WO2009093568A1 - フルオロアルキルアルコール不飽和カルボン酸誘導体混合物、これらの重合体およびこの重合体を有効成分とする撥水撥油剤 - Google Patents

フルオロアルキルアルコール不飽和カルボン酸誘導体混合物、これらの重合体およびこの重合体を有効成分とする撥水撥油剤 Download PDF

Info

Publication number
WO2009093568A1
WO2009093568A1 PCT/JP2009/050745 JP2009050745W WO2009093568A1 WO 2009093568 A1 WO2009093568 A1 WO 2009093568A1 JP 2009050745 W JP2009050745 W JP 2009050745W WO 2009093568 A1 WO2009093568 A1 WO 2009093568A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixture
integer
general formula
group
fluoroalkyl alcohol
Prior art date
Application number
PCT/JP2009/050745
Other languages
English (en)
French (fr)
Inventor
Seiichiro Murata
Masayosi Horiuti
Katsuyuki Sato
Satoshi Kurihara
Original Assignee
Unimatec Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unimatec Co., Ltd. filed Critical Unimatec Co., Ltd.
Priority to EP09704474.7A priority Critical patent/EP2233464B1/en
Priority to JP2009519721A priority patent/JP5003759B2/ja
Priority to US12/863,465 priority patent/US8481660B2/en
Priority to CA2711039A priority patent/CA2711039C/en
Priority to CN200980102883.4A priority patent/CN101925570B/zh
Priority to KR1020107015141A priority patent/KR101137286B1/ko
Publication of WO2009093568A1 publication Critical patent/WO2009093568A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/62Halogen-containing esters
    • C07C69/65Halogen-containing esters of unsaturated acids
    • C07C69/653Acrylic acid esters; Methacrylic acid esters; Haloacrylic acid esters; Halomethacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/22Esters containing halogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/18Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • D06M15/277Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof containing fluorine
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/10Repellency against liquids
    • D06M2200/11Oleophobic properties
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/10Repellency against liquids
    • D06M2200/12Hydrophobic properties

