WO2009093576A1 - 石炭焚ボイラの排ガス処理システム及びその運転方法 - Google Patents

石炭焚ボイラの排ガス処理システム及びその運転方法 Download PDF

Info

Publication number
WO2009093576A1
WO2009093576A1 PCT/JP2009/050771 JP2009050771W WO2009093576A1 WO 2009093576 A1 WO2009093576 A1 WO 2009093576A1 JP 2009050771 W JP2009050771 W JP 2009050771W WO 2009093576 A1 WO2009093576 A1 WO 2009093576A1
Authority
WO
WIPO (PCT)
Prior art keywords
mercury
gas
exhaust gas
fired boiler
treatment system
Prior art date
Application number
PCT/JP2009/050771
Other languages
English (en)
French (fr)
Inventor
Nobuyuki Ukai
Shintaro Honjo
Susumu Okino
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to CN2009801022575A priority Critical patent/CN101918108B/zh
Priority to US12/812,866 priority patent/US8071060B2/en
Priority to CA2711950A priority patent/CA2711950C/en
Publication of WO2009093576A1 publication Critical patent/WO2009093576A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/003Arrangements of devices for treating smoke or fumes for supplying chemicals to fumes, e.g. using injection devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/64Heavy metals or compounds thereof, e.g. mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/79Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0262Compounds of O, S, Se, Te
    • B01J20/0266Compounds of S
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0285Sulfides of compounds other than those provided for in B01J20/045
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J45/00Ion-exchange in which a complex or a chelate is formed; Use of material as complex or chelate forming ion-exchangers; Treatment of material for improving the complex or chelate forming ion-exchange properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/006Layout of treatment plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/022Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material for removing solid particulate material from the gasflow
    • F23J15/025Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material for removing solid particulate material from the gasflow using filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/04Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material using washing fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/10Oxidants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • B01D2257/602Mercury or mercury compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • C02F1/683Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water by addition of complex-forming compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/18Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/003Downstream control, i.e. outlet monitoring, e.g. to check the treating agents, such as halogens or ozone, leaving the process
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/18Removal of treatment agents after treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/20Sulfur; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/60Heavy metals; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/20Non-catalytic reduction devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/30Sorption devices using carbon, e.g. coke
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to an exhaust gas treatment system for a coal fired boiler that removes mercury from the exhaust gas of a boiler, and an operation method thereof.
  • a boiler is provided with a wet desulfurization device for removing sulfur content in exhaust gas.
  • a desulfurization device for removing sulfur content in exhaust gas.
  • chlorine (Cl) content in the exhaust gas increases, the proportion of divalent metal mercury soluble in water increases. It is widely known that mercury is easily collected by the desulfurization apparatus.
  • Patent Document 1 a method and apparatus for treating metallic mercury in combination with a denitration apparatus that reduces NOx and a wet desulfurization apparatus that uses an alkaline absorbent as an SOx absorbent.
  • the conventional exhaust gas treatment system includes a denitration device 13 that removes nitrogen oxides in the exhaust gas from the coal fired boiler 11 by adding ammonia 12, and heat in the gas after the removal of nitrogen oxides.
  • the air preheater 14 to be recovered, the dust collector 15 to remove the dust in the gas after the heat recovery, and the sulfur oxide in the gas after the dust removal are removed by the lime / gypsum method and the mercury oxide is removed.
  • a liquid contact type desulfurization device 16 and a chimney 17 for discharging the purified gas after desulfurization and mercury removal to the outside are provided.
  • activated carbon 22a is supplied into the gas passage so as to adsorb and remove mercury in the gas.
  • reference numeral 18 denotes air. By supplying the air 18, the oxidation-reduction potential in the desulfurization device 16 is adjusted.
  • the installation cost of the activated carbon spraying device for removing mercury and the operating cost for 10 years are compared, it may be more expensive than purchasing a separate mercury emission right. This is because activated carbon that has adsorbed mercury is separated by a bag filter, but its disposal cost is high.
  • the present invention can efficiently remove mercury in exhaust gas from a coal-fired boiler and can reduce the operating cost, and an operation method for the exhaust gas treatment system of a coal-fired boiler.
  • the purpose is to provide.
  • a first invention of the present invention for solving the above-mentioned problems is a denitration device that removes nitrogen oxides in exhaust gas from a coal fired boiler, and an air preheat that recovers heat in the gas after removal of nitrogen oxides ,
  • a dust collector that removes dust in the gas after heat recovery, and a gas-liquid contact type desulfurization device that removes sulfur oxide in the gas after dust removal by the lime / gypsum method and removes mercury oxide
  • an exhaust gas treatment system comprising a chimney that discharges the gas after desulfurization to the outside, spraying hydrogen chloride on the upstream side of the denitration device, and spraying activated carbon on the downstream side of the dust collector, It is in an exhaust gas treatment system for a coal fired boiler characterized by adsorbing mercury in the gas.
  • the second invention is a denitration device that removes nitrogen oxides in exhaust gas from a coal fired boiler, an air preheater that recovers heat in the gas after removal of nitrogen oxides, and dust in the gas after heat recovery.
  • a dust collector that removes dust, sulfur oxide in the gas after dust removal is removed by the lime / gypsum method, a gas-liquid contact type desulfurization device that removes mercury oxide, and the gas after desulfurization is discharged to the outside
  • hydrogen chloride is sprayed on the upstream side of the denitration device, and activated carbon is sprayed on the downstream side of the dust collector to adsorb mercury in the gas, and in the desulfurization device
  • the exhaust gas treatment system of a coal fired boiler is characterized in that the oxidation-reduction potential of the absorption liquid is 150 mV or more.
  • a third invention is characterized in that in the first or second invention, the slurry absorbing liquid containing mercury is extracted to the outside, a flocculant is added before separating the gypsum, and the mercury is agglomerated and removed. Located in boiler exhaust gas treatment system.
  • the separation liquid from which gypsum is separated is brought into contact with at least one of activated carbon, a chelate resin, an ion exchange resin, or a sulfide-supporting carrier to adsorb mercury. It is in the exhaust gas treatment system of a coal fired boiler characterized by removing.
  • the 5th invention uses the exhaust gas processing system of any one of the 1st thru
  • the method of operating an exhaust gas treatment system of a coal fired boiler is characterized in that mercury concentration is monitored on the downstream side of the desulfurization unit and activated carbon is sprayed according to the result.
  • the operating cost can be reduced, and mercury can be stably adsorbed and immobilized over a long period of time.
  • FIG. 1 is a schematic diagram of an exhaust gas treatment system for a coal fired boiler according to a first embodiment.
  • FIG. 2 is a graph showing the relationship between ⁇ Hg / ⁇ CaSO 4 and mercury removal performance (gas mercury concentration at the gas-liquid contact tower outlet) in the gas-liquid contact tower.
  • FIG. 3 is a summary chart of Hg / S ratios for 30 specimens of bituminous coal of US coal.
  • FIG. 4 is a summary chart of Hg / S ratios for 30 samples of PRB coal of US coal.
  • FIG. 5 is a schematic diagram of an exhaust gas treatment system for a coal fired boiler according to a second embodiment.
  • FIG. 6 is a schematic diagram of an exhaust gas treatment system for a coal fired boiler according to a third embodiment.
  • FIG. 7 is a schematic diagram of an exhaust gas treatment system of a conventional coal fired boiler.
  • FIG. 1 is a schematic view of an exhaust gas treatment system for a coal fired boiler according to the present invention.
  • the HCl spray device 32 sprays the hydrogen chloride 33 on the exhaust gas from the coal fired boiler 11 using coal as the fuel F, and the ammonia 12 is added to the exhaust gas after the hydrogen chloride spray to remove nitrogen oxides by ammonia denitration.
  • the exhaust gas treatment system for a coal fired boiler of the present embodiment has an HCl spray device 32 for spraying hydrogen chloride 33 on the upstream side of the denitration device 13, and sprays the hydrogen chloride 33 into the flue to remove the denitration.
  • Mercury oxidation (Hg 0 ⁇ Hg 2+ ) on the denitration catalyst in the apparatus 13 is promoted.
  • mercury oxide (Hg 2 ) is more easily adsorbed on activated carbon than zero-valent mercury (Hg 0 ), increasing the amount of mercury adsorbed (kgHg / kg activated carbon) and decreasing the amount of activated carbon used (kg activated carbon). Because it can.
  • the activated carbon that has adsorbed mercury is collected by the bag filter 21 and disposed of separately.
  • the oxidation-reduction potential (ORP) of the absorbing solution in the desulfurization apparatus 16 is measured by the ORP meter 19, and the measured value of the oxidation-reduction potential is set to 150 mV or more.
  • mercury oxide (Hg 2+ ) is absorbed in the gas absorption liquid (limestone, gypsum slurry) by gas-liquid contact in the desulfurization apparatus 16, and at that time, the ORP value is 150 mV or more, preferably 200 This is because the reduction (Hg 2+ ⁇ Hg 0 ) of absorbed mercury oxide (Hg 2+ ) can be suppressed by adjusting to ⁇ 300 mV. Thereby, it is possible to prevent mercury from being released again from the gas absorption liquid into the gas.
  • the bag filter 21 is installed. However, the bag filter 21 is not installed and is introduced into the desulfurization device 16 as it is, and when gypsum is removed from the absorbent by the lime / gypsum method, You may make it discharge
  • the mercury concentration is monitored on the downstream side of the desulfurization unit.
  • the operation method of the exhaust gas treatment system of the coal fired boiler that forcibly sprays the activated carbon 22 according to the above may be used.
  • Hg / S molar ratio 1.3 ⁇ 10 ⁇ 6 or less.
  • the mercury in the exhaust gas can be removed only by supplying the hydrogen chloride 33 and controlling the ORP meter.
  • the type of coal coal changes and the Hg / S molar ratio becomes 1.3 ⁇ 10 ⁇ 6 or more.
  • the control by the ORP meter 19 cannot cope with the rapid removal of mercury.
  • the mercury concentration in the exhaust gas rises, so that the activated carbon is forcibly sprayed to temporarily prevent mercury from being scattered outside. Can do.
  • ⁇ Hg / ⁇ CaSO 4 2 mgHg / kgCaSO 4 is converted as follows.
  • the molecular weight of mercury (Hg) is 200.59
  • the molecular weight of sulfur (S) is 32.066
  • the molecular weight of gypsum (CaSO 4 ) is 136.144.
  • ⁇ Hg / ⁇ CaSO 4 2 mgHg / kgCaSO 4 corresponds to 1.36 ⁇ 10 ⁇ 6 molHg / molS.
  • the threshold value of the Hg / S molar ratio is defined as 1.3 ⁇ 10 ⁇ 6, and if this is exceeded, the mercury removal performance will deteriorate, and it is necessary to take measures to remove mercury. Become.
  • FIG.3 and FIG.4 shows the relationship diagram of the content ratio (Hg / S) of coal in bituminous coal and PRB coal, and frequency.
  • FIGS. 3 and 4 summarize the Hg / S ratios of 30 samples of bituminous coal and PRB coal of US coal, and the ratio of 1.36 ⁇ 10 ⁇ 6 molHg / molS or less is about 70% for bituminous coal. It was about 27% for PRB charcoal. Even when bituminous coal is used alone or in combination, mercury can be efficiently removed by supplying hydrogen chloride and controlling ORP. Even when the type of coal changes, it is possible to cope with a sudden increase in mercury concentration by spraying activated carbon.
  • FIG. 5 is a schematic view of another exhaust gas treatment system for a coal fired boiler according to the present invention.
  • the exhaust gas treatment system of the present embodiment includes a denitration device 13 that removes nitrogen oxides in the exhaust gas from the coal fired boiler 11 by adding ammonia 12, and an air preheater that recovers heat in the gas after the removal of nitrogen oxides. 14, a dust collector 15 for removing dust in the gas after heat recovery, and a gas-liquid contact type desulfurization method for removing sulfur oxide in the gas after dust removal by the lime / gypsum method and removing mercury oxide.
  • an exhaust gas treatment system comprising an apparatus 16 and a chimney 17 that discharges purified gas after desulfurization / mercury removal, before the slurry absorbing liquid containing mercury from the desulfurization apparatus 16 is extracted to the outside and the gypsum is separated.
  • An aggregating agent is added to the material to agglomerate and remove mercury.
  • a flocculant is added to the slurry-absorbing liquid containing mercury extracted from the desulfurization device 16, the mercury is aggregated in the flocculant, and the gypsum 24 is separated and removed by the solid-liquid separation device 41. At the same time, the flocculant is separated together with the gypsum 24 so that the mercury concentration in the separated water is lowered.
  • the flocculant may be added inside the desulfurizer 16 (40A) or on the upstream side (40B) of the solid-liquid separator 41.
  • the concentration of zero-valent mercury (Hg 0 ) in the separated water returned to the desulfurization device 16 can be reduced, and re-scattering of mercury in the desulfurization device 16 can be prevented.
  • FIG. 6 is a schematic view of another exhaust gas treatment system for a coal fired boiler according to the present invention.
  • the exhaust gas treatment system of the present embodiment includes a denitration device 13 that removes nitrogen oxides in the exhaust gas from the coal fired boiler 11 by adding ammonia 12, and an air preheater that recovers heat in the gas after the removal of nitrogen oxides. 14, a dust collector 15 for removing dust in the gas after heat recovery, and a gas-liquid contact type desulfurization method for removing sulfur oxide in the gas after dust removal by the lime / gypsum method and removing mercury oxide.
  • a slurry absorbing liquid containing mercury from the desulfurization apparatus 16 is extracted to the outside, and a solid-liquid separation apparatus 41 Then, the gypsum 24 is separated, and the supernatant water 23 from which the gypsum 24 has been separated is brought into contact with a mercury adsorbing material such as activated carbon, a chelate resin, an ion exchange resin, or a sulfide-supporting carrier in a mercury adsorption / removal device 42. Silver are to be adsorbed and removed.
  • the concentration of zero-valent mercury (Hg 0 ) in the separated water returned to the desulfurization device 16 can be reduced, and re-scattering of mercury in the desulfurization device 16 can be prevented.
  • mercury re-scattering is reduced, so that mercury removal efficiency can be improved, and mercury emission in exhaust gas is regulated. It is suitable for use in exhaust gas treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Treating Waste Gases (AREA)
  • Chimneys And Flues (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

