WO2009090808A1 - 減圧式加熱装置とその加熱方法および電子製品の製造方法 - Google Patents

減圧式加熱装置とその加熱方法および電子製品の製造方法 Download PDF

Info

Publication number
WO2009090808A1
WO2009090808A1 PCT/JP2008/072230 JP2008072230W WO2009090808A1 WO 2009090808 A1 WO2009090808 A1 WO 2009090808A1 JP 2008072230 W JP2008072230 W JP 2008072230W WO 2009090808 A1 WO2009090808 A1 WO 2009090808A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heating
contact
time
measuring unit
Prior art date
Application number
PCT/JP2008/072230
Other languages
English (en)
French (fr)
Inventor
Sotaro Oi
Masanari Matsuura
Tomoyuki Kubota
Masaya Tsuruta
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Hirata Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha, Hirata Corporation filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to DE112008000853.1T priority Critical patent/DE112008000853B4/de
Priority to US12/451,070 priority patent/US8271124B2/en
Priority to KR1020097017072A priority patent/KR101006632B1/ko
Priority to CN2008800091380A priority patent/CN101642003B/zh
Publication of WO2009090808A1 publication Critical patent/WO2009090808A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0003Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiant heat transfer of samples, e.g. emittance meter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0044Furnaces, ovens, kilns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0846Optical arrangements having multiple detectors for performing different types of detection, e.g. using radiometry and reflectometry channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • G01K1/143Supports; Fastening devices; Arrangements for mounting thermometers in particular locations for measuring surface temperatures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3494Heating methods for reflowing of solder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/111Preheating, e.g. before soldering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/16Inspection; Monitoring; Aligning
    • H05K2203/163Monitoring a manufacturing process