Definitions

  • the present invention relates to a fluoroalkyl alcohol unsaturated carboxylic acid derivative mixture, a polymer thereof and a water / oil repellent containing the polymer as an active ingredient. More specifically, a fluoroalkyl alcohol unsaturated carboxylic acid derivative mixture having a perfluoroalkyl group having 6 or less carbon atoms, which is said to have low bioaccumulation properties, these polymers, and water repellent and water repellent containing this polymer as an active ingredient. It relates to oil.
  • perfluoroalkyl alcohols which are acrylated precursors, are widely used as surfactants and the like.
  • acrylic acid derivatives having a perfluoroalkyl group having 8 or more carbon atoms are used in large quantities as raw materials for water and oil repellents, antifouling agents, surfactants and the like for fibers.
  • Patent Document 2 the expression of water / oil repellency of perfluoroalkyl (meth) acrylate in the surface treatment film of the water / oil repellent treatment substrate is caused by the orientation of the perfluoroalkyl group (Rf group) in the treatment film.
  • An object of the present invention is to provide an acrylic acid derivative mixture, (2) a fluorine-containing polymer containing these as polymerized units, and (3) a water / oil repellent containing the polymer as an active ingredient.
  • the CH 2 CF 2 group derived from vinylidene fluoride in the molecule easily de-HFs to form a double bond, which is decomposed by ozonolysis. Therefore, the perfluoroalkyl group can be decomposed to 6 or less carbon atoms with low bioaccumulation. Therefore, a fluoropolymer containing a fluoroalkyl alcohol (meth) acrylic acid derivative mixture as a polymerized unit is a perfluoroalkyl having a continuous carbon number of 8 or more due to the presence of —CH ⁇ CF— in the fluoroalkyl group.
  • the structure does not have a group and does not change to perfluorooctanoic acid or perfluorocarboxylic acid having more than 8 carbon atoms in the environment.
  • This fluorine-containing polymer can be suitably used as an active ingredient of a water / oil repellent, similarly to conventional fluorine-containing polymers.
  • the fluorine-containing polymer containing such a fluoroalkyl alcohol (meth) acrylic acid derivative mixture as a polymerized unit was polymerized with perfluorooctylethyl acrylate conventionally used, as shown in Examples and Reference Examples below.
  • a static contact angle equivalent to that of a homopolymer is exhibited, and when prepared as an aqueous dispersion, excellent effects such as equivalent water repellency and oil repellency are exhibited.
  • the fluoroalkyl alcohol mixtures [IIa] and [IIb] esterified with acrylic acid or methacrylic acid have the general formula CF 3 (CF 2 ) n (CH 2 CF 2 ) a (CF 2 CF 2 ) b (CH 2 CH 2 ) c I (III) Is produced by reacting with N-methylformamide, followed by hydrolysis in the presence of a basic compound.
  • reaction temperature is related to the decomposition temperature of the initiator used, the reaction is generally carried out at about 80 to 120 ° C. When a peroxide initiator that decomposes at a low temperature is used, the reaction temperature is 80 ° C. or less. Reaction is possible.
  • the peroxide initiator tertiary butyl peroxide, di (tertiary butyl cyclohexyl) peroxydicarbonate, dicetyl peroxydicarbonate and the like are used in an amount of about 1 to 5 mol% with respect to the compound [A]. Used in proportions.
  • the compound [A] has the general formula CF 3 (CF 2 ) n (CH 2 CF 2 ) s + p (CF 2 CF 2 ) t + r I [A ′] p: number of vinylidene fluoride skeletons added by reaction r: number of tetrafluoroethylene skeletons added by reaction s + p: same as a (1 to 4, preferably 1 to 2) t + r: same as b (0-3, preferably 1-2) More specifically, it is manufactured by the following method.
  • n, s, and t are as defined above, and r is an integer of 1 to 3, which is the number of tetrafluoroethylene skeletons added by the reaction).
  • n, s, and t are as defined above, and r is an integer of 1 to 3, which is the number of tetrafluoroethylene skeletons added by the reaction).
  • terminally iodized polyfluoroalkane used include the following compounds. CF 3 (CF 2 ) (CH 2 CF 2 ) I CF 3 (CF 2 ) (CH 2 CF 2 ) 2 I CF 3 (CF 2 ) 2 (CH 2 CF 2 ) I CF 3 (CF 2 ) 2 (CH 2 CF 2 ) 2 I CF 3 (CF 2 ) 3 (CH 2 CF 2 ) I CF 3 (CF 2 ) 3 (CH 2 CF 2 ) 2 I CF 3 (CF 2 ) (CH 2 CF 2 ) (CF 2 CF 2 ) I CF 3 (CF 2 ) (CH 2 CF 2 ) (CF 2 CF 2 ) I CF 3 (CF 2 ) (CH 2 CF 2 ) (CF 2 CF 2 ) 2 I CF 3 (CF 2 ) (CH 2 CF 2 ) (CF 2 CF 2 ) 2 I CF 3 (CF 2 ) 2 (CH 2 CF 2 ) (CF 2 CF 2
  • An oligomerization reaction of a terminally iodinated polyfluoroalkane represented by the general formula [B-1], [B-2] or [B-3] with vinylidene fluoride or tetrafluoroethylene is carried out by using a peroxide initiator, for example, diester. (Tertiary butyl cyclohexyl) peroxydicarbonate, dicetylperoxydicarbonate and the like are present.
  • the peroxide initiator is used in a ratio of about 0.1 to 0.5 mol% with respect to the compound [B-1], [B-2] or [B-3], and p and r are each vinylidene fluoride or It shows the increased degree of oligomerization of tetrafluoroethylene.
  • the reaction temperature depends on the decomposition temperature of the initiator used, but the reaction at 80 ° C. or lower is possible by using a peroxide initiator that decomposes at a low temperature.
  • a mixture of the compounds [IIa] and [IIb] is formed by any of the H atom of the methylene chain CH 2 and the fluoromethylene chain CF 2 bonded to the front and back positions in the deHF reaction. This is because the extraction with one of the F atoms occurs equivalently before and after.
  • the produced fluoroalkyl alcohol is equivalent to the deHF reaction, the production ratio of the compounds [IIa] and [IIb] is almost halved. Since these compounds [IIa] and [IIb] are very similar structural isomers, they cannot be identified separately, but have the same reactivity, so that they remain as a mixture and other Can be used as material and synthetic raw material.
  • This reaction is carried out at about 140 to 160 ° C. for about 7 to 10 hours using about 5 to 20 times mol, preferably about 10 to 15 times mol of N-methylformamide with respect to fluoroalkyl iodide [III].
  • the reaction is carried out at a temperature of about 85 to 95 ° C. for about 7 to 10 hours using a basic compound such as sodium hydroxide or potassium hydroxide.
  • the resulting mixture of fluoroalkyl alcohol [IIa] and [IIb] is esterified with acrylic acid or methacrylic acid.
  • an aromatic hydrocarbon solvent such as toluene and benzene
  • a catalyst such as p-toluenesulfonic acid and hydroquinone as a polymerization inhibitor are added to the fluoroalkyl alcohol mixture and heated to about 90 to 100 ° C.
  • About 1 to 2 times the molar amount of acrylic acid or methacrylic acid is added thereto, and heated at about 110 to 120 ° C. for about 2 to 5 hours to perform dehydration and esterification reaction, and then the acrylic acid or methacrylic acid derivative mixture [ Ia] and [Ib].
  • the polyfluoroalkyl group possessed by, preferably a perfluoroalkyl group must have 1 to 6 carbon atoms, preferably 2 to 4 carbon atoms.
  • Rf hydrogen atom or methyl group
  • R 1 divalent organic group having 1 to 4 carbon atoms
  • R 2 lower alkyl group having 1 to 5 carbon atoms
  • Rf polyfluoroalkyl having 1 to 6 carbon atoms, preferably 2 to 4 carbon atoms
  • m 0 or 1
  • the following polyfluoroalkyl group-containing (meth) acrylate monomers are shown.
  • the carbon number n of the terminal polyfluoroalkyl group must be 1 to 6, and when the R 1 group is a polyfluoroalkylene group, the total carbon number of the terminal polyfluoroalkyl group and the terminal polyfluoroalkyl group is 1 to 6 There must be.
  • fluorine atom-free polymerizable monomer examples include alkyl groups such as methyl, ethyl, propyl, isopropyl, n-butyl, n-hexyl, 2-ethylhexyl, n-octyl, lauryl, stearyl, and cyclohexyl.
  • vinyl esters such as vinyl, preferably alkyl groups having 8 or more carbon atoms, specifically alkyl (meth) acrylates having cycloalkyl groups such as 2-ethylhexyl, n-octyl
  • a combination with (meth) acrylic acid ester esterified with is preferably used in view of the balance between water repellency and oil repellency.
  • the fluoroalkyl alcohol (meth) acrylic acid derivative mixture in the copolymer is about 5% by weight or more, preferably about 10 to 60% by weight in terms of polymerized units. %, More preferably from about 10 to 35% by weight, from the viewpoint of developing water and oil repellency.
  • a polymer having only a fluoroalkyl alcohol (meth) acrylic acid derivative mixture as a polymerizable monomer exhibits water and oil repellency, but from a cost standpoint, it can be used together with other comonomers.
  • the polymer is advantageous, and in particular, the polyfluoroalkyl group-containing (meth) acrylate monomer exhibiting water / oil repellency per se is about 10% by weight or more, preferably about 10 to 60% in the copolymer as a polymer unit.
  • the copolymerization by weight% is preferable from the viewpoint of both water and oil repellency and cost.
  • copolymer other copolymerizable monomers can be copolymerized in a range where the characteristics are not impaired, for example, in a proportion of 30% by weight or less in the copolymer.
  • copolymerizable monomers include styrene, vinyl toluene, ⁇ -methyl styrene, vinyl naphthalene, acrylonitrile, methacrylonitrile, acetone acrylamide, isoprene, pentadiene, butadiene, 2-hydroxyethyl acrylate, 4-hydroxybutyl acrylate.
  • 2-hydroxy-3-chloropropyl (meth) acrylate polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, vinylidene chloride, vinyl fluoride, vinylidene fluoride, hydroxyethyl vinyl ether, hydroxybutyl vinyl ether It is done.
  • a polyfunctional monomer or oligomer can be copolymerized at a ratio of 30% by weight or less in the copolymer.
  • Such polyfunctional monomers or oligomers include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) Acrylate, 1,9-nonanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, bisphenol A. Ethylene oxide adduct diacrylate, dimethylol tricyclodecane diacrylate, glycerin methacrylate acrylate, 3-acryloyloxyglycer
  • a crosslinkable group-containing monomer such as (meth) acrylamide, N-methylol (meth) acrylamide, N-methoxymethylacrylamide, N-butoxymethylacrylamide, glycidyl (meth) acrylate, etc.
  • the copolymerization can be carried out at a ratio of about 10% by weight or less, preferably about 0.5 to 7% by weight in the copolymer.
  • the production method of the fluorinated copolymer is not particularly limited, and is a solution polymerization method using an organic solvent, a suspension polymerization method using water as a dispersion medium and a non-ionic surfactant and / or a cationic surfactant, or an emulsion weight. Examples include legality.
  • the polymer solution obtained by the solution polymerization method is further solidified by a fluorine-containing organic solvent such as 1,4-bis (trifluoromethyl) benzene and 1,3-bis (trifluoromethyl) benzene. It is diluted to about 0.01 to 30% by weight, preferably about 0.05 to 5% by weight, and used as a water and oil repellent.
  • the aqueous dispersion of the copolymer obtained by the suspension polymerization method or the emulsion polymerization method is used as a water / oil repellent as it is or after diluting with water to a solid content concentration of about 0.1 to 10% by weight.
  • a flocculant is added to the polymerization reaction solution to agglomerate the polymer, washed with water or an organic solvent, and separated from the fluoroalkyl alcohol (meth) acrylic acid derivative mixture
  • An organic solvent solution or aqueous dispersion of a polymer containing only a polymerizable monomer or a copolymer of these and other polymerizable monomers dissolved in a fluorine-containing organic solvent or dispersed in water It is also possible to prepare a water / oil repellent comprising a liquid.
  • a polymer having only the fluoroalkyl alcohol (meth) acrylic acid derivative mixture thus obtained as a polymerizable monomer or a copolymer of these with another polymerizable monomer is obtained by evaporating to dryness. It is separated and purified by a method of washing with a solvent or the like.
  • the weight-average molecular weight Mw of the resulting polymer comprising only the fluoroalkyl alcohol (meth) acrylic acid derivative mixture as a polymerizable monomer or a copolymer of these with other polymerizable monomers is determined by high performance liquid chromatography. The value is between 2,000 and 20,000,000.
  • the weight average molecular weight Mw was measured by GPC measurement using Shodex GPC KD806M + KD-802 + KD-G at a temperature of 40 °C and elution rate of 10mM THF as eluent at 1ml / min.
  • the analysis was conducted using Labchat® 180 (polystyrene equivalent) manufactured by SIC.
  • An aqueous dispersion of a polymer comprising only a mixture of these fluoroalkyl alcohol (meth) acrylic acid derivatives as a polymerizable monomer or a copolymer of these with another polymerizable monomer, preferably a surfactant and a water-soluble Aqueous dispersion or fluorine-containing organic solvent solution containing 20% by weight or less of a water-soluble organic solvent, which is used alone as a water- and oil-repellent agent, but if necessary, a crosslinking agent other than blocked isocyanate such as melamine resin and urea resin,
  • Add other additives required for water and oil repellent applications such as polymer extenders, silicone resins or oils, waxes and other water repellents, insect repellents, antistatic agents, dye stabilizers, antifungal agents, and stain blockers. be able to.
  • the water / oil repellent obtained in this manner is effectively applied as a water / oil repellent to paper products, films, fibers, fabrics, woven fabrics, carpets or fabric products made of filaments, fibers, threads and the like.
  • Application methods such as coating, dipping, spraying, padding, roll coating, or a combination thereof are generally used.
  • a solid content concentration of the bath of about 0.1 to 10% by weight, it can be used as a pad bath. Is done.
  • the material to be treated is padded in this pad bath, then excess liquid is removed with a squeeze roll and dried, and the polymer is attached to the material to be treated so that the amount of the polymer is about 0.01 to 10% by weight.
  • drying is generally performed at a temperature of about 100 to 200 ° C. for about 1 minute to about 2 hours, and the water and oil repellent treatment is completed.
  • the reaction product is distilled under reduced pressure under the conditions of an internal pressure of 0.2 kPa, an internal temperature of 109 to 123 ° C, and a tower top temperature of 86 to 87 ° C. 30 g of the purified reaction product (97.4GC%) (distillation yield 35.6%) Obtained.
  • This purified reaction product was confirmed to be a mixture of compounds represented by the following formula from the results of 1 H-NMR and 19 F-NMR.
  • Example 1 In a four-necked flask with a capacity of 100 ml equipped with a condenser, thermometer and stirrer, 30.0 g (0.06 mol) of the compound mixture (97.4GC%) obtained in Reference Example 1 (2), 21 g of toluene, p-toluenesulfonic acid 6 g and 0.3 g of hydroquinone were charged, the internal temperature was heated to 100 ° C., 5 g (0.07 mol) of acrylic acid was added, and the mixture was reacted at an internal temperature of 115 ° C. for 4 hours.
  • the reaction product was distilled under reduced pressure under the conditions of an internal pressure of 0.1 kPa, an internal temperature of 128 to 133 ° C., and a tower top temperature of 64 to 72 ° C. to obtain 23 g of a purified reaction product (98.0 GC%) (distillation yield: 77.7%) Obtained.
  • This purified reaction product was confirmed to be a mixture of compounds represented by the following formula from the results of 1 H-NMR and 19 F-NMR.
  • the reaction product was distilled under reduced pressure under the conditions of an internal pressure of 0.2 kPa, an internal temperature of 103 to 118 ° C., and a tower top temperature of 84 to 85 ° C. to obtain 38 g of a purified reaction product (97.8 GC%) (distillation yield 42.8%) Obtained.
  • This purified reaction product was confirmed to be a mixture of compounds represented by the following formula from the results of 1 H-NMR and 19 F-NMR.
  • Example 2 In a four-necked flask with a capacity of 100 ml equipped with a condenser, thermometer and stirrer, 37 g (0.09 mol) of the mixture of the compound obtained in Reference Example 2 (2) (97.8 GC%), 23 g of toluene, 7 g of p-toluenesulfonic acid Then, 0.4 g of hydroquinone was added, the internal temperature was heated to 100 ° C., 8 g (0.11 mol) of acrylic acid was added, and the mixture was stirred at an internal temperature of 115 ° C. for 4 hours for reaction.
  • the reaction product is distilled under reduced pressure under the conditions of an internal pressure of 0.1 kPa, an internal temperature of 124 to 128 ° C, and a tower top temperature of 63 to 68 ° C. 30 g of the purified reaction product (99.2 GC%) (distillation yield 79.2%) Obtained.
  • This purified reaction product was confirmed to be a mixture of compounds represented by the following formula from the results of 1 H-NMR and 19 F-NMR.
  • the reaction product was distilled under reduced pressure under the conditions of an internal pressure of 0.2 kPa, an internal temperature of 110 to 123 ° C, and a tower top temperature of 85 to 87 ° C, and 31 g of purified reaction product (97.5GC%) (distillation yield 35.9%) Obtained.
  • This purified reaction product was confirmed to be a mixture of compounds represented by the following formula from the results of 1 H-NMR and 19 F-NMR.
  • Example 3 In a 100 ml four-necked flask equipped with a condenser, a thermometer and a stirrer, 30.0 g (0.06 mol) of the mixture of the compound obtained in Reference Example 3 (2) (97.5 GC%), 21 g of toluene, p-toluenesulfonic acid 6 g and 0.3 g of hydroquinone were charged, the internal temperature was heated to 100 ° C., 5 g (0.07 mol) of acrylic acid was added, and the mixture was reacted at an internal temperature of 115 ° C. for 4 hours.
  • reaction product was distilled under reduced pressure under the conditions of an internal pressure of 0.1 kPa, an internal temperature of 129 to 133 ° C, and a tower top temperature of 65 to 72 ° C, and 24 g of purified reaction product (99.3 GC%) (distillation yield 78.3%) Obtained.
  • This purified reaction product was confirmed to be a mixture of compounds represented by the following formula from the results of 1 H-NMR and 19 F-NMR.
  • Example 4 In a four-necked flask with a capacity of 100 ml equipped with a condenser, thermometer and stirrer, 30.0 g (0.06 mol) of the compound mixture (97.4GC%) obtained in Reference Example 1 (2), 21 g of toluene, p-toluenesulfonic acid 6 g and 0.3 g of hydroquinone were charged, the internal temperature was heated to 100 ° C., 6 g (0.07 mol) of methacrylic acid was added, and the mixture was reacted at an internal temperature of 115 ° C. for 4 hours.
  • the reaction product was distilled under reduced pressure under conditions of an internal pressure of 0.1 kPa, an internal temperature of 135 to 142 ° C, and a tower top temperature of 70 to 76 ° C, and 26.5 g of a purified reaction product (99.1GC%) (distillation yield 79.2%) )Obtained.
  • the purified reaction product was confirmed to be a mixture of compounds represented by the following formula from the results of 1 H-NMR and 19 F-NMR.
  • the reaction product was distilled under reduced pressure under the conditions of an internal pressure of 0.2 kPa, an internal temperature of 104 to 119 ° C, and a tower top temperature of 84 to 85 ° C, and 36 g of purified reaction product (98.0GC%) (distillation yield 41.6%) Obtained.
  • the purified reaction product was confirmed to be a mixture of compounds represented by the following formula from the results of 1 H-NMR and 19 F-NMR.
  • Example 5 In a four-necked flask with a capacity of 100 ml equipped with a condenser, a thermometer and a stirrer, 35 g (0.08 mol) of the mixture of the compound obtained in Reference Example 4 (2) (98.0 GC%), 22 g of toluene, 7 g of p-toluenesulfonic acid Then, 0.4 g of hydroquinone was added, the internal temperature was heated to 100 ° C., 8 g (0.11 mol) of acrylic acid was added, and the mixture was stirred at an internal temperature of 115 ° C. for 4 hours for reaction.
  • the reaction product is distilled under reduced pressure under the conditions of an internal pressure of 0.1 kPa, an internal temperature of 124 to 128 ° C, and a tower top temperature of 63 to 68 ° C. 30 g of the purified reaction product (98.8GC%) (distillation yield 79.1%) Obtained.
  • This purified reaction product was confirmed to be a mixture of compounds represented by the following formula from the results of 1 H-NMR and 19 F-NMR.
  • the reaction product was distilled under reduced pressure under the conditions of an internal pressure of 0.2 kPa, an internal temperature of 100 to 114 ° C., and a tower top temperature of 80 to 81 ° C. to obtain 38 g of a purified reaction product (98.1 GC%) (distillation yield: 45.3%) Obtained.
  • This purified reaction product was confirmed to be a mixture of compounds represented by the following formula from the results of 1 H-NMR and 19 F-NMR.
  • Example 6 In a 100 ml four-necked flask equipped with a condenser, thermometer and stirrer, 37 g (0.12 mol) of the mixture of the compound obtained in Reference Example 5 (2) (98.1 GC%), 26 g of toluene, 8 g of p-toluenesulfonic acid Then, 0.4 g of hydroquinone was added, the internal temperature was heated to 100 ° C., 11 g (0.15 mol) of acrylic acid was added, and the mixture was reacted at an internal temperature of 115 ° C. for 4 hours.
  • the reaction product was distilled under reduced pressure under the conditions of an internal pressure of 0.1 kPa, an internal temperature of 120 to 124 ° C, and a tower top temperature of 59 to 63 ° C, and 34 g of purified reaction product (98.9GC%) (distillation yield: 83.0%) Obtained.
  • This purified reaction product was confirmed to be a mixture of compounds represented by the following formula from the results of 1 H-NMR and 19 F-NMR.
  • the polymerization reaction was carried out at 50 ° C. for 16 hours to obtain a polymer solution having a solid content concentration of 21.6% by weight.
  • 1,4-bis (trifluoromethyl) benzene was added to this polymer solution, the solid content concentration was diluted to 2% by weight, 1 ml of the diluted solution was applied to a stainless steel plate (2 ⁇ 5 cm), and 50 ° C. Test pieces were prepared by drying for 30 minutes.
  • the polymer solution used was placed in an oven at 120 ° C. to remove the solvent, and the fluorinated polymer was isolated.
  • the weight average molecular weight Mw was measured and found to be 35,000.
  • the weight average molecular weight Mw was measured by GPC measurement using Shodex GPC KD806M + KD-802 + KD-G at a temperature of 40 °C and elution rate of 10mM THF as eluent at 1ml / min.
  • the analysis was conducted using Labchat® 180 (polystyrene equivalent) manufactured by SIC.
  • Example 8 In Example 7, as the mixture of fluoroalkyl alcohol unsaturated carboxylic acid derivatives, the mixture of fluoroalkyl alcohol acrylic acid derivatives, which is the purified reaction product obtained in Example 2, was used to produce a polymer solution and a test piece. Was made.
  • the solid content concentration of the polymer solution was 21.4% by weight, and the weight average molecular weight Mw of the polymer was 45,000.
  • Example 9 In Example 7, as the mixture of fluoroalkyl alcohol unsaturated carboxylic acid derivatives, the mixture of fluoroalkyl alcohol acrylic acid derivatives, which is the purified reaction product obtained in Example 3, was used to produce a polymer solution and a test piece. Was made.
  • the solid content concentration of the polymer solution was 21.1% by weight, and the weight average molecular weight Mw of the polymer was 35,000.
  • Example 10 In Example 7, the mixture of fluoroalkyl alcohol methacrylic acid derivative, which is the purified reaction product obtained in Example 4, was used as the mixture of fluoroalkyl alcohol unsaturated carboxylic acid derivative to produce a polymer solution and a test piece.
  • the solid content concentration of the polymer solution was 20.7% by weight, and the weight average molecular weight Mw of the polymer was 20,000.
  • Example 12 In Example 11, 60.0 g (0.130 mol) of the fluoroalkyl alcohol acrylic acid derivative mixture which is the purified reaction product obtained in Example 2 was used as the mixture of the fluoroalkyl alcohol unsaturated carboxylic acid derivative, and the solid content concentration was 471 g of a 24.8% aqueous dispersion was obtained. In addition, Mw of the obtained fluoropolymer was 50,000.
  • Example 13 In Example 11, as a mixture of fluoroalkyl alcohol unsaturated carboxylic acid derivatives, 73.0 g (0.130 mol) of a mixture of fluoroalkyl alcohol acrylic acid derivatives, which is the purified reaction product obtained in Example 3, was used, and the solid content concentration was 484 g of a 25.1% aqueous dispersion was obtained. The obtained fluoropolymer had an Mw of 40,000.
  • Example 14 In Example 11, 74.9 g (0.130 mol) of a mixture of fluoroalkyl alcohol methacrylic acid derivatives, which is the purified reaction product obtained in Example 4, was used as a mixture of fluoroalkyl alcohol unsaturated carboxylic acid derivatives, and the solid content concentration was 486 g of a 24.5% aqueous dispersion was obtained. Note that Mw of the obtained fluoropolymer was 25,000.
  • Example 11 instead of the fluoroalkyl alcohol acrylic acid derivative mixture obtained in Example 1, 65.0 g (0.125 mol) of CF 3 (CF 2 ) 7 (CH 2 CH 2 ) OCOCH ⁇ CH 2 was used, 452 g of an aqueous dispersion having a solid content concentration of 21.0% was obtained.
  • Example 11 instead of the fluoroalkyl alcohol acrylic acid derivative mixture obtained in Example 1, 52.0 g (0.125 mol) of CF 3 (CF 2 ) 5 (CH 2 CH 2 ) OCOCH ⁇ CH 2 was used, 466 g of an aqueous dispersion having a solid content concentration of 22.7% was obtained.
  • Example 11 instead of the fluoroalkyl alcohol acrylic acid derivative mixture obtained in Example 1, CF 3 (CF 2 ) 3 (CH 2 CH 2 ) OCOCH ⁇ CH 2 40.0 g (0.125 mol) was used, 480 g of an aqueous dispersion having a solid content concentration of 24.4% was obtained.
  • aqueous dispersions obtained in Examples 11 to 14, Comparative Reference Example 4 and Comparative Examples 1 and 2 were diluted with water to a solid content concentration of 0.5 wt%, and then there were cotton cloth and cotton / polyester blended cloth. Then, each cloth of polyester cloth and nylon cloth was immersed, and water repellency (JIS L1092 compliant) and oil repellency (AATCC-TM118 compliant) were measured.
  • the wet bag pickup after squeezing at that time was 110% cotton cloth, 75% cotton / polyester blended cloth, 115% polyester cloth, and 45% nylon cloth. Drying was performed at 80 ° C. for 10 minutes, and curing was performed at 150 ° C. for 3 minutes for cotton cloth, cotton / polyester blended cloth, polyester cloth, and 170 ° C. for 1.5 minutes for nylon cloth.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 (1)一般式 CF3(CF2)n(CH=CF)a(CF2CF2)b(CH2CH2)cOCOCR=CH2および一般式 CF3(CF2)n-1(CF=CH)aCF2(CF2CF2)b(CH2CH2)cOCOCR=CH2(ここで、Rは水素原子またはメチル基であり、nは1~5の整数であり、aは1~4の整数であり、bは0~3の整数であり、cは1~3の整数である)で表わされるフルオロアルキルアルコール不飽和カルボン酸誘導体混合物、(2)これらを重合単位として含有する含フッ素重合体および(3)この含フッ素重合体を有効成分とする撥水撥油剤。上記フルオロアルキルアルコール不飽和カルボン酸誘導体は、一般式 CF3(CF2)n(CH=CF)a(CF2CF2)b(CH2CH2)cOHおよび一般式 CF3(CF2)n-1(CF=CH)aCF2(CF2CF2)b(CH2CH2)cOHで表わされるフルオロアルキルアルコール混合物にアクリル酸またはメタクリル酸をエステル化反応することによって製造される。

