WO2012176635A1 - 排ガス処理装置及び排ガス処理装置のorp制御方法 - Google Patents
排ガス処理装置及び排ガス処理装置のorp制御方法 Download PDFInfo
- Publication number
- WO2012176635A1 WO2012176635A1 PCT/JP2012/064819 JP2012064819W WO2012176635A1 WO 2012176635 A1 WO2012176635 A1 WO 2012176635A1 JP 2012064819 W JP2012064819 W JP 2012064819W WO 2012176635 A1 WO2012176635 A1 WO 2012176635A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid
- exhaust gas
- oxidation
- wet desulfurization
- reduction
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J15/00—Arrangements of devices for treating smoke or fumes
- F23J15/02—Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/869—Multiple step processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/48—Sulfur compounds
- B01D53/50—Sulfur oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8621—Removing nitrogen compounds
- B01D53/8625—Nitrogen oxides
- B01D53/8631—Processes characterised by a specific device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8665—Removing heavy metals or compounds thereof, e.g. mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/96—Regeneration, reactivation or recycling of reactants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J2215/00—Preventing emissions
- F23J2215/20—Sulfur; Compounds thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J2215/00—Preventing emissions
- F23J2215/60—Heavy metals; Compounds thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J2219/00—Treatment devices
- F23J2219/40—Sorption with wet devices, e.g. scrubbers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Definitions
- the present invention relates to an exhaust gas treatment device for removing mercury contained in exhaust gas from a boiler and an ORP control method for the exhaust gas treatment device.
- exhaust gas discharged from boilers which are combustion devices such as thermal power plants, may contain metal mercury (Hg 0 ) in addition to soot, sulfur oxides (SOx) and nitrogen oxides (NOx)
- Hg 0 metal mercury
- SOx sulfur oxides
- NOx nitrogen oxides
- a boiler is provided with a wet desulfurization device for removing sulfur content in exhaust gas.
- a desulfurization device for removing sulfur content in exhaust gas.
- divalent mercury oxide is soluble in water, mercury may be easily collected by the desulfurization device. Widely known.
- mercury oxide (Hg 2+ ) is adsorbed and absorbed in lime gypsum slurry absorbing liquid (hereinafter also referred to as “slurry”, “slurry absorbing liquid” or “alkali absorbing liquid”). Fixed and removed mercury. At this time, by adding an oxidizing agent to the slurry absorbing liquid, the slurry absorbing liquid is brought into an oxidized state to prevent reduction of mercury oxide (Hg 2+ ) (Hg 2+ ⁇ Hg 0 ), and to the gas phase.
- a method for suppressing re-scattering of zero-valent mercury (Hg 0 ) has been proposed (see, for example, Patent Document 1).
- oxidation reduction potential (ORP) value is 100 mV or more and 200 mV or less
- ORP oxidation reduction potential
- the present invention has been made in view of the above, and it is possible to efficiently remove mercury contained in exhaust gas from a boiler, and to suppress oxidation inhibition in desulfurization, and an ORP of the exhaust gas treatment device.
- An object is to provide a control method.
- an exhaust gas treatment apparatus generates hydrogen chloride and ammonia when vaporized in a flue for exhausting exhaust gas from a boiler.
- the sulfur oxides and mercury oxidized in the reductive denitration device are absorbed and removed by the absorption liquid, the redox potential meter for measuring the redox potential of the absorption liquid, and the wet desulfurization apparatus.
- a solid-liquid separation means for separating the solid and mercury in the desulfurization effluent and the liquid, and a separation liquid return line for returning the separated liquid separated by the solid-liquid separation means to the wet desulfurization apparatus;
- An oxidant supply means for supplying an oxidant to the separation liquid returned to the wet desulfurization apparatus; and a control means for controlling the oxidation-reduction potential of the absorption liquid by adjusting the supply amount of the oxidant.
- the exhaust gas treatment apparatus according to claim 2 of the present invention is the exhaust gas treatment apparatus according to claim 1, wherein the separation liquid is a dehydrated filtrate separated by the solid-liquid separation means, or a heavy metal is removed from the dehydrated filtrate. It is a liquid.
- the exhaust gas treatment apparatus according to claim 3 of the present invention is the exhaust gas treatment apparatus according to claim 1 or 2, wherein the control means sets the oxidation-reduction potential of the absorption liquid to a range of 100 mV to 200 mV, or in the absorption liquid.
- the sulfite ion is controlled to be 0.1 mmol / L or more and 2.0 mmol / L or less.
- An exhaust gas treatment apparatus is the exhaust gas treatment apparatus according to any one of the first to third aspects, wherein the oxidant is mixed with the dehydrated filtrate or one or both of the treatment liquids.
- the control means measures the oxidation-reduction potential of the mixed liquid, Supplying an oxidizing agent to the mixed solution to control the oxidation-reduction potential of the mixed solution to a range of 100 mV to 200 mV, or controlling the sulfite ion in the mixed solution to 0.1 mmol / L to 2.0 mmol / L. It is characterized by.
- the ORP control method of the exhaust gas treatment apparatus according to claim 5 of the present invention is a reduction in which a reduction oxidation assistant that generates hydrogen chloride and ammonia when vaporized is supplied into a flue that exhausts exhaust gas from a boiler.
- An oxidizing aid supplying step a reducing denitration step having a denitration catalyst that reduces nitrogen oxides in the exhaust gas with ammonia and oxidizes mercury in the presence of hydrogen chloride, sulfur oxides in the exhaust gas and the reductive denitration Wet desulfurization step of absorbing and removing mercury oxidized in the process by the absorption liquid, oxidation-reduction potential measurement step of measuring the oxidation-reduction potential of the absorption liquid, solid content in the desulfurization effluent discharged from the wet desulfurization process, and A solid-liquid separation step for separating mercury from a liquid component, a separation liquid returning step for returning the separation liquid separated in the solid-liquid separation step to the wet desulfurization step, and the wet desulfurization step And having an oxidizing agent supply step of supplying an oxidizing agent to the separated liquid to be returned, and a control step of controlling the redox potential of the absorbing solution by adjusting the supply amount of the oxidizing agent.
- ORP control method for an exhaust gas treatment apparatus is the above-described ORP control method according to claim 5, wherein the separation liquid removes heavy metals from the dehydrated filtrate separated in the solid-liquid separation step or the dehydrated filtrate. It is characterized by being the processed liquid.
- the ORP control method for an exhaust gas treatment apparatus is the above-described ORP control method according to claim 5 or 6, wherein the control step sets the oxidation-reduction potential of the absorption liquid to a range of 100 mV to 200 mV, or The sulfite ion in the absorbing solution is controlled to be 0.1 mmol / L or more and 2.0 mmol / L or less.
- the ORP control method for an exhaust gas treatment apparatus is the ORP control method according to any one of claims 5 to 7, wherein either or both of the oxidizing agent, the dehydrated filtrate, and the treatment liquid are used.
- a mixing step for mixing, and a mixed solution returning step for returning the mixed solution mixed in the mixing step to the wet desulfurization step, and the control step sets the oxidation-reduction potential of the mixed solution. Measure and supply an oxidizing agent to the mixed solution so that the redox potential of the mixed solution is in the range of 100 mV to 200 mV, or the sulfite ion in the mixed solution is 0.1 mmol / L to 2.0 mmol / L It is characterized by controlling to.
- the exhaust gas treatment device and the ORP control method of the exhaust gas treatment device of the present invention it is possible to efficiently remove mercury contained in the exhaust gas from the boiler and to suppress the oxidation inhibition in the desulfurization.
- FIG. 1 is a configuration diagram of an exhaust gas treatment apparatus according to the first embodiment.
- FIG. 2 is a configuration diagram of the exhaust gas treatment apparatus according to the second embodiment.
- FIG. 3 is a configuration diagram of the exhaust gas treatment apparatus according to the third embodiment.
- FIG. 4 is a configuration diagram of the exhaust gas treatment apparatus according to the fourth embodiment.
- FIG. 5 is a configuration diagram of the exhaust gas treatment apparatus according to the fourth embodiment.
- FIG. 6 is a configuration diagram of the exhaust gas treatment apparatus according to the fourth embodiment.
- FIG. 1 is a schematic configuration diagram of an exhaust gas treatment apparatus 10A according to the present embodiment.
- the exhaust gas treatment device 10 ⁇ / b> A according to the present embodiment is an exhaust gas treatment device 10 ⁇ / b> A that removes NOx, SOx, and Hg contained in the exhaust gas 22 generated from the boiler 11.
- the exhaust gas 22 discharged from the boiler 11 that combusts the fuel 21 is purified through the processes in the reduction denitration device 12, the air preheater 13, the dust collector 14, and the wet desulfurization device 15, and then the chimney 16. Discharged to the outdoors.
- the exhaust gas treatment apparatus 10 ⁇ / b> A includes a reduction oxidation aid supply means 31 for spraying an NH 4 Cl solution containing ammonium chloride (NH 4 Cl) as the reduction oxidation aid 32 in the flue 23 downstream of the boiler 11, and the exhaust gas 22.
- a reduction oxidation aid supply means 31 for spraying an NH 4 Cl solution containing ammonium chloride (NH 4 Cl) as the reduction oxidation aid 32 in the flue 23 downstream of the boiler 11, and the exhaust gas 22.
- a reduction denitration device 12 having a denitration catalyst that oxidizes metallic mercury (Hg 0 ) in the presence of HCl gas, and an air preheater (AH) that exchanges heat between the denitrated exhaust gas 22 : Air heater) 13, dust collector (ESP: Electrostatic Precipitator) 14 for removing dust in the denitrated exhaust gas 22, SOx in the exhaust gas 22, and divalent Hg 2 oxidized in the reductive denitration device 12 + a a wet desulfurization system 15 be removed using lime gypsum slurry (alkaline absorbing solution) 34, the lime gypsum slurry 34 used for desulfurization reaction is extracted from the bottom of the column 15a, is solids A solid-liquid separation means 41 for solid-liquid separation and silver dehydrated cake containing (HgSO 4, etc.) (gypsum) 42 separated liquid (dehydrated filtrate) 46 and, separated separated liquid (dehydrated filtrate) 46 Separati
- the oxidant 53 is supplied from the oxidant supply means 52 to the wastewater treatment device 43 that performs wastewater treatment such as pH adjustment of the dehydrated filtrate) 36 and the separated separation liquid (dehydrated filtrate) 46 that is returned to the wet desulfurization device 15.
- the control means 51 which supplies and controls while measuring the oxidation-reduction potential of the lime gypsum slurry (alkaline absorption liquid) 34 with the oxidation-reduction potentiometer 54 is comprised.
- V 1 and V 2 indicate open / close valves.
- the reductive oxidation aid supplying means 31 uses a reductive denitration device 12 as a reductive oxidation aid 32 on the downstream side of the boiler 11 with an NH 4 Cl solution containing ammonium chloride (NH 4 Cl) adjusted to a predetermined concentration in the solution tank. Is supplied into the flue 23 on the upstream side.
- the reduction oxidation aid 32 is used as an example of the reduction oxidation aid 32, but this embodiment is not limited to this, and the reduction oxidation aid 32 is oxidized with an oxidizing gas when vaporized. Any substance capable of producing reducing gas can be used.
- the reduction oxidation assistant 32 is an oxidation (Hg 0 ⁇ Hg 2+ ) of metallic mercury (Hg 0 ) contained in the exhaust gas 22 in the presence of an oxidizing gas (HCl gas) on the denitration catalyst. ) And an oxidizing aid used to reduce NOx contained in the exhaust gas 22 with a denitration catalyst using a reducing gas.
- HCl gas is used as the oxidizing gas
- NH 3 gas is used as the reducing gas.
- the NH 4 Cl solution is supplied from the reduction oxidation aid supply means 31 to the exhaust gas 22 discharged from the boiler 11.
- the reduction oxidation auxiliary agent supply means 31 sprays the NH 4 Cl solution in a liquid state on the exhaust gas 22 and is contained in the exhaust gas 22 on the denitration catalyst filled in the denitration catalyst layer filled in the reduction denitration device 12. NOx is reduced and Hg 0 is oxidized.
