WO2009096086A1 - 圧電体膜を用いた振動ジャイロ及びその製造方法 - Google Patents

圧電体膜を用いた振動ジャイロ及びその製造方法 Download PDF

Info

Publication number
WO2009096086A1
WO2009096086A1 PCT/JP2008/071372 JP2008071372W WO2009096086A1 WO 2009096086 A1 WO2009096086 A1 WO 2009096086A1 JP 2008071372 W JP2008071372 W JP 2008071372W WO 2009096086 A1 WO2009096086 A1 WO 2009096086A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
electrodes
metal film
vibration
peripheral edge
Prior art date
Application number
PCT/JP2008/071372
Other languages
English (en)
French (fr)
Inventor
Takashi Ikeda
Hiroshi Nishida
Osamu Torayashiki
Mitsuhiko Takemura
Tsuyoshi Fujimura
Ryuta Araki
Takafumi Moriguchi
Nobutaka Teshima
Yasuyuki Hirata
Original Assignee
Sumitomo Precision Products Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co., Ltd. filed Critical Sumitomo Precision Products Co., Ltd.
Priority to EP08871848.1A priority Critical patent/EP2239541B1/en
Priority to US12/863,639 priority patent/US8381590B2/en
Priority to JP2009551403A priority patent/JP5392913B2/ja
Priority to CN2008801243179A priority patent/CN101910790A/zh
Publication of WO2009096086A1 publication Critical patent/WO2009096086A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/567Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode
    • G01C19/5677Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators
    • G01C19/5684Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators the devices involving a micromechanical structure

