JP6787437B2 - ピエゾリングジャイロスコープ - Google Patents

ピエゾリングジャイロスコープ Download PDF

Info

Publication number
JP6787437B2
JP6787437B2 JP2019083922A JP2019083922A JP6787437B2 JP 6787437 B2 JP6787437 B2 JP 6787437B2 JP 2019083922 A JP2019083922 A JP 2019083922A JP 2019083922 A JP2019083922 A JP 2019083922A JP 6787437 B2 JP6787437 B2 JP 6787437B2
Authority
JP
Japan
Prior art keywords
ring
axis
symmetry
mass
diagonal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019083922A
Other languages
English (en)
Other versions
JP2019203884A (ja
JP2019203884A5 (ja
Inventor
ヘイッキ・クイスマ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of JP2019203884A publication Critical patent/JP2019203884A/ja
Publication of JP2019203884A5 publication Critical patent/JP2019203884A5/ja
Application granted granted Critical
Publication of JP6787437B2 publication Critical patent/JP6787437B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/567Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode
    • G01C19/5677Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/567Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode
    • G01C19/5677Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators
    • G01C19/5684Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators the devices involving a micromechanical structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/09Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)
  • Micromachines (AREA)

Description

本開示は、角回転速度を測定するためのセンサに関し、より詳細には、所与の平面内のリング状構造の振動を利用して当該平面に垂直な軸を中心とする角回転の大きさを検出するz軸ジャイロスコープに関する。本開示はさらに、一次リング振動を駆動するため、一次リング振動の大きさを測定するため、角回転によって引き起こされる二次リング振動を検出するため、または二次モードで逆振動を駆動するために使用することができるトランスデューサに関する。本開示はまた、取り付けられた質量要素を有するリングの共振特性を調整するための手段に関する。
微小電気機械ジャイロスコープは、コリオリ効果を使用して角速度を測定する。振動MEMSジャイロスコープでは、物体が、作動駆動力によって振動運動するように駆動される。本開示では、この振動を「一次振動」または「駆動振動」と呼び、この振動モードは「一次モード」と呼ばれる。リングは典型的には共振するため、このモードは「一次共振モード」とも呼ばれる場合がある。MEMSジャイロスコープでは、駆動振動は、固体慣性質量の線形振動または回転振動を含み得るが、駆動振動はまた、リング状構造の柔軟な変形を含み得る。本開示は後者の種類の用途に専ら焦点を当てている。
駆動振動をしているリングが(リングによって規定されるxy平面に垂直な)z軸を中心とした角回転速度Ωを受けると、リングはコリオリ力Fの影響を受ける。リングの所与のセグメントに対するコリオリ力の大きさおよび方向は、リングの当該セグメントにおける振動運動の大きさおよび方向、ならびに角回転速度ベクトルの大きさによって決まる。リング内のコリオリ力によって引き起こされる振動は、本開示では「二次振動」または「センス振動(sense oscillation)」と呼ばれ、この振動モードは「二次モード」または「二次共振モード」と呼ばれる。
図1は、振動リングジャイロスコープにおける一次モードおよび二次モードを示す。太いリング11は、静止位置にあるリングを示し、リングは、リングが完全に静止しているとき、またはすべての振動モードの振幅がゼロであるときに静止位置を得る。2つの横対称軸TおよびTならびに2つの対角対称軸DおよびDが図1に示されるリングに示されている。
一次モードは、2つの横対称軸に沿ったリング振動を含む。この振動運動の両極端は、図1において点線で示されている。第1の点線12は、第1の横軸Tに沿って拡張し、第2の横軸Tに沿って収縮したときのリングの形状を示し、第2の点線13は、第2の横軸Tに沿って拡張し、第1の横軸Tに沿って収縮したときのリングの形状を示す。一次振動では、リングはこれら2つの形状の間で連続的に切り替わる。
リングが中心z軸を中心とする角回転速度Ω(リングの真ん中に図示)を受けると、リング上のセグメントはコリオリ力Fの影響を受ける。第1の点線12上にマークされた力Fは、リングが第1の横軸Tに沿って拡張しているときのコリオリ力の局所方向を示す。右側のセグメント121が正のx方向に移動すると、Fはこのセグメント内で負のy方向を向く。左側のセグメント122が負のx方向に移動すると、Fはこのセグメント内で正のy方向を向く。同様に、セグメント123が負のy方向に移動すると、Fはこのセグメント内で負のx方向を向く。図1に示すように、セグメント124はこのセグメント内で正のy方向に移動し、Fは正のx方向に向く。リングが第1の横軸Tに沿って再び収縮すると、コリオリ力の方向は各セグメントにおいて反転する(この状況は図示されていない)。
同様に、第2の点線13上にマークされた力Fは、リングが第2の横軸Tに沿って拡張しているときのコリオリ力の局所方向を示す。セグメント131が負のx方向に移動すると、Fは正のy方向を向く。セグメント132が正のx方向に移動すると、Fは負のy方向を向く。セグメント133は正のy方向に動き、Fは正のx方向を向き、一方で、セグメント124は負のy方向に動き、Fはこのセグメントにおいて負のx方向を向く。リングが第2の横軸Tに沿って再び収縮すると、コリオリ力の方向は各セグメントにおいて再び反転する(この状況は図示されていない)。
図1から分かるように、リングの第1の振動極値(12)では、セグメント121〜124に作用するコリオリ力がリングを第1の対角軸Dに沿って拡張する。振動極値は同時に第2の対角軸Dに沿ってリングを収縮させる。第2の振動極値(13)において、セグメント131〜134に作用するコリオリ力は、第2の対角軸Dに沿ってリングを拡張し、第1の対角軸Dに沿ってリングを収縮させる。セグメント121〜124は、それぞれセグメント131〜134と同じリングの部分であるが、振動の異なる位相を表す。
単純にするために、コリオリ力は図1のリングのこれらのセグメントにのみ描かれている。実際には、コリオリ力はリングの周に沿ってリングのあらゆる点において作用する。各局所力成分は、リングの当該点の速度および角速度に比例し、両方に垂直である。すべてのコリオリ力成分の積分が、第1の対角軸Dおよび第2の対角軸Dに沿ってリングの楕円変形を引き起こす。
言い換えれば、一次共振モードでは、環状リング11は、直交する横軸TおよびTに沿って楕円形状12および13に周期的に変形する。z軸を中心とした角回転が存在しない場合、横軸TおよびTから正確に45度の角度に配置された4つの静止節点14がある。これらの点14は、対角軸DおよびD上にある。これらの節点14にあるリングのセグメントは、一次振動ではいかなる直線運動も経験せず、節点の周りの回転のみを経験する。
二次共振モードでは、楕円変形は、上で説明したように、一次モード軸から45度回転している。数学的に(しかし幾何学的にではなく)、二次モードは一次モードと直交している。なぜなら、リングの考えられるすべての一次振動はこれら2つのモードの線形結合として表すことができるためである。
リングが一次振動モードに励起され、所与の回転速度でリングの中心の周りで面内回転を受けるとき、2つの振動の重ね合わせは、節点14が元の位置からわずかにずれた楕円振動である。このずれを測定することによって角回転速度を検出することができる。
リングの振動が容量性または電磁的手段によって駆動されるリングジャイロスコープが、従来技術から知られている。二次振動の検出は典型的には容量性手段によって行われる。特許文献1および特許文献2はそのようなジャイロスコープを例示している。
リングと電極との間に印加された電圧が(一次モードにおいて)リングを変形させることができるように、または、リングの変形を(二次モードにおいて)リングと電極との間の静電容量によって測定することができるように、電極を側面から距離を置いて配置することによって、リングの側面近くに容量性トランスデューサを製造する必要がある。一次モードの電磁励起は、リングが永久磁石によって生成された外部磁場内に配置されたときにリングに力を与える、リングの上面に形成された導体を必要とする。
