WO2016060437A1 - L-아르기닌을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-아르기닌의 제조 방법 - Google Patents

L-아르기닌을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-아르기닌의 제조 방법 Download PDF

Info

Publication number
WO2016060437A1
WO2016060437A1 PCT/KR2015/010768 KR2015010768W WO2016060437A1 WO 2016060437 A1 WO2016060437 A1 WO 2016060437A1 KR 2015010768 W KR2015010768 W KR 2015010768W WO 2016060437 A1 WO2016060437 A1 WO 2016060437A1
Authority
WO
WIPO (PCT)
Prior art keywords
arginine
microorganism
pcj7
lyscp1
argf
Prior art date
Application number
PCT/KR2015/010768
Other languages
English (en)
French (fr)
Inventor
배현애
이한형
강민경
김종현
김혜원
Original Assignee
씨제이제일제당 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150076331A external-priority patent/KR101835935B1/ko
Priority to PL15850829T priority Critical patent/PL3153573T3/pl
Priority to BR112016029730-0A priority patent/BR112016029730B1/pt
Priority to CN201580055711.1A priority patent/CN107002027B/zh
Priority to RU2016147322A priority patent/RU2671106C1/ru
Priority to CA2951019A priority patent/CA2951019C/en
Application filed by 씨제이제일제당 주식회사 filed Critical 씨제이제일제당 주식회사
Priority to MYPI2017000069A priority patent/MY188962A/en
Priority to ES15850829T priority patent/ES2724000T3/es
Priority to DK15850829.1T priority patent/DK3153573T3/da
Priority to EP15850829.1A priority patent/EP3153573B1/en
Priority to AU2015331160A priority patent/AU2015331160B2/en
Priority to JP2016575080A priority patent/JP6476212B2/ja
Priority to US15/515,551 priority patent/US10626426B2/en
Publication of WO2016060437A1 publication Critical patent/WO2016060437A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/10Citrulline; Arginine; Ornithine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/15Corynebacterium

