WO2009093498A1 - Ledパッケージおよびその製造方法 - Google Patents

Ledパッケージおよびその製造方法 Download PDF

Info

Publication number
WO2009093498A1
WO2009093498A1 PCT/JP2009/050297 JP2009050297W WO2009093498A1 WO 2009093498 A1 WO2009093498 A1 WO 2009093498A1 JP 2009050297 W JP2009050297 W JP 2009050297W WO 2009093498 A1 WO2009093498 A1 WO 2009093498A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflector
led package
substrate
led
light
Prior art date
Application number
PCT/JP2009/050297
Other languages
English (en)
French (fr)
Inventor
Naoki Ito
Masami Aihara
Kazutaka Ise
Original Assignee
Alps Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co., Ltd. filed Critical Alps Electric Co., Ltd.
Priority to JP2009550493A priority Critical patent/JPWO2009093498A1/ja
Publication of WO2009093498A1 publication Critical patent/WO2009093498A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape

Definitions

  • the present invention relates to an LED package used for various types of illumination, keyboard illumination, and the like, and a method for manufacturing the LED package, and more particularly to an LED package capable of efficiently emitting light in two opposite directions while being small and thin. About.
  • an LED is molded inside a transparent resin, and light emitted from the LED by a concave curved reflective layer provided on the surface of the resin is projected on the side surface. It is emitted to the outside of the resin through the light surface.
  • Patent Document 1 what is described in Patent Document 1 is a configuration in which all the side surfaces of the resin function as a light projecting surface capable of emitting light. For this reason, the light is on an arbitrary straight line and conflicts. There is a problem that it is difficult to increase the light use efficiency in such a case because the light cannot be emitted in only two directions.
  • the volume of the package is large, and it is not suitable for downsizing and thinning. Furthermore, since two LEDs cannot be fixed to both sides of the substrate at the same time, there is a problem that the manufacturing process is complicated and mass production is difficult.
  • the present invention is to solve the above-described conventional problems, and uses the required maximum number of LEDs and reduces the light leakage to improve the light utilization efficiency in two opposite directions, and a method for manufacturing the same
  • the purpose is to provide.
  • Another object of the present invention is to provide an LED package manufacturing method that enables mass production of small and thin LED packages.
  • the present invention includes at least one LED bare chip mounted on a substrate, a transparent or translucent sealing resin covering the LED bare chip, an incident surface on which light emitted from the LED bare chip is incident, the incident A plurality of reflecting surfaces for reflecting the light, an exit surface for emitting the reflected light to the outside, and a reflector that is fixed to the upper portion of the sealing resin, and a side surface other than these.
  • the reflector is laminated and fixed on the substrate and the sealing resin, and a metal reflection film is formed on the side surface of the reflector excluding the entrance surface and the exit surface, A step portion is provided between the side surface of the reflector on which the metal reflective film is formed and the outer shape of the substrate.
  • this invention can be set as a small and thin LED package by setting it as a laminated structure. Further, by having a step portion between the substrate and the side surface of the reflector, the metal reflective film formed on the side surface of the reflector is scraped and disappeared during dicing, and the internal transparent resin is not exposed. be able to. For this reason, leakage of light from the side surface of the reflector can be prevented, and the light utilization efficiency can be increased.
  • a metal reflective film is formed on the reflective surface. With the above means, the reflection efficiency on the reflection surface can be improved.
  • a trough line is formed between the reflecting surfaces adjacent to each other, and the exit surface is arranged in parallel to the trough line.
  • the relationship between the direction in which the valley line extends (X direction) and the direction in which light is emitted from the emission surface (light distribution direction: Y direction) is vertical. For this reason, the light extraction direction can be determined from the outer shape of the LED, and the handling of the LED package can be facilitated in mounting.
  • the reflection surface is formed of a curved surface.
  • the reflector is provided with two reflecting surfaces at positions symmetrical with respect to the valley line.
  • the above means can direct light in two opposite directions without complicating the configuration of the reflector.
  • the surface of the reflector is formed flat by injecting resin onto the reflecting surface.
  • the present invention also includes a first step of mounting a large number of LED bare chips at regular intervals on a substrate on which electrodes are formed; A second step of filling the LED bare chip and the upper portion of the substrate with a sealing resin and curing by heat or light irradiation; A reflector assembly in which a reflector having a predetermined shape with a metal reflective film formed on a part of the surface is continuously stacked on the surface of the sealing resin and bonded and fixed to form an LED package assembly. A third step; A fourth step of separating the LED package assembly into individual LED packages by dicing along a predetermined cutting line; It is characterized by comprising.
  • a plurality of LED packages can be produced in large quantities by the same process.
  • an uncured liquid resin is filled in a mold for transferring the reflection surface and the side surface shape to form a reflector aggregate, and is pressurized and heat-cured to form the reflector assembly.
  • a step of bonding the reflector assembly to the substrate and the sealing resin and a step of forming a metal reflection film on the surface of the reflector assembly may be provided.
  • an uncured liquid resin is filled in a mold for transferring the reflective surface and the side surface shape to form a reflector assembly, and is pressurized and heat-cured to form the reflector assembly.
  • a step of joining the reflector assembly to the substrate and the sealing resin may be provided.
  • Each of the above means eliminates the need for bonding the cured sealing resin and the reflector, so that the manufacturing process can be simplified and the manufacturing cost can be kept low.
  • the width dimension of the cutter used in the fourth step is narrower than the facing dimension between the side surfaces facing each other between adjacent LED packages.
  • the above means can prevent the metal reflection film formed on the side surface of the reflector from being scraped and lost in the dicing process.