 本発明の石炭焚ボイラの排ガス処理システムは、燃料(F)として石炭を用いる石炭焚ボイラ(11)からの排ガスに塩化水素(33)を噴霧するHCl噴霧装置(32)と、塩化水素噴霧後の排ガス中にアンモニア(12)を添加してアンモニア脱硝により窒素酸化物を除去すると共に、水銀を酸化する脱硝装置(13)と、窒素酸化物除去後のガス中の熱を回収する空気予熱器(14)と、ガス中の煤塵を除去する集塵器(15)と、除塵後のガス中に活性炭(22a)を噴霧する活性炭噴霧装置(22)と、水銀を吸着した活性炭を捕集するバグフィルタ(21)と、活性炭除去後の排ガス中の硫黄酸化物を除去する脱硫装置(16)と、脱硫後のガスを外部に排出する煙突(17)と、脱硫装置(16)内のスラリ吸収液に空気を供給するために酸化還元電位を計測するORP計(19)とを具備する。

Description

石炭焚ボイラの排ガス処理システム及びその運転方法
 本発明は、ボイラの排ガス中から水銀を除去する石炭焚ボイラの排ガス処理システム及びその運転方法に関するものである。
 火力発電所等の燃焼装置であるボイラから排出される排ガスには毒性の高い水銀が含まれるため、従来から排ガス中の水銀を除去するためのシステムが種々検討されてきた。
 通常、ボイラには排ガス中の硫黄分を除去するための湿式の脱硫装置が設けられている。このようなボイラに排ガス処理装置として脱硫装置が付設されてなる排煙処理設備においては、排ガス中の塩素(Cl)分が多くなると、水に可溶な2価の金属水銀の割合が多くなり、前記脱硫装置で水銀が捕集しやすくなることが、広く知られている。
 そこで、近年、NOxを還元する脱硝装置、および、アルカリ吸収液をSOx吸収剤とする湿式脱硫装置と組み合わせて、この金属水銀を処理する方法や装置について様々な考案がなされてきた(特許文献1)。
 排ガス中の金属水銀を処理する方法としては、活性炭やセレンフィルター等の吸着剤による除去方法が知られているが、特殊な吸着除去手段が必要であり、発電所排ガス等の大容量排ガスの処理には適していない(特許文献2)。
 ここで、図7に石炭焚ボイラの排ガス処理システムの概略構成図を示す。
 図7に示すように、従来の排ガス処理システムは、石炭焚ボイラ11からの排ガス中の窒素酸化物をアンモニア12の添加により除去する脱硝装置13と、窒素酸化物除去後のガス中の熱を回収する空気予熱器14と、熱回収後のガス中の煤塵を除去する集塵器15と、除塵後のガス中の硫黄酸化物を石灰・石膏法により除去すると共に、酸化水銀を除去する気液接触式の脱硫装置16と、脱硫・水銀除去後の浄化ガスを外部に排出する煙突17とを具備すると共に、集塵器15の後流側にバグフィルタ21を設置し、活性炭噴霧装置22から活性炭22aをガス通路内に供給するようにして、ガス中の水銀を吸着除去するようにしている。なお、図中、符号18は空気である。該空気18を供給することで脱硫装置16内の酸化還元電位を調整するようにしている。
特開2007-7612号公報 特開2005-230810号公報
 ところで、水銀除去のために活性炭吸着方法を用いる場合には、活性炭噴霧装置及びそれを捕集するバグフィルタの設備費が大きく、また噴霧する粉末活性炭の費用が大きい、という問題がある。
 例えば、その水銀除去の活性炭噴霧装置の設置設備費と10年間の運転経費とを比較すると、別途水銀の排出権を購入するよりも高額となる場合がある。
 これは、水銀を吸着した活性炭はバグフィルタで分離されるが、その廃棄費用が高額となるからである。
 よって、活性炭吸着法による排ガス中の水銀除去対策として、運転費用の低廉化が切望されている。
 本発明は、以上の課題に鑑み、石炭焚きボイラからの排ガス中の水銀を効率的に除去することができ、運転費用の低廉化を図ることができる石炭焚ボイラの排ガス処理システム及びその運転方法を提供することを目的とする。
 上述した課題を解決するための本発明の第1の発明は、石炭焚ボイラからの排ガス中の窒素酸化物を除去する脱硝装置と、窒素酸化物除去後のガス中の熱を回収する空気予熱器と、熱回収後のガス中の煤塵を除去する集塵器と、除塵後のガス中の硫黄酸化物を石灰・石膏法により除去すると共に、酸化水銀を除去する気液接触式の脱硫装置と、脱硫後のガスを外部に排出する煙突とを具備する排ガス処理システムにおいて、脱硝装置の前流側で塩化水素を噴霧すると共に、前記集塵器の後流側で活性炭を噴霧して、ガス中の水銀を吸着することを特徴とする石炭焚ボイラの排ガス処理システムにある。
 第2の発明は、石炭焚ボイラからの排ガス中の窒素酸化物を除去する脱硝装置と、窒素酸化物除去後のガス中の熱を回収する空気予熱器と、熱回収後のガス中の煤塵を除去する集塵器と、除塵後のガス中の硫黄酸化物を石灰・石膏法により除去すると共に、酸化水銀を除去する気液接触式の脱硫装置と、脱硫後のガスを外部に排出する煙突とを具備する排ガス処理システムにおいて、脱硝装置の前流側で塩化水素を噴霧すると共に、前記集塵器の後流側で活性炭を噴霧して、ガス中の水銀を吸着させ、脱硫装置内の吸収液の酸化還元電位を150mV以上とすることを特徴とする石炭焚ボイラの排ガス処理システムにある。
 第3の発明は、第1又は2の発明において、水銀を含有するスラリ吸収液を外部に抜き出し、石膏を分離する前に凝集剤を添加し、水銀を凝集除去することを特徴とする石炭焚ボイラの排ガス処理システムにある。
 第4の発明は、第1乃至3のいずれか一つの発明において、石膏を分離した分離液と、活性炭、キレート樹脂、イオン交換樹脂、又は硫化物担持担体の少なくとも一つと接触させ、水銀を吸着除去することを特徴とする石炭焚ボイラの排ガス処理システムにある。
 第5の発明は、第1乃至4のいずれか一つの石炭焚ボイラの排ガス処理システムを用いて、石炭の水銀(Hg)/硫黄(S)のモル比が1.3×10-6以上である場合に、脱硫装置の後流側で水銀濃度を監視し、その結果に応じて活性炭を噴霧することを特徴とする石炭焚ボイラの排ガス処理システムの運転方法にある。
 本発明によれば、活性炭を噴霧する場合においても運転費用の低廉化を図ることができ、長期間にわたって、安定して水銀の吸着・固定化を行うことができる。
図1は、実施例1に係る石炭焚ボイラの排ガス処理システムの概略図である。 図2は、気液接触塔におけるΔHg/ΔCaSO4と水銀除去性能(気液接触塔出口でのガス中水銀濃度)の関係図である。 図3は、米国石炭の瀝青炭の各30検体のHg/S比の集計図である。 図4は、米国石炭のPRB炭の各30検体のHg/S比の集計図である。 図5は、実施例2に係る石炭焚ボイラの排ガス処理システムの概略図である。 図6は、実施例3に係る石炭焚ボイラの排ガス処理システムの概略図である。 図7は、従来の石炭焚ボイラの排ガス処理システムの概略図である。
符号の説明
 11 石炭焚ボイラ
 12 アンモニア
 13 脱硝装置
 14 空気予熱器
 15 集塵器
 16 脱硫装置
 17 煙突
 21 バグフィルタ
 22a 活性炭
 22 活性炭噴霧装置
 23 上澄水
 24 石膏
 41 固液分離装置
 以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。
 本発明による実施例1に係る石炭焚ボイラの排ガス処理システムについて、図面を参照して説明する。
 図1は本発明の石炭焚ボイラの排ガス処理システムの概略図である。
 燃料Fとして石炭を用いる石炭焚ボイラ11からの排ガスに塩化水素33を噴霧するHCl噴霧装置32と、塩化水素噴霧後の排ガス中にアンモニア12を添加してアンモニア脱硝により窒素酸化物を除去すると共に、水銀を酸化する脱硝装置13と、窒素酸化物除去後のガス中の熱を回収する空気予熱器14と、熱回収後のガス中の煤塵を除去する集塵器15と、除塵後のガス中に活性炭22aを噴霧する活性炭噴霧装置22と、水銀を吸着した活性炭を捕集するバグフィルタ21と、活性炭除去後の排ガス中の硫黄酸化物を気液接触による石灰-石膏法により除去すると共に、酸化水銀を除去する脱硫装置16と、脱硫後のガスを外部に排出する煙突17と、脱硫装置16内のスラリ吸収液に空気を供給するために酸化還元電位を計測するORP計19とを具備するものである。