Definitions

  • the present invention relates to a microorganism of the genus Corynebacterium that produces L-arginine and a method of producing L-arginine using the same.
  • L-arginine is an amino acid widely used in amino acid-enhancing agents, pharmaceuticals, and foods, and the industry has been required to develop a method for efficiently producing L-arginine.
  • the argCJBDFR gene which is involved in arginine biosynthesis, consists of an operon and is known to receive feedback-inhibition by arginine in the cell (Vehary Sakanyan, et. al, Microbiology , 142: 9-108, 1996), which are known to have limitations in producing high yields of L-arginine.
  • the present inventors have tried to increase the production yield of L-arginine, and as a result, by enhancing the arginine operon and ornithine carbamoyltransferase activity without a deficiency of arginine repressor ( argR ) known as an important factor, L-arginine Compared with the arginine-producing parent strain, it was confirmed that L-arginine can be produced in high yield, and thus the present invention was completed.
  • argR arginine repressor
  • Still another object of the present invention is to provide a method for producing L-arginine using the microorganism of the genus Corynebacterium.
  • L-arginine can be produced in high yield using microorganisms of the genus Corynebacterium that produce L-arginine with enhanced activity of arginine operon and ornithine carbamoyltransferase ( ArgF or ArgF2 ) according to the present invention.
  • L-arginine produced in the high yield may be usefully used in the human medicine and pharmaceutical industry.
  • the present invention provides a microorganism of the genus Corynebacterium producing L-arginine with enhanced activity of arginine operon and ornithine carbamoyltransferase.
  • arginine operon is an operon composed of enzymes involved in the mechanism of biosynthesis of L-arginine, and in particular, consists of enzymes constituting the cyclic stage of biosynthesis of L-arginine. Specifically, N-acetyl glutamylphosphate reductase ( ArgC ), glutamate N-acetyltransferase ( ArgJ ), N-acetylglutamate kinase ( ArgB ), It consists of acetylornithine aminotransferase ( ArgD ), ornithine cabomoyltransferase ( ArgF ), and arginine repressor ( ArgR ), which are a series of L-arginine biosynthesis processes. Is involved in enzymatic reactions.
  • Glutamate N-acetyltransferase ( ArgJ ) is a precursor to L-glutamate (L-glutamate) to synthesize N-acetylglutamate (N-acetylglutamate) and may be encoded by the argJ gene.
  • the acetyl group at this time is obtained by decomposing N-acetylornithine (N-acetylornithine) to L-ornithine (L-ornithine).
  • L-arginine biosynthesis in microorganisms of the genus Corynebacterium is known that this glutamate N-acetyltransferase undergoes a recycling reaction.
  • N-acetylglutamate is synthesized by N-acetylglutamate kinase ( ArgB ) enzyme to N-acetylglutamyl phosphate, ATP is consumed by coenzyme, and ADP is produced. It may be one encoded by the argB gene. It is known that feedback is inhibited by the final product, L-arginine, and a variation is known to release feedback inhibition by L-arginine, and it has been reported that this can be used to improve L-arginine production ability (registration).
  • N- acetyl-glutamyl phosphate reductase also referred to as (ArgC) is E. coli or yeast, the semi-aldehyde di-acetyl glutamate dehydrogenase (acetylglutamate semialdehyde dehydrogenase), and can be encoded by argC gene.
  • N-acetylglutamyl phosphate is converted to N-acetylglutamate 5-semialdehyde by the enzyme.
  • coenzyme NADPH is used to provide energy.
  • N-acetylglutamate 5-semialdehyde is converted to N-acetylornithine using L-glutamate as an amino group donor, and the reaction is acetylornithine aminotransfer. Mediated by the enzyme LagD .
  • Acetylornithine aminotransferase may be one encoded by the argD gene.
  • the converted N-acetylornithine (N-acetylornithine) transfers an acetyl group to L-glutamate and recycles L-ornithine (L-ornithine) by a recycling reaction of glutamate N-acetyltransferase (ArgJ) enzyme. Is reacted with).
  • Ornithine carbamoyltransferase ( ArgF ) is also commonly called ornithine transcarbamoylase and may be encoded by the argF or argF2 gene.
  • L-ornithine and carbamoyl phosphate combine to form L-citrullline, and phosphate is generated as a side reaction product.
  • the produced L-citrullline is separated from the arginine operon mentioned in the above patent, and finally, L-citrullline by Argininosuccinic acid synthase ( ArgG ) and algininosuccinic acid ( ArgH) enzyme reaction present in the gene.
  • ArgG Argininosuccinic acid synthase
  • ArgH algininosuccinic acid
  • the enzyme constituting the arginine operon is included within the scope of the present invention irrespective of its origin as long as it has the above activity.
  • the enzyme may be a protein derived from the genus Corynebacterium. More specifically glutamate N-acetyltransferase ( ArgJ ) may comprise the amino acid sequence of SEQ ID NO: 19, or comprises an amino acid sequence having at least 70%, specifically 80%, more specifically 90% or more homology therewith. can do.
  • N-acetylglutamate kinase ( ArgB ) may comprise the amino acid sequence of SEQ ID NO: 21, or may comprise an amino acid sequence having at least 70%, specifically 80%, more specifically 90% or more homology therewith.
  • N-acetylglutamylphosphate reductase may comprise the amino acid sequence of SEQ ID NO: 23, or may comprise an amino acid sequence having at least 70%, specifically 80%, more specifically 90% or more homology therewith.
  • Acetylornithine aminotransferase may comprise the amino acid sequence of SEQ ID NO: 25, or may comprise an amino acid sequence having at least 70%, specifically 80%, more specifically 90% or more homology therewith. .
  • Ornithine carbamoyltransferase comprises an amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 3 or an amino acid sequence having at least 70% homology with the amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: It may be. Specifically, an amino acid sequence showing at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% amino acid sequence homology with the amino acid sequence of SEQ ID NO: 1 or 3 It may be to include.
  • amino acid sequence is homologous to the amino acids and has substantially the same or corresponding biological activity as the proteins
  • the case where some sequences have an amino acid sequence deleted, modified, substituted or added is also included in the scope of the present invention. Inclusion is self-evident.
  • the term "homology" is intended to represent a similar degree of two amino acid sequences or nucleotide sequences to be compared, and the homology may be determined by visual comparison of the two sequences. This can be determined using a bioinformatic algorithm that analyzes the degree of homology by arranging them side by side. Homology between the two amino acid sequences can be expressed as a percentage.
  • Useful automated algorithms are available in the GAP, BESTFIT, FASTA and TFASTA computer software modules of the Wisconsin Genetics Software Package (Genetics Computer Group, Madison, W, USA). Algorithms and homology determinations for other useful arrays are automated in software including FASTP, BLAST, BLAST2, PSIBLAST and CLUSTAL W.
  • Enhancing the arginine operon activity in the present invention means that the activity of one or more enzymes of the enzymes present in the arginine operon is enhanced, but does not include the case of strengthening the argR gene alone.
  • enhancing the arginine operon activity may be to enhance the activity of all the enzymes present in the operon through strengthening the promoter for one enzyme present in the arginine operon, specifically N-acetylglutamyl phosphate reduction It may be that the entire operon activity is enhanced by enhancing the promoter for the enzyme ( argC ).
  • increasing the expression of a gene encoding one or more of the enzymes constituting the arginine operon may also correspond to enhanced arginine operon activity herein.
  • the term 'enhancement' of an activity imparts the activity of the protein to a microorganism that does not have a specific protein activity, or increases the intracellular activity of the microorganism having the activity of the protein. It means increasing intracellular activity compared to endogenous activity.
  • the intrinsic activity herein refers to the active state of an enzyme that a microorganism of the genus Corynebacteria has in its natural state or has a state before transformation.
  • the method of enhancing or increasing the activity of the enzyme can be applied to various methods well known in the art.
  • Examples of the method include, but are not limited to the following examples, encoding enzymes by additionally inserting a polynucleotide comprising a nucleotide sequence encoding the enzymes into a chromosome or introducing the polynucleotide into a vector system.
  • the promoter of the enzyme present in the arginine operon may be transformed into a strong promoter compared to the intrinsic promoter through mutation or substitution.
  • An improved promoter or heterologous promoter having a base substitution mutation may be linked to the promoter of the intrinsic enzyme.
  • the heterologous promoter may include a pcj7 promoter (Korean Patent No. 10-0620092), a lysCP1 promoter (Korean Patent Registration No. 10-0930203). ), EF-Tu promoter, groEL promoter, aceA promoter, aceB promoter and the like, but is not limited thereto.
  • promoter refers to a non-ready nucleic acid sequence upstream of a coding region, ie, a polymerase, that contains a binding site for a polymerase and has a transcription initiation activity to an mRNA of a promoter subgene. It refers to the DNA region to initiate the transcription of the gene, and is located at the 5 'region of the mRNA transcription start site.
  • the method for enhancing the ornithine carbamoyltransferase activity in the present invention can be applied to a variety of methods well known in the art, as described above.
  • the present invention may be achieved by transforming a strain into an expression vector including a polynucleotide encoding ornithine carbamoyltransferase, but is not limited thereto.
  • transformation means that DNA is introduced into a host such that the DNA is replicable as an extrachromosomal factor or by chromosomal integration.
  • the sequence of the promoter region of an endogenous object gene on the host cell genome has a nucleic acid molecule sequence having promoter activity in the vector. It can be inserted into a chromosome and retained in the form of a plasmid, causing homologous recombination.
  • Methods for transforming a vector of the present invention include any method for introducing nucleic acids into cells, and can be carried out by selecting appropriate standard techniques as known in the art depending on the host cell. For example, electroporation, calcium phosphate (CaPO 4 ) precipitation, calcium chloride (CaCl 2 ) precipitation, microinjection, polyethylene glycol (PEG) method, DEAE-dextran method, cationic liposome method, and Lithium acetate-DMSO method may be used, but is not limited thereto.