Definitions

  • the present invention relates to a vibrating gyroscope using a piezoelectric film.
  • the size reduction of the gyro itself is also an important issue as the size of various devices on which the gyro is mounted is becoming smaller and smaller.
  • it is necessary to significantly increase the processing accuracy of each member constituting the gyro.
  • it is a demand of the industry to further improve the performance as a gyro, in other words, the detection accuracy of angular velocity.
  • the structure of the gyro shown in Patent Document 2 does not satisfy the demand for miniaturization and high performance in recent years. JP-A-8-271258 JP 2000-9473 A
  • the present invention greatly contributes to downsizing and high performance of a vibrating gyroscope using a piezoelectric film by solving the above-described technical problems.
  • the inventors first adopted, as a basic structure, a ring-shaped vibrating gyroscope which is considered to have a relatively small influence on disturbance among the above-mentioned technical problems.
  • the inventors of the present invention conducted intensive studies on a structure that solves each of the above-mentioned technical problems by causing the piezoelectric film to carry out excitation of primary vibration and detection of secondary vibration formed by Coriolis force.
  • One vibration gyro comprises a ring-shaped vibrating body uniformly provided with a plane, a leg portion flexibly supporting the ring-shaped vibrating body and having a fixed end, and an upper layer formed on the plane
  • a plurality of electrodes and fixed potential electrodes sandwiching the piezoelectric film in the thickness direction by the metal film and the lower metal film are provided.
  • N is a natural number of 2 or more
  • the plurality of electrodes mentioned above excite the primary vibration of the ring-shaped vibrating body in the vibration mode of cos N ⁇ when N is a natural number of 2 or more.
  • a second group of second detection electrodes is arranged at different angles and an angle away from the drive electrodes described above by (90 / N) ° clockwise or counterclockwise, and an angular velocity is given to the above-mentioned ring-shaped vibrating body
  • a second group of second detection electrodes
  • the respective drive electrodes described above, the respective first detection electrodes described above, and the respective second detection electrodes described above are regions extending from the outer peripheral edge of the aforementioned ring-shaped vibrating body to the vicinity of the outer peripheral edge It is arrange
  • the piezoelectric element is formed as an electrode in the above-described specific region on the plane of the ring-shaped vibrating body, the excitation of the primary vibration and the secondary vibration can be obtained as a uniaxial angular velocity sensor. Detection is possible. That is, in this vibrating gyroscope, the primary vibration is excited in the same plane as the plane on which the piezoelectric element is disposed on the ring-shaped vibrating body without forming the piezoelectric element on the side surface of the ring-shaped vibrating body, and the ring-shaped vibration Since the structure for controlling the movement of the body is provided, it is possible to process the electrode and the ring-shaped vibrating body with high accuracy using dry process technology.
  • this vibrating gyroscope by disposing the piezoelectric element in the above-described unique region, there is a degree of freedom that can be applied to the vibrating mode of cos N ⁇ in the case where N is a natural number of 2 or more.
  • a plurality of examples of the vibration mode of cos N ⁇ are described in, for example, Japanese Patent Application Publication No. 2005-529306 or Japanese Patent Application No. 2007-209014 which is a patent application filed by the applicant of the present application.
  • "flexible” means "to the extent that the vibrating body can vibrate".
  • One vibration gyro comprises a ring-shaped vibrating body uniformly provided with a plane, a leg portion flexibly supporting the ring-shaped vibrating body and having a fixed end, and an upper layer formed on the plane
  • a plurality of electrodes and fixed potential electrodes sandwiching the piezoelectric film in the thickness direction by the metal film and the lower metal film are provided.
  • N is a natural number of 2 or more
  • the plurality of electrodes mentioned above excite the primary vibration of the ring-shaped vibrating body in the vibration mode of cos N ⁇ when N is a natural number of 2 or more.
  • each drive electrode described above, each monitor electrode described above, each first detection electrode described above, and each second detection electrode described above are connected from the outer peripheral edge of the ring-shaped vibrator to the outer peripheral edge thereof. It is disposed in the region up to the vicinity or the region from the inner peripheral edge to the vicinity of the inner peripheral edge.
  • the piezoelectric element is formed as an electrode on the plane of the ring-shaped vibrating body and in the above-mentioned specific region, the excitation of the primary vibration and the secondary vibration can be obtained as a uniaxial angular velocity sensor. Detection is possible.
  • the primary vibration is excited in the same plane as the plane on which the piezoelectric element is disposed on the ring-shaped vibrating body without forming the piezoelectric element on the side surface of the ring-shaped vibrating body, and the ring-shaped vibration Since the structure for controlling the movement of the body is provided, it is possible to process the electrode and the ring-shaped vibrating body with high accuracy using dry process technology. Further, in this vibrating gyroscope, by disposing the piezoelectric element in the above-described unique region, there is a degree of freedom that can be applied to the vibrating mode of cos N ⁇ in the case where N is a natural number of 2 or more.
  • a step of uniformly forming an insulating film on a silicon substrate, a step of uniformly forming a lower metal film on the insulating film, and a lower layer thereof A step of uniformly forming a piezoelectric film on a metal film, a step of uniformly forming an upper metal film on the piezoelectric film, and a step of patterning a first resist film on the upper metal film And dry etching the upper layer metal film to expose the above-mentioned piezoelectric film, and patterning a second resist film on the upper layer metal film and the piezoelectric film.
  • the lower resist film, the lower metal film, and the insulation thereof are used with the second resist film, the upper metal film, or the piezoelectric film described above as an etching mask.
  • the film and the silicon substrate are dry-etched to flexibly support the ring-shaped vibrating body and the ring-shaped vibrating body, and a leg portion having a fixed end, and cos N ⁇ when N is a natural number of 2 or more.
  • a group of first detections arranged at an angle separated by (90 / N) counterclockwise and detecting a secondary vibration generated when an angular velocity is given to the ring-shaped vibrating body Forming a pole and a group of second detection electrodes arranged at an angle (180 / N) degrees away from each of the first detection electrodes described above and detecting the second vibration described above There is.
  • the vibrating gyroscope since high-precision processing can be performed by the dry process technology, it is possible to form the piezoelectric element in a specific region on a plane provided in the ring-shaped vibrating body. As a result, without arranging the piezoelectric element on the side surface of the ring-shaped vibrator, only the piezoelectric element on the plane can play a role of exciting primary vibration and detecting secondary vibration as a uniaxial angular velocity sensor Gyros are manufactured.
  • the ring-shaped vibrating body is formed of a silicon substrate, a known silicon trench etching technique having a sufficiently high selection ratio with the resist film can be applied. Even if the resist film disappears, the upper metal film or the piezoelectric film under the film has a sufficient selectivity to serve as a mask in etching of silicon.
  • another method of manufacturing a vibrating gyroscope according to the present invention comprises the steps of: forming an insulating film uniformly on a silicon substrate; forming a lower metal film uniformly on the insulating film; Forming a piezoelectric film uniformly on the lower metal film, forming an upper metal film uniformly on the piezoelectric film, and patterning a first resist film on the upper metal film Using the first resist film as an etching mask, and dry etching the upper metal film and the piezoelectric film to expose the lower metal film, and covering the upper metal film and the lower metal film. And patterning the second resist film.
  • the insulating film of the second resist film described above, the upper metal film described above, or the lower metal film described above is used as an etching mask
  • N is a natural number of 2 or more
  • N is a natural number of 2 or more
  • This manufacturing method of the vibrating gyroscope also enables high-precision processing by the dry process technology, and therefore, it is possible to form the piezoelectric element in a specific region on the plane of the ring-shaped vibrating body. As a result, without arranging the piezoelectric element on the side surface of the ring-shaped vibrator, only the piezoelectric element on the plane can play a role of exciting primary vibration and detecting secondary vibration as a uniaxial angular velocity sensor Gyros are manufactured.
  • the primary vibration is excited in the same plane as the plane on which the piezoelectric element on the ring-shaped vibrating body is disposed, without forming the piezoelectric element on the side surface of the ring-shaped vibrating body
  • the movement of the ring oscillator can also be controlled.
  • this vibration gyro has degrees of freedom applicable to the vibration mode of cos N ⁇ when N is a natural number of 2 or more by arranging the piezoelectric element in a specific region.
  • a piezoelectric element can be formed in a specific region on a plane provided in a ring-shaped vibrator. It becomes possible.
  • the piezoelectric element on the side surface of the ring-shaped vibrator without arranging the piezoelectric element on the side surface of the ring-shaped vibrator, only the piezoelectric element on the plane can play a role of exciting primary vibration and detecting secondary vibration as a uniaxial angular velocity sensor Gyros are manufactured.
  • FIG. 1 is a front view of a structure that plays a central role in a ring-shaped vibrating gyroscope in an embodiment of the present invention. It is a perspective view of a structure shown in FIG. It is an enlarged view of a part (W part) of FIG. 2A.
  • FIG. 2 is a cross-sectional view taken along the line XX in FIG. It is sectional drawing which shows the process of the manufacturing process of a part of ring-shaped vibrating gyroscope in one embodiment of this invention. It is sectional drawing which shows the process of the manufacturing process of a part of ring-shaped vibrating gyroscope in one embodiment of this invention.
  • FIG. 1 It is sectional drawing which shows the process of the manufacturing process of a part of ring-shaped vibrating gyroscope in one embodiment of this invention. It is sectional drawing which shows the process of the manufacturing process of a part of ring-shaped vibrating gyroscope in one embodiment of this invention. It is sectional drawing which shows the process of the manufacturing process of a part of ring-shaped vibrating gyroscope in one embodiment of this invention. It is sectional drawing which shows the process of the manufacturing process of a part of ring-shaped vibrating gyroscope in one embodiment of this invention. It is a front view of the structure which plays a central role of the ring-shaped vibrating gyroscope in other embodiment of this invention.
  • FIG. 1 It is a front view of the structure which plays a central role of the ring-shaped vibrating gyroscope in other embodiment of this invention.
  • FIG. 6 is a YY cross-sectional view of FIG. 5; It is a front view of the structure which plays a central role of the ring-shaped vibrating gyroscope in other embodiment of this invention. It is ZZ sectional drawing of FIG. It is a figure which illustrates notionally the positive / negative of the electrical signal of a 1st sensing electrode and a 2nd sensing electrode. It is a front view of the structure which plays a central role of the ring-shaped vibrating gyroscope in other embodiment of this invention. It is a front view of the structure which plays a central role of the ring-shaped vibrating gyroscope in other embodiment of this invention.
  • FIG. 1 is a front view of a structure that plays a central role in the ring-shaped vibrating gyroscope 100 in the present embodiment.
  • 2A is a perspective view of the structure shown in FIG. 1, and
  • FIG. 2B is an enlarged view of a part (W part) of FIG. 2A.
  • FIG. 3 is a cross-sectional view taken along the line XX in FIG.
  • the ring-shaped vibrating gyroscope 100 of this embodiment is roughly classified into three regions.
  • the first region is provided with a silicon oxide film 20 on the upper surface (hereinafter referred to as the upper surface) of the ring-shaped vibrating member 11 formed from the silicon substrate 10, and further the piezoelectric film 40 is a lower metal
  • This is a region provided with a plurality of electrodes 13a to 13d formed by being sandwiched between the film 30 and the upper metal film 50.
  • the outer end of the upper metal film 50 constituting the plurality of electrodes 13a to 13d is formed about 1 ⁇ m inward from the outer peripheral edge of the ring-shaped vibrating body 11 having a ring-shaped flat about 40 ⁇ m wide.
  • the width is about 18 ⁇ m.
  • the upper metal film 50 is formed outside the line connecting the centers between both ends of the width of the ring-shaped plane which is the upper surface of the ring-shaped vibrating body 11 (hereinafter simply referred to as the center line).
  • the primary vibration of the ring-shaped vibrating gyroscope 100 is excited in the vibration mode of cos 2 ⁇ .
  • the breakdown of the plurality of electrodes 13a to 13d described above includes two drive electrodes 13a and 13a arranged at an angle of 180 ° in the circumferential direction, and 90 in the circumferential direction from the drive electrodes 13a and 13a.
  • First detection electrodes 13b and 13b and second detection for detecting secondary vibration generated when angular velocity is given to two monitor electrodes 13c and 13c arranged at an angle apart and ring-shaped vibrating gyroscope 100 are electrodes 13d and 13d.
  • the first detection electrodes 13b and 13b are disposed at an angle of 45 ° in the circumferential direction and clockwise from the drive electrodes 13a and 13a.
  • the second detection electrodes 13d and 13d are circumferentially separated from the first detection electrode by 90 °, in other words, circumferentially from the drive electrodes 13a and 13a, 45 ° counterclockwise. Placed at a remote angle.
  • the thickness of the lower metal film 30 and the upper metal film 50 is 100 nm, and the thickness of the piezoelectric film 40 is 3 ⁇ m. Also, the thickness of the silicon substrate 10 is 100 ⁇ m.
  • the hatched area indicated by V in FIG. 1 or the area indicated by V in FIG. 2B is a space or an air gap where there is no structure constituting the ring-shaped vibrating gyroscope 100, in order to make the drawing easy to understand. Are provided for the sake of convenience.
  • the second region is the leg portions 15 to 15 connected to a part of the ring-shaped vibrating body 11.
  • the leg portions 15 to 15 are also formed of the silicon substrate 10. Further, on the leg portions 15,..., 15, the above-mentioned silicon oxide film 20, lower metal film 30, and piezoelectric film 40 which are continuous with those on the ring-shaped vibrating body 11 are leg portions 15,.
  • ⁇ ⁇ Are formed on the entire top surface of 15 Further, on the center line of the upper surface of the piezoelectric film 40, an upper metal film 50 which is a lead electrode 14,..., 14 with a width of about 8 ⁇ m is formed.
  • the third region is a fixed end for an electrode pad provided with a support 19 formed from the silicon substrate 10 connected to the above-mentioned legs 15 to 15 and electrode pads 18 to 18. 17, ..., 17.
  • the support 19 is connected to the package portion of the ring-shaped vibrating gyroscope 100 (not shown) and plays a role as a fixed end.
  • the ring-shaped vibrating gyroscope 100 of the present embodiment is provided with electrode pad fixed ends 17,..., 17 as fixed ends other than the support column 19. Since the electrode pad fixed ends 17,..., 17 are connected only to the support 19 and the above-mentioned package portion, they do not substantially inhibit the movement of the ring-shaped vibrating body 11. Further, as shown in FIG.
  • the leg parts 15 On the upper surfaces of the support column 19 and the electrode pad fixed ends 17... 17, except for the fixed potential electrode 16 which is a ground electrode, the leg parts 15.
  • the silicon oxide film 20, the lower metal film 30, and the piezoelectric film 40 described above which are continuous with those above are formed.
  • the lower metal film 30 formed on the silicon oxide film 20 plays a role of the fixed potential electrode 16.
  • the electrodes 14, ..., 14 and the electrode pads 18, ..., 18 are formed.
  • FIGS. 4A to 4F are cross-sectional views corresponding to a partial range in FIG.
  • a silicon oxide film 20, a lower metal film 30, a piezoelectric film 40, and an upper metal film 50 are stacked on a silicon substrate 10.
  • Each film described above is formed by a known film forming means.
  • the silicon oxide film 20 is a thermal oxide film by a known means.
  • the lower metal film 30, the piezoelectric film 40, and the upper metal film 50 are all formed by a known sputtering method.
  • membranes is not limited to the above-mentioned example, It can form also by another well-known means.
  • the upper metal film 50 shown in FIG. 4B is formed by performing dry etching based on the pattern formed by the photolithography technique. Ru.
  • dry etching of the upper metal film 50 was performed under known reactive ion etching (RIE) conditions using argon (Ar) or a mixed gas of argon (Ar) and oxygen (O 2 ).
  • RIE reactive ion etching
  • the piezoelectric film 40 is dry etched based on the resist film patterned by the photolithography technique.
  • the dry etching of the piezoelectric film 40 of the present embodiment using argon (Ar) and a mixed gas of C 2 F 6 gas, or argon (Ar) and C 2 F 6 gas and CHF 3 gas mixed gas It was performed by known reactive ion etching (RIE) conditions.
  • a part of the lower metal film 30 is etched.
  • dry etching is performed again using the resist film patterned by photolithography so that the fixed potential electrode 16 using the lower metal film 30 is formed.
  • the fixed potential electrode 16 is used as a ground electrode.
  • the thickness of this resist film is about 4 ⁇ m. Is formed.
  • the selection ratio of the etching rate to the etchant used for the silicon substrate 10 works advantageously, so that the lower metal film is formed by the above-mentioned etching. The performance of 30 is virtually unaffected.
  • the silicon oxide film 20 and the silicon substrate 10 are dry etched using the resist film for etching the lower metal film 30.
  • the dry etching of the silicon oxide film 20 of the present embodiment was performed under known reactive ion etching (RIE) conditions using argon (Ar) or a mixed gas of argon (Ar) and oxygen (O 2 ). Further, as a condition of the dry etching of the silicon substrate 10 of the present embodiment, a known silicon trench etching technique is applied. Here, the silicon substrate 10 is etched through.
  • RIE reactive ion etching
  • a protective substrate for preventing the stage on which the silicon substrate 10 is mounted is exposed to plasma during penetration is adhered to the lower layer of the silicon substrate 10 by grease or the like excellent in heat conductivity.
  • the dry etching technology described in Japanese Patent Application Laid-Open No. 2002-158214 is employed. Is a preferred embodiment.
  • the central structure of the ring-shaped vibrating gyroscope 100 is formed by etching the silicon substrate 10 and the respective films stacked on the silicon substrate 10, the step of containing in a package by known means; By passing through the wiring process, the ring-shaped vibrating gyroscope 100 is formed.
  • each electrode provided in the ring-shaped vibrating gyroscope 100 will be described.
  • the primary vibration of the vibration mode of cos 2 ⁇ is excited. Since the fixed potential electrode 16 is grounded, the lower layer electrode film 30 formed continuously with the fixed potential electrode 16 is uniformly at 0V.
  • an alternating voltage of 1 V P-0 is applied to the two drive electrodes 13a, 13a.
  • the piezoelectric film 40 expands and contracts to excite primary vibration.
  • the upper metal film 50 is formed outside the center line of the upper surface of the ring-shaped vibrating member 11, the upper metal film 50 is not formed on the side surface of the ring-shaped vibrating member 11. It becomes possible to convert the stretching movement into the primary vibration of the ring-shaped vibrating body 11.
  • monitor electrodes 13 c and 13 c shown in FIG. 1 detect the amplitude and resonance frequency of the above-mentioned primary vibration, and transmit a signal to a known feedback control circuit (not shown).
  • the feedback control circuit of this embodiment controls so that the frequency of the AC voltage applied to the drive electrodes 13a and 13a matches the natural frequency of the ring-shaped vibrating body 11, and has the amplitude of the ring-shaped vibrating body 11. Control is performed using the signals of the monitor electrodes 13c and 13c so as to have a constant value. As a result, the ring-shaped vibrating body 11 maintains a constant vibration.
  • an angular velocity around an axis perpendicular to the plane on which the ring-shaped vibrating gyroscope 100 shown in FIG. 1 is disposed (an axis in a direction perpendicular to the paper surface, hereinafter simply referred to as “vertical axis”).
  • vertical axis an axis in a direction perpendicular to the paper surface
  • secondary vibration having a new vibration axis inclined 45 ° on both sides with respect to the vibration axis of the primary vibration is generated by the Coriolis force.
  • the secondary vibration is detected by the two first detection electrodes 13 b and 13 b and the two second detection electrodes 13 d and 13 d.
  • the first detection electrodes 13 b and 13 b and the second detection electrodes 13 d and 13 d are respectively disposed corresponding to the vibration axis of the secondary vibration.
  • all the first detection electrodes 13 b and 13 b and the second detection electrodes 13 d and 13 d are formed outside the center line on the top surface of the ring-shaped vibrating body 11. Accordingly, the positive and negative electrical signals of the first detection electrodes 13b and 13b and the second detection electrodes 13d and 13d generated by the secondary vibration excited by receiving the angular velocity are reversed. This is because, as shown in FIG.
  • the difference between the electric signals of the first detection electrodes 13 b and 13 b and the second detection electrodes 13 d and 13 d is calculated in the arithmetic circuit 60 which is a known difference circuit.
  • the detection signal has about twice the detection capability as compared to the case of only either the first detection signal or the second detection signal.
  • the upper metal film 50, the piezoelectric film 40, and the lower metal film 30 as the lead-out electrode 14 are formed on the leg portions 15,.
  • the leg portions 15 to 15 are perpendicular to the ring-shaped vibrating gyroscope 100. Since it moves in one direction of the axis, an electrical signal is generated as the piezoelectric film 40 on the legs 15,.
  • each leg is taken by taking their difference in the arithmetic circuit 60.
  • the signal from unit 15 will be substantially cancelled.
  • the first detection electrodes 13b and 13b are disposed at positions separated by 180 ° in the circumferential direction, respectively.
  • the expansion and contraction of the piezoelectric film 40 on the leg portions connected to the first detection electrodes 13 b and 13 b are reversed.
  • the positive and negative of the electric signal of each 1st detection electrode 13b become reverse.
  • the electrical signals will cancel one another.
  • the above-mentioned phenomenon applies to the above-mentioned electric signal of the leg connected to each second detection electrode 13d. Therefore, the vibration of the locking mode does not substantially affect the arithmetic circuit 60.
  • the ring-shaped vibrating gyroscope 100 of the present embodiment includes the two first detection electrodes 13 b and 13 b and the two second detection electrodes 13 d and 13 d, thereby enhancing the detection capability of the secondary vibration. Impact resistance to external impacts that excite vibrations in the bounce mode and the locking mode is also enhanced.
  • FIG. 5 is a front view of a structure that plays a central role in another ring-shaped vibrating gyroscope 200 in the present embodiment.
  • 6 is a cross-sectional view taken along line YY of FIG.
  • the ring-shaped vibrating gyroscope 200 of the present embodiment has the same configuration as the ring-shaped vibrating gyroscope 100 of the first embodiment except for the piezoelectric film 40 and the upper metal film 50 in the first embodiment.
  • the manufacturing method is the same as that of the first embodiment except for a part.
  • the vibration mode of the present embodiment is a vibration mode of cos 2 ⁇ , as in the first embodiment. Therefore, the description overlapping with the first embodiment is omitted.
  • the arithmetic circuit 60 in FIG. 1 is omitted for the sake of convenience for easy viewing of the drawing.
  • the ring-shaped vibrating gyroscope 200 of the present embodiment includes second detection electrodes 213d and 213d instead of the second detection electrodes 13d and 13d of the first embodiment.
  • the outer end portions of the upper metal film 50 of the second detection electrodes 213d and 213d of the present embodiment are formed about 1 ⁇ m inward from the inner peripheral edge of the ring-shaped vibrating body 11, and the width thereof is about 18 ⁇ m.
  • the upper layer metal films 50 are formed inside the center line of the ring-shaped flat surface of the ring-shaped vibrating body 11.
  • the piezoelectric film 40 is etched in conformity with the area where the upper metal film 50 is substantially formed. For this reason, since the alternating voltage applied to the upper metal film 50 is applied only vertically downward without being affected by the region in which the lower metal film 30 is formed, undesired expansion and contraction of the piezoelectric film 40 and an electric signal are generated. Transmission is prevented.
  • the residual resist film on the upper layer metal film 50 or the metal film 50 itself is used as an etching mask, and subsequently, the dry under the same conditions as the first embodiment.
  • the above-mentioned piezoelectric film 40 is formed by performing the etching. Further, as shown in FIG.
  • the piezoelectric film 40 is etched in an inclined manner (for example, an inclination angle of 75 °).
  • the piezoelectric film 40 having a steep slope as shown in FIG. 6 is substantially invisible as compared to other regions in the front view of the ring-shaped vibrating gyroscope 200 shown in FIG. Handled.
  • the secondary Vibration is detected by the two first detection electrodes 13 b and 13 b and the two second detection electrodes 213 d and 213 d.
  • the first detection electrodes 13 b and 13 b and the second detection electrodes 213 d and 213 d are respectively disposed corresponding to the vibration axis of the secondary vibration.
  • the first detection electrodes 13 b and 13 b are formed outside the center line of the upper surface of the ring-shaped vibrating body 11.
  • the second detection electrodes 213 d and 213 d are formed inside the center line of the upper surface of the ring-shaped vibrating body 11. Accordingly, the positive and the negative of the electrical signals of the first detection electrodes 13b and 13b and the second detection electrodes 213d and 213d generated by the secondary vibration excited upon receiving the angular velocity coincide with each other.
  • the sum of the electrical signals of the first detection electrodes 13 b and 13 b and the second detection electrodes 213 d and 213 d is calculated by an arithmetic circuit which is a known addition circuit (not shown).
  • the detection signal has about twice the detection capability as compared to the case of only either the first detection signal or the second detection signal.
