WO2009130815A1 - 排ガス処理システム及び排ガス中の水銀除去方法 - Google Patents

排ガス処理システム及び排ガス中の水銀除去方法 Download PDF

Info

Publication number
WO2009130815A1
WO2009130815A1 PCT/JP2008/071052 JP2008071052W WO2009130815A1 WO 2009130815 A1 WO2009130815 A1 WO 2009130815A1 JP 2008071052 W JP2008071052 W JP 2008071052W WO 2009130815 A1 WO2009130815 A1 WO 2009130815A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrochloric acid
exhaust gas
hydrogen chloride
mercury
boiler
Prior art date
Application number
PCT/JP2008/071052
Other languages
English (en)
French (fr)
Inventor
盛紀 村上
展行 鵜飼
立人 長安
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CA2719520A priority Critical patent/CA2719520C/en
Priority to EP08874032A priority patent/EP2269714A4/en
Priority to CN2008801288184A priority patent/CN102015070B/zh
Priority to KR1020107021260A priority patent/KR101229680B1/ko
Priority to BRPI0822538A priority patent/BRPI0822538A2/pt
Publication of WO2009130815A1 publication Critical patent/WO2009130815A1/ja
Priority to HK11104445.0A priority patent/HK1150395A1/xx

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/006Layout of treatment plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/64Heavy metals or compounds thereof, e.g. mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8665Removing heavy metals or compounds thereof, e.g. mercury
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/003Arrangements of devices for treating smoke or fumes for supplying chemicals to fumes, e.g. using injection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J7/00Arrangement of devices for supplying chemicals to fire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/50Inorganic acids
    • B01D2251/502Hydrochloric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/606Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • B01D2257/602Mercury or mercury compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/508Sulfur oxides by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/60Heavy metals; Compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to an exhaust gas treatment system for removing mercury from the exhaust gas of a boiler and a method for removing mercury from the exhaust gas.
  • coal fired boilers are equipped with a wet desulfurization device for removing sulfur content in exhaust gas.
  • a desulfurization device for removing sulfur content in exhaust gas.
  • chlorine (Cl) content in the exhaust gas increases, the proportion of divalent metal mercury soluble in water increases. It is widely known that mercury is easily collected by the desulfurization apparatus.
  • a removal method using an adsorbent such as activated carbon or a selenium filter is known.
  • an adsorbent such as activated carbon or a selenium filter
  • a special adsorption removal means is required, and a large-capacity exhaust gas such as power plant exhaust gas is treated. Not suitable for.
  • a chlorinating agent is gas-sprayed in the upstream process of the high-temperature denitration equipment in the flue, and mercury is oxidized (chlorinated) on the denitration catalyst to produce water-soluble chloride.
  • a method has been proposed in which mercury is absorbed by a downstream wet desulfurization apparatus (see, for example, Patent Documents 1 and 2).
  • the apparatus and technique for gas spraying into the flue has been put to practical use in the NH 3 spraying apparatus of the denitration apparatus, and the same means can be adopted for gas spraying of the chlorinating agent.
  • FIG. 7 shows an example of a conventional mercury removal system.
  • the exhaust gas treatment system 100 removes nitrogen oxides in the exhaust gas 12 from the coal fired boiler 11 that supplies coal as the fuel F, and sprays hydrogen chloride 23 into the gas.
  • Denitration device 13 for mercury oxidation air heater 14 for recovering heat in the gas after removal of nitrogen oxides
  • dust collector 15 for removing soot and dust in the gas after heat recovery
  • sulfur oxidation in the gas after dust removal It comprises a desulfurization device 16 that removes substances, a chimney 17 that discharges the gas after desulfurization to the outside, and a hydrochloric acid vaporization device 21 that generates the hydrogen chloride 23.
  • FIG. 1 shows an example of a conventional mercury removal system.
  • reference numerals 41 and 42 are mercury monitors, 43 is a redox potential measurement control device (ORP controller), 45 is gypsum slurry (dilute sulfuric acid) containing mercury discharged from the desulfurization device, and 46 is a belt filter. , 47 is gypsum, 60 is a lime supply device, and 61 is lime (powder or slurry).
  • Patent Document 3 instead of spraying hydrogen chloride into the exhaust gas, it has been proposed to supply a chlorine compound in the fuel in order to generate hydrogen chloride during combustion of the boiler.
  • coal type depending on the type of coal used in the power plant (so-called coal type), the chlorine concentration varies, but even when using a coal type with a high chlorine concentration, a large amount of 35% hydrochloric acid is required, of which 80% Dilute hydrochloric acid will be discharged. For this reason, when a recycling plant is constructed as ancillary equipment in order to treat the dilute hydrochloric acid in the waste, it is necessary to install a set of the plant, and the installation cost and the maintenance cost increase.
  • an object of the present invention is to provide an exhaust gas treatment system and a method for removing mercury in exhaust gas, which can reduce operating costs.
  • a first invention of the present invention for solving the above-mentioned problems is a denitration apparatus that removes nitrogen oxides in exhaust gas from an industrial boiler and oxidizes mercury by spraying hydrogen chloride into the exhaust gas, and denitration A desulfurization device that removes sulfur oxides in the exhaust gas later, a chimney that discharges the desulfurized gas to the outside, a hydrochloric acid vaporizer that supplies concentrated hydrochloric acid to generate hydrogen chloride, and a hydrochloric acid vaporizer that is discharged from the hydrochloric acid vaporizer A dilute hydrochloric acid or a hydrochloric acid neutralization tank for neutralizing either one or both of the concentrated hydrochloric acid with an alkaline agent, supplying the neutralized chloride to the fuel, and then burning it in an industrial boiler,
  • An exhaust gas treatment system is characterized in that mercury is generated together with sprayed hydrogen chloride by generating hydrogen chloride therein.
  • a second invention is a spraying device for spraying hydrogen chloride onto exhaust gas from a coal fired boiler, a denitration device for removing mercury oxide in the exhaust gas after spraying with hydrogen chloride and oxidizing mercury, and nitrogen oxide removal
  • An air heater that recovers the heat in the later gas
  • a dust collector that removes the soot and dust in the gas after the heat recovery