  • Corynebacterium sp May include all strains of Corynebacterium sp. L-arginine producing ability, for example Corynebacterium glutamicum (Corynebacterium sp. glutamicum), Corynebacterium ammoniagenes, Corynebacterium thermoaminogenes, Brevibacterium flavum or Brevibacterium lactofermentum fermentum Etc. may be used, but is not limited thereto. Specifically, Corynebacterium glutamicum may be used, but is not limited to these examples.
  • the present invention provides a method for producing L-arginine, comprising culturing the Corynebacterium microorganism producing L-arginine in an appropriate culture medium.
  • Cultivation of the microorganism in the present invention can be carried out according to well-known methods, conditions such as the culture temperature, incubation time and pH of the medium can be appropriately adjusted.
  • These known culture methods are described in Chmiel; Bioreatechnik 1. Einbigung in die Biovonstechnik (Gustav Fischer Verlag, Stuttgart, 1991), and Storhas; Bioreaktoren und periphere bamboo (Vieweg Verlag, Braunschweig / Wiesbaden, 1994).
  • the culture method includes batch culture, continuous culture and fed-batch culture, and specifically, a batch process or an injection batch or a repeated batch batch process (fed batch or Repeated fed batch process) may be cultured continuously, but is not limited thereto.
  • the culture medium used should suitably meet the requirements of the particular strain.
  • Culture media for various microorganisms are known (eg, "Manual of Methods for General Bacteriology” from American Society for Bacteriology (Washington D.C., USA, 1981)).
  • Carbon sources in the medium include sugars and carbohydrates (e.g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose), fats and fats (e.g. soybean oil, sunflower seed oil, peanut oil and coconut oil). ), Fatty acids such as palmitic acid, stearic acid and linoleic acid, alcohols such as glycerol and ethanol, organic acids such as acetic acid, and the like.
  • sugars and carbohydrates e.g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose
  • fats and fats e.g. soybean oil, sunflower seed oil, peanut oil and coconut oil.
  • Nitrogen sources can be nitrogen-containing organic compounds such as peptone, yeast extract, gravy, malt extract, corn steep liquor, soybean meal and urea, or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and nitrate Ammonium), and these materials may also be used individually or as a mixture, but are not limited thereto.
  • Potassium dihydrogen phosphate or dipotassium hydrogen phosphate or a corresponding sodium containing salt may be used as the phosphorus source, but is not limited thereto.
  • the culture medium may contain metal salts necessary for growth (eg magnesium sulfate or iron sulfate), and essential growth-promoting substances such as amino acids and vitamins may be used in addition to the above-mentioned materials.
  • suitable precursors may be further added to the culture medium.
  • the feed material may be added all at once to the culture medium, or may be appropriately supplied during the culture.
  • the pH of the culture medium can be adjusted by appropriate use of a basic compound (eg sodium hydroxide, potassium hydroxide or ammonia) or an acidic compound (eg phosphoric acid or sulfuric acid).
  • Foaming can be controlled using foaming agents such as fatty acid polyglycol esters.
  • Oxygen or an oxygen-containing gas mixture, such as air, may be introduced into the culture medium to maintain aerobic conditions.
  • the culture temperature may be 20 to 45 °C, specifically 25 to 40 °C. Incubation can continue until the desired amount of L-amino acid production is achieved, specifically, the incubation time can be 10 to 160 hours.
  • L-arginine may be excreted in culture medium or contained in cells.
  • L-arginine production method comprising the step of culturing the microorganism of the present invention may further comprise the step of recovering the L-arginine produced in the culturing step.
  • the method for producing L-arginine of the present invention comprises the steps of culturing the microorganism of the genus Corynebacterium of the present invention in a culture medium; And it may be a method for producing L-arginine comprising the step of recovering L-arginine in the culture medium and microorganism.
  • the step of recovering arginine may be to separate arginine from cells or culture media using an arginine recovery method well known in the art.
  • L-arginine recovery methods include centrifugation, filtration, extraction, spraying, drying, steaming, precipitation, crystallization, electrophoresis, fractional dissolution, chromatography (eg, ion exchange chromatography, affinity, hydrophobicity, size). Exclusion and HPLC), but is not limited to these examples.
  • Example 1 arginine Operon Reinforcement vector production
  • a vector was produced in which a self-promoter of N-acetylglutamyl phosphate reductase ( ArgC ) was deleted and replaced with another promoter.
  • ArgC N-acetylglutamyl phosphate reductase
  • lysCP1 Korean Patent No. 10-0930203, SEQ ID NO: 18 having strong expression inducing activity was used.
  • the chromosomal DNA of the wild-type Corynebacterium glutamicum (Accession Number ATCC13869) strain was used as a template SEQ ID NO: 13 (SF_pargC_PR_pDC infusion primer; 5'-CGAGCTCGGTACCCGGGCAAAGAATACGGCTTCCTTGGC-3 ') and SEQ ID NO: 14 (SR_pargC_PR_I-fusion-XbaI-HBA-Ibafusion- restriction primer; 5'-CTGGATCCTCGAGTCTAGAGACGGGTTAGACATGCAAAA-3 ') primers and SEQ ID NO: 15 (SF_pargC_PR_SpeI-ScaI-BamHI infusion / restriction primer; 5'-GACTCGAGGATCCAGTACTAGTATGATAATCAAGGTTGCAAT-3') and SEQ ID NO: 16 (SR_pargC_PR_pDC infusion primers; 5 ' DNA fragments were amplified by primary PCR (polymerase chain reaction
  • Specific PCR conditions are as follows. 28 cycles of denaturation at 95 ° C. for 10 minutes, annealing at 55 ° C. for 30 seconds, and polymerization at 72 ° C. were performed using a PCR device (Bio-rad C1000 thermal cycler) and Pfu polymerase (macrogen) for 10 minutes. .
  • the primary PCR fragment thus obtained was purified using a fragment DNA purification kit (geneall), and mixed with a pD vector prepared by cutting with Xma I-Xba I restriction enzyme in advance to connect three DNA fragments. Linkage of the DNA fragments was completed in pD-RargC_PR vector through a 10-minute reaction at 50 °C using an In-fusion Cloning Kit (Clontech).
  • Insertion of the substitution promoter was carried out using pDZ-lysCP1 (Korean Patent No. 10-0930203) as a template, SEQ ID NO: 5 (SF_PlysCP1_XhoI-XbaI infusion primer; 5'-CCGTCTCTAGACTCGAGCCATCTTTTGGGGTGCGG-3 ') and SEQ ID NO: 6 (SR_PlysCP primer; Spe' infusion; The lysCP1 promoter was amplified using primer pairs of -TTGATTATCATACTAGTCTTTGTGCACCTTTCGAT-3 ') and linked to XhoI-SpeI restriction enzyme treated pD-PargC_PR vector. PCR and In-fusion methods were the same as above, and finally the pD-PargC :: lysCP1 vector was completed.
  • Example 2 ornithine Of carbamoyl transferase Enhanced expression vector production
  • a recombinant expression vector was constructed to enhance ornithine carbamoyltransferase, one of arginine biosynthetic enzymes.
  • p117-cj7-GFP (Korean Patent No. 10-0620092) was used as a base vector, and the base sequence encoding GFP in the base vector was removed by treatment with EcoR V-Xba I restriction enzyme, followed by wild type Corynebacterium glutamime.
  • glutamicum ATCC13869 was inserted derived argF and the Republic of Korea Patent No. 10-0830290 favor argF2.
  • the argF gene is a chromosomal DNA of wild type Corynebacterium glutamicum (Accession Number ATCC13869) as a template SEQ ID NO: 7 (SF_argF_EcoRV infusion primer; 5'-ACGAAAGGAAACACTCGATATCATGACTTCACAACCACAGGT-3 ') and SEQ ID NO: 8 (SR_argF_XbaI infusion; DNA fragments were amplified by PCR using '-GCCAAAACAGCTCTAGATTACCTCGGCTGGTGGGCCA-3') primer pairs. Pfu polymerase was used, and a cycle of denaturation at 95 ° C. for 10 minutes, annealing at 55 ° C.
  • the argF2 gene comprises chromosomal DNA of wild type Corynebacterium glutamicum (Accession Number ATCC 13032) as a template SEQ ID NO: 9 (SF_argF2_EcoRV infusion primer; 5'-ACGAAAGGAAACACTCGATATCATGGCCAGAAAACATCTGCT-3 ') and SEQ ID NO: 10 (SR_argF2 primer; 5baI infusion primer; '-GCCAAAACAGCTCTAGACTACGCATTGATCGACCGAG-3') using a primer pair and Pfu polymerase (PpG polymerase, macrogen) was obtained by 28 cycles of denaturation at 95 ° C for 10 minutes, annealing at 55 ° C for 30 seconds, and polymerization at 72 ° C for 2 minutes It was.
  • SEQ ID NO: 9 SF_argF2_EcoRV infusion primer; 5'-ACGAAAGGAAACACTCGATATCATGGCCAGAAAACATCTGCT-3 '
  • the obtained PCR fragment was purified, mixed with EcoRV-XbaI restriction enzyme-treated p117-cj7-GFP, and linked using an In-fusion Cloning Kit. Finally, p117-Pcj7- argF2 recombinant expression vector was completed.
  • the p117-Pcj7- argF2 recombinant plasmid was used as a template, SEQ ID NO: 11 (SF_Pcj7_argF2_NotI infusion primer; 5'-CCTTTTTGCGGCGGCCGCAGAAACATCCCAGCGCTACT-3 ') and SEQ ID NO: 12 (SR_argF2_NotI infusion primer; 5'-CACCGCCCRGGGGAA-CCCACCGCCCCGFR)
  • SEQ ID NO: 11 SF_Pcj7_argF2_NotI infusion primer; 5'-CCTTTTTGCGGCGGCCGCAGAAACATCCCAGCGCTACT-3 '
  • SEQ ID NO: 12 SR_argF2_NotI infusion primer; 5'-CACCGCCCRGGGGAA-CCCACCGCCCCGFR
  • PCR fragment was purified and mixed with Notl restriction enzyme treated p117-Pcj7- argF, and linked using an In-fusion Cloning Kit. Finally, p117-Pcj7- argF / Pcj7- argF2 recombinant expression vector was completed.
  • a recombinant vector insertion strain was prepared by transforming a pD-PargC :: lysCP1 recombinant vector prepared in Example 1 to an existing arginine producing strain.
  • pC-PargC :: lysCP1 recombinant vector prepared in Example 1 was transformed into KCCM10741P (Republic of Korea Patent No. 10-07916590) and ATCC21831, which are the existing arginine producing strains, and the self-promoter sequence possessed by the parent strain.
  • the lysCP1 promoter sequence was inserted into the chromosome by replacing the promoter sequence on the vector via homologous recombination.
  • Transformation was primarily inserted into KCCM10741P and ATCC21831 using an electropulse method (Appl Microbiol Biotechnol. 1999 Oct; 52 (4): 541-5) and on the chromosome by recombination of homologous sequences.
  • the inserted strains were selected in a medium containing 25 mg / L of kanamycin.
  • the selected primary strain was again cross-over to select a strain substituted with the lysCP1 promoter and the vector was removed.
  • P117-Pcj7- argF , p117-Pcj7- argF2 , p117-Pcj7- argF / Pcj7- argF2 recombinant expression vectors prepared in Example 2 were transferred to the strains KCCM10741P_ ⁇ PargC :: lysCP1 and ATCC21831_ ⁇ PargC :: lysCP1 using an electric pulse method.
  • the strain was inserted into a medium containing 25 mg / L of kanamycin (kanamycin), and finally a strain that additionally expresses argF , argF2 and argF / argF 2 was prepared.
  • the parent strains Corynebacterium glutamicum KCCM10741P and ATCC21831 were used, and production medium [6% glucose, 3% ammonium sulfate, 0.1% potassium monophosphate, 0.2% magnesium sulfate, 0.2% CSL (corn) Immersion solution) 1.5%, NaCl 1%, yeast extract 0.5%, biotin 100ug / L, pH7.2] 250ml corner-baffle flask containing 25ml inoculated with platinum strain and 48 hours at 30 °C Produced by incubating at 200 rpm. After the end of the culture, the production of L-arginine was measured by HPLC, and the results are shown in Table 1 below.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 L-아르기닌을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 L-아르기닌을 생산하는 방법에 관한 것이다.