Description

フルオロアルキルアルコール不飽和カルボン酸誘導体混合物、これらの重合体およびこの重合体を有効成分とする撥水撥油剤
 本発明は、フルオロアルキルアルコール不飽和カルボン酸誘導体混合物、これらの重合体およびこの重合体を有効成分とする撥水撥油剤に関する。さらに詳しくは、生体蓄積性が低いといわれている炭素数6以下のパーフルオロアルキル基を有するフルオロアルキルアルコール不飽和カルボン酸誘導体混合物、これらの重合体およびこの重合体を有効成分とする撥水撥油剤に関する。
 パーフルオロアルキルアルコールのアクリル酸誘導体、例えばCF3(CF2)7CH2CH2OCOCH=CH2は、繊維用撥水撥油剤を形成する含フッ素共重合体用合成モノマーとして多量に使用されている。また、そのアクリレート化前駆体であるパーフルオロアルキルアルコールは、界面活性剤等として広く使用されている。このように、炭素数8以上のパーフルオロアルキル基を有するアクリル酸誘導体は、繊維用をはじめとする撥水撥油剤、防汚剤、界面活性剤等の原料として多量に使用されている。
特公昭63-22237号公報
 しかるに、近年炭素数8のパーフルオロオクタン酸あるいは炭素数が8を超えるパーフルオロカルボン酸は難分解性で、生体蓄積性が高く、生体毒性が疑われるなど環境に問題がみられるとの報告がなされている。これらの化合物の内、炭素数が8以上のパーフルオロアルキル基を有する化合物は、環境中での生物的分解または化学的分解によって、パーフルオロオクタン酸または炭素数が8を超えるパーフルオロカルボン酸に変化する可能性が示唆されており、今後はその製造や使用が困難になることが懸念されている。この点については、テロマー化合物も同様である。ただし、パーフルオロアルキル基の炭素数が6以下の化合物にあっては、生体蓄積性が低いといわれている。
 ここで、特許文献2では、撥水撥油処理基板の表面処理膜におけるパーフルオロアルキル(メタ)アクリレートの撥水撥油性の発現は、処理膜におけるパーフルオロアルキル基(Rf基)の配向に起因し、さらにRf基が配向するためには、Rf基の炭素数が8以上であることによる微結晶の融点が存在することが必要であり、かかる理由によって炭素数が8以上のパーフルオロアルキル(メタ)アクリレートが従来使用されてきたとした上で、イソシアネート基を架橋基として有する単量体の併用により、炭素数7以上のパーフルオロアルキル(メタ)アクリレートを用いての撥水撥油剤性能の発現を可能としている。しかるに、イソシアネート基含有単量体を用いない場合には、十分な撥水撥油性能を発揮することはできないものであった。
WO 2004/035708
 本発明の目的は、(1)生体蓄積性が低いといわれている炭素数6以下のパーフルオロアルキル基を有する化合物であって、生物的分解(微生物による生化学的分解)または化学的分解(環境中の酸、塩基、活性酸素、オゾン等による分解)を受け易いCH=CF基をフルオロアルキル基中に形成させ、撥水撥油剤原料モノマー等として有効に使用し得るフルオロアルキルアルコール(メタ)アクリル酸誘導体混合物、(2)これらを重合単位として含有する含フッ素重合体および(3)この重合体を有効成分とする撥水撥油剤を提供することにある。
 かかる本発明の目的は、
(1)一般式
   CF3(CF2)n(CH=CF)a(CF2CF2)b(CH2CH2)cOCOCR=CH2              〔Ia〕
および一般式
   CF3(CF2)n-1(CF=CH)aCF2(CF2CF2)b(CH2CH2)cOCOCR=CH2         〔Ib〕
(ここで、Rは水素原子またはメチル基であり、nは1~5の整数であり、aは1~4の整数であり、bは0~3の整数であり、cは1~3の整数である)で表わされるフルオロアルキルアルコール不飽和カルボン酸誘導体混合物、
(2)これらを重合単位として含有する含フッ素重合体
および
(3)この含フッ素重合体を有効成分とする撥水撥油剤
によって達成される。
 上記フルオロアルキルアルコール不飽和カルボン酸誘導体は、一般式
   CF3(CF2)n(CH=CF)a(CF2CF2)b(CH2CH2)cOH                     〔IIa〕
および一般式
   CF3(CF2)n-1(CF=CH)aCF2(CF2CF2)b(CH2CH2)cOH                〔IIb〕
で表わされるフルオロアルキルアルコール混合物にアクリル酸またはメタクリル酸をエステル化反応することによって製造される。
 本発明に係るフルオロアルキルアルコール不飽和カルボン酸誘導体混合物は、分子中のフッ化ビニリデン由来のCH2CF2基が容易に脱HFして二重結合を形成し、それがオゾン分解を受けて分解し易いため、パーフルオロアルキル基が生体蓄積性の低い炭素数6以下に分解され得る。従って、フルオロアルキルアルコール(メタ)アクリル酸誘導体混合物を重合単位として含有する含フッ素重合体は、フルオロアルキル基中に-CH=CF-を存在させることで、連続した炭素数8以上のパーフルオロアルキル基を有さない構造となり、環境中でパーフルオロオクタン酸あるいは炭素数8を超えるパーフルオロカルボン酸に変化することがない。
 この含フッ素重合体は、従来の含フッ素重合体と同様に、撥水撥油剤の有効成分として好適に使用することができる。かかるフルオロアルキルアルコール(メタ)アクリル酸誘導体混合物を重合単位として含有する含フッ素重合体は、後記実施例および参考例に示されるように、従来より用いられているパーフルオロオクチルエチルアクリレートを重合させたホモポリマーと同等の静的接触角を示し、また水性分散液として調製された場合には、同等の撥水・撥油性を示すといったすぐれた効果を奏する。
 含フッ素重合体の単量体として用いられる、一般式
   CF3(CF2)n(CH=CF)a(CF2CF2)b(CH2CH2)cOCOCR=CH2              〔Ia〕
および一般式
   CF3(CF2)n-1(CF=CH)aCF2(CF2CF2)b(CH2CH2)cOCOCR=CH2         〔Ib〕
(ここで、Rは水素原子またはメチル基であり、nは1~5の整数であり、aは1~4の整数であり、bは0~3の整数であり、cは1~3の整数である)で表わされるフルオロアルキルアルコール不飽和カルボン酸誘導体混合物は、一般式
   CF3(CF2)n(CH=CF)a(CF2CF2)b(CH2CH2)cOH                     〔IIa〕
および一般式
   CF3(CF2)n-1(CF=CH)aCF2(CF2CF2)b(CH2CH2)cOH                〔IIb〕
で表わされるフルオロアルキルアルコール混合物にアクリル酸またはメタクリル酸をエステル化反応することによって製造される。
 アクリル酸またはメタクリル酸でエステル化されるフルオロアルキルアルコール混合物〔IIa〕および〔IIb〕は、一般式
   CF3(CF2)n(CH2CF2)a(CF2CF2)b(CH2CH2)cI                      〔III〕
で表わされるフルオロアルキルアイオダイドを、N-メチルホルムアミドと反応させ、次いで塩基性化合物の存在下で加水分解することにより製造される。
 フルオロアルキルアイオダイド
   CH3(CF2)n(CH2CF2)a(CF2CF2)b(CH2CH2)cI                      〔III〕
は、一般式
   CF3(CF2)n(CH2CF2)a(CF2CF2)bI                                 〔A〕
で表わされる末端ヨウ素化化合物にエチレンを付加反応させることにより製造される。エチレンの付加反応は、上記化合物〔A〕に過酸化物開始剤の存在下で加圧エチレンを付加反応させることにより行われ、その付加数は反応条件にもよるが、1以上、好ましくは1である。なお、反応温度は用いられる開始剤の分解温度にも関係するが、反応は一般に約80~120℃で行われ、低温で分解する過酸化物開始剤を用いた場合には80℃以下での反応が可能である。過酸化物開始剤としては、第3ブチルパーオキサイド、ジ(第3ブチルシクロヘキシル)パーオキシジカーボネート、ジセチルパーオキシジカーボネート等が、上記化合物〔A〕に対して約1~5モル%の割合で用いられる。
 上記化合物〔A〕は、より詳細には一般式
   CF3(CF2)n(CH2CF2)s+p(CF2CF2)t+rI                             〔A′〕
        p:反応により付加したフッ化ビニリデン骨格の数
        r:反応により付加したテトラフルオロエチレン骨格の数
       s+p:aと同じ(1~4、好ましくは1~2)
       t+r:bと同じ(0~3、好ましくは1~2)
で表わすことができ、より具体的には次のような方法によって製造される。
(1)一般式
   CF3(CF2)nI                                              〔B-1〕
(ここで、nは1~5の整数である)で表わされるパーフルオロアルキルアイオダイドを、過酸化物開始剤の存在下でフッ化ビニリデンと反応させ、一般式
   CF3(CF2)n(CH2CF2)pI                                        〔A-1〕
(ここで、nは上記定義と同じであり、pは1~4の整数で、反応により付加したフッ化ビニリデン骨格の数である)で表わされる末端ヨウ素化ポリフルオロアルカンオリゴマーとして製造される。
(2)一般式
   CF3(CF2)n(CH2CF2)s(CF2CF2)tI                                  〔B-2〕
(ここで、nは1~5の整数であり、sは1~4の整数であって原料中のフッ化ビニリデン骨格の数であり、tは0~2の整数であって原料中のテトラフルオロエチレン骨格の数である)で表わされる末端ヨウ素化ポリフルオロアルカンを、過酸化物開始剤の存在下でテトラフルオロエチレンと反応させ、一般式
   CF3(CF2)n(CH2CF2)s(CF2CF2)t+rI                                〔A-2〕
(ここで、n、s、tは上記定義と同じであり、rは1~3の整数であって、反応により付加したテトラフルオロエチレンの骨格の数である)で表わされる末端ヨウ素化ポリフルオロアルカンオリゴマーとして製造される。
あるいは
(3)一般式
   CF3(CF2)n(CH2CF2)s(CF2CF2)tI                                  〔B-3〕
(ここで、nは1~5の整数であり、sは1~3の整数であって原料中のフッ化ビニリデン骨格の数であり、tは1~3の整数であって原料中のテトラフルオロエチレン骨格の数である)で表わされる末端ヨウ素化ポリフルオロアルカンを、過酸化物開始剤の存在下でフッ化ビニリデンと反応させ、一般式
   CF3(CF2)n(CH2CF2)s+p(CF2CF2)tI                                 〔A-3〕
(ここで、n、s、tは上記定義と同じであり、pは1~3の整数であって、反応により付加したフッ化ビニリデン骨格の数である)で表わされる末端ヨウ素化ポリフルオロアルカンオリゴマーとして製造される。
 具体的に用いられる末端ヨウ素化ポリフルオロアルカンとしては、次のような化合物が例示される。
   CF3(CF2)(CH2CF2)I
   CF3(CF2)(CH2CF2)2I
   CF3(CF2)2(CH2CF2)I
   CF3(CF2)2(CH2CF2)2I
   CF3(CF2)3(CH2CF2)I
   CF3(CF2)3(CH2CF2)2I
   CF3(CF2)(CH2CF2)(CF2CF2)I
   CF3(CF2)(CH2CF2)(CF2CF2)2I
   CF3(CF2)2(CH2CF2)(CF2CF2)I
   CF3(CF2)2(CH2CF2)(CF2CF2)2I
   CF3(CF2)3(CH2CF2)2(CF2CF2)I
   CF3(CF2)3(CH2CF2)2(CF2CF2)2I
 一般式〔B-1〕、〔B-2〕または〔B-3〕で表わされる末端ヨウ素化ポリフルオロアルカンのフッ化ビニリデンまたはテトラフルオロエチレンによるオリゴマー化反応は、過酸化物開始剤、例えばジ(第3ブチルシクロヘキシル)パーオキシジカーボネート、ジセチルパーオキシジカーボネート等の存在下で行われる。過酸化物開始剤は、前記化合物〔B-1〕、〔B-2〕または〔B-3〕に対して約0.1~0.5モル%の割合で用いられ、p、rはそれぞれフッ化ビニリデンまたはテトラフルオロエチレンの増加したオリゴマー化度を示している。反応温度は、用いられる開始剤の分解温度にも依存するが、低温で分解する過酸化物開始剤を用いることにより、80℃以下での反応が可能である。
 フルオロアルキルアイオダイド〔III〕は、N-メチルホルムアミドと反応させ、次いで塩基性化合物の存在下で加水分解反応させることにより、次の一般式で表わされるフルオロアルキルアルコール
   CF3(CF2)n(CH=CF)a(CF2CF2)b(CH2CH2)cOH                     〔IIa〕
   CF3(CF2)n-1(CF=CH)aCF2(CF2CF2)b(CH2CH2)cOH                〔IIb〕
の混合物を形成させる。ここで化合物〔IIa〕および〔IIb〕の混合物として形成されるのは、脱HF化反応において、メチレン鎖CH2のH原子とこれと前後の位置に結合しているフルオロメチレン鎖CF2のいずれか一方のF原子との引き抜きが、前後で等価的に生ずるためである。また、生成したフルオロアルキルアルコールは、脱HF化反応が等価的であるため、化合物〔IIa〕と〔IIb〕との生成割合はほぼ半々となる。これらの化合物〔IIa〕と〔IIb〕とは、極めて類似した構造異性体であるため、それぞれを分離して同定することはできないが、同等の反応性を有するため、混合物のままそれを他の物質と合成原料として用いることができる。
 この反応は、フルオロアルキルアイオダイド〔III〕に対して約5~20倍モル、好ましくは約10~15倍モル量程度のN-メチルホルムアミドを用い、約140~160℃で約7~10時間程度反応させ、次いで水酸化ナトリウム、水酸化カリウム等の塩基性化合物を用い、約85~95℃で約7~10時間程度反応させることにより行われる。
 得られたフルオロアルキルアルコール〔IIa〕、〔IIb〕の混合物は、これをアクリル酸またはメタクリル酸でエステル化反応させる。エステル化反応に際しては、フルオロアルキルアルコール混合物にトルエン、ベンゼン等の芳香族炭化水素溶媒、p-トルエンスルホン酸等の触媒および重合禁止剤としてのハイドロキノンを加え、約90~100℃に加熱した後、そこに約1~2倍モル量のアクリル酸またはメタクリル酸を加え、約110~120℃で約2~5時間程度加熱し、脱水、エステル化反応が行われ、アクリル酸またはメタクリル酸誘導体混合物〔Ia〕および〔Ib〕を与える。
 このようにして製造されたフルオロアルキルアルコール(メタ)アクリル酸誘導体単量体混合物
   CF3(CF2)n(CH=CF)a(CF2CF2)b(CH2CH2)cOCOCR=CH2              〔Ia〕
   CF3(CF2)n-1(CF=CH)aCF2(CF2CF2)b(CH2CH2)cOCOCR=CH2         〔Ib〕
は、1,4-ビス(トリフルオロメチル)ベンゼン、1,1,1,2,2-ペンタフルオロ-3,3-ジクロロプロパン、1,1,2,2,3-ペンタフルオロ-1,3-ジクロロプロパン等の含フッ素有機溶媒中で、単量体に対して約1~4重量%、好ましくは約1~2重量%の割合で用いられるビス(4-第3ブチルシクロヘキシル)パーオキシジカーボネート、ジ-n-プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート等の有機過酸化物の存在下に、約40~50℃で約15~25時間程度重合反応させることにより、フルオロアルキルアルコール(メタ)アクリル酸誘導体単量体混合物のみを重合性単量体とする重合体を形成させる。