Definitions

  • the present invention relates to a heating technique for heating an object under reduced pressure.
  • the present invention relates to a heating device that solders a substrate and an electronic component under reduced pressure, and a heating method thereof.
  • the present invention relates to a method for manufacturing an electronic product using the heating device.
  • solder is supplied to the first bonding member,
  • a second joining member is placed thereon and soldered by heating in a heating device.
  • voids hereinafter referred to as voids
  • the joint may cause separation, or the heat dissipation efficiency from the second joint member (electronic component) to the first joint member (substrate) may decrease.
  • Patent Document 1 discloses a method for manufacturing an electronic product in which solder bonding is performed under reduced pressure. JP 2005-205418 A
  • the temperature of the heater in the furnace is controlled in order to ensure the quality of the manufactured electronic products. This is because, if the temperature of the electronic component becomes too high, the characteristics of the electronic component may be changed. On the other hand, if the temperature of the solder is not sufficient, suitable solder bonding cannot be performed. For this reason, it is desirable to grasp the actual temperature of the object rather than the ambient temperature in order to guarantee the characteristics of the electronic component and the solder joint.
  • the exact temperature of the object cannot be measured by itself. This is because heating is performed under atmospheric pressure to a temperature lower than the solder solidus (preheating target temperature) and then maintained at this temperature for a while, but the surface of the object is reduced by preheating in reducing gas. To be cleaned. This is because the surface state of the object changes accordingly. If the emissivity of the radiation thermometer is set before the object is cleaned, the measured temperature deviates from the actual object temperature as the surface state of the object changes. In other words, when the pressure and the surface state of the object change, it is difficult to accurately measure the temperature of the object even if a contact-type thermometer or a radiation thermometer is used alone.
  • the present invention has been made in order to solve the problems of the conventional techniques described above.
  • the problem is that in the process of heating the object under reduced pressure, the actual temperature of the object can be managed throughout the entire process, and the object can be optimally heated based on the actual temperature. It is an object of the present invention to provide a reduced pressure heating apparatus, a heating method thereof, and an electronic product manufacturing method for performing solder bonding using them.
  • the reduced pressure heating apparatus of the present invention has a heat treatment chamber in which an exhaust port is formed, and an object to be heated arranged in the heat treatment chamber is heated to a preheating temperature under atmospheric pressure.
  • a reduced pressure heating device that preheats and heats to a temperature higher than the preheating temperature under reduced pressure
  • the heater that heats the object to be heated in the heat treatment chamber and the temperature of the object to be heated in the heat treatment chamber are measured in contact with each other. It has a contact-type temperature measurement unit, a non-contact type temperature measurement unit that measures the temperature of the heating object in the heat treatment chamber in a non-contact manner, and a control unit that controls the heater and adjusts the non-contact type temperature measurement unit.
  • the control unit adjusts the non-contact temperature measurement unit so that there is no error in the measurement value of the non-contact type temperature measurement unit with respect to the measurement value of the contact type temperature measurement unit during preheating under atmospheric pressure. And the adjusted state during heat treatment under reduced pressure. It is characterized in that for controlling the heater based on the measured value of the non-contact temperature measuring unit.
  • Such a reduced-pressure heating apparatus accurately measures the temperature of an object to be heated not only under atmospheric pressure but also under reduced pressure, and heats the object under accurate temperature control based on the actual temperature of the object to be heated. Processing can be performed.
  • the non-contact temperature measuring unit is a radiation thermometer that detects infrared rays emitted from the object to be heated, and the control unit emits radiation during preheating under atmospheric pressure. Adjust the emissivity setting on the thermometer. This is because the temperature of the heating object can be accurately measured even under reduced pressure.
  • the non-contact temperature measuring unit is a radiation thermometer that detects infrared rays emitted from the object to be heated, and the control unit emits radiation during preheating under atmospheric pressure. You may adjust the correction coefficient of the output value of a thermometer. This is because the actual temperature of the object to be heated can be accurately measured.
  • a gas inlet is formed in the heat treatment chamber, and preheating under atmospheric pressure is performed when reducing atmosphere gas is introduced into the heat treatment chamber. Good. This is because a reduction reaction takes place on the surface of the object to be heated and it is cleaned.
  • a gas supply unit that introduces a reducing atmosphere gas into the heat treatment chamber through the gas inlet. This is because reducing atmosphere gas can be introduced into the heat treatment chamber.
  • the above-described reduced pressure heating apparatus may include an exhaust apparatus that is connected to an exhaust port and exhausts the inside of the heat treatment chamber to reduce the pressure. This is because the pressure inside the heat treatment chamber can be reduced.
  • the heating method of the present invention is a heating method in which an object is heated while temperature is controlled by a contact-type temperature measurement unit and a non-contact-type temperature measurement unit.
  • the target is heated to a preheating temperature lower than the heat treatment temperature while adjusting the emissivity setting in the non-contact temperature measuring unit and controlling the temperature of the target according to the measured value of the temperature measuring unit.
  • the object is further heated to the heat treatment temperature while the temperature of the object is controlled by the measured value of the non-contact temperature measuring unit whose emissivity is adjusted in the heating process up to the preheating temperature.
  • Such a heating method can heat the object while strictly controlling the temperature without being affected by changes in atmospheric pressure or cleaning of the object.
  • the electronic product manufacturing method of the present invention is an electronic product manufacturing method in which an object composed of a plurality of joining members is heated and soldered under reduced pressure, in an atmosphere of a reducing gas at atmospheric pressure, While adjusting the emissivity setting in the non-contact temperature measurement unit and controlling the temperature of the object based on the measured value of the contact temperature measurement unit, the object is heated to a preheating temperature at which the solder does not melt, and the pressure is reduced. Under the reduced pressure, the temperature of the object is controlled by the measured value of the non-contact type temperature measuring unit whose emissivity is adjusted in the heating process up to the preheating temperature, and the temperature is adjusted up to the heat treatment temperature at which the solder melts.
  • the object is further heated, and the pressure of the atmosphere is returned to atmospheric pressure while maintaining the heat treatment temperature of the object, and the object is soldered by solidifying the solder under atmospheric pressure.
  • Such an electronic product manufacturing method can perform solder bonding by strictly controlling the temperature of an object to be soldered. In addition, voids are less likely to occur inside the solder. In addition, changes in the characteristics of electronic components can be prevented.
  • the actual temperature of the object is managed over all the processes, and the decompression type capable of optimally heating the object based on the actual temperature.
  • a heating apparatus a heating method thereof, and a method of manufacturing an electronic product that uses them to perform solder bonding.
  • FIG. (1) explaining the time of measurement of a contact-type temperature measurement part.
  • FIG. (2) explaining the time of measurement of a contact-type temperature measurement part.
  • the present invention is embodied in a reduced pressure heating device, a heating method thereof, and a manufacturing method of an electronic product using them.
  • the reduced pressure heating apparatus 100 includes an inlet 140, an exhaust outlet 150, a contact temperature measurement unit 110, a radiation thermometer 120, a heater 130, a cylinder 131, and a quartz window 160. And a chamber 190.
  • the reduced pressure heating apparatus 100 performs a heat treatment of a heating object inside the chamber 190.
  • the chamber 190 is a heat treatment chamber that is sealed during heat treatment, and the atmosphere inside the chamber 190 is replaced by the exhaust port 150 and the introduction port 140 during atmosphere replacement. Further, the pressure inside the chamber 190 can be adjusted. That is, the chamber 190 is depressurized by exhausting gas from the exhaust port 150, and is decompressed to atmospheric pressure by flowing gas from the inlet 140.
  • An exhaust device 350 such as a vacuum pump is connected to the exhaust port 150, and a gas supply unit 340 that supplies a reducing gas, an inert gas, and the like is connected to the introduction port 140. It is.
  • the reduced pressure heating apparatus 100 heats the substrate 10, the electronic component 20, and the solder 30 in the reduced pressure heating apparatus 100 reduced in pressure as described above, melts the solder 30, and joins the substrate 10 and the electronic component 20. Is for.
  • the heater 130 is for contacting and heating the substrate 10.
  • the cylinder 131 is an elevating mechanism for moving the heater 130 up and down.
  • the lifting mechanism is not limited to the cylinder alone, and any mechanism that can lift and lower the table-like member to be lifted is applicable. Further, the lifting mechanism may be connected to the contact temperature measuring unit 110 instead of the heater 130.
  • the contact-type temperature measurement unit 110 is for contacting the substrate 10 and measuring the temperature at the contact point. Further, a gap is formed between the tip of the contact-type temperature measuring unit 110 and the object as shown in FIG.
  • the radiation thermometer 120 is an infrared non-contact temperature measuring unit for measuring the surface temperature of the substrate 10 without contact.
  • the quartz window 160 is a window provided so that the radiation thermometer 120 can detect infrared rays emitted from the substrate 10.
  • the non-contact type temperature measuring unit mentioned here is a non-contact type temperature sensor in which a temperature error occurs between the accurate temperature and the measured temperature in accordance with the change in the surface state of the substrate 10 before and after preheating described later. For example, it is not limited to the infrared type.
  • the electronic product manufacturing method according to this embodiment performs heating in two stages.
  • the first stage heating preheating stage
  • the substrate 10 is heated to the preheating target temperature in the mixed gas atmosphere of the inert gas and the reducing gas under the atmospheric pressure.
  • the surface of the wiring of the substrate 10 is reduced and the wettability of the solder 30 is improved. For this reason, a suitable solder joint can be performed.
  • the pressure is reduced to a pressure P1 (for example, 10 kPa or less) while maintaining the preheating target temperature.
  • the second stage heating is performed under reduced pressure. This is because voids are not generated by soldering under reduced pressure. Even if a void is generated under reduced pressure, the void should be contracted when the internal pressure of the reduced pressure heating apparatus 100 is returned to atmospheric pressure. After this heating, the inside of the reduced pressure heating apparatus 100 is returned to atmospheric pressure, and then the temperature is lowered to solidify the solder 30.
  • the preheating target temperature of the substrate 10 is the target temperature of the first stage heating when the substrate 10 is preheated, and is set lower than the solidus temperature of the solder 30 so that the solder 30 does not start to melt.
  • the target temperature of the substrate 10 is set to a temperature higher than the liquidus temperature of the solder 30 so that the solder 30 is sufficiently melted and spreads.
  • the heat resistance temperature of the electronic component 20 must not be exceeded.
  • the solidus temperature of the solder 30 used here is about 235 ° C.
  • the liquidus temperature of the solder 30 is about 240 ° C.
  • an object on which the solder 30 and the electronic component 20 are placed on the substrate 10 is put into the reduced pressure heating apparatus 100.
  • the object is placed on the heater 130.
  • a mixture of an inert gas such as nitrogen and a reducing gas such as hydrogen is placed in the reduced pressure heating apparatus 100.