- the droplets of the NH 4 Cl solution sprayed into the flue 23 from the nozzle head of the spraying device are evaporated and vaporized by the high-temperature atmosphere temperature of the exhaust gas 22 to generate fine NH 4 Cl solid particles. As in (3), it decomposes into HCl and NH 3 and sublimes. Accordingly, the NH 4 Cl solution sprayed from the spray device is decomposed to generate HCl and NH 3 , and NH 3 gas and HCl gas can be supplied into the flue 23.
- NH 3 gas acts as a reducing agent
- HCl gas acts as a mercury chlorinating agent (oxidation aid). That is, on the denitration catalyst filled in the reductive denitration apparatus 12, NH 3 gas undergoes a reduction reaction with NOx in the exhaust gas 22 as shown in the following equation (4), and HCl gas as shown in the following equation (5). In addition, the oxidation reaction proceeds with Hg 0 in the exhaust gas 22.
- HCl gas reductively denitrates NH 3 on a denitration catalyst, oxidizes metallic mercury (Hg 0 ) (Hg 0 ⁇ Hg 2+ ) to form water-soluble mercury chloride (HgCl 2 ), and is installed on the downstream side
- the wet desulfurization apparatus 15 dissolves HgCl 2 in water to remove mercury contained in the exhaust gas 22.
- ammonium halides such as ammonium bromide (NH 4 Br) and ammonium iodide (NH 4 I) other than NH 4 Cl were used as the reduction oxidation aid 32, and a solution dissolved in water was used. It may be used. Further, a mixed solution of NH 4 Cl and aqueous ammonia or hydrochloric acid may be used.
- a gas for example, hydrogen chloride gas and ammonia gas
- an oxidation aid and a reduction agent may be supplied.
- An HCl solution can be exemplified as the oxidation aid, but the present embodiment is not limited to this, and the oxidation aid can be used as long as it generates an oxidizing gas when vaporized. .
- Examples thereof include hydrogen halides such as hydrogen bromide (HBr) and hydrogen iodide (HI).
- HBr hydrogen bromide
- HI hydrogen iodide
- the oxidation aid has been described as a liquid, the present invention is not limited to this, and a gas (for example, hydrogen chloride gas) may be supplied.
- NH 3 solution can be exemplified as the reducing agent, but the present embodiment is not limited to this, and any reducing agent that generates a reducing gas when vaporized can be used.
- any reducing agent that generates a reducing gas when vaporized can be used.
- urea ((NH 2 ) 2 CO) can be used.
- the reducing agent has been described as a liquid, the present invention is not limited to this, and a gas (for example, ammonia gas) may be supplied.
- a two-fluid nozzle or the like may be used as a means for supplying the NH 4 Cl solution, the HCl solution, and the NH 3 solution into the flue 23 of the boiler 11, for example, a two-fluid nozzle or the like may be used.
- a present Example is not limited to this, You may use the injection nozzle for normal liquid spraying.
- the supply amounts of the NH 4 Cl solution, the HCl solution, and the NH 3 solution can be arbitrarily adjusted.
- the temperature of the exhaust gas 22 in the flue 23 depends on the combustion conditions of the boiler 11, it is preferably 320 ° C. or higher and 420 ° C. or lower, more preferably 320 ° C. or higher and 380 ° C. or lower, and further preferably 350 ° C. or higher and 380 ° C. or lower. . This is because NOx denitration reaction and Hg oxidation reaction can be efficiently generated on the denitration catalyst in these temperature zones.
- any one or more of the reducing oxidation assistant (NH 4 Cl solution) 32, the oxidation assistant (HCl solution), and the reducing agent (NH 3 solution) are provided on the downstream side of the boiler 11. It can be supplied into the flue 23 on the upstream side of the reductive denitration device 12.
- the HCl component is insufficient in the NH 4 Cl solution due to the content of the exhaust gas 22 component
- two of the NH 4 Cl solution and the HCl solution may be supplied, or when the HN 3 component is insufficient May supply two of NH 4 Cl solution and NH 3 solution.
- two of an HCl solution and an NH 3 solution may be supplied.
- the supply amounts of the NH 4 Cl solution, the HCl solution, and the NH 3 solution are obtained by determining the contents of NOx, SOx, and Hg contained in the exhaust gas 22, respectively. , Can be adjusted by its value.
- FIG. 1 shows a configuration in which the reduction oxidation assistant (NH 4 Cl solution) 32 is supplied.
- the present invention is not limited to this, and the above three solutions are mixed and supplied. May be.
- a solution in which the reduction oxidation aid 32 is dissolved a solution in which the reduction agent is dissolved, and a solution in which the oxidation aid (mercury chlorinating agent) is dissolved. Further, a plurality of these may be mixed and supplied.
- the reductive denitration device 12 has a denitration catalyst (not shown) that reduces NOx in the exhaust gas 22 with NH 3 gas and oxidizes metallic mercury (Hg 0 ) in the presence of HCl gas.
- the exhaust gas 22 contains, for example, HCl gas and NH 3 gas generated from droplets of the NH 4 Cl solution sprayed into the flue 23 from the reducing oxidation assistant supply means 31, The reduced denitration device 12 is fed.
- NH 3 gas generated by decomposition of NH 4 Cl is used for NOx reductive denitration, and HCl gas is used for Hg oxidation, and NOx and Hg are removed from the exhaust gas 22.
- NH 3 gas reduces and denitrates NOx as in the following formula (6) on the denitration catalyst filled in the denitration catalyst layer filled in the reductive denitration device 12, and HCl gas represents the following formula (7 Hg is oxidized (chlorinated) as shown in FIG. 4NO + 4NH 3 + O 2 ⁇ 4N 2 + 6H 2 O (6) Hg + 1 / 2O 2 + 2HCl ⁇ HgCl 2 + H 2 O (7)
- the reduction denitration device 12 includes one denitration catalyst layer, but the present embodiment is not limited to this, and the reduction denitration device 12 appropriately changes the number of denitration catalyst layers according to the denitration performance. be able to.
- the exhaust gas 22 removes the dust in the exhaust gas 22 after the heat recovery, the air preheater 13 that recovers the heat in the exhaust gas 22.
- ESP dust collector
- the dust collector 14 include, but are not limited to, an inertial dust collector, an electric dust collector, a centrifugal dust collector, a filtration dust collector, and a cleaning dust collector.
- the wet desulfurization apparatus 15 removes SOx and oxidized divalent Hg 2+ in the exhaust gas 22 after removing the dust in a wet manner.
- the exhaust gas 22 is fed from the wall surface side of the tower bottom in the apparatus main body, and the lime gypsum slurry 34 used as the alkali absorption liquid is supplied from the lime gypsum slurry supply means 33 into the apparatus main body from the slurry absorption liquid supply line. And jetted from the nozzle 15c toward the tower top side 15b.
- the exhaust gas 22 rising from the bottom side in the apparatus main body and the lime gypsum slurry 34 jetted from the nozzle 15 c are brought into gas-liquid contact with each other, and HgCl 2 and SOx in the exhaust gas 22 are in a lime gypsum slurry 34. It is absorbed in, separated and removed from the exhaust gas 22, and the exhaust gas 22 is purified.
- the exhaust gas 22 purified by the lime gypsum slurry 34 is discharged from the tower top side 15b, and then discharged from the chimney 16 to the outside (hereinafter referred to as “outside of the system”) as the treated exhaust gas 24.
- Lime gypsum slurry 34 used for the desulfurization reaction of the exhaust gas 22 is supplied to the tower bottom 15a of the wet desulfurization apparatus 15 from the slurry absorbent supply line.
- a pumped liquid (L 1 ) of liquid stored in the tower bottom 15 a of the apparatus main body of the wet desulfurization apparatus 15 is used as the lime gypsum slurry 34.
- SOx in the exhaust gas 22 reacts with lime (CaCO 3 ) in the lime-gypsum slurry 34 as shown in the following formula (8).
- the lime-gypsum slurry 34 that has absorbed SOx in the exhaust gas 22 is mixed with water 35 supplied into the apparatus main body and oxidized by an oxidant (air) 53 supplied to the tower bottom 15a of the apparatus main body.
- the lime gypsum slurry 34 that has flowed down in the apparatus main body undergoes a reaction such as the following formula (9) with water 35 and an oxidizing agent (air) 53.
- lime gypsum slurry 34 is used as the alkali absorbing liquid, but other solutions can be used as the alkali absorbing liquid as long as it can absorb HgCl 2 in the exhaust gas 22.
- the alkali absorbing solution other than the lime gypsum method include sodium hydroxide solution, sodium sulfite solution, ammonia water, magnesium hydroxide solution and the like.
- a method for promoting the removal of mercury for example, a method of mixing a chelating agent or a polymer flocculant as a heavy metal scavenger can be used in combination.
- the supply method of the lime gypsum slurry 34 is not limited to the method of jetting from the nozzle 15c toward the tower top side 15b.
- the lime gypsum slurry 34 may flow down from the nozzle 15c so as to face the exhaust gas 22.
- the solid-liquid separation means 41 is provided on the downstream side of the wet desulfurization apparatus 15.
- the solid-liquid separation means 41 extracts the lime-gypsum slurry 34 used for the desulfurization reaction stored in the tower bottom 15a of the wet desulfurization apparatus 15 from the tower bottom 15a (L 2 ), and mercury chloride which is a solid content by solid-liquid separation processing. It is separated into a dehydrated cake (gypsum) 42 containing (HgCl 2 ) and a separation liquid (dehydrated filtrate) 46 which is a liquid component.
- the solid-liquid separation means 41 for example, a belt filter, a gravity precipitation concentration tank, a liquid cyclone, a centrifuge, a decanter type centrifugal sedimentator, or the like is used.
- the separated dehydrated cake (gypsum) 42 is discharged out of the system of the exhaust gas treatment apparatus 10A. Further, the separation liquid (dehydrated filtrate) 46 is returned to the wet desulfurization system 15 through the separated liquid return line L 4, it is reused.
- the remaining separation liquid (dehydrated filtrate) 36 that has not been reused is fed (L 3 ) to the wastewater treatment device 43 and subjected to wastewater treatment.
- a waste water treatment device 43 is provided on the downstream side of the solid-liquid separation means 41.
- the waste water treatment device 43 removes suspended matter, heavy metals, mercury, etc. 44 in the remaining separation liquid (dehydrated filtrate) 36 that has not been returned from the solid-liquid separation means 41 to the wet desulfurization apparatus 15.
- the suspended matter, heavy metal, mercury, etc. 44 in the removed separated liquid (dehydrated filtrate) 36 are discharged out of the system.
- the treatment liquid from which the suspended matter, heavy metal, mercury, and the like 44 have been removed is subjected to wastewater treatment such as pH adjustment. This waste water-treated treatment liquid is treated as waste water 45.
- Examples of the treatment method of the suspended matter, heavy metal, mercury and the like 44 in the waste water treatment apparatus 43 include a precipitation method, an ion exchange method, an adsorption method, and the like.
- Examples of the precipitation method include, for example, a method using a mixed liquid of ferrous sulfate and sodium sulfide (precipitation method), a chelating agent or an aggregating agent as a heavy metal scavenger, or a method using “mercury chelate” which selectively reacts with mercury.
- Examples of the ion exchange method include a method using an ion exchanger.
- Examples of the adsorption method include activated carbon adsorption, a method using a chelate resin, and the like. The present embodiment is not limited to the above processing method.
- final treatment such as waste water treatment and detoxification treatment as described above may be performed by a final treatment device (not shown).
- a final treatment device such as a sulfide coagulation sedimentation treatment device, a chelating agent treatment device, a chelate resin treatment device, an ion exchange resin treatment device, or an activated carbon treatment device is applied. do it.
- a detoxification processing apparatus which is not illustrated, a cement solidification processing apparatus can be mentioned, for example.
- the control of the oxidation-reduction potential (hereinafter also referred to as ORP) in this example is performed on the separated liquid (dehydrated filtrate) 46 after the solid-liquid separation treatment of the lime gypsum slurry 34 used for the desulfurization reaction in the wet desulfurization apparatus 15.
- the oxidizing agent 53 is supplied to perform ORP control of the slurry absorbing liquid (lime gypsum slurry) 34.
- the slurry absorbing liquid 34 contains solid components such as gypsum, sulfite gypsum, and calcium carbonate.