 本実施例の石炭焚ボイラの排ガス処理システムは、前記脱硝装置13の前流側で塩化水素33を噴霧するHCl噴霧装置32を有しており、煙道内に塩化水素33を噴霧して、脱硝装置13内の脱硝触媒上での水銀の酸化(Hg0→Hg2+)を促進するようにしている。
 これは、酸化水銀(Hg2)は0価水銀(Hg0)よりも活性炭に吸着し易く、水銀吸着量(kgHg/kg活性炭)を増加させ、活性炭使用量(kg活性炭)を減少させることができるからである。
 水銀を吸着した活性炭はバグフィルタ21により回収され、別途廃棄処理される。
 また、脱硫装置16における吸収液の酸化還元電位(ORP)をORP計19で計測し、その酸化還元電位の計測値を150mV以上とするようにしている。
 これは、酸化水銀(Hg2+)は、脱硫装置16内において気液接触によりガス吸収液(石灰石、石膏スラリ)に吸収されるが、その際に、ORP値を150mV以上、好適には200~300mVに調整することで、吸収された酸化水銀(Hg2+)の還元(Hg2+→Hg0)を抑制することができるからである。
 これによって、ガス吸収液から水銀がガスに再度放出されることを防止することができる。
 また、既存の活性炭噴霧設備を備えた排ガス処理システムにおいても、活性炭の使用量の低減を図るために、脱硝装置の前流側で塩化水素を供給する塩化水素供給装置と、脱硫装置のガス吸収液のORP計を設置することにより、水銀の吸着効率を向上させることとなり、簡易な設備変更により長期的な活性炭噴霧量の低減を図り、その結果、廃棄活性炭量の低減が図れ、排ガス処理システムの運転費用の大幅な低廉化を促進することができる。
 また、本実施例ではバグフィルタ21を設置しているが、バグフィルタ21を設置せずに、そのまま脱硫装置16内に導入し、石灰・石膏法による吸収液から石膏を除去する際に、同時に排出するようにしてもよい。
 また、石炭の炭の種類により、水銀(Hg)/硫黄(S)のモル比が1.3×10-6以上である場合において、脱硫装置の後流側で水銀濃度を監視し、その結果に応じて活性炭22を強制的に噴霧する石炭焚ボイラの排ガス処理システムの運転方法をとるようにしてもよい。
 これは、通常、水銀の含有量が小さい石炭では、その「水銀(Hg)/硫黄(S)のモル比(Hg/Sモル比という)」が1.3×10-6以下である場合に、塩化水素33の供給とORP計の制御だけで、排ガス中の水銀を除去することができるが、石炭の炭の種類が変化してHg/Sモル比が1.3×10-6以上に急激に変化したような場合には、ORP計19による制御では、迅速に水銀を除去することへの対応ができない。
 このような場合において、ORP計19による制御が安定する間は、排ガス中の水銀濃度が上昇するので、活性炭を強制的に噴霧することで、一時的に外部への水銀の飛散を防止することができる。
 これは、石炭中の水銀(Hg)/硫黄(S)モル比が1.3×10-6以上(molHg/molS)の場合には、水銀(Hg)の除去速度に対して石膏(CaSO4)の生成速度が不足することとなるからである。
 次に、Hg/Sモル比が1.3×10-6と規定した理由を説明する。
 先ず、ΔHg/ΔCaSO4=Δ水銀除去量/Δ石膏生成量の関係から、脱硫装置16である気液接触塔におけるΔHg/ΔCaSO4と水銀除去性能(気液接触塔出口でのガス中水銀濃度)の関係を図2に示す。
 このグラフよりΔHg/ΔCaSO4が2mgHg/kgCaSO4以下で、水銀除去性能を維持できることが判明する。
 水銀(Hg)と石膏(CaSO4)に含まれる硫黄(S)は、最上流の石炭に起因する。
 ここで、ΔHg/ΔCaSO4=2mgHg/kgCaSO4を換算すると、以下のようになる。
 Hgmol/Smol=2mgHg/kgCaSO4 × 〔(1/200.59)×10-3 molHg/mgHg〕/(1/136.144)×103molS/kgCaSO4
=1.357×10-6 molHg/molS
 なお、水銀(Hg)の分子量を200.59、硫黄(S)の分子量を32.066、石膏(CaSO4)の分子量を136.144とする。
 よって、ΔHg/ΔCaSO4 2mgHg/kgCaSO4は、1.36×10-6molHg/molSに相当することとなる。
 この結果、Hg/Sモル比の閾値として1.3×10-6と規定し、これを上回る場合には、水銀除去性能が低下することになるので、水銀除去対策を講じる必要があることとなる。
 さらに、瀝青炭とPRB炭とにおける石炭の含有量比(Hg/S)と頻度との関係図を図3及び図4に示す。
 図3及び図4は、米国石炭の瀝青炭及びPRB炭の各30検体のHg/S比を集計したものであり、1.36×10-6 molHg/molS以下の比率は、瀝青炭では約70%であり、PRB炭では約27%であった。
 このような、瀝青炭を単独で又は混合して用いるような場合においても、塩化水素の供給とORPの制御で水銀の除去を効率よく行うことができる。また、石炭の種類が変化する場合においても、活性炭を噴霧することで急激な水銀濃度の上昇があっても対応が可能となる。
 図5は本発明の他の石炭焚ボイラの排ガス処理システムの概略図である。
 本実施例の排ガス処理システムは、石炭焚ボイラ11からの排ガス中の窒素酸化物をアンモニア12の添加により除去する脱硝装置13と、窒素酸化物除去後のガス中の熱を回収する空気予熱器14と、熱回収後のガス中の煤塵を除去する集塵器15と、除塵後のガス中の硫黄酸化物を石灰・石膏法により除去すると共に、酸化水銀を除去する気液接触式の脱硫装置16と、脱硫・水銀除去後の浄化ガスを外部に排出する煙突17とを具備する排ガス処理システムにおいて、脱硫装置16からの水銀を含有するスラリ吸収液を外部に抜き出し、石膏を分離する前に凝集剤を添加し、水銀を凝集除去するものである。
 すなわち、図5に示すように、脱硫装置16から抜き出した水銀を含有するスラリ吸収液に凝集剤を添加し、該凝集剤に水銀を凝集させ、固液分離装置41で石膏24を分離除去する際に、石膏24と共に、凝集剤も分離して、分離水中の水銀濃度を低下するようにしている。
 凝集剤の添加は脱硫装置16の内部(40A)又は固液分離装置41の前流側(40B)において行えばよい。
 この結果、脱硫装置16に戻される分離水中の0価の水銀(Hg0)の濃度を減少することができ、脱硫装置16内での水銀の再飛散を防止することができる。
 図6は本発明の他の石炭焚ボイラの排ガス処理システムの概略図である。
 本実施例の排ガス処理システムは、石炭焚ボイラ11からの排ガス中の窒素酸化物をアンモニア12の添加により除去する脱硝装置13と、窒素酸化物除去後のガス中の熱を回収する空気予熱器14と、熱回収後のガス中の煤塵を除去する集塵器15と、除塵後のガス中の硫黄酸化物を石灰・石膏法により除去すると共に、酸化水銀を除去する気液接触式の脱硫装置16と、脱硫・水銀除去後の浄化ガスを外部に排出する煙突17とを具備する排ガス処理システムにおいて、脱硫装置16からの水銀を含有するスラリ吸収液を外部に抜き出し、固液分離装置41で石膏24を分離し、石膏24を分離した上澄水23に対し、水銀吸着除去装置42内で活性炭、キレート樹脂、イオン交換樹脂、又は硫化物担持担体等の水銀吸着材と接触させ、水銀を吸着除去するようにしている。
 この結果、脱硫装置16に戻される分離水中の0価の水銀(Hg0)の濃度を減少することができ、脱硫装置16内での水銀の再飛散を防止することができる。
 なお、本実施例は、図5の実施例2の凝集剤の添加と組み合わせて、さらに水銀除去効果を向上させるようにしてもよい。
 以上のように、本発明に係る排ガス処理システム及び運転方法によれば、水銀の再飛散が軽減されるので、水銀除去効率を向上させることができ、排ガス中の水銀排出量が規制される場合の排ガス処理に用いて適している。