 また、他の含フッ素重合性単量体および/またはフッ素原子非含有重合性単量体と共重合させることも可能であり、他の含フッ素重合性単量体が用いられる場合には、それが有するポリフルオロアルキル基、好ましくはパーフルオロアルキル基の炭素数は1~6、好ましくは2~4でなければならない。
 他の含フッ素重合性単量体としては、好ましくは一般式
   CH2=CRCOOR1(NR2SO2)mRf
      R:水素原子またはメチル基
      R1:炭素数1~4の2価の有機基
      R2:炭素数1~5の低級アルキル基
      Rf:炭素数1~6、好ましくは2~4のポリフルオロアルキル基、好ましくは
        パーフルオロアルキル基
      m:0または1
で表わされるものが用いられ、例えば次のようなポリフルオロアルキル基含有(メタ)アクリレート単量体が示される。ただし、末端ポリフルオロアルキル基の炭素数nは1~6でなければならず、R1基がポリフルオロアルキレン基の場合には、それと末端ポリフルオロアルキル基との合計炭素数が1~6でなければならない。
   CH2=CHCOOCH2CnF2nH
   CH2=C(CH3)COOCH2CnF2nH
   CH2=CHCOOCH2CnF2n+1
   CH2=C(CH3)COOCH2CnF2n+1
   CH2=CHCOOC2H4CnF2n+1
   CH2=C(CH3)COOC2H4CnF2n+1
   CH2=CHCOOC3H6CnF2n+1
   CH2=C(CH3)COOC3H6CnF2n+1
   CH2=CHCOOC4H8CnF2n+1
   CH2=C(CH3)COOC4H8CnF2n+1
   CH2=CHCOOC2H4N(CH3)SO2CnF2n+1
   CH2=C(CH3)COOC2H4N(CH3)SO2CnF2n+1
   CH2=CHCOOC2H4N(C2H5)SO2CnF2n+1
   CH2=C(CH3)COOC2H4N(C2H5)SO2CnF2n+1
   CH2=CHCOOC2H4N(C3H7)SO2CnF2n+1
   CH2=C(CH3)COOC2H4N(C3H7)SO2CnF2n+1
   CH2=CHCOOC2H4CnF2nCF(CF3)2
   CH2=C(CH3)COOC2H4CnF2nCF(CF3)2
 また、フッ素原子非含有重合性単量体としては、例えばメチル、エチル、プロピル、イソプロピル、n-ブチル、n-ヘキシル、2-エチルヘキシル、n-オクチル、ラウリル、ステアリル等のアルキル基、シクロヘキシル等のシクロアルキル基、ベンジル等のアラルキル基、メトキシメチル、2-メトキシエチル、2-エトキシエチル、2-ブトキシエチル、3-エトキシプロピル等のアルコキシアルキル基でエステル化されたアクリル酸エステルまたはメタクリル酸エステル、フマル酸またはマレイン酸のモノメチル、ジメチル、モノエチル、ジエチル、モノプロピル、ジプロピル、モノブチル、ジブチル、モノ2-エチルヘキシル、ジ2-エチルヘキシル、モノオクチル、ジオクチル等のモノアルキルエステルまたはジアルキルエステル、酢酸ビニル、カプリル酸ビニル等のビニルエステルが挙げられ、好ましくは炭素数8以上の長鎖アルキル基、具体的には2-エチルヘキシル、n-オクチル、ラウリル、ステアリル等のアルキル基を有するアルキル(メタ)アクリレート、シクロヘキシル等のシクロアルキル基、ベンジル等のアラルキル基等でエステル化された(メタ)アクリル酸エステル、さらに好ましくは2-エチルヘキシル、ステアリル等のアルキル基でエステル化されたアクリル酸エステルとベンジル等のアラルキル基等でエステル化された(メタ)アクリル酸エステルとの組み合わせが、撥水性、撥油性のバランス上好んで用いられる。
 これらの他の重合性単量体との共重合体にあっては、共重合体中フルオロアルキルアルコール(メタ)アクリル酸誘導体混合物を重合単位で約5重量%以上、好ましくは約10~60重量%、さらに好ましくは約10~35重量%を占めるような割合で共重合させることが、撥水撥油性を発現させる上からは好ましい。勿論、フルオロアルキルアルコール(メタ)アクリル酸誘導体混合物のみを重合性単量体とする重合体にあっても撥水撥油性が示されるが、コスト的にみれば他の共単量体との共重合体が有利であり、特にそれ自体撥水撥油性を示す前記ポリフルオロアルキル基含有(メタ)アクリレート単量体を、重合単位で共重合体中約10重量%以上、好ましくは約10~60重量%共重合させると、撥水撥油性およびコストの両面からみて好ましい。
 共重合体中には、その特性が損われない範囲、例えば共重合体中30重量%以下の割合で他の共重合可能な単量体を共重合させることができる。かかる共重合可能な単量体としては、スチレン、ビニルトルエン、α-メチルスチレン、ビニルナフタレン、アクリロニトリル、メタクリロニトリル、アセトンアクリルアミド、イソプレン、ペンタジエン、ブタジエン、2-ヒドロキシエチルアクリレート、4-ヒドロキシブチルアクリレート、2-ヒドロキシ-3-クロロプロピル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテルが挙げられる。
 また、必要に応じて、多官能性単量体またはオリゴマーを共重合体中30重量%以下の割合で共重合させることもできる。かかる多官能性単量体またはオリゴマーとしては、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ビスフェノールA・エチレンオキサイド付加物ジアクリレート、ジメチロールトリシクロデカンジアクリレート、グリセリンメタクリレートアクリレート、3-アクリロイルオキシグリセリンモノメタクリレート等が挙げられる。
 この際、ラジカル重合開始剤と共に、架橋性基含有単量体、例えば(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-メトキシメチルアクリルアミド、N-ブトキシメチルアクリルアミド、グリシジル(メタ)アクリレート等を加え、共重合体中約10重量%以下、好ましくは約0.5~7重量%を占めるような割合で共重合させることができる。これらの架橋性基含有単量体をさらに共重合させると、繊維表面の水酸基と架橋したりあるいは自己架橋して、撥水撥油剤の耐久性を高めることができる。
 含フッ素共重合体の製造法は特に限定されず、有機溶媒を用いた溶液重合法、水を分散媒とし、ノニオン性界面活性剤および/またはカチオン界面活性剤を含むけん濁重合法または乳化重合法などが挙げられる。溶液重合法によって得られた重合体溶液は、それをさらに1,4-ビス(トリフルオロメチル)ベンゼン、1,3-ビス(トリフルオロメチル)ベンゼン等の含フッ素有機溶媒によってその固形分濃度が約0.01~30重量%、好ましくは約0.05~5重量%に希釈され、撥水撥油剤として用いられる。けん濁重合法または乳化重合法によって得られた共重合体の水性分散液は、そのままあるいは水で固形分濃度を約0.1~10重量%に希釈した上で撥水撥油剤として用いられる。けん濁重合法または乳化重合法の場合には、重合反応液に凝集剤を添加して重合物を凝集させ、水または有機溶媒で洗浄して分離されたフルオロアルキルアルコール(メタ)アクリル酸誘導体混合物のみを重合性単量体とする重合体またはこれらと他の重合性単量体との共重合体を、含フッ素有機溶媒に溶解または水に分散させることにより、その有機溶媒溶液、または水性分散液よりなる撥水撥油剤を調製することもできる。
 このようにして得られるフルオロアルキルアルコール(メタ)アクリル酸誘導体混合物のみを重合性単量体とする重合体またはこれらと他の重合性単量体との共重合体は、蒸発乾固する方法により分離され、溶媒等で洗浄する方法により精製される。得られたフルオロアルキルアルコール(メタ)アクリル酸誘導体混合物のみを重合性単量体とする重合体またはこれらと他の重合性単量体との共重合体の重量平均分子量Mwは、高速液体クロマトグラフィーによって示され、その値は2,000~20,000,000となる。重量平均分子量Mwの測定は、Shodex GPC KD806M+KD-802+KD-Gを用い、温度40℃、溶出液である10mM THFの溶出速度を1ml/分としてGPC測定により行い、検出器は視差屈折計を、また解析はSIC製Labchat 180(ポリスチレン換算)を用いて行った。
 これらのフルオロアルキルアルコール(メタ)アクリル酸誘導体混合物のみを重合性単量体とする重合体またはこれらと他の重合性単量体との共重合体の水性分散液、好ましくは界面活性剤および水溶性有機溶媒を20重量%以下含む水性分散液または含フッ素有機溶媒溶液、それ単独でも撥水撥油剤として用いられるが、必要に応じてメラミン樹脂、尿素樹脂等のブロックドイソシアネート以外の架橋剤、重合体エクステンダー、シリコーン樹脂またはオイル、ワックス等の他の撥水剤、防虫剤、帯電防止剤、染料安定剤、防皺剤、ステインブロッカー等の撥水撥油剤用途にとって必要な添加剤を添加することができる。
 このようにして得られる撥水撥油剤は、紙、フィルム、繊維、布、織布、カーペットあるいはフィラメント、繊維、糸等で作られた布帛製品等に撥水撥油剤として有効に適用される。適用方法としては、塗布、浸漬、吹付け、パッディング、ロール被覆あるいはこれらの組合せ方法等が一般に用いられ、例えば浴の固形分濃度を約0.1~10重量%とすることにより、パッド浴として使用される。このパッド浴に被処理材料をパッドし、次いで絞りロールで過剰の液を取り除いて乾燥し、被処理材料に対する重合体量が約0.01~10重量%になるように付着せしめる。その後、被処理材料の種類にもよるが、一般には約100~200℃の温度で約1分間乃至約2時間程度の乾燥が行われ、撥水撥油処理が終了する。
 次に、実施例について本発明を説明する。
 参考例1
 (1)攪拌機および温度計を備えた容量1200mlのオートクレーブに、
   CF3(CF2)3(CH2CF2)(CF2CF2)2I (99GC%)
603g(0.99モル)およびジ第3ブチルパーオキサイド7gを仕込み、真空ポンプでオートクレーブを脱気した。内温を80℃迄加熱したところで、エチレンを逐次的に導入し、内圧を0.5MPaとした。内圧が0.2MPa迄下がったら、再びエチレンを導入して0.5MPaとし、これをくり返した。内温を80~115℃に保ちながら、約3時間かけてエチレン41g(1.45モル)を導入した。内温50℃以下で内容物を回収し、
   CF3(CF2)3(CH2CF2)(CF2CF2)2(CH2CH2)I (98GC%)
637g(収率98.8%)を得た。
 (2)コンデンサ、温度計および攪拌機を備えた容量300mlの四口フラスコに、上記(1)で得られた
   CF3(CF2)3(CH2CF2)(CF2CF2)2(CH2CH2)I (98GC%)
150g(0.23モル)およびN-メチルホルムアミド170g(2.88モル)を仕込み、150℃で8時間攪拌し、反応させた後、反応混合物を水100mlで洗浄し、その下層(133g)を10重量%NaOH水溶液140gと混合し、90℃で8時間攪拌して反応させた。反応混合物を静置後、下層として常温で淡黄色透明な液体である反応生成物(66.4GC%)を124g(収率70.5%)得た。
 反応生成物について、内圧0.2kPa、内温109~123℃、塔頂温度86~87℃の条件下で減圧蒸留を行い、精製反応生成物(97.4GC%)を30g(蒸留収率35.6%)得た。この精製反応生成物は、1H-NMRおよび19F-NMRの結果から、次式で示される化合物の混合物であることが確認された。
   CF3(CF2)3(CH=CF)(CF2CF2)2(CH2CH2)OH
   CF3(CF2)2(CF=CH)CF2(CF2CF2)2(CH2CH2)OH
   1H-NMR(CDCl3、TMS):δ5.71~5.92(CH=CF、CF=CH)
                     2.28~2.45(CH 2 CH2)
                     3.97(CH2CH 2 )
                     2.28~2.45(OH)
   19F-NMR((CDCl3、C6F6):ppm  -82.13~-81.77(CF 3 )
                      -128.22~-126.84(CF3CF 2 CF2)
                      -125.52~-124.83(CF3CF2CF 2 )
                      -111.22~-109.58(CF 2 CH=CF、CF=CHCF 2 )
                      -120.76~-119.73(CF 2 CF2CF2CF2CH2)
                      -123.69~-122.27(CF2CF 2 CF2CF2CH2)
                      -114.44(CF2CF2CF 2 CF2CH2)
                      -124.73(CF2CF2CF2CF 2 CH2)
 実施例1
 コンデンサ、温度計および攪拌機を備えた容量100mlの四口フラスコに、参考例1(2)で得られた化合物の混合物(97.4GC%)30.0g(0.06モル)、トルエン21g、p-トルエンスルホン酸6gおよびハイドロキノン0.3gを仕込み、内温を100℃迄加熱した後アクリル酸5g(0.07モル)を加え、内温115℃で4時間攪拌して反応させた。反応終了後、冷却して得られた反応混合物溶液61gからエバポレータでトルエンを除去し、42gの残渣を水道水で洗浄し、常温で淡黄色透明な液体である反応生成物(86.9GC%)を34g(収率84.1%)得た。
 反応生成物について、内圧0.1kPa、内温128~133℃、塔頂温度64~72℃の条件下で減圧蒸留を行い、精製反応生成物(98.0GC%)を23g(蒸留収率77.7%)得た。この精製反応生成物は、1H-NMRおよび19F-NMRの結果から、次式で示される化合物の混合物であることが確認された。
   CF3(CF2)3(CH=CF)(CF2CF2)2(CH2CH2)OCOCH=CH2
   CF3(CF2)2(CF=CH)CF2(CF2CF2)2(CH2CH2)OCOCH=CH2
   1H-NMR(CDCl3、TMS):δ5.73~5.97(CH=CF、CF=CH)
                     2.48(CH 2 CH2)
                     4.46(CH2CH 2 )
                     6.14(CH=CH2)
                     6.41、5.73~5.97(CH=CH 2 )
   19F-NMR((CDCl3、C6F6):ppm  -82.06~-81.73(CF 3 )
                      -128.22~-126.84(CF3CF 2 CF2)
                      -125.52~-124.81(CF3CF2CF 2 )
                      -111.22~-109.58(CF 2 CH=CF、CF=CHCF 2 )
                      -120.76~-119.73(CF 2 CF2CF2CF2CH2)
                      -123.69~-122.27(CF2CF 2 CF2CF2CH2)
                      -114.54(CF2CF2CF 2 CF2CH2)
