WO2009084097A1 - 電力変換器の制御装置 - Google Patents

電力変換器の制御装置 Download PDF

Info

Publication number
WO2009084097A1
WO2009084097A1 PCT/JP2007/075206 JP2007075206W WO2009084097A1 WO 2009084097 A1 WO2009084097 A1 WO 2009084097A1 JP 2007075206 W JP2007075206 W JP 2007075206W WO 2009084097 A1 WO2009084097 A1 WO 2009084097A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage command
phase
switching
power converter
voltage
Prior art date
Application number
PCT/JP2007/075206
Other languages
English (en)
French (fr)
Inventor
Shinichi Furutani
Akira Satake
Jun Sawaki
Original Assignee
Mitsubishi Electric Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation filed Critical Mitsubishi Electric Corporation
Priority to DE112007003741T priority Critical patent/DE112007003741T5/de
Priority to US12/810,072 priority patent/US8750009B2/en
Priority to PCT/JP2007/075206 priority patent/WO2009084097A1/ja
Priority to CN200780102097.5A priority patent/CN101911464B/zh
Priority to JP2009547841A priority patent/JP5220031B2/ja
Priority to TW097127751A priority patent/TWI366975B/zh
Publication of WO2009084097A1 publication Critical patent/WO2009084097A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output

Definitions

  • the present invention relates to a control device for a power converter composed of a plurality of semiconductor switching elements, and in particular, voltage command and switching for a PWM inverter controlled using pulse width modulation (hereinafter referred to as “PWM”).
  • PWM pulse width modulation
  • the present invention relates to synchronous PWM control for synchronizing with a pattern.
  • a switching pattern for controlling the PWM inverter is calculated.
  • a method of calculating the switching pattern for example, a method of synchronizing a carrier wave such as a triangular wave with the phase angle of the voltage command (hereinafter referred to as “carrier wave comparison method”), or a method of directly referring to the phase of the voltage command ( (Hereinafter referred to as “phase reference method”) and the like.
  • the carrier wave comparison method has a feature that the control system can be simply configured and has excellent responsiveness to the voltage command, whereas the phase reference method is included in the inverter output voltage. It has the characteristic that a harmonic component can be suppressed effectively.
  • the phase reference method the following Non-Patent Documents 1 and 2 and Patent Document 1 exist as typical technical documents.
  • the rough shape of the switching pattern can be grasped.
  • the shape of the inverter output voltage can be grasped in advance. Therefore, in the synchronous PWM control, it is possible to obtain in advance a switching phase that provides desired characteristics for the inverter output voltage waveform for one period of the voltage command.
  • Non-Patent Documents 1 and 2 disclose a switching phase setting technique that enables suppression of harmonic components included in the inverter output voltage and designation of an arbitrary fundamental component.
  • Patent Document 1 discloses a switching phase setting method in which a fundamental wave component included in an inverter output voltage waveform matches a voltage command.
  • the carrier wave comparison method when focusing on the amplitude and phase of the fundamental component of the inverter output voltage, the phase matches the phase of the voltage command, but the amplitude is relatively large between the voltage command and the voltage command. There was a problem that an error occurred. In this error problem, the following effects were concerned. (1) For example, when controlling a motor, which is a load, by applying an open loop control method such as V / f control, the motor torque accuracy decreases due to excessive or insufficient inverter voltage output. (2) For example, when current control of a motor that is a load is performed, the current control gain fluctuates equivalently. (3) When performing control that substitutes the inverter output voltage using a voltage command, for example, the voltage limiter process is affected, and the current control system becomes unstable. For this reason, in the carrier wave comparison method, measures such as gain compensation for the voltage command have been taken.
  • the phase reference methods shown in Non-Patent Documents 1 and 2 and Patent Document 1 have a problem that the response to a voltage command is lowered.
  • the voltage command fluctuates finely so that a predetermined current flows.
  • the switching phase of the switching pattern for obtaining desired characteristics is calculated using Fourier analysis or the like. Therefore, the switching phase of the switching pattern in the control system is generally a function or a table with respect to the voltage command amplitude.
  • the above switching phase also changes finely, and the switching phase set so as to obtain the desired characteristics is not reproduced, and it is necessary to perform priority control regarding the switching phase. Sex occurs.
  • priority is given to the preset switching phase, the reflection of the voltage command amplitude change to the switching phase is limited to one cycle or half cycle of the voltage command at a time. This causes the problem of lowering.
  • the carrier wave comparison method has a problem that a relatively large error occurs between the voltage command and the fundamental component of the inverter output voltage, although it follows the change of the voltage command relatively quickly. there were.
  • the phase reference method has a problem that the responsiveness to the voltage command is deteriorated particularly when a desired characteristic is obtained by the switching phase set by using Fourier analysis.
  • the present invention has been made in view of the above, and suppresses an error between the voltage command and the inverter output voltage and responds to the voltage command at high speed even when the phase reference method is applied.
  • An object of the present invention is to provide a control device for a power converter that can be used.
  • a control device for a power converter is applied to a power converter including an inverter unit composed of a plurality of semiconductor switching elements, and performs pulse width modulation.