  • the manufacturing method of the present invention enables mass production of small and thin LED packages.
  • FIG. 1 is a perspective view showing an appearance of an LED package according to an embodiment of the present invention
  • FIG. 2 is a sectional view taken along line II-II in FIG. 1
  • FIG. 3 is a sectional view taken along line III-III in FIG. It is a perspective view which shows the external appearance in other embodiment of an LED package.
  • the LED package described below is used as, for example, a light source that is used together with a light guide to illuminate a keyboard switch of a portable device.
  • the LED package 1 of the present invention has a substrate 2 as a base and a transparent reflector (light reflector) 3 fixed on the substrate 2.
  • the substrate 2 is integrally fixed by laminating a second substrate 2B on a first substrate 2A having an outer shape in which the ratio between the dimension in the longitudinal (Y) direction and the dimension in the lateral (X) direction is different.
  • the aspect ratio of the first substrate 2A and the second substrate 2B is 1 to 2, but other ratios may be used.
  • a mounting hole 2A1 is formed in the center of the first substrate 2A, and a pair of relay electrodes 2a and 2b are formed in the vicinity of the Y1 side and the Y2 side of the mounting hole 2A1.
  • the LED bare chip 4 is set in the mounting hole 2 ⁇ / b> A ⁇ b> 1 so that the light emitting surface 4 ⁇ / b> A which is the surface thereof substantially coincides with the surface of the substrate 2.
  • An anode electrode 4 a and a cathode electrode 4 b are formed on the surface of the LED bare chip 4.
  • the anode electrodes 4a and the cathode electrodes 4b and the pair of relay electrodes 2a and 2b formed on the first substrate 2A are electrically connected by bonding wires 5 and 5, respectively.
  • through holes 2s and 2s are formed in the first substrate 2A, and the relay electrodes 2a and 2b formed on the surface of the first substrate 2A through the through holes 2s and 2s and the external formed on the back surface side. Conductive connection is established between the electrodes 2c and 2d.
  • a recess 2B1 is formed at the center of the second substrate 2B.
  • the area of the recess 2B1 is narrower than the area of the first substrate 2A, and has a frame shape as a whole.
  • the substrate 2 can be integrally formed by bonding the second substrate 2B on the first substrate 2A, or the mounting holes 2A1 and the recesses 2B1 are formed by cutting out each surface of one substrate. You can also. Alternatively, they can be integrally formed by an injection molding method by injecting a synthetic resin into a mold capable of forming the mounting hole 2A1, the recess 2B1, and the like.
  • the LED bare chip 4 is also formed with an aspect ratio of about 1 to 2, and an anode electrode 4a and a cathode electrode 4b are provided on the upper surface thereof.
  • the LED bare chip 4 is fixed in a state of being fitted in the mounting hole 2A1 of the first substrate 2.
  • the recess 2 ⁇ / b> B ⁇ b> 1 of the second substrate 2 is filled with a sealing resin 6, and the LED bare chip 4, the anode electrode 4 a, and the cathode electrode 4 b are embedded with the sealing resin 6.
  • the sealing resin 6 may be a transparent resin or may be formed of a translucent resin. Alternatively, a transparent resin material may be mixed with a phosphor such as YAG.
  • a predetermined voltage is applied between the anode electrode 4a and the cathode electrode 4b, the light emitting surface 4A, which is the upper surface of the LED bare chip 4, emits blue light, for example.
  • the reflector 3 is provided in a state of being laminated on the sealing resin 6.
  • the reflector 3 is made of a transparent synthetic resin such as acrylic, polycarbonate, epoxy, polyurethane, silicone, or cyclic olefin polymer.
  • the reflector 3 has an incident surface 3A on the Z2 side in the drawing, reflection surfaces 3B and 3B on the Z1 side in the drawing, and emission surfaces 3C and 3C on the X1 and X2 sides in the drawing. Sides 3D and 3D are provided on the Y1 and Y2 sides in the figure.
  • the emission surfaces 3C and 3C and the side surfaces 3D and 3D are perpendicular to the horizontal plane (XY plane).
  • a trough line (also referred to as “ridge line”) 7 extending in a direction orthogonal to the side surfaces 3D and 3D is formed on the surface side of the reflector 3.
  • the reflecting surfaces 3B and 3B are formed as a pair of smooth curved surfaces (convex curved surfaces) that protrude upward in the figure (Z1 direction) between the valley line 7 and the upper ends of the emitting surfaces 3C and 3C.
  • the valley line 7 is provided at a predetermined height position from the incident surface 3A. Therefore, one reflecting surface 3B and the other reflecting surface 3B are integrally connected on the incident surface 3A side.
  • Metal reflection films 8a and 8a are formed on the surfaces of the reflection surfaces 3B and 3B, and metal reflection films 8b and 8b are formed on the surfaces of the side surfaces 3D and 3D. These metal reflection films 8a and 8b are finished with a smooth mirror surface by simultaneously applying means such as sputtering, vapor deposition, and plating on the surfaces of the reflection surfaces 3B and 3B and the side surfaces 3D and 3D. Therefore, the inner surfaces of the metal reflecting films 8a and 8a formed on the surfaces of the reflecting surfaces 3B and 3B are formed with smooth concave curved surfaces (concave surfaces), and the metal reflecting films formed on the surfaces of the side surfaces 3D and 3D. The inner surfaces of 8b and 8b are formed as smooth surfaces perpendicular to the XY plane (horizontal plane).
  • the metal reflection films 8b and 8b have the effect of improving the reflectivity at the reflection surfaces 3B and 3B, but it is also possible to reflect light by the ratio of the inside and outside refractive index with the reflection surfaces 3B and 3B as the interface.
  • the metal reflection films 8b and 8b are not essential components.
  • the light emitted from the light emitting surface 4A of the LED bare chip 4 passes through the sealing resin 6 and enters the reflector 3 from the incident surface 3A of the reflector 3. And it is reflected in the X direction (X1 and X2 directions) that is substantially parallel to the horizontal plane (XY plane) on the inner surfaces of the reflecting surfaces 3B and 3B forming the convex curved surface (the inner surfaces of the metal reflecting films 8a and 8a).
  • the light is emitted to the outside of the reflector 3 through the emission surfaces 3C and 3C provided at the positions.
  • the light distribution direction can be controlled, and X substantially parallel to the horizontal plane (XY plane).
  • the incident angle of light with respect to the emission surfaces 3C and 3C can be set to be equal to or greater than the critical angle, and light can be efficiently emitted to the outside of the LED package 1 through the emission surfaces 3C and 3C.