- the oxidizing agent 53 When the oxidizing agent 53 is supplied to the slurry absorbing liquid 34 containing a solid component for ORP control, the oxidizing agent 53 reacts with a reducing substance (for example, sulfite ion) contained in the slurry absorbing liquid 34 to react with the oxidizing agent 53. Therefore, it is difficult to control the oxidation-reduction potential unless the oxidizing agent 53 is supplied excessively. Therefore, in order to control the oxidation-reduction potential with an appropriate amount of the oxidant 53, the oxidant 53 is not used in the separated liquid (dehydrated filtrate) 46 that is returned to the wet desulfurization apparatus 15 and reused, instead of the slurry absorbent 34. It is to be supplied.
- a reducing substance for example, sulfite ion
- the exhaust gas treatment apparatus 10A of the present embodiment includes a control means 51 for controlling the ORP of the slurry absorbing liquid (lime gypsum slurry) 34 at the bottom 15a of the wet desulfurization apparatus 15, an oxidant supply means 52 for supplying an oxidant 53, and , An oxidation-reduction potentiometer (hereinafter also referred to as an ORP meter) 54 for measuring the ORP.
- the control means 51 measures the ORP value of the slurry absorbing liquid (lime gypsum slurry) 34 at the tower bottom 15 a of the wet desulfurization device 15 using the ORP meter 54.
- the supply amount of the oxidant 53 supplied from the oxidant supply means 52 to the separation liquid (dehydrated filtrate) 46 returned to the tower bottom 15a of the wet desulfurization apparatus 15 is adjusted.
- the supply amount of the oxidant 53 is adjusted by the opening / closing valve V 1 controlled by the control means 51.
- the ORP of the slurry absorbing liquid 34 is controlled by adjusting the on-off valve V 1 to adjust the supply amount of the oxidant 53 supplied to the separation liquid (dehydrated filtrate) 46 returned to the tower bottom 15 a of the wet desulfurization apparatus 15.
- the oxidized Hg collected in the slurry absorbing liquid 34 stored in the tower bottom 15a of the wet desulfurization device 15 is prevented from being reduced (Hg 2+ ⁇ Hg 0 ) and is diffused from the chimney 16. Can be prevented.
- Examples of the oxidizing agent 53 include air, oxygen O 2 , hydrogen peroxide H 2 O 2 , ozone O 3 , chloric acid compounds (Cl 2 , ClO ⁇ ), manganese compounds (Mn 2+ , Mn 4+ , Mn 7+ ), Examples thereof include iron compounds (Fe 2+ , Fe 3+ ). Further, an Hg absorbing liquid or the like may be supplied instead of the oxidizing agent 53.
- the oxidation-reduction potential of the slurry absorbing liquid (lime gypsum slurry) 34 in the wet desulfurization apparatus 15 may be within a range of, for example, 0 mV or more and 600 mV or less in order to prevent re-scattering of Hg from the slurry absorbing liquid 34.
- preferable More preferably, it is in the range of 50 mV to 300 mV, and most preferably in the range of 100 mV to 200 mV. More optimally, the range is 150 mV or more and less than (less than) 200 mV. This is because if the oxidation-reduction potential is within the above range, Hg collected as HgCl 2 in the slurry absorbing liquid 34 is a stable region, and re-scattering into the atmosphere can be prevented.
- the oxidizing agent 53 is any one of hydrogen peroxide, ozone, a chloric acid compound, a manganese compound, and an iron compound or a combination thereof, the oxidizing power is higher than oxygen (air) used for general ORP control. Since it is strong, the potential of the ORP meter 54 in the slurry absorbing liquid 34 can be set to a range of at least 100 mV to 200 mV. By maintaining the potential of the ORP meter 54 in the slurry absorbing liquid 34 in a range of at least 100 mV to 200 mV, reduction of mercury oxide (Hg 2+ ) (Hg 2+ ⁇ Hg 0 ) can be prevented, and Scattering can be prevented.
- the exhaust gas 22 of a general coal-fired boiler may contain selenium (Se) as well as mercury.
- Selenium in the exhaust gas 22 is absorbed by the slurry absorbent 34 of the wet desulfurization device 15 and removed from the exhaust gas 22.
- Examples of a method for treating selenium in the slurry absorbing liquid 34 include a coprecipitation method using iron oxide and an adsorption method using activated carbon or activated alumina. This is an effective treatment method for tetravalent Se (IV). Yes, it is not an effective processing method for hexavalent Se (VI).
- the ORP of the slurry absorbing liquid 34 is used as an index for determination of control.
- the concentration of sulfite ion (SO 3 2 ⁇ ) may be used as an index for determination.
- the concentration of sulfite ions is, for example, 0.1 mmol / L or more and 2.0 mmol / L or less, preferably 0.5 mmol / L or more and 1 0.0 mmol / L or less, more preferably 1.0 mmol / L or less.
- the concentration of sulfite ions can be controlled by controlling the ORP. It is.
- the value of sulfite ion (SO 3 2 ⁇ ) corresponding to the ORP value “150 mV to 200 mV” is approximately “1.0 mmol / L”. Therefore, when judging at one point, the value of sulfite ion (SO 3 2 ⁇ ) may be judged as “1.0 mmol / L”. Therefore, the concentration of sulfite ion (SO 3 2 ⁇ ) can be used as an index for judgment instead of control by ORP.
- the ORP control of the exhaust gas treatment apparatus 10A is performed not by using the slurry absorbing liquid (lime gypsum slurry) 34 but the oxidant 53 in the separated liquid (dehydrated filtrate) 46 that is returned to the wet desulfurization apparatus 15 and reused.
- the ORP of the slurry absorbing liquid 34 can be controlled by an appropriate amount of the oxidizing agent 53.
- the separated liquid (dehydrated filtrate) 46 is reused and returned to the wet desulfurization apparatus 15, a minimum amount of drainage is required. The desulfurization effluent can be recycled.
- the exhaust gas treatment apparatus 10A includes the solid-liquid separation means 41 for performing the solid-liquid separation treatment on the slurry absorbing liquid (lime gypsum slurry) 34 used for the desulfurization reaction, and the separated separation liquid.
- (Dehydrated filtrate) 46 for reusing the separated liquid return line L 4 for returning to the wet desulfurization apparatus 15, and means for supplying oxidant to the separated liquid (dehydrated filtrate) 46 for returning to the wet desulfurization apparatus 15 for reuse
- the control means 51 which supplies the oxidizing agent 53 from 52 and performs ORP control of the slurry absorption liquid 34 is comprised.
- the exhaust gas treatment apparatus 10A returns the sulfur oxide (SOx) and divalent Hg 2+ oxidized in the reduction denitration apparatus 12 to the wet desulfurization apparatus 15 when the wet desulfurization apparatus 15 removes the sulfur oxide (SOx).
- SOx sulfur oxide
- the exhaust gas treatment apparatus 10A returns the sulfur oxide (SOx) and divalent Hg 2+ oxidized in the reduction denitration apparatus 12 to the wet desulfurization apparatus 15 when the wet desulfurization apparatus 15 removes the sulfur oxide (SOx).
- NOx, SOx, especially Hg contained in the exhaust gas 22 can be efficiently removed, and oxidation in desulfurization is performed. Inhibition can be suppressed.
- the separated liquid (dehydrated filtrate) 46 obtained by solid-liquid separation of the desulfurization wastewater is reused and returned to the wet desulfurization apparatus 15, the desulfurization wastewater can be recycled in the wet desulfurization apparatus 15.
- FIG. 2 is a schematic configuration diagram of an exhaust gas treatment apparatus 10B according to the present embodiment.
- symbol is attached
- the exhaust gas treatment apparatus 10 ⁇ / b> B according to the present embodiment uses a separation liquid (dehydrated filtrate) 36 separated by the solid-liquid separation means 41 and a treatment liquid 47 obtained by further treating the separation liquid 43 with a wastewater treatment apparatus 43. and return to the wet desulfurization system 15 by returning line L 5, and has a configuration to be reused.
- the ORP control of this embodiment is to perform the ORP control of the slurry absorbing liquid 34 by supplying the oxidizing agent 53 to the treatment liquid 47 obtained by further treating the dehydrated filtrate 36 with the waste water treatment device 43.
- the treatment liquid 47 treated by the waste water treatment apparatus 43 is further removed of suspended matter, heavy metals, mercury, and the like 44 as compared with the dehydrated filtrate 36, and the treatment liquid 47 is returned to the wet desulfurization apparatus 15 for reuse.
- the concentration of the suspension, heavy metal, mercury, etc. 44 contained in the slurry absorbing liquid (lime gypsum slurry) 34 in the wet desulfurization apparatus 15 can be reduced. That is, the total amount of mercury contained in the slurry absorbing liquid (lime gypsum slurry) 34 can be reduced.
- the concentration of metallic mercury re-scattered to the exhaust gas 22 side can be reduced as the metallic mercury concentration in the slurry absorbing liquid 34 decreases.
- the mercury concentration in the treated exhaust gas 24 discharged from the wet desulfurization device 15 can be reduced.
- the treatment liquid 47 is reused and returned to the wet desulfurization apparatus 15, minimal drainage is required, so that the desulfurization wastewater is recycled in the wet desulfurization apparatus 15 without supplying a large amount of water (industrial water) 35. can do.
- FIG. 3 is a schematic configuration diagram of an exhaust gas treatment apparatus 10C according to the present embodiment.
- symbol is attached
- the exhaust gas treatment apparatus 10 ⁇ / b> C according to the present embodiment includes a part of the separation liquid (dehydrated filtrate) 46 processed by the solid-liquid separation means 41 and the remaining separation liquid (dehydrated filtrate) 46.
- One or both of the separated liquid 36 and the separated liquid (treated liquid) 47 treated by the waste water treatment apparatus 43 are returned to the wet desulfurization apparatus 15 through the separated liquid return lines L 4 and L 5 and reused. It has a configuration.
- the ORP control of this embodiment is to perform the ORP control of the slurry absorbing liquid 34 of the wet desulfurization apparatus 15 by supplying the oxidizing agent 53 to one or both of the dehydrated filtrate 46 and the treatment liquid 47. is there.
- the supply of the oxidant 53 to the dehydrated filtrate 46 and the treatment liquid 47 is determined and controlled based on the amount of components contained in the slurry absorbing liquid 34.
- components contained in the slurry absorbing liquid 34 include gypsum, sulfite gypsum, calcium carbonate, mercury, and heavy metals.
- the concentration of metallic mercury re-scattered to the exhaust gas 22 side can be reduced as the metallic mercury concentration in the slurry absorbing liquid 34 decreases.
- the mercury concentration in the treated exhaust gas 24 discharged from the wet desulfurization device 15 can be reduced.
- the dehydrated filtrate 46 and the treatment liquid 47 are reused and returned to the wet desulfurization apparatus 15, a minimum amount of drainage is required. Therefore, the wet desulfurization apparatus 15 does not need to be replenished with a large amount of water (industrial water) 35.
- the desulfurization waste water can be recycled in the interior.
- FIGS. 4 to 6 are schematic configuration diagrams of the exhaust gas treatment apparatuses 10D to 10F according to the present embodiment. Note that the same components as those in the first to third embodiments are denoted by the same reference numerals, and redundant description is omitted. As shown in FIGS. 4 to 6, the exhaust gas treatment apparatuses 10D to 10F according to the present embodiment have a separated liquid (dehydrated filtrate) treated by the solid-liquid separation means 41 in addition to the configurations of the first to third embodiments.
- a mixing tank 48 for mixing any one or both of the liquids 47 and a mixed liquid return line L 6 for returning the mixed liquid 49 in the mixing tank 48 to the wet desulfurization apparatus 15 are provided.
- the oxidation-reduction potential (ORP) is controlled by supplying the mixture 49 with the oxidant 53 supplied to the mixing tank 48 and controlling the oxidation-reduction potential to the slurry absorbent 34 of the wet desulfurization apparatus 15 to absorb the slurry.
- the ORP control of the liquid 34 is performed.
- the oxidation-reduction potential of the mixed liquid 49 mixed in the mixing tank 48 is, for example, in the range of 0 mV to 600 mV in order to prevent re-scattering of Hg from the slurry absorbent 34 in the wet desulfurization apparatus 15. Is preferred. More preferably, it is in the range of 50 mV to 300 mV, and most preferably in the range of 100 mV to 200 mV. More optimally, the range is 150 mV or more and 200 mV or less.