Claims (5)

  1.  石炭焚ボイラからの排ガス中の窒素酸化物を除去する脱硝装置と、
     窒素酸化物除去後のガス中の熱を回収する空気予熱器と、
     熱回収後のガス中の煤塵を除去する集塵器と、
     除塵後のガス中の硫黄酸化物を石灰・石膏法により除去すると共に、酸化水銀を除去する気液接触式の脱硫装置と、
     脱硫後のガスを外部に排出する煙突とを具備する排ガス処理システムにおいて、
     脱硝装置の前流側で塩化水素を噴霧すると共に、
     前記集塵器の後流側で活性炭を噴霧して、ガス中の水銀を吸着することを特徴とする石炭焚ボイラの排ガス処理システム。
  2.  石炭焚ボイラからの排ガス中の窒素酸化物を除去する脱硝装置と、
     窒素酸化物除去後のガス中の熱を回収する空気予熱器と、
     熱回収後のガス中の煤塵を除去する集塵器と、
     除塵後のガス中の硫黄酸化物を石灰・石膏法により除去すると共に、酸化水銀を除去する気液接触式の脱硫装置と、
     脱硫後のガスを外部に排出する煙突とを具備する排ガス処理システムにおいて、
     脱硝装置の前流側で塩化水素を噴霧すると共に、
     前記集塵器の後流側で活性炭を噴霧して、ガス中の水銀を吸着させ、
     脱硫装置内の吸収液の酸化還元電位を150mV以上とすることを特徴とする石炭焚ボイラの排ガス処理システム。
  3.  請求項1又は2において、
     水銀を含有するスラリ吸収液を外部に抜き出し、石膏を分離する前に凝集剤を添加し、水銀を凝集除去することを特徴とする石炭焚ボイラの排ガス処理システム。
  4.  請求項1乃至3のいずれか一つにおいて、
     石膏を分離した分離液と、活性炭、キレート樹脂、イオン交換樹脂、又は硫化物担持担体の少なくとも一つと接触させ、水銀を吸着除去することを特徴とする石炭焚ボイラの排ガス処理システム。
  5.  請求項1乃至4のいずれか一つの石炭焚ボイラの排ガス処理システムを用いて、
     石炭の水銀(Hg)/硫黄(S)のモル比が1.3×10-6以上である場合に、脱硫装置の後流側で水銀濃度を監視し、その結果に応じて活性炭を噴霧することを特徴とする石炭焚ボイラの排ガス処理システムの運転方法。

     
PCT/JP2009/050771 2008-01-21 2009-01-20 石炭焚ボイラの排ガス処理システム及びその運転方法 WO2009093576A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801022575A CN101918108B (zh) 2008-01-21 2009-01-20 燃煤锅炉的排气处理系统及其运行方法
US12/812,866 US8071060B2 (en) 2008-01-21 2009-01-20 Flue gas control system of coal combustion boiler and operating method thereof
CA2711950A CA2711950C (en) 2008-01-21 2009-01-20 Flue gas control system of coal combustion boiler and operating method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-010331 2008-01-21
JP2008010331A JP2009166012A (ja) 2008-01-21 2008-01-21 石炭焚ボイラの排ガス処理システム及びその運転方法