  • the pressure inside the reduced pressure heating apparatus 100 after the atmosphere replacement is almost the same as the atmospheric pressure.
  • the heater 130 is raised by the cylinder 131.
  • the heating of the heater 130 is stopped.
  • the substrate 10 is heated by the heater 130 under atmospheric pressure.
  • the solder 30 and the electronic component 20 are heated via the substrate 10. Since the atmosphere is replaced with a reducing gas, a reduction reaction occurs on the oxidized surfaces of the substrate 10, the solder 30, and the electronic component 20 by heating during this period. By this cleaning, the wettability of the surface of the substrate 10 with respect to the solder 30 is improved.
  • time t1 to Time t2 After time t1, the gas in the reduced pressure heating apparatus 100 is discharged to the outside through the exhaust port 150. For this reason, the pressure inside the reduced pressure heating apparatus 100 decreases.
  • the temperature of the substrate 10 is substantially the same as the temperature of the substrate 10 at time t1.
  • time t7 The time when the temperature of the substrate 10 reaches room temperature is set to t7. By this time, the solder 30 has solidified. Here, the time at which the substrate 10 is at room temperature is t7, but it may not be at room temperature as long as it is sufficiently lower than the solidus temperature of the solder 30. Subsequent to time t7, the substrate 10 is taken out from the reduced pressure heating apparatus 100.
  • FIG. 6 is a block diagram illustrating the temperature control system 200 of the reduced pressure heating apparatus 100.
  • the temperature control system 200 of the reduced pressure heating apparatus 100 includes a control unit 180, a contact type temperature measurement unit temperature indicator 112, a radiation thermometer controller 121, and a heater controller 170.
  • the control unit 180 performs temperature control, pressure control, and atmosphere replacement in the reduced pressure heating apparatus 100.
  • the contact-type temperature measurement unit temperature indicator 112 displays the temperature measured by the contact-type temperature measurement unit 110 and sends temperature data to the control unit 180.
  • the radiation thermometer controller 121 is for sending temperature data measured by the radiation thermometer 120 to the control unit 180.
  • the heater controller 170 controls an output for heating the substrate 10 by the heater 130.
  • the temperature control method by the temperature control system 200 of the reduced pressure heating apparatus 100 will be described with reference to FIG.
  • the contact-type temperature measuring unit 110 is in contact with the substrate 10.
  • the contact-type temperature measuring unit 110 measures the temperature of the contact point with the substrate 10.
  • the temperature measured by the contact temperature measuring unit 110 is sent to the contact temperature measuring unit temperature indicator 112. Further, the temperature measured by the contact-type temperature measurement unit 110 is sent from the contact-type temperature measurement unit temperature indicator 112 to the control unit 180.
  • the surface temperature of the substrate 10 is also measured by the radiation thermometer 120.
  • the temperature measured by the radiation thermometer 120 is sent to the radiation thermometer controller 121. Further, the temperature measured by the radiation thermometer 120 is sent from the radiation thermometer controller 121 to the control unit 180.
  • control unit 180 receives the temperature of the substrate 10 measured by both the contact temperature measuring unit 110 and the radiation thermometer 120.
  • the substrate 10 is preheated from time t0 to time t1. Since the reducing atmosphere is provided, the preheating sufficiently cleans the substrate 10. Thereby, the emissivity of infrared rays from the surface of the substrate 10 changes. For this reason, the radiation thermometer 120 cannot measure the exact temperature of the substrate 10 if the emissivity before the cleaning is set. On the other hand, the pressure inside the reduced pressure heating apparatus 100 is substantially equal to the atmospheric pressure. For this reason, an accurate temperature can be measured by the contact-type temperature measuring unit 110. Therefore, from time t0 to time t1, the control unit 180 uses the value measured by the contact temperature measuring unit 110 as the temperature of the substrate 10.
  • the control unit 180 adopts the temperature of the contact-type temperature measuring unit 110 and adjusts the emissivity setting in the radiation thermometer 120.
  • the control unit 180 calculates an emissivity to be set in the radiation thermometer 120 so that the radiation thermometer 120 outputs the same temperature as the temperature measured by the contact-type temperature measurement unit 110.
  • the calculated emissivity is fed back to the radiation thermometer controller 121. Thereby, the emissivity corresponding to the cleaning of the substrate 10 is newly set in the radiation thermometer 120.
  • the actual temperature of the substrate 10 can be accurately measured.
  • the temperature of the cleaned substrate 10 can be measured by the radiation thermometer 120 under both atmospheric pressure and reduced pressure.
  • the pressure inside the reduced pressure heating device 100 decreases.
  • the temperature measured by the contact-type temperature measuring unit 110 is lower than the actual temperature of the substrate 10. This is because the gap shown in FIG. 2 exists as described above and the thermal conductivity of the gas decreases.
  • the temperature of the substrate 10 measured by the radiation thermometer 120 with adjusted emissivity is adopted instead of the contact temperature measuring unit 110. Based on the temperature measured by the radiation thermometer 120, the heating condition of the heater 130 is set. Further, the time when the temperature of the substrate 10 measured by the radiation thermometer 120 reaches the target temperature is set as t5.
  • the pressure inside the reduced pressure heating apparatus 100 is almost equal to the atmospheric pressure. For this reason, the temperature of the substrate 10 is again measured by the contact temperature measuring unit 110. After time t6, the temperature of the substrate 10 may be measured by the contact temperature measuring unit 110.
  • the temperature of the substrate 10 measured by the radiation thermometer 120 at time t6 (measured temperature of the substrate 10 between time t1 and time t6) is accurate is measured by the contact temperature measuring unit 110. Can be confirmed.
  • the case where there is a difference between the measured temperatures of the contact-type temperature measuring unit 110 and the radiation thermometer 120 at time t6 will be described below.
  • the difference in temperature measured by the contact temperature measuring unit 110 and the radiation thermometer 120 at time t6 is caused by further cleaning of the substrate surface from time t1 to time t6.
  • the cleaning is considerably advanced by preheating from the time t0 to the time t1, and since the concentration of the reducing gas is low due to the reduced pressure, the difference in the measured temperature should not be large.
  • the temperature of the object can be measured more accurately from the next time.
  • time t ⁇ b> 6 since the pressure inside the reduced pressure heating apparatus 100 is almost atmospheric pressure, an accurate measurement value can be obtained by the contact temperature measuring unit 110. For this reason, the emissivity which should be set to the radiation thermometer 120 in the time t6 can be calculated
  • the emissivity to be set in the radiation thermometer 120 is known by the temperature control method described above. In addition, there is no reason why the emissivity suddenly changes during the period from time t1 to time t6.
  • the emissivity is gradually changed from the emissivity to be set at time t1 to the emissivity to be set at time t6.
  • the difference in emissivity to be set between time t1 and time t6 is not large.
  • the setting of the emissivity in the radiation thermometer 120 can be made to follow and change. Thereby, the object can be heated based on a more accurate temperature from time t1 to time t6 after the next time.
  • the temperature of the substrate 10 is measured by the contact temperature measuring unit 110 from time t0 to time t1, and by the radiation thermometer 120 whose emissivity is adjusted from time t1 to time t6, and from time t6 to time t6. It is performed again by the contact-type temperature measuring unit 110 until t7. That is, the temperature of the substrate 10 measured by the contact-type temperature measuring unit 110 is adopted when the pressure inside the reduced pressure heating apparatus 100 is substantially equal to the atmospheric pressure, and when the pressure is lower than the atmospheric pressure, the radiation thermometer 120 is used. The measured temperature of the substrate 10 is employed.
  • the actual temperature of the substrate 10 is measured, fed back to the heating conditions of the substrate 10, and the reduced pressure heating apparatus 100 capable of soldering the substrate 10 and the electronic component 20 along the optimum temperature profile, and its heating method and An electronic product manufacturing method using them has been realized.
  • the temperature control of the reduced pressure heating apparatus 100 is performed only by the contact temperature measuring unit 110, when it is determined that the temperature of the substrate 10 has reached the target temperature, and the heating of the substrate 10 by the heater 130 is stopped. The actual temperature of the substrate 10 has already exceeded the ultimate target temperature.
  • the actual temperature of the substrate 10 cannot be measured even with only the radiation thermometer 120. In this embodiment, there is no such harmful effect.
  • the emissivity of the radiation thermometer 120 was adjusted when measuring the actual temperature of the heating object. However, it is also possible to measure the actual temperature of the heating object without adjusting the emissivity of the radiation thermometer 120. For example, there is a case where the control unit 180 corrects the output value of the temperature of the radiation thermometer 120 that is not adjusted for emissivity.
  • the output value of the radiation thermometer 120 is corrected from the measured value of the contact temperature measuring unit 110 and the measured value of the radiation thermometer 120.
  • a correction coefficient is obtained in advance.
  • the actual temperature of the heating object can be measured by the radiation thermometer 120 from time t1 to time t6. Thereby, the effect similar to the 1st form can be acquired.
  • the contact-type temperature measurement unit and the non-contact-type temperature measurement unit are used in combination. Under atmospheric pressure, the substrate is heated based on the temperature of the substrate measured by the contact temperature measuring unit, and under reduced pressure, the substrate is heated based on the temperature of the substrate measured by the non-contact temperature measuring unit.
  • the substrate temperature can be controlled and heated in all processes.
  • a reduced pressure heating apparatus capable of soldering the substrate and the electronic component while suppressing the generation of voids under strict temperature control is realized.
  • heating can be controlled not by the heater temperature but by the actual temperature of the substrate.
  • the actual temperature of the measured substrate is also a signal for moving to the next process. Therefore, it has become possible to manufacture electronic products with consistent product quality. For this reason, solder joining of a semiconductor element having an atmosphere replacement process to a substrate can be performed with high reliability.
  • the object to be soldered may not be a substrate and an electronic component.
  • a cooling member and a substrate may be used.
  • the cooling member, the substrate, and the electronic component can be soldered at a time.
  • the contact-type temperature measuring unit temperature indicator 112, the radiation thermometer controller 121, and the heater controller 170 may all be carried by the control unit 180. This is because there is no change in the effect played.
  • the heater does not have to be a contact type.
  • An induction coil or the like may be used depending on the lamp heater or the object. Hot air may also be used. Further, after the solder 30 is melted and the inside of the heating apparatus returns to the atmospheric pressure, the cooling may be transferred to another furnace. Also, the liquidus temperature and the solidus temperature of the solder are examples and depend on the type of solder used.
  • the contact temperature measuring unit 110 there may be a plurality of contact temperature measuring units 110 and radiation thermometers 120. Also, at time t6, if there is a large difference between the temperatures indicated by the contact temperature measuring unit 110 and the radiation thermometer 120, an alarm can be sounded. Even if no reducing gas is used, it is only necessary that the atmosphere is substantially reducing as viewed from the object. Depending on the object, the atmosphere may be left as it is.
  • the contact-type temperature measuring unit 110 and the radiation thermometer 120 may measure a portion closer to the substrate 10. This is because if the measurement points are close, it is considered that the actual temperature difference between the measurement points is small.
  • the reduced pressure heating device and the heating method thereof according to the present invention are not limited to solder joint applications. This is because the same effect can be obtained if it is preheated in a reducing gas atmosphere and then heated under reduced pressure.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Radiation Pyrometers (AREA)