  • a light guide (not shown) is installed in the vicinity of the LED package 1, and the exit surfaces 3C and 3C are arranged to face the entrance surface of the light guide. Light emitted from the exit surfaces 3C and 3C enters the light guide from the entrance surface of the light guide, travels through the light guide to any remote location away from the light source, and is provided at any remote location. The surface of a member such as a switch element is illuminated (not shown).
  • the inner surfaces of the metal reflecting films 8b and 8b formed on the side surfaces 3D and 3D prevent light that has entered the reflector 3 from leaking out of the reflector 3 through the side surfaces 3D and 3D, and exit surfaces 3C and 3C. So that it is emitted only through. For this reason, the light emitted from the LED bare chip 2 which is a light source can be utilized with high efficiency.
  • the direction of the valley line 7 formed by the two reflecting surfaces 3 ⁇ / b> B and 3 ⁇ / b> B is perpendicular to the longitudinal direction (X direction) of the outer shape of the substrate 2. May be.
  • FIG. 5A to 5F are process diagrams showing an embodiment of the LED package manufacturing method according to the present invention
  • FIG. 6 is a perspective view showing a substrate
  • FIG. 7 is a perspective view showing a reflector assembly
  • FIG. It is a perspective view which shows a LED package assembly.
  • 5A to 5F the right figure shows the XZ section of the LED package assembly, and the left figure shows the YZ section of the LED package assembly.
  • the second substrate 2B is laminated on the first substrate 2A, and the substrates 2 are integrally formed by bonding and fixing each other substrate with an adhesive.
  • a plurality of mounting holes 2 ⁇ / b> A ⁇ b> 1 and a plurality of recesses 2 ⁇ / b> B ⁇ b> 1 corresponding to the mounting holes 2 ⁇ / b> A ⁇ b> 1 are provided in a single substrate 2.
  • the LED bare chip 4 is mounted on the first substrate 2A. That is, the LED bare chip 4 is fixed in each mounting hole 2A1 of the first substrate 2A, the anode electrode 4a and the cathode electrode 4b of the LED bare chip 4, and a pair of relay electrodes 2a and 2b formed on the first substrate 2A, Are electrically connected by bonding wires 5 and 5, respectively.
  • an uncured sealing resin 6 is poured into the recess 2B1 of the second substrate 2B to seal the LED bare chip 4 and the bonding wires 5 and 5. It is embedded in the resin 6 and sealed.
  • the sealing resin 6 is cured, it is possible to prevent a connection failure due to detachment of the bonding wire.
  • an adhesive member 11 is placed on the surface of the substrate 2 and the sealing resin 6 in which the LED bare chip 4 is embedded, and a plurality of reflectors 3 are continuously provided thereon.
  • the reflector assemblies 30 are stacked.
  • the reflector assembly 30 includes a plurality of bar-shaped reflector coupling bodies 31 that are formed by connecting a plurality of synthetic resins each having a convex curved section in the X direction. By connecting the plurality of hoop materials 3a in the Y direction, the individual reflectors 3 are connected in a matrix.
  • a reflector assembly 30 is formed using a molding method or the like performed by injecting a transparent uncured resin into a predetermined mold. Further, on the surface of the reflector assembly 30, if necessary, a thin metal reflection film 8 formed by sputtering, vapor deposition, electroless plating or the like after resin molding may be formed in advance.
  • the reflector assembly 30 is heated in a state where it is pressed against the surface of the substrate 2 and the sealing resin 6, or in the case of the ultraviolet curable adhesive member 11, ultraviolet rays are emitted.
  • the adhesive member 11 is cured and the individual reflectors 3 are fixed on the corresponding substrate 2.
  • an LED package assembly 40 in which individual LED packages are connected is completed.
  • the LED package assembly 40 is diced using a cutter (not shown) and cut into individual LED packages 1.
  • the width dimension d of the cutter 10 is narrower than the length dimension in the Y direction of the hoop material 3a shown in FIG. 7, that is, between one side surface 3D and the other side surface 3D facing each other in the Y direction.
  • a size smaller than the opposite dimension ⁇ W is used (d ⁇ W).
  • the cutter cuts the hoop material 3a by dicing the LED package assemblies 40 linearly along the cutting lines Lx1, Lx2, Lx3,.
  • a step portion 9 is formed between the substrate 2 and the side surface 3D.
  • the side surface of the cutter can be made difficult to touch the side surface 3D of the reflector 3 during the dicing process. For this reason, it is possible to prevent the metal reflection films 8b and 8b formed on the side surface 3D from being scraped and disappeared during dicing and exposing the internal transparent resin. Therefore, light leakage from the side surfaces 3D and 3D can be effectively prevented, and the light utilization efficiency can be increased.
  • each LED package 1 is completed by dicing the bar-shaped LED package coupling body 41 along the cutting lines Ly1, Ly2, Ly3,... In the Y direction shown in FIG.
  • the surfaces cut by the dicing at this time become the emission surfaces 3 ⁇ / b> C and 3 ⁇ / b> C of the LED package 1.
  • the metal reflection film 8 does not remain on the emission surfaces 3C and 3C, and the transparent resin formed on the smooth surface is exposed.
  • the reflector assembly 30 may be directly molded on the surfaces of the substrate 2 and the sealing resin 6 as shown below.
  • the substrate 2 in which the LED bare chip 4 is embedded in the sealing resin 6 is placed in a predetermined mold, and an uncured resin is filled in the mold and cured. Accordingly, when the resin is cured, the incident surface 3A, the reflecting surface 3B, the exit surface 3C, and the side surface 3D are transferred to the resin, and a reflector assembly 30 as shown in FIG. 7 is formed.
  • metal reflection films 8a and 8b are formed on the surface of the reflector assembly 30 fixed to the LED package assembly 40, particularly on the surfaces corresponding to the reflection surface 3B and the side surface 3D.
  • the metal reflection films 8a and 8b are formed by means such as sputtering, vapor deposition, and plating as described above.
  • a portion where the metal reflective film is formed may be cut so that a new reflective surface 3B that is not formed is exposed.
  • the perspective view which shows the external appearance of embodiment of the LED package of this invention Sectional view taken along line II-II in FIG. Sectional view taken along line III-III in FIG.
  • the perspective view which shows the external appearance of other embodiment of an LED package Process drawing which shows embodiment of the manufacturing method of the LED package in this invention, A perspective view showing a substrate, A perspective view showing the reflector assembly, A perspective view showing an LED package assembly,