これらのジャイロスコープでは、1μmより小さい空隙を生成することは非常に困難であるため、検出容量は非常に小さく、一次振動の高い振幅は、二次モード検出電極を節点からどれだけ遠くまで延伸することができるかを制限する。一方、一次モードに必要とされる励起キャパシタは、振幅の大きい振動を可能にするために大きな間隙を有していなければならず、したがってこれらのキャパシタによって発生される静電気力は非常に小さいままである。電磁励起が使用される場合、リング上にマルチターン導体のためのスペースがなく、したがって強くて大きな永久磁石が使用されなければならない。そのようなデバイスは、通常、シリコンデバイスの標準的なパッケージング要件と互換性がない。
米国特許第5932804号明細書 米国特許第5226321号明細書
本開示の目的は、上記の不都合を軽減する装置を提供することである。
本開示の目的は、独立請求項に記載されているものを特徴とする構成によって達成される。本開示の好ましい実施形態が、従属請求項に開示されている。
本開示は、リングジャイロスコープにおける一次共振モードを励起し、二次共振モードを検出するためにピエゾトランスデューサを利用するという着想、および、狭いブリッジコネクタを用いて追加の質量要素をリングに固定することによってデバイスの共振特性を変更することに基づく。これにより、リング自体に新しい寸法の可能性が開かれる。
以下において、添付の図面を参照しながら、好ましい実施形態によって、本開示をより詳細に説明する。
振動リングジャイロスコープにおける一次モードおよび二次モードを示す。 ジャイロスコープリング上に配置された曲げピエゾトランスデューサの3つの断面図である。 ジャイロスコープリングの内周および外周に沿った接線応力の変化を示す図である。 トランスデューサの一実施形態によるリングジャイロスコープを示す図である。 別のトランスデューサの実施形態によるリングジャイロスコープを示す図である。 別のトランスデューサの実施形態によるリングジャイロスコープを示す図である。 別のトランスデューサの実施形態によるリングジャイロスコープを示す図である。 別のトランスデューサの実施形態によるリングジャイロスコープを示す図である。 1つの実施形態によるリングジャイロスコープを示す図である。 1つの実施形態によるリングジャイロスコープを示す図である。 1つの実施形態によるリングジャイロスコープを示す図である。 1つの実施形態によるリングジャイロスコープを示す図である。 1つの実施形態によるリングジャイロスコープを示す図である。 1つの実施形態によるリングジャイロスコープを示す図である。 1つの実施形態によるリングジャイロスコープを示す図である。 1つの実施形態によるリングジャイロスコープを示す図である。 1つの実施形態によるリングジャイロスコープを示す図である。 1つの実施形態によるリングジャイロスコープを示す図である。
図2は、ジャイロスコープリング上に配置された曲げピエゾトランスデューサの3つの断面図である。トランスデューサは、xy平面内で曲げ運動を生成または測定することができる。一対の第1の電極層241および242が、シリコンリング21上に、一方はピエゾ材料層22の上側に、他方は下側に配置されている(この場合、上下はz軸の方向を参照する)。これらの電極は、図示のように、それぞれ第2の電極層231、232と対になっている。層241、22および231はともにリング21の上に第1のピエゾトランスデューサを形成し、層242、22および232はともにリング21の上に第2のピエゾトランスデューサを形成する。
反対の極性を有する駆動電圧がこれらの2つのトランスデューサに印加されると、2つのトランスデューサはxy平面内に反対の歪みを生じ、これがシリコンリング21を変形させることができる。トランスデューサがセンストランスデューサとして使用される場合、面内曲げは2つのトランスデューサ間に電圧差を発生させることになる。
ピエゾトランスデューサを説明するために、本開示全体を通して図2の図面規約を利用する。言い換えれば、反対色の2つの平行な長方形がピエゾトランスデューサを示すために使用される。単純にするために、構造が実際には2つのトランスデューサを含む構築物であるとしても、これら2つの平行な長方形は主に単数形で、単一の「分割トランスデューサ(split transducer)」と呼ばれる。言い換えれば、分割トランスデューサは2つの並列トランスデューサを含まなければならない。
白色および黒色はトランスデューサの極性を示す。分割トランスデューサ内の黒色長方形および白色長方形の順序付けは、リングの外側に白色長方形があるトランスデューサの極性が、リングの外側に黒色長方形があるトランスデューサの極性と反対になるように(同図面に見られるように)極性を示す。
窒化アルミニウム(AlN)層とすることができるピエゾ層22は、典型的には数マイクロメートル以下の厚さである。シリコンリング21の厚さは、例えば、4〜100μm、好ましくは10〜50μmであり得る。
本開示に記載のピエゾトランスデューサがセンスモードで使用されるとき、トランスデューサの静電容量が外部接続の静電容量と増幅器の入力静電容量との合計に等しいときに、トランスデューサの電極間の最大出力電圧が達成され得る。トランスデューサの静電容量は、当該トランスデューサの面積およびピエゾ層の厚さによって決まる。
一次および二次振動モードは、リングの内周および外周に機械的応力を生じさせる。瞬間応力は、リング周長に沿った長さの正弦関数として変化する。この場合、長さ変数は、図1の正のy方向を指すT軸に対する時計回りの角度によって表される。図3は、両方の振動モードについてリングの内周および外周に沿った接線応力の変化を示す。図示の瞬間には、応力は一次モードについて角度の正弦関数として、および、二次モードについて余弦関数として変化し、内周の応力は各場合において等しいが、向きは外周の応力とは反対である。この応力分布は、リングの上面にかつリングの周に沿って長手方向に位置決めされたピエゾ分割トランスデューサによって発生させ検出することができる。一次振動を駆動するためにリング上に位置決めされた分割トランスデューサは、リングの各周上に反対方向の一定の応力を生じさせる。
本開示は、リング平面を画定し、かつリングがリング計画内で形状振動を受けることができるように基板から柔軟に懸架される実質的に円形で柔軟性のリングを備えるリングジャイロスコープを記載する。リングは、互いに直交するリング平面内の第1の横対称軸および第2の横対称軸を備える。リングはまた、互いに直交するリング平面内の第1の対角対称軸および第2の対角対称軸をも備える。各横対称軸と隣接する対角対称軸との間の角度は45°である。
ジャイロスコープは、リングを共振するように駆動するように構成され、リングの第1のセクタに配置された1つまたは複数の一次ピエゾ分割トランスデューサをさらに備える。ジャイロスコープは、リングの振動を検知するように構成され、リングの1つまたは複数の第2のセクタに配置された1つまたは複数の二次ピエゾ分割トランスデューサをさらに備える。各第1のセクタは、リングの横対称軸と交差し、当該対称軸に関して対称であり、各第2のセクタは、リングの対角対称軸と交差し、リングの当該対角対称軸に関して対称である。
本開示では、「リングのセクタA上に配置されたピエゾ分割トランスデューサ」のような表現は、常に、ピエゾ分割トランスデューサがリングのセクタA内でリングの上に配置されることを意味する。図2は、分割トランスデューサをリングの上に配置することができる方法を示す。
ジャイロスコープは、第1の横対称軸および第2の横対称軸と第1の対角対称軸および第2の対角対称軸の両方に関して対称的な質量分布を形成する4つ以上の質量要素をさらに備え、各質量要素はブリッジコネクタからリングに取り付けられ、ブリッジコネクタはリングに沿って均等に分散されている。
本開示はまた、上述のリングジャイロスコープを使用する方法を記載し、この方法は、少なくとも1つの一次ピエゾ分割トランスデューサに駆動電圧信号を印加して、リングジャイロスコープにおいて一次振動モードを生成するステップと、少なくとも1つの二次ピエゾ分割トランスデューサからセンス電圧信号を読み取って、リングジャイロスコープにおける二次振動の振動振幅を測定するステップとを含む。本開示に記載の任意のリングジャイロスコープによって同じ方法を利用することができる。図4は、リング42を備えるリングジャイロスコープを示す。平面リングは、図4のxy平面に対応するリング平面を画定する。サスペンション構成は図示されていない。第1の横対称軸Tおよび第2の横対称軸Tならびに第1の対角対称軸Dおよび第2の対角対称軸Dは、図1を参照して上述した対称軸に対応する。少なくとも1つの一次ピエゾ分割トランスデューサ411がリング42上に配置されている。この分割トランスデューサ411は、図4に示すように、角度αに対応するリングの第1のセクタをカバーする。このセクタの中点(または、等価的に、トランスデューサ411の中点)は、第1の横対称軸Tの方向を規定する。分割トランスデューサ411に印加される交流駆動電圧は、横対称軸Tに沿ってリング42を交互に伸張および圧縮する。
言い換えれば、円は無限に多数の対称軸を有するため、第1の対称軸の方向は、第1の一次分割トランスデューサ411の配置によって自由に選択することができる。最初の軸Tが規定されると、他の3つの対称軸T、D、およびDもすでに一意に規定されており、リング上の後続の一次分割トランスデューサおよび二次分割トランスデューサの配置は以下の要件に準拠しなければならない。