Description

L-아르기닌을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 L-아르기닌의 제조 방법
본 발명은 L-아르기닌을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 L-아르기닌을 생산하는 방법에 관한 것이다.
L-아르기닌은 아미노산류 강화제, 의약품 및 식품 등에 널리 이용되는 아미노산으로, 산업계에서는 L-아르기닌을 효율적으로 생산하는 방법의 개발이 요구되어 왔다.
종래에 알려져 있는 생물학적 발효법에 의한 L-아르기닌의 제조방법은 탄소원, 질소원으로부터 직접 L-아르기닌을 생산하는 방법으로서, 글루타민산(glutamate) 생산 균주인 브레비박테리움(Brevibacterium) 또는 코리네박테리움(Corynebacterium)속 미생물로부터 유도된 변이주를 이용하는 방법, 세포융합으로 생육 개선된 아미노산 생산 균주를 이용하는 방법 등이 보고되었다. 최근에는 아르기닌 생합성 오페론의 발현을 억제하는 유전자 argR을 불활성화시킨 유전자 재조합 균주를 이용하는 방법(미국 등록특허 US 7,160,705)과 아르기닌 오페론의 argF를 과발현(over-expression)시키는 방법(대한민국 등록특허 제10-0854234호) 등이 보고되어 있다. 특히 종래 아르기닌 생산에 있어서 아르기닌 오페론을 조절하는 argR의 결손이 중요한 요소로 생각되어 왔다.
코리네박테리움 미생물의 경우, 아르기닌 생합성에 관여하는 argCJBDFR 유전자가 오페론(operon)의 형태로 이루어져 있으며, 세포 내 아르기닌에 의해서 피드백 저해(feedback-inhibition)를 받는 것으로 현재까지 알려져 있어(Vehary Sakanyan, et al, Microbiology, 142:9-108, 1996), 고수율의 L-아르기닌을 생산하는 데에는 한계가 있는 것으로 알려져 있다.
이에, 본 발명자들은 L-아르기닌의 생산 수율을 높이고자 노력하였으며, 그 결과 기존에 중요한 요소로 알려진 아르기닌 리프레서(argR)의 결손없이 아르기닌 오페론 강화와 오르니틴 카바모일트랜스퍼라제 활성을 강화함으로써 L-아르기닌 생산 모균주에 비해 고수율로 L-아르기닌을 생산할 수 있음을 확인하고 본 발명을 완성하게 되었다.
본 발명의 목적은 L-아르기닌을 생산하는 코리네박테리움 속 미생물을 제공하는 것이다.
본 발명의 또 다른 목적은, 상기 코리네박테리움 속 미생물을 이용하여 L-아르기닌의 생산 방법을 제공하는 것이다.
본 발명에 따른 아르기닌 오페론 및 오르니틴 카바모일트랜스퍼라제(ArgF 또는 ArgF2)의 활성이 강화된 L-아르기닌을 생산하는 코리네박테리움 속 미생물을 이용하여 고수율로 L-아르기닌을 생산할 수 있다. 또한, 상기 고수율로 생산된 L-아르기닌은 인간 의약 및 약학산업에 유용하게 사용될 수 있을 것이다.
상기의 목적을 달성하기 위한 하나의 양태로서, 본 발명은 아르기닌 오페론 및 오르니틴 카바모일트랜스퍼라제의 활성이 강화된 L-아르기닌을 생산하는 코리네박테리움 속 미생물을 제공한다.
본 발명에서 아르기닌 오페론은 L-아르기닌을 생합성하는 기작에 관여하는 효소들로 이루어진 오페론으로, 특히 L-아르기닌의 생합성의 고리형 단계를 구성하는 효소들로 이루어져 있다. 구체적으로, N-아세틸글루타밀포스페이트 환원효소(N-acetyl glutamylphosphate reductase, ArgC), 글루타메이트 N-아세틸트랜스퍼라제(glutamate N-acetyltransferase, ArgJ), N-아세틸글루타메이트 키나아제(N-acetylglutamate kinase, ArgB), 아세틸오르니틴 아미노트랜스퍼라제(acetylornithine aminotransferase, ArgD), 오르니틴 카바모일트랜스퍼라제(ornithine cabomoyltransferase, ArgF) 및 아르기닌 억제자(argine repressor, ArgR)로 구성되어 있으며, 상기 효소들은 L-아르기닌 생합성 과정의 연속적인 효소반응에 관여한다.
아르기닌 오페론을 구성하는 상기 효소들은 L-글루타메이트를 전구체로 하여 최종적으로 L-아르기닌을 생합성하는데 관여한다. 글루타메이트 N-아세틸트랜스퍼라제(ArgJ)는 L-글루타메이트(L-glutamate)를 전구체로 하여 N-아세틸글루타메이트(N-acetylglutamate)를 합성하며 argJ 유전자로 코딩되는 것일 수 있다. 이때의 아세틸기(acetyl group)는 N-아세틸오르니틴(N-acetylornithine)을 L-오르니틴(L-ornithine)으로 분해하여 얻는다. 코리네박테리움 속 미생물에서의 L-아르기닌 생합성은 이 글루타메이트 N-아세틸트랜스퍼라제가 리사이클링 반응을 한다고 알려져 있다.
생성된 N-아세틸글루타메이트(N-acetylglutamate)는 N-아세틸글루타메이트 키나아제(ArgB) 효소에 의해 N-아세틸글루타밀 포스페이트(N-acetylglutamyl phosphate)로 합성되며, 조효소로 ATP가 소모되어 ADP가 생성되고, argB 유전자로 코딩되는 것일 수 있다. 최종 산물인 L-아르기닌에 의해 피드백 저해를 받는다고 알려져 있어, L-아르기닌에 의한 피드백 저해를 해제하는 변이가 공지되어 있으며, 이를 활용하여 L-아르기닌 생산능을 향상 시킬 수 있다고 보고 되고 있다(등록특허 CN 102021154 및 Amino Acids. 2012 Jul;43(1):255-66. doi: 10.1007/s00726-011-1069-x. Epub 2011 Sep 8.).
N-아세틸글루타밀포스페이트 환원효소(ArgC)는 대장균이나 효모에서는 아세틸글루타메이트 세미알데히드 디하이드로게나제(acetylglutamate semialdehyde dehydrogenase)로도 불리기도 하며, argC 유전자로 코딩되는 것일 수 있다. 상기 효소에 의해 N-아세틸글루타밀 포스페이트(N-acetylglutamyl phosphate)를 N-아세틸글루타메이트 5-세미알데하이드(N-acetylglutamate 5-semialdehyde)로 전환한다. 조효소로는 NADPH가 사용되어 에너지를 제공한다. 생성된 N-아세틸글루타메이트 5-세미알데하이드(N-acetylglutamate 5-semialdehyde)는 아미노기 공여체로 L-글루타메이트를 사용하여 N-아세틸오르니틴(N-acetylornithine)으로 전환되며, 이 반응은 아세틸오르니틴 아미노트랜스퍼라제(ArgD) 효소에 의해 매개된다. 아세틸오르니틴 아미노트랜스퍼라제는 argD 유전자로 코딩되는 것일 수 있다. 그리고 전환된 N-아세틸오르니틴(N-acetylornithine)은 글루타메이트 N-아세틸트랜스퍼라제(ArgJ) 효소의 리사이클링 반응에 의해 아세틸기(acetyl group)을 L-글루타메이트에 전달하고 L-오르니틴(L-ornithine)으로 반응된다.
오르니틴 카바모일트랜스퍼라제(ArgF)는 일반적으로 오르니틴 트랜스카바모일라제로도 불리우며, argF 또는 argF2 유전자로 코딩되는 것일 수 있다. L-오르니틴(L-ornithine)과 카바모일 포스페이트(carbamoyl phosphate)를 결합하여 L-시트룰린(L-citrullline)를 생성하며, 인산기(phosphate)가 부반응산물로 생성된다. 생성된 L-시트룰린(L-citrullline)은 상기 특허에서 언급한 아르기닌 오페론과 분리되어 유전자에 존재하는 알지니노숙신산 신타아제(ArgG), 알지니노숙신산 라이에이즈(ArgH) 효소반응에 의해 최종적으로 L-아르기닌으로 합성된다. 총 8단계의 생합성 단계를 거쳐 L-아르기닌을 합성하게 되며, 본 발명에서는 아르기닌 오페론(argCJBDFR)의 활성을 강화함으로써 L-아르기닌 생산능 향상을 유도하였다.