  • a desulfurizer that removes sulfur oxide in the gas after the dust removal, and exhausts the desulfurized gas to the outside
  • a chimney that generates hydrogen chloride by supplying concentrated hydrochloric acid
  • a hydrochloric acid neutralization tank that neutralizes one or both of dilute hydrochloric acid and concentrated hydrochloric acid discharged from the hydrochloric acid vaporizer with an alkaline agent
  • a third invention is characterized in that in the first or second invention, the desulfurization waste water discharged from the desulfurization device or the treated waste water from which heavy metals are removed from the desulfurization waste water is supplied to a hydrochloric acid neutralization tank. In the processing system.
  • the apparatus includes a hydrogen chloride monitor that measures a hydrogen chloride concentration between the boiler and the denitration apparatus, and feedback control of supply of chloride
  • the exhaust gas treatment system is characteristic.
  • the fifth invention is an exhaust gas treatment system according to any one of the first to fourth inventions, wherein a chlorine concentration in the exhaust gas between the boiler and the denitration apparatus is 1000 ppm or less.
  • a sixth aspect of the present invention while removing nitrogen oxides in exhaust gas from an industrial boiler, hydrogen chloride is sprayed into the exhaust gas to oxidize mercury, and the diluted hydrochloric acid discharged after generating the hydrogen chloride is alkalinized.
  • the exhaust gas characterized by neutralizing with an agent, then supplying the neutralized chloride to the fuel, burning it in a boiler, generating hydrogen chloride in the exhaust gas, and removing mercury together with the sprayed hydrogen chloride Mercury removal method.
  • dilute hydrochloric acid discharged as waste is neutralized, and hydrogen chloride is generated by supplying it to a boiler as a chloride and combusting it. Can be removed.
  • the desulfurization effluent discharged from the desulfurizer is neutralized and burned in a boiler as a chloride aqueous solution, the amount of wastewater discharged to the outside can be greatly reduced.
  • FIG. 1 is a configuration diagram of an exhaust gas treatment system according to a first embodiment.
  • FIG. 2 is a schematic configuration diagram of an exhaust gas treatment system showing an example of application of the first embodiment.
  • FIG. 3 is a schematic configuration diagram of an exhaust gas treatment system showing an example of application of the second embodiment.
  • FIG. 4 is a schematic configuration diagram of an exhaust gas treatment system showing another example of application of the second embodiment.
  • FIG. 5 is a schematic configuration diagram of an exhaust gas treatment system of a conventional facility.
  • FIG. 6 is a schematic view of the fuel supply apparatus.
  • FIG. 7 is a configuration diagram of an exhaust gas treatment system according to the prior art.
  • FIG. 1 is a schematic configuration diagram of an exhaust gas treatment system according to a first embodiment.
  • the exhaust gas treatment system 10 removes nitrogen oxides in the exhaust gas 12 from the coal fired boiler 11, and sprays hydrogen chloride 23 into the gas to oxidize mercury.
  • Denitration device 13 air heater 14 for recovering heat in the gas after removal of nitrogen oxides, dust collector 15 for removing dust in the gas after heat recovery, and sulfur oxide in the gas after dust removal Desulfurization device 16, chimney 17 for discharging the gas after desulfurization to the outside, hydrochloric acid vaporization device 21 for vaporizing concentrated hydrochloric acid (35% HCl) to obtain hydrogen chloride 23, dilute hydrochloric acid discharged from hydrochloric acid vaporization device 21 ( And a hydrochloric acid neutralization tank 30 for neutralizing 22% HCl) with an alkali agent 31, and a fuel supply device for neutralized chloride (for example, calcium chloride when calcium carbonate is used as chloride) To 33 After mixing with coal as a fuel 70 is burned in the boiler 11 as a fuel F, to generate hydrogen chloride in the exhaust gas, and removing the mercury together with sprayed hydrogen chloride from hydrochloric acid vaporizer 21.
  • reference numerals 41 and 42 denote mercury monitors
  • 43 denotes an
  • the desulfurization device 16 is supplied with lime (slurry or powder) 61 from the lime supply device 60 to desulfurize sulfur oxides in the exhaust gas and discharge it to the outside as a gypsum slurry 45, and a solid filter such as a belt filter 46.
  • the gypsum 47 is separated by the liquid separation means, and the desulfurization waste water 48 which is the separation liquid is agglomerated and precipitated by the waste water treatment device 50 with the flocculant by the waste water treatment device 50 and discharged to the outside as the treated waste water 51. I have to.
  • concentrated hydrochloric acid (35% hydrochloric acid) as a raw material is carried from the outside through a carry-in tank trolley 23A, temporarily stored in a 35% hydrochloric acid tank 22A, and supplied to the hydrochloric acid vaporizer 21, where it is chlorinated. Hydrogen 23 is vaporized.
  • the recovered diluted hydrochloric acid recovered by vaporizing the hydrogen chloride 23 has a concentration of about 22% and is stored in the 22% hydrochloric acid tank 22B.
  • the dilute hydrochloric acid is supplied to the hydrochloric acid neutralization tank 30 and neutralized with an alkaline agent to obtain a chloride 32.
  • concentrated hydrochloric acid (35% hydrochloric acid) supplied to the hydrochloric acid vaporizer 21 may be supplied to the hydrochloric acid neutralization tank 30 alone or in combination instead of the dilute hydrochloric acid to be recovered.
  • supplying concentrated hydrochloric acid (35% hydrochloric acid) is preferable because hydrogen chloride can be reliably generated in the exhaust gas from boiler 11.
  • the alkali agent is not particularly limited, but it is not necessary to purchase an alkali agent separately by using lime (calcium carbonate) used in the desulfurization apparatus.
  • lime calcium carbonate
  • known alkaline agents such as sodium hydroxide can be used.
  • the obtained chloride is supplied to the fuel supply facility 33 through the supply pipe 33c as calcium chloride (aqueous solution state) as shown in FIG. 6, where the fuel (coal) 70 and the feeder 33b are supplied from the hopper 33a. It is mixed in, supplied to the boiler 11 as fuel (containing calcium chloride) F, and mixed and burned. During this combustion, the chloride 32 in the fuel is burned, and as a result, hydrogen chloride is generated.
  • recovered dilute hydrochloric acid (22% HCl) discharged as waste is neutralized in the hydrochloric acid neutralization tank 30, and the neutralized chloride 32 is supplied to the boiler 11 and combusted.
  • hydrogen chloride is generated, and mercury in the exhaust gas can be surely removed together with separately sprayed hydrogen chloride.