  • the first detection electrodes 13b and 13b and the lead-out electrodes 14 from the second detection electrodes 213d and 213d are simply connected instead of the above-mentioned addition circuit, it is equivalent to the above-mentioned addition circuit.
  • the ring-shaped vibrating gyroscope 200 of this embodiment has an advantage of being extremely simplified in circuit design.
  • 1st detection electrode 13b, 13b is each arrange
  • the above-mentioned phenomenon applies to the above-mentioned electric signal of the leg connected to each second detection electrode 213d. As a result, the vibration of the locking mode is not substantially affected by the operation circuit.
  • the ring-shaped vibrating gyroscope 200 of the present embodiment does not have the shock resistance that excites the vibration of the bounce mode.
  • the ring-shaped vibrating gyroscope 200 of the present embodiment includes the two first detection electrodes 13 b and 13 b and the two second detection electrodes 213 d and 213 d, thereby enhancing the detection capability of the secondary vibration.
  • FIG. 7 is a front view of a structure that plays a central role in another ring-shaped vibrating gyroscope 300 in the present embodiment.
  • 8 is a cross-sectional view taken along the line ZZ in FIG.
  • the ring-shaped vibrating gyroscope 300 of the present embodiment has the same configuration as the ring-shaped vibrating gyroscope 100 of the first embodiment except for the arrangement of the upper metal film 50 in the first region in the first embodiment.
  • the manufacturing method is the same as that of the first embodiment except for a part.
  • the vibration mode of the present embodiment is a vibration mode of cos 2 ⁇ , as in the first embodiment. Therefore, the description overlapping with the first embodiment is omitted.
  • the arithmetic circuit 60 in FIG. 1 is omitted for the sake of convenience in order to make the drawing easy to see.
  • the ring-shaped vibrating gyroscope 300 of the present embodiment includes first detection electrodes 313 b and 313 b instead of the first detection electrodes 13 b and 13 b of the first embodiment, and
  • the second detection electrodes 313 d and 313 d are provided instead of the second detection electrodes 13 d and 13 d of the embodiment.
  • the outer end portions of the upper metal film 50 of the first detection electrodes 313 b and 313 b and the second detection electrodes 313 d and 313 d of this embodiment are formed about 1 ⁇ m inward from the inner peripheral edge of the ring-shaped vibrating body 11 and the width thereof is about It is 18 ⁇ m.
  • the upper metal films 50 are formed inside the center line of the upper surface of the ring-shaped vibrating body 11.
  • the secondary The vibration is detected by the two first detection electrodes 313 b and 313 b and the two second detection electrodes 313 d and 313 d.
  • the first detection electrodes 313 b and 313 b and the second detection electrodes 313 d and 313 d are respectively disposed corresponding to the vibration axis of the secondary vibration.
  • the first detection electrodes 313 b and 313 b and the second detection electrodes 313 d and 313 d are formed inside the center line of the top surface of the ring-shaped vibrating body 11. Accordingly, the positive and negative electrical signals of the first detection electrodes 313b and 313b and the second detection electrodes 313d and 313d generated by the secondary vibration excited by receiving the angular velocity are reversed.
  • the difference between the electric signals of the first detection electrodes 313 b and 313 b and the second detection electrodes 313 d and 313 d is calculated in an arithmetic circuit which is a known difference circuit (not shown).
  • the detection signal has about twice the detection capability as compared to the case of only either the first detection signal or the second detection signal.
  • the upper metal film 50, the piezoelectric film 40, and the lower metal film 30 as the lead-out electrode 14 are formed on the leg portions 15,.
  • the leg portions 15 to 15 are vertical axes of the ring-shaped vibrating gyroscope 300.
  • the piezoelectric film 40 on the leg portions 15,..., 15 are generated.
  • each difference can be obtained by taking their difference in the arithmetic circuit described above. The signal from the leg 15 is substantially cancelled.
  • the first detection electrodes 313b and 313b are disposed at positions separated by 180 ° in the circumferential direction, respectively.
  • the expansion and contraction of the piezoelectric film 40 on the leg portions connected to the first detection electrodes 313 b and 313 b are reversed.
  • the positive and negative of the electric signal of each 1st detection electrode 313b become reverse.
  • the electrical signals will cancel one another.
  • the above-mentioned phenomenon applies to the above-mentioned electric signal of the leg connected to each second detection electrode 313d.
  • the vibration of the locking mode is not substantially affected by the operation circuit.
  • the ring-shaped vibrating gyroscope 300 of the present embodiment includes the two first detection electrodes 313 b and 313 b and the two second detection electrodes 313 d and 313 d, thereby enhancing the detection capability of the secondary vibration. Impact resistance to external impacts that excite vibrations in the bounce mode and the locking mode is also enhanced.
  • FIG. 10 is a front view of a structure that plays a central role in another ring-shaped vibrating gyroscope 400 in the present embodiment.
  • the ring-shaped vibrating gyroscope 400 of this embodiment has the same configuration as the ring-shaped vibrating gyroscope 100 of the first embodiment except for the arrangement of the upper metal film 50 in the first region related to the monitor electrode in the first embodiment. Equipped with Moreover, the manufacturing method is the same as that of the first embodiment except for the pattern formed by the photolithography technique.
  • the vibration mode of the present embodiment is a vibration mode of cos 2 ⁇ , as in the first embodiment. Therefore, the description overlapping with the first embodiment is omitted. Also in FIG. 10, the arithmetic circuit 60 is omitted for the sake of convenience in order to make the drawing easy to see.
  • the ring-shaped vibrating gyroscope 400 includes four monitor electrodes 413c,..., 413c, and the respective monitor electrodes 413c,.
  • the electrode pads 18,..., 18 are connected.
  • These monitor electrodes 413c,..., 413c detect the amplitude and resonance frequency of the primary vibration of the ring-shaped vibrating body 11 as in the first embodiment, and transmit a signal to a known feedback control circuit not shown. Do. As a result, the ring-shaped vibrating body 11 maintains a constant vibration.
  • the monitor electrodes 413c,..., 413c do not necessarily have to be disposed at an angle of (180/2) °, that is, 90 ° from the respective drive electrodes 13a, 13a. Even with the arrangement of the monitor electrodes 413c,..., 413c shown in FIG. 10, the main effect of the present invention is exhibited.
  • the monitor electrodes 413c,..., 413c are disposed at equal angles apart from each other at an angle of 90 ° from the drive electrodes 13a, 13a. For this reason, the influence of the nonuniformity of the detection sensitivity caused by the positional deviation of the monitor electrodes 413c,..., 413c caused by the variation in the manufacturing process is reduced.
  • FIG. 11 is a front view of a structure that plays a central role in another ring-shaped vibrating gyroscope 500 in the present embodiment.
  • the ring-shaped vibrating gyroscope 500 of the present embodiment has the same configuration as the ring-shaped vibrating gyroscope 100 of the first embodiment except for the arrangement of the upper metal film 50 in the first region in the first embodiment.
  • the manufacturing method is the same as that of the first embodiment except for the pattern formed by the photolithography technique.
  • the vibration mode of the present embodiment is a vibration mode of cos 2 ⁇ , as in the first embodiment. Therefore, the description overlapping with the first embodiment is omitted.
  • the arithmetic circuit 60 is omitted for the sake of convenience for easy viewing of the drawing.
  • the ring-shaped vibrating gyroscope 500 includes two monitor electrodes 513c, 513c as shown in FIG. 11, and the respective monitor electrodes 513c, 513c are connected to the electrode pads 18, 18 through the lead electrodes. ing. As in the first embodiment, these monitor electrodes 513 c and 513 c detect the amplitude and resonance frequency of the primary vibration of the ring-shaped vibrating body 11 and transmit a signal to a known feedback control circuit (not shown). As a result, the ring-shaped vibrating body 11 maintains a constant vibration.
  • the monitor electrodes 513c, 513c do not necessarily have to be disposed at an angle of (180/2) °, that is, 90 ° from the respective drive electrodes 13a, 13a. Even with the arrangement of the monitor electrodes 513c, 513c shown in FIG. 11, the main effect of the present invention is exhibited.
  • the monitor electrodes 513c, 513c are disposed at equal angles in the counterclockwise direction, with an angle of 90 ° apart from the drive electrodes 13a, 13a. For this reason, it is possible to reduce the influence of the nonuniformity of the detection sensitivity caused by the positional deviation of the monitor electrodes 513c, 513c caused by the variation in the manufacturing process. Even when the monitor electrodes 513c, 513c are disposed at equal angles in the clockwise direction with respect to the angles separated by 90 ° from the drive electrodes 13a, 13a, the same effect as described above is exhibited. Ru.
  • FIG. 12 is a front view of a structure that plays a central role in another ring-shaped vibrating gyroscope 600 in the present embodiment.
  • the ring-shaped vibrating gyroscope 600 of this embodiment has the same configuration as the ring-shaped vibrating gyroscope 100 of the first embodiment except for the arrangement of the upper metal film 50 in the first region in the first embodiment.
  • the manufacturing method is the same as that of the first embodiment except for the pattern formed by the photolithography technique.
  • the vibration mode of the present embodiment is a vibration mode of cos 2 ⁇ , as in the first embodiment. Therefore, the description overlapping with the first embodiment is omitted.
  • the arithmetic circuit 60 is omitted for the sake of convenience in order to make the drawing easy to see.
  • the ring-shaped vibrating gyroscope 600 includes two monitor electrodes 613c, 613c as shown in FIG. 12, and the respective monitor electrodes 613c, 613c are connected to the electrode pads 18, 18 through the lead electrodes. ing. As in the first embodiment, these monitor electrodes 613 c and 613 c detect the amplitude and resonance frequency of the primary vibration of the ring-shaped vibrating body 11 and transmit a signal to a known feedback control circuit (not shown). As a result, the ring-shaped vibrating body 11 maintains a constant vibration.
  • the monitor electrodes 613c, 613c do not necessarily have to be disposed at an angle of (180/2) °, that is, 90 ° from the respective drive electrodes 13a, 13a. Even with the arrangement of the monitor electrodes 613c and 613c shown in FIG. 12, the main effect of the present invention is exhibited.
  • one of the monitor electrodes 613c and 613c is separated by an equal angle in the counterclockwise direction and the other in the clockwise direction with an angle of 90 ° apart from each of the drive electrodes 13a and 13a. It is arranged.
  • the outputs of opposite phases due to the secondary vibration of the ring-shaped vibrating body 11 mutually suppress each other, the magnitude of the primary vibration can be kept constant without being affected by the newly generated secondary vibration. It becomes possible.
  • FIG. 13A is a front view of a structure that plays a central role in another ring-shaped vibrating gyroscope 700 in the present embodiment.
  • the ring-shaped vibrating gyroscope 700 of the present embodiment has the same configuration as the ring-shaped vibrating gyroscope 100 of the first embodiment except for the arrangement of the upper metal film 50 in the first region in the first embodiment.
  • the manufacturing method is the same as that of the first embodiment except for the pattern formed by the photolithography technique.
  • the vibration mode of the present embodiment is a vibration mode of cos 2 ⁇ , as in the first embodiment. Therefore, the description overlapping with the first embodiment is omitted.
  • the arithmetic circuit 60 is omitted for the sake of convenience in order to make the drawing easy to see.
  • the ring-shaped vibrating gyroscope 700 includes two monitor electrodes 513c, 513c as shown in FIG. 13A, and the respective monitor electrodes 713c, 713c are connected to the electrode pads 18, 18 through the lead electrodes. ing. As in the first embodiment, these monitor electrodes 713c and 713c detect the amplitude and resonance frequency of the primary vibration of the ring-shaped vibrating body 11, and transmit a signal to a known feedback control circuit (not shown). As a result, the ring-shaped vibrating body 11 maintains a constant vibration.
  • the monitor electrodes 713c and 713c do not necessarily have to be disposed at an angle of (180/2) °, that is, 90 ° from the respective drive electrodes 13a and 13a. Even with the arrangement of the monitor electrodes 713c and 713c shown in FIG. 13A, the main effect of the present invention is exhibited.
  • the monitor electrodes 713c and 713c are disposed at equal angles in the counterclockwise direction with an angle of 90 ° apart from the drive electrodes 13a and 13a. For this reason, the influence of the nonuniformity of the detection sensitivity caused by the positional deviation of the monitor electrodes 413c,..., 413c caused by the variation in the manufacturing process is reduced. Even when the monitor electrodes 713c and 713c are disposed at equal angles in the clockwise direction with respect to the angles 90 ° apart from the drive electrodes 13a and 13a, the same effect as described above is obtained. Ru.
  • FIG. 13B is a front view of a structure that plays a central role in another ring-shaped vibrating gyroscope 750 in the present embodiment.
  • the ring-shaped vibrating gyroscope 750 of this embodiment has the same configuration as the ring-shaped vibrating gyroscope 100 of the first embodiment except for the arrangement of the upper metal film 50 in the first region in the first embodiment.
  • the manufacturing method is the same as that of the first embodiment except for the pattern formed by the photolithography technique.
  • the vibration mode of the present embodiment is a vibration mode of cos 2 ⁇ , as in the first embodiment. Therefore, the description overlapping with the first embodiment is omitted.
  • the arithmetic circuit 60 is omitted for the sake of convenience in order to make the drawing easy to see.
  • the ring-shaped vibrating gyroscope 750 includes two monitor electrodes 753 c and 753 c, and the respective monitor electrodes 753 c and 753 c are connected to the electrode pads 18 and 18 via the lead electrodes. ing. As in the first embodiment, these monitor electrodes 753 c and 753 c detect the amplitude and resonance frequency of the primary vibration of the ring-shaped vibrating body 11 and transmit a signal to a known feedback control circuit (not shown). As a result, the ring-shaped vibrating body 11 maintains a constant vibration.
  • the monitor electrodes 753c and 753c do not necessarily have to be disposed at an angle of (180/2) °, that is, 90 ° from the respective drive electrodes 13a and 13a. Even with the arrangement of the monitor electrodes 753 c and 753 c shown in FIG. 13A, the main effect of the present invention is exhibited.
  • one of the monitor electrodes 753 c and 753 c on the outer peripheral side of the ring-shaped vibrating body 11 has a ring shape in the counterclockwise direction with an angle of 90 ° away from each of the drive electrodes 13 a and 13 a.
  • the other one on the outer peripheral side of the vibrating body 11 is disposed at an angle separated by equal angles clockwise.
  • FIG. 14 is a front view of a structure that plays a central role in another ring-shaped vibrating gyroscope 800 in the present embodiment.
  • the ring-shaped vibrating gyroscope 800 of this embodiment is the same as the ring of the first embodiment except for the arrangement of the leg portions 15,..., 15 in the first embodiment and the arrangement of the upper metal film 50 in the first region. It has the same configuration as that of the vibrating vibratory gyroscope 100.
  • the manufacturing method is the same as that of the first embodiment except for the pattern formed by the photolithography technique.
  • the vibration mode of the present embodiment is a vibration mode of cos 2 ⁇ , as in the first embodiment. Therefore, the description overlapping with the first embodiment is omitted.
  • the arithmetic circuit 60 is omitted for the sake of convenience for easy viewing of the drawing.
  • the ring-shaped vibrating gyroscope 800 includes the respective drive electrodes 13a,..., 13a, the respective first detection electrodes 13b,.
  • the electrodes 13 d,..., 13 d are disposed in the region from the outer peripheral edge of the ring-shaped vibrating body 11 to the vicinity of the outer peripheral edge or in the region from the inner peripheral edge to the vicinity of the inner peripheral edge.
  • each of the monitor electrodes 13c, 13c is disposed in a region from the outer peripheral edge of the ring-shaped vibrating body 11 to the vicinity of the outer peripheral edge.
  • the phase of the drive voltage with respect to the drive electrodes 13a and 13a in the region from the outer peripheral edge of the ring-shaped vibrator 11 to the vicinity of the outer peripheral edge extends from the inner peripheral edge to the vicinity of the inner peripheral edge
  • the phase of the drive voltage with respect to the drive electrodes 13a and 13a in the region up to is reversed.
  • the phase detected by the first detection electrodes 13b and 13b disposed in the region from the outer peripheral edge of the ring-shaped vibrating body 11 to the vicinity of the outer peripheral edge extends from the inner peripheral edge to the vicinity of the inner peripheral edge
  • the phase is the same as the phase detected by the first detection electrodes 13b and 13b in the region up to.
  • the phases detected by the second detection electrodes 13d and 13d disposed in the region from the outer peripheral edge of the ring-shaped vibrator 11 to the vicinity of the outer peripheral edge extend from the inner peripheral edge to the vicinity of the inner peripheral edge
  • the phase is the same as the phase detected by the second detection electrodes 13d and 13d in the region up to.
  • the phase of each first detection electrode 13 b is opposite to the phase of each second detection electrode 13 d.
  • various electrodes are disposed in the region from the outer peripheral edge of the ring-shaped vibrating body 11 to the vicinity of the outer peripheral edge, and from the inner peripheral edge to the vicinity of the inner peripheral edge Even in the case of being arranged in the area, the same effect as the effect of the present invention is exhibited.
  • various electrodes when being arranged in the region from the outer peripheral edge of the ring-shaped vibrator 11 to the vicinity of the outer peripheral edge and arranged in the region from the inner peripheral edge to the vicinity of the inner peripheral edge, various electrodes
  • the ring-shaped vibrating gyroscope 800 of this embodiment is also a preferable embodiment because the driving ability of the ring-shaped vibrating member 11 and the detection ability of the secondary vibration are doubled.
  • the fourth to eighth embodiments are provided.
  • FIG. 15A is a front view of a structure that plays a central role in another ring-shaped vibrating gyroscope 900 in the present embodiment.
  • FIG. 15B is a cross-sectional view taken along a line TT in FIG. 15A.
  • the ring-shaped vibrating gyroscope 900 of the present embodiment is the first embodiment except for the arrangement of the upper metal film 50 in the first region and the fixed ends 17 for the electrode pads in the first embodiment.
  • the ring-shaped vibrating gyroscope 100 has substantially the same configuration.
  • the manufacturing method is the same as that of the first embodiment except for various patterns formed by the photolithography technique.
  • the vibration mode of the present embodiment is a vibration mode of cos 3 ⁇ unlike the first embodiment. Therefore, the description overlapping with the first embodiment is omitted.
  • the arithmetic circuit is omitted for the sake of convenience for easy viewing of the drawing.
  • the X axis and the Y axis are shown in FIG. 15A.
  • the diagonal lines and the letter V described in the drawings of the other embodiments are omitted.
  • each upper metal film 50 of the ring-shaped vibrating gyroscope 900 of the present embodiment is formed outside the center line.
  • the vibration mode of the primary vibration of this embodiment is a vibration mode of cos 3 ⁇ in the in plane shown in FIG. 16A.
  • the vibration mode of the secondary vibration in the present embodiment is an in-plane vibration mode of cos 3 ⁇ shown in FIG. 16B.
  • the breakdown of the plurality of electrodes 13a to 13e is as follows. First, three drive electrodes 13a, 13a, 13a arranged at an angle of 120 ° in the circumferential direction are arranged. When one of the three drive electrodes 13a and 13a described above (for example, the drive electrode 13a in the 12 o'clock direction of the watch in FIG.
  • the circumferential direction is from the reference electrode
  • the monitor electrodes 13c, 13c and 13c are disposed at angles of 60 °, 180 ° and 300 ° in the clockwise direction.
  • the first detection electrodes 13b, 13b, and 13b are disposed at an angle of 30 °, 150 °, and 270 ° in the circumferential direction and clockwise from the reference electrode.
  • the second detection electrodes 13d, 13d, 13d are disposed at angles 90 °, 210 °, and 330 ° clockwise from the reference electrode in the circumferential direction.
  • the lead-out electrodes 14 and 14 are formed from both ends of one of the various electrodes in order to eliminate the bias of the electric signal. Even when the lead-out electrode 14 is formed from only one side of various electrodes, the function as the vibrating gyroscope is not lost.
  • the third region of the present embodiment is a support 19 formed of the silicon substrate 10 connected to the above-described leg portions 15,.
  • the support 19 also functions as the electrode pad fixed end 17 in the first embodiment.
  • a film 40 is formed on the upper surface of the support 19, except for the fixed potential electrode 16 which is a ground electrode, the above-described silicon oxide film 20, lower metal film 30, and piezoelectric body continuous with those on the legs 15,.
  • a film 40 is formed.
  • the lower metal film 30 formed on the silicon oxide film 20 plays a role of the fixed potential electrode 16.
  • the above-described lead electrodes 14,..., 14 and the electrode pad 18, which are continuous with those on the leg portions 15,. ..., 18 are formed on the upper surface of the piezoelectric film 40 formed above the support column 19, the above-described lead electrodes 14,..., 14 and the electrode pad 18, which are continuous with those on the leg portions 15,. ..., 18 are formed.
  • each electrode provided in the ring-shaped vibrating gyroscope 900 will be described.
  • the primary vibration of the in-plane cos 3 ⁇ vibration mode is excited. Since the fixed potential electrode 16 is grounded, the lower layer electrode film 30 formed continuously with the fixed potential electrode 16 is uniformly at 0V.
  • an alternating voltage of 1 V P-0 is applied to the three drive electrodes 13a, 13a, 13a.
  • the piezoelectric film 40 expands and contracts to excite primary vibration.
  • the upper metal film 50 is formed outside the center line of the upper surface of the ring-shaped vibrating member 11, the upper metal film 50 is not formed on the side surface of the ring-shaped vibrating member 11. It becomes possible to convert the stretching movement into the primary vibration of the ring-shaped vibrating body 11.
  • the actual alternating current power supply 12 is applied to the drive electrode 13a via the electrode pad 18 connected to the conductive wire, it is omitted in the present embodiment and other embodiments for the convenience of description.
  • monitor electrodes 13c, 13c, and 13c shown in FIG. 15A detect the amplitude and resonance frequency of the above-mentioned primary vibration, and transmit a signal to a known feedback control circuit (not shown).
  • the feedback control circuit of this embodiment controls so that the frequency of the AC voltage applied to the drive electrodes 13a, 13a, 13a matches the natural frequency of the ring-shaped vibrating body 11, and the amplitude of the ring-shaped vibrating body 11. Is controlled using the signals of the monitor electrodes 13c, 13c, and 13c so as to have a certain value. As a result, the ring-shaped vibrating body 11 maintains a constant vibration.
  • the vibration mode is cos3 ⁇ in plane.
  • the Coriolis force causes the secondary vibration shown in FIG. 16B having a new vibration axis inclined 30 ° on both sides with respect to the vibration axis of the primary vibration shown in FIG. 16A.
  • the secondary vibration is detected by the three first detection electrodes 13b, 13b, 13b and the three second detection electrodes 13d, 13d, 13d. Also in this embodiment, as in the first embodiment, the difference between the electric signals of the detection electrodes 13b and 13d is calculated in an arithmetic circuit which is a known difference circuit. As a result, the detection signal has about twice the detection capability as compared to either of the detection electrodes.
  • the ring-shaped vibrating gyroscope 900 includes the first detection electrode 13 b and the second detection electrode 13 d, thereby enhancing the detection capability of the secondary vibration even in the vibration mode of cos 3 ⁇ . Also, the shock resistance to external shock which excites the vibration of the bounce mode or the locking mode is also enhanced.
  • the electrodes are formed by patterning the upper metal film 50 without etching the piezoelectric film 40.
  • the present invention is not limited to this.
  • the piezoelectric film 40 is etched according to the area where the upper metal film 50 is substantially formed, Undesired expansion and contraction of the piezoelectric film 40 and transmission of an electrical signal are prevented.
  • a silicon oxide film is employed as the insulating film on the silicon substrate, but the present invention is not limited to this.
  • a silicon nitride film or a silicon oxynitride film is formed instead of the silicon oxide film, substantially the same effect as the effect of the present invention is exerted.
  • the vibration mode of cos 2 ⁇ is adopted, but the present invention is not limited to this.
  • N is a natural number of 2 or more
  • substantially the same effect as that of the present invention can be achieved by adopting a drive electrode that excites the primary vibration of the ring-shaped vibrating body in the vibration mode of cos N ⁇ .
  • the arrangement of the electrodes of the ninth embodiment in which the vibration mode of cos3 ⁇ is adopted is sufficient for the person skilled in the art to arrange the electrodes of the vibration mode of cos3 ⁇ corresponding to the above first to eighth embodiments.
  • the arrangement of the electrodes of the vibration mode of cos N ⁇ when N is a natural number of 2 or more is sufficiently disclosed by the description of each of the embodiments described above.
  • each embodiment is demonstrated by the vibration gyro which used the annular
  • a regular polygonal oscillator such as a regular hexagon, a regular octagon, a regular dodecagon, and a regular icosagon
  • substantially the same effects as the effects of the present invention can be obtained.
  • it may be a vibrating body such as an octagonal vibrating body 111 of a ring-shaped vibrating gyroscope 950 shown in FIG.
  • the “annular ring” includes an elliptical shape.
  • the ring-shaped vibrating gyroscope which uses silicon as a base material is adopted in each above-mentioned embodiment, it is not limited to this.
  • the base material of the vibrating gyroscope may be germanium or silicon germanium.
  • adoption of silicon or silicon germanium can greatly contribute to improvement of the processing accuracy of the entire gyro including the vibrator, since a known anisotropic dry etching technique can be applied.
  • the variations which are within the scope of the present invention are also included in the scope of the claims.
  • the present invention may be applied to some of the various devices as a vibrating gyroscope.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Abstract

