WO2009084630A1 - 搬送ロボットの診断システム - Google Patents

搬送ロボットの診断システム Download PDF

Info

Publication number
WO2009084630A1
WO2009084630A1 PCT/JP2008/073731 JP2008073731W WO2009084630A1 WO 2009084630 A1 WO2009084630 A1 WO 2009084630A1 JP 2008073731 W JP2008073731 W JP 2008073731W WO 2009084630 A1 WO2009084630 A1 WO 2009084630A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
robot arm
detected
detection means
substrate
Prior art date
Application number
PCT/JP2008/073731
Other languages
English (en)
French (fr)
Inventor
Yoshinori Fujii
Original Assignee
Ulvac, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac, Inc. filed Critical Ulvac, Inc.
Priority to CN2008801226544A priority Critical patent/CN101911274B/zh
Priority to JP2009548089A priority patent/JP5053388B2/ja
Priority to US12/745,823 priority patent/US20100256811A1/en
Publication of WO2009084630A1 publication Critical patent/WO2009084630A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67288Monitoring of warpage, curvature, damage, defects or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68707Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a robot blade, or gripped by a gripper for conveyance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40562Position and orientation of end effector, teach probe, track them

Definitions

  • the present invention relates to a diagnostic system for a low-cost transfer robot using a sensor for detecting a substrate position installed in an existing processing apparatus.
  • a load lock chamber for a substrate S is provided so as to surround a central transfer chamber A in which a transfer robot 1 is disposed.
  • B and a plurality of processing chambers C are arranged so that the substrate S put into the load lock chamber B by the transfer robot 1 is transferred to each processing chamber C or between the processing chambers C.
  • Devices so-called cluster tool devices are known.
  • the transfer robot 1 includes a robot arm 11 and drive means for driving the robot arm 11 to be rotatable and extendable on the same plane, and supports the substrate S in a state where the substrate S is placed on the tip of the robot arm 11. It has a robot hand 12.
  • the robot hand 12 appropriately holds the substrate S existing at a predetermined position, and the target position of the substrate S (for example, a substrate stage (not shown) in each processing chamber C). N))) and transfer it to the proper position.
  • detection means 2 such as an optical sensor is provided on the ceiling or bottom of the boundary region of the transfer chamber A with each processing chamber C (see FIG. 1B).
  • the detection unit 2 checks whether or not the substrate S is accurately supported by the robot hand 12 in addition to detecting the presence or absence of the substrate S. Is found, the operation of the robot arm 11 is adjusted so as to cancel out the displacement (see, for example, Patent Document 1).
  • the above-mentioned positional deviation of the substrate may be caused by a failure of a part such as a robot arm or a motor or a bearing constituting a driving means for driving the robot arm.
  • a positional deviation occurs due to a decrease in the positional deviation measurement accuracy and the positional deviation canceling operation accuracy. If the transfer robot is left with the position accuracy lowered, it causes a product processing failure or a device failure, resulting in a large damage.
  • a diagnosis system for a transfer robot includes a transfer robot having a robot arm having a robot hand that supports a substrate to be processed at the tip, and a driving means for driving the robot arm, and the robot. And at least one detection means arranged to detect a substrate supported by a robot hand when the substrate is transferred between a plurality of processing chambers by an arm, and the substrate is transferred by the robot arm between the processing chambers.
  • the operation data of the robot arm detected by the detection means is acquired to create a reference value, and the predetermined value of the robot arm is determined.
  • the operation data at that time is acquired, and the operation data is compared with the reference value. , Characterized in that so as to determine the abnormality of the transfer robot when changes beyond a predetermined range.
  • the detection is arranged to detect the presence or absence of the substrate and its position.
  • the detection means is used to determine the health of the transfer robot.
  • the operation data of the robot arm detected by the detection means is acquired, and a reference value is prepared. Then, for example, when the predetermined portion of the robot arm is detected by the detection means during a predetermined prescribed operation such as an initialization operation of the transfer robot or various processes (production) on the substrate, operation data at that time is detected. The operation data and the reference value are compared, and when the change exceeds a predetermined range, the abnormality of the transfer robot is determined.
  • the health of the transfer robot can be easily determined using the existing one, the number of parts is not increased, and the cost can be reduced.
  • the health of the transfer robot is judged, so that it is possible to grasp the signs of occurrence of an abnormality at an early stage and perform planned maintenance, and as a result, the operating rate can be improved. it can.
  • the robot arm is configured to be driven to rotate and extend and retract at least on the same plane, and the detection means projects light perpendicular to the plane.
  • the present invention can be applied to a robot arm configured to move up and down in order to deliver a substrate.