- the oxidation-reduction potential of the mixed liquid 49 supplied to the slurry absorbing liquid 34 of the wet desulfurization apparatus 15 is within the above range, for example, the oxidation-reduction potential is ORP controlled to a range of 100 mV to 200 mV. In this case, the oxidation-reduction potential of the slurry absorbing liquid 34 of the wet desulfurization apparatus 15 is less than 200 mV, and does not exceed 200 mV.
- Hg collected as HgCl 2 in the slurry absorbing liquid 34 of the wet desulfurization apparatus 15 is a stable region and prevents re-scattering into the atmosphere. be able to. More preferably, by setting the oxidation-reduction potential in the range of 150 mV or more and 200 mV or less, reduction of mercury can be efficiently and economically prevented, re-scattering can be reduced, and as described in Example 1, selenium (Se ) Side effects such as deterioration of processability can be prevented.
- the ORP control of the exhaust gas treatment apparatuses 10D to 10F in the fourth embodiment it is possible to reduce the concentration of metallic mercury re-scattered to the exhaust gas 22 side as the metallic mercury concentration in the slurry absorbing liquid 34 decreases. As a result, the mercury concentration in the treated exhaust gas 24 discharged from the wet desulfurization device 15 can be reduced.
- the separation liquid obtained by solid-liquid separation of the desulfurization wastewater (the dehydrated filtrate 46 and the treatment liquid 47 obtained by treating the dehydrated filtrate 46) is reused and returned to the wet desulfurization apparatus 15, a minimum amount of wastewater is required.
- the desulfurization effluent can be recycled in the wet desulfurization apparatus 15 without supplying a large amount of water (industrial water) 35.
- the redox potential of the mixed liquid 49 mixed in the mixing tank 48 before being supplied to the slurry absorbing liquid 34 is controlled within the range of 100 mV to 200 mV, the redox of the slurry absorbing liquid 34 of the wet desulfurization apparatus 15 is controlled.
- the potential will be below 200 mV and will not be above 200 mV.
- the exhaust gas treatment apparatus 10 uses the separation liquid when removing the sulfur oxide (SOx) and the divalent Hg 2+ oxidized in the reductive denitration apparatus 12 by the wet desulfurization apparatus 15. Since the oxidizing agent 53 is supplied to the (dehydrated filtrate 46 and treatment liquid 47) and the ORP control of the slurry absorbing liquid 34 is performed, NOx, SOx, especially Hg contained in the exhaust gas 22 is efficiently removed. And inhibition of oxidation in desulfurization can be suppressed.
- the concentration of metallic mercury re-scattered to the exhaust gas 22 side can be reduced as the metallic mercury concentration in the slurry absorbing liquid 34 decreases.
- the mercury concentration in the treated exhaust gas 24 discharged from the wet desulfurization device 15 can be reduced.
- the separated liquid (dehydrated filtrate 46 and treatment liquid 47) is reused and returned to the wet desulfurization apparatus 15, a minimum amount of drainage is required, so that the water (industrial water) 35 is wet without being replenished in large quantities.
- the desulfurization waste water can be recycled in the desulfurization device 15.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Mechanical Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Treating Waste Gases (AREA)
- Gas Separation By Absorption (AREA)
Abstract
本発明の排ガス処理装置は、ボイラからの排ガスを排出する煙道内に、気化した際に塩化水素とアンモニアとを生成する還元酸化助剤を供給する還元酸化助剤供給手段と、排ガス中の窒素酸化物をアンモニアで還元すると共に、塩化水素共存下で水銀を酸化する脱硝触媒を有する還元脱硝装置と、排ガス中の硫黄酸化物と還元脱硝装置において酸化された水銀を吸収液により吸収除去する湿式脱硫装置と、吸収液の酸化還元電位を計測する酸化還元電位計と、湿式脱硫装置から排出される脱硫排水中の固体分及び水銀と、液体分とを分離処理する固液分離手段と、固液分離手段で分離処理された分離液を湿式脱硫装置に戻す分離液返送ラインと、湿式脱硫装置に戻される分離液に酸化剤を供給する酸化剤供給手段と、酸化剤の供給量を調整して吸収液の酸化還元電位を制御する制御手段と、を有する。
Description
本発明は、ボイラからの排ガス中に含まれる水銀を除去する排ガス処理装置及び排ガス処理装置のORP制御方法に関するものである。
火力発電所等の燃焼装置であるボイラから排出される排ガス中には、煤塵、硫黄酸化物(SOx)、窒素酸化物(NOx)のほか、金属水銀(Hg0)が含まれることがあるため、従来から排ガス中の水銀を除去する方法や装置について様々な考案がなされてきた。
通常、ボイラには排ガス中の硫黄分を除去するための湿式の脱硫装置が設けられている。このようなボイラに排ガス処理装置として脱硫装置が付設されてなる排煙処理設備においては、2価の酸化水銀は水に可溶であるため、前記脱硫装置で水銀が捕集しやすくなることが、広く知られている。
そこで、近年、NOxを還元する脱硝装置、および、アルカリ吸収液をSOx吸収剤とする湿式脱硫装置を組み合わせて、この金属水銀を処理する方法や装置について様々な考案がなされてきた。
大容量の排ガス中の金属水銀を処理する方法として、従来より脱硫方法として、下記式(1)及び(2)に示すような反応により、主に気液接触式の脱硫装置を用いた石灰-石膏法が用いられている。
SO2 +CaCO3 +1/2H2O→ CaSO3・1/2H2O+CO2(吸収) …(1)
CaSO3・1/2H2O+3/2H2O+1/2O2→CaSO4・2H2O(酸化) …(2)
SO2 +CaCO3 +1/2H2O→ CaSO3・1/2H2O+CO2(吸収) …(1)
CaSO3・1/2H2O+3/2H2O+1/2O2→CaSO4・2H2O(酸化) …(2)
気液接触式の脱硫装置内においては、酸化水銀(Hg2+)を石灰石膏スラリ吸収液(以下、「スラリ」、「スラリ吸収液」又は「アルカリ吸収液」ともいう。)中に吸着・固定化し水銀を除去していた。この際、スラリ吸収液に酸化剤を添加することによりスラリ吸収液を酸化状態とすることで、酸化水銀(Hg2+)の還元(Hg2+→Hg0)を防止し、ガス相への0価の水銀(Hg0)の再飛散を抑制する方法が提案されている(例えば、特許文献1参照)。
しかしながら、特許文献1に記載の排煙脱硫装置は、スラリ吸収液に酸化剤を添加するものであるため、スラリ吸収液に含まれる還元性物質(酸化阻害物質)により添加した酸化剤が消費されてしまうために酸化剤を過剰に供給しなければならない、という問題がある。
また、還元性物質(酸化阻害物質)がスラリ吸収液に含まれていると、適正な量の酸化剤を添加して酸化還元電位(ORP:Oxidation-reduction Potential)を適した範囲内に制御することが難しい、という問題がある。
そこで、排ガス中およびスラリ吸収液中に還元性物質(酸化阻害物質)が存在する場合においては、適正な量の酸化剤で所定の酸化状態(酸化還元電位(ORP)値が100mV以上200mV以下)を維持し、0価の水銀(Hg0)のガス相への再飛散を抑制して排ガス中の水銀を効率的に除去することが望まれている。
本発明は、上記に鑑みてなされたものであって、ボイラからの排ガス中に含まれる水銀を効率的に除去することができ、脱硫における酸化阻害を抑制できる排ガス処理装置及び排ガス処理装置のORP制御方法を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明の請求項1に係る排ガス処理装置は、ボイラからの排ガスを排出する煙道内に、気化した際に塩化水素とアンモニアとを生成する還元酸化助剤を供給する還元酸化助剤供給手段と、前記排ガス中の窒素酸化物をアンモニアで還元すると共に、塩化水素共存下で水銀を酸化する脱硝触媒を有する還元脱硝装置と、前記排ガス中の硫黄酸化物と前記還元脱硝装置において酸化された水銀を吸収液により吸収除去する湿式脱硫装置と、前記吸収液の酸化還元電位を計測する酸化還元電位計と、前記湿式脱硫装置から排出される脱硫排水中の固体分及び水銀と、液体分とを分離処理する固液分離手段と、前記固液分離手段で分離処理された分離液を前記湿式脱硫装置に戻す分離液返送ラインと、前記湿式脱硫装置に戻される前記分離液に酸化剤を供給する酸化剤供給手段と、前記酸化剤の供給量を調整して前記吸収液の酸化還元電位を制御する制御手段と、を有することを特徴とする。
また、本発明の請求項2に係る排ガス処理装置は、上記請求項1において、前記分離液は、前記固液分離手段で分離された脱水ろ液、又は脱水ろ液から重金属を除去された処理液であることを特徴とする。
また、本発明の請求項3に係る排ガス処理装置は、上記請求項1又は2において、前記制御手段は、前記吸収液の酸化還元電位を100mV以上200mV以下の範囲に、又は前記吸収液中の亜硫酸イオンを0.1mmol/L以上2.0mmol/L以下に制御することを特徴とする。