 本発明の振動ジャイロは、平面を一様に備えたリング状振動体11と、リング状振動体11を柔軟に支持するとともに固定端を有するレッグ部15と、平面上に形成され且つ上層金属膜及び下層金属膜により圧電体膜を厚み方向に挟む複数の電極13a~13d及び固定電位電極16とを備え、複数の電極13a~13dは、Nを2以上の自然数とした場合にcosNθの振動モードでその振動体11の一次振動を励起する互いに円周方向に(360/N)°離れた角度に配置された駆動電極13aと、駆動電極13aから時計回り又は反時計回りに(90/N)°離れた角度に配置され、且つその振動体11に角速度が与えられたときに発生する二次振動を検出する第1検出電極13bと、第1検出電極13bから(180/N)°離れた角度に配置され且つ二次振動を検出する第2検出電極13dとを含み、各電極13aは、その振動体11の外周縁からその外周縁の近傍に至るまでの領域及び/又は内周縁から内周縁の近傍に至るまでの領域に配置される。

Description

圧電体膜を用いた振動ジャイロ及びその製造方法
 本発明は、圧電体膜を用いた振動ジャイロに関するものである。
 近年、圧電材料を用いた振動ジャイロは盛んに開発されている。従来から、特許文献1に記載されているような振動体自体が圧電材料で構成されるジャイロが開発される一方、振動体上に形成される圧電体膜を利用するジャイロも存在する。例えば、特許文献2では、圧電材料であるPZT膜を用いて、振動体の一次振動を励起し、かつその振動体に角速度が与えられた際に発生するコリオリ力によって生じるジャイロの一部の歪みを検出する技術が開示されている。
 他方、ジャイロが搭載される各種機器のサイズが日進月歩で小型化されている中で、ジャイロ自身の小型化も重要な課題である。ジャイロの小型化を達成するためには、ジャイロを構成する各部材の加工精度を格段に高めることが必要となる。また、単に小型化をするだけでなく、ジャイロとしての性能、換言すれば、角速度の検出精度を更に高めることが産業界の要望といえる。しかしながら、特許文献2に示されているジャイロの構造は、ここ数年来の小型化及び高性能化の要求を満足するものではない。
特開平8-271258号公報 特開2000-9473号公報
 上述の通り、圧電体膜を用いた振動ジャイロの小型化と高い加工精度を達成しつつ、ジャイロとしての高性能化の要求を同時に満足することは非常に難しい。一般的には、ジャイロが小型化されると、振動体に角速度が与えられた場合に、ジャイロの検出電極によって検出される信号が微弱になるという問題がある。従って、小型化された振動ジャイロは本来検出すべき信号と外部からの不意の衝撃(外乱)によって発生する信号との差が小さくなるため、ジャイロとしての検出精度を高めることが難しくなる。
 ところで、外部からの不意の衝撃の中には、様々な種類の衝撃が存在する。例えば、上述の特許文献2に記載されたリング状の振動体では、リングの中心の固定ポストを軸として、リングの存在する面の上下方向にシーソーのような動きを与える衝撃がある。この衝撃により、ロッキングモードと呼ばれる振動が励起される。他方、前述の固定ポストに支持された振動体のリング状部材の全周が同時に、リングの存在する面の上方又は下方に曲げられる衝撃も存在する。この衝撃により、バウンスモードと呼ばれる振動が励起される。これらのような衝撃が振動ジャイロに生じたとしても、正確な角速度を検出する技術を確立することは極めて困難である。
 本発明は、上述の技術課題を解決することにより、圧電体膜を用いた振動ジャイロの小型化及び高性能化に大きく貢献するものである。発明者らは、まず、上記の技術課題のうち、外乱に対する影響が比較的小さいと考えられるリング状の振動ジャイロを基本構造として採用した。その上で、発明者らは、一次振動の励起とコリオリ力により形成される二次振動の検出を、圧電体膜に担わせることによって上記各技術課題を解決する構造について鋭意研究を行った。その結果、高い加工精度を達成しうるドライプロセスが圧電体膜を用いた振動ジャイロに適用されるためには、振動ジャイロにおける各種電極の特有の配置が必要であることを見出した。本発明はこのような視点で創出された。なお、本出願では、「円環状又は多角形状の振動ジャイロ」を、簡略化して「リング状振動ジャイロ」とも呼ぶ。
 本発明の1つの振動ジャイロは、平面を一様に備えたリング状振動体と、そのリング状振動体を柔軟に支持するとともに固定端を有するレッグ部と、その平面上に形成されるとともに上層金属膜及び下層金属膜により圧電体膜を厚み方向に挟む複数の電極及び固定電位電極とを備えている。ここで、前述の複数の電極は、Nを2以上の自然数とした場合に、cosNθの振動モードでそのリング状振動体の一次振動を励起する、互いに円周方向に(360/N)°離れた角度に配置された一群の駆動電極と、前述の各々の駆動電極から時計回り又は反時計回りに(90/N)°離れた角度に配置され、かつ前述のリング状振動体に角速度が与えられたときに発生する二次振動を検出する一群の第1検出電極と、前述の各々の第1検出電極から(180/N)°離れた角度に配置され、かつ前述の二次振動を検出する一群の第2検出電極とを含んでいる。さらに、前述の各々の駆動電極、前述の各々の第1検出電極、及び前述の各々の第2検出電極は、前述のリング状振動体の外周縁からその外周縁の近傍に至るまでの領域又は内周縁からその内周縁の近傍に至るまでの領域に配置されている。
 この振動ジャイロによれば、リング状振動体が備える平面上であって、上記の特有の領域に圧電素子が電極として形成されているため、一軸の角速度センサとして一次振動の励起と二次振動の検出が可能となる。つまり、この振動ジャイロでは、リング状振動体の側面に圧電素子を形成せずに、リング状振動体上の圧電素子が配置される平面と同一平面内で一次振動が励起され、かつリング状振動体の動きを制御する構造を有しているため、ドライプロセス技術を用いて高精度に電極及びリング状振動体の加工を行うことが可能となる。また、この振動ジャイロでは、上記の特有な領域に圧電素子を配置することにより、Nを2以上の自然数とした場合のcosNθの振動モードに適用しうる自由度を備えている。なお、cosNθの振動モードの複数の例は、例えば、特表2005-529306号公報、又は、本願出願人による特許出願である特願2007-209014に記載されている。また、本出願において、「柔軟な」とは「振動体が振動可能な程度に」という意味である。
 本発明の1つの振動ジャイロは、平面を一様に備えたリング状振動体と、そのリング状振動体を柔軟に支持するとともに固定端を有するレッグ部と、その平面上に形成されるとともに上層金属膜及び下層金属膜により圧電体膜を厚み方向に挟む複数の電極及び固定電位電極とを備えている。ここで、前述の複数の電極は、Nを2以上の自然数とした場合に、cosNθの振動モードでそのリング状振動体の一次振動を励起する、互いに円周方向に(360/N)°離れた角度に配置された一群の駆動電極と、前述の各々の駆動電極から(180/N)°離れた角度に配置された一群のモニタ電極と、前述の各々の駆動電極から時計回り又は反時計回りに(90/N)°離れた角度に配置され、かつ前述のリング状振動体に角速度が与えられたときに発生する二次振動を検出する一群の第1検出電極と、前述の各々の第1検出電極から(180/N)°離れた角度に配置され、かつ前述の二次振動を検出する一群の第2検出電極とを含んでいる。さらに、前述の各々の駆動電極、前述の各々のモニタ電極、前述の各々の第1検出電極、及び前述の各々の第2検出電極は、前述のリング状振動体の外周縁からその外周縁の近傍に至るまでの領域又は内周縁からその内周縁の近傍に至るまでの領域に配置されている。
 この振動ジャイロによれば、リング状振動体が備える平面上であって上記の特有の領域に、圧電素子が電極として形成されているため、一軸の角速度センサとして一次振動の励起と二次振動の検出が可能となる。つまり、この振動ジャイロでは、リング状振動体の側面に圧電素子を形成せずに、リング状振動体上の圧電素子が配置される平面と同一平面内で一次振動が励起され、かつリング状振動体の動きを制御する構造を有しているため、ドライプロセス技術を用いて高精度に電極及びリング状振動体の加工を行うことが可能となる。また、この振動ジャイロでは、上記の特有な領域に圧電素子を配置することにより、Nを2以上の自然数とした場合のcosNθの振動モードに適用しうる自由度を備えている。
 また、本発明の1つの振動ジャイロの製造方法は、シリコン基板上に、一様に絶縁膜を形成する工程と、その絶縁膜上に、一様に下層金属膜を形成する工程と、その下層金属膜上に、一様に圧電体膜を形成する工程と、その圧電体膜上に、一様に上層金属膜を形成する工程と、その上層金属膜上に第1レジスト膜をパターニングする工程と、その上層金属膜をドライエッチングして前述の圧電体膜を露出させる工程と、その上層金属膜及びその圧電体膜上に第2レジスト膜をパターニングする工程と有している。さらに、本発明の1つの振動ジャイロの製造方法は、そのパターニングの後、前述の第2レジスト膜、前述の上層金属膜、又は前述の圧電体膜をエッチングマスクとして、その下層金属膜、その絶縁膜、及びそのシリコン基板をドライエッチングすることにより、リング状振動体及びそのリング状振動体を柔軟に支持するとともに固定端を有するレッグ部、並びに、Nを2以上の自然数とした場合に、cosNθの振動モードでそのリング状振動体の一次振動を励起する、互いに円周方向に(360/N)°離れた角度に配置された一群の駆動電極と、前述の各々の駆動電極から時計回り又は反時計回りに(90/N)°離れた角度に配置され、かつそのリング状振動体に角速度が与えられたときに発生する二次振動を検出する一群の第1検出電極と、前述の各々の第1検出電極から(180/N)°離れた角度に配置され、かつ前述の二次振動を検出する一群の第2検出電極とが形成される工程を有している。
 この振動ジャイロの製造方法によれば、ドライプロセス技術による高精度の加工が可能となるため、リング状振動体が備える平面上の特有の領域に圧電素子を形成することが可能となる。その結果、圧電素子をリング状振動体の側面に配置することなく、その平面上の圧電素子のみが一軸の角速度センサとしての一次振動の励起と二次振動の検出の役割を担うことができる振動ジャイロが製造される。
 また、リング状振動体をシリコン基板から形成するため、レジスト膜との選択比も十分に高い公知のシリコントレンチエッチング技術が適用できる。なお、仮にそのレジスト膜が消失しても、その下層にある上層金属膜又は圧電体膜がシリコンのエッチングの際のマスクとしての役割を果たす十分な選択比を備えている。
 また、本発明のもう1つの振動ジャイロの製造方法は、シリコン基板上に、一様に絶縁膜を形成する工程と、その絶縁膜上に、一様に下層金属膜を形成する工程と、その下層金属膜上に、一様に圧電体膜を形成する工程と、その圧電体膜上に、一様に上層金属膜を形成する工程と、その上層金属膜上に第1レジスト膜をパターニングする工程と、その第1レジスト膜をエッチングマスクとして、前述の上層金属膜及び前述の圧電体膜をドライエッチングして前述の下層金属膜を露出させる工程と、その上層金属膜及びその下層金属膜上に第2レジスト膜をパターニングする工程とを有している。さらに、本発明のもう1つの振動ジャイロの製造方法は、そのパターニングの後、前述の第2レジスト膜、前述の上層金属膜、又は前述の下層金属膜をエッチングマスクとして、その絶縁膜、及びそのシリコン基板をドライエッチングすることにより、リング状振動体及び前記リング状振動体を柔軟に支持するとともに固定端を有するレッグ部、並びに、Nを2以上の自然数とした場合に、cosNθの振動モードで前述のリング状振動体の一次振動を励起する、互いに円周方向に(360/N)°離れた角度に配置された一群の駆動電極と、前述の各々の駆動電極から時計回り又は反時計回りに(90/N)°離れた角度に配置され、かつ前述のリング状振動体に角速度が与えられたときに発生する二次振動を検出する一群の第1検出電極と、前述の各々の第1検出電極から(180/N)°離れた角度に配置され、かつ前述の二次振動を検出する一群の第2検出電極とが形成される工程を有している。
 この振動ジャイロの製造方法によっても、ドライプロセス技術による高精度の加工が可能となるため、リング状振動体が備える平面上の特有の領域に圧電素子を形成することが可能となる。その結果、圧電素子をリング状振動体の側面に配置することなく、その平面上の圧電素子のみが一軸の角速度センサとしての一次振動の励起と二次振動の検出の役割を担うことができる振動ジャイロが製造される。
 本発明の1つの振動ジャイロによれば、リング状振動体の側面に圧電素子を形成せずに、リング状振動体上の圧電素子が配置される平面と同一平面内で一次振動が励起され、かつリング状振動体の動きも制御され得る。また、リング状振動体が備える平面に対するドライプロセス技術を用いて高精度に電極及びリング状振動体の加工を行うことが可能となる。また、この振動ジャイロは、特有な領域に圧電素子を配置することにより、Nを2以上の自然数とした場合のcosNθの振動モードに適用しうる自由度を備えている。一方、本発明の1つの振動ジャイロの製造方法によれば、ドライプロセス技術による高精度の加工が可能となるため、リング状振動体が備える平面上の特有の領域に圧電素子を形成することが可能となる。その結果、圧電素子をリング状振動体の側面に配置することなく、その平面上の圧電素子のみが一軸の角速度センサとしての一次振動の励起と二次振動の検出の役割を担うことができる振動ジャイロが製造される。
本発明の1つの実施形態におけるリング状振動ジャイロの中心的役割を果たす構造体の正面図である。 図1に示す構造体の斜視図である。 図2Aの一部(W部)の拡大図である。 図1のX-X断面図である。 本発明の1つの実施形態におけるリング状振動ジャイロの一部の製造工程の過程を示す断面図である。 本発明の1つの実施形態におけるリング状振動ジャイロの一部の製造工程の過程を示す断面図である。 本発明の1つの実施形態におけるリング状振動ジャイロの一部の製造工程の過程を示す断面図である。 本発明の1つの実施形態におけるリング状振動ジャイロの一部の製造工程の過程を示す断面図である。 本発明の1つの実施形態におけるリング状振動ジャイロの一部の製造工程の過程を示す断面図である。 本発明の1つの実施形態におけるリング状振動ジャイロの一部の製造工程の過程を示す断面図である。 本発明の他の実施形態におけるリング状振動ジャイロの中心的役割を果たす構造体の正面図である。 図5のY-Y断面図である。 本発明の他の実施形態におけるリング状振動ジャイロの中心的役割を果たす構造体の正面図である。 図7のZ-Z断面図である。 第1検出電極と第2検出電極の電気的信号の正負を概念的に説明する図である。 本発明の他の実施形態におけるリング状振動ジャイロの中心的役割を果たす構造体の正面図である。 本発明の他の実施形態におけるリング状振動ジャイロの中心的役割を果たす構造体の正面図である。 本発明の他の実施形態におけるリング状振動ジャイロの中心的役割を果たす構造体の正面図である。 本発明の他の実施形態におけるリング状振動ジャイロの中心的役割を果たす構造体の正面図である。 本発明の他の実施形態におけるリング状振動ジャイロの中心的役割を果たす構造体の正面図である。 本発明の他の実施形態におけるリング状振動ジャイロの中心的役割を果たす構造体の正面図である。 本発明の他の実施形態におけるリング状振動ジャイロの中心的役割を果たす構造体の正面図である。 図15AのT-T断面図である。 本発明の他の実施形態におけるcos3θの振動モードの一次振動を概念的に説明する図である。 本発明の他の実施形態におけるcos3θの振動モードの二次振動を概念的に説明する図である。 本発明の他の実施形態における振動体形状を説明する図である。
 つぎに、本発明の実施形態を、添付する図面に基づいて詳細に述べる。尚、この説明に際し、全図にわたり、特に言及がない限り、共通する部分には共通する参照符号が付されている。また、図中、本実施形態の要素は必ずしもスケール通りに示されていない。
<第1の実施形態>
 図1は、本実施形態におけるリング状振動ジャイロ100の中心的役割を果たす構造体の正面図である。図2Aは、図1に示す構造体の斜視図であり、図2Bは、図2Aの一部(W部)の拡大図である。また、図3は、図1のX-X断面図である。
 図1乃至図3に示すとおり、本実施形態のリング状振動ジャイロ100は、大きく3つの領域に分類される。第1の領域は、シリコン基板10から形成されるリング状振動体11の上部の平面(以下、上面という)上に、シリコン酸化膜20を備え、さらにその上に、圧電体膜40が下層金属膜30及び上層金属膜50に挟まれることにより形成される複数の電極13a~13dを備えた領域である。本実施形態では、複数の電極13a~13dを構成する上層金属膜50の外側端部は、約40μm幅のリング状平面を有するリング状振動体11の外周縁から約1μm内側に形成され、その幅は約18μmである。また、その上層金属膜50は、リング状振動体11の上面であるリング状平面の幅の両端間の中央を結ぶ線(以下、単に中央線という)よりも外側に形成されている。
 ところで、本実施形態では、cos2θの振動モードでリング状振動ジャイロ100の一次振動が励起される。従って、前述の複数の電極13a~13dの内訳は、互いに円周方向に180°離れた角度に配置された2つの駆動電極13a,13aと、駆動電極13a,13aから円周方向であって90°離れた角度に配置された2つのモニタ電極13c,13cと、リング状振動ジャイロ100に角速度が与えられたときに発生する二次振動を検出する、第1検出電極13b,13b及び第2検出電極13d,13dである。本実施形態では、第1検出電極13b,13bは、駆動電極13a,13aから円周方向であって時計回りに45°離れた角度に配置される。また、第2検出電極13d,13dは、第1検出電極から円周方向であって90°離れた角度、換言すれば、駆動電極13a,13aから円周方向であって反時計回りに45°離れた角度に配置される。
 また、本実施形態では、下層金属膜30及び上層金属膜50の厚みは100nmであり、圧電体膜40の厚みは、3μmである。また、シリコン基板10の厚みは100μmである。なお、図1においてVで示される斜線領域又は図2BにおいてVで示される領域は、リング状振動ジャイロ100を構成する構造体が何も存在しない空間又は空隙部分であり、図面を分かりやすくするために便宜上設けられた領域である。
 第2の領域は、リング状振動体11の一部と連結しているレッグ部15,・・・,15である。このレッグ部15,・・・,15もシリコン基板10から形成されている。また、レッグ部15,・・・,15上には、リング状振動体11上のそれらと連続する上述のシリコン酸化膜20、下層金属膜30、及び圧電体膜40がレッグ部15,・・・,15の上面全体に形成されている。さらに、圧電体膜40の上面の中央線上には、幅約8μmの引き出し電極14,・・・,14である上層金属膜50が形成されている。
 第3の領域は、上述のレッグ部15,・・・,15に連結しているシリコン基板10から形成される支柱19及び電極パッド18,・・・,18を備えた電極パッド用固定端部17,・・・,17である。本実施形態では、支柱19が、図示しないリング状振動ジャイロ100のパッケージ部に連結し、固定端としての役割を果たしている。また、本実施形態のリング状振動ジャイロ100は、支柱19以外の固定端として、電極パッド用固定端部17,・・・,17を備えている。この電極パッド用固定端部17,・・・,17は、支柱19及び上述のパッケージ部のみに連結しているため、実質的にリング状振動体11の動きを阻害しない。また、図3に示すように、支柱19及び電極パッド用固定端部17,・・・,17の上面には、グラウンド電極である固定電位電極16を除き、レッグ部15,・・・,15上のそれらと連続する上述のシリコン酸化膜20、下層金属膜30、及び圧電体膜40が形成されている。ここで、シリコン酸化膜20上に形成された下層金属膜30が固定電位電極16の役割を担っている。また、支柱19及び電極パッド用固定端部17,・・・,17上に形成されている圧電体膜20の上面には、レッグ部15,・・・,15上のそれと連続する前述の引き出し電極14,・・・,14及び電極パッド18,・・・,18が形成されている。