                      -124.56(CF2CF2CF2CF 2 CH2)
 参考例2
 (1)攪拌機および温度計を備えた容量1200mlのオートクレーブに、
   CF3(CF2)3(CH2CF2)(CF2CF2)I (99.3GC%)
609g(1.19モル)およびジ第3ブチルパーオキサイド6gを仕込み、真空ポンプでオートクレーブを脱気した。内温を80℃迄加熱したところで、エチレンを逐次的に導入し、内圧を0.5MPaとした。内圧が0.2MPa迄下がったら、再びエチレンを導入して0.5MPaとし、これをくり返した。内温を80~115℃に保ちながら、約3時間かけてエチレン50g(1.79モル)を導入した。内温50℃以下で内容物を回収し、
   CF3(CF2)3(CH2CF2)(CF2CF2)(CH2CH2)I (97.4GC%)
640g(収率97.3%)を得た。
 (2)コンデンサ、温度計および攪拌機を備えた容量300mlの四口フラスコに、上記(1)で得られた
   CF3(CF2)3(CH2CF2)(CF2CF2)(CH2CH2)I (97.4GC%)
153g(0.28モル)およびN-メチルホルムアミド207g(3.51モル)を仕込み、150℃で8時間攪拌し、反応させた後、反応混合物を水100mlで洗浄し、その下層(135g)を10重量%NaOH水溶液140gと混合し、90℃で8時間攪拌して反応させた。反応混合物を静置後、下層として常温で淡黄色透明な液体である反応生成物(65.3GC%)を132g(収率75.4%)得た。
 反応生成物について、内圧0.2kPa、内温103~118℃、塔頂温度84~85℃の条件下で減圧蒸留を行い、精製反応生成物(97.8GC%)を38g(蒸留収率42.8%)得た。この精製反応生成物は、1H-NMRおよび19F-NMRの結果から、次式で示される化合物の混合物であることが確認された。
   CF3(CF2)3(CH=CF)(CF2CF2)(CH2CH2)OH
   CF3(CF2)2(CF=CH)CF2(CF2CF2)(CH2CH2)OH
   1H-NMR(CDCl3、TMS):δ5.75~5.88(CH=CF、CF=CH)
                     2.35(CH 2 CH2)
                     3.93(CH2CH 2 )
                     3.07~3.28(OH)
   19F-NMR((CDCl3、C6F6):ppm  -82.0~-81.6(CF 3 )
                      -128.0~-126.6(CF3CF 2 CF2)
                      -125.3~-124.6(CF3CF2CF 2 )
                      -111.1~-108.8(CF 2 CH=CF、CF=CHCF 2 )
                      -126.6(CF 2 CF2CH2)
                      -113.2(CF2CF 2 CH2)
 実施例2
 コンデンサ、温度計および攪拌機を備えた容量100mlの四口フラスコに、参考例2(2)で得られた化合物の混合物(97.8GC%)37g(0.09モル)、トルエン23g、p-トルエンスルホン酸7gおよびハイドロキノン0.4gを仕込み、内温を100℃迄加熱した後アクリル酸8g(0.11モル)を加え、内温115℃で4時間攪拌して反応させた。反応終了後、冷却して得られた反応混合物溶液74gからエバポレータでトルエンを除去し、53gの残渣を水道水で洗浄し、常温で淡黄色透明な液体である反応生成物(88.1GC%)を42g(収率85.4%)得た。
 反応生成物について、内圧0.1kPa、内温124~128℃、塔頂温度63~68℃の条件下で減圧蒸留を行い、精製反応生成物(99.2GC%)を30g(蒸留収率79.2%)得た。この精製反応生成物は、1H-NMRおよび19F-NMRの結果から、次式で示される化合物の混合物であることが確認された。
   CF3(CF2)3(CH=CF)(CF2CF2)(CH2CH2)OCOCH=CH2
   CF3(CF2)2(CF=CH)CF2(CF2CF2)(CH2CH2)OCOCH=CH2
   1H-NMR(CDCl3、TMS):δ5.75~5.88(CH=CF、CF=CH)
                     2.52(CH 2 CH2)
                     4.46(CH2CH 2 )
                     6.13(CH=CH2)
                     6.41、5.89(CH=CH 2 )
   19F-NMR((CDCl3、C6F6):ppm  -82.0~-81.7(CF 3 )
                      -127.9~-126.5(CF3CF 2 CF2)
                      -125.4~-124.8(CF3CF2CF 2 )
                      -110.9~-110.2(CF 2 CH=CF、CF=CHCF 2 )
                      -126.7(CF 2 CF2CH2)
                      -113.7(CF2CF 2 CH2)
 参考例3
 (1)攪拌機および温度計を備えた容量1200mlのオートクレーブに、
   CF3CF2(CH2CF2)(CF2CF2)3I (98.7GC%)
605g(0.98モル)およびジ第3ブチルパーオキサイド7gを仕込み、真空ポンプでオートクレーブを脱気した。内温を80℃迄加熱したところで、エチレンを逐次的に導入し、内圧を0.5MPaとした。内圧が0.2MPa迄下がったら、再びエチレンを導入して0.5MPaとし、これをくり返した。内温を80~115℃に保ちながら、約3時間かけてエチレン43g(1.53モル)を導入した。内温50℃以下で内容物を回収し、
   CF3CF2(CH2CF2)(CF2CF2)3(CH2CH2)I (97.7GC%)
630g(収率98.5%)を得た。
 (2)コンデンサ、温度計および攪拌機を備えた容量300mlの四口フラスコに、上記(1)で得られた
   CF3CF2(CH2CF2)(CF2CF2)3(CH2CH2)I (97.7GC%)
150g(0.23モル)およびN-メチルホルムアミド170g(2.88モル)を仕込み、150℃で8時間攪拌し、反応させた後、反応混合物を水100mlで洗浄し、その下層(132g)を10重量%NaOH水溶液141gと混合し、90℃で8時間攪拌して反応させた。反応混合物を静置後、下層として常温で淡黄色透明な液体である反応生成物(66.1GC%)を126g(収率71.4%)得た。
 反応生成物について、内圧0.2kPa、内温110~123℃、塔頂温度85~87℃の条件下で減圧蒸留を行い、精製反応生成物(97.5GC%)を31g(蒸留収率35.9%)得た。この精製反応生成物は、1H-NMRおよび19F-NMRの結果から、次式で示される化合物の混合物であることが確認された。
   CF3CF2(CH=CF)(CF2CF2)3(CH2CH2)OH
   CF3(CF=CH)CF2(CF2CF2)3(CH2CH2)OH
   1H-NMR(CDCl3、TMS):δ5.13~5.84(CH=CF、CF=CH)
                     2.28~2.45(CH 2 CH2)
                     3.97(CH2CH 2 )
                     2.27~2.47(OH)
   19F-NMR((CDCl3、C6F6):ppm  -87.1~-86.7(CF 3 )
                      -118.1~-109.7(CF 2 CH=CF、CF=CHCF 2 )
                      -120.8~-119.6(CF 2 CF2CF2CF2CF2CF2CH2)
                      -120.4~-119.3(CF2CF 2 CF2CF2CF2CF2CH2)
                      -120.4~-119.3(CF2CF2CF 2 CF2CF2CF2CH2)
                      -123.4~-122.1(CF2CF2CF2CF 2 CF2CF2CH2)
                      -124.6(CF2CF2CF2CF2CF 2 CF2CH2)
                      -114.6(CF2CF2CF2CF2CF2CF 2 CH2)
 実施例3
 コンデンサ、温度計および攪拌機を備えた容量100mlの四口フラスコに、参考例3(2)で得られた化合物の混合物(97.5GC%)30.0g(0.06モル)、トルエン21g、p-トルエンスルホン酸6gおよびハイドロキノン0.3gを仕込み、内温を100℃迄加熱した後アクリル酸5g(0.07モル)を加え、内温115℃で4時間攪拌して反応させた。反応終了後、冷却して得られた反応混合物溶液61gからエバポレータでトルエンを除去し、42gの残渣を水道水で洗浄し、常温で淡黄色透明な液体である反応生成物(87.3GC%)を34g(収率84.7%)得た。
 反応生成物について、内圧0.1kPa、内温129~133℃、塔頂温度65~72℃の条件下で減圧蒸留を行い、精製反応生成物(99.3GC%)を24g(蒸留収率78.3%)得た。この精製反応生成物は、1H-NMRおよび19F-NMRの結果から、次式で示される化合物の混合物であることが確認された。
   CF3CF2(CH=CF)(CF2CF2)3(CH2CH2)OCOCH=CH2
   CF3(CF=CH)CF2(CF2CF2)3(CH2CH2)OCOCH=CH2
   1H-NMR(CDCl3、TMS):δ5.72~5.85(CH=CF、CF=CH)
                     2.51(CH 2 CH2)
                     4.46(CH2CH 2 )
                     6.13(CH=CH2)
                     6.41、5.89(CH=CH 2 )
   19F-NMR((CDCl3、C6F6):ppm  -87.0~-86.7(CF 3 )
                      -117.6~-110.4(CF 2 CH=CF、CF=CHCF 2 )
                      -121.7~-119.9(CF 2 CF2CF2CF2CF2CF2CH2)
                      -120.9~-120.0(CF2CF 2 CF2CF2CF2CF2CH2)
                      -120.9~-120.0(CF2CF2CF 2 CF2CF2CF2CH2)
                      -123.3~-122.0(CF2CF2CF2CF 2 CF2CF2CH2)
                      -124.4(CF2CF2CF2CF2CF 2 CF2CH2)
                      -114.5(CF2CF2CF2CF2CF2CF 2 CH2)
 実施例4
 コンデンサ、温度計および攪拌機を備えた容量100mlの四口フラスコに、参考例1(2)で得られた化合物の混合物(97.4GC%)30.0g(0.06モル)、トルエン21g、p-トルエンスルホン酸6gおよびハイドロキノン0.3gを仕込み、内温を100℃迄加熱した後メタクリル酸6g(0.07モル)を加え、内温115℃で4時間攪拌して反応させた。反応終了後、冷却して得られた反応混合物溶液62gからエバポレータでトルエンを除去し、42gの残渣を水道水で洗浄し、常温で淡黄色透明な液体である反応生成物(89.4GC%)を35g(収率94.9%)得た。
 反応生成物について、内圧0.1kPa、内温135~142℃、塔頂温度70~76℃の条件下で減圧蒸留を行い、精製反応生成物(99.1GC%)を26.5g(蒸留収率79.2%)得た。この精製反応生成物は、1H-NMRおよび19F-NMRの結果から、次式で示される化合物の混合物であることが確認された。
   CF3(CF2)3(CH=CF)(CF2CF2)2(CH2CH2)OCOC(CH3)=CH2
   CF3(CF2)2(CF=CH)CF2(CF2CF2)2(CH2CH2)OCOC(CH3)=CH2
   1H-NMR(CDCl3、TMS):δ5.75~5.88(CH=CF、CF=CH)
                     2.51(CH 2 CH2)
                     4.45(CH2CH 2 )
                     1.94(C(CH 3 )=CH2)
                     6.31、5.61(C(CH3)=CH 2 )
   19F-NMR((CDCl3、C6F6):ppm  -82.1~-81.8(CF 3 )
                      -127.5~-126.2(CF3CF 2 CF2)
                      -125.4~-124.8(CF3CF2CF 2 )
                      -110.8~-110.5(CF 2 CH=CF、CF=CHCF 2 )
                      -120.7~-119.8(CF 2 CF2CF2CF2CH2)
                      -123.7~-122.4(CF2CF 2 CF2CF2CH2)
                      -124.6(CF2CF2CF 2 CF2CH2)
                      -114.6(CF2CF2CF2CF 2 CH2)
 参考例4
 (1)攪拌機および温度計を備えた容量1200mlのオートクレーブに、
   CF3CF2(CH2CF2)(CF2CF2)2I (99.4GC%)
605g(1.18モル)およびジ第3ブチルパーオキサイド6gを仕込み、真空ポンプでオートクレーブを脱気した。内温を80℃迄加熱したところで、エチレンを逐次的に導入し、内圧を0.5MPaとした。内圧が0.2MPa迄下がったら、再びエチレンを導入して0.5MPaとし、これをくり返した。内温を80~115℃に保ちながら、約3時間かけてエチレン50g(1.79モル)を導入した。内温50℃以下で内容物を回収し、
   CF3CF2(CH2CF2)(CF2CF2)2(CH2CH2)I (97.3GC%)
639g(収率98.0%)を得た。
 (2)コンデンサ、温度計および攪拌機を備えた容量300mlの四口フラスコに、上記(1)で得られた
   CF3CF2(CH2CF2)(CF2CF2)2(CH2CH2)I (97.3GC%)
150g(0.27モル)およびN-メチルホルムアミド205g(3.48モル)を仕込み、150℃で8時間攪拌し、反応させた後、反応混合物を水100mlで洗浄し、その下層(134g)を10重量%NaOH水溶液140gと混合し、90℃で8時間攪拌して反応させた。反応混合物を静置後、下層として常温で淡黄色透明な液体である反応生成物(67.1GC%)を127g(収率77.1%)得た。
 反応生成物について、内圧0.2kPa、内温104~119℃、塔頂温度84~85℃の条件下で減圧蒸留を行い、精製反応生成物(98.0GC%)を36g(蒸留収率41.6%)得た。この精製反応生成物は、1H-NMRおよび19F-NMRの結果から、次式で示される化合物の混合物であることが確認された。
   CF3CF2(CH=CF)(CF2CF2)2(CH2CH2)OH
   CF3(CF=CH)CF2(CF2CF2)2(CH2CH2)OH