1.第2の一次ピエゾ分割トランスデューサ412は、任意選択的に、リングの他方の側で、411と反対側に配置されてもよい。この第2の一次分割トランスデューサ412の中点は、第1の横対称軸Tに可能な限り近くなければならない。言い換えれば、分割トランスデューサ412は、リングの横対称軸Tと交差しなければならず、当該軸に関して対称でなければならない、リングの別の第1のセクタを画定する。これに関連して、対称性は、セクタが軸Tの両側で等しい範囲まで延伸することを意味する。図4に示される第2の分割トランスデューサ412は、リングの中心に関して第1の分割トランスデューサ411と同じ極性対称性を有するため、トランスデューサ412に印加される駆動電圧信号は、トランスデューサ411に印加される駆動電圧信号と同じ位相を有するべきである。これら2つの分割トランスデューサによって引き起こされる駆動振動は、互いを増強する。リングの中心に対する第2の分割トランスデューサ412の極性がトランスデューサ411の極性と反対である場合、駆動電圧信号は180°の位相差を呈するはずである。
2.第3の一次ピエゾ分割トランスデューサ413および第4の一次ピエゾ分割トランスデューサ414が、任意選択的に、リングの対向する両側に配置されてもよい。第3の一次ピエゾ分割トランスデューサおよび第4の一次ピエゾ分割トランスデューサの位置は、第1の一次ピエゾ分割トランスデューサ411および第2の一次ピエゾ分割トランスデューサ412の位置から90°ずれている。これらの第3の一次分割トランスデューサ413および第4の一次分割トランスデューサ414の中点は、第2の横対称軸Tに可能な限り近くなければならない。言い換えれば、分割トランスデューサ413および414は、リングの横対称軸Tと交差しなければならず、当該軸に関して対称でなければならない、リングの追加の第1のセクタを画定する。図4に示される第3の分割トランスデューサ413および第4の分割トランスデューサ414は、リングの中心に関して第1の分割トランスデューサ411と反対の極性対称性を有するため、分割トランスデューサ413および414に印加される駆動電圧信号は、トランスデューサ411に印加される駆動電圧信号と同じ位相を有するべきである。このとき、リングは、軸Tに沿って拡張するときに軸Tに沿って収縮するように駆動され、また逆も同様である。分割トランスデューサ413および414の一方または両方が411と同じ極性を有する場合、当該トランスデューサは、トランスデューサ411に印加される信号に対して180°シフトされた駆動電圧信号によって駆動することができる。
3.1つから4つの二次ピエゾ分割トランスデューサ431〜434をリングの4つの側に配置することができ、各々が隣接する二次分割トランスデューサから90°の角度だけずれている。これらの二次分割トランスデューサ431〜434の中点は、第1の対角対称軸Dまたは第2の対角対称軸Dのいずれかに可能な限り近くなければならない。上記で説明したように、これらの対角対称軸は横対称軸から45°の角度だけずれている。各二次分割トランスデューサ431〜434はリングの第2のセクタを画定する。各第2のセクタは、リングの対角対称軸と交差し、当該軸に関して対称でなければならない。前述のように、この文脈における対称性は、セクタが対角対称軸の両側で等しい範囲まで延伸することを意味する。リングの中心に対する二次分割トランスデューサの極性は自由に選択することができる。図4は、第1の対角対称軸Dと交差する二次分割トランスデューサ431および432の極性が、第2の対角対称軸Dと交差する二次分割トランスデューサ433および434の極性と反対である最も単純な代替形態を示す。Dに沿った拡張は常にDに沿った収縮を伴い、また逆もあるため、この場合、すべての二次分割トランスデューサ431〜434から得られるセンス電圧は直接ともに結合することができる。
言い換えれば、リングの一次共振運動を励起するために、少なくとも1つの一次ピエゾ分割トランスデューサがリング上に存在しなければならない。この励起は、リングの共振周波数と等しいか近い周波数で、一次ピエゾ分割トランスデューサに交流電圧を印加することによって達成される。一次ピエゾ分割トランスデューサは、好ましくは、リングの横対称軸に関して対称に配置されるべきである。
さらに、リングがリング平面に垂直な中心軸の周りを回転するときにコリオリ力によって結合される振動を検出するために、少なくとも1つの二次ピエゾ分割トランスデューサがリング上に存在しなければならない。二次ピエゾ分割トランスデューサは、好ましくは、リングの対角対称軸に関して対称に配置されるべきである。
任意の第1のセクタまたは第2のセクタ(すなわち、任意の一次トランスデューサまたは二次トランスデューサ)の不整合は、一次振動の二次振動モードへの望ましくない結合を引き起こす。これは、リングが一次共振モードでのみ振動するときには節点44が静止したままであるはずであっても、不整合の一次トランスデューサ411〜414が隣接する節点44を動かす振動を発生させるためである。節点44の振動は、二次分割トランスデューサ431〜434によって拾い上げられ、誤ったセンス信号を生成することになる。逆に、不整合の二次トランスデューサは、節点44とは異なる点を中心とし、これもまた一次共振振動を拾い上げて誤ったセンス信号を発生させることになる。一方、すべての一次分割トランスデューサおよび二次分割トランスデューサが完全に位置整合されている場合、二次分割トランスデューサ431〜434は真の二次共振モード、すなわちコリオリ力によって誘起された節点44の振動のみを拾う。
リングジャイロスコープを動作させるには、リングの第1のセクタ上の単一の一次ピエゾ分割トランスデューサおよびリングの第2のセクタ上の単一の二次分割トランスデューサで十分である。しかしながら、信号対雑音比を改善し、不整合による誤差の可能性を減らすために、一次分割トランスデューサおよび二次分割トランスデューサの両方の数は、図4に示すように例示されている幾何学的配置に従って増大されてもよい。
言い換えれば、ジャイロスコープは、リング42の対向する両側で第1の横対称軸Tと交差する2つの第1のセクタ上に第1の対の一次ピエゾ分割トランスデューサ411、412を備えることができる。任意選択的に、ジャイロスコープはまた、リング42の対向する両側で第2の横対称軸Tと交差する2つの第1のセクタ上に第2の対の一次ピエゾ分割トランスデューサ413、414を備えることもできる。第1の対の一次ピエゾ分割トランスデューサ411、412は、リング42の中心に対する第2の対のピエゾ分割トランスデューサ413、414の極性対称性とは反対である、リング42の中心に対する極性対称性を有することができる。
さらに、ジャイロスコープは、リング42の対向する両側で第1の対角対称軸Dと交差する2つの第2のセクタ上に第1の対の二次ピエゾ分割トランスデューサ431、432を備えることができる。任意選択的に、ジャイロスコープはまた、リング42の対向する両側で第2の対角対称軸Dと交差する2つの第2のセクタ上に第2の対の二次ピエゾ分割トランスデューサ433、434を備えることもできる。第1の対の二次ピエゾ分割トランスデューサ431、432は、リング42の中心に対する第2の対の二次ピエゾ分割トランスデューサ433、434の極性対称性とは反対である、リング42の中心に対する極性対称性を有することができる。
図4に示すリングジャイロスコープでは、各第1のセクタおよび各第2のセクタの幅は45°である。言い換えれば、各一次分割トランスデューサ411〜414の長さおよび各二次分割トランスデューサ431〜433の長さは、リング円周の1/8に等しい。合計8つの分割トランスデューサがある図4では、一次分割トランスデューサおよび二次分割トランスデューサがともにリングの全周をカバーする。これにより、一次トランスデューサから得られる力および二次トランスデューサから得られるセンス信号強度が最大になる。
しかしながら、時には、リングの上面の一部の領域が、力の変換以外の目的、例えば駆動振幅の監視、結合の相殺、または電気的な接触のために必要とされ得る。
図5は、別のトランスデューサの実施形態によるリングジャイロスコープを示す図である。参照符号511〜514、531〜534、52および54は、それぞれ図4の参照符号411〜414、431〜434、42および44に対応する。図5では、各第1のセクタの幅は45°未満であり、各第2のセクタの幅は45°未満である。説明のために、各トランスデューサの長さはリング円周の1/16であり、結果、各第1のセクタおよび第2のセクタの対応する幅は22.5°であるが、トランスデューサの長さは自由に選択することができる。対称基準は図4と同じままであり、各第1のセクタおよび第2のセクタは当該セクタが交差する対称軸に関して対称であるものとする。この対称性からの逸脱は、上述のように、一次モード振動の二次モードへの望ましくない結合を引き起こす。
図6は、すべての第1のセクタおよび2つの第2のセクタの幅が45°未満であり、他の2つの第2のセクタの幅が45°である代替的なトランスデューサの実施形態を示す。参照符号611〜614、631〜634、62および64は、それぞれ図5の参照符号511〜514、531〜534、52および54に対応する。代替的に、各第1のセクタの幅が45°未満であってもよく、各第2のセクタの幅が45°であってもよい。第1のセクタを狭くすることによってリング表面上のいくらかの空間を広げるこれらの構成は、駆動力を犠牲にすることができるがセンス信号強度を犠牲にすることができないときに有利であり得る。一次振動を駆動するために必要な力は、リングの寸法、一次トランスデューサの長さ、および、これらの一次トランスデューサに印加される駆動電圧信号の振幅に依存する。前述のように、各第1のセクタおよび第2のセクタは当該セクタが交差する対称軸に関して依然として対称的でなければならない。
リングジャイロスコープが閉ループサーボモードで使用されるとき、または二次モード共振が閉ループフィードバックによって減衰されるとき、少なくとも一つの二次ピエゾ分割トランスデューサが交流電圧によって駆動され、結果、一次振動の二次振動への結合を能動的に相殺する。当該事例において、能動的な相殺専用の二次トランスデューサの長さは、二次振動を検知する二次トランスデューサの長さとは異なり得る。