 次に、本実施形態のリング状振動ジャイロ100の製造方法について、図4A乃至図4Fに基づいて説明する。なお、図4A乃至図4Fは、図3における一部の範囲に対応する断面図である。
 まず、図4Aに示すように、シリコン基板10上に、シリコン酸化膜20、下層金属膜30、圧電体膜40、及び上層金属膜50が積層されている。前述の各膜は公知の成膜手段によって形成されている。本実施形態では、シリコン酸化膜20は公知の手段による熱酸化膜である。また、下層金属膜30、圧電体膜40、及び上層金属膜50は、いずれも公知のスパッタリング法により形成されている。なお、これらの膜の形成は、前述の例に限定されず、他の公知の手段によっても形成され得る。
 次に、上層金属膜50の一部がエッチングされる。本実施形態では、上層金属膜50上に公知のレジスト膜を形成した後、フォトリソグラフィ技術により形成されたパターンに基づいてドライエッチングを行うことにより、図4Bに示される上層金属膜50が形成される。ここで、上層金属膜50のドライエッチングは、アルゴン(Ar)又はアルゴン(Ar)と酸素(O)の混合ガスを用いた公知のリアクティブイオンエッチング(RIE)条件によって行われた。
 その後、図4Cに示すように、圧電体膜40の一部がエッチングされる。まず、上述の同様、フォトリソグラフィ技術によりパターニングがされたレジスト膜に基づいて、圧電体膜40がドライエッチングされる。なお、本実施形態の圧電体膜40のドライエッチングは、アルゴン(Ar)とCガスの混合ガス、又はアルゴン(Ar)とCガスとCHFガスの混合ガスを用いた公知のリアクティブイオンエッチング(RIE)条件によって行われた。
 続いて、図4Dに示すように、下層金属膜30の一部がエッチングされる。本実施形態では、下層金属膜30を利用した固定電位電極16が形成されるように、再度、フォトリソグラフィ技術によってパターニングされたレジスト膜を用いてドライエッチングされる。本実施形態では、固定電位電極16は、グラウンド電極として利用される。なお、本実施形態の下層金属膜30のドライエッチングは、アルゴン(Ar)又はアルゴン(Ar)と酸素(O)の混合ガスを用いた公知のリアクティブイオンエッチング(RIE)条件によって行われた。
 ところで、本実施形態では、前述の再び形成されたレジスト膜をエッチングマスクとして、その後のシリコン酸化膜20及びシリコン基板10を連続的にエッチングするため、このレジスト膜の厚みは、約4μmになるように形成されている。但し、万一、このレジスト膜がシリコン基板10のエッチング中に消失した場合であっても、シリコン基板10に用いられるエッチャントに対するエッチングレートの選択比が有利に働くため、前述のエッチングによって下層金属膜30の性能は実質的に影響を受けない。
 次に、図4E及び図4Fに示すように、上述の通り、下層金属膜30をエッチングするためのレジスト膜を利用して、シリコン酸化膜20及びシリコン基板10をドライエッチングする。本実施形態のシリコン酸化膜20のドライエッチングは、アルゴン(Ar)又はアルゴン(Ar)と酸素(O)の混合ガスを用いた公知のリアクティブイオンエッチング(RIE)条件によって行われた。また、本実施形態のシリコン基板10のドライエッチングの条件は、公知のシリコントレンチエッチング技術が適用される。ここで、シリコン基板10は貫通エッチングされる。従って、前述のドライエッチングは、貫通時にシリコン基板10を載置するステージをプラズマに曝さないようにするための保護基板をシリコン基板10の下層に伝熱性の優れたグリース等により貼り付けた状態で行われる。そのため、例えば、貫通後にシリコン基板10の厚さ方向に垂直な方向の面、換言すればエッチング側面が侵食されることを防ぐために、特開2002-158214に記載されているドライエッチング技術が採用されることは好ましい一態様である。
 上述の通り、シリコン基板10及びシリコン基板10上に積層された各膜のエッチングによって、リング状振動ジャイロ100の中心的な構造部が形成されたのち、公知の手段によるパッケージへの収容工程、及び配線工程を経ることにより、リング状振動ジャイロ100が形成される。
 次に、リング状振動ジャイロ100が備える各電極の作用について説明する。上述の通り、本実施形態はcos2θの振動モードの一次振動が励起される。なお、固定電位電極16が接地されるため、固定電位電極16と連続して形成されている下層電極膜30は一律に0Vになっている。
 最初に、図1に示すように、2つの駆動電極13a,13aに1VP-0の交流電圧が印加される。その結果、圧電体膜40が伸縮して一次振動が励起される。ここで、本実施形態では上層金属膜50がリング状振動体11の上面における中央線よりも外側に形成されているため、リング状振動体11の側面に形成されることなく圧電体膜40の伸縮運動をリング状振動体11の一次振動に変換することが可能となる。
 次に、図1に示すモニタ電極13c,13cが、上述の一次振動の振幅及び共振周波数を検出して、図示しない公知のフィードバック制御回路に信号を送信する。本実施形態のフィードバック制御回路は、駆動電極13a,13aに印加される交流電圧の周波数とリング状振動体11が持つ固有周波数が一致するように制御するとともに、リング状振動体11の振幅がある一定の値となるようにモニタ電極13c,13cの信号を用いて制御している。その結果、リング状振動体11は、一定の振動が持続される。
 上述の一次振動が励起された後、図1に示すリング状振動ジャイロ100の配置された平面に垂直な軸(紙面に垂直な方向の軸、以下、単に「垂直軸」という)の回りで角速度が加わると、cos2θの振動モードである本実施形態では、コリオリ力により一次振動の振動軸に対して両側に45°傾いた新たな振動軸を有する二次振動が生じる。
 この二次振動が2つの第1検出電極13b,13bと、2つの第2検出電極13d,13dによって検出される。本実施形態では、図1に示すように、第1検出電極13b,13b及び第2検出電極13d,13dは、それぞれ二次振動の振動軸に対応して配置されている。また、全ての第1検出電極13b,13b及び第2検出電極13d,13dは、リング状振動体11の上面における中央線よりも外側に形成されている。従って、角速度を受けて励起される二次振動によって生じる第1検出電極13b,13bと第2検出電極13d,13dの電気的信号の正負が逆になる。これは、図9に示すように、例えば、リング状振動体11が縦に楕円となる振動体11aの振動状態に変化した場合、中央線より外側に配置されている第1検出電極13bの位置の圧電体膜40は、Aに示す矢印の方向に伸びる一方、中央線より外側に配置されている第2検出電極13dの位置の圧電体膜40は、Aに示す矢印の方向に縮むため、それらの電気的信号は逆になる。同様に、リング状振動体11が横に楕円となる振動体11bの振動状態に変化した場合、第1検出電極13bの位置の圧電体膜40は、Bに示す矢印の方向に縮む一方、第2検出電極13dの位置の圧電体膜40は、Bに示す矢印の方向に伸びるため、この場合も、それらの電気的信号が逆になる。
 ここで、公知の差分回路である演算回路60において、第1検出電極13b,13bと第2検出電極13d,13dの電気信号の差が算出される。その結果、検出信号は第1検出信号又は第2検出信号のいずれか一方のみの場合と比較して約2倍の検出能力を備えることになる。
 一方、本実施形態では、レッグ部15,・・・,15上に、引き出し電極14としての上層金属膜50、圧電体膜40、及び下層金属膜30が形成されている。ここで、仮に、リング状振動ジャイロ100に対して既に述べたバウンスモードを励起する振動を伴う外乱(衝撃)が発生した場合、レッグ部15,・・・,15がリング状振動ジャイロ100の垂直軸の一方向に動くため、レッグ部15,・・・,15上の圧電体膜40の伸縮に伴う電気信号が発生する。しかしながら、この場合は、二次振動を検出するための全ての電極に連結するレッグ部の前述の電気信号の正負は一致しているため、演算回路60においてそれらの差分を取ることにより、各レッグ部15からの信号は実質的にキャンセルされることになる。
 他方、ロッキングモードの振動を励起する外乱が発生した場合、例えば、図1に示すとおり、第1検出電極13b,13bは、それぞれ円周方向に180°離れた場所に配置されているため、各々の第1検出電極13b,13bに連結するレッグ部上の圧電体膜40の伸縮は逆になる。その結果、各第1検出電極13bの電気信号の正負が逆になる。従って、それらの電気信号は互いに相殺し合うことになる。上述の現象は、各第2検出電極13dに連結するレッグ部の前述の電気信号にも当てはまる。このため、ロッキングモードの振動による演算回路60への実質的な影響はなくなる。
 上述の通り、本実施形態のリング状振動ジャイロ100は、2つの第1検出電極13b,13b及び2つの第2検出電極13d,13dを備えることにより、二次振動の検出能力が高められるとともに、バウンスモードやロッキングモードの振動を励起する外部衝撃に対する耐衝撃性も高められる。
<第2の実施形態>
 図5は、本実施形態におけるもう一つのリング状振動ジャイロ200の中心的役割を果たす構造体の正面図である。また、図6は、図5のY-Y断面図である。本実施形態のリング状振動ジャイロ200は、第1の実施形態における圧電体膜40及び上層金属膜50を除き、第1の実施形態のリング状振動ジャイロ100と同一の構成を備える。また、その製造方法は一部を除いて第1の実施形態と同じである。さらに、本実施形態の振動モードは、第1の実施形態と同様、cos2θの振動モードである。従って、第1の実施形態と重複する説明は省略される。なお、図5では、図面を見易くするため、便宜的に図1における演算回路60が省略されている。
 図5及び図6に示すとおり、本実施形態のリング状振動ジャイロ200は、第1の実施形態の第2検出電極13d,13dの代わりに、第2検出電極213d,213dを備える。本実施形態の第2検出電極213d,213dの上層金属膜50の外側端部は、リング状振動体11の内周縁から約1μm内側に形成され、その幅は約18μmである。また、それらの上層金属膜50は、リング状振動体11のリング状平面の中央線よりも内側に形成されている。
 本実施形態では、図6に示すように、実質的に上層金属膜50が形成されている領域に合わせて圧電体膜40がエッチングされている。このため、下層金属膜30が形成されている領域に影響されずに、上層金属膜50に印加された交流電圧が鉛直下向きのみに印加されるため、圧電体膜40の望ましくない伸縮や電気信号の発信が防がれる。なお、本実施形態では、上層金属膜50のドライエッチング工程の後、上層金属膜50上の残留レジスト膜又は上記金属膜50自身をエッチングマスクとして、引き続いて第1の実施形態と同条件によるドライエッチングを行うことにより、前述の圧電体膜40が形成される。また、図6に示すように、本実施形態では圧電体膜40が傾斜状(例えば、傾斜角が75°)にエッチングされている。しかしながら、図6のような急峻な傾斜を有する圧電体膜40は、図5に示すリング状振動ジャイロ200の正面視においては、他の領域と比較して実質的に視認されないものとして本出願では取り扱われる。
 ここで、第1の実施形態と同様の一次振動が励起されたリング状振動ジャイロ200に対し、リング状振動ジャイロ200の垂直軸(紙面に垂直な方向)の回りで角速度が加わると、二次振動が2つの第1検出電極13b,13bと、2つの第2検出電極213d,213dによって検出される。
 本実施形態では、図5に示すように、第1検出電極13b,13b及び第2検出電極213d,213dは、それぞれ二次振動の振動軸に対応して配置されている。また、第1検出電極13b,13bは、リング状振動体11の上面における中央線よりも外側に形成されている。他方、第2検出電極213d,213dは、リング状振動体11の上面における中央線よりも内側に形成されている。従って、角速度を受けて励起される二次振動によって生じる第1検出電極13b,13bと第2検出電極213d,213dの電気的信号の正負が一致することになる。
 ここで、図示しない公知の加算回路である演算回路において、第1検出電極13b,13bと第2検出電極213d,213dの電気信号の和が算出される。その結果、検出信号は第1検出信号又は第2検出信号のいずれか一方のみの場合と比較して約2倍の検出能力を備えることになる。なお、前述の加算回路の代わりに、第1検出電極13b,13bと第2検出電極213d,213dからの引き出し電極14,・・・,14を単に接続することによっても、前述の加算回路と同等の効果が奏されるため、本実施形態のリング状振動ジャイロ200は、回路設計上極めて簡便化される利点を備える。
 ところで、本実施形態においてロッキングモードの振動を励起する外乱として発生した場合、例えば、図5に示すとおり、第1検出電極13b,13bは、それぞれ円周方向に180°離れた場所に配置されているため、第1検出電極13b,13bに連結するレッグ部上の圧電体膜40の伸縮は逆になる。その結果、各第1検出電極13bの電気信号の正負が逆になる。従って、それらの電気信号は互いに相殺し合うことになる。上述の現象は、各第2検出電極213dに連結するレッグ部の前述の電気信号にも当てはまる。このため、ロッキングモードの振動に対する演算回路への実質的な影響はなくなる。
 なお、本実施形態では、バウンスモードの振動を励起する外乱(衝撃)が発生した場合、二次振動を検出するための全ての電極に連結するレッグ部の電気信号の正負が一致するため、演算回路においてそれらの和を取ると、第1の実施形態のようにキャンセルされない。従って、本実施形態のリング状振動ジャイロ200は、バウンスモードの振動を励起する耐衝撃性を有しない。
 上述の通り、本実施形態のリング状振動ジャイロ200は、2つの第1検出電極13b,13b及び2つの第2検出電極213d,213dを備えることにより、二次振動の検出能力が高められる。
<第3の実施形態>
 図7は、本実施形態におけるもう一つのリング状振動ジャイロ300の中心的役割を果たす構造体の正面図である。また、図8は、図7のZ-Z断面図である。本実施形態のリング状振動ジャイロ300は、第1の実施形態における第1の領域の上層金属膜50の配置を除き、第1の実施形態のリング状振動ジャイロ100と同一の構成を備える。また、その製造方法は一部を除いて第1の実施形態と同じである。さらに、本実施形態の振動モードは、第1の実施形態と同様、cos2θの振動モードである。従って、第1の実施形態と重複する説明は省略される。なお、図7でも、図面を見易くするため、便宜的に図1における演算回路60が省略されている。
 図7及び図8に示すとおり、本実施形態のリング状振動ジャイロ300は、第1の実施形態の第1検出電極13b,13bの代わりに第1検出電極313b,313bを備えるとともに、第1の実施形態の第2検出電極13d,13dの代わりに第2検出電極313d,313dを備える。本実施形態の第1検出電極313b,313b及び第2検出電極313d,313dの上層金属膜50の外側端部は、リング状振動体11の内周縁から約1μm内側に形成され、その幅は約18μmである。また、それらの上層金属膜50は、リング状振動体11の上面における中央線よりも内側に形成されている。
 ここで、第1の実施形態と同様の一次振動が励起されたリング状振動ジャイロ300に対し、リング状振動ジャイロ300の垂直軸(紙面に垂直な方向)の回りで角速度が加わると、二次振動が2つの第1検出電極313b,313bと、2つの第2検出電極313d,313dによって検出される。
 本実施形態では、図7に示すように、第1検出電極313b,313b及び第2検出電極313d,313dは、それぞれ二次振動の振動軸に対応して配置されている。また、第1検出電極313b,313b及び第2検出電極313d,313dは、リング状振動体11の上面における中央線よりも内側に形成されている。従って、角速度を受けて励起される二次振動によって生じる第1検出電極313b,313bと第2検出電極313d,313dの電気的信号の正負が逆になる。
 ここで、図示しない公知の差分回路である演算回路において、第1検出電極313b,313bと第2検出電極313d,313dの電気信号の差が算出される。その結果、検出信号は第1検出信号又は第2検出信号のいずれか一方のみの場合と比較して約2倍の検出能力を備えることになる。
 一方、本実施形態では、レッグ部15,・・・,15上に、引き出し電極14としての上層金属膜50、圧電体膜40、及び下層金属膜30が形成されている。ここで、仮に、リング状振動ジャイロ300に対して既に述べたバウンスモードの振動を励起する外乱(衝撃)が発生した場合、レッグ部15,・・・,15がリング状振動ジャイロ300の垂直軸の一方向に動くため、レッグ部15,・・・,15上の圧電体膜40の伸縮に伴う電気信号が発生する。しかしながら、この場合は、二次振動を検出するための全ての電極に連結するレッグ部の前述の電気信号の正負は一致しているため、上述の演算回路においてそれらの差分を取ることにより、各レッグ部15からの信号は実質的にキャンセルされることになる。
 他方、ロッキングモードの振動を励起する外乱が発生した場合、例えば、図7に示すとおり、第1検出電極313b,313bは、それぞれ円周方向に180°離れた場所に配置されているため、第1検出電極313b,313bに連結するレッグ部上の圧電体膜40の伸縮は逆になる。その結果、各第1検出電極313bの電気信号の正負が逆になる。従って、それらの電気信号は互いに相殺し合うことになる。上述の現象は、各第2検出電極313dに連結するレッグ部の前述の電気信号にも当てはまる。このため、ロッキングモードの振動に対する演算回路への実質的な影響はなくなる。
 上述の通り、本実施形態のリング状振動ジャイロ300は、2つの第1検出電極313b,313b及び2つの第2検出電極313d,313dを備えることにより、二次振動の検出能力が高められるとともに、バウンスモードやロッキングモードの振動を励起する外部衝撃に対する耐衝撃性も高められる。
<第4の実施形態>
 図10は、本実施形態におけるもう一つのリング状振動ジャイロ400の中心的役割を果たす構造体の正面図である。本実施形態のリング状振動ジャイロ400は、第1の実施形態におけるモニタ電極に関わる第1の領域の上層金属膜50の配置を除き、第1の実施形態のリング状振動ジャイロ100と同一の構成を備える。また、その製造方法はフォトリソグラフィ技術により形成されたパターンを除いて第1の実施形態と同じである。さらに、本実施形態の振動モードは、第1の実施形態と同様、cos2θの振動モードである。従って、第1の実施形態と重複する説明は省略される。なお、図10でも、図面を見易くするため、便宜的に演算回路60が省略されている。
 本実施形態のリング状振動ジャイロ400は、図10に示すように4つのモニター電極413c,・・・,413cを備えており、それぞれのモニター電極413c,・・・,413cが引き出し電極を介して電極パッド18,・・・,18と接続している。これらのモニター電極413c,・・・,413cは、第1の実施形態と同様、リング状振動体11の一次振動の振幅及び共振周波数を検出して、図示しない公知のフィードバック制御回路に信号を送信する。その結果、リング状振動体11は、一定の振動が持続される。
 図10に示すように、モニター電極413c,・・・,413cは、必ずしも各々の駆動電極13a,13aから(180/2)°、すなわち90°離れた角度に配置される必要はない。図10に示すモニター電極413c,・・・,413cの配置であっても、本発明の主たる効果は奏される。なお、本実施形態では、モニター電極413c,・・・,413cが、各駆動電極13a,13aから90°離れた角度を中心に、それぞれが等角度ずつ離れた角度に配置されている。このため、製造工程のバラつきが引き起こすモニター電極413c,・・・,413cの位置ずれに伴う検出感度の不均一性の影響が低減される。加えて、リング状振動体11の二次振動による逆位相の出力が相互に抑制し合うため、新たに発生する二次振動の影響を受けることなく、一次振動の大きさを一定に保つことが可能となる。