   1H-NMR(CDCl3、TMS):δ5.11~5.81(CH=CF、CF=CH)
                     2.26~2.42(CH 2 CH2)
                     3.95(CH2CH 2 )
                     3.02~3.21(OH)
   19F-NMR((CDCl3、C6F6):ppm  -87.0~-86.6(CF 3 )
                      -118.0~-109.6(CF 2 CH=CF、CF=CHCF 2 )
                      -120.1~-119.3(CF 2 CF2CF2CF2CH2)
                      -123.4~-122.1(CF2CF 2 CF2CF2CH2)
                      -124.6(CF2CF2CF 2 CF2CH2)
                      -114.2(CF2CF2CF2CF 2 CH2)
 実施例5
 コンデンサ、温度計および攪拌機を備えた容量100mlの四口フラスコに、参考例4(2)で得られた化合物の混合物(98.0GC%)35g(0.08モル)、トルエン22g、p-トルエンスルホン酸7gおよびハイドロキノン0.4gを仕込み、内温を100℃迄加熱した後アクリル酸8g(0.11モル)を加え、内温115℃で4時間攪拌して反応させた。反応終了後、冷却して得られた反応混合物溶液72gからエバポレータでトルエンを除去し、52gの残渣を水道水で洗浄し、常温で淡黄色透明な液体である反応生成物(87.9GC%)を42g(収率85.8%)得た。
 反応生成物について、内圧0.1kPa、内温124~128℃、塔頂温度63~68℃の条件下で減圧蒸留を行い、精製反応生成物(98.8GC%)を30g(蒸留収率79.1%)得た。この精製反応生成物は、1H-NMRおよび19F-NMRの結果から、次式で示される化合物の混合物であることが確認された。
   CF3CF2(CH=CF)(CF2CF2)2(CH2CH2)OCOCH=CH2
   CF3(CF=CH)CF2(CF2CF2)2(CH2CH2)OCOCH=CH2
   1H-NMR(CDCl3、TMS):δ5.70~5.83(CH=CF、CF=CH)
                     2.46(CH 2 CH2)
                     4.43(CH2CH 2 )
                     6.14(CH=CH2)
                     6.41、5.8(CH=CH 2 )
   19F-NMR((CDCl3、C6F6):ppm  -87.0~-86.7(CF 3 )
                      -117.6~-110.4(CF 2 CH=CF、CF=CHCF 2 )
                      -122.1~-120.3(CF 2 CF2CF2CF2CH2)
                      -123.8~-122.5(CF2CF 2 CF2CF2CH2)
                      -124.8(CF2CF2CF 2 CF2CH2)
                      -114.5(CF2CF2CF2CF 2 CH2)
 参考例5
 (1)攪拌機および温度計を備えた容量1200mlのオートクレーブに、
   CF3CF2(CH2CF2)(CF2CF2)I (99.8GC%)
610g(1.48モル)およびジ第3ブチルパーオキサイド7gを仕込み、真空ポンプでオートクレーブを脱気した。内温を80℃迄加熱したところで、エチレンを逐次的に導入し、内圧を0.5MPaとした。内圧が0.2MPa迄下がったら、再びエチレンを導入して0.5MPaとし、これをくり返した。内温を80~115℃に保ちながら、約3時間かけてエチレン62g(2.23モル)を導入した。内温50℃以下で内容物を回収し、
   CF3CF2(CH2CF2)(CF2CF2)(CH2CH2)I (98.7GC%)
644g(収率98.0%)を得た。
 (2)コンデンサ、温度計および攪拌機を備えた容量300mlの四口フラスコに、上記(1)で得られた
   CF3CF2(CH2CF2)(CF2CF2)(CH2CH2)I (98.7GC%)
150g(0.34モル)およびN-メチルホルムアミド251g(4.26モル)を仕込み、150℃で8時間攪拌し、反応させた後、反応混合物を水100mlで洗浄し、その下層(130g)を10重量%NaOH水溶液135gと混合し、90℃で8時間攪拌して反応させた。反応混合物を静置後、下層として常温で淡黄色透明な液体である反応生成物(68.8GC%)を119g(収率78.2%)得た。
 反応生成物について、内圧0.2kPa、内温100~114℃、塔頂温度80~81℃の条件下で減圧蒸留を行い、精製反応生成物(98.1GC%)を38g(蒸留収率45.3%)得た。この精製反応生成物は、1H-NMRおよび19F-NMRの結果から、次式で示される化合物の混合物であることが確認された。
   CF3CF2(CH=CF)(CF2CF2)(CH2CH2)OH
   CF3(CF=CH)CF2(CF2CF2)(CH2CH2)OH
   1H-NMR(CDCl3、TMS):δ5.09~5.77(CH=CF、CF=CH)
                     2.21~2.36(CH 2 CH2)
                     3.91(CH2CH 2 )
                     3.55~3.68(OH)
   19F-NMR((CDCl3、C6F6):ppm  -87.0~-86.6(CF 3 )
                      -118.0~-109.5(CF 2 CH=CF、CF=CHCF 2 )
                      -124.6(CF 2 CF2CH2)
                      -114.2(CF2CF 2 CH2)
 実施例6
 コンデンサ、温度計および攪拌機を備えた容量100mlの四口フラスコに、参考例5(2)で得られた化合物の混合物(98.1GC%)37g(0.12モル)、トルエン26g、p-トルエンスルホン酸8gおよびハイドロキノン0.4gを仕込み、内温を100℃迄加熱した後アクリル酸11g(0.15モル)を加え、内温115℃で4時間攪拌して反応させた。反応終了後、冷却して得られた反応混合物溶液81gからエバポレータでトルエンを除去し、58gの残渣を水道水で洗浄し、常温で淡黄色透明な液体である反応生成物(89.2GC%)を45g(収率87.5%)得た。
 反応生成物について、内圧0.1kPa、内温120~124℃、塔頂温度59~63℃の条件下で減圧蒸留を行い、精製反応生成物(98.9GC%)を34g(蒸留収率83.0%)得た。この精製反応生成物は、1H-NMRおよび19F-NMRの結果から、次式で示される化合物の混合物であることが確認された。
   CF3CF2(CH=CF)(CF2CF2)(CH2CH2)OCOCH=CH2
   CF3(CF=CH)CF2(CF2CF2)(CH2CH2)OCOCH=CH2
   1H-NMR(CDCl3、TMS):δ5.67~5.81(CH=CF、CF=CH)
                     2.45(CH 2 CH2)
                     4.37(CH2CH 2 )
                     6.11(CH=CH2)
                     6.40、5.88(CH=CH 2 )
   19F-NMR((CDCl3、C6F6):ppm  -87.0~-86.7(CF 3 )
                      -117.6~-110.4(CF 2 CH=CF、CF=CHCF 2 )
                      -124.8(CF 2 CF2CH2)
                      -114.5(CF2CF 2 CH2)
 実施例7
 実施例1で得られた精製反応生成物であるフルオロアルキルアルコールアクリル酸誘導体の混合物(98.0GC%)
   CF3(CF2)3(CH=CF)(CF2CF2)2(CH2CH2)OCOCH=CH2
   CF3(CF2)2(CF=CH)CF2(CF2CF2)2(CH2CH2)OCOCH=CH2
10g、1,4-ビス(トリフルオロメチル)ベンゼン35gおよびビス(4-第3ブチルシクロヘキシル)パーオキシジカーボネート0.16gを、コンデンサを備えた容量50mlのナスフラスコに仕込み、マグネットスターラで攪拌しながら、50℃で16時間重合反応を行い、固形分濃度21.6重量%の重合体溶液を得た。この重合体溶液に、1,4-ビス(トリフルオロメチル)ベンゼンを加えて、その固形分濃度を2重量%に希釈し、その希釈液1mlをステンレス鋼板(2×5cm)に塗り、50℃で30分間乾燥させて試験片を作製した。
 ここで、用いられた重合体溶液を、120℃のオーブンに入れて溶媒を除去することにより含フッ素重合体を単離し、重量平均分子量Mwを測定したところ、35,000であった。重量平均分子量Mwの測定は、Shodex GPC KD806M+KD-802+KD-Gを用い、温度40℃、溶出液である10mM THFの溶出速度を1ml/分としてGPC測定により行い、検出器は視差屈折計を、また解析はSIC製Labchat 180(ポリスチレン換算)を用いて行った。
 実施例8
 実施例7において、フルオロアルキルアルコール不飽和カルボン酸誘導体の混合物として、実施例2で得られた精製反応生成物であるフルオロアルキルアルコールアクリル酸誘導体の混合物が用いられ、重合体溶液の製造および試験片の作製が行われた。ここで、重合体溶液の固形分濃度は21.4重量%であり、重合体の重量平均分子量Mwは、45,000であった。
 実施例9
 実施例7において、フルオロアルキルアルコール不飽和カルボン酸誘導体の混合物として、実施例3で得られた精製反応生成物であるフルオロアルキルアルコールアクリル酸誘導体の混合物が用いられ、重合体溶液の製造および試験片の作製が行われた。ここで、重合体溶液の固形分濃度は21.1重量%であり、重合体の重量平均分子量Mwは、35,000であった。
 実施例10
 実施例7において、フルオロアルキルアルコール不飽和カルボン酸誘導体の混合物として、実施例4で得られた精製反応生成物であるフルオロアルキルアルコールメタクリル酸誘導体の混合物が用いられ、重合体溶液の製造および試験片の作製が行われた。ここで、重合体溶液の固形分濃度は20.7重量%であり、重合体の重量平均分子量Mwは、20,000であった。
 比較参考例1~3
 実施例7において、実施例1で得られたフルオロアルキルアルコール不飽和カルボン酸誘導体混合物の代わりに、それぞれ
   C4F9(CH2CH2)OCOCH=CH2  (比較参考例1)
   C6F13(CH2CH2)OCOCH=CH2  (比較参考例2)
   C8F17(CH2CH2)OCOCH=CH2  (比較参考例3)
が同量用いられ、重合体溶液の製造および試験片の作製が行われた。ここで、重合体溶液の固形分濃度はいずれも21.0重量%であった。
 実施例7~10および比較参考例1~3で得られた試験片について、撥水撥油性能の一つの指標である静的接触角の測定(セシルドロップ法による)を、各種有機溶媒および水について実施した。得られた結果は、次の表に示される。各実施例の静的接触角は、比較参考例3(n=8)と同等の性能を示すことが確認された。
Figure JPOXMLDOC01-appb-I000001
 実施例11
 500mlガラス製反応器に、実施例1で得られた精製反応生成物であるフルオロアルキルアルコールアクリル酸誘導体の混合物(98.0GC%)
   CF3(CF2)3(CH=CF)(CF2CF2)2(CH2CH2)OCOCH=CH2
   CF3(CF2)2(CF=CH)CF2(CF2CF2)2(CH2CH2)OCOCH=CH2
73.0g(0.130モル)、2-ヒドロキシエチルアクリレート6.0g、ベンジルメタクリレート22.0g、ポリアルキレングリコールモノメタクリレート4.0g、ポリオキシエチレンアルキルエーテル7.0g、アセトン80.0g、n-ドデシルメルカプタン(分子量調節剤)0.5gおよび水220.0gを高圧ホモジナイザーを用いて60MPaで乳化処理し、次いで得られた乳化液を窒素ガスで30分間置換した後、塩化ビニリデン11.0g、N-メチロールアクリルアミド6.0g、2,2′-アゾビス(2-アミジノプロパン)・2塩酸塩(ラジカル重合開始剤)2.5gおよび水30.0gよりなる水溶液を投入し、70℃で4時間反応させた。反応後冷却し、固形分濃度25.0%の水性分散液485gを得た。なお、得られた含フッ素重合体のMwは、40,000であった。
 実施例12
 実施例11において、フルオロアルキルアルコール不飽和カルボン酸誘導体の混合物として実施例2で得られた精製反応生成物であるフルオロアルキルアルコールアクリル酸誘導体の混合物60.0g(0.130モル)を用い、固形分濃度は24.8%の水性分散液471gを得た。なお、得られた含フッ素重合体のMwは、50,000であった。
 実施例13
 実施例11において、フルオロアルキルアルコール不飽和カルボン酸誘導体の混合物として実施例3で得られた精製反応生成物であるフルオロアルキルアルコールアクリル酸誘導体の混合物73.0g(0.130モル)を用い、固形分濃度は25.1%の水性分散液484gを得た。なお、得られた含フッ素重合体のMwは、40,000であった。
 実施例14
 実施例11において、フルオロアルキルアルコール不飽和カルボン酸誘導体の混合物として実施例4で得られた精製反応生成物であるフルオロアルキルアルコールメタクリル酸誘導体の混合物74.9g(0.130モル)を用い、固形分濃度は24.5%の水性分散液486gを得た。なお、得られた含フッ素重合体のMwは、25,000であった。
 比較参考例4
 実施例11において、実施例1で得られたフルオロアルキルアルコールアクリル酸誘導体混合物の代わりに、CF3(CF2)7(CH2CH2)OCOCH=CH2 65.0g(0.125モル)が用いられ、固形分濃度21.0%の水性分散液452gを得た。
 比較例1
 実施例11において、実施例1で得られたフルオロアルキルアルコールアクリル酸誘導体混合物の代わりに、CF3(CF2)5(CH2CH2)OCOCH=CH2 52.0g(0.125モル)が用いられ、固形分濃度22.7%の水性分散液466gを得た。
 比較例2
 実施例11において、実施例1で得られたフルオロアルキルアルコールアクリル酸誘導体混合物の代わりに、CF3(CF2)3(CH2CH2)OCOCH=CH2 40.0g(0.125モル)が用いられ、固形分濃度24.4%の水性分散液480gを得た。
 以上の実施例11~14、比較参考例4および比較例1~2で得られた水性分散液をを水で0.5wt%の固形分濃度に希釈し、そこに、綿布、綿/ポリエステル混紡布、ポリエステル布、ナイロン布の各布の浸漬を行い、撥水性能(JIS L1092準拠)および撥油性能(AATCC-TM118準拠)を測定した。その際の絞り後のウエット ピックアップは、綿布110%、綿/ポリエステル混紡布75%、ポリエステル布115%、ナイロン布45%であった。乾燥は、80℃で10分間実施し、キュアは綿布、綿/ポリエステル混紡布、ポリエステル布については150℃、3分間、ナイロン布については170℃、1.5分間行った。
 得られた結果は、次の表1(撥水性能)および2(撥油性能)に示される。
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000003