상기 아르기닌 오페론을 구성하는 효소는 상기 활성을 가지기만 하면 유래와 상관없이 본원의 발명의 범위내에 포함되나, 구체적으로 상기 효소는 코리네박테리움 속 유래의 단백질일 수 있다. 더욱 구체적으로 글루타메이트 N-아세틸트랜스퍼라제(ArgJ)는 서열번호 19의 아미노산 서열을 포함할 수 있으며, 또는 이와 최소한 70%, 구체적으로 80%, 더욱 구체적으로 90% 이상의 상동성을 가지는 아미노산 서열을 포함할 수 있다. N-아세틸글루타메이트 키나아제(ArgB)는 서열번호 21의 아미노산 서열을 포함할 수 있으며, 또는 이와 최소한 70%, 구체적으로 80%, 더욱 구체적으로 90% 이상의 상동성을 가지는 아미노산 서열을 포함할 수 있다. 또한 당해 효소의 경우 아르기닌에 의해 피드백 저해를 해제하기 위해 당업계에 공지된 변이를 도입할 수 있다. N-아세틸글루타밀포스페이트 환원효소(ArgC)는 서열번호 23의 아미노산 서열을 포함할 수 있으며, 또는 이와 최소한 70%, 구체적으로 80%, 더욱 구체적으로 90% 이상의 상동성을 가지는 아미노산 서열을 포함할 수 있다. 아세틸오르니틴 아미노트랜스퍼라제(ArgD)는 서열번호 25의 아미노산 서열을 포함할 수 있으며, 또는 이와 최소한 70%, 구체적으로 80%, 더욱 구체적으로 90% 이상의 상동성을 가지는 아미노산 서열을 포함할 수 있다. 오르니틴 카바모일트랜스퍼라제(ArgF)는 서열번호 1 또는 서열번호 3의 아미노산 서열을 포함하는 것 또는 상기 서열번호 1 또는 서열번호 3의 아미노산 서열과 최소한 70%의 상동성을 가지는 아미노산 서열을 포함하는 것일 수 있다. 구체적으로는 상기 서열번호 1 또는 3의 아미노산 서열과 최소한 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% 또는 99% 이상의 아미노산 서열 상동성을 나타내는 아미노산 서열을 포함하는 것일 수 있다. 또한, 상기 아미노산들과 상동성을 가지며 실질적으로 상기 단백질들과 동일하거나 상응하는 생물학적 활성을 갖는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 갖는 경우도 본 발명의 범주에 포함됨은 자명하다.
본 발명에서 용어, "상동성(homology)"은 두 비교 대상인 아미노산 서열 또는 염기 서열의 유사한 정도를 나타내기 위한 것으로서, 이러한 상동성은 두 서열을 육안으로 비교하여 결정할 수도 있으나, 비교대상이 되는 서열을 나란히 배열하여 상동성 정도를 분석해 주는 생물정보 알고리즘(bioinformatic algorithm)을 사용하여 결정할 수 있다. 상기 두 개의 아미노산 서열 사이의 상동성은 백분율로 표시할 수 있다. 유용한 자동화된 알고리즘은 Wisconsin Genetics Software Package (Genetics Computer Group, Madison, W, USA)의 GAP, BESTFIT, FASTA와 TFASTA 컴퓨터 소프트웨어 모듈에서 이용가능하다. 다른 유용한 배열에 대한 알고리즘과 상동성 결정은 FASTP, BLAST, BLAST2,PSIBLAST와 CLUSTAL W를 포함하는 소프트웨어에서 자동화되어 있다.
본 발명에서 상기 아르기닌 오페론 활성의 강화는 아르기닌 오페론에 존재하는 효소들 중 하나 이상의 효소의 활성이 강화되는 것을 의미하나, argR 유전자를 단독으로 강화하는 경우는 포함되지 않는다. 예를 들어, 아르기닌 오페론 활성의 강화는 아르기닌 오페론에 존재하는 하나의 효소에 대한 프로모터를 강화하는 것을 통하여 오페론에 존재하는 모든 효소의 활성이 강화되는 것일 수 있으며, 구체적으로 N-아세틸글루타밀포스페이트 환원효소(argC)에 대한 프로모터 강화하는 것을 통하여 오페론 전체 활성이 강화되는 것일 수 있다. 또한, 아르기닌 오페론을 구성하는 효소들 중 하나 이상의 효소를 암호화하는 유전자의 발현을 증가시키는 것 역시 본원에서 아르기닌 오페론 활성의 강화에 해당할 수 있다.
본 발명의 용어, 활성의 '강화'는 특정 단백질 활성을 가지고 있지 않은 미생물에 그 단백질의 활성을 부여하거나, 그 단백질의 활성을 보유하고 있는 미생물에서 세포 내 활성을 증가시키는 등으로, 상기 단백질의 세포 내 활성을 내재적 활성에 비해 증가시키는 것을 의미한다. 상기 내재적 활성이란 여기서 내재적 활성이란 코리네박테리아 속 미생물이 천연의 상태로 가지고 있거나 변형 전 상태로 가지고 있는 효소의 활성상태를 의미한다.
상기 효소의 활성을 강화 또는 증가시키는 방법은 당해 분야에서 잘 알려진 다양한 방법의 적용이 가능하다. 그 방법의 예는, 하기 예로 제한되는 것은 아니지만, 해당 효소들을 암호화하는 염기서열을 포함하는 폴리뉴클레오타이드를 추가로 염색체에 삽입하는 방법 또는 상기 폴리뉴클레오타이드를 벡터 시스템에 도입하는 방법 등에 의하여 효소들을 암호화하는 염기서열의 카피수를 증가시키는 방법, 효소들의 프로모터를 강한 프로모터로 교체하는 방법, 구체적으로 프로모터에 변이를 도입하는 방법이 포함될 수 있으며 유전자 변이에 의해 활성이 강한 효소로 변이시키는 방법 등이 있다.
구체적인 예로, 본 발명에서는 아르기닌 오페론에 존재하는 효소의 프로모터를 변이 또는 치환을 통해 내재적 프로모터에 비하여 강한 프로모터로 변이시킬 수 있다. 상기 내재적 효소의 프로모터 대신 염기치환 변이를 갖는 개량형 프로모터 또는 이종 프로모터가 연결될 수 있는데, 상기 이종 프로모터의 예로는 pcj7 프로모터(대한민국 등록특허 제10-0620092호), lysCP1 프로모터(대한민국 등록특허 제10-0930203호), EF-Tu 프로모터, groEL 프로모터, aceA 프로모터, aceB 프로모터 등이 있으나 이에 한정되는 것은 아니다.
본 발명의 용어, "프로모터"는 폴리머라제에 대한 결합 부위를 포함하고 프로모터 하위 유전자의 mRNA로의 전사 개시 활성을 가지는, 암호화 영역의 상위(upstream)의 비해독된 핵산서열, 즉, 폴리머라제가 결합하여 유전자의 전사를 개시하도록 하는 DNA 영역을 말하며, mRNA 전사 개시부위의 5' 부위에 위치한다.
본 발명에서 상기 오르니틴 카바모일트랜스퍼라제 활성을 강화시키는 방법은 당해 분야에서 잘 알려진 다양한 방법의 적용이 가능하며, 이는 상기에서 기술된 바와 같다. 구체적으로 오르니틴 카바모일트랜스퍼라제를 암호화하는 폴리뉴클레오타이드를 포함하는 발현 벡터를 균주에 형질전환하는 것을 통해 이루어지는 것일 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 용어 "형질전환"은 DNA를 숙주내로 도입하여 DNA가 염색체외 인자로서 또는 염색체 통합완성에 의해 복제가능하게 되는 것을 의미한다. 구체적으로 본 발명의 형질전환체는 상기 DNA를 포함하는 벡터가 숙주 세포 내로 형질전환된 후, 벡터 내의 프로모터 활성을 갖는 핵산 분자 서열이 숙주 세포 게놈 상의 내생적(endogeneous) 목적 유전자의 프로모터 부위의 서열과 상동 재조합을 일으키며 염색체 내로 삽입되거나, 플라스미드 형태로 보유할 수 있다.
본 발명의 벡터를 형질전환시키는 방법은 핵산을 세포 내로 도입하는 어떤 방법도 포함되며, 숙주세포에 따라 당 분야에서 공지된 바와 같이 적합한 표준 기술을 선택하여 수행할 수 있다. 예를 들어, 전기천공법(electroporation), 인산칼슘(CaPO4) 침전, 염화칼슘(CaCl2) 침전, 미세주입법(microinjection), 폴리에틸렌글리콜(PEG)법, DEAE-덱스트란법, 양이온 리포좀법, 및 초산 리튬-DMSO법 등이 사용될 수 있으나, 이에 한정되지 않는다.
본 발명의 용어, "코리네박테리움 속 미생물(Corynebacterium sp.)"은 L-아르기닌 생산능을 갖는 모든 코리네박테리움 속 균주를 포함할 수 있으며, 그 예로 코리네박테리움 글루타미쿰(Corynebacterium glutamicum), 코리네박테리움 암모니아게네스(Corynebacterium ammoniagenes), 코리네박테리움 써모아미노게네스(Corynebacterium thermoaminogenes), 브레비박테리움 플라붐(Brevibacterium flavum) 또는 브레비박테리움 락토페르멘툼(Brevibacterium fermentum) 등이 사용될 수 있으나, 이에 제한되지는 않는다. 구체적으로는 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)을 사용할 수 있지만, 이들 예에 한정되는 것은 아니다.
본 발명의 또 하나의 양태로서, 본 발명은 상기 L-아르기닌을 생산하는 코리네박테리움 속 미생물을 적절한 배양 배지에서 배양하는 단계를 포함하는 L-아르기닌을 생산하는 방법을 제공한다.
본 발명에서 미생물의 배양은 널리 공지된 방법에 따라서 수행될 수 있고, 배양 온도, 배양 시간 및 배지의 pH 등의 조건은 적절하게 조절될 수 있다. 이들 공지된 배양 방법은 문헌[Chmiel; Bioprozesstechnik 1. Einfuhrung in die Bioverfahrenstechnik(Gustav Fischer Verlag, Stuttgart, 1991), 및 Storhas; Bioreaktoren und periphere Einrichtungen(Vieweg Verlag, Braunschweig / Wiesbaden, 1994)]에 상세히 기술되어 있다. 또한, 배양 방법에는 회분식 배양(batch culture), 연속식 배양(continuous culture) 및 유가식 배양(fed-batch culture)이 포함되며, 구체적으로는 배치 공정 또는 주입 배치 또는 반복 주입 배치 공정(fed batch or repeated fed batch process)에서 연속식으로 배양할 수 있으나, 이에 제한되는 것은 아니다.