Abstract

 大気圧の還元ガスの雰囲気中で,接触式温度測定部の測定値により非接触式温度測定部における放射率の設定の調整と対象物の温度制御とをしつつ,予熱温度まで対象物を加熱する(時刻t0~時刻t1)。減圧する(時刻t1~時刻t2)。減圧下で,予熱温度までの加熱過程にて放射率の設定が調整された非接触式温度測定部の測定値により対象物の温度制御をしつつ,加熱処理温度まで対象物をさらに加熱する(時刻t2~時刻t5)。対象物の加熱処理温度を維持しつつ,雰囲気の圧力を大気圧まで戻す(時刻t5~時刻t6)。大気圧下で,対象物の温度を下げる(時刻t6~時刻t7)。これにより,減圧下で対象物を加熱する工程において,対象物の実際の温度を全ての工程にわたって管理し,実際の温度を基に対象物の最適な加熱を行うことができる。

Description

減圧式加熱装置とその加熱方法および電子製品の製造方法
 本発明は,減圧した状態の下で対象物を加熱する加熱技術に関する。たとえば,減圧下で基板と電子部品とを半田接合する加熱装置とその加熱方法に関する。さらに,その加熱装置による電子製品の製造方法に関するものである。
 第一の接合部材(たとえば,基板)と第二の接合部材(たとえば,電子部品)とを半田接合して製造される電子製品の製造方法には,第一の接合部材に半田を供給し,その上に第二の接合部材を載せ,加熱装置内で加熱して半田接合するものがある。しかし,このような加熱方法による半田接合では,半田接合部に空孔(以下ボイドという)が生じることがある。このボイドの存在により,接合部が剥離を引き起こしたり,第二の接合部材(電子部品)から第一の接合部材(基板)への放熱効率が減少したりすることがある。
 このため,ボイドによる製品品質の劣化を回避するために,減圧下で半田接合する減圧式加熱装置を用いることがある。減圧することにより,半田内部にガスが取り込まれ,仮にボイドが生じたとしても,不活性ガスなどを供給して雰囲気を大気圧に戻す際にボイドが収縮するためである。このように,減圧下で半田接合を行う電子製品の製造方法が特許文献1に開示されている。
特開2005-205418
 ところで,減圧式加熱装置による電子製品の製造では,製造される電子製品の品質を確保するために炉内の加熱器温度等を制御している。電子部品の温度が高くなりすぎれば,電子部品の特性変化のおそれが生じる一方,半田の温度が十分でなければ,好適な半田接合を行うことができないからである。このため,電子部品の特性と半田接合とを保証するには,雰囲気温度よりも,対象物の実際の温度を把握することが望ましい。
 しかしながら,減圧式加熱装置による電子製品の製造方法では,加熱装置内の圧力が変化するため対象物の温度を正確に測定することは困難である。接触式温度計により,図1のように対象物の温度を測定する場合,図2(図1の領域IIの拡大図)のように対象物と接触式温度計との間に空隙ができるためである。
 これにより,減圧時には以下の問題が発生する。間隙における雰囲気ガスが減圧されるのに伴って間隙の熱伝導率が下がり,変化するため,対象物の実際の温度と接触式温度計により測定された温度とにずれが生ずる。この熱伝導率の変化により,接触式温度計により測定される温度は対象物の実際の温度よりも低くなる。このため,接触式温度計の測定値により対象物の加熱条件を制御した場合,対象物の温度が目標値より上昇してしまうことがあった。
 一方,放射温度計を用いたとしてもそれのみで対象物の正確な温度を測定できるものではない。なぜなら,半田の固相線未満の温度(予熱目標温度)まで大気圧下で加熱した後,この温度でしばらく保持するという予熱を行うが,還元ガス中での予熱により,対象物の表面が還元されて清浄化する。これに伴い,対象物の表面状態が変化するからである。対象物の清浄化前に合わせて放射温度計の放射率が設定されていたら,対象物の表面状態の変化に伴い測定温度が実際の対象物の温度と乖離するのである。つまり,圧力および対象物の表面状態が変化する場合,接触式温度計又は放射温度計をそれぞれ単独で用いたとしても対象物の温度を正確に測ることは困難なのである。
 本発明は,前記した従来の技術が有する問題点を解決するためになされたものである。すなわちその課題とするところは,減圧下で対象物を加熱する工程において,対象物の実際の温度を全ての工程にわたって管理し,実際の温度を基に対象物の最適な加熱を行うことができる減圧式加熱装置とその加熱方法及びそれらを用いて半田接合を行う電子製品の製造方法を提供することである。
 この課題の解決を目的としてなされた本発明の減圧式加熱装置は,排気口が形成された加熱処理室を有し,加熱処理室内に配置された加熱対象物を,大気圧下で予熱温度まで予熱し,減圧下で予熱温度より高い温度まで加熱処理する減圧式加熱装置において,加熱処理室内の加熱対象物を加熱する加熱器と,加熱処理室内の加熱対象物の温度を接触して測定する接触式温度測定部と,加熱処理室内の加熱対象物の温度を非接触で測定する非接触式温度測定部と,加熱器の制御および非接触式温度測定部の調整を行う制御部とを有し,制御部は,大気圧下での予熱の際に,接触式温度測定部の測定値に対して非接触式温度測定部の測定値の誤差がなくなるように非接触式温度測定部を調整し,減圧下での加熱処理の際に,その調整された状態での非接触式温度測定部の測定値に基づいて加熱器を制御することを特徴とするものである。かかる減圧式加熱装置は,大気圧下はもちろん,減圧下においても加熱対象物の温度を正確に測定し,加熱対象物の実際の温度に基づいた正確な温度管理の下で加熱対象物の加熱処理を行うことができる。
 上記に記載の減圧式加熱装置において,非接触式温度測定部は,加熱対象物から放射される赤外線を検出する放射温度計であり,制御部は,大気圧下での予熱の際に,放射温度計における放射率の設定を調整するとよい。減圧下においても,加熱対象物の温度を正確に測定することができるからである。
 上記に記載の減圧式加熱装置において,非接触式温度測定部は,加熱対象物から放射される赤外線を検出する放射温度計であり,制御部は,大気圧下での予熱の際に,放射温度計の出力値の補正係数を調整してもよい。加熱対象物の実際の温度を正確に測定することができることに変わりはないからである。
 上記に記載の減圧式加熱装置において,加熱処理室にガス導入口が形成されており,大気圧下での予熱を,加熱処理室の内部に還元性の雰囲気ガスを導入した状態で行うとなおよい。加熱対象物の表面で還元反応が起こり,清浄化されるからである。
 上記に記載の減圧式加熱装置において,ガス導入口を通して加熱処理室内に還元性の雰囲気ガスを導入するガス供給部を有するとよい。これにより,加熱処理室内部に還元性の雰囲気ガスを導入することができるからである。
 上記に記載の減圧式加熱装置において,排気口に接続され,加熱処理室の内部を排気して減圧する排気装置を有するとよい。これにより,加熱処理室内部の圧力を低下させることができるからである。
 また,本発明の加熱方法は,接触式温度測定部と非接触式温度測定部とにより温度制御しつつ対象物を加熱する加熱方法であって,大気圧の還元ガスの雰囲気中で,接触式温度測定部の測定値により非接触式温度測定部における放射率の設定の調整と対象物の温度制御とをしつつ,加熱処理温度よりも低い予熱温度まで対象物を加熱し,減圧下で,予熱温度までの加熱過程にて放射率の設定が調整された非接触式温度測定部の測定値により対象物の温度制御をしつつ,加熱処理温度まで対象物をさらに加熱することを特徴とするものである。かかる加熱方法は,雰囲気の圧力の変化や対象物の清浄化の影響を受けることなく,対象物を厳密に温度管理しながら加熱することができる。
 また,本発明の電子製品の製造方法は,複数の接合部材からなる対象物を,減圧下で加熱して半田接合する電子製品の製造方法であって,大気圧の還元ガスの雰囲気中で,接触式温度測定部の測定値により非接触式温度測定部における放射率の設定の調整と対象物の温度制御とをしつつ,半田が溶融するに至らない予熱温度まで対象物を加熱し,減圧し,減圧下で,予熱温度までの加熱過程にて放射率の設定が調整された非接触式温度測定部の測定値により対象物の温度制御をしつつ,半田が溶融する加熱処理温度まで対象物をさらに加熱し,対象物の加熱処理温度を維持しつつ,雰囲気の圧力を大気圧まで戻し,大気圧下で,半田を凝固させて対象物を半田接合することを特徴とするものである。かかる電子製品の製造方法は,半田接合を行う対象物の温度を厳密に管理して半田接合を行うことができる。また,半田の内部にボイドを生じにくい。さらに,電子部品の特性変化を予防できる。
 本発明によれば,減圧下で対象物を加熱する工程において,対象物の実際の温度を全ての工程にわたって管理し,実際の温度を基に対象物の最適な加熱を行うことができる減圧式加熱装置とその加熱方法及びそれらを用いて半田接合を行う電子製品の製造方法が提供されている。
接触式温度測定部の測定時を説明する図(その1)である。 接触式温度測定部の測定時を説明する図(その2)である。 本発明に係る減圧式加熱装置の構成を説明する図である。 本発明に係る減圧式加熱装置の加熱時を説明する図である。 本発明に係る減圧式加熱装置による電子製品の製造方法を説明するための図である。 本発明に係る減圧式加熱装置の温度制御方法を説明するためのブロック図である。 本発明に係る減圧式加熱装置による電子製品の製造方法における温度制御方法を説明する図である。 従来における減圧式加熱装置による電子製品の製造方法における温度制御方法を説明する図である。 本発明に係る減圧式加熱装置の温度制御方法の別の例を説明するためのブロック図である。
符号の説明
10…基板
20…電子部品
30…半田
100…減圧式加熱装置
110…接触式温度測定部
112…接触式温度測定部温度指示計
120…放射温度計
121…放射温度計コントローラ
130…加熱器
140…導入口
150…排気口
170…ヒータコントローラ
180…制御部
190…チャンバー