<第5の実施形態>
 図11は、本実施形態におけるもう一つのリング状振動ジャイロ500の中心的役割を果たす構造体の正面図である。本実施形態のリング状振動ジャイロ500は、第1の実施形態における第1の領域の上層金属膜50の配置を除き、第1の実施形態のリング状振動ジャイロ100と同一の構成を備える。また、その製造方法はフォトリソグラフィ技術により形成されたパターンを除いて第1の実施形態と同じである。さらに、本実施形態の振動モードは、第1の実施形態と同様、cos2θの振動モードである。従って、第1の実施形態と重複する説明は省略される。なお、図11でも、図面を見易くするため、便宜的に演算回路60が省略されている。
 本実施形態のリング状振動ジャイロ500は、図11に示すように2つのモニター電極513c,513cを備えており、それぞれのモニター電極513c,513cが引き出し電極を介して電極パッド18,18と接続している。これらのモニター電極513c,513cは、第1の実施形態と同様、リング状振動体11の一次振動の振幅及び共振周波数を検出して、図示しない公知のフィードバック制御回路に信号を送信する。その結果、リング状振動体11は、一定の振動が持続される。
 図11に示すように、モニター電極513c,513cは、必ずしも各々の駆動電極13a,13aから(180/2)°、すなわち90°離れた角度に配置される必要はない。図11に示すモニター電極513c,513cの配置であっても、本発明の主たる効果は奏される。ここで、本実施形態では、モニター電極513c,513cが、各駆動電極13a,13aから90°離れた角度を中心に、それぞれが反時計周りに等角度ずつ離れた角度に配置されている。このため、製造工程のバラつきが引き起こすモニター電極513c,513cの位置ずれに伴う検出感度の不均一性の影響を低減することが可能となる。なお、モニター電極513c,513cが、各駆動電極13a,13aから90°離れた角度を中心に、それぞれが時計周りに等角度ずつ離れた角度に配置されていても前述と同様の効果が奏される。
<第6の実施形態>
 図12は、本実施形態におけるもう一つのリング状振動ジャイロ600の中心的役割を果たす構造体の正面図である。本実施形態のリング状振動ジャイロ600は、第1の実施形態における第1の領域の上層金属膜50の配置を除き、第1の実施形態のリング状振動ジャイロ100と同一の構成を備える。また、その製造方法はフォトリソグラフィ技術により形成されたパターンを除いて第1の実施形態と同じである。さらに、本実施形態の振動モードは、第1の実施形態と同様、cos2θの振動モードである。従って、第1の実施形態と重複する説明は省略される。なお、図12でも、図面を見易くするため、便宜的に演算回路60が省略されている。
 本実施形態のリング状振動ジャイロ600は、図12に示すように2つのモニター電極613c,613cを備えており、それぞれのモニター電極613c,613cが引き出し電極を介して電極パッド18,18と接続している。これらのモニター電極613c,613cは、第1の実施形態と同様、リング状振動体11の一次振動の振幅及び共振周波数を検出して、図示しない公知のフィードバック制御回路に信号を送信する。その結果、リング状振動体11は、一定の振動が持続される。
 図12に示すように、モニター電極613c,613cは、必ずしも各々の駆動電極13a,13aから(180/2)°、すなわち90°離れた角度に配置される必要はない。図12に示すモニター電極613c,613cの配置であっても、本発明の主たる効果は奏される。ここで、本実施形態では、モニター電極613c,613cが、各駆動電極13a,13aから90°離れた角度を中心に、1つが反時計周りに、他方が時計回りに等角度ずつ離れた角度に配置されている。その結果、リング状振動体11の二次振動による逆位相の出力が相互に抑制し合うため、新たに発生する二次振動の影響を受けることなく、一次振動の大きさを一定に保つことが可能となる。
<第7の実施形態>
 図13Aは、本実施形態におけるもう一つのリング状振動ジャイロ700の中心的役割を果たす構造体の正面図である。本実施形態のリング状振動ジャイロ700は、第1の実施形態における第1の領域の上層金属膜50の配置を除き、第1の実施形態のリング状振動ジャイロ100と同一の構成を備える。また、その製造方法はフォトリソグラフィ技術により形成されたパターンを除いて第1の実施形態と同じである。さらに、本実施形態の振動モードは、第1の実施形態と同様、cos2θの振動モードである。従って、第1の実施形態と重複する説明は省略される。なお、図13Aでも、図面を見易くするため、便宜的に演算回路60が省略されている。
 本実施形態のリング状振動ジャイロ700は、図13Aに示すように2つのモニター電極513c,513cを備えており、それぞれのモニター電極713c,713cが引き出し電極を介して電極パッド18,18と接続している。これらのモニター電極713c,713cは、第1の実施形態と同様、リング状振動体11の一次振動の振幅及び共振周波数を検出して、図示しない公知のフィードバック制御回路に信号を送信する。その結果、リング状振動体11は、一定の振動が持続される。
 図13Aに示すように、モニター電極713c,713cは、必ずしも各々の駆動電極13a,13aから(180/2)°、すなわち90°離れた角度に配置される必要はない。図13Aに示すモニター電極713c,713cの配置であっても、本発明の主たる効果は奏される。ここで、本実施形態では、モニター電極713c,713cが、各駆動電極13a,13aから90°離れた角度を中心に、それぞれが反時計周りに等角度ずつ離れた角度に配置されている。このため、製造工程のバラつきが引き起こすモニター電極413c,・・・,413cの位置ずれに伴う検出感度の不均一性の影響が低減される。なお、モニター電極713c,713cが、各駆動電極13a,13aから90°離れた角度を中心に、それぞれが時計周りに等角度ずつ離れた角度に配置されていても前述と同様の効果が奏される。
<第7の実施形態の変形例>
 図13Bは、本実施形態におけるもう一つのリング状振動ジャイロ750の中心的役割を果たす構造体の正面図である。本実施形態のリング状振動ジャイロ750は、第1の実施形態における第1の領域の上層金属膜50の配置を除き、第1の実施形態のリング状振動ジャイロ100と同一の構成を備える。また、その製造方法はフォトリソグラフィ技術により形成されたパターンを除いて第1の実施形態と同じである。さらに、本実施形態の振動モードは、第1の実施形態と同様、cos2θの振動モードである。従って、第1の実施形態と重複する説明は省略される。なお、図13Bでも、図面を見易くするため、便宜的に演算回路60が省略されている。
 本実施形態のリング状振動ジャイロ750は、図13Bに示すように2つのモニター電極753c,753cを備えており、それぞれのモニター電極753c,753cが引き出し電極を介して電極パッド18,18と接続している。これらのモニター電極753c,753cは、第1の実施形態と同様、リング状振動体11の一次振動の振幅及び共振周波数を検出して、図示しない公知のフィードバック制御回路に信号を送信する。その結果、リング状振動体11は、一定の振動が持続される。
 図13Bに示すように、モニター電極753c,753cは、必ずしも各々の駆動電極13a,13aから(180/2)°、すなわち90°離れた角度に配置される必要はない。図13Aに示すモニター電極753c,753cの配置であっても、本発明の主たる効果は奏される。ここで、本実施形態では、モニター電極753c,753cが、各駆動電極13a,13aから90°離れた角度を中心に、リング状振動体11の外周側にある1つが反時計周りに、リング状振動体11の外周側にある他方が時計回りに等角度ずつ離れた角度に配置されている。その結果、このため、製造工程のバラつきが引き起こすモニター電極413c,・・・,413cの位置ずれに伴う検出感度の不均一性の影響が低減される。
<第8の実施形態>
 図14は、本実施形態におけるもう一つのリング状振動ジャイロ800の中心的役割を果たす構造体の正面図である。本実施形態のリング状振動ジャイロ800は、第1の実施形態におけるレッグ部15,・・・,15の配置及び第1の領域の上層金属膜50の配置を除き、第1の実施形態のリング状振動ジャイロ100と同一の構成を備える。また、その製造方法はフォトリソグラフィ技術により形成されたパターンを除いて第1の実施形態と同じである。さらに、本実施形態の振動モードは、第1の実施形態と同様、cos2θの振動モードである。従って、第1の実施形態と重複する説明は省略される。なお、図14でも、図面を見易くするため、便宜的に演算回路60が省略されている。
 本実施形態のリング状振動ジャイロ800は、図14に示すように、各々の駆動電極13a,・・・,13a、各々の第1検出電極13b,・・・,13b、及び各々の第2検出電極13d,・・・,13dが、リング状振動体11の外周縁からその外周縁の近傍に至るまでの領域又はその内周縁からその内周縁の近傍に至るまでの領域に配置されている。また、各々のモニタ電極13c,13cは、リング状振動体11の外周縁からその外周縁の近傍に至るまでの領域に配置されている。なお、本実施形態では、リング状振動体11の外周縁からその外周縁の近傍に至るまでの領域の駆動電極13a,13aに対する駆動電圧の位相は、その内周縁からその内周縁の近傍に至るまでの領域の駆動電極13a,13aに対する駆動電圧の位相と逆となる。また、リング状振動体11の外周縁からその外周縁の近傍に至るまでの領域内に配置される第1検出電極13b,13bが検出する位相は、その内周縁からその内周縁の近傍に至るまでの領域の第1検出電極13b,13bが検出する位相と同じになる。また、リング状振動体11の外周縁からその外周縁の近傍に至るまでの領域内に配置される第2検出電極13d,13dが検出する位相は、その内周縁からその内周縁の近傍に至るまでの領域の第2検出電極13d,13dが検出する位相と同じになる。但し、各第1検出電極13bの位相は、各第2検出電極13dの位相に対して逆となる。
 本実施形態のように、各種の電極が、リング状振動体11の外周縁からその外周縁の近傍に至るまでの領域に配置されると共に、その内周縁からその内周縁の近傍に至るまでの領域に配置された場合であっても、本発明の効果と同様の効果が奏される。特に、リング状振動体11の外周縁からその外周縁の近傍に至るまでの領域に配置されると共に、その内周縁からその内周縁の近傍に至るまでの領域に配置された場合、各種の電極の配置が多少複雑化するが、リング状振動体11の駆動能力や二次振動の検出能力が倍増するため、本実施形態のリング状振動ジャイロ800も好ましい一態様である。
 また、本実施形態のリング状振動ジャイロ800のモニター電極13c,13cの一部又は全部の配置を、第4乃至第8の実施形態のように配置した場合であっても、第4乃至第8の実施形態の効果と同様の効果が奏される。
<第9の実施形態>
 図15Aは、本実施形態におけるもう一つのリング状振動ジャイロ900の中心的役割を果たす構造体の正面図である。また、図15Bは、図15AのT-T断面図である。本実施形態のリング状振動ジャイロ900は、第1の実施形態における第1の領域の上層金属膜50の配置及び電極パッド用固定端部17,・・・,17を除き、第1の実施形態のリング状振動ジャイロ100と実質的に同一の構成を備える。また、その製造方法はフォトリソグラフィ技術により形成された各種パターンを除いて第1の実施形態と同じである。他方、本実施形態の振動モードは、第1の実施形態とは異なり、cos3θの振動モードである。従って、第1の実施形態と重複する説明は省略される。なお、図15Aでは、図面を見易くするため、便宜的に演算回路が省略されている。また、説明の便宜上、図15Aには、X軸及びY軸が表記されている。加えて、本実施形態では、他の実施形態の図面内に記載される斜線及びVの文字が省略されている。
 図15Aに示すとおり、本実施形態のリング状振動ジャイロ900の各上層金属膜50は、中央線よりも外側に形成されている。
 ところで、本実施形態の一次振動の振動モードは、図16Aに示すイン・プレーンのcos3θの振動モードである。また、本実施形態の二次振動の振動モードとは、図16Bに示すcos3θのイン・プレーンの振動モードである。従って、複数の電極13a~13eの内訳は、次のとおりである。まず、互いに円周方向に120°離れた角度に配置された3つの駆動電極13a,13a,13aが配置される。また、前述の3つの駆動電極13a,13aの内の1つの駆動電極13a(例えば、図15Aにおいて時計の12時方向の駆動電極13a)を基準電極とした場合に、その基準電極から円周方向であって時計回りに60°、180°、及び300°離れた角度にモニタ電極13c,13c,13cが配置される。また、第1検出電極13b,13b,13bは、その基準電極から円周方向であって時計回りに30°、150°、及び270°離れた角度に配置される。加えて、第2検出電極13d,13d,13dは、その基準電極から円周方向であって時計回りに90°、210°、及び330°離れた角度に配置される。
 なお、本実施形態では、図15Aに示すように、各種の電極の1つについて、電気信号の偏りを解消するために、それぞれの両端部から引き出し電極14,14が形成されている。なお、各種の電極の片側のみから引き出し電極14が形成されている場合であっても、振動ジャイロとしての機能を失うことはない。
 また、本実施形態の第3の領域は、上述のレッグ部15,・・・,15に連結しているシリコン基板10から形成される支柱19である。本実施形態では、この支柱19が第1の実施形態における電極パッド用固定端部17の機能を兼ねている。また、支柱19の上面には、グラウンド電極である固定電位電極16を除き、レッグ部15,・・・,15上のそれらと連続する上述のシリコン酸化膜20、下層金属膜30、及び圧電体膜40が形成されている。ここで、シリコン酸化膜20上に形成された下層金属膜30が固定電位電極16の役割を担っている。また、支柱19の上方に形成されている圧電体膜40の上面には、レッグ部15,・・・,15上のそれと連続する前述の引き出し電極14,・・・,14及び電極パッド18,・・・,18が形成されている。
 次に、リング状振動ジャイロ900が備える各電極の作用について説明する。上述の通り、本実施形態はイン・プレーンのcos3θの振動モードの一次振動が励起される。なお、固定電位電極16が接地されるため、固定電位電極16と連続して形成されている下層電極膜30は一律に0Vになっている。
 最初に、3つの駆動電極13a,13a,13aに1VP-0の交流電圧が印加される。その結果、圧電体膜40が伸縮して一次振動が励起される。ここで、本実施形態では上層金属膜50がリング状振動体11の上面における中央線よりも外側に形成されているため、リング状振動体11の側面に形成されることなく圧電体膜40の伸縮運動をリング状振動体11の一次振動に変換することが可能となる。なお、実際の交流電源12は、導電性ワイヤに接続される電極パッド18を介して駆動電極13aに印加するが、本実施形態及び他の実施形態では、説明の便宜上、省略される。
 次に、図15Aに示すモニタ電極13c,13c,13cが、上述の一次振動の振幅及び共振周波数を検出して、図示しない公知のフィードバック制御回路に信号を送信する。本実施形態のフィードバック制御回路は、駆動電極13a,13a,13aに印加される交流電圧の周波数とリング状振動体11が持つ固有周波数が一致するように制御するとともに、リング状振動体11の振幅がある一定の値となるようにモニタ電極13c,13c,13cの信号を用いて制御している。その結果、リング状振動体11は、一定の振動が持続される。
 ここで、リング状振動ジャイロ900に対し、リング状振動ジャイロ900の垂直軸(紙面、すなわちX-Y平面に垂直な方向)の回りで角速度が加わると、イン・プレーンのcos3θの振動モードである本実施形態では、コリオリ力により、図16Aに示す一次振動の振動軸に対して両側に30°傾いた新たな振動軸を有する図16Bに示す二次振動が生じる。
 この二次振動が、3つの第1検出電極13b,13b,13bと3つの第2検出電極13d,13d,13dによって検出される。本実施形態でも、第1の実施形態と同様、公知の差分回路である演算回路において、各検出電極13b,13dの電気信号の差が算出される。その結果、検出信号はいずれか一方の検出電極の場合と比較して約2倍の検出能力を備えることになる。
 上述の通り、本実施形態のリング状振動ジャイロ900は、第1検出電極13b及び第2検出電極13dを備えることにより、cos3θの振動モードであっても、二次振動の検出能力が高められるとともに、バウンスモードやロッキングモードの振動を励起する外部衝撃に対する耐衝撃性も高められる。
 なお、本実施形態のリング状振動ジャイロ900のモニター電極13c,13c,13cの一部又は全部の配置を、第4乃至第8の実施形態のように配置した場合であっても、第4乃至第8の実施形態の効果と同様の効果が奏される。
 ところで、上述の第1の実施形態及び第3の実施形態では、圧電体膜40はエッチングされずに、上層金属膜50のパターニングによって各電極が形成されていたが、これに限定されない。第1の実施形態又は第3の実施形態においても、第2の実施形態のように、実質的に上層金属膜50が形成されている領域に合わせて圧電体膜40がエッチングされることにより、圧電体膜40の望ましくない伸縮や電気信号の発信が防がれる。
 また、上述の各実施形態では、シリコン基板上の絶縁膜としてシリコン酸化膜が採用されているが、これに限定されない。例えば、シリコン酸化膜の代わりに、シリコン窒化膜や、シリコン酸窒化膜が形成されていても、本発明の効果と実質的に同様の効果が奏される。
 また、上述の第1乃至第8の実施形態では、cos2θの振動モードが採用されているが、これに限定されない。Nを2以上の自然数とした場合に、cosNθの振動モードで前記リング状振動体の一次振動を励起する駆動電極を採用することにより、本発明の効果と実質的に同様の効果が奏される。例えば、cos3θの振動モードが採用される第9の実施形態の各電極の配置は、当業者にとって、上述の第1乃至第8の実施形態に相当するcos3θの振動モードの各電極の配置を十分に開示するものである。すなわち、Nを2以上の自然数とした場合のcosNθの振動モードの各電極の配置は、上述の各実施形態の説明によって十分に開示されている。
 また、上述の各実施形態は、円環状の振動体を用いた振動ジャイロで説明されているが、円環状の代わりに、多角形状の振動体であってもよい。例えば、正六角形、正八角形、正十二角形、正二十角形等の正多角形状の振動体であっても、本発明の効果と実質的に同様の効果が奏される。また、図17に示すリング状振動ジャイロ950の八角形状の振動体111のような振動体であってもよい。振動体の正面視において点対象形状となる多角形状の振動体が採用されれば、振動体の振動時の安定性の観点で好ましい。なお、「円環状」には楕円形状が含まれる。
 さらに、上述の各実施形態では、シリコンを母材とするリング状振動ジャイロが採用されているが、これにも限定されない。例えば、振動ジャイロの母材がゲルマニウム又はシリコンゲルマニウムであってもよい。上述のうち、特に、シリコン又はシリコンゲルマニウムの採用は、公知の異方性ドライエッチング技術を適用することができるため、振動体を含めたジャイロ全体の加工精度の向上に大きく寄与する。以上、述べたとおり、本発明の範囲内に存在する変形例もまた、特許請求の範囲に含まれるものである。
 本発明は、振動ジャイロとして種々のデバイスの一部に適用され得る。