  • the drive means may be a motor equipped with an encoder, and the operation data may be acquired from the address of the encoder when the robot arm is detected by the detection means.
  • the time until the predetermined part of the robot arm is detected by another detection means or the operation start instruction of the transfer robot is detected.
  • the operation data can be acquired from the time until a predetermined portion of the robot arm is detected by any of the means.
  • the abnormality determination of the transfer robot is performed during a predetermined prescribed operation.
  • the prescribed operation refers to an operation for operating the transfer robot in accordance with a predetermined operation program other than transferring the substrate for various processes to the substrate, such as an initialization operation of the transfer robot.
  • the transfer robot used in the cluster tool device when detecting a predetermined portion of the robot arm, only the specific operation data is extracted and acquired, and the detection becomes a criterion for determining the health of the transfer robot. If a means is determined, the control for the determination may be simplified.
  • the robot arm is configured to be movable up and down, it is only necessary to determine whether or not the transfer robot is abnormal at a predetermined height position. In this case, if an abnormality of the transfer robot is determined at the same height position, a sign of failure can be detected from the tilt of the robot arm or the robot hand with respect to the optical axis of the optical sensor.
  • a transfer robot 1 having a known structure is provided, and a detection means 2 is provided in the vicinity of a connection portion with each processing chamber C.
  • the detecting means 2 for example, an optical sensor having a known structure such as a laser sensor or an LED fiber sensor is used.
  • the detection means 2 is a transmissive type that is arranged so as to project light vertically to a robot arm that is driven to rotate and expand and contract on the same plane, and includes a light projector 21 and a light receiver 22.
  • a reflective type can also be used.
  • the conveyance robot 1 has two motors which are the drive means which abbreviate
  • the rotation shafts 10a and 10b of each motor are concentrically arranged, and a robot arm 11 is connected to each rotation shaft 10a and 10b through a link mechanism, and a robot hand 12 is provided at the tip thereof via a gear box G. .
  • the robot arm 11 and the robot hand 12 can be expanded and contracted and swiveled by appropriately controlling the rotation angles of the rotation shafts 10a and 10b of each motor.
  • raising / lowering means such as an air cylinder of the rotation shaft of each motor may be provided so that the robot arm 11 itself moves up and down (up and down).
  • the operation of the transfer robot 1 and the information processing of the detection result by the detection means 2 are comprehensively controlled by a control means (not shown).
  • the robot arm 11 and the robot hand 12 are formed of a heat-resistant material, for example, a plate material such as Al alloy, Al2O3, Si02, or SiC.
  • the robot hand 12 includes a pair of finger portions 14 that branch from the base end portion 13 connected to the robot arm 11 into a bifurcated shape and extend forward.
  • a seat surface 15 on which the outer peripheral portion of the lower surface of the substrate S can be seated at three places in the circumferential direction is provided at the base end portion 13 and the distal end portions of both finger portions 14, and the lower surface other than the outer peripheral portion of the substrate S is a robot. It is supported so as to float from the hand 12.
  • the robot arm 11 is expanded and contracted or rotated, and the substrate S put into the load lock chamber B is placed in one of the processing chambers C or in each processing chamber.
  • the substrate S is transported between C.
  • the presence or absence of the substrate S and whether or not the substrate S is accurately supported by the robot hand 13 is confirmed by any of the detection means 2.
  • the robot arm 11 is contracted and the tip of the finger portion 14 is the first end.
  • the robot arm 11 is extended from the standby position directed to the first processing chamber C1, receives the substrate S from the first processing chamber C1, and returns to the standby position.
  • the robot arm 11 is turned to a position where the tip of the finger portion 15 is directed to the second processing chamber C2.
  • the robot arm 11 is extended to deliver the substrate S in the first processing chamber C1, and return to the original state (standby position) (see FIG. 3).
  • the robot arm 11 including the robot hand 12 is provided with each detection means provided in the transfer chamber A in the vicinity of the connection point with the first and second processing chambers C1 and C2. 2 crosses each of the detection positions 2a and 2b. Therefore, when the transport robot 1 is operated, a predetermined portion detected by the detection means 2 is positioned on the trajectory crossing the detection position of the detection means 2 and the base end portion 13 and both finger portions 14 of the robot hand 12 are detected.
  • the through-holes 17 and 18 which comprise are each formed (refer FIG. 2).
  • the signal of the detection means 2 is turned off, and the signal is turned on when any of the through holes 17 and 18 is reached. . Finally, when the robot arm 13 completely crosses the detection position, the signal of the detection means 2 is turned off again.