Publications (1)

Publication Number Publication Date
WO2009093576A1 true WO2009093576A1 (ja) 2009-07-30

Family

ID=40901084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050771 WO2009093576A1 (ja) 2008-01-21 2009-01-20 石炭焚ボイラの排ガス処理システム及びその運転方法

Country Status (5)

Country Link
US (1) US8071060B2 (ja)
JP (1) JP2009166012A (ja)
CN (1) CN101918108B (ja)
CA (1) CA2711950C (ja)
WO (1) WO2009093576A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102068891A (zh) * 2010-11-29 2011-05-25 江苏紫光吉地达环境科技股份有限公司 一种用于自动净化混合气体中硫化物、氮氧化物的系统
CN102078761A (zh) * 2010-12-06 2011-06-01 李鹏举 一种综合烟气脱硫脱汞脱硝工艺及装置
CN102665866A (zh) * 2010-02-25 2012-09-12 三菱重工业株式会社 废气处理系统及废气处理方法
CN103982904A (zh) * 2014-04-28 2014-08-13 浙江巨化热电有限公司 一种新型烟气综合处理装置及方法
CN109331647A (zh) * 2018-11-12 2019-02-15 北京国电龙源环保工程有限公司 烟气除尘脱硝余热利用一体化装置及其处理方法