Claims (9)

  1.  平面を一様に備えたリング状振動体と、
     前記リング状振動体を柔軟に支持するとともに固定端を有するレッグ部と、
     前記平面上に形成されるとともに上層金属膜及び下層金属膜により圧電体膜を厚み方向に挟む複数の電極、及び固定電位電極とを備え、
     前記複数の電極は、Nを2以上の自然数とした場合に、cosNθの振動モードで前記リング状振動体の一次振動を励起する、互いに円周方向に(360/N)°離れた角度に配置された一群の駆動電極と、前記各々の駆動電極から時計回り又は反時計回りに(90/N)°離れた角度に配置され、かつ前記リング状振動体に角速度が与えられたときに発生する二次振動を検出する一群の第1検出電極と、前記各々の第1検出電極から(180/N)°離れた角度に配置され、かつ前記二次振動を検出する一群の第2検出電極とを含み、
     前記各々の駆動電極、前記各々の第1検出電極、及び前記各々の第2検出電極は、前記リング状振動体の外周縁から前記外周縁の近傍に至るまでの領域及び/又は内周縁から前記内周縁の近傍に至るまでの領域に配置されている
     振動ジャイロ。
  2.  平面を一様に備えたリング状振動体と、
     前記リング状振動体を柔軟に支持するとともに固定端を有するレッグ部と、
     前記平面上に形成されるとともに上層金属膜及び下層金属膜により圧電体膜を厚み方向に挟む複数の電極、及び固定電位電極とを備え、
     前記複数の電極は、Nを2以上の自然数とした場合に、cosNθの振動モードで前記リング状振動体の一次振動を励起する、互いに円周方向に(360/N)°離れた角度に配置された一群の駆動電極と、前記各々の駆動電極から(180/N)°離れた角度に配置された一群のモニタ電極と、前記各々の駆動電極から時計回り又は反時計回りに(90/N)°離れた角度に配置され、かつ前記リング状振動体に角速度が与えられたときに発生する二次振動を検出する一群の第1検出電極と、前記各々の第1検出電極から(180/N)°離れた角度に配置され、かつ前記二次振動を検出する一群の第2検出電極とを含み、
     前記各々の駆動電極、前記各々のモニタ電極、前記各々の第1検出電極、及び前記各々の第2検出電極は、前記リング状振動体の外周縁から前記外周縁の近傍に至るまでの領域及び/又は内周縁から前記内周縁の近傍に至るまでの領域に配置されている
     振動ジャイロ。
  3.  前記複数の電極は、前記各々の駆動電極から(180/N)°離れた角度を除く、{(180/N)-(45/N)}°から{(180/N)+(45/N)}°までの領域内に配置された一群のモニタ電極をさらに含み、
     前記各々のモニタ電極が、前記リング状振動体の外周縁から前記外周縁の近傍に至るまでの領域及び/又は内周縁から前記内周縁の近傍に至るまでの領域に配置されている
     請求項1に記載の振動ジャイロ。
  4.  前記全ての第1検出電極及び前記全ての第2検出電極が、前記リング状振動体の外周縁から前記外周縁の近傍に至るまでの領域又は内周縁から前記内周縁の近傍に至るまでの領域のいずれか一方のみに配置されており、
     演算回路によって前記各々の第1検出電極及び前記各々の第2検出電極から出力される信号の差分を算出する
     請求項1又は請求項2に記載の振動ジャイロ。
  5.  前記全ての第1検出電極及び前記全ての第2検出電極が、前記リング状振動体の外周縁から前記外周縁の近傍に至るまでの領域又は内周縁から前記内周縁の近傍に至るまでの領域の互いに異なる領域に配置されており、
     演算回路又は前記第1検出電極及び前記第2検出電極から引き出される電極の接続によって前記各々の第1検出電極及び前記各々の第2検出電極から出力される信号の和を算出する
     請求項1又は請求項2に記載の振動ジャイロ。
  6.  前記リング状振動体がシリコン基板から形成され、
     正面視で実質的に前記上層金属膜、前記圧電体膜、及び前記下層金属膜のみが観察される
     請求項1又は請求項2に記載の振動ジャイロ。
  7.  前記リング状振動体がシリコン基板から形成され、
     正面視で実質的に前記上層金属膜及び前記下層金属膜のみが観察される
     請求項1又は請求項2に記載の振動ジャイロ。
  8.  シリコン基板上に、一様に絶縁膜を形成する工程と、
     前記絶縁膜上に、一様に下層金属膜を形成する工程と、
     前記下層金属膜上に、一様に圧電体膜を形成する工程と、
     前記圧電体膜上に、一様に上層金属膜を形成する工程と、
     前記上層金属膜上に第1レジスト膜をパターニングする工程と、
     前記上層金属膜をドライエッチングして前記圧電体膜を露出させる工程と、
     前記上層金属膜及び前記圧電体膜上に第2レジスト膜をパターニングする工程と有し、
     前記第2レジスト膜、前記上層金属膜、又は前記圧電体膜をエッチングマスクとして、前記下層金属膜、前記絶縁膜、及び前記シリコン基板をドライエッチングすることにより、リング状振動体及び前記リング状振動体を柔軟に支持するとともに固定端を有するレッグ部、並びに、Nを2以上の自然数とした場合に、cosNθの振動モードで前記リング状振動体の一次振動を励起する、互いに円周方向に(360/N)°離れた角度に配置された一群の駆動電極と、前記各々の駆動電極から時計回り又は反時計回りに(90/N)°離れた角度に配置され、かつ前記リング状振動体に角速度が与えられたときに発生する二次振動を検出する一群の第1検出電極と、前記各々の第1検出電極から(180/N)°離れた角度に配置され、かつ前記二次振動を検出する一群の第2検出電極とが形成される
     振動ジャイロの製造方法。
  9.  シリコン基板上に、一様に絶縁膜を形成する工程と、
     前記絶縁膜上に、一様に下層金属膜を形成する工程と、
     前記下層金属膜上に、一様に圧電体膜を形成する工程と、
     前記圧電体膜上に、一様に上層金属膜を形成する工程と、
     前記上層金属膜上に第1レジスト膜をパターニングする工程と、
     前記第1レジスト膜をエッチングマスクとして、前記上層金属膜及び前記圧電体膜をドライエッチングして前記下層金属膜を露出させる工程と、
     前記上層金属膜及び前記下層金属膜上に第2レジスト膜をパターニングする工程と有し、
     前記第2レジスト膜、前記上層金属膜、又は前記下層金属膜をエッチングマスクとして、前記絶縁膜及び前記シリコン基板をドライエッチングすることにより、リング状振動体及び前記リング状振動体を柔軟に支持するとともに固定端を有するレッグ部、並びに、Nを2以上の自然数とした場合に、cosNθの振動モードで前記リング状振動体の一次振動を励起する、互いに円周方向に(360/N)°離れた角度に配置された一群の駆動電極と、前記各々の駆動電極から時計回り又は反時計回りに(90/N)°離れた角度に配置され、かつ前記リング状振動体に角速度が与えられたときに発生する二次振動を検出する一群の第1検出電極と、前記各々の第1検出電極から(180/N)°離れた角度に配置され、かつ前記二次振動を検出する一群の第2検出電極とが形成される
     振動ジャイロの製造方法。
PCT/JP2008/071372 2008-01-29 2008-11-26 圧電体膜を用いた振動ジャイロ及びその製造方法 WO2009096086A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP08871848.1A EP2239541B1 (en) 2008-01-29 2008-11-26 Vibrating gyroscope using piezoelectric film
US12/863,639 US8381590B2 (en) 2008-01-29 2008-11-26 Vibrating gyroscope using piezoelectric film and method for manufacturing same
JP2009551403A JP5392913B2 (ja) 2008-01-29 2008-11-26 圧電体膜を用いた振動ジャイロ及びその製造方法
CN2008801243179A CN101910790A (zh) 2008-01-29 2008-11-26 使用压电体膜的振动陀螺仪及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-017238 2008-01-29
JP2008017238 2008-01-29
JP2008-028835 2008-02-08
JP2008028835 2008-02-08