Claims (12)

  1.  一般式
       CF3(CF2)n(CH=CF)a(CF2CF2)b(CH2CH2)cOCOCR=CH2              〔Ia〕
    および一般式
       CF3(CF2)n-1(CF=CH)aCF2(CF2CF2)b(CH2CH2)cOCOCR=CH2         〔Ib〕
    (ここで、Rは水素原子またはメチル基であり、nは1~5の整数であり、aは1~4の整数であり、bは0~3の整数であり、cは1~3の整数である)で表わされるフルオロアルキルアルコール不飽和カルボン酸誘導体混合物。
  2.  一般式
       CF3(CF2)n(CH=CF)a(CF2CF2)b(CH2CH2)cOH                     〔IIa〕
    および一般式
       CF3(CF2)n-1(CF=CH)aCF2(CF2CF2)b(CH2CH2)cOH                〔IIb〕
    (ここで、nは1~5の整数であり、aは1~4の整数であり、bは0~3の整数であり、cは1~3の整数である)で表わされるフルオロアルキルアルコール混合物を、アクリル酸またはメタクリル酸とエステル化反応させることを特徴とする、一般式
       CF3(CF2)n(CH=CF)a(CF2CF2)b(CH2CH2)cOCOCR=CH2              〔Ia〕
    および一般式
       CF3(CF2)n-1(CF=CH)aCF2(CF2CF2)b(CH2CH2)cOCOCR=CH2         〔Ib〕
    (ここで、Rは水素原子またはメチル基であり、n、a、b、cは上記定義と同じである)で表わされるフルオロアルキルアルコール不飽和カルボン酸誘導体混合物の製造法。
  3.  エステル化反応がp-トルエンスルホン酸触媒の存在下で行われる請求項2記載のフルオロアルキルアルコール不飽和カルボン酸誘導体混合物の製造法。
  4.  一般式
       CF3(CF2)n(CH=CF)a(CF2CF2)b(CH2CH2)cOCOCR=CH2              〔Ia〕
    および一般式
       CF3(CF2)n-1(CF=CH)aCF2(CF2CF2)b(CH2CH2)cOCOCR=CH2         〔Ib〕
    (ここで、Rは水素原子またはメチル基であり、nは1~5の整数であり、aは1~4の整数であり、bは0~3の整数であり、cは1~3の整数である)で表わされるフルオロアルキルアルコール不飽和カルボン酸誘導体混合物を重合単位として含有する含フッ素重合体。
  5.  フルオロアルキルアルコール不飽和カルボン酸誘導体混合物に、一般式
       CH2=CRCOOR1(NR2SO2)mRf
    (ここで、Rは水素原子またはメチル基であり、R1は炭素数1~4の2価の有機基であり、R2は炭素数1~5の低級アルキル基であり、Rfは炭素数1~6のポリフルオロアルキル基であり、mは0または1である)で表わされるポリフルオロアルキル基含有(メタ)アクリレート単量体および/またはフッ素原子非含有重合性単量体を共重合させた請求項4記載の含フッ素重合体。
  6.  フルオロアルキルアルコール不飽和カルボン酸誘導体混合物と共重合されるポリフルオロアルキル基含有(メタ)アクリレート単量体において、R1基がポリフルオロアルキレン基の場合には、それと末端ポリフルオロアルキル基との合計炭素数が1~6である請求項5記載の含フッ素重合体。
  7.  請求項4記載の含フッ素重合体を有効成分とする撥水撥油剤。
  8.  有機溶媒溶液として調製された請求項7記載の撥水撥油剤。
  9.  有機溶媒が含フッ素有機溶媒である請求項8記載の撥水撥油剤。
  10.  請求項4記載の含フッ素重合体の水性分散液。
  11.  請求項10記載の含フッ素重合体の水性分散液よりなる撥水撥油剤。
  12.  含フッ素重合体の固形分濃度が0.1~10重量%に調整された請求項11記載の撥水撥油剤。
PCT/JP2009/050745 2008-01-24 2009-01-20 フルオロアルキルアルコール不飽和カルボン酸誘導体混合物、これらの重合体およびこの重合体を有効成分とする撥水撥油剤 WO2009093568A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP09704474.7A EP2233464B1 (en) 2008-01-24 2009-01-20 Mixture of fluoroalkyl alcohol-unsaturated carboxylic acid derivatives, polymer of the derivatives, and water repellent oil repellent agent containing the polymer as active ingredient
JP2009519721A JP5003759B2 (ja) 2008-01-24 2009-01-20 フルオロアルキルアルコール不飽和カルボン酸誘導体混合物、これらの重合体およびこの重合体を有効成分とする撥水撥油剤
US12/863,465 US8481660B2 (en) 2008-01-24 2009-01-20 Mixture of fluoroalkyl alcohol-unsaturated carboxylic acid derivatives, polymer of the mixture, and water-and oil-repellent containing the polymer as active ingredient
CA2711039A CA2711039C (en) 2008-01-24 2009-01-20 Mixture of fluoroalkyl alcohol-unsaturated carboxylic acid derivatives, polymer of the mixture, and water-and oil-repellent containing the polymer as active ingredient
CN200980102883.4A CN101925570B (zh) 2008-01-24 2009-01-20 氟烷基醇不饱和羧酸衍生物混合物、它们的聚合物及以该聚合物为有效成分的拒水拒油剂
KR1020107015141A KR101137286B1 (ko) 2008-01-24 2009-01-20 플루오로알킬알코올 불포화 카르복실산 유도체 혼합물, 이것들의 중합체 및 이 중합체를 유효성분으로 하는 발수발유제