200…温度制御システム
340…ガス供給部
350…排気装置
 以下,本発明を具体化した最良の形態について,添付図面を参照しつつ詳細に説明する。本形態は,減圧式加熱装置とその加熱方法およびそれらを用いた電子製品の製造方法について,本発明を具体化したものである。
 まず,本形態の減圧式加熱装置について説明する。図3に示すように,減圧式加熱装置100は,導入口140と,排気口150と,接触式温度測定部110と,放射温度計120と,加熱器130と,シリンダ131と,石英窓160と,チャンバー190とを有している。
 減圧式加熱装置100は,チャンバー190内部で加熱対象物の加熱処理を行うものである。チャンバー190は,加熱処理時には密閉され,雰囲気置換時には排気口150と導入口140とにより,チャンバー190内部の雰囲気が置換される加熱処理室である。また,チャンバー190内部は,圧力を調整することができるようになっている。つまり,チャンバー190は,排気口150からガスを排出させることにより減圧され,導入口140からガスを流入させることにより大気圧に復圧されるのである。なお,排気口150には,真空ポンプ等の排気装置350が接続され,導入口140には,還元性ガス及び不活性ガス等を供給するガス供給部340が接続された状態で使用されるものである。
 減圧式加熱装置100を半田接合に適用した場合について図4により説明する。減圧式加熱装置100は上記のように減圧された減圧式加熱装置100内で基板10と電子部品20と半田30とを加熱し,半田30を溶融させ,基板10と電子部品20とを接合するためのものである。
 加熱器130は,基板10に接触して加熱するものである。シリンダ131は,加熱器130を上下に動かすための昇降機構である。昇降機構としては,シリンダのみに限定するものではなく,テーブル状の被昇降部材を昇降可能なものは全て適用可能である。また,昇降機構を,加熱器130ではなく,接触式温度測定部110に接続するようにしてもよい。接触式温度測定部110は,基板10に接触して接触箇所の温度を測定するためのものである。また,接触式温度測定部110の先端では図2のように対象物との間に間隙ができている。放射温度計120は,接触することなしに基板10の表面温度を測定するための赤外線式の非接触式温度測定部である。石英窓160は,基板10から放射される赤外線を放射温度計120が検出できるように設けられた窓である。ここでいう非接触式温度測定部とは,後述する予熱前後における基板10の表面状態の変化に伴い,正確な温度と測定温度との間に温度誤差が生じるような非接触式温度センサであれば,赤外線式に限定するものではない。
 ここで,減圧式加熱装置100による電子製品の製造方法について図4と図5により説明する。本形態に係る電子製品の製造方法は,2段階で加熱を行う。第1段階の加熱(予熱段階)により,不活性ガスと還元ガスの混合ガス雰囲気中,大気圧下で,基板10の予熱目標温度まで加熱される。この予熱時に,基板10の配線の表面が還元され,半田30の濡れ性が向上する。このため,好適な半田接合を行うことができる。その後,予熱目標温度を保ったまま圧力P1(例えば10kPa以下)まで減圧される。
 また,第2段階の加熱は減圧下で行う。減圧下で半田接合を行うことにより,ボイドを発生させないためである。仮に,減圧下でボイドが発生しても,減圧式加熱装置100の内圧を大気圧に戻したときにはボイドが収縮しているはずである。この加熱の後,減圧式加熱装置100の内部を大気圧に戻してから,温度を下げて半田30を凝固させるのである。
 ここで,基板10の予熱目標温度は基板10を予熱する際の第1段階の加熱の目標温度であり,半田30が溶融し始めないよう,半田30の固相線温度よりも低く設定する。基板10の到達目標温度は半田30が十分溶融して濡れ広がるように,半田30の液相線温度よりも高い温度に設定する。ただし,電子部品20の耐熱温度を超えてはならない。なお,ここで使用する半田30の固相線温度は約235℃であり,半田30の液相線温度は約240℃である。
 まず,基板10に半田30と電子部品20とを載せた対象物を減圧式加熱装置100に入れる。対象物は加熱器130の上に載せられる。この後,減圧式加熱装置100の内部には,窒素等の不活性ガスに水素等の還元ガスを混合したものが入れられる。雰囲気置換後の減圧式加熱装置100の内部の圧力は大気圧とほぼ同じである。
 次に,シリンダ131により加熱器130を上昇させる。基板10が接触式温度測定部110に接触したところで加熱器130の上昇を停止する。
(時刻t0)
 この後,第1段階の加熱を行う。加熱器130により基板10を加熱し始めた時刻をt0とする。
(時刻t0~時刻t1)
 時刻t0の後,大気圧下で加熱器130により基板10を加熱する。半田30と電子部品20とは基板10を介して加熱される。雰囲気が還元ガスに置換されているため,この期間の加熱により,基板10および半田30および電子部品20の酸化した表面で還元反応が生じる。この清浄化により,半田30に対する基板10の表面の濡れ性が向上する。
(時刻t1)
 基板10が予熱目標温度に達した時刻をt1とする。このとき,半田30は固相線温度に達していないので,まだ溶融していない。また,基板10および半田30および電子部品20の清浄化が進んだ状態となっている。
(時刻t1~時刻t2)
 時刻t1の後,排気口150から減圧式加熱装置100内のガスを外部に排出させる。このため,減圧式加熱装置100の内部の圧力は下がる。なお,基板10の温度は時刻t1における基板10の温度とほぼ同じである。
(時刻t2)
 減圧式加熱装置100の内部の減圧ができたところで,排気口150からのガスの排出を止める。この時刻をt2とする。
(時刻t2~時刻t5)
 時刻t2の後,第2段階の加熱を始める。この際,減圧式加熱装置100の内部を減圧した状態のまま,加熱を行う。
(時刻t3)
 基板10の温度が半田30の固相線温度に達した時刻をt3とする。ここで,半田30と電子部品20とは基板10とほぼ同じ温度に達しているはずである。このため,半田30は溶融し始める。
(時刻t4)
 基板10の温度が半田30の液相線温度に達した時刻をt4とする。ここで,半田30と電子部品20とは基板10とほぼ同じ温度に達しているはずである。このため,半田30はほぼ全て溶融した状態になっている。
(時刻t5)
 基板10が到達目標温度に達した時刻をt5とする。時刻t5で,加熱器130による加熱を停止する。このとき,半田30は完全に溶融し濡れ広がっている。ここで,仮に半田30の内部にボイドが発生していても,ボイドの内圧は減圧式加熱装置100の内部の圧力とほぼ同じである。
(時刻t5~時刻t6)
 時刻t5の後,基板10の温度を一定に保ちつつ,導入口140から減圧式加熱装置100に不活性ガス又はそれに還元ガスを混入したものを少しずつ流入させる。このため,炉内の圧力は徐々に上昇する。ここで,半田30は溶融したままの状態である。仮に半田30の内部にボイドが発生していた場合,減圧式加熱装置100の内部の圧力の上昇に伴い,ボイドは収縮する。
(時刻t6)
 減圧式加熱装置100の内部の圧力がほぼ大気圧となったところで導入口140からのガスの流入を止める。この時刻をt6とする。このとき,半田30は溶融した状態である。時刻t2から時刻t5にかけて半田30の内部にボイドが生じていれば,既に収縮し終えた状態になっている。
(時刻t6~時刻t7)
 時刻t6の後,大気圧を維持したまま基板10の温度を下降させる。これにより,半田30は凝固する。
(時刻t7)
 基板10の温度が常温に達した時刻をt7とする。このときまでには,半田30は凝固している。ここでは基板10が常温となる時刻をt7としたが,半田30の固相線温度より十分下がっていれば,常温でなくともよい。時刻t7よりも後に,基板10を減圧式加熱装置100から取り出す。
 以上により,基板10と電子部品20との半田接合が終了した。
 ここで,本形態に係る減圧式加熱装置100の加熱過程における温度制御方法について説明する。図6は,減圧式加熱装置100の温度制御システム200を説明するブロック図である。減圧式加熱装置100の温度制御システム200は,制御部180と,接触式温度測定部温度指示計112と,放射温度計コントローラ121と,ヒータコントローラ170とにより構成されている。
 制御部180は,減圧式加熱装置100内の温度制御及び圧力制御並びに雰囲気置換を行うものである。接触式温度測定部温度指示計112は,接触式温度測定部110により測定された温度を表示し,制御部180に温度データを送るためのものである。放射温度計コントローラ121は,放射温度計120により測定された温度データを制御部180に送るためのものである。ヒータコントローラ170は,加熱器130による基板10を加熱する出力を制御するものである。
 減圧式加熱装置100の温度制御システム200による温度制御方法について図6とともに図7により説明する。
 時刻t0では,接触式温度測定部110が基板10と接触している。接触式温度測定部110は,基板10との接触箇所の温度を測定する。接触式温度測定部110で測定した温度は接触式温度測定部温度指示計112へと送られる。さらに,接触式温度測定部温度指示計112から制御部180へと,接触式温度測定部110により測定した温度が送られる。
 一方,放射温度計120によっても基板10の表面温度を測定する。放射温度計120で測定した温度は放射温度計コントローラ121へと送られる。さらに,放射温度計コントローラ121から制御部180へと,放射温度計120により測定した温度が送られる。
 つまり,制御部180は,接触式温度測定部110と放射温度計120との双方により測定された基板10の温度を受け取るのである。