  • the detection units 2a and 2b From the timing at which the signal is switched, that is, the time from the detection timing of one detection means 2a to the detection timing of the other detection means 2b, the operation data of the transfer robot 1 is acquired and a reference value is prepared (in this case, As the operation data as the reference value, for example, an identification number assigned to each detection means and its elapsed time are registered in the control means).
  • the operation data that is the reference value is created based on the elapsed time from the detection timing of one of the detection means 2a, but is detected by either the detection means 2a or 2b from the start of the operation of the motor. Operation data as a reference value may be created from the elapsed time until.
  • the operation data as a reference value is prepared from the relationship between the elapsed time from the detection timing of one detection means 2a to the detection timing of the other detection means 2b and the motor rotation speed (turning speed and expansion / contraction speed data).
  • the motor rotation speed turning speed and expansion / contraction speed data.
  • the example of diagnosing the health of the transport robot from the timing at which the signals of the detection means 2 are switched by the detection means 2a and 2b has been described as an example, but the present invention is not limited to this.
  • the motor as the driving means includes an encoder
  • the reference value is obtained from the encoder coordinates and the encoder value (address) when a predetermined portion of the robot arm 11 or the robot hand 12 is detected by either the detection means 2a or 2b. It is also possible to acquire the operating data. Then, the encoder coordinates and the encoder value when the predetermined portion is detected by the same detection means are compared with the operation data as the reference value. Judging.
  • the health of the transfer robot 1 may be determined at a preset height position. As described above, if the abnormality of the transfer robot 1 is determined at the same height position, when a part such as a bearing is deteriorated when the robot arm 11 is turned or expanded / contracted, the light of the optical sensor serving as the detection unit 2 is deteriorated. The inclination of the robot arm 11 or the robot hand 12 with respect to the axis is changed, whereby the time until detection by the detection means 2 changes, so that a sign of failure can be grasped.
  • the health (abnormality) determination of the transfer robot 1 can be performed, for example, when the robot hand 12 does not support the substrate S during a predetermined specified operation such as an initialization operation of the transfer robot.
  • the predetermined part of the robot arm 11 detected by the detection unit 2 is transferred by one of the detection units 2 while being transferred from one processing chamber to another processing chamber during various processes (production) on the substrate S.
  • the health of the transfer robot 1 can be determined even during various processes (production) on the substrate.
  • the predetermined portion of the robot arm 11 detected by the detection means 2 is not limited to the through holes 17 and 18.
  • the surface is exposed even when the substrate S is supported by the robot hand 12. You may comprise from the notch formed in the edge part.
  • both robot arms simultaneously perform turning and extending and contracting operations.
  • a predetermined portion of both robot arms is simultaneously detected by any one of the detection means 2, and there is a possibility that the amount of data increases and the control for judging the health is complicated.
  • the same problem may occur if a predetermined portion of the robot arm is detected for each detection means 2.
  • the transfer robot 1 is operated when the predetermined operation is performed. Only the specific operation data may be extracted and acquired, and the health determination may be performed by determining a detection unit that is a criterion for the health determination of the transfer robot 1. In this case, it is only necessary to allocate each detection means 2 and two motors and register an identification number in the control means, and to create specific operation data only for the identification number selected from them.
  • the transfer robot 1 determines the health of the transfer robot 1 by using the detection means 2 for detecting the substrate position provided as the equipment of the existing processing apparatus 1. As a result, the cost can be reduced without increasing the number of parts. In addition, it is possible to grasp a sign of occurrence of an abnormality at an early stage to enable planned maintenance, and as a result, it is possible to improve the operation rate.
  • the present invention is not limited to this.
  • the present invention can be applied as long as the detection means is provided in the processing apparatus and the detection means 2 detects when the transfer robot 1 is operated.
  • the regulation operation and the health judgment during production are mainly described.
  • the robot arm 11 is expanded and contracted, and the position at which the signal is switched ON and OFF is obtained by each of the detection means 2a and 2b, and the center of the through hole 17 is determined from the average value of the encoder address when the signal is switched ON and OFF. Is identified.
  • (A) And (b) is the top view and sectional view which show typically the substrate processing apparatus which comprises a conveyance robot.
  • the top view which shows the robot hand of embodiment of this invention.
  • the typical top view explaining conveyance of the substrate by the robot hand between processing chambers.
  • Robot arm 12 Robot hand 2 Detection means 2a, 2b Detection position S Substrate A load lock room C treatment room