代替的に、各第1のセクタの幅が45°であってもよく、各第2のセクタの幅が45°未満であってもよい。この構成は、駆動力を最大にしなければならないが、センス信号強度のいくらかを犠牲にすることができるときに、リング上のスペースを解放するのに有利であり得る。このオプションは別個に示されてはいないが、各一次分割トランスデューサがリング円周の1/8をカバーし、二次分割トランスデューサが円周の大部分をカバーしないことを除いて、図6に直接対応する。
すべての一次分割トランスデューサが、一次振動を駆動するために必ずしも使用される必要はない。一次分割トランスデューサのいくつかは、例えば、一次振動の振幅を測定するために使用されてもよい。これは、環境変数または経年変化による駆動周波数または共振器のQ値の変化と無関係に安定した振動振幅を維持するために必要である。
言い換えれば、本開示に記載される任意のリングジャイロスコープを使用する方法は、少なくとも1つの一次ピエゾ分割トランスデューサから第3の電圧信号を読み取って、リングジャイロスコープにおける一次振動の振動振幅を測定するステップを含み得る。
同様に、すべての二次分割トランスデューサが、二次振動を測定するために必ずしも使用される必要はない。二次分割トランスデューサのいくつかは、例えば、二次振動モードへの積極的な介入のために使用されてもよい。例えば、リングジャイロスコープが閉ループサーボモードで使用されるとき、または二次モード共振が閉ループフィードバックによって減衰されるとき、または加えられる電気機械力が使用されて直交信号が相殺されるとき、少なくとも一つの二次ピエゾ分割トランスデューサが交流電圧によって駆動され、結果、一次振動の二次振動への結合を能動的に相殺する。能動的な相殺専用の二次トランスデューサの長さは、二次振動を検知する二次トランスデューサの長さとは異なり得る。
言い換えれば、本開示に記載される任意のリングジャイロスコープを使用する方法は、少なくとも1つの二次ピエゾ分割トランスデューサに第4の電圧信号を印加して、一次振動の二次振動への結合を能動的に相殺するステップを含み得る。
一次分割トランスデューサおよび二次分割トランスデューサがともにリングの全周をカバーしない場合、空いている表面領域(例えば、図5および図6のリング上の未使用領域)を他の目的に使用することができる。図7は代替的な実施形態を示し、参照符号711〜714、731〜734、72および74は、それぞれ図6の参照符号611〜614、631〜634、62および64に対応する。この実施形態では、少なくとも1つの第1のセクタまたは第2のセクタの幅は45°未満である。ジャイロスコープは、第1のセクタまたは第2のセクタと重ならない、リングの第3のセクタ上に1つまたは複数の三次ピエゾ分割トランスデューサを備える。
8つの三次ピエゾ分割トランスデューサ751〜758が図7に示されている。三次ピエゾ分割トランスデューサの数はより少なくてもよく、この数は一次トランスデューサおよび二次トランスデューサの幅に依存し得る。三次ピエゾ分割トランスデューサの数はまた、8より多くてもよい。いくつかの第3のセクタが第1のセクタと第2のセクタとの間に収まってもよい。
一次振動の振幅を検出するために、三次ピエゾトランスデューサ751〜758のうちの1つまたは複数を使用することができる。この振幅は、熱応力および他の経年変化の影響により、デバイスの寿命期間中一定に保たれない可能性がある。駆動振幅がドリフトすると、比例する誤差が、検知される振幅にただちに導入されるが、一次振動が監視される場合、この誤差は補正することができる。
言い換えれば、第1のセクタまたは第2のセクタと重ならない、リングの第3のセクタ上に1つまたは複数の三次ピエゾ分割トランスデューサを備えるリングジャイロスコープを使用する方法は、少なくとも1つの三次ピエゾ分割トランスデューサから第5の電圧信号を読み取って、リングジャイロスコープの一次振動の振動振幅を測定するステップを含むことができる。
上述したように、ジャイロスコープが閉ループサーボモードで使用されるとき、または二次共振モードが閉ループフィードバックによって能動的に減衰されるとき、または電気機械力が使用されて直交信号が相殺されるとき、三次ピエゾトランスデューサ751〜758のうちの1つまたは複数がまた、結合振動を相殺するために使用され得る。
言い換えれば、第1のセクタまたは第2のセクタと重ならない、リングの第3のセクタ上に1つまたは複数の三次ピエゾ分割トランスデューサを備えるリングジャイロスコープを使用する方法は、少なくとも1つの三次ピエゾ分割トランスデューサに第6の電圧信号を印加して、一次振動の二次振動への結合を能動的に相殺するステップを含むことができる。
図8は代替的な実施形態を示し、参照符号811〜814、831〜834、855〜856、82および84は、それぞれ図7の参照符号711〜714、731〜734、755〜756、72および74に対応する。この実施形態では、第2のセクタ上の3つの二次トランスデューサ831〜833は45°よりも大きい幅を有し、第4の二次トランスデューサ834は45°未満の幅を有する。これらすべての二次トランスデューサが二次振動を検出するために使用される。一次セクタ811〜814上のすべてのトランスデューサは45°未満の幅を有し、一次振動を励起するために使用される。第3のセクタ上には2つの三次トランスデューサ855および856しかない。上述したように、一次振動の振幅を検出するために、これらの三次トランスデューサのうちの1つが使用される。もう1つは、上述したように、ジャイロスコープが閉ループサーボモードで使用されるとき、または二次共振モードが閉ループフィードバックによって能動的に減衰されるとき、または電気機械力が使用されて直交信号が相殺されるとき、結合振動を相殺するために使用される。
図8に視覚的に示されるように、リングの全周は、説明された機能のためにトランスデューサによって完全にカバーすることができる。ジャイロスコープは、一次振動を駆動するため、および、印加される電気機械力によって二次振動を補償するための電圧を適切に低く維持しながら、一次信号および二次信号について十分に高い信号対雑音比が得られるように、各機能に対して最適なトランスデューサ長を選択することによって最適化され得る。
ピエゾトランスデューサがリングの上面に製造されるときには、特定の設計上のトレードオフが必要とされ得る。実用的な分割電極トランスデューサは、少なくとも15μm、好ましくは20μmを超える幅を必要とする。1000μmの外径および6.8μmの幅を有するシリコンリングは30kHzの共振周波数を有するが、そのような狭いリングの上面にピエゾ分割トランスデューサを製造することはほとんど不可能である。
基本的なジャイロスコープリング上でピエゾ変換を実施するためには、リングの幅を広げなければならない。これにより、共振周波数が上がる。リング幅が15μmの場合、共振周波数は67kHzに増加する。しかし、1μmのAlN層を有する15μm幅の分割トランスデューサの合計最大静電容量はわずか3、8pFであり、これが二次振動の検出に加えて、例えば、一次振動の駆動、一次振動の大きさの検知および閉フィードバックループにおける二次振動の相殺のための二次モードにおける補償信号の駆動、および/または、二次共振の減衰、および/または、直交信号の相殺など、多くの機能と共有されることになるため、これでも狭すぎる場合がある。50%を超える最大静電容量を二次振動の検知に使用するのは容易ではないため、周囲の電子機器と完全に一致させるには、合計静電容量は好ましくは7〜15pFとすべきある。
リング幅を30μmに増やすと、静電容量は7.6pFになるが、対応する共振周波数は140kHzになる。高周波動作では、ジャイロスコープは主に低い周波数である外部振動に対してより強くなるが、一次モードの二次トランスデューサへの直接の機械的結合による直交信号も周波数と共に増加する。
共振周波数を上げすぎずにリングの幅および静電容量を増やす自明の方法は、リングの直径を大きくすることである。直径が1.6mm、幅が18μmに選択される場合、共振周波数は31kHz、静電容量は7.2pFになる。この値は理想的な目標に近い値である。しかし、このジャイロスコープは、直径1mmのジャイロスコープの2.5倍の面積があり、したがって製造コストは2.5倍である。
これらの設計上のトレードオフは、追加の質量要素をリングに固定することによって軽減することができる。これらの質量要素は、リングの内側の部分円セクタのように、またはリングの外側に垂直な側面を有するコーナ要素のように成形することができる。下記のように、他の形状も可能である。これらの追加の質量要素は、リングの弾性的な柔軟性の喪失を招くため、リングの周の大部分をカバーする締結具からリングに取り付けることはできない。しかしながら、各マスが狭い橋のような形状の締結具からリングに取り付けられている場合、相当量の追加の質量が振動システムに追加されても、リングの弾性および当該リングのばね定数(すなわち力/変形比)を維持することができる。共振周波数はばね定数/質量比に依存するため、過度に狭いリングを使用する必要なしに追加の質量要素を使用してシステムの共振周波数を低減することができる。
図9aは、1つの実施形態による典型的なリングジャイロスコープを示す。明瞭さを保つために、ピエゾトランスデューサは図から省略されているが、上述のトランスデューサの実施形態のいずれをも、本開示に記載の実施形態のいずれかと共に実施することができる。言い換えれば、図9aの参照符号92は、先行する図からの参照符号42、52、62、または72のうちのいずれかに対応し得る。図9aは、32個の小さな質量要素93を有するリング92を示しており、当該質量要素のすべてがリングの内側に配置されている。各質量要素93は、リング内の部分円セクタのような形状をしているが、他の形状も使用することができる。