 時刻t0から時刻t1にかけて基板10の予熱が行われる。還元雰囲気にしてあるため,この予熱により基板10の清浄化が充分に進む。これにより,基板10の表面からの赤外線の放射率が変化する。このため,放射温度計120は清浄化前の放射率の設定のままでは,基板10の正確な温度を測定することができない。一方,減圧式加熱装置100の内部の圧力は大気圧にほぼ等しい。このため,接触式温度測定部110により正確な温度を測定することができる。ゆえに,時刻t0から時刻t1にかけて,制御部180は基板10の温度として接触式温度測定部110により測定された値を用いるのである。
 時刻t0から時刻t1の期間において,制御部180は接触式温度測定部110の温度を採用する一方,放射温度計120における放射率の設定を調整する。制御部180は,接触式温度測定部110により測定された温度と同一の温度を放射温度計120が出力するように,放射温度計120に設定すべき放射率を計算する。
 この計算された放射率を,放射温度計コントローラ121にフィードバックするのである。これにより,基板10の清浄化に対応した放射率が新たに放射温度計120に設定される。この放射率を調整した放射温度計120を用いることで,基板10の実際の温度を正確に測定できる。なお,調整が済んだ後では,大気圧下でも減圧下でも清浄化された基板10の温度を放射温度計120により測定できる。
 時刻t1の後,減圧式加熱装置100の内部の圧力は減少する。この期間には,接触式温度測定部110により測定された温度は基板10の実際の温度より低い値を示すようになる。前述したように図2に示す間隙があり,ガスの熱伝導率が減少するからである。
 このため,時刻t1より後には,接触式温度測定部110に代えて,放射率を調整した放射温度計120により測定した基板10の温度を採用する。この放射温度計120により測定した温度を基に,加熱器130の加熱条件を設定する。また,放射温度計120より測定した基板10の温度が到達目標温度に達したときの時刻をt5と設定する。
 時刻t6では,減圧式加熱装置100の内部の圧力は大気圧にほぼ等しくなっている。このため,再び接触式温度測定部110により基板10の温度を測定するのである。時刻t6の後は,接触式温度測定部110により基板10の温度を測定すればよい。
 また,時刻t6において,放射温度計120により測定していた基板10の温度(時刻t1~時刻t6の間における基板10の測定温度)が正確だったかどうかを,接触式温度測定部110の測定値により確認することができる。ここで,時刻t6において,接触式温度測定部110と放射温度計120との測定温度に差があった場合について以下に説明する。
 時刻t6における接触式温度測定部110と放射温度計120とによる測定温度の差は,時刻t1から時刻t6にかけて,基板表面の清浄化がさらに進んだため生じると考えられる。ただし,時刻t0から時刻t1における予熱により清浄化はかなり進んでおり,さらに減圧下のため還元ガスの濃度が低いため,この測定温度の差は大きくないはずである。
 そこで,放射温度計120の放射率をさらに補正することにより,次回以降は,対象物の温度をより正確に測定することができる。時刻t6では,減圧式加熱装置100の内部の圧力がほぼ大気圧となっているため,接触式温度測定部110により正確な測定値が得られる。このため,時刻t6において放射温度計120に設定されるべき放射率を求めることができる。一方,時刻t1においても,前述した温度制御方法により放射温度計120に設定されるべき放射率が分かっている。また,時刻t1から時刻t6の途中で,放射率が急に変化する理由も見当たらない。
 ゆえに,時刻t1から時刻t6にかけて,時刻t1で設定すべき放射率から時刻t6で設定すべき放射率へと,徐々に放射率を変化させるのである。ここで,時刻t1と時刻t6とに設定すべき放射率の差は大きくない。
 このように,時刻t1から時刻t6にかけての基板10の放射率の変化に合わせて,放射温度計120における放射率の設定を追従させて変化させていくことができる。これにより,次回以降は時刻t1から時刻t6にかけて,より正確な温度に基づいて対象物を加熱することができる。
 上記のように,基板10の温度の測定を,時刻t0から時刻t1にかけて接触式温度測定部110により行い,時刻t1から時刻t6にかけて放射率を調整した放射温度計120により行い,時刻t6から時刻t7にかけて再び接触式温度測定部110により行うのである。つまり,減圧式加熱装置100の内部の圧力が大気圧にほぼ等しいときは接触式温度測定部110により測定した基板10の温度を採用し,大気圧より低くなっているときは放射温度計120により測定した基板10の温度を採用するのである。
 以上により,基板10の実際の温度を測定し,基板10の加熱条件にフィードバックし,最適な温度プロファイルに沿って基板10と電子部品20とを半田接合できる減圧式加熱装置100とその加熱方法およびそれらを用いた電子製品の製造方法が実現されている。
 ここで,本形態との比較のために,接触式温度測定部110により測定される温度のみに基づいて加熱器130の加熱条件を制御した場合について,図8により説明する。なお,参考のために放射率の調整を行わない放射温度計120により測定された温度も図8に示す。
 時刻t1に至った後,減圧式加熱装置100の内部の圧力が減少したときに,接触式温度測定部110により測定される温度と,基板10の正確な温度との間でずれが生じる。これは,上述したように図2に示す間隙があり,減圧によって間隙部のガスの熱伝導率が減少するからである。このため,接触式温度測定部110により測定した基板10の温度は,基板10の実際の温度よりも低くなっている。
 ゆえに,接触式温度測定部110のみで減圧式加熱装置100の温度制御を行った場合,基板10の温度が到達目標温度になったと判断して,加熱器130による基板10の加熱を停止した時には既に,基板10の実際の温度は,到達目標温度を超えていることになる。
 このため,電子部品20の温度が耐熱温度を超え,特性変化を起こすおそれがある。また,時刻t5において基板10が実際何度に達していたか把握することができない。つまり,電子部品20が何度に達していたか把握できないのである。さらに,接触式温度測定部110の基板10への接触状態の再現性によるばらつきもある。このような外乱により,製品の品質を管理することが困難となるのである。
 一方,放射温度計120のみによる測定においても,基板10の実際の温度を測定できない。なお,本形態においてはそのような弊害はない。
 上記において,加熱対象物の実際の温度を測定するに際し,放射温度計120の放射率の調整を行った。しかしながら,放射温度計120の放射率の調整を行わずに加熱対象物の実際の温度を測定することもできる。たとえば,放射率の調整を行っていない放射温度計120の温度の出力値を制御部180により補正する場合が挙げられる。
 まず,時刻t0から時刻t1にかけての加熱対象物の予熱の際に,接触式温度測定部110の測定値と放射温度計120の測定値とから,放射温度計120の出力値を補正するための補正係数を予め求めておく。この補正係数を用いることにより,時刻t1~時刻t6にかけて加熱対象物の実際の温度を,放射温度計120により測定することができる。これにより,第1の形態と同様の効果を得ることができる。
 以上,詳細に説明したように,本実施の形態に係る減圧式加熱装置では,接触式温度測定部と非接触式温度測定部とを併用した。大気圧下では,接触式温度測定部により測定した基板の温度を基に基板を加熱し,減圧下では,非接触式温度測定部により測定した基板の温度を基に基板を加熱するのである。
 その結果,加熱装置内の圧力の変化,清浄化による基板の表面状態の変化に対応して,全ての工程において基板の温度を管理して基板を加熱することができるようになった。これにより,厳密な温度管理の下で,ボイドの発生を抑制しつつ基板と電子部品とを半田接合できる減圧式加熱装置が実現されている。
 このため,加熱器温度ではなく,基板の実際の温度により加熱を制御することができるようになった。また,測定された基板の実際の温度が,次の工程に移行するためのシグナルともなっている。ゆえに,製品の品質にばらつきのない電子製品の製造が可能となった。このため,雰囲気置換工程を有する半導体素子の基板への半田接合も高い信頼性の下で行うことができるようになった。
 なお,本実施の形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。例えば,半田接合する対象物は基板と電子部品でなくともよい。冷却部材と基板であってもかまわない。さらに,冷却部材と基板と電子部品とを一度に半田接合することもできる。
 また,接触式温度測定部温度指示計112と放射温度計コントローラ121とヒータコントローラ170とが制御部180によって全て担われていても構わない。奏する効果に変わりはないからである。
 加熱器は,接触式でなくてもよい。ランプヒータや対象物によっては誘導コイルなどでも構わない。また,熱風を用いてもよい。また,半田30が溶融して加熱装置内が大気圧に戻った後は,冷却を別の炉に移して行ってもよい。また,半田の液相線温度,固相線温度は例示であり,使用する半田の種類によるものである。
 また,接触式温度測定部110及び放射温度計120の数は複数あってもよい。また,時刻t6において,接触式温度測定部110と放射温度計120とが示す温度に大きな開きがあった場合はアラームを鳴らすこともできる。また,還元ガスを用いなくても,対象物からみて雰囲気が実質的に還元性であればよい。なお,対象物によっては大気のままでもよい場合もありうる。
 また,接触式温度測定部110と放射温度計120は基板10のより近い箇所を測定するとよい。測定箇所が近ければ,それぞれの測定箇所の実際の温度の差が小さいと考えられるからである。
 また,本発明の減圧式加熱装置およびその加熱方法は,半田接合の用途に限らない。還元ガスの雰囲気中で予熱された後,減圧下で加熱されるようなものであれば同様の効果を奏するからである。