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

 部品点数の増加を招くことなく、稼働率の向上を図ることができる低コストの搬送ロボットの診断システムを提供する。処理室C間でロボットアーム(11)により基板(S)を搬送する際にいずれかの検知手段(2)でロボットアーム(11)が検知される場合、検知手段(2)で検知されるロボットアーム(11)の作動データを取得して基準値を作製する。そして、ロボットアーム(11)が検知手段(2)で検知される毎に作動データを取得して前記基準値と比較し、所定の範囲を超えて変化した場合に搬送ロボットの異常を判断する。 

Description

搬送ロボットの診断システム
 本発明は、既存の処理装置に設置されている基板位置検知用のセンサを利用した低コストの搬送ロボットの診断システムに関する。
 従来、基板に成膜処理やエッチング処理などの各種の処理を施す装置として、図1に示すように、搬送ロボット1を配置した中央の搬送室Aを囲うようにして、基板Sのロードロック室Bと複数の処理室Cとを配置し、搬送ロボット1によりロードロック室Bに投入した基板Sを各処理室Cにまたは各処理室Cの相互間で基板Sを搬送するように構成した処理装置(所謂、クラスタツール装置)が知られている。
 搬送ロボット1は、ロボットアーム11と、当該ロボットアーム11を同一平面上で旋回及び伸縮自在に駆動する駆動手段とを備え、ロボットアーム11の先端には、基板Sを載置した状態で支持するロボットハンド12を有する。
 このような搬送ロボット1においては、ロボットハンド12により、所定の位置に存する基板Sを適正に保持し、かつ、この基板Sを目的とする位置(例えば、各処理室Cの基板ステージ(図示せず))まで搬送し、適正な位置に受け渡す必要がある。このため、搬送室Aの各処理室Cとの境界領域でその天井部や底部に、光学センサなどの検知手段2を設けている(図1(b)参照)。
 基板Sを目的とする位置まで搬送する場合、検知手段2によって、基板Sの有無の検出に加えてロボットハンド12で基板Sが精度よく支持されているか否かを確認し、基板Sの位置ずれが判明した場合には、その位置ずれ量を相殺するようにロボットアーム11の動作を調節しているようにしている(例えば、特許文献1参照)。
 ところで、上述した基板の位置ずれは、ロボットアームやこのロボットアームを駆動する駆動手段を構成するモータやベアリングなどの部品の故障に起因する場合がある。このような場合に、ある特定の位置でロボットアームの動作を調節しても、位置ずれの測定精度及び位置ずれの相殺動作精度低下のため、位置ずれを生じるようになる。搬送ロボットの位置精度が低下したままで放置した場合、製品処理の不良や装置の故障を招くため、損害が大きくなる。一方、稼働率の低下を防止するには、故障の予兆を捉えて計画的にメンテナンスすることが望ましいが、搬送ロボットの健常性を判断するために、別途のセンサなどの部品を設けたのでは、装置構成が複雑になるばかりか、コスト高を招く。
特開2007-27378号公報
 そこで、本発明は、以上の点に鑑み、部品点数の増加を招くことなく、稼働率の向上を図ることができる低コストの搬送ロボットの診断システムを提供することをその課題とする。
 上記課題を解決するために、本発明の搬送ロボットの診断システムは、処理すべき基板を支持するロボットハンドを先端に有するロボットアーム及び当該ロボットアームを駆動する駆動手段を有する搬送ロボットと、当該ロボットアームにより複数の処理室間で基板を搬送する際にロボットハンドにより支持された基板を検知するように配置された少なくとも1個の検知手段とを備え、前記処理室間でロボットアームにより基板を搬送する際にいずれかの検知手段にてロボットアームの所定部分が検知される場合に、当該検知手段にて検知されるロボットアームの作動データを取得して基準値を作製し、前記ロボットアームの所定部分が前記検知手段で検知されると、そのときの作動データを取得し、この作動データと前記基準値とを比較し、所定の範囲を超えて変化した場合に搬送ロボットの異常を判断するようにしたことを特徴とする。
 本発明によれば、各種処理を施すために複数の処理室を備えた処理装置においては、搬送ロボットにより基板を搬送する場合に、当該基板の有無やその位置を検知するために配置された検知手段を、基板を支持するロボットハンドを備えたロボットアームが横切ったりして検知されることに鑑み、当該検知手段を利用して、搬送ロボットの健常性を判断するようにした。
 即ち、いずれかの検知手段でロボットアームの所定部分が検知される場合に、当該検知手段で検知されたときのロボットアームの作動データを取得し、基準値を作製しておく。そして、例えば、搬送ロボットのイニシャライズ動作等の所定の規定動作中や基板への各種の処理(生産)中で、ロボットアームの上記所定部分が前記検知手段で検知される際にそのときの作動データを取得し、この作動データと前記基準値とを比較し、所定の範囲を超えて変化した場合に搬送ロボットの異常を判断するようにした。
 このように本発明においては、既存のものを利用して簡単に搬送ロボットの健常性が判断できるので、部品点数の増加を招くことなく、その上、低コストが図れる。また、搬送ロボットが所定位置に作動すると、搬送ロボットの健常性が判断されるため、異常発生の予兆を早期に捉えて計画的なメンテナンスを可能にし、結果として、稼働率の向上を図ることができる。
 また、本発明においては、前記ロボットアームは、少なくとも同一平面上を旋回及び伸縮自在に駆動されるように構成されたものであり、前記検知手段は、前記平面に対し垂直に投光するように配置した光学センサである構成を採用すればよい。なお、例えば基板を受け渡しするために、ロボットアームが上下動するように構成されたものに適用できる。