  • the recovered dilute hydrochloric acid is neutralized and reused as a chlorine compound, and the chlorine compound is combusted in a boiler to generate second hydrogen chloride from the boiler, which is derived from concentrated hydrochloric acid installed in the past. Since mercury in the exhaust gas can be removed together with the first hydrogen chloride from the hydrochloric acid vaporizer 21, the first chloride derived from the hydrochloric acid vaporizer 21 is generated by the amount of second hydrogen chloride derived from the boiler 11. The amount of hydrogen generated can be reduced. As a result, the carry-in amount of concentrated hydrochloric acid (35% HCl) purchased from the outside in order to remove mercury is also greatly reduced.
  • the conversion rate to be hydrogen chloride by combustion in the boiler is generally about 40 to 60% (about 50%) although it depends on the combustion conditions of the boiler. Therefore, as the supply amount of the chloride 32 to the fuel 70, the supply ratio of chloride to coal is preferably about 2000 mg / Kg or less in consideration of corrosion of equipment such as the boiler 11.
  • the chlorine concentration in the exhaust gas between the boiler 11 and the denitration device 13 should be 1000 ppm or less. Is preferred. For this reason, a hydrogen chloride monitor 71 for measuring the hydrogen chloride concentration is installed between the boiler 11 and the denitration device 13 so that the supply of the chloride 32 is feedback controlled.
  • mercury in the exhaust gas can be efficiently removed, and the concentration of chlorine in the treated waste water 51 discharged to the outside from the desulfurization device 16 is reduced to a predetermined environment by setting the concentration of hydrogen chloride sprayed in the exhaust gas to 1000 ppm or less. It can be below the emission standard value.
  • PRB coal when using coal as the fuel 70 supplied to the boiler 11, besides using bituminous coal, PRB coal can also be used.
  • PRB Powder. River Basin
  • PRB Low-chlorine coal
  • the amount of hydrogen chloride generated is small. Therefore, when the recovered diluted hydrochloric acid is not reused as in the present invention, the consumption of concentrated hydrochloric acid is normal bituminous coal. Larger than the case.
  • recovered dilute hydrochloric acid (22% HCl) generated from hydrogen chloride from concentrated hydrochloric acid (35% HCl) is neutralized to form chloride 32, which is burned in boiler 11 as hydrogen chloride.
  • dilute hydrochloric acid discharged as a by-product generated during the exhaust gas treatment is not discarded as it is, but reused again in the boiler.
  • hydrogen chloride is generated and mercury in the exhaust gas is oxidized and removed together with the sprayed hydrogen chloride, so that the dilute hydrochloric acid can be reused to greatly improve the recycling efficiency.
  • the amount of chlorine contained will vary greatly, and as a result, the supply amount of hydrogen chloride will vary depending on the type of coal, Even when the amount of hydrochloric acid consumed varies depending on the type of coal, the amount of hydrogen chloride generated can be adjusted by reusing the recovered diluted hydrochloric acid.
  • the recovered dilute hydrochloric acid is reused to generate hydrogen chloride from the chloride to make up for it, so the amount of concentrated hydrochloric acid to be carried in is reduced and the cost is greatly reduced compared to the conventional case.
  • the present invention is applied to removing mercury in the exhaust gas.
  • the exhaust gas treatment system 10A in FIG. 2 is a coal fired boiler as the boiler of the exhaust gas treatment system 10 in FIG.
  • the exhaust gas treatment systems 10B and 10C in FIGS. 3 and 4 are modifications thereof.
  • the exhaust gas treatment system 100A of FIG. 5 is a comparative example and is a schematic diagram of the prior art exhaust gas treatment system 100 shown in FIG.
  • the configuration of the exhaust gas treatment system is the same as that in FIG. 2 to 4, reference numeral 63 is limestone, 64 is a lime supply device, and 65 is lime (calcium carbonate).
  • the amount of concentrated hydrochloric acid used is reduced to about 1.3 t / h and the disposal cost is eliminated.
  • a part 48B of the desulfurization waste water 48 discharged from the desulfurization device 16 is supplied to the hydrochloric acid neutralization tank 30 to dilute the aqueous chloride solution, By burning, the amount of wastewater discharged to the outside can be greatly reduced.
  • this desulfurization waste water 48 calcium chloride produced by the lime gypsum method is present in an aqueous solution state (about 20000 ppm).
  • the chloride concentration can be increased. it can.
  • the supply amount of concentrated hydrochloric acid can be reduced by about 20% to 1.0 t / h.
  • the dilution amount is set so as not to hinder the operation of the boiler, and about 55 to 60% may be used as the dilution water.
  • the treated waste water 51B may be supplied to the hydrochloric acid neutralization tank 30 as shown in the exhaust gas treatment system 10C of FIG.
  • the purchase cost of concentrated hydrochloric acid is 790 million yen / year, and the treatment cost of dilute hydrochloric acid is 410 million yen / year.
  • the purchase cost of concentrated hydrochloric acid is 490 million yen / year, and the purchase cost of concentrated hydrochloric acid is about 300 million yen / year less than the conventional equipment.
  • dilute hydrochloric acid treatment costs are eliminated. Therefore, overall, a reduction of 710 million yen / year is possible compared to the conventional equipment.
  • the purchase cost of concentrated hydrochloric acid is 350 million yen / year, and the purchase cost of concentrated hydrochloric acid is about 4.4 billion yen / year less than the conventional equipment. And dilute hydrochloric acid treatment costs are eliminated. Therefore, overall, a reduction of 850 million yen / year is possible compared with the conventional equipment.
  • a coal fired boiler using coal as a fuel has been described.
  • the present invention is not limited to this, and for example, a fuel such as RDF or industrial waste is combusted and exhaust gas is discharged.
  • a fuel such as RDF or industrial waste
  • exhaust gas is discharged.
  • hydrogen chloride may be generated by combustion, and mercury in the exhaust gas may be surely removed together with the sprayed hydrogen chloride.
  • the hydrogen chloride supply device neutralizes the dilute hydrochloric acid discharged as waste to make chloride, and it can be reused as hydrogen chloride by burning it in a boiler. It is suitable for use in hydrochloric acid treatment of exhaust gas at a place.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Treating Waste Gases (AREA)
  • Chimneys And Flues (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

 本発明の排ガス処理システムは、石炭焚ボイラ(11)からの排ガス(12)中の窒素酸化物を除去すると共に、ガス中に塩化水素(23)を噴霧して水銀酸化する脱硝装置(13)と、ガス中の熱を回収するエアヒータ(14)と、ガス中の煤塵を除去する集塵機(15)と、除塵後のガス中の硫黄酸化物を除去する脱硫装置(16)と、脱硫後のガスを外部に排出する煙突(17)と、濃塩酸を気化して塩化水素(23)を得る塩酸気化装置(21)と、塩酸気化装置(21)から排出される希塩酸又は前記濃塩酸をアルカリ剤(31)で中和する塩酸中和槽(30)とを具備してなり、中和後の塩化物を燃料供給装置(33)に供給して燃料(70)である石炭と混合した後に燃料(F)としてボイラ(11)で燃焼させ、排ガス中に塩化水素を発生させて、塩酸気化装置(21)からの噴霧した塩化水素と共に水銀を除去する。

Description

排ガス処理システム及び排ガス中の水銀除去方法
 本発明は、ボイラの排ガス中から水銀を除去する排ガス処理システム及び排ガス中の水銀除去方法に関するものである。
 例えば火力発電所等の燃焼装置である石炭焚ボイラから排出される排ガスには毒性の高い水銀が含まれるため、従来から排ガス中の水銀を除去するためのシステムが種々検討されてきた。
 通常、石炭焚ボイラには排ガス中の硫黄分を除去するための湿式の脱硫装置が設けられている。このようなボイラに排ガス処理装置として脱硫装置が付設されてなる排煙処理設備においては、排ガス中の塩素(Cl)分が多くなると、水に可溶な2価の金属水銀の割合が多くなり、前記脱硫装置で水銀が捕集しやすくなることが、広く知られている。
 そこで、近年、NOxを還元する脱硝装置、および、アルカリ吸収液をSOx吸収剤とする湿式脱硫装置と組み合わせて、この金属水銀を処理する方法や装置について様々な考案がなされてきた。
 排ガス中の金属水銀を処理する方法としては、活性炭やセレンフィルター等の吸着剤による除去方法が知られているが、特殊な吸着除去手段が必要であり、発電所排ガス等の大容量排ガスの処理には適していない。
 大容量排ガス中の金属水銀を処理する方法として、煙道中、高温の脱硝装置の前流工程で塩素化剤をガス噴霧し、脱硝触媒上で水銀を酸化(塩素化)させ、水溶性の塩化水銀にしたのち、後流の湿式脱硫装置で吸収させる方法が提案されている(例えば、特許文献1及び2を参照。)。なお、煙道にガス噴霧する装置および技術は脱硝装置のNH3噴霧装置で実用化されており、塩素化剤のガス噴霧にも同様の手段が採用されうる。
 図7に従来の水銀除去システムの一例を示す。
 図7に示すように、従来技術に係る排ガス処理システム100は、燃料Fとして石炭を供給する石炭焚ボイラ11からの排ガス12中の窒素酸化物を除去すると共に、ガス中に塩化水素23を噴霧して水銀酸化する脱硝装置13と、窒素酸化物除去後のガス中の熱を回収するエアヒータ14と、熱回収後のガス中の煤塵を除去する集塵機15と、除塵後のガス中の硫黄酸化物を除去する脱硫装置16と、脱硫後のガスを外部に排出する煙突17と、前記塩化水素23を発生させる塩酸気化装置21とを具備するものである。
 なお、図7中、符号41、42は水銀モニタ、43は酸化還元電位測定制御装置(ORPコントローラ)、45は脱硫装置から排出される水銀を含んだ石膏スラリー(希硫酸)、46はベルトフィルタ、47は石膏、60は石灰供給装置、61は石灰(粉体又はスラリー)を図示する。
 また、排ガス中に塩化水素を噴霧する代わりに、ボイラの燃焼の際に、塩化水素を発生させるべく、燃料中に塩素化合物を供給することが提案されている(特許文献3)。
特開平10-230137号公報 特許第3935547号公報 特許第3698916号公報
 ところで、特許文献1及び2に提案されるような塩化水素等の噴霧による水銀除去システムを採用した場合、35%塩酸を塩酸気化装置において気化させるので、多量の濃塩酸が必要となると共に、その副生成物である希塩酸は、濃塩酸(35%塩酸)の約80%の割合に相当する量の希塩酸が排出されるが、発電所側にとって前記希塩酸は廃棄物になってしまう、という問題がある。
 また、発電所で使用する石炭の炭の種類(いわゆる炭種)によって、塩素濃度がバラバラであるが、塩素濃度が高い炭種を用いる場合でも多量の35%濃度塩酸が必要となり、その80%の希塩酸が排出されることとなる。
 このため、廃棄物の希塩酸を処理するために、付帯設備としてリサイクルプラントを建設するとなると、プラントを一式設置する必要があり、その設置費用及び維持費用が嵩むこととなる。
 更に、発電設備内に、リサイクルプラントを建てることも考えられるが、希塩酸の処理には不揮発成分が循環、濃縮するため、処理工程の大幅な増設が必要となる。
 また、特許文献3のような提案では、ボイラで燃焼により塩化水素を発生させるので、ボイラにおける塩酸化合物から塩化水素への転換効率がボイラ燃焼に応じて変化するので、一定とならず、しかも排ガス中の水銀濃度は常に一定ではないので、水銀を確実に塩化水銀として除去するための塩化水素量を安定して供給することができない、という問題がある。
 そこで、副生成物として排出される希塩酸を廃棄処理せず、しかも安定して水銀を除去することができると共に、安価な水銀除去システムの構築が切望されている。
 本発明は、以上の課題に鑑み、運転コストの低廉化を図った排ガス処理システム及び排ガス中の水銀除去方法を提供することを目的とする。
 上述した課題を解決するための本発明の第1の発明は、産業ボイラからの排ガス中の窒素酸化物を除去すると共に、排ガス中に塩化水素を噴霧して水銀を酸化する脱硝装置と、脱硝後の排ガス中の硫黄酸化物を除去する脱硫装置と、脱硫後のガスを外部に排出する煙突と、濃塩酸を供給して塩化水素を発生させる塩酸気化装置と、前記塩酸気化装置から排出される希塩酸又は前記濃塩酸のいずれか一方又は両方をアルカリ剤で中和する塩酸中和槽とを具備してなり、前記中和後の塩化物を燃料に供給した後に産業ボイラで燃焼させ、排ガス中に塩化水素を発生させて噴霧した塩化水素と共に水銀を除去することを特徴とする排ガス処理システムにある。
 第2の発明は、石炭焚ボイラからの排ガスに塩化水素を噴霧する噴霧装置と、塩化水素噴霧後の排ガス中の窒素酸化物を除去すると共に、水銀を酸化する脱硝装置と、窒素酸化物除去後のガス中の熱を回収するエアヒータと、熱回収後のガス中の煤塵を除去する集塵機と、除塵後のガス中の硫黄酸化物を除去する脱硫装置と、脱硫後のガスを外部に排出する煙突と、濃塩酸を供給して塩化水素を発生させる塩酸気化装置と、前記塩酸気化装置から排出される希塩酸又は前記濃塩酸のいずれか一方又は両方をアルカリ剤で中和する塩酸中和槽とを具備してなり、中和後の塩化物を石炭供給装置に供給して石炭と混合した後に石炭焚ボイラで燃焼させ、排ガス中に塩化水素を発生させて噴霧した塩化水素と共に水銀を除去することを特徴とする排ガス処理システムにある。
 第3の発明は、第1又は2の発明において、前記脱硫装置から排出される脱硫排水又は脱硫排水から重金属類を除去した処理排水を塩酸中和槽に供給してなることを特徴とする排ガス処理システムにある。
 第4の発明は、第1乃至3のいずれか一つの発明において、前記ボイラと脱硝装置との間において塩化水素濃度を計測する塩化水素モニタを有し、塩化物の供給をフィードバック制御することを特徴とする排ガス処理システムにある。
 第5の発明は、第1乃至4のいずれか一つの発明において、前記ボイラと脱硝装置との間の排ガス中の塩素分濃度が1000ppm以下であることを特徴とする排ガス処理システムにある。
 第6の発明は、産業ボイラからの排ガス中の窒素酸化物を除去しつつ、排ガス中に塩化水素を噴霧して水銀を酸化すると共に、前記塩化水素を発生させた後に排出される希塩酸をアルカリ剤で中和し、その後中和後の塩化物を燃料に供給した後にボイラで燃焼させ、排ガス中に塩化水素を発生させて噴霧した塩化水素と共に水銀を除去することを特徴とする排ガス中の水銀除去方法にある。
 本発明によれば、廃棄物として排出される希塩酸を中和すると共に、塩化物としてボイラに供給して燃焼させることで塩化水素を発生させ、別途噴霧する塩化水素と共に、排ガス中の水銀を確実に除去することができる。
 また、脱硫装置から排出される脱硫排水を中和する際に用いて、塩化物水溶液として、ボイラで燃焼させることで、外部に排出する排水処理量が大幅に減少することができる。
図1は、実施例1に係る排ガス処理システムの構成図である。 図2は、実施例1の適用の一例を示す排ガス処理システムの概略構成図である。 図3は、実施例2の適用の一例を示す排ガス処理システムの概略構成図である。 図4は、実施例2の適用の他の一例を示す排ガス処理システムの概略構成図である。 図5は、従来設備の排ガス処理システムの概略構成図である。 図6は、燃料供給装置の概略図である。 図7は、従来技術に係る排ガス処理システムの構成図である。
符号の説明
 11 石炭焚ボイラ
 12 排ガス
 13 脱硝装置
 14 エアヒータ
 15 集塵機
 16 脱硫装置
 17 煙突
 21 塩酸気化装置
 23 塩化水素
 30 塩酸中和槽
 32 中和後の塩化物
 64 石灰供給装置
 以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。
 図1は、実施例1に係る排ガス処理システムの概略構成図である。
 先ず、図1に示すように、本実施例に係る排ガス処理システム10は、石炭焚ボイラ11からの排ガス12中の窒素酸化物を除去すると共に、ガス中に塩化水素23を噴霧して水銀酸化する脱硝装置13と、窒素酸化物除去後のガス中の熱を回収するエアヒータ14と、熱回収後のガス中の煤塵を除去する集塵機15と、除塵後のガス中の硫黄酸化物を除去する脱硫装置16と、脱硫後のガスを外部に排出する煙突17と、濃塩酸(35%HCl)を気化して塩化水素23を得る塩酸気化装置21と、塩酸気化装置21から排出される希塩酸(22%HCl)をアルカリ剤31で中和する塩酸中和槽30とを具備してなり、中和後の塩化物(例えば塩化物として炭酸カルシウムを用いた場合には塩化カルシウム)を燃料供給装置33に供給して燃料70である石炭と混合した後に燃料Fとしてボイラ11で燃焼させ、排ガス中に塩化水素を発生させて、塩酸気化装置21からの噴霧した塩化水素と共に水銀を除去するものである。
 なお、図1中、符号41、42は水銀モニタ、43は酸化還元電位測定制御装置(ORPコントローラ)、44は空気を各々図示する。
 前記脱硫装置16には、石灰供給装置60からの石灰(スラリー又は粉体)61が供給されて排ガス中の硫黄酸化物を脱硫して石膏スラリー45として外部に排出し、ベルトフィルタ46などの固液分離手段により石膏47を分離し、その分離液である脱硫排水48は、それに含まれている重金属52を排水処理装置50で凝集剤により凝集沈殿させて、処理排水51として外部に排出するようにしている。
 ここで、原料である濃塩酸(35%塩酸)は、外部より搬入タンクローリ23Aを介して搬入され、35%塩酸タンク22Aで一時的に貯蔵され、塩酸気化装置21に供給して、ここで塩化水素23を気化させている。
 塩化水素23を気化して回収された回収希塩酸は22%程度の濃度となり、22%塩酸タンク22Bに貯蔵される。
 そして、希塩酸は塩酸中和槽30に供給して、アルカリ剤で中和され、塩化物32を得ている。
 本発明は、回収する希塩酸の代わりに塩酸気化装置21に供給する濃塩酸(35%塩酸)も単独で又は併用して塩酸中和槽30に供給するようにしてもよい。
 特に塩酸気化装置21が停止した場合等において、濃塩酸(35%塩酸)を供給することで、塩化水素をボイラ11からの排ガス中に確実に発生することができ好ましいものとなる。
 本発明では、アルカリ剤としては特に限定されるものではないが、脱硫装置で用いる石灰(炭酸カルシウム)を用いることで、別途アルカリ剤を購入する必要がなくなる。また他のアルカリ剤としては水酸化ナトリウム等の公知のアルカリ剤を用いることができる。
 得られた塩化物は、図6に示すように塩化カルシウム(水溶液状態)で供給管33cを介して燃料供給設備33に供給され、ここでホッパ33aから供給された燃料(石炭)70とフィーダ33b中で混合され、燃料(含有塩化カルシウム)Fとしてボイラ11に供給され、混合燃焼される。
 この燃焼の際に、燃料中の塩化物32が燃焼される結果、塩化水素を発生することとなる。
 このように、本発明によれば、廃棄物として排出される回収希塩酸(22%HCl)を塩酸中和槽30で中和すると共に、中和した塩化物32をボイラ11に供給して燃焼させることで塩化水素を発生させ、別途噴霧する塩化水素と共に、排ガス中の水銀を確実に除去することができる。
 この結果、従来では、塩化水素を発生して回収する回収希塩酸外部に搬出しての処理がなくなる。
 また、回収希塩酸を中和して塩素化合物として再利用すると共に、当該塩素化合物をボイラで燃焼させることで、ボイラからの第2の塩化水素を発生させ、従前から設置されている濃塩酸由来の塩酸気化装置21からの第1の塩化水素と共に、排ガス中の水銀を除去することができるので、ボイラ11由来の第2の塩化水素の発生量分だけ、塩酸気化装置21由来の第1の塩化水素の発生量を低減することができる。この結果、水銀を除去するために、外部から購入する濃塩酸(35%HCl)の搬入量も大幅な低減となる。
 ここで、ボイラで燃焼により塩化水素となる変換率は、ボイラの燃焼の条件にも左右されるが一般に約40~60%(約50%程度)である。
 よって、塩化物32の燃料70への供給量としては、ボイラ11など設備の腐食を考慮して石炭に対する塩化物の供給割合を約2000mg/Kg以下とするとよい。
 また、排ガス中の水銀を効率よく除去すると共に、システムの排水中の塩素濃度を考慮して、前記ボイラ11と脱硝装置13との間の排ガス中の塩素分濃度としては、1000ppm以下とするのが好ましい。
 このため、前記ボイラ11と脱硝装置13との間において塩化水素濃度を計測する塩化水素モニタ71を設置し、塩化物32の供給をフィードバック制御するようにしている。
 この結果、排ガス中の水銀を効率よく除去できると共に、排ガス中に噴霧する塩化水素濃度を1000ppm以下とすることで、脱硫装置16から外部に排出する処理排水51中の塩素分濃度を所定の環境放出基準値以下とすることができる。
 本発明においては、ボイラ11に供給する燃料70として石炭を用いる場合には瀝青炭を用いる以外に、PRB炭を用いることもできる。
 ここで、PRB(Powder. River Basin)炭とは、米国内で安価かつ豊富に得られるものであり、瀝青炭よりもその塩素分濃度が低く、約1/10程度である。
 よって、このような低塩素分の石炭の場合には、塩化水素の発生量が少ないので、本発明のように、回収希塩酸を再利用しない場合には、濃塩酸消費量が通常の瀝青炭を用いる場合より多量となる。しかしながら、本発明のように、濃塩酸(35%HCl)から塩化水素を発生した回収希塩酸(22%HCl)を中和して塩化物32とし、これをボイラ11で燃焼させて、塩化水素として補完することにより、希塩酸の再利用を図ると共に、濃塩酸の使用量を大幅に低減することができることとなる。
 本発明によれば、排ガス処理設備を備えた例えば発電所では、その排ガス処理の際に発生する副生成物として排出される希塩酸をそのままでは外部に廃棄処理せず、再利用して再度ボイラ内において塩化水素を発生させ、噴霧する塩化水素と共に排ガス中の水銀を酸化・除去することとなるので、その希塩酸を再利用して、リサイクル効率が大幅に向上することができる。
 また、ボイラ燃焼の燃料である石炭の炭種に応じて、含有する塩素量が大幅に変動することとなり、この結果、石炭の種類に応じて塩化水素の供給量が変動することとなるので、石炭の種類に応じて塩酸の消費量が異なる場合でも、回収希塩酸を再利用することで、塩化水素の発生量を調整することができる。
 このように、例えば小規模な発電プラントの場合に用いる濃塩酸が35t/日の場合に、その80%の約29t/日の希塩酸が発生するが、その希塩酸を塩酸中和槽で中和させて塩化物をボイラで燃焼させることで、希塩酸をタンクローリなどの排出手段を用いて外部へ搬出することが不要となり、廃棄処理コストが皆無となる。
 この結果、濃塩酸の購入費用のみとなり、排ガス中の水銀を除去する際に、運転コストが低い水銀除去システムを提供することができる。しかも、回収希塩酸を再利用して塩化物から塩化水素を発生して、補うこととなるので、搬入する濃塩酸の量も低減することとなり、従来よりも大幅なコストダウンを図ることとなる。
 しかも、水銀を処理するたびに発生していた回収希塩酸の処理コストが皆無となるので、ランニングコストの大幅な削減に寄与することとなる。
 次に、例えば発電量が600MW級の発電設備において、ボイラから排出する排ガス量が200万m3/hrの場合において、排ガス中の水銀を除去する場合に本発明を適用したものである。
 ここで、図2の排ガス処理システム10Aは、図1の排ガス処理システム10のボイラを石炭焚ボイラとしたものである。図3及び図4の排ガス処理システム10B及び10Cはその変形例である。また、図5の排ガス処理システム100Aは、比較例であり図7に示す従来技術の排ガス処理システム100の概略図である。なお、排ガス処理システムの構成は図1と同様であるので、重複した部分の説明は省略する。
 なお、図2~図4中、符号63は石灰石、64は石灰供給装置、65は石灰(炭酸カルシウム)である。
 図5に示す従来設備の排ガス処理システム100Aの場合には、排ガス量が200万m3/hrの場合、塩酸を再利用せずに、回収した希塩酸(22%HCl)を全て外部へ搬出する場合には、濃塩酸(35%HCl)の使用量は1.9t/hとなり、希塩酸(22%HCl)の排出量は1.5t/hとなる。この結果、その濃塩酸の購入費用と希塩酸の処理費用がかかることとなる。
 これに対し、本発明を適用した図2に示す排ガス処理システム10Aの場合には、濃塩酸の使用量は約1.3t/hと少なくなると共に、その廃棄コストが皆無となる。
 また、図3の排ガス処理システム10Bに示すように、脱硫装置16から排出される脱硫排水48の一部48Bを塩酸中和槽30に供給して、塩化物水溶液を希釈し、これをボイラで燃焼させることで、外部に排出する排水処理量が大幅に減少することができる。
 この脱硫排水48中には石灰石膏法により生じた塩化カルシウムが水溶液の状態で存在(約20000ppm)しているので、それを塩酸中和槽30に供給することで塩化物濃度を上昇させることができる。これにより、濃塩酸の供給量も1.0t/hと約2割程度低減することができる。
 なお、希釈量はボイラの運転に支障が生じない程度とし、約55~60%程度を希釈水として用いるようにしてもよい。
 また、脱硫排水48の代わりに、図4の排ガス処理システム10Cに示すように、処理排水51Bを塩酸中和槽30に供給するようにしてもよい。
 ここで、600MW級の発電設備において、本発明における濃塩酸(35%HCl)を購入して再利用する場合と、従来の濃塩酸を購入して希塩酸(22%HCl)を外部へ処理する場合との比較を、10年間運転したと想定した場合を示す。
 図5に示す従来設備の排ガス処理システム100A年の場合は、濃塩酸の購入費用が7.9億円/年であり、希塩酸の処理費用が4.1億円/年である。
 これに対し、図2に示す排ガス処理システム10Aの場合は、濃塩酸の購入費用が4.9億円/年であり、従来設備よりも濃塩酸の購入費用が約3億円/年の削減が可能となると共に、希塩酸の処理費用は皆無となる。よって、総合的には従来設備よりも7.1億円/年の削減が可能となる。
 また、図3に示す排ガス処理システム10Bの場合は、濃塩酸の購入費用が3.5億円/年であり、従来設備よりも濃塩酸の購入費用が約4.4億円/年の削減が可能となると共に、希塩酸の処理費用は皆無となる。よって、総合的には従来設備よりも8.5億円/年の削減が可能となる。
 この試算は10年間の運転をベースとしているので、それ以上15年、20年と運転が長期間になればさらなる削減が可能となる。
 また、従来設備の希塩酸を外部へ廃棄する場合には、希塩酸を発電所設備内に貯蔵する貯蔵タンクを耐酸性のタンクとする必要があるので、従来設備の建設コストも大幅に向上するものとなる。
 以上、本発明においては、燃料として石炭を用いた石炭焚ボイラについて説明したが、本発明はこれに限定されるものではなく、例えばRDF等の燃料や産業廃棄物等を燃焼させ、排ガス中に水銀が含有するような産業用ボイラ設備において、濃塩酸を気化して塩化水素を排ガス煙道に噴霧すると共に、その塩化水素を発生した残渣である希塩酸を中和し、塩化物を燃料と共にボイラで燃焼させて、塩化水素を発生させ、噴霧した塩化水素と共に、排ガス中の水銀を確実に除去するようにしてもよい。
 また、小規模及び中規模の産業ボイラにおいても、濃塩酸を気化させて塩化水素を発生させると共に、その回収希塩酸を中和して、その塩化物を産業ボイラで燃焼させることで塩化水素を別途発生させ、噴霧する第1の塩化水素の発生量を補完することができるので、別途外部へ排出して再利用する場合に比べて、その産業ボイラ設備内でリサイクルが完結することとなりリサイクル効率が大幅に向上することとなる。
 以上のように、本発明に係る塩化水素供給装置は、廃棄物として排出される希塩酸を中和して塩化物とし、それをボイラで燃焼させることで塩化水素として再利用することができ、発電所における排ガス処理の塩酸処理に用いて適している。

Claims (6)

  1.  産業ボイラからの排ガス中の窒素酸化物を除去すると共に、排ガス中に塩化水素を噴霧して水銀を酸化する脱硝装置と、
     脱硝後の排ガス中の硫黄酸化物を除去する脱硫装置と、
     脱硫後のガスを外部に排出する煙突と、
     濃塩酸を供給して塩化水素を発生させる塩酸気化装置と、
     前記塩酸気化装置から排出される希塩酸又は前記濃塩酸のいずれか一方又は両方をアルカリ剤で中和する塩酸中和槽とを具備してなり、
     前記中和後の塩化物を燃料に供給した後に産業ボイラで燃焼させ、排ガス中に塩化水素を発生させて噴霧した塩化水素と共に水銀を除去することを特徴とする排ガス処理システム。
  2.  石炭焚ボイラからの排ガスに塩化水素を噴霧する噴霧装置と、
     塩化水素噴霧後の排ガス中の窒素酸化物を除去すると共に、水銀を酸化する脱硝装置と、
     窒素酸化物除去後のガス中の熱を回収するエアヒータと、
     熱回収後のガス中の煤塵を除去する集塵機と、
     除塵後のガス中の硫黄酸化物を除去する脱硫装置と、
     脱硫後のガスを外部に排出する煙突と、
     濃塩酸を供給して塩化水素を発生させる塩酸気化装置と、
     前記塩酸気化装置から排出される希塩酸又は前記濃塩酸のいずれか一方又は両方をアルカリ剤で中和する塩酸中和槽とを具備してなり、
     中和後の塩化物を石炭供給装置に供給して石炭と混合した後に石炭焚ボイラで燃焼させ、排ガス中に塩化水素を発生させて噴霧した塩化水素と共に水銀を除去することを特徴とする排ガス処理システム。
  3.  請求項1又は2において、
     前記脱硫装置から排出される脱硫排水又は脱硫排水から重金属類を除去した処理排水を塩酸中和槽に供給してなることを特徴とする排ガス処理システム。
  4.  請求項1乃至3のいずれか一つにおいて、
     前記ボイラと脱硝装置との間において塩化水素濃度を計測する塩化水素モニタを有し、塩化物の供給をフィードバック制御することを特徴とする排ガス処理システム。
  5.  請求項1乃至4のいずれか一つにおいて、
     前記ボイラと脱硝装置との間の排ガス中の塩素分濃度が1000ppm以下であることを特徴とする排ガス処理システム。
  6.  産業ボイラからの排ガス中の窒素酸化物を除去しつつ、排ガス中に塩化水素を噴霧して水銀を酸化すると共に、
     前記塩化水素を発生させた後に排出される希塩酸をアルカリ剤で中和し、
     その後中和後の塩化物を燃料に供給した後にボイラで燃焼させ、排ガス中に塩化水素を発生させて噴霧した塩化水素と共に水銀を除去することを特徴とする排ガス中の水銀除去方法。
PCT/JP2008/071052 2008-04-25 2008-11-19 排ガス処理システム及び排ガス中の水銀除去方法 WO2009130815A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2719520A CA2719520C (en) 2008-04-25 2008-11-19 Air pollution control system and method for removing mercury in flue gas
EP08874032A EP2269714A4 (en) 2008-04-25 2008-11-19 SYSTEM FOR THE TREATMENT OF EXHAUST GAS AND METHOD FOR REMOVING MERCURY FROM EXHAUST GAS
CN2008801288184A CN102015070B (zh) 2008-04-25 2008-11-19 废气处理系统及除去废气中汞的方法
KR1020107021260A KR101229680B1 (ko) 2008-04-25 2008-11-19 배기 가스 처리 시스템 및 배기 가스 중의 수은 제거 방법
BRPI0822538A BRPI0822538A2 (pt) 2008-04-25 2008-11-19 sistema de controle de poluição de ar, e, método para remover mercúrio em gás residual
HK11104445.0A HK1150395A1 (en) 2008-04-25 2011-05-04 System for treating discharge gas and method of removing mercury from discharge gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-116350 2008-04-25
JP2008116350A JP5484689B2 (ja) 2008-04-25 2008-04-25 排ガス処理システム及び排ガス中の水銀除去方法

Publications (1)

Publication Number Publication Date
WO2009130815A1 true WO2009130815A1 (ja) 2009-10-29

Family

ID=41215206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/071052 WO2009130815A1 (ja) 2008-04-25 2008-11-19 排ガス処理システム及び排ガス中の水銀除去方法

Country Status (11)

Country Link
US (1) US7704472B2 (ja)
EP (1) EP2269714A4 (ja)
JP (1) JP5484689B2 (ja)
KR (1) KR101229680B1 (ja)
CN (1) CN102015070B (ja)
BR (1) BRPI0822538A2 (ja)
CA (1) CA2719520C (ja)
CL (1) CL2009000204A1 (ja)
HK (1) HK1150395A1 (ja)
SA (1) SA109300066B1 (ja)
WO (1) WO2009130815A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012011317A (ja) * 2010-06-30 2012-01-19 Mitsubishi Heavy Ind Ltd 排ガス中の水銀処理システム
CN103068469A (zh) * 2010-10-15 2013-04-24 三菱重工业株式会社 废气中的汞的处理系统

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5350996B2 (ja) * 2009-11-25 2013-11-27 バブコック日立株式会社 酸素燃焼システムの排ガス処理装置
PL2540378T3 (pl) 2010-02-25 2017-05-31 Mitsubishi Heavy Industries, Ltd. Układ do obróbki gazów spalinowych i sposób obróbki gazów spalinowych
CN102500208A (zh) * 2011-11-18 2012-06-20 山东大学 一种湿法烟气脱硫废水的利用方法和装置
US20140079615A1 (en) * 2012-09-14 2014-03-20 Mitsubishi Heavy Industries, Ltd. Exhaust gas treatment system and a method of treating exhaust gas
CN104437031A (zh) * 2014-11-05 2015-03-25 朱忠良 一种冶铁烟气处理方法
SG10201709322PA (en) * 2015-02-18 2018-01-30 Jfe Eng Corp Apparatus for treatment of waste gas and method for treating the same
US10399878B2 (en) * 2015-03-19 2019-09-03 Mitsubishi Heavy Industries Engineering, Ltd. Water treatment system and power generation facility
JP6637682B2 (ja) 2015-06-18 2020-01-29 三菱日立パワーシステムズ株式会社 石炭焚ボイラ用排ガス処理装置と石炭焚ボイラ用排ガス処理方法
CN105879622A (zh) * 2016-05-12 2016-08-24 大唐环境产业集团股份有限公司 一种实现近零排放的两段式脱硝装置及方法
JP6703748B2 (ja) * 2016-09-12 2020-06-03 Jfeエンジニアリング株式会社 排ガス処理装置及び排ガス処理方法
EP3351505A1 (de) * 2017-01-20 2018-07-25 Covestro Deutschland AG Verfahren zur flexiblen steuerung der verwendung von salzsäure aus chemischer produktion
CN110997111B (zh) * 2017-07-06 2022-09-27 埃科莱布美国股份有限公司 增强的汞氧化剂注入
CN108164074A (zh) * 2018-01-30 2018-06-15 四川思达能环保科技有限公司 一种金属氯化物废水处理系统及方法
CN108704455A (zh) * 2018-07-05 2018-10-26 安徽顺达环保科技股份有限公司 一种烟气脱硫脱硝除尘工艺
KR102166989B1 (ko) * 2018-10-17 2020-10-16 한국생산기술연구원 가압 순산소 연소 회분에서의 인 회수 시스템
KR102186251B1 (ko) * 2019-03-29 2020-12-03 한국동서발전(주) 탈황공정수 재순환방법
CN110841481A (zh) * 2019-12-12 2020-02-28 北京京诚科林环保科技有限公司 一种烧结烟气双加热scr脱硝方法及系统
KR102201771B1 (ko) 2019-12-26 2021-01-13 대구대학교 산학협력단 화력발전소 scr 반응기에서 금속수은 산화 촉진을 위한 염화암모늄 주입장치 및 이를 이용한 주입방법
KR102404379B1 (ko) 2021-11-29 2022-05-31 대구대학교 산학협력단 고체상의 염화암모늄의 열분해를 이용한 원소수은 산화 및 질소산화물 제거 장치 및 이를 이용한 원소수은 산화 및 질소산화물 제거방법
CN114377531A (zh) * 2022-01-19 2022-04-22 中建中环工程有限公司 一种燃煤锅炉烟气脱硫脱硝协同处理系统及处理方法
KR20240076237A (ko) 2022-11-23 2024-05-30 대구대학교 산학협력단 가스상 수은의 흡착제거를 위한 황기능화 바이오차 및 이의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10230137A (ja) 1997-02-19 1998-09-02 Mitsubishi Heavy Ind Ltd 排ガス処理方法及び排ガス処理装置
JP2000325747A (ja) * 1999-05-19 2000-11-28 Babcock Hitachi Kk 石炭類の燃焼排ガス中の水銀除去方法および装置
JP2006263700A (ja) * 2005-02-28 2006-10-05 Mitsubishi Heavy Ind Ltd 排ガス中の水銀除去システムおよび除去方法
JP2007167743A (ja) * 2005-12-21 2007-07-05 Mitsubishi Heavy Ind Ltd 水銀除去システムおよび水銀除去方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2114331C (en) * 1993-06-10 2000-03-28 Bernard J. Lerner Removal of mercury and cadmium and their compounds from incinerator flue gases
US6503470B1 (en) * 1999-03-31 2003-01-07 The Babcock & Wilcox Company Use of sulfide-containing liquors for removing mercury from flue gases
CN1923337A (zh) * 2006-08-23 2007-03-07 浙江大学 锅炉烟气多种污染物臭氧氧化同时脱除装置及其方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10230137A (ja) 1997-02-19 1998-09-02 Mitsubishi Heavy Ind Ltd 排ガス処理方法及び排ガス処理装置
JP3935547B2 (ja) 1997-02-19 2007-06-27 三菱重工業株式会社 排ガス処理方法及び排ガス処理装置
JP2000325747A (ja) * 1999-05-19 2000-11-28 Babcock Hitachi Kk 石炭類の燃焼排ガス中の水銀除去方法および装置
JP3698916B2 (ja) 1999-05-19 2005-09-21 バブコック日立株式会社 石炭類の燃焼排ガス中の水銀除去方法および装置
JP2006263700A (ja) * 2005-02-28 2006-10-05 Mitsubishi Heavy Ind Ltd 排ガス中の水銀除去システムおよび除去方法
JP2007167743A (ja) * 2005-12-21 2007-07-05 Mitsubishi Heavy Ind Ltd 水銀除去システムおよび水銀除去方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2269714A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012011317A (ja) * 2010-06-30 2012-01-19 Mitsubishi Heavy Ind Ltd 排ガス中の水銀処理システム
CN103068469A (zh) * 2010-10-15 2013-04-24 三菱重工业株式会社 废气中的汞的处理系统
US8999047B2 (en) 2010-10-15 2015-04-07 Mitsubishi Hitachi Power Systems, Ltd. System for processing mercury in flue gas
CN103068469B (zh) * 2010-10-15 2015-11-25 三菱日立电力系统株式会社 废气中的汞的处理系统

Also Published As

Publication number Publication date
US20090269262A1 (en) 2009-10-29
EP2269714A4 (en) 2011-11-23
HK1150395A1 (en) 2011-12-23
JP5484689B2 (ja) 2014-05-07
US7704472B2 (en) 2010-04-27
JP2009262081A (ja) 2009-11-12
CN102015070B (zh) 2013-09-04
CA2719520A1 (en) 2009-10-29
KR101229680B1 (ko) 2013-02-04
EP2269714A1 (en) 2011-01-05
CN102015070A (zh) 2011-04-13
CL2009000204A1 (es) 2009-08-07
CA2719520C (en) 2012-05-01
SA109300066B1 (ar) 2013-07-23
BRPI0822538A2 (pt) 2019-09-24
KR20100131461A (ko) 2010-12-15

Similar Documents

Publication Publication Date Title
JP5484689B2 (ja) 排ガス処理システム及び排ガス中の水銀除去方法
WO2009093576A1 (ja) 石炭焚ボイラの排ガス処理システム及びその運転方法
US6503470B1 (en) Use of sulfide-containing liquors for removing mercury from flue gases
EP2540378B1 (en) Exhaust gas treatment system, and exhaust gas treatment method
WO2009093574A1 (ja) 石炭焚ボイラの排ガス処理システム及び方法
US7037474B2 (en) Use of sulfide-containing liquors for removing mercury from flue gases
WO2011104841A1 (ja) 排ガス処理システム及び排ガス処理方法
JP5675364B2 (ja) 湿式煙道ガス脱硫システムにおける水銀保持を促進する方法
JP6637682B2 (ja) 石炭焚ボイラ用排ガス処理装置と石炭焚ボイラ用排ガス処理方法
JP5972983B2 (ja) 排ガス処理システム及び排ガス処理方法
JP6095923B2 (ja) 排ガス中の水銀処理システム
JP2001347131A (ja) 燃焼排ガス中の有害物の除去方法と装置
WO2012176635A1 (ja) 排ガス処理装置及び排ガス処理装置のorp制御方法
JP2009166013A (ja) 石炭焚ボイラの排ガス処理システム
KR100660234B1 (ko) 소결 배기가스의 건식 청정 시스템 및 건식 청정 방법
JP4944946B2 (ja) 焼却プラント中で窒素酸化物および有機化合物を低減させる方法及び装置
JP2016120438A (ja) 湿式脱硫装置及び湿式脱硫方法
JP4942559B2 (ja) 排ガス浄化剤及び有害微量元素を捕捉する方法
WO2014041951A1 (ja) 排ガス中の水銀処理システム
JP2012213744A (ja) 排ガス処理装置及び処理方法、石炭改質プロセス設備
JPWO2014084054A1 (ja) 排ガス処理装置および排ガス処理方法
JP5299600B2 (ja) 排ガス処理方法及び排ガス処理装置
CN217220893U (zh) 危废焚烧烟气全流程超低排放净化系统
JP2024084323A (ja) 排水処理支援装置及び排水処理システム
JP2013215689A (ja) 排ガス処理方法と装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880128818.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08874032

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2719520

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20107021260

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2008874032

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008874032

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 6809/CHENP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0822538

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101021