Claims (8)

  1. 排気口が形成された加熱処理室を有し,前記加熱処理室内に配置された加熱対象物を,大気圧下で予熱温度まで予熱し,減圧下で前記予熱温度より高い温度まで加熱処理する減圧式加熱装置において,
     前記加熱処理室内の加熱対象物を加熱する加熱器と,
     前記加熱処理室内の加熱対象物の温度を接触して測定する接触式温度測定部と,
     前記加熱処理室内の加熱対象物の温度を非接触で測定する非接触式温度測定部と,
     前記加熱器の制御および前記非接触式温度測定部の調整を行う制御部とを有し,
     前記制御部は,
      大気圧下での予熱の際に,前記接触式温度測定部の測定値に対して前記非接触式温度測定部の測定値の誤差がなくなるように前記非接触式温度測定部を調整し,
      減圧下での加熱処理の際に,その調整された状態での前記非接触式温度測定部の測定値に基づいて前記加熱器を制御することを特徴とする減圧式加熱装置。
  2. 請求の範囲第1項に記載の減圧式加熱装置において,
     前記非接触式温度測定部は,加熱対象物から放射される赤外線を検出する放射温度計であり,
     前記制御部は,大気圧下での予熱の際に,前記放射温度計における放射率の設定を調整することを特徴とする減圧式加熱装置。
  3. 請求の範囲第1項に記載の減圧式加熱装置において,
     前記非接触式温度測定部は,加熱対象物から放射される赤外線を検出する放射温度計であり,
     前記制御部は,大気圧下での予熱の際に,前記放射温度計の出力値の補正係数を調整することを特徴とする減圧式加熱装置。
  4. 請求の範囲第1項から第3項までのいずれか1つに記載の減圧式加熱装置において, 
      前記加熱処理室にガス導入口が形成されており,
     前記ガス導入口を通して前記加熱処理室内に雰囲気ガスを導入するガス供給部を有することを特徴とする減圧式加熱装置。
  5. 請求の範囲第4項に記載の減圧式加熱装置において,
     大気圧下での予熱を,前記加熱処理室の内部に還元性の雰囲気ガスを導入した状態で行うことを特徴とする減圧式加熱装置。
  6. 請求の範囲第1項から第5項までのいずれか1つに記載の減圧式加熱装置において, 
      前記排気口に接続され,前記加熱処理室の内部を排気して減圧する排気装置を有することを特徴とする減圧式加熱装置。
  7. 接触式温度測定部と非接触式温度測定部とにより温度制御しつつ対象物を加熱する加熱方法であって,
     大気圧の還元ガスの雰囲気中で,前記接触式温度測定部の測定値により前記非接触式温度測定部における放射率の設定の調整と前記対象物の温度制御とをしつつ,加熱処理温度よりも低い予熱温度まで前記対象物を加熱し,
     減圧下で,前記予熱温度までの加熱過程にて放射率の設定が調整された前記非接触式温度測定部の測定値により前記対象物の温度制御をしつつ,加熱処理温度まで前記対象物をさらに加熱することを特徴とする加熱方法。
  8. 複数の接合部材からなる対象物を,減圧下で加熱して半田接合する電子製品の製造方法であって,
     大気圧の還元ガスの雰囲気中で,接触式温度測定部の測定値により非接触式温度測定部における放射率の設定の調整と前記対象物の温度制御とをしつつ,半田が溶融するに至らない予熱温度まで前記対象物を加熱し,
     減圧し,
     減圧下で,前記予熱温度までの加熱過程にて放射率の設定が調整された前記非接触式温度測定部の測定値により前記対象物の温度制御をしつつ,半田が溶融する加熱処理温度まで前記対象物をさらに加熱し,
     前記対象物の加熱処理温度を維持しつつ,雰囲気の圧力を大気圧まで戻し, 大気圧下で,半田を凝固させて前記対象物を半田接合することを特徴とする電子製品の製造方法。
PCT/JP2008/072230 2008-01-17 2008-12-08 減圧式加熱装置とその加熱方法および電子製品の製造方法 WO2009090808A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112008000853.1T DE112008000853B4 (de) 2008-01-17 2008-12-08 Dekompressions-Heizgerät und Verfahren zum Temperatur-geregelten Erwärmen eines Objekts
US12/451,070 US8271124B2 (en) 2008-01-17 2008-12-08 Decompressing type heater, its heating method, and electronic product manufacturing method
KR1020097017072A KR101006632B1 (ko) 2008-01-17 2008-12-08 감압식 가열 장치와 그 가열 방법 및 전자 제품의 제조 방법
CN2008800091380A CN101642003B (zh) 2008-01-17 2008-12-08 减压式加热装置及其加热方法和电子产品的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-007953 2008-01-17
JP2008007953A JP4263761B1 (ja) 2008-01-17 2008-01-17 減圧式加熱装置とその加熱方法および電子製品の製造方法

Publications (1)

Publication Number Publication Date
WO2009090808A1 true WO2009090808A1 (ja) 2009-07-23

Family

ID=40707299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072230 WO2009090808A1 (ja) 2008-01-17 2008-12-08 減圧式加熱装置とその加熱方法および電子製品の製造方法

Country Status (6)