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8951487B2 (en) 2010-10-25 2015-02-10 ADA-ES, Inc. Hot-side method and system
US11298657B2 (en) 2010-10-25 2022-04-12 ADA-ES, Inc. Hot-side method and system
US8496894B2 (en) 2010-02-04 2013-07-30 ADA-ES, Inc. Method and system for controlling mercury emissions from coal-fired thermal processes
US9200225B2 (en) 2010-08-03 2015-12-01 Suncoke Technology And Development Llc. Method and apparatus for compacting coal for a coal coking process
CN103068469B (zh) * 2010-10-15 2015-11-25 三菱日立电力系统株式会社 废气中的汞的处理系统
US8715402B2 (en) 2011-03-22 2014-05-06 Mitsubishi Heavy Industries, Ltd. Air pollution control system and air pollution control method, spray drying device of dewatering filtration fluid from desulfurization discharged water, and method thereof
US8845986B2 (en) 2011-05-13 2014-09-30 ADA-ES, Inc. Process to reduce emissions of nitrogen oxides and mercury from coal-fired boilers
CN102489109A (zh) * 2011-12-09 2012-06-13 中电投远达环保工程有限公司 干式高效节能多污染物烟气净化系统
CN102489116A (zh) * 2011-12-16 2012-06-13 国电环境保护研究院 可回收吸附剂的燃煤烟气吸附脱汞方法及装置
JP2013128883A (ja) * 2011-12-21 2013-07-04 Babcock Hitachi Kk 排ガス処理装置及び排ガス処理方法
CN102588945B (zh) * 2012-03-09 2014-12-03 华电环保系统工程有限公司 燃煤电厂烟气中热量和水分的回收系统及其回收方法
US8480983B1 (en) * 2012-03-15 2013-07-09 Alstom Technology Ltd Mercury capture system and method for a wet flue gas desulfurization system
US8883099B2 (en) 2012-04-11 2014-11-11 ADA-ES, Inc. Control of wet scrubber oxidation inhibitor and byproduct recovery
US9289720B2 (en) 2012-05-31 2016-03-22 Mitsubishi Hitachi Power Systems, Ltd. System and method for treating mercury in flue gas
EP2690089A1 (en) * 2012-07-25 2014-01-29 Urea Casale SA Use of urea synthesis purge gas in an integrated ammonia-urea process and related plant.
US9683740B2 (en) 2012-07-31 2017-06-20 Suncoke Technology And Development Llc Methods for handling coal processing emissions and associated systems and devices
US8663586B1 (en) * 2012-08-07 2014-03-04 Alstom Technology Ltd High performance mercury capture
US9957454B2 (en) 2012-08-10 2018-05-01 ADA-ES, Inc. Method and additive for controlling nitrogen oxide emissions
US9359554B2 (en) 2012-08-17 2016-06-07 Suncoke Technology And Development Llc Automatic draft control system for coke plants
US9243186B2 (en) 2012-08-17 2016-01-26 Suncoke Technology And Development Llc. Coke plant including exhaust gas sharing
US9249357B2 (en) 2012-08-17 2016-02-02 Suncoke Technology And Development Llc. Method and apparatus for volatile matter sharing in stamp-charged coke ovens
US9169439B2 (en) 2012-08-29 2015-10-27 Suncoke Technology And Development Llc Method and apparatus for testing coal coking properties
EP2898048B8 (en) 2012-09-21 2020-08-12 SunCoke Technology and Development LLC Reduced output rate coke oven operation with gas sharing providing extended process cycle
CN104902984B (zh) * 2012-12-28 2019-05-31 太阳焦炭科技和发展有限责任公司 用于去除排放物中的汞的系统和方法
US10883051B2 (en) 2012-12-28 2021-01-05 Suncoke Technology And Development Llc Methods and systems for improved coke quenching
US9273249B2 (en) 2012-12-28 2016-03-01 Suncoke Technology And Development Llc. Systems and methods for controlling air distribution in a coke oven
WO2014105063A1 (en) 2012-12-28 2014-07-03 Suncoke Technology And Development Llc. Systems and methods for maintaining a hot car in a coke plant
CA2896478C (en) 2012-12-28 2016-06-07 Suncoke Technology And Development Llc. Vent stack lids and associated systems and methods
US9238778B2 (en) 2012-12-28 2016-01-19 Suncoke Technology And Development Llc. Systems and methods for improving quenched coke recovery
US9476547B2 (en) 2012-12-28 2016-10-25 Suncoke Technology And Development Llc Exhaust flow modifier, duct intersection incorporating the same, and methods therefor
US10047295B2 (en) 2012-12-28 2018-08-14 Suncoke Technology And Development Llc Non-perpendicular connections between coke oven uptakes and a hot common tunnel, and associated systems and methods
US9193915B2 (en) 2013-03-14 2015-11-24 Suncoke Technology And Development Llc. Horizontal heat recovery coke ovens having monolith crowns
US9273250B2 (en) 2013-03-15 2016-03-01 Suncoke Technology And Development Llc. Methods and systems for improved quench tower design
US10307710B2 (en) 2013-04-16 2019-06-04 Carbonxt, Inc. Systems and methods for post combustion mercury control using sorbent injection and wet scrubbing
CA2909639C (en) * 2013-04-16 2021-06-08 Clear Carbon Innovations LLC Systems and methods for post combustion mercury control using sorbent injection and wet scrubbing
US10695717B2 (en) 2013-04-16 2020-06-30 Carbonxt, Inc. Systems and methods for post combustion mercury control using sorbent injection and wet scrubbing
CN104252155A (zh) * 2013-06-27 2014-12-31 北京青山绿野环保科技有限公司 燃煤锅炉烟气处理工程一体化控制系统
US9889451B2 (en) 2013-08-16 2018-02-13 ADA-ES, Inc. Method to reduce mercury, acid gas, and particulate emissions
CN103604133B (zh) * 2013-11-05 2015-10-07 西安热工研究院有限公司 一种多污染物一体化干法脱除的烟气净化系统及工艺
CN112251246B (zh) 2013-12-31 2022-05-17 太阳焦炭科技和发展有限责任公司 用于焦炉脱碳的方法及相关系统和装置
CN104086044B (zh) * 2014-06-27 2016-01-20 中国矿业大学 一种循环煤泥水中硫的脱除方法
CN106661456A (zh) 2014-06-30 2017-05-10 太阳焦炭科技和发展有限责任公司 具有整体式冠的水平热回收焦炉
US10308876B2 (en) 2014-08-28 2019-06-04 Suncoke Technology And Development Llc Burn profiles for coke operations
CA2961207C (en) 2014-09-15 2023-04-18 Suncoke Technology And Development Llc Coke ovens having monolith component construction
DK3002051T3 (da) * 2014-10-03 2020-03-30 General Electric Technology Gmbh Støvseparator, som er nyttig med tørskrubbersystem
CN104388146A (zh) * 2014-10-10 2015-03-04 华北电力大学 一种降低燃煤电厂烟气汞排放的控制方法
BR112017014186A2 (pt) 2014-12-31 2018-01-09 Suncoke Tech & Development Llc leitos multimodais de material de coque
US11060032B2 (en) 2015-01-02 2021-07-13 Suncoke Technology And Development Llc Integrated coke plant automation and optimization using advanced control and optimization techniques
KR102531894B1 (ko) 2015-01-02 2023-05-11 선코크 테크놀러지 앤드 디벨로프먼트 엘엘씨 고급 제어 및 최적화 기술을 이용한 통합형 코크스 플랜트 자동화 및 최적화
CN107249717A (zh) * 2015-02-24 2017-10-13 日立造船株式会社 燃烧排气的处理装置