各質量要素93はブリッジコネクタ94からリングに取り付けられている。リングの柔軟性がリングに追加された質量要素によって可能な限り影響を受けないようにすることを保証するために、リング周に沿ったブリッジコネクタの幅は、リング周辺部に沿った対応する質量要素93の幅よりも大幅に小さい。にもかかわらず、ブリッジコネクタ94は、質量要素93の重量を支持するのに十分に広くなければならない。したがって、最小幅は質量要素のサイズに依存する。リング92の面内柔軟性はブリッジコネクタ94の垂直の高さに依存しないため、xy平面に垂直な垂直z方向においてブリッジコネクタ94は質量要素93およびリング92と同じ高さであってもよい。ブリッジコネクタ94の半径方向の長さは、大きな振幅の一次振動を可能にするためにリングと質量要素との間に要求される間隙および製造公差によって制限されて、可能な限り小さくすべきである。一次振動モードおよび二次振動モードにおけるリングの弾性変形と比較してブリッジコネクタのいかなる曲げも無視できるように、半径方向の長さは十分に小さくすべきである。
図1に示す上記で説明したように、45°の角度におけるリングの2つの楕円共振モードを維持するために、かつ、いかなる他の低次の面内共振モードも導入しないようにするために、すべての質量要素93の合計によって生成される質量分布は、第1の横対称軸Tおよび第2の横対称軸Tと第1の対角対称軸Dおよび第2の対角対称軸Dの両方に関して対称でなければならない。これは、リングジャイロスコープの基本的な利点を維持するために、すなわち、振動エネルギーを一切漏らさずに共振の高いQ値を達成し、かつ、外部の線形振動および角振動に対する良好な堅牢性を達成するために、必要とされる。
必要な対称性を維持するには多くの方法がある。図9aに示す構成は、より一般的には、質量要素の数が4Nであり、Nはゼロより大きい整数である、かつ質量要素が横対称軸および対角対称軸の両方に関して対称的に分布する構成として説明することができる。図9aでは、質量要素の数は32であり、質量要素は対称軸と交差しない。図9bは、32個の要素を有するリングジャイロスコープを示し、4つの質量要素ごとに対称軸が交差している。
質量要素は必ずしも等しいサイズである必要はない。図9cは、4つのより大きい質量要素931と8つのより小さい質量要素932とを有する構成を示す。にもかかわらず、質量要素はすべての対称軸に関して対称的に分布している。
質量要素が取り付けられていないリングでは、1つの振動モードに対する有効移動質量は、総リング質量の29.7%であることが示され得る。図9aおよび図9bの追加の質量要素93によって、移動質量は、リングのばね定数に影響を与えることなく相当に増加する。図9aまたは図9bの質量要素の半径方向の長さが200μmの場合、20μmのリング幅で30kHzの共振周波数を生成することができる。質量要素93が追加されない場合、幅20μmのリングの共振周波数は91kHzとなる。図9aおよび図9bの質量要素の数が多いため、追加された質量はリングの周に沿ってほぼ均等に分布し、追加された質量の約29.7%が各モードの有効移動質量に寄与し、これは、分布質量を有する裸のリングと同じ割合である。
別の観点から見ると、質量要素が追加されている1つの振動モードでの有効移動質量は、幅6.8μmのリング(30kHzの共振周波数の生成に適している)のみが使用される場合の1つの振動モードでの有効質量の25倍になる。言い換えれば、これらの追加の質量要素が使用されると、元の振動エネルギーの25倍が共振システムに蓄積され、結果、元の最大出力信号よりも5倍大きい出力信号振幅が得られる。1μmのAlNを使用した場合、20μm幅のトランスデューサセットの総静電容量は4.9pFになる。
所望の共振周波数が50kHzである場合、所望の周波数を達成するために、質量要素のない裸のリングはわずか11μmの幅でなければならないであろう。これはピエゾトランスデューサにとっては狭すぎる。図9aおよび図9bの質量要素93の半径方向の長さが200μmであると再び仮定すると、質量要素の存在は、依然として共振周波数を50kHzに維持しながら、利用可能な幅を28μmに増加させる。この場合、振動のエネルギーは、質量要素を追加しないジャイロスコープと比較して、16倍、信号振幅は4倍増加する。トランスデューサの総静電容量は6.8pFに増加する。質量要素93の半径方向の長さが370μmに増大すると、50kHzの共振周波数でリング幅を31μmに増大することができる。このとき、総静電容量は7.5pFになる。
リング直径が約1000μmである場合、質量要素の適切な半径方向長さは、例えば、50〜500μm、100〜400μm、または200〜300μmの範囲内であり得る。リング幅は、例えば、15〜50μm、20〜40μmまたは25〜35μmであり得る。リング直径が1000μmより大きい場合、質量要素の半径方向長さおよびリング幅は同じ割合で増加し得る。
図9aおよび図9bに示される質量要素の分布はリングジャイロスコープ内の振動質量を増加させるが、追加された質量の全体が振動モードの移動質量に完全に寄与するのではない。リングの一次振動は質量要素を半径方向に動かす。しかし、主軸から離れた位置では半径方向の運動量が減少する。主軸から45°の角度にある周上の位置では、半径方向の動きはまったくない。対称軸との交点上に正確に配置されていないリング周のすべての部分が半径方向の動きに加えて回転を受けるため、振動はブリッジコネクタもある程度曲げる。主軸から45°の角度にある周上の位置では、回転しかない。この回転はブリッジコネクタをわずかに曲げ、取り付けられた質量を横に振り、質量要素の半径方向の動きに加えて追加の接線方向の動きを導入する。しかしながら、運動の半径方向成分は、主軸から離れた質量要素については大幅に減少し、45°の角度でゼロになり、結果、主軸から離れて取り付けられた質量要素は、振動の移動質量に完全には寄与しない。ただし、接線方向の動きは、特に質量要素が半径方向にかなり長い場合には、ある程度、半径方向の動きの減少を補償し得る。
図10a〜図10eは、代替的な実施形態による典型的なリングジャイロスコープを示す。この実施形態では、質量要素のサイズが増大し、質量要素の数が減少している。図10aは、すべての質量要素1031および1032がリングの内側に配置されている実施形態を示している。質量要素の数は8で、各質量要素は、1つの対称軸と交差し、当該対称軸に対して対称になり、かつ当該質量要素のブリッジコネクタが当該対称軸に中心を置かれるように、配置されている。
図10aのリングジャイロスコープは、横対称軸と交差する4つの質量要素1031と、対角対称軸と交差する4つの質量要素1032とを備える。質量要素1031は、質量要素と同じ横対称軸と交差するブリッジコネクタ1041によってリング102に取り付けられている。質量要素1032は、質量要素と同じ対角対称軸と交差するブリッジコネクタ1042によってリング102に取り付けられている。質量要素93と比較して質量要素1031および1032のサイズが大きいため、ブリッジコネクタ1041および1042もまた、図9aおよび図9bのブリッジコネクタ94よりも広くなければならない。
図10aに示す質量要素分布では、質量要素1031は駆動振動において横対称軸TおよびTに沿って前後に動くことになる。センス振動が生じると、質量要素1032は対応して対角対称軸DおよびDに沿って前後に動く。最良の信号対雑音比は典型的には一次モードの共振周波数が二次モードの共振周波数に等しいときに得られる。このバランスは、図10aの構成において、各質量要素が等しい広さの部分円セクタを占めるときに得られる。各部分円セクタの幅は、例えば45°であり得る。
図10bは、質量要素が、リング102の内側に配置されている内側質量要素1031および1032と、リング102の外側に配置されている外側質量要素1033とを含む代替的な実施形態を示す。図10aのように、内側質量要素の数は8で、各内側質量要素1031または1032は、1つの対称軸と交差し、当該対称軸に対して対称になり、かつ当該質量要素のブリッジコネクタが当該対称軸に中心を置かれるように、配置されている。さらに、外側質量要素1033の数は4で、各外側質量要素1033は、対角対称軸と交差し、当該対角対称軸に対して対称になり、かつ当該質量要素のブリッジコネクタ1043が当該対角対称軸に中心を置かれるように、配置されている。
外側質量要素1033は、質量要素と同じ対角対称軸と交差するブリッジコネクタ1043によってリング102に取り付けられている。センス振動が生じると、質量要素1033は対角対称軸DおよびDに沿って前後に動く。
図10bに示される質量要素分布は、正方形のリングジャイロスコープ構成要素内の利用可能な面積のすべてを利用するのに便利である。ジャイロスコープが内側質量要素と外側質量要素の両方を含む場合、一次モード共振周波数と二次モード共振周波数の等化は、例えば、横対称軸と交差する内側質量要素1032が、対角対称軸と交差する内側質量要素1031より狭い部分円セクタを占めるようにすることによって得られる。この選択肢は図10bに示されている。1つの外側質量要素+内側質量要素対1032+1033の合計面積は、1つの内側質量要素1031の面積に等しくなり得る。
内側質量要素は、必ずしも部分的円セクタのような形状である必要はない。図10cは、内側質量要素1031および1032が異なる形状を与えられているリングジャイロスコープを示す。4つの対称軸T、T、T、およびTに関する質量要素の対称性が維持される限り、他の多くの形状を使用することもできる。
図10a〜図10cに示す構成では、全質量の50%の4つの質量要素が横対称軸の交点でリングに接続されており、質量要素は一次振動モードで純粋な半径方向運動を呈する。対角対称軸の交点でリングに接続された4つの質量要素は、主振動モードにおいて接線方向の動きと回転運動との組み合わせを呈する。したがって、一次モードの全有効移動質量は全質量の50%をはるかに超え、これは、大きな接線方向および回転運動のない、均等に分布した小さい質量要素の29.7%をはるかに超える。二次振動モードについても同様である。
例として、図10dは、一次振動中の質量要素の動きを示す。節点1051〜1054はこの共振モードでは半径方向に静止しているが、これらの点は楕円モード形状による回転を呈する。内側質量要素および外側質量要素の各対は、xy平面に垂直でありかつ質量要素間の節点を通過する軸の周りの回転運動を受け、質量対の重心が対応する節点と一致しない場合、運動の正味の接線方向成分も存在する。この動き、および、横軸と交差する質量要素の半径方向の動きは、白い矢印で示されており、質量要素の動きはすべて一次振動モードでの動き、したがって当該モードにおいて蓄積されるエネルギーに寄与する。図10dに示す振動位相では、対10321+10331および10323+10333はそれぞれ節点1051および1053に対して時計回りに動き、対10322+10332および10324+10334はそれぞれ節点1052および1054に対して反時計回りに動く。リング周の運動が逆転した反対の振動位相では、節点に対する各接線方向運動は反対方向になる。
図10eは、二次振動中の節点の同様の半径方向運動および回転の効果を示す。軸DおよびD上の節点はここでは純粋な半径方向運動をしており、対角対称軸と交差する内側および外側質量要素は半径方向にのみ動く。一方、横対称軸と交差する内側質量要素10311〜10314は、半径方向にはまったく動かず、xy平面に垂直でリング上のそれぞれの対称点1061〜1064を通る軸を中心とした回転を受ける。各質量要素の重心は対応する節点からずれているため、要素は相当の接線方向運動も呈する。図10eに示す振動位相では、質量要素10311および10313はそれぞれ対称点1061および1063に対して時計回りに動き、対10312および10314はそれぞれ対称点1062および1064に対して反時計回りに動く。リング周の運動が逆転した反対の振動位相では、対称点を中心とした各接線方向運動は反対方向になる。
各モードについて節点に4つの質量要素を取り付けると、各モードの有効移動質量は、要素の総質量の50%を超えるまでに増加する。これは、純粋なリングの場合と同様の割合である、全質量の29.7%のみが各モードに寄与する図9aおよび図9bのような半径のみのモードにおける分散付加質量を用いる場合からは、大幅な改善である。二次モードでは、センサ出力信号は少なくとも30%高くなる。リングの幅を同じ共振周波数で10%を超えて増大することができ、したがって、静電容量が増大する。代替的に、リングの直径を10%を超えて低減してもよい。
上述の質量要素の回転運動および接線方向運動は、振動モードへの運動エネルギーをさらに増加させる。各モードの有効運動質量は、要素の全質量の50%をはるかに超え、最大100%になる。これは、純粋なリングの場合と同様の割合である、全質量の29.7%のみが各モードに寄与する図9aおよび図9bのような半径のみのモードにおける分散付加質量と比べて、大幅な改善である。二次モードでは、センサ出力信号は30〜83%高くなる。リングの幅を同じ共振周波数で10〜22%だけ増大することができ、したがって、静電容量が増大し、または、代替的に、リングの直径を10〜22%だけ低減することができる。
図10a〜図10eに示すリングジャイロスコープが単結晶シリコンから作成されている場合、リング直径が直径1000μmのリングである場合、共振周波数が30kHzである場合、中心孔の直径が200μmである場合、かつ、1μm厚のAlN膜を有するピエゾトランスデューサがリングに利用される場合、リングの幅は28μmにすることができ、トランスデューサの総容量は6.8pFになる。周波数が50kHzに増大する場合、リングの幅は39μmにすることができ、静電容量は9.4pFになる。後者の設計は、静電容量を実際の増幅回路に整合させるのに最適であり得る。
図11a〜図11bは、代替的な実施形態による典型的なリングジャイロスコープを示す。これらの実施形態では、質量要素のサイズは、前の実施形態と比較してここでも増加しており、質量要素の数は減少している。図11aは、質量要素が、リングの内側に配置されている内側質量要素1131と、リングの外側に配置されている外側質量要素1133とを含む実施形態を示す。内側質量要素の数は4で、各内側質量要素は、対角対称軸と交差し、当該対角対称軸に対して対称になり、かつ当該質量要素のブリッジコネクタが当該対角対称軸に中心を置かれるように、配置されている。外側質量要素の数は4で、各外側質量要素は、対角対称軸と交差し、当該対角対称軸に対して対称になり、かつ当該質量要素のブリッジコネクタが当該対称軸に中心を置かれるように、配置されている。
すべての質量要素が節点においてリングに取り付けられ、各モードにおいて等しく動くため、図11aに示す質量要素構成では、一次振動および二次振動への質量寄与が質量要素の総質量の100%に最大化される。これは、純粋なリングの場合と同様の割合である、全質量の29.7%のみが各モードに寄与する図9aおよび図9bのような半径のみのモードにおける分散付加質量を用いる場合と比較して、多大な改善である。二次モードでは、センサ出力信号は83%高くなる。リングの幅を同じ共振周波数で22%だけ増大することができ、したがって、静電容量が増大する。代替的に、リングの直径を22%だけ低減してもよい。
図11aでは、一次振動の1つの位相における各質量要素1131および1133の運動が太い白色矢印で示されている。一次振動の反対位相では、各質量要素の運動は逆方向になる。内側質量要素1131のすべてが対角対称軸と交差するため、質量要素は一次振動において半径方向に前後に動くことはない。代わりに、図11aに示すように、すべての質量要素1131および1133が接線方向に動く。二次振動の1つの位相における各質量要素1131および1133の運動は、細い白い矢印で示されている。この運動は対角対称軸に沿って半径方向に起こる。
リングジャイロスコープは、代替的に、4つの質量要素がリングの内側に配置され、図11aの内側質量要素1131のよう位置決めされ、外側質量要素を含まない状態で実装されてもよい。この場合、質量要素の数は4で、各質量要素は、対角対称軸と交差し、当該対角対称軸に対して対称になり、かつ当該質量要素のブリッジコネクタが当該対称軸に中心を置かれるように、配置されている。この構成は別個には示されていない。一次振動および二次振動中のこの構成における質量要素の動きは、図11aの質量要素1131に対する矢印で示された動きと同じである。
図11bは、質量要素が、リングの内側に配置されている内側質量要素1131と、リングの外側に配置されている外側質量要素1133とを含む別の実施形態を示す。この場合、内側質量要素1131の数は4で、各内側質量要素は、横対称軸と交差し、当該横対称軸に対して対称になり、かつ当該質量要素のブリッジコネクタが当該横対称軸に中心を置かれるように、配置されている。外側質量要素1133の数は4で、各外側質量要素は、対角対称軸と交差し、当該対角対称軸に対して対称になり、かつ当該質量要素のブリッジコネクタが当該対称軸に中心を置かれるように、配置されている。
前の図と同様に、一次振動の1つの位相における各質量要素1131および1133の運動は、図11bにおいて太い白色矢印で示されている。一次振動の反対位相では、各質量要素の運動は逆方向になる。内側質量要素1131のすべてが横対称軸と交差するため、内側質量要素は一次振動において半径方向に前後に動く。外側質量要素は、一次振動において接線方向に動く。二次振動の1つの位相における各質量要素1131および1133の運動は、細い白い矢印で示されている。外側質量要素1133は対角対称軸に沿って半径方向に動き、一方、内側質量要素1131は接線方向に移動する。
すべての質量要素が節点においてリングに取り付けられ、各モードにおいて等しく動くため、図11aに示す質量要素構成では、一次振動への質量寄与が質量要素の総質量の100%に最大化される。これは、純粋なリングの場合と同様の割合である、全質量の29.7%のみが各モードに寄与する図9aおよび図9bのような半径のみのモードにおける分散付加質量を用いる場合と比較して、多大な改善である。二次モードでは、センサ出力信号は83%高くなる。リングの幅を同じ共振周波数で22%だけ増大することができ、したがって、静電容量が増大し、または、代替的に、リングの直径を22%だけ低減することができる。
前の例と同様に、リングジャイロスコープは、代替的に、4つの質量要素がリングの内側に配置され、図11bの内側質量要素1131のよう位置決めされ、外側質量要素を含まない状態で実装されてもよい。この場合、質量要素の数は4で、各質量要素は、横対称軸と交差し、当該横対称軸に対して対称になり、かつ当該質量要素のブリッジコネクタが当該対称軸に中心を置かれるように、配置されている。この構成は別個には示されていない。一次振動および二次振動中のこの構成における質量要素の動きは、図11bの質量要素1131に対する矢印で示された動きと同じである。
代替的に、質量要素はリングの外側に配置される。このとき、質量要素の数は4で、各質量要素は、対角対称軸と交差し、当該対角対称軸に対して対称になり、かつ当該質量要素のブリッジコネクタが当該対称軸に中心を置かれるように、配置されている。この構成は別個には示されていない。一次振動および二次振動中のこの構成における質量要素の動きは、図11aおよび図11bの外側質量要素1133に対する矢印で示された動きと同じである。
図11aおよび図11bに示すリングジャイロスコープが単結晶シリコン材料から作成されている場合、ジャイロスコープが1000μmのリング直径および30kHzの共振周波数で設計されている場合、リングの中心の孔の直径が200μmである場合、かつ、リングに1μmのAlN膜を有するピエゾトランスデューサが設けられている場合、リング幅は28μmになり得、トランスデューサ全体の静電容量は6.8pFになる。周波数が50kHzに増大する場合、リングの幅は39μmにすることができ、静電容量は9.4pFになる。後者の設計は、静電容量を実際の増幅回路に整合させるのに最適であり得る。

Claims (12)

  1. リングジャイロスコープであって、
    実質的に円形で柔軟性のリングであり、前記リングは、リング平面を画定し、かつ前記リングが前記リング平面内で形状振動を受けることができるように基板から柔軟に懸架され、前記リングは、互いに直交する前記リング平面内の第1の横対称軸および第2の横対称軸を備え、前記リングはまた、互いに直交する前記リング平面内の第1の対角対称軸および第2の対角対称軸をも備え、各横対称軸と隣接する前記第1の対角対称軸および前記第2の対角対称軸との間の角度は45°である、リングを備え、前記ジャイロスコープは、
    前記リングを共振振動するように駆動するように構成され、前記リングの複数の第1のセクタに配置された1つまたは複数の一次ピエゾ分割トランスデューサ、および、前記リングの前記振動を検知するように構成され、前記リングの1つまたは複数の第2のセクタに配置された1つまたは複数の二次ピエゾ分割トランスデューサであり、各第1のセクタは、前記リングの横対称軸と交差し、前記対称軸に関して対称であり、各第2のセクタは、前記リングの対角対称軸と交差し、前記リングの前記対角対称軸に関して対称である、1つまたは複数の一次ピエゾ分割トランスデューサおよび1つまたは複数の二次ピエゾ分割トランスデューサと、
    前記第1の横対称軸および前記第2の横対称軸と前記第1の対角対称軸および前記第2の対角対称軸の両方に関して対称的な質量分布を形成する4つ以上の質量要素であり、各質量要素はブリッジコネクタから前記リングに取り付けられ、前記ブリッジコネクタは前記リングに沿って均等に分散されている、4つ以上の質量要素と
    をさらに備えることを特徴とする、リングジャイロスコープ。
  2. すべての質量要素がリングの内側に配置されていることを特徴とする、請求項1に記載のリングジャイロスコープ。
  3. 前記質量要素の数が4Nであり、ここでNはゼロより大きい整数であり、前記質量要素が前記横対称軸および前記対角対称軸の両方に関して対称的に分布することを特徴とする、請求項2に記載のリングジャイロスコープ。
  4. 前記質量要素の数が8であり、各質量要素が、1つの対称軸と交差し、前記対称軸に対して対称になり、かつ前記質量要素のブリッジコネクタが前記対称軸に中心を置かれるように、配置されている、請求項2に記載のリングジャイロスコープ。
  5. 前記質量要素の数が4であり、各質量要素が、対角対称軸と交差し、前記対角対称軸に対して対称になり、かつ前記質量要素のブリッジコネクタが前記対角対称軸に中心を置かれるように、配置されている、請求項2に記載のリングジャイロスコープ。
  6. 前記質量要素の数が4であり、各質量要素が、横対称軸と交差し、前記横対称軸に対して対称になり、かつ前記質量要素のブリッジコネクタが前記対称軸に中心を置かれるように、配置されている、請求項2に記載のリングジャイロスコープ。
  7. すべての質量要素が前記リングの外側に配置されていることを特徴とする、請求項1に記載のリングジャイロスコープ。
  8. 前記質量要素の数が4であり、各質量要素が、対角対称軸と交差し、前記対角対称軸に対して対称になり、かつ前記質量要素のブリッジコネクタが前記対角対称軸に中心を置かれるように、配置されている、請求項7に記載のリングジャイロスコープ。
  9. 前記質量要素が、前記リングの内側に配置されている内側質量要素と、前記リングの外
    側に配置されている外側質量要素とを含むことを特徴とする、請求項1に記載のリングジャイロスコープ。
  10. 前記内側質量要素の数は8であり、各内側質量要素は、1つの対称軸と交差し、前記対称軸に対して対称になり、かつ前記質量要素のブリッジコネクタが前記対称軸に中心を置かれるように、配置されており、
    前記外側質量要素の数は4であり、各外側質量要素は、対角対称軸と交差し、前記対角対称軸に対して対称になり、かつ前記質量要素のブリッジコネクタが前記対角対称軸に中心を置かれるように、配置されていることを特徴とする、請求項9に記載のリングジャイロスコープ。
  11. 前記内側質量要素の数は4であり、各内側質量要素は、対角対称軸と交差し、前記対角対称軸に対して対称になり、かつ前記質量要素のブリッジコネクタが前記対角対称軸に中心を置かれるように、配置されており、
    前記外側質量要素の数は4であり、各外側質量要素は、対角対称軸と交差し、前記対角対称軸に対して対称になり、かつ前記質量要素のブリッジコネクタが前記対角対称軸に中心を置かれるように、配置されていることを特徴とする、請求項に記載のリングジャイロスコープ。
  12. 前記内側質量要素の数は4であり、各内側質量要素は、横対称軸と交差し、前記横対称軸に対して対称になり、かつ前記質量要素のブリッジコネクタが前記横対称軸に中心を置かれるように、配置されており、
    前記外側質量要素の数は4であり、各外側質量要素は、対角対称軸と交差し、前記対角対称軸に対して対称になり、かつ前記質量要素のブリッジコネクタが前記対角対称軸に中心を置かれるように、配置されていることを特徴とする、請求項に記載のリングジャイロスコープ。
JP2019083922A 2018-05-08 2019-04-25 ピエゾリングジャイロスコープ Active JP6787437B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI20185421 2018-05-08
FI20185421 2018-05-08

Publications (3)

Publication Number Publication Date
JP2019203884A JP2019203884A (ja) 2019-11-28
JP2019203884A5 JP2019203884A5 (ja) 2020-10-01
JP6787437B2 true JP6787437B2 (ja) 2020-11-18

Family

ID=66334241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019083922A Active JP6787437B2 (ja) 2018-05-08 2019-04-25 ピエゾリングジャイロスコープ

Country Status (3)

Country Link
US (1) US11215455B2 (ja)
EP (1) EP3575744B1 (ja)
JP (1) JP6787437B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11668553B2 (en) * 2020-02-14 2023-06-06 Applied Materials Inc. Apparatus and method for controlling edge ring variation
CN114353776A (zh) * 2021-12-31 2022-04-15 瑞声开泰科技(武汉)有限公司 一种基于旋转模态的mems陀螺

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69102590T2 (de) 1990-05-18 1994-10-06 British Aerospace Trägheitssensoren.
JPH10115526A (ja) * 1996-10-15 1998-05-06 Ngk Insulators Ltd 振動ジャイロ・センサ及び振動ジャイロ・センサの製造方法
JPH10132571A (ja) * 1996-10-25 1998-05-22 Murata Mfg Co Ltd 角速度センサ
GB2322196B (en) 1997-02-18 2000-10-18 British Aerospace A vibrating structure gyroscope
JP3942762B2 (ja) * 1998-02-12 2007-07-11 日本碍子株式会社 振動子、振動型ジャイロスコープ、直線加速度計および回転角速度の測定方法
JPH11304494A (ja) * 1998-04-22 1999-11-05 Meidensha Corp 振動ジャイロ及びその使用方法
JP2000009473A (ja) * 1998-06-22 2000-01-14 Tokai Rika Co Ltd 2軸ヨーレートセンサ及びその製造方法
GB0122254D0 (en) 2001-09-14 2001-11-07 Bae Systems Plc Vibratory gyroscopic rate sensor
US7281426B1 (en) * 2006-06-15 2007-10-16 Innalabs Technologies, Inc. Stemless hemispherical resonator gyroscope
EP2239541B1 (en) 2008-01-29 2013-10-23 Sumitomo Precision Products Co., Ltd. Vibrating gyroscope using piezoelectric film
US20110185829A1 (en) * 2008-08-06 2011-08-04 Pioneer Corporation Rotational vibration gyro
US20100058861A1 (en) 2008-09-11 2010-03-11 Analog Devices, Inc. Piezoelectric Transducers and Inertial Sensors using Piezoelectric Transducers
JP5523755B2 (ja) 2009-02-11 2014-06-18 住友精密工業株式会社 圧電体膜を用いた振動ジャイロ及びその製造方法
DE102009001244A1 (de) 2009-02-27 2010-09-02 Sensordynamics Ag Mikro-Gyroskop zur Ermittlung von Rotationsbewegungen um eine x-, y- oder z-Achse
JP2011158319A (ja) * 2010-01-29 2011-08-18 Akebono Brake Ind Co Ltd 角速度センサ
CN103620343B (zh) * 2011-07-04 2016-06-08 株式会社村田制作所 振子及振动陀螺仪
EP2544370B1 (en) 2011-07-06 2020-01-01 Nxp B.V. MEMS resonator
FI126070B (en) * 2014-01-28 2016-06-15 Murata Manufacturing Co Improved ring gyroscope structure and gyroscope
WO2016088291A1 (ja) * 2014-12-01 2016-06-09 ソニー株式会社 センサ素子、ジャイロセンサ及び電子機器
US10113873B2 (en) * 2015-05-22 2018-10-30 The Charles Stark Draper Laboratory, Inc. Whole angle MEMS gyroscope
US10317210B2 (en) * 2015-05-22 2019-06-11 The Charles Stark Draper Laboratory, Inc. Whole angle MEMS gyroscope on hexagonal crystal substrate
CN104897145B (zh) 2015-05-29 2018-03-23 上海交通大学 一种外缘固定式压电驱动多环陀螺及其制备方法
JP6514790B2 (ja) * 2016-01-27 2019-05-15 株式会社日立製作所 ジャイロスコープ
US10520331B2 (en) * 2017-02-27 2019-12-31 The Charles Stark Draper Laboratory, Inc. Calibration system and method for whole angle gyroscope
JP6769517B2 (ja) * 2018-05-08 2020-10-14 株式会社村田製作所 ピエゾリングジャイロスコープ

Also Published As

Publication number Publication date
EP3575744B1 (en) 2021-04-28
EP3575744A1 (en) 2019-12-04
JP2019203884A (ja) 2019-11-28
US11215455B2 (en) 2022-01-04
US20190346264A1 (en) 2019-11-14

Similar Documents

Publication Publication Date Title
JP6769517B2 (ja) ピエゾリングジャイロスコープ
US10746548B2 (en) Ring gyroscope structural features
US8549918B2 (en) Inertial sensors using piezoelectric transducers
JP6627912B2 (ja) 圧電回転mems共振器
JP6514790B2 (ja) ジャイロスコープ
US20120137774A1 (en) Non-Degenerate Mode MEMS Gyroscope
JP6627911B2 (ja) 圧電回転mems共振器
US9273962B2 (en) Physical quantity sensor and electronic device
US11085768B2 (en) Synchronization structure for gyroscope
FI126070B (en) Improved ring gyroscope structure and gyroscope
JP7284564B2 (ja) 角速度センサ
JP6787437B2 (ja) ピエゾリングジャイロスコープ
KR20190015992A (ko) 각속도 센서들
JP6527235B2 (ja) ジャイロスコープ
JP2013096801A (ja) 出力安定性に優れた振動型ジャイロ
JP2022524171A (ja) ピエゾリングジャイロスコープ
KR20040031090A (ko) 진동형 자이로스코프 속도 센서
JP7402341B2 (ja) 振動型ジャイロ素子及びこれを備えた角速度センサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20200824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201012

R150 Certificate of patent or registration of utility model

Ref document number: 6787437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150