Abstract

【課題】 光の漏れを少なして相反する2方向に対する光の利用効率を高めたLEDパッケージおよびその製造方法を提供すること。 【解決手段】 内部にLEDベアチップ4が実装された基板2を透明な封止樹脂6で封止し、さらにその表面にリフレクタ3を積層する。リフレクタ3には、金属反射膜8a,8bが部分的に成膜されており、光はLEDベアチップ4から封止樹脂6を介してリフレクタ3の入射面3Aに入射し、反射面3B,3B(金属反射膜8a,8a)で反射された後、出射面3C,3Cから相反する2方向(X1およびX2方向)に出射される。基板2とリフレクタ3との間に段差部9を設けたことから、ダイシングする際に側面3Dに成膜された金属反射膜8b,8bが削られ消失することがなくなり、利用効率が高いLEDパッケージとすることが可能となる。

Description

LEDパッケージおよびその製造方法
 本発明は、各種イルミネーション、キーボード照明などに使用されるLEDパッケージおよびその製造方法に係わり、特に小型且つ薄型でありながら光を相反する2方向に効率よく出射できるようにしたLEDパッケージおよびその製造方法に関する。
 携帯機器に搭載された複数のキースイッチを照明する機構においては、キースイッチごとにLEDを設けるようにすると、コスト的およびスペース的に不利である。このため、従来より、LEDから出射された光は、別途設けられた導光体を利用して届けられ、個々のキースイッチの照明が行われる。
 以下の特許文献1に記載されたLEDパッケージは、透明な樹脂の内部にLEDをモールドするとともに、樹脂の表面に設けた凹曲面状の反射層によってLEDから出射された光が、側面である投光面を介して樹脂の外部に出射されるというものである。
 一方、特許文献2に記載の側面発光半導体装置は、基板の表裏両面に発光ダイオード(LED)をそれぞれ実装するとともに、発光ダイオードからの光を透過性の樹脂で成形したレンズを用いて制御することにより、相反する2方向に光を出射するというものである。
特開2006-339650号公報 特開平06-296045号公報
 しかし、特許文献1に記載されたものでは、樹脂のすべての側面が光を出射することが可能な投光面として機能する構成である、このため、光を任意の直線上で、且つ相反する2方向のみに出射することができず、このような場合における光の利用効率を高め難いという問題があった。
 一方、特許文献2に記載のものでは、相反する2方向に光を出射することができるものの、LEDを1方向に1ヶずつ(合計2ヶ)必要とする構成であることから、部品点数を低減し難いという問題がある。
 またLEDを基板の両面にそれぞれ固定する必要があるため、パッケージの体積が大きく、小型化および薄型化に適するものではなかった。さらには、2ヶのLEDを基板の両面に同時に固定することができないため、製造工程が煩雑であり大量生産し難いという問題もある。
 本発明は上記従来の課題を解決するためのものであり、必要最個数のLEDを用いるとともに、光の漏れを少なくして相反する2方向に対する光の利用効率を高めたLEDパッケージおよびその製造方法を提供することを目的としている。
 また本発明は、小型で且つ薄型のLEDパッケージの大量生産を可能としたLEDパッケージの製造方法を提供することを目的としている。
 本発明は、基板上に実装された少なくとも1つ以上のLEDベアチップと、前記LEDベアチップを覆う透明または半透明からなる封止樹脂と、LEDベアチップから出射される光が入射する入射面、前記入射した光を反射する複数の反射面および前記反射した光を外部に出射する出射面並びにこれら以外の側面を備えるとともに前記封止樹脂の上部に固定されるリフレクタと、を有し、
 且つ前記リフレクタが前記基板および前記封止樹脂上に積層されて接着固定されるとともに、前記リフレクタのうち前記入射面および出射面を除いた前記側面とに金属反射膜が成膜されており、前記リフレクタの前記金属反射膜が成膜された側面と前記基板の外形との間に段差部が設けられていることを特徴とするものである。
 本発明では、積層構造体とすることで小型且つ薄型のLEDパッケージとすることができる。また基板とリフレクタの側面との間に段差部を有することにより、リフレクタの側面に成膜された金属反射膜が、ダイシング中に削れて消失し、内部の透明樹脂が露出されてしまうことをなくすことができる。このため、リフレクタの側面からの光の漏れを防止することができ、光の利用効率を高めることが可能となる。
 上記において、前記反射面に金属反射膜が成膜されているものが好ましい。
 上記手段では、反射面での反射効率を向上させることができる。
 上記において、隣接する反射面と反射面との間に谷線が形成されており、この谷線に対して前記出射面が平行に配置されているものが好ましい。
 上記手段では、谷線が延びる方向(X方向)と光が出射面から出射される方向(配光方向:Y方向)との関係が垂直となる。このため、光の取り出し方向はLEDの外形から判断することが可能となり、実装上LEDパッケージの取扱いを容易とすることができる。
 また前記反射面が曲面で形成されているものが好ましい。
 上記手段では、配光方向の制御が可能となり、出射面に対する光の入射角を臨界角以上に設定することが可能となり、光を効率よくLEDパッケージの外部に出射することが可能となる。
 さらには、前記リフレクタには2つの反射面が、前記谷線を挟んで対称となる位置に設けられているものが好ましい。
 上記手段では、リフレクタの構成を複雑にすることなく、相反する2方向に光を向けることができる。
 さらには、前記反射面の上に樹脂が注入されることにより、前記リフレクタの表面が平坦に形成されているものである。
 上記手段では、実装上のハンドリングを良好とすることができる。
 また本発明は、電極が形成された基板上に多数のLEDベアチップを一定の間隔で実装する第1の工程と、
 前記LEDベアチップおよび前記基板の上部に封止樹脂を充填して加熱硬化または光照射硬化させる第2の工程と、
 表面の一部に金属反射膜が成膜された所定形状からなるリフレクタが連設されたリフレクタ集合体を、前記封止樹脂の表面に積層して接着固定することによりLEDパッケージ集合体を形成する第3の工程と、
 前記LEDパッケージ集合体を所定の切断線に沿ってダイシングすることにより、個々のLEDパッケージに分離する第4の工程と、
を備えたことを特徴とするものである。
 本発明の製造方法では、同一工程により複数のLEDパッケージを大量に生産することができる。
 また、前記第3の工程の代わりに、未硬化の液体樹脂を前記反射面や側面形状を転写するための金型に充填してリフレクタ集合体を形成するとともに、加圧および加熱硬化させて前記リフレクタ集合体を前記基板および封止樹脂に対して接合する工程と、前記リフレクタ集合体の表面に金属反射膜を成膜する工程とを備えるものとすることができる。
 あるいは、前記第3の工程の代わりに、未硬化の液体樹脂を前記反射面や側面形状を転写するための金型に充填してリフレクタ集合体を形成するとともに、加圧および加熱硬化させて前記リフレクタ集合体を前記基板および封止樹脂に対して接合する工程を備えるものとすることもできる。
 上記各手段では、硬化後の封止樹脂とリフレクタとを接着させる作業が必要なくなるため、製造工程が簡素化することができるとともに製造コストを低く抑えることが可能となる。
 さらには、前記第4の工程に用いるカッターの幅寸法が、隣り合うLEDパッケージの間で対向する側面同士の対向寸法よりも狭いものであるものが好ましい。
 上記手段では、ダイシング工程においてリフレクタの側面に成膜された金属反射膜が削れて消失してしまうことを防止することができる。
 本発明では、光の漏れを防止し、相反する2方向に対する光の利用効率を高めたLEDパッケージとすることができる。
 また本発明の製造方法では、小型で且つ薄型のLEDパッケージの大量生産することができる。
 図1は本発明のLEDパッケージの実施の形態における外観を示す斜視図、図2は図1のII-II線における断面図、図3は図1のIII-III線における断面図、図4はLEDパッケージの他の実施の形態における外観を示す斜視図である。
 以下に説明するLEDパッケージは、例えば導光体とともに使用され携帯機器のキーボードのスイッチなどを照光する光源として使用される。
 図1に示すように、本発明のLEDパッケージ1は、ベースとなる基板2と、基板2の上に固定された透明なリフレクタ(光反射体)3とを有している。
 基板2は、縦(Y)方向の寸法と横(X)方向の寸法との比率が異なる外形を有する第1基板2Aの上に第2基板2Bが積層されて一体的に固定されている。なお、第1基板2Aおよび第2基板2Bの縦横比は共に1対2であるが、その他の比率であってもよい。
 第1基板2Aの中央には装着穴2A1が形成されており、この装着穴2A1のY1側およびY2側の近傍には一対の中継電極2a,2bが形成されている。装着穴2A1にはLEDベアチップ4が、その表面である発光面4Aが基板2の表面とほぼ一致するように設定されている。
 LEDベアチップ4の表面にはアノード電極4aおよびカソード電極4bが形成されている。アノード電極4aおよびカソード電極4bと第1基板2Aに形成された一対の中継電極2a,2bとの間がそれぞれボンディングワイヤ5,5によって導通接続されている。また第1基板2Aにはスルーホール2s,2sが形成されており、このスルーホール2s,2sを介して第1基板2Aの表面に形成された中継電極2a,2bと裏面側に形成された外部電極2c、2dとの間が導通接続されている。
 第2基板2Bの中心には凹部2B1が形成されている。凹部2B1の面積は第1基板2Aの面積よりも狭く、全体としては枠状をしている。
 基板2は第1基板2Aの上に第2基板2Bを接着することで一体的に形成することもできるし、一枚の基板の各面に装着穴2A1や凹部2B1を削り出しで形成することもできる。あるいは、装着穴2A1や凹部2B1などを形成可能な金型内に合成樹脂を注入することによる射出成形法により一体的に形成することも可能である。
 LEDベアチップ4も1対2程度の縦横比で形成されており、その上面にはアノード電極4aとカソード電極4bが設けられている。
 LEDベアチップ4は第1基板2の装着穴2A1内に嵌合された状態で固定されている。第2基板2の凹部2B1には封止樹脂6が充填されており、LEDベアチップ4、アノード電極4aおよびカソード電極4bはこの封止樹脂6によって埋設されている。
 封止樹脂6は透明樹脂であってもよいし、半透明な樹脂で形成されるものであってもよい。あるいは、透明樹脂材の中に、例えばYAGなどの蛍光体などを混ぜたものであってもよい。前記アノード電極4aとカソード電極4bとの間に所定の電圧を印加すると、LEDベアチップ4の上面である発光面4Aが、例えばは青色に発光する。
 図1ないし図3に示すように、リフレクタ3は封止樹脂6に積層された状態で設けられている。リフレクタ3は、アクリル、ポリカーボネイト、エポキシ、ポリウレタン、シリコーン、環状オレフィン系ポリマーなど透明な合成樹脂で形成されている。リフレクタ3は、図示Z2側に入射面3Aを有し、図示Z1側の反射面3B,3Bを有し、図示X1およびX2側に出射面3C,3Cを有している。また図示Y1およびY2側には側面3D,3Dが設けられている。出射面3C,3Cおよび側面3D,3Dは、水平面(XY平面)に対して垂直である。
 リフレクタ3の表面側には側面3D,3Dと直交する方向に延びる谷線(「尾根線」ともいう)7が形成されている。反射面3B,3Bは、この谷線7と出射面3C,3Cの上端との間に図示上方(Z1方向)に凸をなす一対の滑らかな曲面(凸曲面)として形成されている。
 谷線7は入射面3Aから所定の高さ位置に設けられている。したがって、一方の反射面3Bと他方の反射面3Bとは入射面3A側において一体に連結されている。
 反射面3B,3Bの表面には金属反射膜8a,8aが成膜され、側面3D,3Dの表面には金属反射膜8b,8bが成膜されている。これらの金属反射膜8a,8bは、反射面3B,3Bおよび側面3D,3Dの表面に、例えばスパッタ、蒸着、メッキなどの手段を同時に施すことにより滑らかな鏡面で仕上げられている。したがって、反射面3B,3Bの表面に成膜された金属反射膜8a,8aの内面は滑らかな凹状の曲面(凹局面)で形成され、側面3D,3Dの表面に成膜された金属反射膜8b,8bの内面はXY平面(水平面)対して垂直な滑らかな面で形成されている。
 なお、金属反射膜8b,8bは反射面3B,3Bでの反射率を向上させる効果を有するが、反射面3B,3Bを界面として内、外の屈折率の比により光を反射させることも可能であり、金属反射膜8b,8bは必須の構成要素ではない。
 LEDベアチップ4の発光面4Aから出射された光は、封止樹脂6内を透過し、リフレクタ3の入射面3Aからリフレクタ3の内部に進入する。そして、凸曲面を形成する反射面3B,3Bの内面(金属反射膜8a,8aの内面)において水平面(XY平面)と略平行を成すX方向(X1およびX2方向)に反射させられ、相反する位置に設けられた出射面3C,3Cを通じてリフレクタ3の外部に出射させられる。
 このように、反射面3B,3B(金属反射膜8a,8aの内面)を凸曲面に形成することにより、光の配光方向の制御が可能となり、水平面(XY平面)と略平行を成すX方向(X1およびX2方向)に向けることができる。これにより、出射面3C,3Cに対する光の入射角を臨界角以上に設定することができ、出射面3C,3Cを通じて光を効率よくLEDパッケージ1の外部に出射することが可能となる。
 LEDパッケージ1の近傍には導光体(図示せず)が設置されており、出射面3C,3Cは導光体の入射面に対向配置されている。出射面3C,3Cから出射した光は導光体の入射面から導光体の内部に入射し、この導光体内を光源から離れた任意の遠隔地まで進行し、その任意の遠隔地に設けられたスイッチ素子などの部材の表面を照光する(図示せず)。
 また側面3D,3Dに形成された金属反射膜8b,8bの内面は、リフレクタ3内に進入した光が、側面3D,3Dを通じてリフレクタ3の外部に漏れ出ることを防止し、出射面3C,3Cのみを通じて出射されるようにする。このため、光源であるLEDベアチップ2から放たれた光を高効率で利用することができる。
 しかも、少なくともLEDベアチップ2が1つあれば、光を相反するX1方向およびX2方向に向けることが可能である。
 なお、一方の反射面3Bと他方の反射面3Bとの間は、谷線7を有する谷間であることから、ハンドリングし難いなどの不都合が生じる場合がある。このような場合には、別の樹脂を谷間に注入して、リフレクタ3の表面を平坦化するようにしてもよい。
 またLEDパッケージ1は、図4に示すように、2つの反射面3B,3Bによって作られる谷線7の方向が、基板2の外形の長手方向(X方向)に対して垂直であるものであってもよい。
 次に、上記LEDパッケージの製造方法について説明する。
 図5(A)ないし(F)は本発明におけるLEDパッケージの製造方法の実施の形態を示す工程図、図6は基板を示す斜視図、図7はリフレクタ集合体を示す斜視図、図8はLEDパッケージ集合体を示す斜視図である。なお、図5(A)ないし(F)中の右図はLEDパッケージ集合体のXZ断面を示し、左図はLEDパッケージ集合体のYZ断面を示している。
 以下の説明では、複数のLEDパッケージを同時に製造する過程を説明する。まず第1基板2Aと第2基板2Bとにより構成される基板2の場合について説明する。
 第1の工程では、図5(A)に示すように、第1基板2Aの上に第2基板2Bを積層し、接着剤によって互いの基板を接着固定することにより基板2を一体形成する。図6に示すように、一枚の基板2には複数の装着穴2A1と、これに対応する複数の凹部2B1がマトリックス状に設けられている。
 そして、図5(B)に示すように、第1基板2AにLEDベアチップ4がそれぞれ実装される。すなわち、第1基板2Aの個々の装着穴2A1内にLEDベアチップ4が固定され、LEDベアチップ4のアノード電極4aおよびカソード電極4bと,第1基板2Aに形成された一対の中継電極2a,2bとの間がボンディングワイヤ5,5によってそれぞれ導通接続される。
 第2の工程では、図5(C)に示すように、第2基板2Bの凹部2B1内に未硬化状態にある封止樹脂6を流し込んで、LEDベアチップ4およびボンディングワイヤ5,5を封止樹脂6中に埋設して封止する。封止樹脂6が硬化するとボンディングワイヤの離脱による接続不良などを防止できる。
 第3の工程では、図5(D)に示すように、LEDベアチップ4が埋設された基板2および封止樹脂6の表面に接着部材11を載せ、その上に複数のリフレクタ3が連設されたリフレクタ集合体30を積層する。
 図7に示すように、リフレクタ集合体30は、断面が凸曲面からなる合成樹脂をX方向に複数連設して一組とされたバー状リフレクタ連結体31同士を、その間に部分的に設けられた複数のフープ材3aによってY方向に連結することにより、個々のリフレクタ3がマトリックス状に連結されたものである。なお、このようなリフレクタ集合体30は、所定金型内に透明な未硬化の樹脂を注入して行う成形法などを用いて形成されている。またリフレクタ集合体30の表面には、必要に応じて樹脂成形後にスパッタ、蒸着、無電解メッキなど施すことにより形成した薄い金属反射膜8をあらかじめ成膜しておいてもよい。
 図5(E)に示すように、リフレクタ集合体30を基板2および封止樹脂6の表面に圧接させた状態で加熱することにより、または紫外線硬化性の接着部材11である場合には紫外線を照射することにより、接着部材11を硬化させて個々のリフレクタ3をこれに対応する基板2上に固定する。これにより、個々のLEDパッケージが連設されたLEDパッケージ集合体40が出来上がる。
 第5の工程では、図5(F)に示すように、図示しないカッターを用いてLEDパッケージ集合体40をダイシングし、個々のLEDパッケージ1に切り分ける。ここで、カッター10の幅寸法dは、図7に示すフープ材3aのY方向の長さ寸法よりも狭い寸法のもの、すなわちY方向において対向する一方の側面3Dと他方の側面3Dとの間の対向寸法ΔWよりも狭い寸法のものが使用される(d<ΔW)。
 まず、図8に示すように、カッターはX方向の切断線Lx1,Lx2,Lx3,・・・に沿って直線的にLEDパッケージ集合体40をそれぞれダイシングすることにより、フープ材3aを切断し、一組のバー状LEDパッケージ連結体41,41,・・・に切り分ける。このとき、基板2と側面3Dとの間に段差部9(図1又は図2参照)が形成される。
 カッターの幅寸法dと側面3D同士の対向寸法ΔWとはd<ΔWの関係にあるため、ダイシング加工中に、カッターの側面がリフレクタ3の側面3Dに触れ難くすることができる。このため、側面3Dに成膜されている金属反射膜8b,8bがダイシング中に削れて消失し、内部の透明樹脂が露出されてしまうことを防止することができる。よって、側面3D,3Dからの光の漏れを有効に防止することができ、光の利用効率を高めることが可能となる。
 次に、バー状LEDパッケージ連結体41を、図8に示すY方向の切断線Ly1,Ly2,Ly3,・・・に沿って各々ダイシングすることにより、個々のLEDパッケージ1が完成する。このときのダイシングにより切断された面が、LEDパッケージ1の出射面3C,3Cとなる。このため、出射面3C,3Cに金属反射膜8が残ることがなく、平滑面で形成された透明樹脂が露出される。
 また上記製造方法における第3の工程の代わりに、以下に示すように基板2および封止樹脂6の表面にリフレクタ集合体30を直接モールドするようにしてもよい。
 すなわち、LEDベアチップ4が封止樹脂6内に埋設された基板2を所定の金型内に設置するとともに金型内に未硬化の樹脂を充填して硬化させる。これにより、樹脂が硬化すると、樹脂に入射面3A,反射面3B、出射面3Cおよび側面3Dが転写され、図7に示すようなリフレクタ集合体30が形成される。
 この際、リフレクタ集合体30の底面(リフレクタの入射面)と基板2および封止樹脂6の表面との間を加圧・加熱するようにすると、リフレクタ集合体30の底面(リフレクタ3の入射面3A)と封止樹脂6および基板2の表面との間が接合されるため、リフレクタ集合体30の完成とともにLEDパッケージ集合体40が同時に形成される。
 次に、必要に応じてLEDパッケージ集合体40に固定されているリフレクタ集合体30の表面、特に反射面3Bと側面3Dに相当する面に対し、金属反射膜8a,8bが形成さてる。金属反射膜8a,8bの形成は、上記同様にスパッタ、蒸着、メッキなどの手段による行われる。なお、LEDパッケージ集合体40のX方向の最端部に位置する出射面3C,3Cには金属反射膜を成膜する必要がない。このため、金属反射膜の形成は出射面3C,3Cに保護用の離型シートなどを貼り付けた状態で行うことが好ましい。
 あるいは、ダイシングの工程で、金属反射膜が形成されている部分をカットし、成膜されていない新たな反射面3Bが露出形成するようにしてもよい。
 この工程では、リフレクタ集合体30の底面(リフレクタの入射面)と封止樹脂6および基板2の表面との間を接着部材11で接合する必要がなくなるため、製造コストを低く抑えることが可能となる。
本発明のLEDパッケージの実施の形態の外観を示す斜視図、 図1のII-II線における断面図、 図1のIII-III線における断面図、 LEDパッケージの他の実施の形態の外観を示す斜視図、 本発明におけるLEDパッケージの製造方法の実施の形態を示す工程図、 基板を示す斜視図、 リフレクタ集合体を示す斜視図、 LEDパッケージ集合体を示す斜視図、
符号の説明
1 LEDパッケージ
2 基板
2A 第1基板
2A1 装着穴
2B 第2基板
2B1 凹部
3 リフレクタ(光反射体)
3A 入射面
3B 反射面
3C 出射面
3D 側面
3a フープ材
4 LEDベアチップ
5 ボンディングワイヤ
6 封止樹脂
7 谷線
8,8a,8b 金属反射膜
9 段差部
10 カッター
11 接着部材
30 リフレクタ集合体
31 バー状リフレクタ連結体
40 LEDパッケージ集合体
41 バー状LEDパッケージ連結体

Claims (10)

  1.  基板上に実装された少なくとも1つ以上のLEDベアチップと、
     前記LEDベアチップを覆う透明または半透明からなる封止樹脂と、
     LEDベアチップから出射される光が入射する入射面、前記入射した光を反射する複数の反射面および前記反射した光を外部に出射する出射面並びにこれら以外の側面を備えるとともに前記封止樹脂の上部に固定されるリフレクタと、を有し、
     且つ前記リフレクタが前記基板および前記封止樹脂上に積層されて接着固定されるとともに、
     前記リフレクタのうち前記入射面および出射面を除いた前記側面に金属反射膜が成膜されており、
     前記リフレクタの前記金属反射膜が成膜された側面と前記基板の外形との間に段差部が設けられていることを特徴とするLEDパッケージ。
  2.  前記反射面に金属反射膜が成膜されている請求項1のLEDパッケージ。
  3.  隣接する反射面と反射面との間に谷線が形成されており、この谷線に対して前記側面が直交配置されている請求項1記載のLEDパッケージ。
  4.  前記反射面が曲面で形成されている請求項1記載のLEDパッケージ。
  5.  前記リフレクタには2つの反射面が、前記谷線を挟んで対称となる位置に設けられている請求項1に記載のLEDパッケージ。
  6.  前記反射面の上に樹脂が注入されることにより、前記リフレクタの表面が平坦に形成されている請求項1に記載のLEDパッケージ。
  7.  電極が形成された基板上に多数のLEDベアチップを一定の間隔で実装する第1の工程と、
     前記LEDベアチップおよび前記基板の上部に封止樹脂を充填して加熱硬化または光照射硬化させる第2の工程と、
     表面の一部に金属反射膜が成膜された所定形状からなるリフレクタが連設されたリフレクタ集合体を、前記封止樹脂の表面に積層して接着固定することによりLEDパッケージ集合体を形成する第3の工程と、
     前記LEDパッケージ集合体を所定の切断線に沿ってダイシングすることにより、個々のLEDパッケージに分離する第4の工程と、
    を備えたことを特徴とするLEDパッケージの製造方法。
  8.  前記第3の工程の代わりに、未硬化の液体樹脂を前記反射面や側面形状を転写するための金型に充填してリフレクタ集合体を形成するとともに、加圧および加熱硬化させて前記リフレクタ集合体を前記基板および封止樹脂に対して接合する工程と、前記リフレクタ集合体の表面に金属反射膜を成膜する工程とを備える請求項7記載のLEDパッケージの製造方法。
  9.  前記第3の工程の代わりに、未硬化の液体樹脂を前記反射面や側面形状を転写するための金型に充填してリフレクタ集合体を形成するとともに、加圧および加熱硬化させて前記リフレクタ集合体を前記基板および封止樹脂に対して接合する工程を備える請求項7記載のLEDパッケージの製造方法。
  10.  前記第4の工程に用いるカッターの幅寸法が、隣り合うLEDパッケージの間で対向する側面同士の対向寸法よりも狭いものである請求項7に記載のLEDパッケージの製造方法。
PCT/JP2009/050297 2008-01-22 2009-01-13 Ledパッケージおよびその製造方法 WO2009093498A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009550493A JPWO2009093498A1 (ja) 2008-01-22 2009-01-13 Ledパッケージおよびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-011027 2008-01-22
JP2008011027 2008-01-22

Publications (1)

Publication Number Publication Date
WO2009093498A1 true WO2009093498A1 (ja) 2009-07-30

Family

ID=40901006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050297 WO2009093498A1 (ja) 2008-01-22 2009-01-13 Ledパッケージおよびその製造方法

Country Status (3)

Country Link
JP (1) JPWO2009093498A1 (ja)
TW (1) TW200943590A (ja)
WO (1) WO2009093498A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110058987A (ko) * 2009-11-27 2011-06-02 삼성엘이디 주식회사 발광소자 패키지 및 그 제조방법
WO2012010519A1 (de) * 2010-07-23 2012-01-26 Osram Opto Semiconductors Gmbh Strahlungsemittierendes bauelement und verfahren zur herstellung von strahlungsemittierenden bauelementen
JP2013183078A (ja) * 2012-03-02 2013-09-12 Asahi Rubber Inc レンズ付きled装置及び多方向照明装置
JP2013258175A (ja) * 2012-06-11 2013-12-26 Citizen Holdings Co Ltd 半導体発光装置
WO2014104913A1 (en) 2012-12-27 2014-07-03 Optogan New Technologies Of Light Llc Module with light-emitting diodes
WO2018066418A1 (ja) * 2016-10-04 2018-04-12 株式会社エンプラス 光束制御部材、発光装置および照明装置
JP2018061024A (ja) * 2016-10-04 2018-04-12 株式会社エンプラス 光束制御部材、発光装置および照明装置
JP2018207005A (ja) * 2017-06-07 2018-12-27 シチズン電子株式会社 発光装置及びその製造方法並びに面状ライトユニット
JP2019186274A (ja) * 2018-04-03 2019-10-24 シチズン電子株式会社 発光装置
GB2574577A (en) * 2018-04-27 2019-12-18 Thorn Lighting Ltd Optical element for distributing light

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI403007B (zh) * 2010-02-09 2013-07-21 Everlight Electronics Co Ltd 發光二極體封裝結構及其製作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0918058A (ja) * 1995-06-29 1997-01-17 Sharp Corp 発光半導体装置
JPH11237850A (ja) * 1998-02-23 1999-08-31 Nokeg & G Opt Electronics Kk Led表示装置
JP2000261041A (ja) * 1999-03-04 2000-09-22 Citizen Electronics Co Ltd 表面実装型発光ダイオード及びその製造方法
JP2000299500A (ja) * 1999-04-15 2000-10-24 Mayumi Ishida 発光ダイオード
JP2001185762A (ja) * 1999-12-24 2001-07-06 Rohm Co Ltd 裏面実装チップ型発光装置
JP2002368286A (ja) * 2001-06-11 2002-12-20 Citizen Electronics Co Ltd 発光ダイオード及びその製造方法
JP2004165352A (ja) * 2002-11-12 2004-06-10 Citizen Electronics Co Ltd 発光ダイオード及び液晶表示装置
JP2005353875A (ja) * 2004-06-11 2005-12-22 Citizen Electronics Co Ltd 発光ダイオード

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0918058A (ja) * 1995-06-29 1997-01-17 Sharp Corp 発光半導体装置
JPH11237850A (ja) * 1998-02-23 1999-08-31 Nokeg & G Opt Electronics Kk Led表示装置
JP2000261041A (ja) * 1999-03-04 2000-09-22 Citizen Electronics Co Ltd 表面実装型発光ダイオード及びその製造方法
JP2000299500A (ja) * 1999-04-15 2000-10-24 Mayumi Ishida 発光ダイオード
JP2001185762A (ja) * 1999-12-24 2001-07-06 Rohm Co Ltd 裏面実装チップ型発光装置
JP2002368286A (ja) * 2001-06-11 2002-12-20 Citizen Electronics Co Ltd 発光ダイオード及びその製造方法
JP2004165352A (ja) * 2002-11-12 2004-06-10 Citizen Electronics Co Ltd 発光ダイオード及び液晶表示装置
JP2005353875A (ja) * 2004-06-11 2005-12-22 Citizen Electronics Co Ltd 発光ダイオード

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011114341A (ja) * 2009-11-27 2011-06-09 Samsung Led Co Ltd 発光素子パッケージ及びその製造方法
KR20110058987A (ko) * 2009-11-27 2011-06-02 삼성엘이디 주식회사 발광소자 패키지 및 그 제조방법
KR101615497B1 (ko) * 2009-11-27 2016-04-27 삼성전자주식회사 발광소자 패키지 및 그 제조방법
US9159889B2 (en) 2010-07-23 2015-10-13 Osram Opto Semiconductors Gmbh Radiation-emitting component and method for producing radiation-emitting components
WO2012010519A1 (de) * 2010-07-23 2012-01-26 Osram Opto Semiconductors Gmbh Strahlungsemittierendes bauelement und verfahren zur herstellung von strahlungsemittierenden bauelementen
CN103038903A (zh) * 2010-07-23 2013-04-10 奥斯兰姆奥普托半导体有限责任公司 发射辐射的器件和用于制造发射辐射的器件的方法
KR101830275B1 (ko) 2010-07-23 2018-02-20 오스람 옵토 세미컨덕터스 게엠베하 방사선 방출 소자 그리고 방사선 방출 소자들을 제조하기 위한 방법
JP2013183078A (ja) * 2012-03-02 2013-09-12 Asahi Rubber Inc レンズ付きled装置及び多方向照明装置
JP2013258175A (ja) * 2012-06-11 2013-12-26 Citizen Holdings Co Ltd 半導体発光装置
WO2014104913A1 (en) 2012-12-27 2014-07-03 Optogan New Technologies Of Light Llc Module with light-emitting diodes
WO2018066418A1 (ja) * 2016-10-04 2018-04-12 株式会社エンプラス 光束制御部材、発光装置および照明装置
JP2018061024A (ja) * 2016-10-04 2018-04-12 株式会社エンプラス 光束制御部材、発光装置および照明装置
JP2018207005A (ja) * 2017-06-07 2018-12-27 シチズン電子株式会社 発光装置及びその製造方法並びに面状ライトユニット
JP2019186274A (ja) * 2018-04-03 2019-10-24 シチズン電子株式会社 発光装置
JP7164315B2 (ja) 2018-04-03 2022-11-01 シチズン電子株式会社 発光装置
GB2574577A (en) * 2018-04-27 2019-12-18 Thorn Lighting Ltd Optical element for distributing light
GB2574577B (en) * 2018-04-27 2022-07-13 Thorn Lighting Ltd Optical element for distributing light

Also Published As

Publication number Publication date
JPWO2009093498A1 (ja) 2011-05-26
TW200943590A (en) 2009-10-16

Similar Documents

Publication Publication Date Title
WO2009093498A1 (ja) Ledパッケージおよびその製造方法
KR102512369B1 (ko) 발광 모듈의 제조 방법 및 발광 모듈
JP5277085B2 (ja) 発光装置及び発光装置の製造方法
JP4034241B2 (ja) 光源装置および光源装置の製造方法
JP2017224852A (ja) 発光装置
JP6729646B2 (ja) 発光装置
JP2016115729A (ja) 発光装置の製造法
CN116027476A (zh) 发光模块
US20200043903A1 (en) Light-emitting module
JP2019175847A (ja) 発光モジュール
JP2009004443A (ja) Led発光装置、led表示装置、およびled発光装置の製造方法
JP2008226928A (ja) 発光装置およびその製造方法、ならびに照明装置
JP7335537B2 (ja) 発光装置および面発光光源
JP2020174043A (ja) 発光モジュールの製造方法
JP2020034825A (ja) レンズ及び発光装置並びにそれらの製造方法
KR100972979B1 (ko) 엘이디 패키지 및 그 제조방법
JP7125635B2 (ja) 発光装置および面発光光源
US11342314B2 (en) Light-emitting module
JP2020109783A (ja) 発光モジュール
JP2009302241A (ja) 樹脂封止体の製造方法、ledチップ実装用基板の製造方法、ledチップ実装用基板のモールド金型、ledチップ実装用基板、及び、led
JP7436911B2 (ja) 発光装置
JP4246215B2 (ja) 光源装置および平面照明装置
JP2006245626A (ja) 発光ダイオードの製造方法および構造
JP5851262B2 (ja) 線状光源装置、面発光装置、および液晶表示装置
JP2022041094A (ja) 発光装置および面状光源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09704860

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009550493

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09704860

Country of ref document: EP

Kind code of ref document: A1