また、本発明の請求項4に係る排ガス処理装置は、上記請求項1から3の何れかにおいて、前記酸化剤と、前記脱水ろ液、又は前記処理液の何れか一方又は両方と、を混合するための混合槽と、前記混合槽で混合された混合液を前記湿式脱硫装置に戻す混合液返送ラインと、を有し、前記制御手段は、前記混合液の酸化還元電位を計測し、前記混合液に酸化剤を供給して前記混合液の酸化還元電位を100mV以上200mV以下の範囲に、又は前記混合液中の亜硫酸イオンを0.1mmol/L以上2.0mmol/L以下に制御することを特徴とする。
また、本発明の請求項5に係る排ガス処理装置のORP制御方法は、ボイラからの排ガスを排出する煙道内に、気化した際に塩化水素とアンモニアとを生成する還元酸化助剤を供給する還元酸化助剤供給工程と、前記排ガス中の窒素酸化物をアンモニアで還元すると共に、塩化水素共存下で水銀を酸化する脱硝触媒を有する還元脱硝工程と、前記排ガス中の硫黄酸化物と前記還元脱硝工程において酸化された水銀を吸収液により吸収除去する湿式脱硫工程と、前記吸収液の酸化還元電位を計測する酸化還元電位計測工程と、前記湿式脱硫工程から排出される脱硫排水中の固体分及び水銀と、液体分とを分離処理する固液分離工程と、前記固液分離工程で分離処理された分離液を前記湿式脱硫工程に戻す分離液返送工程と、前記湿式脱硫工程に戻される前記分離液に酸化剤を供給する酸化剤供給工程と、前記酸化剤の供給量を調整して前記吸収液の酸化還元電位を制御する制御工程と、を有することを特徴とする。
また、本発明の請求項6に係る排ガス処理装置のORP制御方法は、上記請求項5において、前記分離液は、固液分離工程で分離された脱水ろ液、又は脱水ろ液から重金属を除去された処理液であることを特徴とする。
また、本発明の請求項7に係る排ガス処理装置のORP制御方法は、上記請求項5又は6において、前記制御工程は、前記吸収液の酸化還元電位を100mV以上200mV以下の範囲に、又は前記吸収液中の亜硫酸イオンを0.1mmol/L以上2.0mmol/L以下に制御することを特徴とする。
また、本発明の請求項8に係る排ガス処理装置のORP制御方法は、上記請求項5から7の何れかにおいて、前記酸化剤と、前記脱水ろ液、又は前記処理液の何れか一方又は両方と、を混合するための混合工程と、前記混合工程で混合された混合液を前記湿式脱硫工程に戻す混合液返送工程と、を有し、前記制御工程は、前記混合液の酸化還元電位を計測し、前記混合液に酸化剤を供給して前記混合液の酸化還元電位を100mV以上200mV以下の範囲に、又は前記混合液中の亜硫酸イオンを0.1mmol/L以上2.0mmol/L以下に制御することを特徴とする。
本発明の排ガス処理装置及び排ガス処理装置のORP制御方法によれば、ボイラからの排ガス中に含まれる水銀を効率的に除去することができ、脱硫における酸化阻害を抑制できるという効果を奏する。
以下に、本発明に係る排ガス処理装置及び排ガス処理装置のORP制御方法の実施例を図面に基づいて詳細に説明する。なお、本発明は以下の実施例に記載した内容により限定されるものではない。また、以下に記載した実施例における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに以下に記載した実施例で開示した構成要素は適宜組み合わせることが可能である。
<排ガス処理装置>
本実施例に係る排ガス処理装置の構成について説明する。図1は、本実施例に係る排ガス処理装置10Aの概略構成図である。図1に示すように、本実施例に係る排ガス処理装置10Aは、ボイラ11から発生した排ガス22中に含まれるNOx、SOx、Hgを除去する排ガス処理装置10Aである。燃料21を燃焼させたボイラ11から排出される排ガス22は、還元脱硝装置12、空気予熱器13、集塵器14、湿式脱硫装置15の各装置での工程を経て浄化された後、煙突16から屋外に排出される。
本実施例に係る排ガス処理装置の構成について説明する。図1は、本実施例に係る排ガス処理装置10Aの概略構成図である。図1に示すように、本実施例に係る排ガス処理装置10Aは、ボイラ11から発生した排ガス22中に含まれるNOx、SOx、Hgを除去する排ガス処理装置10Aである。燃料21を燃焼させたボイラ11から排出される排ガス22は、還元脱硝装置12、空気予熱器13、集塵器14、湿式脱硫装置15の各装置での工程を経て浄化された後、煙突16から屋外に排出される。
排ガス処理装置10Aは、ボイラ11の下流の煙道23内に、還元酸化助剤32として塩化アンモニウム(NH4Cl)を含むNH4Cl溶液を噴霧する還元酸化助剤供給手段31と、排ガス22中のNOxをNH3ガスで還元すると共に、HClガス共存下で金属水銀(Hg0)を酸化する脱硝触媒を有する還元脱硝装置12と、脱硝された排ガス22を熱交換する空気予熱器(AH:Air heater)13と、脱硝された排ガス22中の煤塵を除去する集塵器(ESP:Electrostatic Precipitator)14と、排ガス22中のSOx、及び還元脱硝装置12において酸化された2価のHg2+を石灰石膏スラリ(アルカリ吸収液)34を用いて除去する湿式脱硫装置15と、脱硫反応に用いた石灰石膏スラリ34を塔底部15aより抜き出して、固体分である水銀塩(HgSO4等)を含んだ脱水ケーキ(石膏)42と分離液(脱水ろ液)46とに固液分離する固液分離手段41と、分離された分離液(脱水ろ液)46を再利用するために湿式脱硫装置15に戻す分離液返送ラインL4と、再利用されない分離液(脱水ろ液)36中の懸濁物、重金属、水銀等44の除去、排出される分離液(脱水ろ液)36のpH調整などの排水処理を行う排水処理装置43と、湿式脱硫装置15に戻される分離処理された分離液(脱水ろ液)46に酸化剤供給手段52から酸化剤53を供給して石灰石膏スラリ(アルカリ吸収液)34の酸化還元電位を酸化還元電位計54で計測しながら制御する制御手段51とを具備するものである。なお、図1中、V1~V2は開閉バルブを図示する。
(還元酸化助剤供給手段)
還元酸化助剤供給手段31は、還元酸化助剤32として溶液タンク内で所定濃度に調整された塩化アンモニウム(NH4Cl)を含むNH4Cl溶液をボイラ11の後流側で還元脱硝装置12の前流側である煙道23内に供給するものである。
還元酸化助剤供給手段31は、還元酸化助剤32として溶液タンク内で所定濃度に調整された塩化アンモニウム(NH4Cl)を含むNH4Cl溶液をボイラ11の後流側で還元脱硝装置12の前流側である煙道23内に供給するものである。
本実施例においては、還元酸化助剤32の一例としてNH4Clを用いているが、本実施例はこれに限定されるものではなく、還元酸化助剤32は気化した際に酸化性ガスと還元性ガスとを生成するものであれば用いることができる。また、本実施例においては、還元酸化助剤32とは、脱硝触媒上において酸化性ガス(HClガス)共存下で排ガス22中に含まれる金属水銀(Hg0)を酸化(Hg0→Hg2+)するのに用いられる酸化助剤と、還元性ガスにより脱硝触媒で排ガス22中に含まれるNOxを還元する還元剤として機能するものをいう。本実施例では、酸化性ガスとしてHClガスが用いられ、還元性ガスとしてNH3ガスが用いられている。
ボイラ11から排出される排ガス22には、還元酸化助剤供給手段31からNH4Cl溶液が供給される。還元酸化助剤供給手段31は、NH4Cl溶液を排ガス22に液体状で噴霧し、還元脱硝装置12に充填されている脱硝触媒層に充填されている脱硝触媒上で排ガス22中に含まれるNOxを還元すると共に、Hg0を酸化する。
噴霧装置のノズルヘッドから煙道23内に噴霧されたNH4Cl溶液の液滴は、排ガス22の高温雰囲気温度により蒸発して気化され、微細なNH4Clの固体粒子を生成し、下記式(3)のように、HClとNH3とに分解し、昇華する。よって、噴霧装置から噴霧されたNH4Cl溶液は分解されて、HCl、NH3を生じ、NH3ガス、HClガスを煙道23内に供給することができる。
NH4Cl → NH3+HCl ・・・(3)
NH4Cl → NH3+HCl ・・・(3)
NH3ガスは還元剤として作用し、HClガスは水銀塩素化剤(酸化助剤)として作用する。即ち、還元脱硝装置12に充填されている脱硝触媒上で、NH3ガスは下記式(4)のように排ガス22中のNOxと還元反応が進行し、HClガスは下記式(5)のように排ガス22中のHg0と酸化反応が進行する。HClガスは脱硝触媒上でNH3を還元脱硝すると共に、金属水銀(Hg0)を酸化(Hg0→Hg2+)し、水溶性の塩化水銀(HgCl2)とした後、後流側に設置した湿式脱硫装置15でHgCl2を水に溶解させて排ガス22中に含まれる水銀を除去する。
4NO+4NH3+O2 → 4N2+6H2O・・・(4)
Hg0+1/2O2+2HCl → HgCl2+H2O・・・(5)
4NO+4NH3+O2 → 4N2+6H2O・・・(4)
Hg0+1/2O2+2HCl → HgCl2+H2O・・・(5)
また、本実施例においては、NH4Cl以外の臭化アンモニウム(NH4Br)、ヨウ化アンモニウム(NH4I)などのハロゲン化アンモニウムを還元酸化助剤32として用い、水に溶解した溶液を用いてもよい。さらに、NH4Clとアンモニア水、または塩酸の混合液を用いてもよい。また、還元酸化助剤32は液体として説明したが、これに限ることはなく気体(例えば、塩化水素ガスとアンモニアガス)を供給してもよい。
また、本実施例においては還元酸化助剤32に代わり、酸化助剤及び還元剤をそれぞれ供給するようにしてもよい。酸化助剤としてはHCl溶液を例示することができるが、本実施例はこれに限定されるものではなく、酸化助剤は気化した際に酸化性ガスを生成するものであれば用いることができる。例えば、臭化水素(HBr)、ヨウ化水素(HI)などのハロゲン化水素などを挙げることができる。また、酸化助剤は液体として説明したが、これに限ることはなく気体(例えば、塩化水素ガス)を供給してもよい。還元剤としてはNH3溶液を例示することができるが、本実施例はこれに限定されるものではなく、還元剤は気化した際に還元性ガスを生成するものであれば用いることができる。例えば、尿素((NH2)2CO)などを挙げることができる。また、還元剤は液体として説明したが、これに限ることはなく気体(例えば、アンモニアガス)を供給してもよい。
NH4Cl溶液、HCl溶液及びNH3溶液をボイラ11の煙道23内に供給する手段は、例えば二流体ノズル等を用いるようにすればよい。なお本実施例はこれに限定されるものではなく、通常の液体噴霧用の噴射ノズルを用いてもよい。またNH4Cl溶液、HCl溶液及びNH3溶液の供給量は任意に調整することができる。
煙道23内の排ガス22の温度は、ボイラ11の燃焼条件にもよるが、例えば320℃以上420℃以下が好ましく、320℃以上380℃以下がより好ましく、350℃以上380℃以下が更に好ましい。これはこれらの温度帯において脱硝触媒上でNOxの脱硝反応と、Hgの酸化反応とを効率的に生じさせることができるためである。
本実施例においては、還元酸化助剤(NH4Cl溶液)32と、酸化助剤(HCl溶液)と、還元剤(NH3溶液)との何れか一つ以上をボイラ11の後流側で還元脱硝装置12の前流側である煙道23内に供給することができる。例えば、排ガス22成分の含有量によって、NH4Cl溶液でHCl成分が足りない場合には、NH4Cl溶液とHCl溶液の二つを供給してもよいし、HN3成分が足りない場合には、NH4Cl溶液とNH3溶液の二つを供給してもよい。また、HCl溶液とNH3溶液の二つを供給してもよい。さらにNH4Cl溶液、HCl溶液、NH3溶液の三つを供給してもよい。また、還元酸化助剤(NH4Cl溶液)32の供給だけでNOx、SOx、Hgの除去が可能な場合は、還元酸化助剤(NH4Cl溶液)32一つを供給してもよい。
よって、本実施例に係る排ガス処理装置10Aは、NH4Cl溶液、HCl溶液、NH3溶液の各々の供給量は、排ガス22中に含まれるNOx、SOx、Hgの各々の含有量を求めて、その値によって調整することができる。また図1においては、還元酸化助剤(NH4Cl溶液)32を、供給するような構成を示しているが、これに限ることはなく、上記の三つの溶液を混合して供給するようにしてもよい。また、HCl溶液、NH3溶液、NH4Cl溶液の他に、還元酸化助剤32を溶解させた溶液、還元剤を溶解させた溶液、酸化助剤(水銀塩素化剤)を溶解させた溶液を更に、複数混合させて供給するようにしてもよい。
(還元脱硝装置)
還元脱硝装置12は、排ガス22中のNOxをNH3ガスで還元すると共に、HClガス共存下で金属水銀(Hg0)を酸化する脱硝触媒(不図示)を有するものである。図1に示すように、排ガス22は、例えば、還元酸化助剤供給手段31から煙道23内に噴霧されたNH4Cl溶液の液滴から生じたHClガス、NH3ガスを含んだ後、還元脱硝装置12に送給される。還元脱硝装置12では、NH4Clが分解して生じたNH3ガスはNOxの還元脱硝用に用いられ、HClガスはHgの酸化用に用いられ、NOx及びHgを排ガス22から除去する。
還元脱硝装置12は、排ガス22中のNOxをNH3ガスで還元すると共に、HClガス共存下で金属水銀(Hg0)を酸化する脱硝触媒(不図示)を有するものである。図1に示すように、排ガス22は、例えば、還元酸化助剤供給手段31から煙道23内に噴霧されたNH4Cl溶液の液滴から生じたHClガス、NH3ガスを含んだ後、還元脱硝装置12に送給される。還元脱硝装置12では、NH4Clが分解して生じたNH3ガスはNOxの還元脱硝用に用いられ、HClガスはHgの酸化用に用いられ、NOx及びHgを排ガス22から除去する。
即ち、還元脱硝装置12に充填されている脱硝触媒層に充填されている脱硝触媒上でNH3ガスは、下記式(6)のようにNOxを還元脱硝し、HClガスは、下記式(7)のようにHgを酸化(塩素化)する。
4NO+4NH3+O2 → 4N2+6H2O ・・・(6)
Hg+1/2O2+2HCl → HgCl2+H2O ・・・(7)
4NO+4NH3+O2 → 4N2+6H2O ・・・(6)
Hg+1/2O2+2HCl → HgCl2+H2O ・・・(7)
還元脱硝装置12は、脱硝触媒層を1つ備えているが、本実施例はこれに限定されるものではなく、還元脱硝装置12は、脱硝性能に応じて脱硝触媒層の数を適宜変更することができる。
排ガス22は、還元脱硝装置12において排ガス22中のNOxの還元とHgの酸化がされた後、排ガス22中の熱を回収する空気予熱器13、熱回収後の排ガス22中の煤塵を除去する集塵器(ESP)14を通過して除塵された後、湿式脱硫装置15に送られ、脱硫処理される。集塵器14としては、慣性力集塵機、電気集塵機、遠心力集塵機、濾過式集塵機、洗浄集塵機等が挙げられるが、特に限定されない。
(湿式脱硫装置)
湿式脱硫装置15は、煤塵が除去された後の排ガス22中のSOx及び酸化された2価のHg2+を湿式で除去するものである。湿式脱硫装置15では、排ガス22を装置本体内の塔底部の壁面側から送給し、アルカリ吸収液として用いられる石灰石膏スラリ34を石灰石膏スラリ供給手段33からスラリ吸収液供給ラインより装置本体内に供給し、ノズル15cより塔頂部側15bに向かって噴流させる。装置本体内の底部側から上昇してくる排ガス22と、ノズル15cから噴流して流下する石灰石膏スラリ34とを対向して気液接触させ、排ガス22中のHgCl2、SOxは石灰石膏スラリ34中に吸収され、排ガス22から分離、除去され、排ガス22は浄化される。石灰石膏スラリ34により浄化された排ガス22は、塔頂部側15bより排出され、その後処理排ガス24として煙突16から外部(以下、「系外」という。)に排出される。
湿式脱硫装置15は、煤塵が除去された後の排ガス22中のSOx及び酸化された2価のHg2+を湿式で除去するものである。湿式脱硫装置15では、排ガス22を装置本体内の塔底部の壁面側から送給し、アルカリ吸収液として用いられる石灰石膏スラリ34を石灰石膏スラリ供給手段33からスラリ吸収液供給ラインより装置本体内に供給し、ノズル15cより塔頂部側15bに向かって噴流させる。装置本体内の底部側から上昇してくる排ガス22と、ノズル15cから噴流して流下する石灰石膏スラリ34とを対向して気液接触させ、排ガス22中のHgCl2、SOxは石灰石膏スラリ34中に吸収され、排ガス22から分離、除去され、排ガス22は浄化される。石灰石膏スラリ34により浄化された排ガス22は、塔頂部側15bより排出され、その後処理排ガス24として煙突16から外部(以下、「系外」という。)に排出される。
排ガス22の脱硫反応に用いられる石灰石膏スラリ34は、スラリ吸収液供給ラインから湿式脱硫装置15の塔底部15aに供給される。石灰石膏スラリ34は、水に石灰石粉末を溶解させた石灰スラリCaCO3と、石灰と排ガス22中のSOxが反応し更に酸化させた石膏スラリCaSO4と、水とを混合させて生成される。石灰石膏スラリ34は、例えば湿式脱硫装置15の装置本体の塔底部15aに貯留した液を揚水(L1)したものが用いられる。装置本体内で排ガス22中のSOxは石灰石膏スラリ34中の石灰(CaCO3)と下記式(8)のような反応を生じる。
CaCO3+SO2+0.5H2O → CaSO3・0.5H2O+CO2 ・・・(8)
CaCO3+SO2+0.5H2O → CaSO3・0.5H2O+CO2 ・・・(8)
一方、排ガス22中のSOxを吸収した石灰石膏スラリ34は、装置本体内に供給される水35と混合され、装置本体の塔底部15aに供給される酸化剤(空気)53により酸化処理される。このとき、装置本体内を流下した石灰石膏スラリ34は、水35、酸化剤(空気)53と下記式(9)のような反応を生じる。
CaSO3・0.5H2O+0.5O2+1.5H2O → CaSO4・2H2O ・・・(9)
CaSO3・0.5H2O+0.5O2+1.5H2O → CaSO4・2H2O ・・・(9)
このようにして、排ガス22中のSOxは、湿式脱硫装置15において石膏CaSO4・2H2Oの形で捕獲される。この際、排ガス22中の塩化水銀(HgCl2)は水溶性であるので、石灰石膏スラリ34側に移行される。
本実施例では、アルカリ吸収液として石灰石膏スラリ34を用いているが、排ガス22中のHgCl2を吸収できるものであれば他の溶液をアルカリ吸収液として用いることができる。石灰石膏方式以外のアルカリ吸収液としては、例えば、水酸化ナトリウム溶液、亜硫酸ナトリウム溶液、アンモニア水、水酸化マグネシウム溶液などを例示することができる。この場合、水銀の除去を促進する方法として、例えば、重金属捕集剤としてキレート剤や高分子系凝集剤を混合する方法を併用することができる。
石灰石膏スラリ34の供給方法は、ノズル15cより塔頂部側15bに向かって噴流させる方法に限定されるものではなく、例えばノズル15cから排ガス22と対向するように流下させてもよい。
(固液分離手段)
本実施例では、湿式脱硫装置15の後流側に固液分離手段41を設けている。固液分離手段41は、湿式脱硫装置15の塔底部15aに貯留される脱硫反応に用いた石灰石膏スラリ34を塔底部15aより抜き出し(L2)、固液分離処理により固体分である塩化水銀(HgCl2)を含んだ脱水ケーキ(石膏)42と、液体分である分離液(脱水ろ液)46とに分離するものである。
本実施例では、湿式脱硫装置15の後流側に固液分離手段41を設けている。固液分離手段41は、湿式脱硫装置15の塔底部15aに貯留される脱硫反応に用いた石灰石膏スラリ34を塔底部15aより抜き出し(L2)、固液分離処理により固体分である塩化水銀(HgCl2)を含んだ脱水ケーキ(石膏)42と、液体分である分離液(脱水ろ液)46とに分離するものである。
固液分離手段41としては、例えばベルトフィルタ、重力式沈殿濃縮槽、液体サイクロン、遠心分離機、デカンタ型遠心沈降機などが用いられる。分離された脱水ケーキ(石膏)42は排ガス処理装置10Aの系外に排出される。また、分離液(脱水ろ液)46は、分離液返送ラインL4を通って湿式脱硫装置15に返送され、再利用される。再利用されなかった残りの分離液(脱水ろ液)36は排水処理装置43に送給(L3)され排水処理される。
(排水処理装置)
本実施例では、固液分離手段41の後流側に排水処理装置43を設けている。排水処理装置43は、固液分離手段41から湿式脱硫装置15に返送されなかった残りの分離液(脱水ろ液)36中の懸濁物、重金属、水銀等44の除去を行うものである。除去された分離液(脱水ろ液)36中の懸濁物、重金属、水銀等44は系外に排出される。そして懸濁物、重金属、水銀等44が除去された処理液はpH調整などの排水処理が行われる。この排水処理された処理液は排水45として処理される。
本実施例では、固液分離手段41の後流側に排水処理装置43を設けている。排水処理装置43は、固液分離手段41から湿式脱硫装置15に返送されなかった残りの分離液(脱水ろ液)36中の懸濁物、重金属、水銀等44の除去を行うものである。除去された分離液(脱水ろ液)36中の懸濁物、重金属、水銀等44は系外に排出される。そして懸濁物、重金属、水銀等44が除去された処理液はpH調整などの排水処理が行われる。この排水処理された処理液は排水45として処理される。
排水処理装置43における懸濁物、重金属、水銀等44の処理方法としては、例えば、沈殿法、イオン交換法、吸着法などを挙げることができる。沈殿法としては、例えば、重金属捕集剤として硫酸第一鉄と硫化ナトリウム混液(沈殿法)、キレート剤や凝集剤などを用いる方法や、水銀と選択的に反応する「水銀キレート」を用いる方法などを挙げることができる。イオン交換法としては、例えば、イオン交換体を用いる方法などを挙げることができる。吸着法としては、例えば、活性炭吸着、キレート樹脂等を用いる方法などを挙げることができる。本実施例は上記のような処理方法に限定されるものではない。
また、上記のような排水処理や無害化処理などの最終処理は図示しない最終処理装置により行うようにしてもよい。この最終処理装置における排水処理としては、硫化物凝集沈殿処理装置、キレート剤処理装置、キレート樹脂処理装置、イオン交換樹脂処理装置、活性炭処理装置などの公知の最終処理を行う装置を適用するようにすればよい。また、図示しない無害化処理装置としては、例えばセメント固化処理装置を挙げることができる。
<酸化還元電位の制御>
本実施例における酸化還元電位(以下、ORPともいう。)の制御は、湿式脱硫装置15で脱硫反応に用いた石灰石膏スラリ34を固液分離処理した後の分離液(脱水ろ液)46に酸化剤53を供給してスラリ吸収液(石灰石膏スラリ)34のORP制御を行うものである。スラリ吸収液34中には石膏、亜硫酸石膏、炭酸カルシウムなどの固形成分が存在する。ORP制御のために固形成分を含むスラリ吸収液34に酸化剤53を供給した場合、酸化剤53とスラリ吸収液34に含まれる還元性物質(例えば、亜硫酸イオンなど)が反応して酸化剤53が消費されてしまうため、酸化剤53を過剰に供給しなければ酸化還元電位を制御することが難しい。よって、適正な量の酸化剤53で酸化還元電位を制御するためにスラリ吸収液34ではなく、湿式脱硫装置15に返送されて再利用される分離液(脱水ろ液)46に酸化剤53を供給するようにしたものである。
本実施例における酸化還元電位(以下、ORPともいう。)の制御は、湿式脱硫装置15で脱硫反応に用いた石灰石膏スラリ34を固液分離処理した後の分離液(脱水ろ液)46に酸化剤53を供給してスラリ吸収液(石灰石膏スラリ)34のORP制御を行うものである。スラリ吸収液34中には石膏、亜硫酸石膏、炭酸カルシウムなどの固形成分が存在する。ORP制御のために固形成分を含むスラリ吸収液34に酸化剤53を供給した場合、酸化剤53とスラリ吸収液34に含まれる還元性物質(例えば、亜硫酸イオンなど)が反応して酸化剤53が消費されてしまうため、酸化剤53を過剰に供給しなければ酸化還元電位を制御することが難しい。よって、適正な量の酸化剤53で酸化還元電位を制御するためにスラリ吸収液34ではなく、湿式脱硫装置15に返送されて再利用される分離液(脱水ろ液)46に酸化剤53を供給するようにしたものである。
本実施例の排ガス処理装置10Aは、湿式脱硫装置15の塔底部15aのスラリ吸収液(石灰石膏スラリ)34のORPを制御する制御手段51と、酸化剤53を供給する酸化剤供給手段52と、ORPを測定する酸化還元電位計(以下、ORP計ともいう。)54とが設けられている。制御手段51は、ORP計54により湿式脱硫装置15の塔底部15aのスラリ吸収液(石灰石膏スラリ)34のORPの値を測定する。測定されたORPの値に基づいて湿式脱硫装置15の塔底部15aに返送される分離液(脱水ろ液)46に酸化剤供給手段52から供給する酸化剤53の供給量を調整する。酸化剤53の供給量は、制御手段51に制御される開閉バルブV1により調整される。
湿式脱硫装置15の塔底部15aに返送される分離液(脱水ろ液)46に供給される酸化剤53の供給量を開閉バルブV1を調整することで、スラリ吸収液34のORPを制御して、湿式脱硫装置15の塔底部15aに貯留するスラリ吸収液34内に捕集されている酸化されたHgが還元(Hg2+→Hg0)されるのを防止し、煙突16より放散されるのを防止することができる。
酸化剤53としては、例えば、空気、酸素O2、過酸化水素H2O2、オゾンO3、塩素酸化合物(Cl2、ClO-)、マンガン化合物(Mn2+、Mn4+、Mn7+)、鉄化合物(Fe2+、Fe3+)などを挙げることができる。また、酸化剤53の代わりにHg吸収液等を供給するようにしてもよい。
湿式脱硫装置15内のスラリ吸収液(石灰石膏スラリ)34の酸化還元電位は、スラリ吸収液34からのHgの再飛散を防止するためには、例えば0mV以上600mV以下の範囲内にあることが好ましい。さらに好ましくは50mV以上300mV以下の範囲であり、最も好ましくは100mV以上200mV以下の範囲である。さらに最適には150mV以上200mVを下回る(未満)範囲である。これは酸化還元電位が上記範囲内であればスラリ吸収液34中にHgCl2として捕集されたHgが安定な領域であり、大気中への再飛散を防ぐことができるためである。
また、酸化剤53が過酸化水素、オゾン、塩素酸化合物、マンガン化合物、鉄化合物のいずれか一種又はこれらの組み合わせであることにより、一般的なORP制御に用いる酸素(空気)よりも酸化力が強いためスラリ吸収液34中のORP計54の電位を少なくとも100mV以上200mV以下の範囲とすることができる。スラリ吸収液34中のORP計54の電位を少なくとも100mV以上200mV以下の範囲に維持することにより、酸化水銀(Hg2+)の還元(Hg2+→Hg0)を防止すること、及び、水銀の再飛散を防止することができる。
酸化水銀(Hg2+)の還元(Hg2+→Hg0)により水銀の再飛散が問題となるのはORP計54の電位が100mV以下の範囲であるため、水銀の還元を防止するにはORP計54の電位が100mV以上であれば良いことになる。ORP計54の電位を200mV以上とする場合には、供給する酸化剤の量、及び濃度ともに過剰となってしまい、あまり経済的ではない。
また、一般的な石炭焚きボイラの排ガス22には、水銀と同様にセレン(Se)が含まれている場合がある。排ガス22中のセレンは湿式脱硫装置15のスラリ吸収液34に吸収され、排ガス22から除去される。スラリ吸収液34中のセレンの処理方法としては、酸化鉄による共沈法、活性炭や活性アルミナによる吸着法などを挙げることができるが、これは4価のSe(IV)に対する有効な処理方法であり、6価のSe(VI)に対する有効な処理方法ではない。
一方、ORP計54の電位が200mV以上の場合には、4価のSe(IV)が6価のSe(VI)に酸化が促進されてしまい、セレン(Se)の処理が困難な場合があるという問題がある。よって、上述した理由から、酸化還元電位が100mV以上200mVを下回る範囲にすることで、効率的・経済的に水銀の還元を防止し、再飛散を低減でき、かつ、セレン(Se)の処理性の悪化などの副作用を防止することができる。
また、本実施例では、スラリ吸収液34のORPを制御の判断の指標としているが、ORPの判断以外に、亜硫酸イオン(SO3
2-)濃度を判断の指標とするようにしてもよい。スラリ吸収液34中に含まれる亜硫酸イオンの濃度を制御する場合、亜硫酸イオンの濃度としては、例えば、0.1mmol/L以上2.0mmol/L以下であり、好ましくは0.5mmol/L以上1.0mmol/L以下であり、さらに好ましくは1.0mmol/L以下である。
なお、亜硫酸イオン濃度と酸化還元電位(ORP)は良好な相関性を示すことが分かっているため(例えば、特開平11-169657号公報)、ORPの制御により、亜硫酸イオンの濃度の制御も可能である。この場合、例えばORPの値「150mV~200mV」に対応する亜硫酸イオン(SO3
2-)の値は、略「1.0mmol/L」である。従って、一点で判断する場合には、亜硫酸イオン(SO3
2-)の値は、「1.0mmol/L」で判断するようにしてもよい。よって、ORPでの制御の代わりに、亜硫酸イオン(SO3
2-)の濃度を判断の指標とすることができる。
本実施例における排ガス処理装置10AのORP制御は、スラリ吸収液(石灰石膏スラリ)34ではなく、湿式脱硫装置15に返送されて再利用される分離液(脱水ろ液)46に酸化剤53を供給するため、酸化剤53を過剰に供給する必要がなく、適切な量の酸化剤53によりスラリ吸収液34のORPを制御することができる。また、分離液(脱水ろ液)46を再利用して湿式脱硫装置15に返送するため最小限の排水で済むことから、水(工業用水)35を多量に補給することなく湿式脱硫装置15内で脱硫排水をリサイクルすることができる。
以上説明したように、本実施例1に係る排ガス処理装置10Aは、脱硫反応に用いたスラリ吸収液(石灰石膏スラリ)34を固液分離処理する固液分離手段41と、分離された分離液(脱水ろ液)46を再利用するために湿式脱硫装置15に戻す分離液返送ラインL4と、湿式脱硫装置15に返送して再利用する分離液(脱水ろ液)46に酸化剤供給手段52より酸化剤53を供給してスラリ吸収液34のORP制御をする制御手段51とを有する構成としている。
本実施例1に係る排ガス処理装置10Aは、硫黄酸化物(SOx)と還元脱硝装置12において酸化された2価のHg2+を湿式脱硫装置15で除去する際に湿式脱硫装置15に返送する分離液(脱水ろ液)46に酸化剤53を供給してORP制御を行うようにしたことで排ガス22中に含まれるNOx、SOx、特にHgを効率的に除去することができ、脱硫における酸化阻害を抑制することができる。また、脱硫排水を固液分離した分離液(脱水ろ液)46を再利用して湿式脱硫装置15に返送するため湿式脱硫装置15内で脱硫排水をリサイクルすることができる。
図2は、本実施例に係る排ガス処理装置10Bの概略構成図である。なお、上述した実施例1と同一の構成には同一の符号を付し、重複した説明を省略する。図2に示すように、本実施例に係る排ガス処理装置10Bは、固液分離手段41で分離された分離液(脱水ろ液)36をさらに排水処理装置43で処理した処理液47を分離液返送ラインL5により湿式脱硫装置15に返送して、再利用する構成となっている。また、本実施例のORPの制御は、脱水ろ液36をさらに排水処理装置43で処理した処理液47に酸化剤53を供給してスラリ吸収液34のORP制御を行うものである。
排水処理装置43で処理された処理液47は、脱水ろ液36と比較してさらに懸濁物、重金属、水銀等44が除去されており、処理液47を湿式脱硫装置15に戻して再利用する場合、湿式脱硫装置15内のスラリ吸収液(石灰石膏スラリ)34中に含まれる懸濁物、重金属、水銀等44の濃度を低減させることができる。つまりスラリ吸収液(石灰石膏スラリ)34中に含まれるトータルの水銀の量を減らすことができる。
本実施例2における排ガス処理装置10BのORP制御によれば、スラリ吸収液34中の金属水銀濃度の低下に伴い、排ガス22側へ再飛散する金属水銀の濃度を低下させることができる。その結果として湿式脱硫装置15から排出される処理排ガス24中の水銀濃度の低下を図ることができる。また、処理液47を再利用して湿式脱硫装置15に返送するため最小限の排水で済むことから、水(工業用水)35を多量に補給することなく湿式脱硫装置15内で脱硫排水をリサイクルすることができる。
図3は、本実施例に係る排ガス処理装置10Cの概略構成図である。なお、上述した実施例1及び実施例2と同一の構成には同一の符号を付し、重複した説明を省略する。図3に示すように、本実施例に係る排ガス処理装置10Cは、固液分離手段41で処理された分離液(脱水ろ液)46の一部と、分離液(脱水ろ液)46の残りの分離液36を排水処理装置43で処理された分離液(処理液)47との何れか一方又は両方を分離液返送ラインL4、L5により湿式脱硫装置15に返送して、再利用する構成となっている。
また、本実施例のORPの制御は、脱水ろ液46、又は処理液47の何れか一方又は両方に酸化剤53を供給して湿式脱硫装置15のスラリ吸収液34のORP制御を行うものである。
脱水ろ液46、及び処理液47への酸化剤53の供給は、スラリ吸収液34に含まれる成分の量に基づいて判断して制御するようにする。スラリ吸収液34に含まれる成分としては、例えば石膏、亜硫酸石膏、炭酸カルシウム、水銀、重金属などを挙げることができる。
また、最小限の水(工業用水)35の補給で済むように湿式脱硫装置15から排出される脱硫排水等の水バランスを考慮することが好ましい。
本実施例3における排ガス処理装置10CのORP制御によれば、スラリ吸収液34中の金属水銀濃度の低下に伴い、排ガス22側へ再飛散する金属水銀の濃度を低下させることができる。その結果として湿式脱硫装置15から排出される処理排ガス24中の水銀濃度の低下を図ることができる。また、脱水ろ液46、及び処理液47を再利用して湿式脱硫装置15に返送するため最小限の排水で済むことから、水(工業用水)35を多量に補給することなく湿式脱硫装置15内で脱硫排水をリサイクルすることができる。
次に、図4~図6を参照して本実施例に係る排ガス処理装置10D~10Fについて説明する。図4~図6は、本実施例に係る排ガス処理装置10D~10Fの概略構成図である。なお、上述した実施例1~3と同一の構成には同一の符号を付し、重複した説明を省略する。図4~図6に示すように、本実施例に係る排ガス処理装置10D~10Fは、実施例1~3の構成に加えて、固液分離手段41で処理された分離液(脱水ろ液)46、及び排水処理装置43で処理された処理液47を湿式脱硫装置15に返送する分離液返送ラインL4、L5の途中に酸化剤53と、分離液(脱水ろ液)46、又は処理液47の何れか一方又は両方と、を混合するための混合槽48と、混合槽48の混合液49を湿式脱硫装置15に戻す混合液返送ラインL6と、を設けた構成となっている。本実施例の酸化還元電位(ORP)の制御は、混合槽48に酸化剤53を供給して酸化還元電位を制御した混合液49を湿式脱硫装置15のスラリ吸収液34に供給してスラリ吸収液34のORP制御を行うものである。
混合槽48で混合された混合液49の酸化還元電位は、湿式脱硫装置15でのスラリ吸収液34からのHgの再飛散を防止するためには、例えば0mV以上600mV以下の範囲内にあることが好ましい。さらに好ましくは50mV以上300mV以下の範囲であり、最も好ましくは100mV以上200mV以下の範囲である。さらに最適には150mV以上200mV以下の範囲である。本実施例では、湿式脱硫装置15のスラリ吸収液34に供給される混合液49の酸化還元電位が上記の範囲内であるため、例えば、酸化還元電位を100mV以上200mV以下の範囲にORP制御した場合、湿式脱硫装置15のスラリ吸収液34の酸化還元電位は200mVを下回ることになり、200mV以上となることはない。
よって、混合液49の酸化還元電位が上記範囲内であれば湿式脱硫装置15のスラリ吸収液34中にHgCl2として捕集されたHgが安定な領域であり、大気中への再飛散を防ぐことができる。さらに好ましくは酸化還元電位を150mV以上200mV以下の範囲にすることで、効率的・経済的に水銀の還元を防止し、再飛散を低減でき、かつ、実施例1において説明したようにセレン(Se)の処理性の悪化などの副作用を防止することができる。
本実施例4における排ガス処理装置10D~10FのORP制御によれば、スラリ吸収液34中の金属水銀濃度の低下に伴い、排ガス22側へ再飛散する金属水銀の濃度を低下させることができる。その結果として湿式脱硫装置15から排出される処理排ガス24中の水銀濃度の低下を図ることができる。
また、脱硫排水を固液分離した分離液(脱水ろ液46及び脱水ろ液46を処理した処理液47)を再利用して湿式脱硫装置15に返送するため最小限の排水で済むことから、水(工業用水)35を多量に補給することなく湿式脱硫装置15内で脱硫排水をリサイクルすることができる。
また、スラリ吸収液34に供給する前の混合槽48で混合された混合液49の酸化還元電位を100mV以上200mV以下の範囲内に制御することから湿式脱硫装置15のスラリ吸収液34の酸化還元電位は200mVを下回ることになり、200mV以上となることはない。
以上説明したように、本実施例に係る排ガス処理装置10は、硫黄酸化物(SOx)と還元脱硝装置12において酸化された2価のHg2+を湿式脱硫装置15で除去する際に分離液(脱水ろ液46、処理液47)に酸化剤53を供給してスラリ吸収液34のORP制御を行うようにしたことで排ガス22中に含まれるNOx、SOx、特にHgを効率的に除去することができ、脱硫における酸化阻害を抑制できる。
また、本実施例における排ガス処理装置10のORP制御によれば、スラリ吸収液34中の金属水銀濃度の低下に伴い、排ガス22側へ再飛散する金属水銀の濃度を低下させることができる。その結果として湿式脱硫装置15から排出される処理排ガス24中の水銀濃度の低下を図ることができる。
さらに、本実施例のORP制御によれば、効率的・経済的に水銀の還元を防止し、再飛散を低減でき、かつ、セレン(Se)の処理性の悪化などの副作用を防止することができる。
また、分離液(脱水ろ液46、処理液47)を再利用して湿式脱硫装置15に返送するため最小限の排水で済むことから、水(工業用水)35を多量に補給することなく湿式脱硫装置15内で脱硫排水をリサイクルすることができる。
10 排ガス処理装置
11 ボイラ
12 還元脱硝装置
13 空気予熱器(エアヒータ:AH)
14 集塵器(ESP)
15 湿式脱硫装置
15a 塔底部
15b 塔頂部側
15c ノズル
16 煙突
21 燃料
22 排ガス
23 煙道
24 処理排ガス
31 還元酸化助剤供給手段
32 還元酸化助剤(塩化アンモニウム(NH4Cl)溶液)
33 石灰石膏スラリ供給手段
34 石灰石膏スラリ(スラリ、スラリ吸収液、アルカリ吸収液)
35 水(工業用水)
36、46 分離液(脱水ろ液)
41 固液分離手段
42 脱水ケーキ(石膏)
43 排水処理装置
44 懸濁物、重金属、水銀等
45 排水
47 分離液(処理液)
48 混合槽
49 混合液
51 制御手段
52 酸化剤供給手段
53 酸化剤
54 酸化還元電位計(ORP計)
11 ボイラ
12 還元脱硝装置
13 空気予熱器(エアヒータ:AH)
14 集塵器(ESP)
15 湿式脱硫装置
15a 塔底部
15b 塔頂部側
15c ノズル
16 煙突
21 燃料
22 排ガス
23 煙道
24 処理排ガス
31 還元酸化助剤供給手段
32 還元酸化助剤(塩化アンモニウム(NH4Cl)溶液)
33 石灰石膏スラリ供給手段
34 石灰石膏スラリ(スラリ、スラリ吸収液、アルカリ吸収液)
35 水(工業用水)
36、46 分離液(脱水ろ液)
41 固液分離手段
42 脱水ケーキ(石膏)
43 排水処理装置
44 懸濁物、重金属、水銀等
45 排水
47 分離液(処理液)
48 混合槽
49 混合液
51 制御手段
52 酸化剤供給手段
53 酸化剤
54 酸化還元電位計(ORP計)
Claims (8)
- ボイラからの排ガスを排出する煙道内に、気化した際に塩化水素とアンモニアとを生成する還元酸化助剤を供給する還元酸化助剤供給手段と、
前記排ガス中の窒素酸化物をアンモニアで還元すると共に、塩化水素共存下で水銀を酸化する脱硝触媒を有する還元脱硝装置と、
前記排ガス中の硫黄酸化物と前記還元脱硝装置において酸化された水銀を吸収液により吸収除去する湿式脱硫装置と、
前記吸収液の酸化還元電位を計測する酸化還元電位計と、
前記湿式脱硫装置から排出される脱硫排水中の固体分及び水銀と、液体分とを分離処理する固液分離手段と、
前記固液分離手段で分離処理された分離液を前記湿式脱硫装置に戻す分離液返送ラインと、
前記湿式脱硫装置に戻される前記分離液に酸化剤を供給する酸化剤供給手段と、
前記酸化剤の供給量を調整して前記吸収液の酸化還元電位を制御する制御手段と、
を有することを特徴とする排ガス処理装置。 - 前記分離液は、前記固液分離手段で分離された脱水ろ液、又は脱水ろ液から重金属を除去された処理液であることを特徴とする請求項1に記載の排ガス処理装置。
- 前記制御手段は、前記吸収液の酸化還元電位を100mV以上200mV以下の範囲に、又は前記吸収液中の亜硫酸イオンを0.1mmol/L以上2.0mmol/L以下に制御することを特徴とする請求項1または2に記載の排ガス処理装置。
- 前記酸化剤と、前記脱水ろ液、又は前記処理液の何れか一方又は両方と、を混合するための混合槽と、
前記混合槽で混合された混合液を前記湿式脱硫装置に戻す混合液返送ラインと、
を有し、
前記制御手段は、前記混合液の酸化還元電位を計測し、前記混合液に酸化剤を供給して前記混合液の酸化還元電位を100mV以上200mV以下の範囲に、又は前記混合液中の亜硫酸イオンを0.1mmol/L以上2.0mmol/L以下に制御することを特徴とする請求項1から3の何れか1項に記載の排ガス処理装置。 - ボイラからの排ガスを排出する煙道内に、気化した際に塩化水素とアンモニアとを生成する還元酸化助剤を供給する還元酸化助剤供給工程と、
前記排ガス中の窒素酸化物をアンモニアで還元すると共に、塩化水素共存下で水銀を酸化する脱硝触媒を有する還元脱硝工程と、
前記排ガス中の硫黄酸化物と前記還元脱硝工程において酸化された水銀を吸収液により吸収除去する湿式脱硫工程と、
前記吸収液の酸化還元電位を計測する酸化還元電位計測工程と、
前記湿式脱硫工程から排出される脱硫排水中の固体分及び水銀と、液体分とを分離処理する固液分離工程と、
前記固液分離工程で分離処理された分離液を前記湿式脱硫工程に戻す分離液返送工程と、
前記湿式脱硫工程に戻される前記分離液に酸化剤を供給する酸化剤供給工程と、
前記酸化剤の供給量を調整して前記吸収液の酸化還元電位を制御する制御工程と、
を有することを特徴とする排ガス処理装置のORP制御方法。 - 前記分離液は、固液分離工程で分離された脱水ろ液、又は脱水ろ液から重金属を除去された処理液であることを特徴とする請求項5に記載の排ガス処理装置のORP制御方法。
- 前記制御工程は、前記吸収液の酸化還元電位を100mV以上200mV以下の範囲に、又は前記吸収液中の亜硫酸イオンを0.1mmol/L以上2.0mmol/L以下に制御することを特徴とする請求項5または6に記載の排ガス処理装置のORP制御方法。
- 前記酸化剤と、前記脱水ろ液、又は前記処理液の何れか一方又は両方と、を混合するための混合工程と、
前記混合工程で混合された混合液を前記湿式脱硫工程に戻す混合液返送工程と、
を有し、
前記制御工程は、前記混合液の酸化還元電位を計測し、前記混合液に酸化剤を供給して前記混合液の酸化還元電位を100mV以上200mV以下の範囲に、又は前記混合液中の亜硫酸イオンを0.1mmol/L以上2.0mmol/L以下に制御することを特徴とする請求項5から7の何れか1項に記載の排ガス処理装置のORP制御方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011139795A JP2013006143A (ja) | 2011-06-23 | 2011-06-23 | 排ガス処理装置及び排ガス処理装置のorp制御方法 |
JP2011-139795 | 2011-06-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012176635A1 true WO2012176635A1 (ja) | 2012-12-27 |
Family
ID=47422475
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/064819 WO2012176635A1 (ja) | 2011-06-23 | 2012-06-08 | 排ガス処理装置及び排ガス処理装置のorp制御方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2013006143A (ja) |
WO (1) | WO2012176635A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014011349A1 (en) * | 2012-07-12 | 2014-01-16 | Babcock & Wilcox Power Generation Group, Inc. | Method for controlling compounds and conditions in a wet flue gas desulfurization (wfgd) unit |
CN104548917A (zh) * | 2014-12-02 | 2015-04-29 | 华北电力大学(保定) | 用于湿法烟气脱硫工艺的多功能复合添加剂及其应用方法 |
US20150139881A1 (en) * | 2013-11-21 | 2015-05-21 | Mitsubishi Heavy Industries, Ltd. | Wet type flue-gas desulfuization apparatus and method for adjusting oxidation reduction potential of absorbent therefor |
US10018356B2 (en) | 2012-07-12 | 2018-07-10 | The Babcock & Wilcox Company | System and method for controlling one or more process parameters associated with a combustion process |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103939930A (zh) * | 2014-04-15 | 2014-07-23 | 山东大学 | 一种基于烟气调质实现单质汞转化的系统和方法 |
PL3147023T3 (pl) | 2014-05-21 | 2021-10-04 | Chiyoda Corporation | Sposób obróbki gazu zawierającego rtęć zerowartościową, i sposób oddzielania rtęci |
JP6879801B2 (ja) * | 2017-03-31 | 2021-06-02 | 三菱パワー株式会社 | 石膏回収システム及び石膏回収方法 |
CN109395566A (zh) * | 2018-12-14 | 2019-03-01 | 宝鸡市泰得电子信息有限公司 | 一种工业锅炉烟气脱硫脱硝节能环保装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08240310A (ja) * | 1995-03-06 | 1996-09-17 | Ishikawajima Harima Heavy Ind Co Ltd | 溶融炉排ガスの処理装置 |
JP2004313833A (ja) * | 2003-04-11 | 2004-11-11 | Mitsubishi Heavy Ind Ltd | 排ガス中の水銀除去方法およびそのシステム |
JP2009166013A (ja) * | 2008-01-21 | 2009-07-30 | Mitsubishi Heavy Ind Ltd | 石炭焚ボイラの排ガス処理システム |
-
2011
- 2011-06-23 JP JP2011139795A patent/JP2013006143A/ja not_active Withdrawn
-
2012
- 2012-06-08 WO PCT/JP2012/064819 patent/WO2012176635A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08240310A (ja) * | 1995-03-06 | 1996-09-17 | Ishikawajima Harima Heavy Ind Co Ltd | 溶融炉排ガスの処理装置 |
JP2004313833A (ja) * | 2003-04-11 | 2004-11-11 | Mitsubishi Heavy Ind Ltd | 排ガス中の水銀除去方法およびそのシステム |
JP2009166013A (ja) * | 2008-01-21 | 2009-07-30 | Mitsubishi Heavy Ind Ltd | 石炭焚ボイラの排ガス処理システム |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014011349A1 (en) * | 2012-07-12 | 2014-01-16 | Babcock & Wilcox Power Generation Group, Inc. | Method for controlling compounds and conditions in a wet flue gas desulfurization (wfgd) unit |
US9457316B2 (en) * | 2012-07-12 | 2016-10-04 | The Babcock & Wilcox Company | Method for controlling compounds and conditions in a wet flue gas desulfurization (WFGD) unit |
AU2013289074B2 (en) * | 2012-07-12 | 2017-11-16 | The Babcock & Wilcox Company | Method for controlling compounds and conditions in a wet flue gas desulfurization (WFGD) unit |
US10018356B2 (en) | 2012-07-12 | 2018-07-10 | The Babcock & Wilcox Company | System and method for controlling one or more process parameters associated with a combustion process |
US20150139881A1 (en) * | 2013-11-21 | 2015-05-21 | Mitsubishi Heavy Industries, Ltd. | Wet type flue-gas desulfuization apparatus and method for adjusting oxidation reduction potential of absorbent therefor |
US9101882B2 (en) * | 2013-11-21 | 2015-08-11 | Mitsubishi Hitachi Power Systems, Ltd. | Wet type flue-gas desulfurization apparatus and method for adjusting oxidation reduction potential of absorbent therefor |
CN104548917A (zh) * | 2014-12-02 | 2015-04-29 | 华北电力大学(保定) | 用于湿法烟气脱硫工艺的多功能复合添加剂及其应用方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2013006143A (ja) | 2013-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5716929B2 (ja) | 排ガス中の水銀処理システム | |
WO2012176635A1 (ja) | 排ガス処理装置及び排ガス処理装置のorp制御方法 | |
JP5554162B2 (ja) | 排ガス中の水銀処理システム | |
KR101425289B1 (ko) | 배기가스 처리 시스템 및 배기가스 처리 방법 | |
WO2012176634A1 (ja) | 排ガス処理装置及び排ガス処理装置のorp制御方法 | |
JP5972983B2 (ja) | 排ガス処理システム及び排ガス処理方法 | |
JP5529701B2 (ja) | ガス分析装置、水銀除去システム及び水銀除去方法 | |
US10247414B2 (en) | Coal-fired boiler exhaust gas treatment apparatus and coal-fired boiler exhaust gas treatment method | |
WO2009093574A1 (ja) | 石炭焚ボイラの排ガス処理システム及び方法 | |
JP6095923B2 (ja) | 排ガス中の水銀処理システム | |
WO2009093575A1 (ja) | 石炭焚ボイラの排ガス処理システム及び方法 | |
JP2012206016A (ja) | 排ガス処理装置及び処理方法、石炭改質プロセス設備 | |
JP2009262081A (ja) | 排ガス処理システム及び排ガス中の水銀除去方法 | |
JP2012073106A5 (ja) | ||
JP2009166013A (ja) | 石炭焚ボイラの排ガス処理システム | |
WO2014041951A1 (ja) | 排ガス中の水銀処理システム | |
JP4777133B2 (ja) | 水銀除去装置及び方法 | |
WO2011122628A1 (ja) | セレン含有液の処理システム、湿式脱硫装置及びセレン含有液の処理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12803142 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12803142 Country of ref document: EP Kind code of ref document: A1 |