 前記駆動手段はエンコーダを備えたモータであり、検知手段でロボットアームが検知されたときのエンコーダのアドレスから前記作動データを取得するような構成を採用してもよい。
 他方、前記検知手段のいずれかにてロボットアームの所定部分が検知された後、他の検知手段にてロボットアームの所定部分が検知されるまでの時間、または搬送ロボットの作動開始指示から前記検知手段のいずれかにてロボットアームの所定部分が検知されるまでの時間から前記作動データを取得することもできる。
 なお、稼働率の向上を図るには、前記搬送ロボットの異常判断を所定の規定動作の際に行うことが好ましい。ここで、規定動作とは、搬送ロボットのイニシャライズ動作等、基板への各種の処理のために基板を搬送する以外で、搬送ロボットを所定の動作プログラムに応じて動作させるものをいう。
 また、クラスタツール装置に用いられる搬送ロボットにおいては、前記ロボットアームの所定部分を検出する場合、特定の作動データのみを抽出して取得するようにして、搬送ロボットの健常性判断の基準となる検知手段を定めておけば、その判断のための制御を簡素化できてよい。
 さらに、前記ロボットアームが昇降自在に構成されている場合には、所定の高さ位置にて搬送ロボットの異常判断を行うようにすればよい。この場合、同一の高さ位置にて搬送ロボットの異常を判断すれば、光学センサの光軸に対するロボットアームやロボットハンドの傾きから故障の予兆を捉えることができる。
 以下、図1に示す処理装置で本発明を適用した実施の形態について説明する。即ち、搬送室Aには、公知の構造を有する搬送ロボット1が設けられていると共に、各処理室Cとの連結箇所の近傍において検知手段2が設けられている。
 検知手段2としては、例えば、レーザーセンサやLEDファイバーセンサなど公知構造を有する光学センサが用いられる。この場合、検知手段2は、同一平面上で旋回及び伸縮自在に駆動されるロボットアームに対し垂直に投光するように配置され、投光器21と受光器22とからなる透過式のものである。なお、反射式のものを用いることもできる。
 図2を参照して説明すれば、搬送ロボット1は、図示省略した駆動手段たる2個のモータを有する。各モータの回転軸10a、10bは同心に配置され、各回転軸10a、10bにはロボットアーム11がリンク機構をなして連結され、その先端にギアボックスGを介してロボットハンド12を備えている。そして、各モータの回転軸10a、10bの回転角を適宜制御することで、ロボットアーム11及びロボットハンド12が伸縮及び旋回自在となる。なお、各モータの回転軸のエアシリンダ等の昇降手段を設け、ロボットアーム11自体が上下動(昇降)するように構成してもよい。なお、本実施の形態においては、搬送ロボット1の作動や検知手段2により検知結果の情報処理等は、図示省略の制御手段にて統括制御されるようになっている。
 ロボットアーム11及びロボットハンド12は、基板Sが処理室Cで高温に加熱される場合があることから耐熱性を有する材料、例えば、Al合金、Al2O3、Si02やSiC等の板材で形成されている。また、ロボットハンド12は、ロボットアーム11に連結される基端部13から二股状に分岐して先方に延びる一対のフィンガー部14を備えている。基端部13と両フィンガー部14の先端部とには、基板Sの下面外周部がその周方向3箇所で着座可能な座面15が設けられ、基板Sがその外周部以外の下面がロボットハンド12から浮くようにして支持される。
 このようにロボットハンド12で基板Sを支持させた後、ロボットアーム11を伸縮させたり、旋回させたりして、ロードロック室Bに投入した基板Sをいずれかの処理室Cにまたは各処理室Cの相互間で基板Sが搬送される。基板Sを目的の位置まで移送する際、いずれかの検知手段2により、基板Sの有無やロボットハンド13で基板Sが精度よく支持されているか否かが確認される。
 ここで、搬送ロボット1により第1の処理室C1から第2の処理室C2に基板Sを搬送させる場合を例に説明すると、ロボットアーム11が縮んだ状態であってフィンガー部14の先端が第1の処理室C1を指向した状態の待機位置から、ロボットアーム11を伸ばして第1の処理室C1から基板Sを受け取り、待機位置に戻す。次に、ロボットアーム11は、フィンガー部15の先端が第2の処理室C2を指向する位置まで旋回される。そして、ロボットアーム11を伸ばして第1の処理室C1の基板Sを受け渡し、元の状態(待機位置)に戻る(図3参照)。
 このように基板Sを目的位置まで搬送する間、ロボットハンド12を含むロボットアーム11は、第1及び第2の処理室C1、C2との連結箇所の近傍で搬送室Aに設けた各検知手段2の検知位置2a、2bをそれぞれ横切るようになる。そこで、搬送ロボット1が作動するときに、検知手段2の検知位置を横切る軌道上に位置させてロボットハンド12の基端部13及び両フィンガー部14には、検知手段2で検知される所定部分をなす貫通孔17、18をそれぞれ形成した(図2参照)。そして、例えばロボットアーム11を旋回させたとき、ロボットハンド12が検知位置を横切る当初には、検知手段2の信号がOFFになり、いずれかの貫通孔17、18に達すると、信号がONする。最後に、ロボットアーム13が検知位置を完全に横切ると、検知手段2の信号が再度OFFになる。
 上記のような検知手段2の信号の切り替わりを利用して、健常時において第1の処理室C1から第2の処理室C2にロボットハンド12を移動させるときに、各検知手段2a、2bにて信号が切り替わるタイミング、つまり、一方の検知手段2aの検知タイミングから他方の検知手段2bの検知タイミングまでの時間から、搬送ロボット1の作動データを取得して基準値を作製しておく(この場合、基準値たる作動データとしては、例えば検知手段毎に割り当てた識別番号とその経過時間であり、これらを制御手段に登録しておく)。そして、搬送ロボット1のロボットハンド12の所定部分が両検知手段2a、2bにて順次検知される際に、そのときの実際の作動データ(時間)を取得し、このときの作動データと前記基準値と制御手段にて比較し、所定の範囲を超えて変化した場合には、搬送ロボット1の異常を判断する。
 なお、上記においては、一方の検知手段2aの検知タイミングからの経過時間で基準値たる作動データを作製しているが、モータの作動開始時点から検知手段2a、2bのいずれかにて検知されるまでの経過時間から基準値たる作動データを作製してもよい。
 また、一方の検知手段2aの検知タイミングから他方の検知手段2bの検知タイミングまでの経過時間と、モータの回転速度(旋回速度や伸縮速度のデータ)との関係から基準値たる作動データを作製してもよい(この場合、例えば、経過時間と速度とから移動距離に置き換えてデータを作成し、制御手段に登録することができる)。そして、搬送ロボット1のロボットハンド12の所定部分が両検知手段2a、2bにて順次検知される際に、所定の範囲を超えて変化した場合には、搬送ロボット1の異常を判断してもよい。
 更に、上記においては、各検知手段2a、2bにて検知手段2の信号が切り替わるタイミングから搬送ロボットの健常性を診断することを例に説明したが、これに限定されるものではない。例えば、駆動手段たるモータがエンコーダを備えている場合、検知手段2aまたは2bのいずれかでロボットアーム11やロボットハンド12の所定部分が検知されたときのエンコーダ座標やエンコーダ値(アドレス)から基準値たる作動データを取得するようにしてもよい。そして、同一の検知手段で上記所定部分が検知されたときのエンコーダ座標やエンコーダ値と、基準値たる作動データとを比較し、所定の範囲を超えて変化した場合には、搬送ロボット1の異常を判断する。
 なお、ロボットアーム11自体が上下動するように構成されているような場合には、予め設定された高さ位置で搬送ロボット1の健常性を判断するようにすればよい。このように同一の高さ位置にて搬送ロボット1の異常を判断すれば、ロボットアーム11を旋回または伸縮させるときに、ベアリング等の部品が劣化していると、検知手段2たる光学センサの光軸に対するロボットアーム11やロボットハンド12の傾きが変わる、これにより、検知手段2で検知されるまでの時間が変化することで故障の予兆を捉えることができる。
 ここで、上記搬送ロボット1の健常性(異常)判断は、例えば、搬送ロボットのイニシャライズ動作等の所定の規定動作中でロボットハンド12が基板Sを支持していない場合に行うことができる。但し、検知手段2で検知されるロボットアーム11の所定部分が、基板Sへの各種の処理(生産)中で一の処理室から他の処理室に搬送する間でいずれかの検知手段2で検知される場合には、基板への各種の処理(生産)中であっても、搬送ロボット1の健常性判断を行うことができる。なお、検知手段2で検知されるロボットアーム11の所定部分は、上記貫通孔17、18に限定されるものではなく、例えば、ロボットハンド12で基板Sを支持した状態でも表面が露出している端部に形成した切欠きから構成してもよい。
 ところで、搬送ロボット2が、回転軸10a、10bに連結された2本のロボットアーム11を有するような場合、両ロボットアームが同時に旋回及び伸縮動作を行うようになる。このとき、いずれかの検知手段2で両ロボットアームの所定部分が同時検知されるようになり、データ量が増加して健常性判断のための制御が複雑になる虞がある。他方で、クラスタツール装置において処理室(例えば、8個)が複数あるような場合にも、検知手段2毎にロボットアームの所定部分の検知を行うのであれば、同様の問題が生じ得る。
 そこで、例えば、第1の処理室C1から第2の処理室C2に基板Sを搬送するときに検知手段2bでロボットアーム11が検知される場合のように、搬送ロボット1が所定動作する際の特定の作動データのみを抽出して取得するようにして、搬送ロボット1の健常性判断の基準となる検知手段を定めることで、健常性判断を行うようにしてもよい。この場合、各検知手段2や2個のモータを割り振って識別番号を制御手段に登録しておき、そのうちから選択した識別番号のものについてのみ、特定の作動データを作成すればよい。
 以上説明したように、既存の処理装置1の設備として設けられている基板位置検知用の検知手段2を利用して、搬送ロボット1の健常性を判断することが可能になる。結果として、部品点数の増加を招くことなく、その上、低コストが図れる。また、異常発生の予兆を早期に捉えて計画的なメンテナンスを可能にし、結果として、稼働率の向上を図ることができる。
 尚、上記実施の形態においては、搬送ロボット1により第1の処理室C1から第2の処理室C2に基板Sを搬送させる場合を例に説明したが、これに限定されるものではなく、既存の処理装置において検知手段が設けられ、搬送ロボット1を作動させたときに検知手段2により検知されるものであれば、本発明を適用できる。
 更に、上記実施の形態においては、規定動作や生産中での健常性判断を主として説明したが、ロボットハンド12に形成した貫通孔17が各検知手段2の検知位置2aや2bを横切る位置において、ロボットアーム11を伸縮及び旋回させ、各検知手段2a、2bにてON、OFFに信号が切り替わる位置を求め、ON、OFFに信号が切り替わる際のエンコーダのアドレスの平均値から、貫通孔17の中心を特定する。そして、このような貫通孔17の中心の特定を定期的に行うことで、例えば、ロボットハンド12が衝撃等を受けてロボットアーム11に対してロボットハンド12が位置ずれを起こしてことを検知することも可能となる。
(a)及び(b)は、搬送ロボットを具備する基板処理装置を示す模式的に示す平面図及び断面図。 本発明の実施の形態のロボットハンドを示す平面図。 処理室間でのロボットハンドによる基板の搬送を説明する模式的平面図。
符号の説明
11 ロボットアーム
12 ロボットハンド
2 検知手段 
2a、2b 検知位置
S 基板 
A ロードロック室 
C 処理室 

Claims (7)

  1.  処理すべき基板を支持するロボットハンドを先端に有するロボットアーム及び当該ロボットアームを駆動する駆動手段を有する搬送ロボットと、
     当該ロボットアームにより複数の処理室間で基板を搬送する際にロボットハンドにより支持された基板を検知するように配置された少なくとも1個の検知手段とを備え、
     前記処理室間でロボットアームにより基板を搬送する際にいずれかの検知手段にてロボットアームの所定部分が検知される場合に、当該検知手段にて検知されるロボットアームの作動データを取得して基準値を作製し、前記ロボットアームの所定部分が前記検知手段で検知されると、そのときの作動データを取得し、この作動データと前記基準値とを比較し、所定の範囲を超えて変化した場合に搬送ロボットの異常を判断するようにしたことを特徴とする搬送ロボットの診断システム。
  2.  前記ロボットアームは、少なくとも同一平面上を旋回及び伸縮自在に駆動されるように構成されたものであり、前記検知手段は、前記平面に対し垂直に投光するように配置した光学センサであることを特徴とする請求項1記載の搬送ロボットの診断システム。
  3.  前記駆動手段はエンコーダを備えたモータであり、検知手段にてロボットアームの所定部分が検知されたときのエンコーダのアドレスから前記作動データを取得するようにしたことを特徴とする請求項1または請求項2記載の搬送ロボットの診断システム。
  4.  前記検知手段のいずれかにてロボットアームの所定部分が検知された後、他の検知手段にてロボットアームの所定部分が検知されるまでの時間、または搬送ロボットの作動開始指示から前記検知手段のいずれかにてロボットアームの所定部分が検知されるまでの時間から前記作動データを取得することを特徴とする請求項1または請求項2記載の搬送ロボットの診断システム。
  5.  前記搬送ロボットの異常判断を所定の規定動作の際に行うことを特徴とする請求項1乃至請求項4のいずれか1項に記載の搬送ロボットの診断システム。
  6.  前記ロボットアームの所定部分を検出する場合、特定の作動データのみを抽出して取得することを特徴とする請求項1乃至請求項5のいずれか1項に記載の搬送ロボットの診断システム。
  7.  前記ロボットアームを昇降自在に構成し、所定の高さ位置にて搬送ロボットの異常判断を行うことを特徴とする請求項1乃至請求項6のいずれか1項に記載の搬送ロボットの診断システム。
PCT/JP2008/073731 2007-12-27 2008-12-26 搬送ロボットの診断システム WO2009084630A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2008801226544A CN101911274B (zh) 2007-12-27 2008-12-26 传送机器人的诊断系统
JP2009548089A JP5053388B2 (ja) 2007-12-27 2008-12-26 搬送ロボットの診断システム
US12/745,823 US20100256811A1 (en) 2007-12-27 2008-12-26 Diagnosis system for transport robot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007337164 2007-12-27
JP2007-337164 2007-12-27

Publications (1)

Publication Number Publication Date
WO2009084630A1 true WO2009084630A1 (ja) 2009-07-09

Family

ID=40824343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073731 WO2009084630A1 (ja) 2007-12-27 2008-12-26 搬送ロボットの診断システム

Country Status (6)

Country Link
US (1) US20100256811A1 (ja)
JP (1) JP5053388B2 (ja)
KR (1) KR101209020B1 (ja)
CN (1) CN101911274B (ja)
TW (1) TWI507278B (ja)
WO (1) WO2009084630A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012238762A (ja) * 2011-05-12 2012-12-06 Tokyo Electron Ltd 基板搬送装置、これを備える塗布現像装置、及び基板搬送方法
CN104022051A (zh) * 2014-04-22 2014-09-03 上海华力微电子有限公司 一种检测机台机械臂出现异常的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101098556B1 (ko) * 2011-01-20 2011-12-26 (주)해피글로벌솔루션 로봇 진단시스템 및 이를 이용한 로봇 진단방법
JP5572758B2 (ja) * 2011-03-16 2014-08-13 株式会社アルバック 搬送装置、真空装置
KR102022804B1 (ko) * 2017-11-02 2019-09-18 조재용 웨이퍼 이송용 로봇 감지장치
CN110834334B (zh) * 2019-11-20 2023-11-07 常州捷佳创精密机械有限公司 机械手的控制方法、装置及处理槽设备
KR102597583B1 (ko) * 2020-12-29 2023-11-02 세메스 주식회사 이송 로봇의 이상 진단 장치 및 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326172A (ja) * 1993-05-10 1994-11-25 Tel Varian Ltd 移載装置
JPH10244479A (ja) * 1997-03-03 1998-09-14 Sumitomo Eaton Noba Kk ディスク搬送装置
JP2000127069A (ja) * 1998-10-27 2000-05-09 Tokyo Electron Ltd 搬送システムの搬送位置合わせ方法
JP2001332604A (ja) * 2000-05-25 2001-11-30 Nec Kyushu Ltd 搬送位置ずれ検出機構
JP2002178279A (ja) * 2000-12-12 2002-06-25 Ulvac Japan Ltd 基板搬送方法
JP2004241484A (ja) * 2003-02-04 2004-08-26 Tokyo Electron Ltd 基板の搬送装置及び搬送装置の位置ずれ検出方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5044752A (en) * 1989-06-30 1991-09-03 General Signal Corporation Apparatus and process for positioning wafers in receiving devices
SE508161C2 (sv) * 1995-03-30 1998-09-07 Asea Brown Boveri Förfarande och anordning för kalibrering av rörelseaxlar hos en industrirobot
JPH1068759A (ja) * 1996-05-31 1998-03-10 Advantest Corp 吸着物検知装置、該装置を用いた吸着物検知方法、該装置を用いた位置ずれ検知方法、および該装置を用いた清掃方法
US5980194A (en) * 1996-07-15 1999-11-09 Applied Materials, Inc. Wafer position error detection and correction system
US5783834A (en) * 1997-02-20 1998-07-21 Modular Process Technology Method and process for automatic training of precise spatial locations to a robot
JPH10233426A (ja) * 1997-02-20 1998-09-02 Tokyo Electron Ltd 自動ティ−チング方法
JP3288250B2 (ja) * 1997-03-25 2002-06-04 ファナック株式会社 ロボット制御装置
US5963315A (en) * 1997-08-18 1999-10-05 Motorola, Inc. Method and apparatus for processing a semiconductor wafer on a robotic track having access to in situ wafer backside particle detection
JPH11254359A (ja) * 1998-03-12 1999-09-21 Toyota Autom Loom Works Ltd 部材搬送システム
GB2349204B (en) * 1999-04-19 2004-03-03 Applied Materials Inc A method of detecting the position of a wafer
JP2001127136A (ja) * 1999-10-29 2001-05-11 Applied Materials Inc 基板搬送ロボットの検査装置
TW512478B (en) * 2000-09-14 2002-12-01 Olympus Optical Co Alignment apparatus
US6556887B2 (en) * 2001-07-12 2003-04-29 Applied Materials, Inc. Method for determining a position of a robot
TW528709B (en) * 2002-08-01 2003-04-21 Nanya Technology Corp Wafer carrying device with blade position detection
KR101015778B1 (ko) * 2003-06-03 2011-02-22 도쿄엘렉트론가부시키가이샤 기판 처리장치 및 기판 수수 위치의 조정 방법
US7031802B2 (en) * 2003-08-13 2006-04-18 Hewlett-Packard Development Company, L.P. Semi-autonomous operation of a robotic device
US20050137751A1 (en) * 2003-12-05 2005-06-23 Cox Damon K. Auto-diagnostic method and apparatus
JP4534886B2 (ja) * 2005-07-15 2010-09-01 東京エレクトロン株式会社 処理システム
CN100478789C (zh) * 2005-09-28 2009-04-15 中国科学院自动化研究所 掩模传输系统四象限对准装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326172A (ja) * 1993-05-10 1994-11-25 Tel Varian Ltd 移載装置
JPH10244479A (ja) * 1997-03-03 1998-09-14 Sumitomo Eaton Noba Kk ディスク搬送装置
JP2000127069A (ja) * 1998-10-27 2000-05-09 Tokyo Electron Ltd 搬送システムの搬送位置合わせ方法
JP2001332604A (ja) * 2000-05-25 2001-11-30 Nec Kyushu Ltd 搬送位置ずれ検出機構
JP2002178279A (ja) * 2000-12-12 2002-06-25 Ulvac Japan Ltd 基板搬送方法
JP2004241484A (ja) * 2003-02-04 2004-08-26 Tokyo Electron Ltd 基板の搬送装置及び搬送装置の位置ずれ検出方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012238762A (ja) * 2011-05-12 2012-12-06 Tokyo Electron Ltd 基板搬送装置、これを備える塗布現像装置、及び基板搬送方法
CN104022051A (zh) * 2014-04-22 2014-09-03 上海华力微电子有限公司 一种检测机台机械臂出现异常的方法

Also Published As

Publication number Publication date
US20100256811A1 (en) 2010-10-07
CN101911274B (zh) 2012-07-04
KR101209020B1 (ko) 2012-12-06
CN101911274A (zh) 2010-12-08
TW200942383A (en) 2009-10-16
JP5053388B2 (ja) 2012-10-17
KR20100091237A (ko) 2010-08-18
JPWO2009084630A1 (ja) 2011-05-19
TWI507278B (zh) 2015-11-11

Similar Documents

Publication Publication Date Title
JP5053388B2 (ja) 搬送ロボットの診断システム
JPWO2010013732A1 (ja) 搬送ロボットのティーチング方法
WO2016125752A1 (ja) 基板搬送ロボットおよび基板搬送方法
JP6979012B2 (ja) 基板搬送装置及び基板搬送ロボットの教示方法
JP2010162611A (ja) 相対ティーチング方法
KR101810112B1 (ko) 로봇 및 로봇의 제어 방법
JP2000127069A (ja) 搬送システムの搬送位置合わせ方法
WO2010013422A1 (ja) 搬送ロボットの制御方法
US7532940B2 (en) Transfer mechanism and semiconductor processing system
KR101503119B1 (ko) 반송 시스템
CN113226664B (zh) 机器人的位置修正方法以及机器人
CN113226660B (zh) 机器人的位置修正方法以及机器人
KR102195817B1 (ko) 기판 반송 장치
JP2008300608A (ja) 昇降位置確認手段を有する基板搬送装置及びそれを備えた半導体製造装置
JP2009049251A (ja) ウエハ搬送装置
JP3674063B2 (ja) ウェハ搬送装置
JP7149815B2 (ja) ロボットシステム及びその運転方法
JP2022104003A (ja) ロボットおよびロボットの制御方法
WO2022137917A1 (ja) 基板搬送ロボットの制御装置及び関節モータの制御方法
TW202221439A (zh) 機器人系統及滑動判定方法
JP7414426B2 (ja) ロボットシステム
US20240025671A1 (en) Substrate conveying robot system
KR20050052744A (ko) 반도체 제조 장치용 로봇 블레이드
JP2011108923A (ja) 真空処理装置
KR20060030678A (ko) 반도체 제조 장비

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880122654.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08866725

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009548089

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12745823

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107014561

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 08866725

Country of ref document: EP

Kind code of ref document: A1