EP3275529B1 (en) * 2015-03-27 2020-11-11 Mitsubishi Power, Ltd. Wet flue gas desulfurization device and method of operating wet flue gas desulfurization device
JP6637682B2 (ja) * 2015-06-18 2020-01-29 三菱日立パワーシステムズ株式会社 石炭焚ボイラ用排ガス処理装置と石炭焚ボイラ用排ガス処理方法
CN105169919A (zh) * 2015-10-09 2015-12-23 索通发展股份有限公司 炭素罐式煅烧炉烟气脱硝装置及其脱硝工艺
BR112018013220B1 (pt) 2015-12-28 2020-11-17 Suncoke Technology And Development Llc método e sistema para abastecer dinamicamente um forno de coque
KR102445523B1 (ko) 2016-06-03 2022-09-20 선코크 테크놀러지 앤드 디벨로프먼트 엘엘씨 산업 설비에서 교정 액션을 자동적으로 생성하기 위한 방법 및 시스템
CN106122985A (zh) * 2016-08-30 2016-11-16 苏州云白环境设备股份有限公司 用于净化炼油产生的有机废气的装置
JP6703748B2 (ja) * 2016-09-12 2020-06-03 Jfeエンジニアリング株式会社 排ガス処理装置及び排ガス処理方法
JP6804945B2 (ja) * 2016-11-18 2020-12-23 住友金属鉱山株式会社 酸化亜鉛鉱の製造プラントにおける排ガスの処理方法
CN106390729B (zh) * 2016-12-02 2022-10-25 胜利油田胜机石油装备有限公司 一种脱硫脱硝油田注汽锅炉及方法
WO2018186909A1 (en) * 2017-04-05 2018-10-11 Carbonxt, Inc. Systems and methods for post combustion mercury control using sorbent injection and wet scrubbing
CN106932218B (zh) * 2017-04-27 2023-07-14 福建龙净环保股份有限公司 一种脱除多污染物的多功能实验系统
BR112019024618B1 (pt) 2017-05-23 2022-05-03 Suncoke Technology And Development Llc Sistema e método para reparar um forno de coque
CN107150998B (zh) * 2017-06-07 2020-01-07 中国科学院过程工程研究所 一种煤炭脱硫并回收单质硫的系统及方法
CN107983126A (zh) * 2018-01-22 2018-05-04 天津市美好生活科技有限公司 焚烧烟气超低排放净化处理方法及其处理系统
CN108404643A (zh) * 2018-05-25 2018-08-17 华北电力大学 燃煤电站锅炉压缩空气雾化钙基浆液脱除so3的装置及方法
CN108905442A (zh) * 2018-07-09 2018-11-30 韩智强 一种烟气净化环保设备
CN109200722B (zh) * 2018-10-24 2024-07-12 中科协创环境科技江苏有限公司 一种处理含汞烟气的烟气净化系统
WO2020140074A1 (en) 2018-12-28 2020-07-02 Suncoke Technology And Development Llc Improved oven uptakes
US11261381B2 (en) 2018-12-28 2022-03-01 Suncoke Technology And Development Llc Heat recovery oven foundation
US11021655B2 (en) 2018-12-28 2021-06-01 Suncoke Technology And Development Llc Decarbonization of coke ovens and associated systems and methods
CA3124590C (en) 2018-12-28 2023-08-22 Suncoke Technology And Development Llc Systems and methods for treating a surface of a coke plant
WO2020140095A1 (en) 2018-12-28 2020-07-02 Suncoke Technology And Development Llc Spring-loaded heat recovery oven system and method
US11071935B2 (en) 2018-12-28 2021-07-27 Suncoke Technology And Development Llc Particulate detection for industrial facilities, and associated systems and methods
CA3125589A1 (en) 2018-12-31 2020-07-09 Suncoke Technology And Development Llc Methods and systems for providing corrosion resistant surfaces in contaminant treatment systems
US11486572B2 (en) 2018-12-31 2022-11-01 Suncoke Technology And Development Llc Systems and methods for Utilizing flue gas
KR102198314B1 (ko) * 2019-04-10 2021-01-06 디에스티주식회사 배기가스에 함유된 황산화물 및 질소산화물의 동시 제거방법 및 제거 장치
JP7203674B2 (ja) * 2019-04-11 2023-01-13 日立造船株式会社 排ガス処理装置および排ガス処理方法
CN110252118A (zh) * 2019-07-02 2019-09-20 李召 一种用于处理含汞工业废气的过滤分离装置
CN111013313A (zh) * 2020-01-17 2020-04-17 台州锐祥机械设备有限公司 废气淬火双重热循环净化处理装置
KR20230004855A (ko) 2020-05-03 2023-01-06 선코크 테크놀러지 앤드 디벨로프먼트 엘엘씨 고품질 코크스 제품
CN111603915B (zh) * 2020-05-13 2022-03-08 循天能源环境科技有限公司 一种烟气净化工艺
CN111408205A (zh) * 2020-05-15 2020-07-14 福建龙净环保股份有限公司 一种工业硅电炉烟气超低排放处理工艺系统及处理方法
CN112268582B (zh) * 2020-10-22 2022-12-23 上海煤科信息科技有限公司 一种基于大数据的除尘设备智能监测分析管理系统
CN113521979B (zh) * 2021-08-12 2024-01-12 上海交通大学 一种通过氯硒汞沉积从含硫含汞烟气中捕集汞的方法
US11851724B2 (en) 2021-11-04 2023-12-26 Suncoke Technology And Development Llc. Foundry coke products, and associated systems, devices, and methods
US11946108B2 (en) 2021-11-04 2024-04-02 Suncoke Technology And Development Llc Foundry coke products and associated processing methods via cupolas
US20240150659A1 (en) 2022-11-04 2024-05-09 Suncoke Technology And Development Llc Coal blends, foundry coke products, and associated systems, devices, and methods
CN115814541B (zh) * 2023-01-05 2024-07-16 山东明晟环保科技有限公司 一种高效蜂窝活性炭喷射耦合高分子除尘装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08243341A (ja) * 1995-03-13 1996-09-24 Ebara Corp 排ガス処理方法
JPH10230137A (ja) * 1997-02-19 1998-09-02 Mitsubishi Heavy Ind Ltd 排ガス処理方法及び排ガス処理装置
JP2001062247A (ja) * 1999-06-22 2001-03-13 Mitsubishi Heavy Ind Ltd 排煙脱硫方法および排煙脱硫システム
JP2004313833A (ja) * 2003-04-11 2004-11-11 Mitsubishi Heavy Ind Ltd 排ガス中の水銀除去方法およびそのシステム
JP2006263513A (ja) * 2005-03-22 2006-10-05 Kobelco Eco-Solutions Co Ltd ごみ焼却炉排ガス中の水銀除去方法
JP2007007612A (ja) * 2005-07-01 2007-01-18 Mitsubishi Heavy Ind Ltd 排ガス処理装置及び方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TR200100097T1 (tr) 1999-05-17 2001-06-21 Ltd. Mitsubishi Heavy Industries Baca gazı kükürdünün giderilmesi için yöntem ve baca gazı kükürdünün giderilmesi için sistem.
US7381387B2 (en) * 2003-08-14 2008-06-03 General Electric Company Mercury reduction system and method in combustion flue gas using coal blending
US7514052B2 (en) 2004-01-06 2009-04-07 General Electric Company Method for removal of mercury emissions from coal combustion
US7833501B2 (en) * 2006-12-27 2010-11-16 Babcock-Hitachi Kabushiki Kaisha Method and apparatus for treating discharge gas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08243341A (ja) * 1995-03-13 1996-09-24 Ebara Corp 排ガス処理方法
JPH10230137A (ja) * 1997-02-19 1998-09-02 Mitsubishi Heavy Ind Ltd 排ガス処理方法及び排ガス処理装置
JP2001062247A (ja) * 1999-06-22 2001-03-13 Mitsubishi Heavy Ind Ltd 排煙脱硫方法および排煙脱硫システム
JP2004313833A (ja) * 2003-04-11 2004-11-11 Mitsubishi Heavy Ind Ltd 排ガス中の水銀除去方法およびそのシステム
JP2006263513A (ja) * 2005-03-22 2006-10-05 Kobelco Eco-Solutions Co Ltd ごみ焼却炉排ガス中の水銀除去方法
JP2007007612A (ja) * 2005-07-01 2007-01-18 Mitsubishi Heavy Ind Ltd 排ガス処理装置及び方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102665866A (zh) * 2010-02-25 2012-09-12 三菱重工业株式会社 废气处理系统及废气处理方法
EP2540378A1 (en) * 2010-02-25 2013-01-02 Mitsubishi Heavy Industries, Ltd. Exhaust gas treatment system, and exhaust gas treatment method
EP2540378A4 (en) * 2010-02-25 2013-10-16 Mitsubishi Heavy Ind Ltd EXHAUST GAS TREATMENT SYSTEM, AND EXHAUST GAS TREATMENT METHOD
CN102068891A (zh) * 2010-11-29 2011-05-25 江苏紫光吉地达环境科技股份有限公司 一种用于自动净化混合气体中硫化物、氮氧化物的系统
CN102078761A (zh) * 2010-12-06 2011-06-01 李鹏举 一种综合烟气脱硫脱汞脱硝工艺及装置
CN103982904A (zh) * 2014-04-28 2014-08-13 浙江巨化热电有限公司 一种新型烟气综合处理装置及方法
CN109331647A (zh) * 2018-11-12 2019-02-15 北京国电龙源环保工程有限公司 烟气除尘脱硝余热利用一体化装置及其处理方法