Country Link
US (1) US8271124B2 (ja)
JP (1) JP4263761B1 (ja)
KR (1) KR101006632B1 (ja)
CN (1) CN101642003B (ja)
DE (1) DE112008000853B4 (ja)
WO (1) WO2009090808A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115584A1 (ja) * 2013-01-24 2014-07-31 オリジン電気株式会社 加熱接合装置及び加熱接合製品の製造方法
JP7116236B1 (ja) * 2021-09-30 2022-08-09 株式会社オリジン 半田付け装置及び半田付け製品の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130114728A (ko) * 2011-02-28 2013-10-17 가부시키가이샤 아이에이치아이 열처리품의 온도 측정 장치와 방법
WO2016104710A1 (ja) 2014-12-26 2016-06-30 富士電機株式会社 加熱冷却機器
JP6575135B2 (ja) * 2015-05-15 2019-09-18 富士電機株式会社 加熱冷却方法及び加熱冷却機器
KR102105587B1 (ko) * 2018-12-07 2020-05-07 삼원동관 주식회사 유도 브레이징 접합 장치 및 방법
DE102022115545A1 (de) 2022-06-22 2023-12-28 Ersa Gmbh Verfahren zum Erwärmen zum Aus- und/oder Einlöten von elektronischen Bauteilen, insbesondere in einem Rework-Lötprozess, und zugehörige Lötanlage

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000218151A (ja) * 1999-01-28 2000-08-08 Shimadzu Corp 真空装置
JP2005205418A (ja) * 2004-01-20 2005-08-04 Denso Corp 接合構造体の製造方法
JP2007246938A (ja) * 2006-03-13 2007-09-27 Ss Alloy Kk 通電熱加工装置及び温度測定方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991009148A1 (en) 1989-12-11 1991-06-27 Hitachi, Ltd. Device for vacuum treatment and device for and method of film formation using said device
US5815396A (en) * 1991-08-12 1998-09-29 Hitachi, Ltd. Vacuum processing device and film forming device and method using same
JPH08191182A (ja) * 1995-01-11 1996-07-23 Excel:Kk オーブンの加熱条件設定装置
US5798137A (en) * 1995-06-07 1998-08-25 Advanced Silicon Materials, Inc. Method for silicon deposition
AUPN733095A0 (en) * 1995-12-22 1996-01-25 Bhp Steel (Jla) Pty Limited Twin roll continuous caster
JPH09311081A (ja) 1996-05-24 1997-12-02 Dainippon Screen Mfg Co Ltd 基板温度計測方法および基板温度制御方法、ならびに、これを利用した基板処理装置
US6087261A (en) * 1997-09-30 2000-07-11 Fujitsu Limited Method for production of semiconductor device
US6780657B2 (en) * 1998-03-19 2004-08-24 Kabushiki Kaisha Toshiba Temperature measuring method and apparatus, measuring method for the thickness of the formed film, measuring apparatus for the thickness of the formed film thermometer for wafers
US6204484B1 (en) * 1998-03-31 2001-03-20 Steag Rtp Systems, Inc. System for measuring the temperature of a semiconductor wafer during thermal processing
US6188044B1 (en) * 1998-04-27 2001-02-13 Cvc Products, Inc. High-performance energy transfer system and method for thermal processing applications
DE19823527A1 (de) 1998-05-26 1999-12-02 Linde Ag Verfahren zum flußmittelarmen bzw. flußmittelfreien Reflow-Löten
US6183127B1 (en) * 1999-03-29 2001-02-06 Eaton Corporation System and method for the real time determination of the in situ emissivity of a workpiece during processing
JP4499274B2 (ja) * 2000-12-01 2010-07-07 東京エレクトロン株式会社 半導体処理装置における温度測定方法および半導体処理方法
US7118780B2 (en) * 2001-03-16 2006-10-10 Semiconductor Energy Laboratory Co., Ltd. Heat treatment method
JP3622714B2 (ja) 2001-09-28 2005-02-23 松下電器産業株式会社 加工方法
JP2003225762A (ja) 2002-01-31 2003-08-12 Matsushita Electric Ind Co Ltd 加熱装置とその生産物
US7734439B2 (en) * 2002-06-24 2010-06-08 Mattson Technology, Inc. System and process for calibrating pyrometers in thermal processing chambers
JP2004260019A (ja) 2003-02-26 2004-09-16 Sony Corp 局部加熱半田付け方法、その装置及び局部加熱半田付け兼半田接続検査装置
DE10325602B3 (de) 2003-06-05 2004-09-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur temperaturgeregelten Prozessierung von Substraten
JP4185411B2 (ja) 2003-07-04 2008-11-26 株式会社リコー 画像形成装置
DE10346993A1 (de) 2003-10-07 2005-06-02 Alcan Technology & Management Ag Berührungslose Temperaturmessung
US8343280B2 (en) * 2006-03-28 2013-01-01 Tokyo Electron Limited Multi-zone substrate temperature control system and method of operating
US7921803B2 (en) * 2007-09-21 2011-04-12 Applied Materials, Inc. Chamber components with increased pyrometry visibility
US7939456B2 (en) * 2009-09-25 2011-05-10 Lambda Technologies, Inc. Method and apparatus for uniform microwave treatment of semiconductor wafers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000218151A (ja) * 1999-01-28 2000-08-08 Shimadzu Corp 真空装置
JP2005205418A (ja) * 2004-01-20 2005-08-04 Denso Corp 接合構造体の製造方法
JP2007246938A (ja) * 2006-03-13 2007-09-27 Ss Alloy Kk 通電熱加工装置及び温度測定方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115584A1 (ja) * 2013-01-24 2014-07-31 オリジン電気株式会社 加熱接合装置及び加熱接合製品の製造方法
JP2014140870A (ja) * 2013-01-24 2014-08-07 Origin Electric Co Ltd 加熱接合装置及び加熱接合製品の製造方法
TWI556900B (zh) * 2013-01-24 2016-11-11 歐利生電氣股份有限公司 加熱接合裝置及加熱接合製品的製造方法
US9730335B2 (en) 2013-01-24 2017-08-08 Origin Electric Company, Limited Heat-bonding apparatus and method of manufacturing heat-bonded products
JP7116236B1 (ja) * 2021-09-30 2022-08-09 株式会社オリジン 半田付け装置及び半田付け製品の製造方法

Also Published As

Publication number Publication date
KR101006632B1 (ko) 2011-01-07
CN101642003B (zh) 2011-05-25
DE112008000853B4 (de) 2022-06-30
CN101642003A (zh) 2010-02-03
KR20090103942A (ko) 2009-10-01
JP4263761B1 (ja) 2009-05-13
JP2009170705A (ja) 2009-07-30
US20100121479A1 (en) 2010-05-13
DE112008000853T5 (de) 2010-01-28
US8271124B2 (en) 2012-09-18

Similar Documents

Publication Publication Date Title
JP4263761B1 (ja) 減圧式加熱装置とその加熱方法および電子製品の製造方法
US10583510B2 (en) Heating and cooling device
US11279082B2 (en) Generative manufacturing of components with a heatable building platform and apparatus for implementing this method
JP6144495B2 (ja) 加熱接合装置及び加熱接合製品の製造方法
US8920162B1 (en) Closed loop temperature heat up and control utilizing wafer-to-heater pedestal gap modulation
JP4949192B2 (ja) 歯科用の燃焼窯の稼働方法並びに燃焼窯
JP5902107B2 (ja) 加熱接合装置及び加熱接合製品の製造方法
US20060076389A1 (en) Method and apparatus for controlling and monitoring a brazing process
JP7365432B2 (ja) ワークピースを加熱するためのハイブリッド制御システム
WO2007077727A1 (ja) リフロー装置
JP2008178890A (ja) はんだ付け装置及びはんだ付け方法並びにはんだ付け用プログラム
JP2004503101A (ja) 対象物を熱処理するための方法および装置
CN101745713B (zh) 在扩散炉中进行喷管栈钎焊
JP5533480B2 (ja) 電子部品の実装装置及び実装方法
JPH06224551A (ja) リフロー半田付け装置の温度制御方法
JP3082716B2 (ja) レーザcvd装置及び方法
JP3881572B2 (ja) 加熱炉およびその運転開始方法
KR101917859B1 (ko) 공공의 발생을 방지하기 위한 리플로우 솔더링 방법
JP2002198320A (ja) 加熱処理装置、加熱処理方法および半導体装置の製造方法
JP4766554B2 (ja) 加熱炉の制御方法および制御装置
JP2000235991A (ja) ワイヤボンディング装置
JPH0776132B2 (ja) セラミック成形品の脱脂法
JP2000286324A (ja) 基板処理装置
JP2915543B2 (ja) リフロー炉のリフロー条件の設定方法
JP2014200819A (ja) ろう付け装置およびろう付け方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880009138.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020097017072

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08870826

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120080008531

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 12451070

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112008000853

Country of ref document: DE

Date of ref document: 20100128

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 08870826

Country of ref document: EP

Kind code of ref document: A1