Publications (1)

Publication Number Publication Date
WO2009096086A1 true WO2009096086A1 (ja) 2009-08-06

Family

ID=40912446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/071372 WO2009096086A1 (ja) 2008-01-29 2008-11-26 圧電体膜を用いた振動ジャイロ及びその製造方法

Country Status (5)

Country Link
US (1) US8381590B2 (ja)
EP (1) EP2239541B1 (ja)
JP (1) JP5392913B2 (ja)
CN (1) CN101910790A (ja)
WO (1) WO2009096086A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210605A (ja) * 2009-02-11 2010-09-24 Sumitomo Precision Prod Co Ltd 圧電体膜を用いた振動ジャイロ及びその製造方法
JPWO2009119204A1 (ja) * 2008-03-25 2011-07-21 住友精密工業株式会社 圧電体膜を用いた振動ジャイロ
JPWO2009119205A1 (ja) * 2008-03-25 2011-07-21 住友精密工業株式会社 圧電体膜を用いた振動ジャイロ
JP5209716B2 (ja) * 2008-06-23 2013-06-12 住友精密工業株式会社 圧電体膜を用いた振動ジャイロ及びその製造方法
JP2022524171A (ja) * 2018-05-08 2022-04-28 株式会社村田製作所 ピエゾリングジャイロスコープ

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8766745B1 (en) * 2007-07-25 2014-07-01 Hrl Laboratories, Llc Quartz-based disk resonator gyro with ultra-thin conductive outer electrodes and method of making same
US10266398B1 (en) 2007-07-25 2019-04-23 Hrl Laboratories, Llc ALD metal coatings for high Q MEMS structures
CN102246003B (zh) * 2008-12-09 2015-09-09 株式会社村田制作所 振动陀螺仪元件及其制造方法
GB201120536D0 (en) 2011-11-29 2012-01-11 Atlantic Inertial Systems Ltd Fault detection using skewed transducers
CN102706337B (zh) * 2012-05-07 2015-08-19 上海交通大学 压电圆盘微机械陀螺
CN103528576B (zh) * 2012-07-05 2017-01-25 北方电子研究院安徽有限公司 半球谐振式微机械陀螺仪及其加工工艺
CN102980565B (zh) * 2012-11-30 2015-07-08 上海交通大学 圆环波动微机械陀螺及其制备方法
CN102980566B (zh) * 2012-11-30 2015-05-20 上海交通大学 圆锥环形波动微机械陀螺及其制备方法
CN104870939B (zh) * 2012-12-11 2017-08-01 株式会社村田制作所 角速度检测元件
CN103344227B (zh) * 2013-06-20 2016-04-13 上海交通大学 静电驱动压电检测体声波谐振三轴微陀螺及其制备方法
US9977097B1 (en) 2014-02-21 2018-05-22 Hrl Laboratories, Llc Micro-scale piezoelectric resonating magnetometer
US9991863B1 (en) 2014-04-08 2018-06-05 Hrl Laboratories, Llc Rounded and curved integrated tethers for quartz resonators
CN104165624B (zh) * 2014-07-25 2017-01-11 中国人民解放军国防科学技术大学 一种基于侧壁压电驱动的环形振动陀螺及其驱动和检测方法
US10031191B1 (en) 2015-01-16 2018-07-24 Hrl Laboratories, Llc Piezoelectric magnetometer capable of sensing a magnetic field in multiple vectors
CN104897145B (zh) * 2015-05-29 2018-03-23 上海交通大学 一种外缘固定式压电驱动多环陀螺及其制备方法
US10175307B1 (en) 2016-01-15 2019-01-08 Hrl Laboratories, Llc FM demodulation system for quartz MEMS magnetometer
GB2547415A (en) * 2016-02-09 2017-08-23 Atlantic Inertial Systems Ltd Inertial sensors
CN106403921B (zh) * 2016-08-23 2020-11-06 上海交通大学 金属结构多环振动盘微陀螺及其制备方法
CN106441260B (zh) * 2016-08-23 2020-12-01 上海交通大学 硅上压电薄膜多支撑梁mems陀螺及其制备方法
JP6769517B2 (ja) 2018-05-08 2020-10-14 株式会社村田製作所 ピエゾリングジャイロスコープ
JP6787437B2 (ja) 2018-05-08 2020-11-18 株式会社村田製作所 ピエゾリングジャイロスコープ
CN109916386B (zh) * 2019-03-13 2023-01-31 东南大学 一种具有抑制高过载后振荡过程功能的振环陀螺仪
EP3985351A1 (en) 2020-10-16 2022-04-20 Atlantic Inertial Systems Limited Quadrature bias error reduction for vibrating structure gyroscopes

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0868638A (ja) * 1994-08-30 1996-03-12 Taiyo Yuden Co Ltd 圧電振動ジャイロ,その支持構造,多次元ジャイロ
JPH08271258A (ja) 1995-03-28 1996-10-18 Taiyo Yuden Co Ltd リング状振動子の支持構造
JP2000009473A (ja) 1998-06-22 2000-01-14 Tokai Rika Co Ltd 2軸ヨーレートセンサ及びその製造方法
JP2000199714A (ja) * 1999-01-06 2000-07-18 Murata Mfg Co Ltd 角速度センサ
JP2001194148A (ja) * 2000-01-07 2001-07-19 Citizen Watch Co Ltd 振動ジャイロ
JP2002158214A (ja) 2000-11-21 2002-05-31 Sumitomo Precision Prod Co Ltd シリコンの異方性エッチング方法及び装置
JP2003060254A (ja) * 2001-08-14 2003-02-28 Sony Corp マイクロデバイスの製造方法
JP2003302222A (ja) * 2002-04-10 2003-10-24 Matsushita Electric Ind Co Ltd 薄膜微小機械式共振子ジャイロの製造方法
JP2005529306A (ja) 2001-09-14 2005-09-29 ビ−エイイ− システムズ パブリック リミテッド カンパニ− 振動ジャイロスコープレートセンサ
JP2007195316A (ja) * 2006-01-18 2007-08-02 Seiko Epson Corp アクチュエータ装置及びその製造方法並びに液体噴射ヘッド
JP2007209014A (ja) 2007-03-12 2007-08-16 Ns Solutions Corp データ通信システムおよび方法、記録媒体

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8404668D0 (en) * 1984-02-22 1984-03-28 Burdess J S Gyroscopic devices
EP0461761B1 (en) * 1990-05-18 1994-06-22 British Aerospace Public Limited Company Inertial sensors
US5540094A (en) * 1990-12-22 1996-07-30 British Aerospace Public Limited Company Scale factor compensation for piezo-electric rate sensors
FR2723635B1 (fr) * 1994-08-11 1996-10-18 Sagem Dispositif gyrometrique vibrant a effet piezo-electrique
US5616864A (en) * 1995-02-22 1997-04-01 Delco Electronics Corp. Method and apparatus for compensation of micromachined sensors
US5652374A (en) * 1995-07-10 1997-07-29 Delco Electronics Corp. Method and apparatus for detecting failure in vibrating sensors
JPH0989569A (ja) * 1995-09-25 1997-04-04 Kyocera Corp 振動ジャイロ
US5817940A (en) * 1996-03-14 1998-10-06 Aisin Seiki Kabishiki Kaisha Angular rate detector
GB2322196B (en) * 1997-02-18 2000-10-18 British Aerospace A vibrating structure gyroscope
GB2335273B (en) * 1998-03-14 2002-02-27 British Aerospace A two axis gyroscope
US6151964A (en) * 1998-05-25 2000-11-28 Citizen Watch Co., Ltd. Angular velocity sensing device
GB9817347D0 (en) * 1998-08-11 1998-10-07 British Aerospace An angular rate sensor
GB0001775D0 (en) * 2000-01-27 2000-03-22 British Aerospace Improvements relating to angular rate sensor devices
FR2821422B1 (fr) * 2001-02-23 2003-05-23 Sagem Resonateur mecanique planaire sensible selon un axe perpendiculaire a son plan
JP3823034B2 (ja) 2001-08-20 2006-09-20 アルプス電気株式会社 磁気検出素子及びその製造方法
GB0121934D0 (en) * 2001-09-12 2001-10-31 Europ Technology For Business Angular rate sensors
GB0122252D0 (en) * 2001-09-14 2001-11-07 Bae Systems Plc Vibratory gyroscopic rate sensor
GB0122258D0 (en) * 2001-09-14 2001-11-07 Bae Systems Plc Vibratory gyroscopic rate sensor
JP4529444B2 (ja) * 2004-01-13 2010-08-25 パナソニック株式会社 角速度センサ
KR101153950B1 (ko) * 2004-07-12 2012-06-08 애틀랜틱 이너셜 시스템스 리미티드 각속도 센서
US7360423B2 (en) * 2005-01-29 2008-04-22 Georgia Tech Research Corp. Resonating star gyroscope
JP5524044B2 (ja) * 2008-03-25 2014-06-18 住友精密工業株式会社 圧電体膜を用いた振動ジャイロ

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0868638A (ja) * 1994-08-30 1996-03-12 Taiyo Yuden Co Ltd 圧電振動ジャイロ,その支持構造,多次元ジャイロ
JPH08271258A (ja) 1995-03-28 1996-10-18 Taiyo Yuden Co Ltd リング状振動子の支持構造
JP2000009473A (ja) 1998-06-22 2000-01-14 Tokai Rika Co Ltd 2軸ヨーレートセンサ及びその製造方法
JP2000199714A (ja) * 1999-01-06 2000-07-18 Murata Mfg Co Ltd 角速度センサ
JP2001194148A (ja) * 2000-01-07 2001-07-19 Citizen Watch Co Ltd 振動ジャイロ
JP2002158214A (ja) 2000-11-21 2002-05-31 Sumitomo Precision Prod Co Ltd シリコンの異方性エッチング方法及び装置
JP2003060254A (ja) * 2001-08-14 2003-02-28 Sony Corp マイクロデバイスの製造方法
JP2005529306A (ja) 2001-09-14 2005-09-29 ビ−エイイ− システムズ パブリック リミテッド カンパニ− 振動ジャイロスコープレートセンサ
JP2003302222A (ja) * 2002-04-10 2003-10-24 Matsushita Electric Ind Co Ltd 薄膜微小機械式共振子ジャイロの製造方法
JP2007195316A (ja) * 2006-01-18 2007-08-02 Seiko Epson Corp アクチュエータ装置及びその製造方法並びに液体噴射ヘッド
JP2007209014A (ja) 2007-03-12 2007-08-16 Ns Solutions Corp データ通信システムおよび方法、記録媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2239541A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009119204A1 (ja) * 2008-03-25 2011-07-21 住友精密工業株式会社 圧電体膜を用いた振動ジャイロ
JPWO2009119205A1 (ja) * 2008-03-25 2011-07-21 住友精密工業株式会社 圧電体膜を用いた振動ジャイロ
US8375792B2 (en) 2008-03-25 2013-02-19 Sumitomo Precision Products Co., Ltd. Vibratory gyroscope using piezoelectric film
US8601872B2 (en) 2008-03-25 2013-12-10 Sumitomo Precision Products Co., Ltd. Vibratory gyroscope using piezoelectric film
JP5524044B2 (ja) * 2008-03-25 2014-06-18 住友精密工業株式会社 圧電体膜を用いた振動ジャイロ
JP5524045B2 (ja) * 2008-03-25 2014-06-18 住友精密工業株式会社 圧電体膜を用いた振動ジャイロ
JP5209716B2 (ja) * 2008-06-23 2013-06-12 住友精密工業株式会社 圧電体膜を用いた振動ジャイロ及びその製造方法
JP2010210605A (ja) * 2009-02-11 2010-09-24 Sumitomo Precision Prod Co Ltd 圧電体膜を用いた振動ジャイロ及びその製造方法
JP2022524171A (ja) * 2018-05-08 2022-04-28 株式会社村田製作所 ピエゾリングジャイロスコープ

Also Published As

Publication number Publication date
US20100281976A1 (en) 2010-11-11
CN101910790A (zh) 2010-12-08
US8381590B2 (en) 2013-02-26
EP2239541B1 (en) 2013-10-23
JP5392913B2 (ja) 2014-01-22
EP2239541A4 (en) 2012-11-14
EP2239541A1 (en) 2010-10-13
JPWO2009096086A1 (ja) 2011-05-26

Similar Documents

Publication Publication Date Title
WO2009096086A1 (ja) 圧電体膜を用いた振動ジャイロ及びその製造方法
JP5523755B2 (ja) 圧電体膜を用いた振動ジャイロ及びその製造方法
JP5524044B2 (ja) 圧電体膜を用いた振動ジャイロ
JP5524045B2 (ja) 圧電体膜を用いた振動ジャイロ
JP5632842B2 (ja) 圧電体膜を用いた振動ジャイロ
JP5716827B2 (ja) 振動子および振動ジャイロ
US10809061B2 (en) Vibratory gyroscope including a plurality of inertial bodies
JP2011027561A (ja) 圧電体膜を用いた振動ジャイロ
JP5209716B2 (ja) 圧電体膜を用いた振動ジャイロ及びその製造方法
JP2018520348A (ja) 直交同調ための傾斜電極を有するmems慣性測定装置
JP5451396B2 (ja) 角速度検出装置
JP5189927B2 (ja) 圧電体膜を用いた振動ジャイロ
JP2009300283A (ja) 圧電体膜を用いた振動ジャイロ
JP7269745B2 (ja) 振動構造の角速度センサ、およびその製造方法
JP2011027560A (ja) 圧電体膜を用いた振動ジャイロ
JP2011027562A (ja) 圧電体膜を用いた振動ジャイロ
JP5810685B2 (ja) 振動子および振動ジャイロ
JP2008096139A (ja) 角速度センサ及びその駆動方法
JP2011163791A (ja) モーションセンサの製造方法、加速度センサ、角速度センサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880124317.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08871848

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009551403

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12863639

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008871848

Country of ref document: EP