Also Published As

Publication number Publication date
CN101918108A (zh) 2010-12-15
JP2009166012A (ja) 2009-07-30
CA2711950A1 (en) 2009-07-30
CA2711950C (en) 2013-01-08
US20110044872A1 (en) 2011-02-24
US8071060B2 (en) 2011-12-06
CN101918108B (zh) 2013-06-05

Similar Documents

Publication Publication Date Title
WO2009093576A1 (ja) 石炭焚ボイラの排ガス処理システム及びその運転方法
US9289720B2 (en) System and method for treating mercury in flue gas
US6503470B1 (en) Use of sulfide-containing liquors for removing mercury from flue gases
WO2009093574A1 (ja) 石炭焚ボイラの排ガス処理システム及び方法
JP5198786B2 (ja) 排ガス浄化方法と装置
EP2540379B1 (en) Exhaust gas treatment system, and exhaust gas treatment method
JP5180097B2 (ja) 排ガス処理方法と装置
JP6637682B2 (ja) 石炭焚ボイラ用排ガス処理装置と石炭焚ボイラ用排ガス処理方法
JP5051977B2 (ja) 排ガス中微量有害物質の除去装置及びその運転方法
US7037474B2 (en) Use of sulfide-containing liquors for removing mercury from flue gases
WO2009093575A1 (ja) 石炭焚ボイラの排ガス処理システム及び方法
WO2009130815A1 (ja) 排ガス処理システム及び排ガス中の水銀除去方法
JP4719228B2 (ja) 石炭焚ボイラの排ガス処理システム
JPWO2008078722A1 (ja) 排ガス処理方法と装置
JP2006326575A (ja) 排ガス処理装置および排ガス処理方法
JP6095923B2 (ja) 排ガス中の水銀処理システム
WO2014041980A1 (ja) 排ガス処理システム及び排ガス処理方法
JP2014057913A5 (ja)
JP2016120438A (ja) 湿式脱硫装置及び湿式脱硫方法
WO2004080574A1 (en) Mercury and process for removing mercury from gases
JP5299600B2 (ja) 排ガス処理方法及び排ガス処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980102257.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09703606

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2711950

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12812866

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 4464/CHENP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09703606

Country of ref document: EP

Kind code of ref document: A1