사용되는 배양 배지는 특정한 균주의 요구 조건을 적절하게 충족시켜야 한다. 다양한 미생물에 대한 배양 배지는 공지되어 있다(예를 들면, "Manual of Methods for General Bacteriology" from American Society for Bacteriology (Washington D.C., USA, 1981)). 배지 내 탄소 공급원은 당 및 탄수화물(예: 글루코오스, 슈크로오스, 락토오스, 프럭토오스, 말토오스, 몰라세, 전분 및 셀룰로오스), 유지 및 지방(예: 대두유, 해바라기씨유, 땅콩유 및 코코넛유), 지방산(예: 팔미트산, 스테아르산 및 리놀레산), 알콜(예: 글리세롤 및 에탄올) 및 유기산(예: 아세트산) 등을 이용할 수 있다. 이들 물질은 개별적으로 또는 혼합물로서 사용될 수 있으나, 이에 한정되지 않는다. 질소 공급원은 질소-함유 유기 화합물(예: 펩톤, 효모 추출액, 육즙, 맥아 추출액, 옥수수 침지액, 대두 박분 및 우레아), 또는 무기 화합물(예: 황산암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄)을 이용할 수 있으며, 이들 물질 또한 개별적으로 또는 혼합물로서 사용될 수 있으나, 이에 한정되지 않는다. 인 공급원으로서 인산이수소칼륨 또는 인산수소이칼륨 또는 상응하는 나트륨 함유 염을 이용할 수 있으나, 이에 한정되지 않는다. 배양 배지는 성장에 필수적인 금속염(예: 황산마그네슘 또는 황산철)을 함유할 수 있으며, 아미노산 및 비타민과 같은 필수 성장-촉진 물질을 상기 언급한 물질 외에 사용할 수 있다. 또한, 적합한 전구체를 상기 배양 배지에 추가로 가할 수 있다. 상기 공급 물질은 배양배지에 한번에 모두 가하거나, 배양 중 적절하게 공급할 수 있다.
배양 배지의 pH는 염기성 화합물(예: 수산화나트륨, 수산화칼륨 또는 암모니아) 또는 산성 화합물(예: 인산 또는 황산)을 적절히 사용하여 조절할 수 있다. 발포는 지방산 폴리글리콜 에스테르와 같은 거포제를 사용하여 조절할 수 있다. 산소 또는 산소-함유 가스 혼합물, 예를 들어 공기를 배양배지 중으로 도입시켜 호기성 조건을 유지시킬 수 있다. 배양 온도는 20 내지 45℃, 구체적으로는 25 내지 40℃일 수 있다. 배양은 원하는 L-아미노산의 생성량이 최대로 얻어질 때까지 계속될 수 있으며, 구체적으로 배양시간은 10 내지 160 시간일 수 있다. L-아르기닌은 배양 배지 중으로 배출되거나, 세포 중에 포함되어 있을 수 있다.
한편, 본 발명의 상기한 미생물을 배양하는 단계를 포함하는 L-아르기닌의 생산 방법은 상기 배양하는 단계에서 생성되는 L-아르기닌을 회수하는 단계를 추가로 포함할 수 있다. 즉, 본 발명의 L-아르기닌의 생산 방법은 본 발명의 코리네박테리움 속 미생물을 배양 배지에서 배양하는 단계; 및 상기 배양 배지 및 미생물에서 L-아르기닌을 회수하는 단계를 포함하는 L-아르기닌을 생산하는 방법일 수 있다. 아르기닌을 회수하는 단계는 당업계에 널리 알려져 있는 아르기닌 회수 방법을 이용하여 세포 또는 배양 배지로부터 아르기닌을 분리해내는 것일 수 있다. L-아르기닌 회수 방법의 예로서, 원심분리, 여과, 추출, 분무, 건조, 증방, 침전, 결정화, 전기영동, 분별용해, 크로마토그래피(예를 들면, 이온 교환 크로마토그래피, 친화성, 소수성, 크기배제 및 HPLC) 등의 방법이 있으나, 이들 예에 한정되는 것은 아니다.
이하, 본 발명을 하기 실시예에 의해 보다 상세하게 설명한다. 단, 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것일 뿐 본 발명의 범위가 이들 실시예에 의해 제한되는 것은 아니다.
실시예 1: 아르기닌 오페론 강화 벡터 제작
미생물의 염색체 상에서 아르기닌 오페론을 강화하기 위하여, N-아세틸글루타밀포스페이트 환원효소(N-acetylglutamyl phosphate reductase, ArgC)의 자가 프로모터를 결손하고 다른 프로모터로 치환하는 벡터를 제작하였다. 치환 프로모터로는 강한 발현 유도 활성을 가지는 lysCP1(대한민국 등록특허 제10-0930203호, 서열번호 18)를 이용하였다.
먼저, 야생형 코리네박테리움 글루타미쿰(기탁번호 ATCC13869) 균주의 염색체 DNA를 주형으로 서열번호 13 (SF_pargC_PR_pDC infusion 프라이머; 5'-CGAGCTCGGTACCCGGGCAAAGAATACGGCTTCCTTGGC-3') 및 서열번호 14 (SR_pargC_PR_XbaI-XhoI-BamHI infusion/제한효소 프라이머; 5'-CTGGATCCTCGAGTCTAGAGACGGGTTAGACATGCAAAA-3') 프라이머쌍과 서열번호 15 (SF_pargC_PR_SpeI-ScaI-BamHI infusion/제한효소 프라이머; 5'-GACTCGAGGATCCAGTACTAGTATGATAATCAAGGTTGCAAT-3') 및 서열번호 16 (SR_pargC_PR_pDC infusion 프라이머; 5'-TGCAGGTCGACTCTAGGGTAACGCCTTCTTTCAAAG-3') 프라이머 쌍을 이용하여 1차 PCR(polymerase Chain Reaction)로 DNA 단편을 증폭하였다. 구체적인 PCR 조건은 다음과 같다. PCR 기기(Bio-rad C1000 thermal cycler)와 Pfu 폴리머라제(Pfu polymerase, macrogen)를 이용하여 95 ℃에서 10분간 변성, 55 ℃에서 30초간 어닐링, 72 ℃에서 1분간 중합하는 사이클을 28번 반복하였다.
이렇게 수득한 1차 PCR 단편은 fragment DNA purification kit(geneall)을 이용하여 정제하고, 미리 XmaⅠ-XbaⅠ 제한효소로 절단하여 준비한 pD 벡터와 혼합하여 3개의 DNA 단편을 연결하였다. 상기 DNA 단편들의 연결은 In-fusion Cloning Kit (Clontech)를 사용하여 50 ℃에서 10분 반응을 통해 pD-RargC_PR 벡터를 완성하였다.
치환 프로모터의 삽입은 pDZ-lysCP1 (대한민국 등록특허 제10-0930203호)를 주형으로 서열번호 5(SF_PlysCP1_XhoI-XbaI infusion 프라이머; 5'-CCGTCTCTAGACTCGAGCCATCTTTTGGGGTGCGG-3') 및 서열번호 6 (SR_PlysCP1_SpeI infusion 프라이머; 5'-TTGATTATCATACTAGTCTTTGTGCACCTTTCGAT-3')의 프라이머쌍을 이용하여 lysCP1 프로모터를 증폭하고, 이를 XhoⅠ-SpeⅠ 제한효소 처리된 pD-PargC_PR 벡터와 혼합하여 연결하였다. PCR 및 In-fusion 방법은 상기와 동일하며, 이를 통하여 최종적으로 pD-PargC::lysCP1 벡터를 완성하였다.
실시예 2: 오르니틴 카바모일트랜스퍼라제의 강화 발현벡터 제작
아르기닌 생합성 효소 중 하나인 오르니틴 카바모일트랜스퍼라제를 강화하기 위해 재조합 발현벡터를 제작하였다. p117-cj7-GFP(대한민국 등록특허 제10-0620092호)를 기반 벡터로 이용하였으며, 상기 기반 벡터에서 GFP를 코딩하는 염기서열을 EcoRⅤ-XbaⅠ 제한효소로 처리하여 제거한 후 야생형 코리네박테리움 글루타미쿰 ATCC13869 유래 argF와 대한민국 등록특허 제10-0830290호의 argF2를 삽입하였다.
상기 argF 유전자는 야생형 코리네박테리움 글루타미쿰(기탁번호 ATCC13869) 균주의 염색체 DNA를 주형으로 서열번호 7(SF_argF_EcoRV infusion 프라이머; 5'-ACGAAAGGAAACACTCGATATCATGACTTCACAACCACAGGT-3') 및 서열번호 8(SR_argF_XbaI infusion 프라이머; 5'-GCCAAAACAGCTCTAGATTACCTCGGCTGGTGGGCCA-3') 프라이머 쌍을 이용하여 PCR을 통해 DNA 단편을 증폭하였다. Pfu 폴리머라제를 이용하였으며, 95 ℃에서 10분간 변성, 55 ℃에서 30초간 어닐링, 72 ℃에서 2분간 중합하는 사이클을 28번 반복하는 조건으로 진행하였다. 이렇게 얻어진 PCR 단편을 정제하고 EcoRⅤ-XbaⅠ 제한효소 처리된 p117-cj7-GFP와 혼합하여, In-fusion Cloning 방법으로 연결하여 p117-Pcj7-argF 재조합 발현벡터를 완성하였다.
상기 argF2 유전자는 야생형 코리네박테리움 글루타미쿰(기탁번호 ATCC 13032)의 염색체 DNA를 주형으로 서열번호 9(SF_argF2_EcoRV infusion 프라이머; 5'-ACGAAAGGAAACACTCGATATCATGGCCAGAAAACATCTGCT-3') 및 서열번호 10(SR_argF2_XbaI infusion 프라이머; 5'-GCCAAAACAGCTCTAGACTACGCATTGATCGACCGAG-3') 프라이머쌍과 Pfu 폴리머라제(Pfu polymerase, macrogen)를 이용하여 95 ℃에서 10분간 변성, 55 ℃에서 30초간 어닐링, 72 ℃에서 2분간 중합하는 사이클을 28번 반복하여 수득하였다. 상기 얻어진 PCR 단편을 정제하고 EcoRⅤ-XbaⅠ 제한효소 처리된 p117-cj7-GFP와 혼합하여, In-fusion Cloning Kit를 이용하여 연결하였다. 상기 과정을 통하여 최종적으로 p117-Pcj7-argF2 재조합 발현벡터를 완성하였다.
추가적으로 argFargF2 유전자를 동시 발현하는 재조합 발현벡터를 제작하였다. 상기 제작된 p117-Pcj7-argF 발현벡터를 기반으로 NotI 제한효소를 처리한 후 p117-Pcj7-argF2를 삽입하였다. 구체적으로 p117-Pcj7-argF2 재조합 플라스미드를 주형으로 서열번호 11 (SF_Pcj7_argF2_NotI infusion 프라이머; 5'-CCTTTTTGCGGCGGCCGCAGAAACATCCCAGCGCTACT-3') 및 서열번호 12 (SR_argF2_NotI infusion 프라이머; 5'-CACCGCGGTGGCGGCCGCCGCAAAAAGGCCATCCGTCA-3') 프라이머를 Pfu 폴리머라제를 이용하여 95 ℃에서 10분간 변성, 55 ℃에서 30초간 어닐링, 72 ℃에서 2.5분간 중합하는 사이클을 28번 반복하여 수득하였다. 상기 얻어진 PCR 단편을 정제하고 NotⅠ 제한효소 처리된 p117-Pcj7-argF 와 혼합하여, In-fusion Cloning Kit를 이용하여 연결하였다. 상기 과정을 통하여 최종적으로 p117-Pcj7-argF/Pcj7-argF2 재조합 발현벡터를 완성하였다.
실시예 3: 재조합 벡터 삽입 균주 제작
3-1. 아르기닌 오페론 강화 벡터 삽입
코리네박테리움의 염색체에 아르기닌 오페론의 자가 프로모터를 치환하기 위해 기존 아르기닌 생산균주에 상기 실시예 1에서 제작한 pD-PargC::lysCP1 재조합 벡터를 형질전환시켜 재조합 벡터 삽입 균주를 제작하였다. 구체적으로 기존 아르기닌 생산균주인 KCCM10741P (대한민국 등록특허 제10-07916590호) 및 ATCC21831에 상기 실시예 1에서 제작한 pD-PargC::lysCP1 재조합 벡터를 형질전환시켜, 모균주가 가지고 있는 자가 프로모터 서열과 상기 벡터상의 프로모터 서열을 상동 재조합을 통해 치환시킴으로써, 염색체 내로 lysCP1 프로모터 서열을 삽입시켰다.
형질전환은 1차적으로 전기펄스법(Appl Microbiol Biotechnol. 1999 Oct;52(4):541-5)을 이용하여 재조합 벡터를 KCCM10741P 및 ATCC21831에 삽입시켰으며, 상동성 서열의 재조합에 의해 염색체 상에 삽입된 균주는 카나마이신(kanamycin) 25 mg/L 를 함유한 배지에서 선별하였다. 선별된 1차 균주는 다시 2차 교차(cross-over)를 거쳐, lysCP1 프로모터로 치환되고 벡터가 제거된 균주를 선정하였다. 최종 형질전환된 균주의 프로모터 치환여부는 서열번호 5 및 서열번호 6 프라이머쌍을 사용하여 PCR을 수행함으로써 확인하였고 이 균주를 KCCM10741P_ΔPargC::lysCP1 및 ATCC21831_ΔPargC::lysCP1으로 명명하였다.
3-2. 오르니틴 카바모일트랜스퍼라제 강화 벡터 삽입
상기 실시예 2에서 제작한 p117-Pcj7-argF, p117-Pcj7-argF2, p117-Pcj7-argF/Pcj7-argF2 재조합 발현벡터를 전기펄스법을 이용하여 상기 균주 KCCM10741P_ΔPargC::lysCP1 및 ATCC21831_ΔPargC::lysCP1에 삽입하였으며, 카나마이신 (kanamycin) 25 mg/L를 함유한 배지에서 선별하여 최종적으로 argF, argF2, argF/argF2를 추가발현하는 균주를 제작하였다. 상기 균주를 각각 KCCM10741P_ΔPargC::lysCP1_Pcj7-argF, KCCM10741P_ΔPargC::lysCP1_Pcj7-argF2, KCCM10741P_ΔPargC::lysCP1_Pcj7-argF/Pcj7-argF2, ATCC21831_ΔPargC::lysCP1_Pcj7-argF, ATCC21831_ΔPargC::lysCP1_Pcj7-argF2 및 ATCC21831_ΔPargC::lysCP1_Pcj7-argF/Pcj7-argF2 로 명명하고, 이 중 KCCM10741P_ΔPargC::lysCP1_Pcj7-argF2를 CA06-2044로 재명명하여 부다페스트 조약 하에 2013년 12월 9일자로 한국미생물보존센터(KCCM)에 기탁하여 기탁번호 KCCM11498P를 부여 받았다.
실시예 4: 제작 균주의 평가
상기 실시예 3에서 제작한 아르기닌 생산균주인 코리네박테리움 글루타미쿰 KCCM10741P_ΔPargC::lysCP1, KCCM10741P_ΔPargC::lysCP1_Pcj7-argF, KCCM10741P_ΔPargC::lysCP1_Pcj7-argF2, KCCM10741P_ΔPargC::lysCP1_Pcj7-argF/Pcj7-argF2, ATCC21831_ΔPargC::lysCP1, ATCC21831_ΔPargC::lysCP1_Pcj7-argF, ATCC21831_ΔPargC::lysCP1_Pcj7-argF2 및 ATCC21831_ΔPargC::lysCP1_Pcj7-argF/Pcj7-argF2를 이용하여 아르기닌 오페론과 오르니틴 카바모일트랜스퍼라제의 활성강화가 아르기닌 생산능에 미치는 영향을 파악하기 위하여 하기와 같은 방법으로 배양하였다. 이 때 대조군으로서는 모균주인 코리네박테리움 글루타미쿰 KCCM10741P 및 ATCC21831을 사용하였으며, 생산 배지 [포도당 6%, 황산암모늄 3%, 제1인산칼륨 0.1%, 황산마그네슘7수염 0.2%, CSL(옥수수 침지액) 1.5%, NaCl 1%, 이스트 익스트렉트 0.5%, 비오틴 100ug/L, pH7.2] 25 ml을 넣은 250ml 코너-바플 플라스크에 1백금이의 균주를 접종하고 30 ℃에서 48시간 동안 200 rpm으로 배양하여 생산하였다. 배양종료 후 HPLC로 L-아르기닌의 생산량을 측정하였으며, 그 결과는 하기 표 1과 같았다.
모균주 및 재조합 균주의 아르기닌 생산능 확인
균주 OD 아르기닌 농도(g/L) 오르니틴 농도(g/L)
KCCM10741P 91 3.0 0.2
KCCM10741P _ΔPargC::lysCP1 72 2.2 1.9
KCCM10741P _ΔPargC::lysCP1_Pcj7-argF 69 4.3 0.2
KCCM10741P _ΔPargC::lysCP1_Pcj7-argF2 70 4.1 0.5
KCCM10741P _ΔPargC::lysCP1_Pcj7-argF/Pcj7-argF2 69 4.5 0.2
ATCC21831 102 4.2 0.3
ATCC21831_ΔPargC::lysCP1 86 3.2 2.9
ATCC21831_ΔPargC::lysCP1_Pcj7-argF 86 5.5 0.3
ATCC21831_ΔPargC::lysCP1_Pcj7-argF2 88 5.3 0.6
ATCC21831_ΔPargC::lysCP1_Pcj7-argF/Pcj7-argF2 85 5.6 0.3
상기 표 1에서 나타낸 바와 같이, 아르기닌 오페론과 오르니틴 카마모일트랜스퍼라제를 암호화하는 유전자가 동시 강화된 균주는 대조군 대비 아르기닌 생산능이 최대 50% 향상됨을 확인하였다. 또한, 아르기닌 오페론 단독 강화(KCCM10741P _ΔPargC::lysCP1 및 ATCC21831_ΔPargC::lysCP1) 에서 보이는 아르기닌 농도 감소 및 오르니틴 농도 증가는 argF, argF2 또는 argFargF2를 도입함으로써 해결되었으며, 결과적으로 아르기닌 농도 증가의 결과를 보여주고 있다.
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
Figure PCTKR2015010768-appb-I000001

Claims (4)

  1. 아르기닌 오페론 및 오르니틴 카바모일트랜스퍼라제의 활성이 강화된 L-아르기닌을 생산하는 코리네박테리움 속 미생물.
  2. 제1항에 있어서, 상기 오르니틴 카마모일트랜스퍼라제는 서열번호 1 또는 서열번호 3의 아미노산 서열인, L-아르기닌을 생산하는 코리네박테리움 속 미생물.
  3. 제1항에 있어서, 상기 코리네박테리움 속 미생물은 코리네박테리움 글루타미쿰인 것을 특징으로 하는 L-아르기닌을 생산하는 코리네박테리움 속 미생물.
  4. 제1항 내지 제3항 중 어느 한 항의 코리네박테리움 속 미생물을 배양 배지에서 배양하는 단계; 및
    상기 배양 배지 또는 미생물에서 L-아르기닌을 회수하는 단계를 포함하는 L-아르기닌을 생산하는 방법.
PCT/KR2015/010768 2014-10-13 2015-10-13 L-아르기닌을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-아르기닌의 제조 방법 WO2016060437A1 (ko)

Priority Applications (12)

Application Number Priority Date Filing Date Title
US15/515,551 US10626426B2 (en) 2014-10-13 2015-10-13 Microorganism of genus Corynebacterium having an ability to produce L-arginine and a method for producing L-arginine using the same
ES15850829T ES2724000T3 (es) 2014-10-13 2015-10-13 Microorganismo del género Corynebacterium para producir L-arginina y método de producción de L-arginina utilizando el mismo
CN201580055711.1A CN107002027B (zh) 2014-10-13 2015-10-13 具有生产l-精氨酸能力的棒状杆菌属微生物和使用其生产l-精氨酸的方法
RU2016147322A RU2671106C1 (ru) 2014-10-13 2015-10-13 Микроорганизм рода Corynebacterium для продуцирования L-аргинина и способ получения L-аргинина с использованием этого микроорганизма
CA2951019A CA2951019C (en) 2014-10-13 2015-10-13 A microorganism of genus corynebacterium having an ability to produce l-arginine and a method for producing l-arginine using the same
PL15850829T PL3153573T3 (pl) 2014-10-13 2015-10-13 Mikroorganizm z rodzaju Corynebacterium do wytwarzania L-argininy i sposoby wytwarzania L-argininy przy jego zastosowaniu
MYPI2017000069A MY188962A (en) 2014-10-13 2015-10-13 A microorganism of genus corynebacterium having an ability to produce l-arginine and an method for producing l-arginine using the same
BR112016029730-0A BR112016029730B1 (pt) 2014-10-13 2015-10-13 Microrganismo do gênero corynebacterium que tem a aptidão de produzir l-arginina e um método para a produção de l-arginina utilizando o mesmo
DK15850829.1T DK3153573T3 (da) 2014-10-13 2015-10-13 Mikroorganisme af slægten Corynebacterium til fremstilling af L-arginin og fremgangsmåde til fremstilling af L-arginin under anvendelse af samme
EP15850829.1A EP3153573B1 (en) 2014-10-13 2015-10-13 Microorganism of genus corynebacterium for producing l-arginine, and l-arginine production method using same
AU2015331160A AU2015331160B2 (en) 2014-10-13 2015-10-13 A Microorganism Of Genus Corynebacterium Having An Ability To Produce L-Arginine And A Method For Producing L-Arginine Using The Same
JP2016575080A JP6476212B2 (ja) 2014-10-13 2015-10-13 L−アルギニンを生産するコリネバクテリウム属の微生物及びそれを用いたl−アルギニンの製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140137794 2014-10-13
KR10-2014-0137794 2014-10-13
KR10-2015-0076331 2015-05-29
KR1020150076331A KR101835935B1 (ko) 2014-10-13 2015-05-29 L-아르기닌을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-아르기닌의 제조 방법

Publications (1)

Publication Number Publication Date
WO2016060437A1 true WO2016060437A1 (ko) 2016-04-21

Family

ID=55746922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010768 WO2016060437A1 (ko) 2014-10-13 2015-10-13 L-아르기닌을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-아르기닌의 제조 방법

Country Status (1)

Country Link
WO (1) WO2016060437A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080006799A (ko) * 2006-07-13 2008-01-17 씨제이제일제당 (주) 역가가 향상된 유전자 argF 염기서열 및 그를 포함하는형질전환 균주를 이용한 L―알지닌의 생산방법
KR101186128B1 (ko) * 2004-11-25 2012-09-27 아지노모토 가부시키가이샤 L-아미노산 생산 세균 및 l-아미노산의 생산 방법
KR20120130580A (ko) * 2011-05-23 2012-12-03 (주)강원지역대학연합기술지주회사 L-오르니틴 생산능이 향상된 코리네박테리움 속 미생물 및 이를 이용한 l-오르니틴의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101186128B1 (ko) * 2004-11-25 2012-09-27 아지노모토 가부시키가이샤 L-아미노산 생산 세균 및 l-아미노산의 생산 방법
KR20080006799A (ko) * 2006-07-13 2008-01-17 씨제이제일제당 (주) 역가가 향상된 유전자 argF 염기서열 및 그를 포함하는형질전환 균주를 이용한 L―알지닌의 생산방법
KR20120130580A (ko) * 2011-05-23 2012-12-03 (주)강원지역대학연합기술지주회사 L-오르니틴 생산능이 향상된 코리네박테리움 속 미생물 및 이를 이용한 l-오르니틴의 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DOU, WENFANG ET AL.: "Improvement of L-arginine production by overexpression of a bifunctional ornithine acetyltransfemse in Corynebacter ium crenatum''.", APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, vol. 165, no. 3-4, 2011, pages 845 - 855, XP019973333 *
XU, MEIJUAN ET AL.: "Heterologous and homologous expression of the arginine biosynthetic argC-H cluster from Corynebacterium crenatum for improvement of L-arginine production", JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, vol. 39, no. 3, 2012, pages 495 - 502, XP035017582 *

Similar Documents

Publication Publication Date Title
JP6476212B2 (ja) L−アルギニンを生産するコリネバクテリウム属の微生物及びそれを用いたl−アルギニンの製造方法
KR100930203B1 (ko) 개량된 프로모터 및 이를 이용한 l-라이신의 생산 방법
ES2376035T3 (es) Unidades de expresión de p-ef-ts en corynebacterium glutamicum.
EP1792976B1 (en) Microorganism of corynebacterium genus having enhanced L-lysine production ability and method of producing L-lysine using the same
KR101226384B1 (ko) 개량된 프로모터 및 이를 이용한 l-라이신의 생산 방법
KR100987281B1 (ko) 개량된 프로모터 및 이를 이용한 l-라이신의 생산 방법
KR20130082124A (ko) 자일로즈 이용능이 부여된 코리네박테리움 속 미생물 및 이를 이용한 l-라이신의 생산방법
KR100830289B1 (ko) L-아르기닌 생산 변이주 및 이의 제조방법
ES2745561T3 (es) Variante del represor de gluconato, microorganismo que produce L-lisina que comprende esta variante y un procedimiento para producir L-lisina mediante su uso
BR112017028181B1 (pt) Micro-organismo modificado para produzir putrescina ou ornitina e método para produzir putrescina ou ornitina usando o dito micro-organismo
CN106574234A (zh) 产生二胺的微生物和使用该微生物产生二胺的方法
US20220340940A1 (en) Novel promoter and method for producing desired substance using same
JP2022001049A (ja) 新規なポリペプチド及びこれを用いたオルニチン系産物の生産方法
WO2016060437A1 (ko) L-아르기닌을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-아르기닌의 제조 방법
KR101526047B1 (ko) 아미노트랜스퍼라제 활성 강화를 통하여 l-오르니틴 생산능이 향상된 미생물 및 이를 이용한 l-오르니틴의 제조방법
EP2837688A1 (en) Method for producing amino acid
KR20070058259A (ko) L-라이신 생산능이 향상된 코리네박테리움 속 미생물 및그를 이용하여 l-라이신을 생산하는 방법
US20230063145A1 (en) Microorganism with enhanced l-branched-chain amino acid producing ability and method for producing l-branched-chain amino acid using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15850829

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2951019

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2016575080

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015850829

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015850829

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015331160

Country of ref document: AU

Date of ref document: 20151013

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016029730

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016147322

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016029730

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161216