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008013386 2008-01-24
JP2008-013386 2008-01-24
JP2008-140903 2008-05-29
JP2008140903 2008-05-29
JP2008-140904 2008-05-29
JP2008140904 2008-05-29

Publications (1)

Publication Number Publication Date
WO2009093568A1 true WO2009093568A1 (ja) 2009-07-30

Family

ID=40901076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050745 WO2009093568A1 (ja) 2008-01-24 2009-01-20 フルオロアルキルアルコール不飽和カルボン酸誘導体混合物、これらの重合体およびこの重合体を有効成分とする撥水撥油剤

Country Status (7)

Country Link
US (1) US8481660B2 (ja)
EP (1) EP2233464B1 (ja)
JP (1) JP5003759B2 (ja)
KR (1) KR101137286B1 (ja)
CN (1) CN101925570B (ja)
CA (1) CA2711039C (ja)
WO (1) WO2009093568A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014194098A (ja) * 2013-03-29 2014-10-09 Toray Ind Inc 繊維構造物
WO2017119371A1 (ja) * 2016-01-08 2017-07-13 東ソー・エフテック株式会社 不飽和結合を有する新規含フッ素化合物およびこれを用いた表面改質剤
JP2019178191A (ja) * 2018-03-30 2019-10-17 東ソー株式会社 フッ素系樹脂

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5292826B2 (ja) * 2008-01-24 2013-09-18 ユニマテック株式会社 フルオロアルキルアルコール混合物およびその製造法
KR101924013B1 (ko) * 2014-08-08 2018-11-30 유니마테크 가부시키가이샤 폴리플루오로알켄카복실산 또는 그 염의 혼합물 및 그 제조법
JP6794319B2 (ja) * 2017-07-03 2020-12-02 ダイキン工業株式会社 C8F17Brを含む組成物及びC8F17Brの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6322530A (ja) * 1986-07-04 1988-01-30 ヘキスト アクチェンゲゼルシャフト パ−フルオロアルキルアルケノ−ルの製造方法
JPS6322237B2 (ja) 1982-12-13 1988-05-11 Nippon Mektron Kk
JP2000038361A (ja) * 1998-07-23 2000-02-08 Daikin Ind Ltd 新規フッ素化合物及びその製造方法
JP2003012588A (ja) * 2001-07-02 2003-01-15 Asahi Glass Co Ltd 含フッ素化合物、その製造方法、含フッ素重合体および撥水撥油剤組成物
WO2004035708A1 (ja) 2002-10-15 2004-04-29 Asahi Glass Company, Limited 撥水撥油剤組成物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3393186A (en) * 1965-03-15 1968-07-16 Minnesota Mining & Mfg Perfluoro-alkenylacrylates and polymers thereof
US3625929A (en) * 1970-07-06 1971-12-07 Calgon Corp Polyfluoroalkenylalkoxy acrylates and polymers thereof
GB1404351A (en) * 1972-02-07 1975-08-28 Ici Ltd Fluorocarbon-containing compounds
DE19518865A1 (de) * 1995-05-23 1996-11-28 Bayer Ag Fluoralkenylgruppen enthaltende (Meth-)Acrylate, deren Herstellung und Verwendung
WO2004005708A2 (en) 2002-07-08 2004-01-15 Colin Regan Apparatus and method for generating power from moving water
JP2006036735A (ja) * 2004-07-30 2006-02-09 Yunimatekku Kk 不飽和カルボン酸ポリフルオロアルキルエステルの製造方法
JP4674604B2 (ja) * 2006-03-10 2011-04-20 ユニマテック株式会社 ポリフルオロアルキルアルコールまたはその(メタ)アクリル酸誘導体およびそれらの製造法
JP5292826B2 (ja) * 2008-01-24 2013-09-18 ユニマテック株式会社 フルオロアルキルアルコール混合物およびその製造法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6322237B2 (ja) 1982-12-13 1988-05-11 Nippon Mektron Kk
JPS6322530A (ja) * 1986-07-04 1988-01-30 ヘキスト アクチェンゲゼルシャフト パ−フルオロアルキルアルケノ−ルの製造方法
JP2000038361A (ja) * 1998-07-23 2000-02-08 Daikin Ind Ltd 新規フッ素化合物及びその製造方法
JP2003012588A (ja) * 2001-07-02 2003-01-15 Asahi Glass Co Ltd 含フッ素化合物、その製造方法、含フッ素重合体および撥水撥油剤組成物
WO2004035708A1 (ja) 2002-10-15 2004-04-29 Asahi Glass Company, Limited 撥水撥油剤組成物

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DMOWSKI, W. ET AL.: "Fluorination of some fluorine-containing oxo esters by sulfur tetrafluoride", JOURNAL OF FLUORINE CHEMISTRY, vol. 74, no. 2, 1995, pages 259 - 260, XP008137402 *
FEIRING, ANDREW E. ET AL.: "Reaction of perfluoroalkylethylenes with nucleophiles", JOURNAL OF FLUORINE CHEMISTRY, vol. 24, no. 1, 1984, pages 125 - 132, XP008137400 *
See also references of EP2233464A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014194098A (ja) * 2013-03-29 2014-10-09 Toray Ind Inc 繊維構造物
WO2017119371A1 (ja) * 2016-01-08 2017-07-13 東ソー・エフテック株式会社 不飽和結合を有する新規含フッ素化合物およびこれを用いた表面改質剤
JPWO2017119371A1 (ja) * 2016-01-08 2018-11-08 東ソー・ファインケム株式会社 不飽和結合を有する新規含フッ素化合物およびこれを用いた表面改質剤
JP2021100940A (ja) * 2016-01-08 2021-07-08 東ソー・ファインケム株式会社 不飽和結合を有する新規含フッ素化合物およびこれを用いた表面改質剤
JP7003310B2 (ja) 2016-01-08 2022-01-20 東ソー・ファインケム株式会社 不飽和結合を有する新規含フッ素化合物およびこれを用いた表面改質剤
US11352457B2 (en) 2016-01-08 2022-06-07 Tosoh Finechem Corporation Fluorine-containing compound having unsaturated bond, and surface modifier using the same
JP2019178191A (ja) * 2018-03-30 2019-10-17 東ソー株式会社 フッ素系樹脂

Also Published As

Publication number Publication date
EP2233464A1 (en) 2010-09-29
EP2233464A4 (en) 2015-01-07
KR20100110324A (ko) 2010-10-12
CA2711039A1 (en) 2009-07-30
CN101925570B (zh) 2013-06-19
KR101137286B1 (ko) 2012-04-20
US20100292393A1 (en) 2010-11-18
JP5003759B2 (ja) 2012-08-15
EP2233464B1 (en) 2016-06-08
US8481660B2 (en) 2013-07-09
JPWO2009093568A1 (ja) 2011-05-26
CA2711039C (en) 2013-07-02
CN101925570A (zh) 2010-12-22

Similar Documents

Publication Publication Date Title
JP5493860B2 (ja) 含フッ素重合体およびこれを有効成分とする表面改質剤
JP2012097125A (ja) 含フッ素重合体を有効成分とする表面改質剤
EP1736486B1 (en) Fluorine-containing monomer, fluorine-containing polymer and surface treating agent
JP5003759B2 (ja) フルオロアルキルアルコール不飽和カルボン酸誘導体混合物、これらの重合体およびこの重合体を有効成分とする撥水撥油剤
WO2004096939A1 (ja) 含フッ素重合体を含んでなる表面処理剤
KR20130088151A (ko) 함불소 공중합체
CA2560392A1 (en) Surface treating agent, fluorine-containing monomer and fluorine-containing polymer
JP2014172952A (ja) 含フッ素重合体およびこれを有効成分とする表面改質剤
JP2009522436A (ja) フルオラステロマー化合物とそれを含んでなるポリマー
KR102190165B1 (ko) 함불소 중합체 및 이것을 유효 성분으로 하는 방청제
WO2015064360A1 (ja) 含フッ素重合体およびこれを有効成分とする表面改質剤
TW200418969A (en) Aqueous emulsion composition
JP2005272741A (ja) ノルボルナン基を有する含フッ素単量体、含フッ素重合体および表面処理剤

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980102883.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009519721

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09704474

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2711039

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2009704474

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107015141

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12863465

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE