttctagg 1380 gattatgctc gttccaccgc ggacttcacc gaccgccaga acattcagct gcactggatt 1440 cgtattgaag atgtgcctgc gatctgggag aagctagaaa ccgtcggact gtccaccatg 1500 cttggttgcg gtgacgttcc acgtgttatc ttgggctccc cagtttctgg cgtagctgct 1560 gaagagctga tcgatgccac cccggctatc gatgcgattc gtgagcgcta cctagacaag 1620 gaagagttcc acaaccttcc tcgtaagttt aagactgcta tcactggcaa ccagcgccag 1680 gatgttaccc acgaaatcca ggacgtttcc ttcgttcctt cgattcaccc agaattcggc 1740 ccaggatttg agtgctttgt gggcggtggc ctgtccacca acccaatgct tgctcagcca 1800 cttggttctt ggattccact tgatgaggtt ccagaagtgt gggctggcgt cgccggaatt 1860 ttccgcgact acggcttccg acgcctgcgt aaccgtgctc gcctcaagtt cttggtggca 1920 cagtggggta ttgagaagtt ccgtgaagtt cttgagaccg aatacctcga gcgcaagctg 1980 atcgatggcc cagttgttac caccaaccct ggctaccgtg accacattgg cattcaccca 2040 caaaaggacg gcaagttcta cctcggtgtg aagccaaccg ttggacacac caccggtgag 2100 cagctcattg ccattgctga tgttgcagaa aagcacggca tcaccaggat tcgtaccacg 2160 gcggaaaagg aactgctctt cctcgatatt gagagaaaga accttactac cgttgcacgc 2220 gacctggatg aaatcggact gtactcttca ccttccgagt tccgccgcgg catcatttcc 2280 tgcaccggct tggagttctg caagcttgcg cacgcaacca ccaagtcacg agcaattgag 2340 cttgtcgacg aactggaaga gcgcctcggc gatttggatg ttcccatcaa gattgcactg 2400 aacggttgcc ctaactcttg tgcacgcacc caggtttccg acatcggatt caagggacag 2460 accgtcactg atgctgacgg caaccgcgtt gaaggtttcc aggttcacct gggcggttcc 2520 atgaacttgg atccaaactt cggacgcaag ctcaagggcc acaaggttat tgccgatgaa 2580 gtgggagagt acgtcactcg cgttgttacc cacttcaagg aacagcgcca cgaggacgag 2640 cacttccgcg attgggtcca gcgggccgct gaggaagatt tggtgtgagt cttcggagga 2700 aacccaatcc caaccgcaac caccctctgt actgcccata ctgcgcggga gaagttcttt 2760 tccccgatga gcaaacagaa ttcgcgtggt tgtgtgcgga ttgcaccaga gtttttgaag 2820 tgaaatatca cggccaggac gatccagtgc acaggccagc accagcaaag tccacatcgc 2880 aagcattaaa agaatctctc gaaagacaca aaagaggtga gtcgcaacaa tgagctttca 2940 actagttaac gccctgaaaa atactggttc ggtaaaagat cccgagatct cacccgaagg 3000 acctcgcacg accacaccgt tgtcaccaga ggtagcaaaa cataacgagg aactcgtcga 3060 aaagcatgct gctgcgttgt atgacgccag cgcgcaagag atcctggaat ggacagccga 3120 gcacgcgccg ggcgctattg cagtgacctt gagcatggaa aacaccgtgc tggcggagct 3180 ggctgcgcgg cacctgccgg aagctgattt cctctttttg gacaccggtt accacttcaa 3240 ggagaccctt gaagttgccc gtcaggtaga tgagcgctat tcccagaagc ttgtcaccgc 3300 gctgccgatc ctcaagcgca cggagcagga ttccatttat ggtctcaacc tgtaccgcag 3360 caacccagcg gcgtgctgcc gaatgcgcaa agttgaaccg ctggcggcgt cgttaagccc 3420 atacgctggc tggatcaccg gcctgcgccg cgctgatggc ccaacccgtg ctcaagcccc 3480 tgcgctgagc ttggatgcca ccggcaggct caagatttct ccaattatca cctggtcatt 3540 ggaggaaacc aacgagttca ttgcggacaa caacctcatc gatcacccac ttacccatca 3600 gggttatcca tca 3613 <210> 28 <211> 3311 <212> DNA <213> Corynebacterium glutamicum <400> 28 ctcattccag cgtcacgacg ttccgaaggt actggttacc tggcattggg cactaccgtt 60 tctgcagcac ttggaccagc cctagcactt tttgtcctag gaacatttga ttacgacatg 120 ctgtttatcg tggtcttggc aacctcggtc atctctttga tcgccgtcgt gttcatgtac 180 tttaagacca gcgaccctga gccttctggg gaaccagcca agttcagctt caaatctatt 240 atgaacccaa agatcatccc catcggcatc tttatcttgc ttatttgctt tgcttactct 300 ggcgtcattg cctacatcaa cgcatttgct gaagaacgcg atctgattac gggtgctgga 360 ttgttcttca ttgcctacgc agtatcaatg tttgtgatgc gcagcttcct tggcaaactg 420 caggaccgtc gcggagacaa cgtcgttatt tactttggat tgttcttctt cgttatttcc 480 ttgacgattt tgtcctttgc cacttccaac tggcacgttg tgttgtccgg agtcattgca 540 ggtctgggat acggcacttt gatgccagca gtgcagtcca tcgctgttgg tgtagtagac 600 aaaaccgaat tcggtacggc cttctccact ttgttcctgt ttgtggactt aggttttggc 660 tttggaccta ttatcctggg agcagtttct gcggcaattg gtttcggacc tatgtatgca 720 gcactggcag gtgtgggtgt gattgccgga atcttctacc tgttcacaca cgctcgcacc 780 gatcgagcta agaatggctt tgttaaacac ccagagcctg tcgctttagt tagctagttc 840 tttcagcttt ccctcccgat cagcgtaaac cggcccttcc ggttttgggg tacatcacag 900 aacctgggct agcggtgtag acccgaaaat aaacgagcct tttgtcaggg ttaaggttta 960 ggtatctaag ctaaccaaac accaacaaaa ggctctaccc atgaagtcta ccggcaacat 1020 catcgctgac accatctgcc gcactgcgga actaggactc accatcaccg gcgcttccga 1080 tgcaggtgat tacaccctga tcgaagcaga cgcactcgac tacacctcca cctgcccaga 1140 atgctcccaa cctggggtgt ttcgtcatca cacccaccgg atgctcattg atttacccat 1200 cgtcgggttt cccaccaaac tgtttatccg tctacctcgc taccgctgca ccaaccccac 1260 atgtaagcaa aagtatttcc aagcagaact aagctgcgct gaccacggta aaaaggtcac 1320 ccaccgggtc acccgctgga ttttacaacg ccttgctatt gaccggatga gtgttcacgc 1380 aaccgcgaaa gcacttgggc tagggtggga tttaacctgc caactagccc tcgatatgtg 1440 ccgtgagctg gtctataacg atcctcacca tcttgatgga gtgtatgtca ttggggtgga 1500 tgagcataag tggtcacata atagggctaa gcatggtgat gggtttgtca ccgtgattgt 1560 cgatatgacc gggcatcggt atgactcacg gtgtcctgcc cggttattag atgtcgtccc 1620 aggtcgtagt gctgatgctt tacggtcctg gcttggctcc cgcggtgaac agttccgcaa 1680 tcagatacgg atcgtgtcca tggatggatt ccaaggctac gccacagcaa gtaaagaact 1740 cattccttct gctcgtcgcg tgatggatcc attccatgtt gtgcggcttg ctggtgacaa 1800 gctcaccgcc tgccggcaac gcctccagcg ggagaaatac cagcgtcgtg gtttaagcca 1860 ggatccgttg tataaaaacc ggaagacctt gttgaccacg cacaagtggt tgagtcctcg 1920 tcagcaagaa agcttggagc agttgtgggc gtatgacaaa gactacgggg cgttaaagct 1980 tgcgtggctt gcgtatcagg cgattattga ttgttatcag atgggtaata agcgtgaagc 2040 gaagaagaaa atgcggacca ttattgatca gcttcgggtg ttgaaggggc cgaataagga 2100 actcgcgcag ttgggtcgta gtttgtttaa acgacttggt gatgtgttgg cgtatttcga 2160 tgttggtgtc tccaacggtc cggtcgaagc gatcaacgga cggttggagc atttgcgtgg 2220 gattgctcta ggtttccgta atttgaacca ctacattctg cggtgcctta tccattcagg 2280 gcagttggtc cataagatca atgcactcta aaacaggaag agcccgtaaa cctctgacta 2340 gcgtcaccct ctgattaagg cgaccgcgga tttaagagca gaggctgcca cgagcgcatc 2400 ttcacggctg tgtgttgtac taaaagtaca gcgcacagcc gttcgtgctt gatcctcctc 2460 aagccccaac gccagcaaca catgggatac ctctccggaa ccacaggcag aaccagggga 2520 gcacacaatg ccttggcgtt ccaattccag aagaacagtt tcagatccta tgctgtcgaa 2580 gagaaaagat gcgtgtccat caatgcgcat cctaggatgt ccagtcaggt gtgctcccgg 2640 gatagtgaga acttcctcga tgaattcgcc aagatctgga taggattccg ccctggccaa 2700 ttccaaggca gtggcaaagg cgatagcccc cgcaacgttt tccgtgccac tacgccgccc 2760 tttttcctgg ccgccgccat ggattaccgg ctccagggga agctttgacc ataacactcc 2820 aatcccttta ggcgcaccga atttatgacc cgacaaactt aacgcgtcaa ctcccaagtc 2880 aaaggttaaa tgtgcagctt gcactgcatc ggtgtgaaaa ggcgtactgc ttaccgccgc 2940 caactcagct atcggctgaa tggttcccac ctcattgttg gcataaccaa tgctgatcaa 3000 tgtggtgtcc ggcctgactg ctttgcggag accctccggg gagatcagcc cagtgtgatc 3060 gggggatagg taggtgatct cgaaatcatg aaacctttca agataagcag cagtttctag 3120 gacactgtca tgctcgatcg gggtggtgat gaggtgccgg ccacgaggat tagctaagca 3180 cgctcctttg atagcgaggt tgttggcttc tgatccaccc gacgtaaacg tcacctgtgt 3240 ggggcgtcct ccgataatgc gggccacccg agttcgagca tcctccagcc ccgcagaggc 3300 gagtcttccc a 3311 <210> 29 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 29 acccggggat cctctagaat gtttgtgatg cgcag 35 <210> 30 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 30 gtcagagagt acttacgctg atcgggaggg aaagc 35 <210> 31 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 31 atcagcgtaa gtactctctg actagcgtca ccctc 35 <210> 32 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 32 ctgcaggtcg actctagaaa agggattgga gtgtt 35 <210> 33 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 33 caacgaaagg aaacaatgtc tacttcagtt acttc 35 <210> 34 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 34 tagtcagaga gtgatttaga cgttaaagta ctttg 35 <210> 35 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 35 atcaaaacag atatcatgac aacaaccacc ggaag 35 <210> 36 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 36 cgctagtcag agagttcaca ccaaatcttc ctcag 35 <210> 37 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 37 ccgatcagcg taagtagaaa catcccagcg ctact 35 <210> 38 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 38 aactgaagta gacattgttt cctttcgttg ggtac 35 <210> 39 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 39 tactttaacg tctaaggtac cggcgcttca tgtca 35 <210> 40 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 40 ggtggttgtt gtcatgatat ctgttttgat ctcct 35 <210> 41 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 41 atccccatcg gcatctttat 20 <210> 42 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 42 cgatcacact gggctgatct 20 <210> 43 <211> 381 <212> PRT <213> Corynebacterium glutamicum <400> 43 Met Thr Leu Thr Phe His Trp Phe Leu Ser Thr Ser Gly Asp Ser Arg 1 5 10 15 Gly Ile Ile Gly Gly Gly His Gly Ala Glu Lys Ser Gly Thr Ser Arg 20 25 30 Glu Leu Ser His Ser Tyr Leu Lys Gln Leu Ala Leu Ala Ala Glu Thr 35 40 45 Asn Gly Phe Glu Ser Val Leu Thr Pro Thr Gly Thr Trp Cys Glu Asp 50 55 60 Ala Trp Ile Thr Asp Ala Ser Leu Ile Glu Ala Thr Lys Arg Leu Lys 65 70 75 80 Phe Leu Val Ala Leu Arg Pro Gly Gln Ile Gly Pro Thr Leu Ser Ala 85 90 95 Gln Met Ala Ser Thr Phe Gln Arg Leu Ser Gly Asn Arg Leu Leu Ile 100 105 110 Asn Val Val Thr Gly Gly Glu Asp Ala Glu Gln Arg Ala Phe Gly Asp 115 120 125 Phe Leu Asn Lys Glu Glu Arg Tyr Ala Arg Thr Gly Glu Phe Leu Asp 130 135 140 Ile Val Ser Arg Leu Trp Arg Gly Glu Thr Val Thr His His Gly Glu 145 150 155 160 His Leu Gln Val Glu Gln Ala Ser Leu Ala His Pro Pro Glu Ile Ile 165 170 175 Pro Glu Ile Leu Phe Gly Gly Ser Ser Pro Ala Ala Gly Glu Val Ala 180 185 190 Ala Arg Tyr Ala Asp Thr Tyr Leu Thr Trp Gly Glu Thr Pro Asp Gln 195 200 205 Val Ala Gln Lys Ile Asn Trp Ile Asn Glu Leu Ala Ala Gln Arg Gly 210 215 220 Arg Glu Leu Arg His Gly Ile Arg Phe His Val Ile Thr Arg Asp Thr 225 230 235 240 Ser Glu Glu Ala Trp Val Val Ala Glu Lys Leu Ile Ser Gly Val Thr 245 250 255 Pro Glu Gln Val Ala Lys Ala Gln Ala Gly Phe Ala Thr Ser Lys Ser 260 265 270 Glu Gly Gln Arg Arg Met Ala Glu Leu His Ser Lys Gly Arg Ala Phe 275 280 285 Thr Ser Gly Ser Thr Ala Arg Asp Leu Glu Val Tyr Pro Asn Val Trp 290 295 300 Ala Gly Val Gly Leu Leu Arg Gly Gly Ala Gly Thr Ala Leu Val Gly 305 310 315 320 Ser His Glu Glu Val Ala Asp Arg Ile Glu Glu Tyr Ala Ala Leu Gly 325 330 335 Leu Asp Gln Phe Val Leu Ser Gly Tyr Pro Asn Leu Glu Glu Ala Phe 340 345 350 His Phe Gly Glu Gly Val Ile Pro Glu Leu Leu Arg Arg Gly Val Asp 355 360 365 Ile Lys Asn Gln Glu Ser Arg Val Leu Glu Pro Val Gly 370 375 380

Claims (11)

  1. ssuD 유전자에 의해 코딩되는 단백질 활성이 내재적 활성에 비하여 강화된 미생물을 티오설페이트를 포함하는 배지에서 배양하는 것을 포함하는, 황 함유 아미노산 또는 황 함유 아미노산 유도체의 제조방법으로,
    상기 ssuD 유전자에 의해 코딩되는 단백질은 티오설페이트 환원효소(thiosulfate reductase) 활성을 갖는 것인, 제조방법.
  2. 삭제
  3. 제1항에 있어서, 상기 ssuD 유전자에 의해 코딩되는 단백질은 서열번호 43의 아미노산 서열을 포함하는 것인, 제조방법.
  4. 제1항에 있어서, 상기 미생물은 코리네박테리움 속(Corynebacterium sp.) 또는 에스케리키아 속(Escherichia sp.) 미생물인 것인, 제조방법.
  5. 제4항에 있어서, 상기 미생물은 코리네박테리움 글루타미쿰(Corynebacterium glutamicum), 코리네박테리움 칼루내(Corynebacterium callunae), 코리네박테리움 데세르티(Corynebacterium deserti), 코리네박테리움 크레나툼(Corynebacterium crenatum) 또는 에스케리키아 콜라이(Escherichia coli)인 것인, 제조방법.
  6. 제1항에 있어서, 상기 방법은 상기 미생물 또는 배양 배지로부터 황 함유 아미노산 또는 황 함유 아미노산 유도체를 회수하는 것을 포함하는, 제조방법.
  7. 제1항에 있어서, 상기 ssuD 유전자에 의해 코딩되는 단백질 활성의 강화는 상기 ssuD 유전자에 의해 코딩되는 단백질을 코딩하는 폴리뉴클레오티드의 카피수 증가, 프로모터 활성 강화, 개시코돈 교체 또는 이의 조합에 의해 달성되는 것인, 제조방법.
  8. 제1항에 있어서, 상기 황 함유 아미노산 또는 황 함유 아미노산 유도체는 메티오닌(methionine), 시스테인(cysteine), 시스틴(cystine), 란티오닌(lanthionine), 호모시스테인(homocysteine), 호모시스틴(homocystine), 호모란티오닌(homolanthionine), 타우린(taurine) 중에서 선택되는 어느 하나 이상인 것인, 제조방법.
  9. ssuD 유전자에 의해 코딩되는 단백질 활성이 내재적 활성에 비하여 강화된, 황 함유 아미노산 또는 황 함유 아미노산 유도체를 생산하는 미생물로,
    상기 ssuD 유전자에 의해 코딩되는 단백질은 티오설페이트 환원효소(thiosulfate reductase) 활성을 갖는 것인, 미생물.
  10. 제9항에 있어서, 상기 미생물은 황원으로 티오설페이트를 이용하여, 황 함유 아미노산 또는 황 함유 아미노산 유도체를 생산하는 미생물.
  11. ssuD 유전자에 의해 코딩되는 단백질 활성이 내재적 활성에 비하여 강화된 미생물, 또는 이의 배양물; 및 티오설페이트를 포함하는, 황 함유 아미노산 또는 황 함유 아미노산 유도체 제조용 조성물로,
    상기 ssuD 유전자에 의해 코딩되는 단백질은 티오설페이트 환원효소(thiosulfate reductase) 활성을 갖는 것인, 조성물.
KR1020190077999A 2019-06-28 2019-06-28 황 함유 아미노산 또는 그 유도체의 제조방법 KR102472559B1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020190077999A KR102472559B1 (ko) 2019-06-28 2019-06-28 황 함유 아미노산 또는 그 유도체의 제조방법
PCT/KR2020/008415 WO2020263043A1 (ko) 2019-06-28 2020-06-26 황 함유 아미노산 또는 그 유도체의 제조방법
CN202080059719.6A CN114787369B (zh) 2019-06-28 2020-06-26 生产含硫氨基酸或其衍生物的方法
EP20830519.3A EP3978615A4 (en) 2019-06-28 2020-06-26 METHOD FOR THE PRODUCTION OF A SULFUR-BEARING AMINO ACID OR A DERIVATIVE THEREOF
US17/597,007 US20220315963A1 (en) 2019-06-28 2020-06-26 Method of producing sulfur-containing amino acid or derivative thereof
JP2021577707A JP7439142B2 (ja) 2019-06-28 2020-06-26 含硫アミノ酸またはその誘導体の製造方法
BR112021026486A BR112021026486A2 (pt) 2019-06-28 2020-06-26 Método de produção de aminoácido que contém enxofre ou derivado do mesmo, micro-organismo, composição para produzir um aminoácido, uso de uma proteína e de um micro-organismo

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190077999A KR102472559B1 (ko) 2019-06-28 2019-06-28 황 함유 아미노산 또는 그 유도체의 제조방법

Publications (2)

Publication Number Publication Date
KR20210002260A KR20210002260A (ko) 2021-01-07
KR102472559B1 true KR102472559B1 (ko) 2022-12-01

Family

ID=74062030

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190077999A KR102472559B1 (ko) 2019-06-28 2019-06-28 황 함유 아미노산 또는 그 유도체의 제조방법

Country Status (7)

Country Link
US (1) US20220315963A1 (ko)
EP (1) EP3978615A4 (ko)
JP (1) JP7439142B2 (ko)
KR (1) KR102472559B1 (ko)
CN (1) CN114787369B (ko)
BR (1) BR112021026486A2 (ko)
WO (1) WO2020263043A1 (ko)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10305774A1 (de) 2003-02-06 2004-08-26 Consortium für elektrochemische Industrie GmbH Verfahren zur fermentativen Herstellung von L-Methionin
JP2007525951A (ja) * 2003-05-30 2007-09-13 マイクロバイア インコーポレイテッド アミノ酸生産用の方法および組成物
US20050255568A1 (en) * 2003-05-30 2005-11-17 Bailey Richard B Methods and compositions for amino acid production
DE102004035052A1 (de) * 2004-07-20 2006-02-16 Basf Ag Mikroorganismen zur Herstellung von schwefelhaltigen Verbindungen
DE102004035074A1 (de) * 2004-07-20 2006-02-16 Basf Ag P1-34-Expressionseinheiten
KR100620092B1 (ko) 2004-12-16 2006-09-08 씨제이 주식회사 코리네박테리움 속 세포로부터 유래된 신규한 프로모터서열, 그를 포함하는 발현 카세트 및 벡터, 상기 벡터를포함하는 숙주 세포 및 그를 이용하여 유전자를 발현하는방법
WO2006138689A2 (en) * 2005-06-17 2006-12-28 Microbia, Inc. Improved amino acid and metabolite biosynthesis
CN101578361A (zh) * 2005-06-17 2009-11-11 米克罗比亚精密工程股份有限公司 改进的氨基酸和代谢物生物合成
BRPI0614891A2 (pt) * 2005-08-18 2012-12-25 Basf Se mÉtodo, dispositivo e elemento de programa para determinar um organismo com eficiÊncia aumentada para a sÍntese de metionina, meio legÍvel por computador, mÉtodo para produzir um organismo, organismo, mÉtodos para produzir um microorganismo do gÊnero corynebacterium e do gÊnero escherichia com eficiÊncia aumentada da produÇço de metionina, microorganismos dos gÊneros corynebacterium e escherichia, uso de qualquer um dos organismos, e, mÉtodo para produzir metionina
EP1945043B1 (en) * 2005-10-31 2011-01-19 Evonik Degussa GmbH Microorganism and process for the preparation of l-methionine
BRPI0620880B1 (pt) * 2006-01-04 2018-10-09 Evonik Degussa Gmbh método para a produção de metionina, pelo cultivo de um microorganismo, e, microorganismo
CN101454460A (zh) * 2006-05-24 2009-06-10 赢创德固赛有限责任公司 制备l-甲硫氨酸的方法
BRPI0716980A2 (pt) 2006-09-15 2013-10-22 Cj Cheiljedang Corp Corynebacteria com produtividade de l-lisina aumentada e método de produção da l-lisina usando a mesma
KR100930203B1 (ko) 2008-01-28 2009-12-07 씨제이제일제당 (주) 개량된 프로모터 및 이를 이용한 l-라이신의 생산 방법
KR101632642B1 (ko) 2015-01-29 2016-06-22 씨제이제일제당 주식회사 신규한 프로모터 및 그의 용도
PL3508580T3 (pl) 2016-08-31 2022-04-25 Cj Cheiljedang Corporation Nowy promotor i jego zastosowanie

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Bioorganic Chemistry.,39:178-184(2011.)
J Biotechnol.,103(1):51-65(2003.6.12.)
JBC.,274(38):26639-26646(1999.)

Also Published As

Publication number Publication date
WO2020263043A1 (ko) 2020-12-30
JP2022539565A (ja) 2022-09-12
KR20210002260A (ko) 2021-01-07
EP3978615A1 (en) 2022-04-06
CN114787369B (zh) 2023-11-28
JP7439142B2 (ja) 2024-02-27
US20220315963A1 (en) 2022-10-06
BR112021026486A2 (pt) 2022-03-03
CN114787369A (zh) 2022-07-22
EP3978615A4 (en) 2022-09-21

Similar Documents

Publication Publication Date Title
JP6759484B1 (ja) 新規なアスパルトキナーゼ変異体及びそれを用いたl−アミノ酸の製造方法
KR101592140B1 (ko) 자일로즈 이용능이 부여된 코리네박테리움 속 미생물 및 이를 이용한 l-라이신의 생산방법
EP3181685B1 (en) O-phosphoserine producing microorganism and method for producing o-phosphoserine or l-cysteine using same
AU2020346645B2 (en) L-threonine export protein variant and method for production of L-threonine using same
US20230340549A1 (en) Variant of inner membrane protein and method for producing target product by using same
US20230212623A1 (en) L-methionine producing microorganism to which protein encoded by foreign metz gene is introduced and method for producing l-methionine using same
KR102472559B1 (ko) 황 함유 아미노산 또는 그 유도체의 제조방법
JP6543734B2 (ja) O−アセチルホモセリンを生産する微生物及びそれを用いてo−アセチルホモセリンを生産する方法
KR102472558B1 (ko) 황 함유 아미노산 또는 그 유도체 제조방법
RU2814546C2 (ru) Способ продуцирования серосодержащей аминокислоты или ее производного
RU2806745C2 (ru) Способ продуцирования серосодержащей аминокислоты или ее производного
JP7407941B2 (ja) O-ホスホセリン排出タンパク質変異体、並びにそれを用いたo-ホスホセリン、システイン及びその誘導体の生産方法
TWI832275B (zh) 新穎YhhS變異體及使用其生產O-磷絲胺酸、半胱胺酸及半胱胺酸之衍生物的方法
CA3222110A1 (en) Novel mdth variant and method for producing o-phosphoserine, cysteine, and derivative of cysteine using same
JP2023540374A (ja) 新規なo-ホスホセリン排出タンパク質及びそれを用いたo-ホスホセリン、システイン及びその誘導体の生産方法

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right