  • a control device for a power converter that controls a switching element of the inverter unit, a voltage command generation unit that generates a voltage command signal and switching for controlling the switching element of the inverter unit based on the voltage command signal
  • a switching pattern calculation unit that calculates a pattern, and the switching pattern calculation unit performs a switching pattern calculation of a synchronous PWM method, and an average value of output voltages (output voltage average value) output from the inverter unit is A switching pattern that matches the voltage command is output.
  • the switching pattern calculation unit performs the switching pattern calculation of the synchronous PWM method, and outputs a switching pattern in which the average value of the inverter output voltage matches the voltage command. Even when the phase reference method is applied, it is possible to suppress the error between the voltage command and the inverter output voltage and to respond to the voltage command at high speed.
  • FIG. 1 is a diagram illustrating a basic configuration of a power converter according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a functional configuration of the control device for the power converter according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing the relationship in the dq coordinate system of the voltage command vector input to the switching pattern calculation unit and each signal processed by the switching pattern calculation unit.
  • FIG. 4 is a diagram for explaining the operation of the control device according to the first embodiment.
  • FIG. 5 is a chart in which switching operations of the inverter unit controlled by the control device according to the first embodiment are classified by phase timing.
  • FIG. 6 is a diagram for explaining the operation of the control device according to the second embodiment.
  • FIG. 7 is an enlarged view of sections A to G shown in FIG.
  • FIG. 8 is a chart in which switching operations in the synchronous 5-pulse mode are classified by phase timing.
  • FIG. 9 is a diagram for explaining the operation of the control device according to the fourth
  • FIG. 1 is a diagram illustrating a basic configuration of a power converter according to a first embodiment of the present invention.
  • a DC power supply unit 21, an inverter unit 22, and a control unit 50 that controls the semiconductor switching elements 221 to 226 of the inverter unit 22 using the PWM, and the power converter 10 connected to the load 23 is provided. It is configured.
  • the DC power supply unit 21 supplies DC power to the inverter unit 22.
  • the inverter unit 22 includes semiconductor switching elements 221 to 223 which are P-side semiconductor switching elements and semiconductor switching elements 224 to 226 which are N-side semiconductor switching elements.
  • a series circuit in which a certain semiconductor switching element 221 and a semiconductor switching element 224 which is an N-side semiconductor switching element are connected in series is configured, and both ends of this series circuit are connected to positive and negative power supply terminals of the DC power supply unit 21.
  • FIG. 1 the configuration of the two-level / three-phase inverter is shown as an example, but the configuration is not limited to this configuration, and a power converter other than the two-level / three-phase inverter may be used.
  • FIG. 2 is a block diagram illustrating a functional configuration of the control device for the power converter according to the first embodiment of the present invention, and is a diagram illustrating the configuration of the control unit 50 illustrated in FIG. 1.
  • the control unit 50 includes a voltage command generation unit 51 and a switching pattern calculation unit 54.
  • the switching pattern calculation unit 54 includes a phase calculation unit 541, an addition unit 543, a norm calculation unit 545, a sample hold unit (hereinafter referred to as “S / H unit”) 547, a switching phase calculation unit 549, and a phase comparison unit 551. It has.
  • FIG. 3 shows the relationship between the voltage command vector input to the switching pattern calculation unit 54 and each signal processed by the switching pattern calculation unit 54 in a two-axis orthogonal rotation coordinate system (hereinafter referred to as “dq coordinate system”).
  • dq coordinate system two-axis orthogonal rotation coordinate system
  • the voltage command generator 51 outputs voltage command signals 52 and 53 in the dq coordinate system to the switching pattern calculator 54.
  • the voltage command signal 52 is a voltage command component in the d-axis direction
  • the voltage command signal 53 is a voltage command component in the q-axis direction.
  • the input voltage command signals 52 and 53 are input to the phase calculator 541, and the phase signal 542 is calculated.
  • the phase calculation unit 541 is a functional unit that performs an arctangent calculation.
  • the phase signal 542 calculated by the phase calculation unit 541 and the input voltage command signals 52 and 53 have the relationship shown in FIG. is there.
  • phase calculation unit 541 may directly calculate this mathematical formula, or may obtain the phase signal 542 with reference to a table created in advance.
  • the phase signal 542 is added to the coordinate conversion phase signal 55 by the adder 543 to obtain a voltage command phase signal 544 on a two-phase stationary coordinate system (hereinafter referred to as “ ⁇ coordinate system”).
  • ⁇ coordinate system a two-phase stationary coordinate system
  • the norm calculation unit 545 calculates a voltage command norm signal 546 from the voltage command signals 52 and 53. The relationship between the voltage command norm signal 546 and other signals is also shown in FIG.
  • the voltage command norm signal 546 is Vn *, the following relationship is established. Note that the voltage command norm signal 546 may use either direct calculation or table reference as in the case of the phase signal 542.
  • the voltage command norm signal 546 obtained by the norm calculation unit 545 is sampled and held by the S / H unit 547 and then input to the switching phase calculation unit 549.
  • the switching phase calculation unit 549 calculates the switching phase signal 550.
  • the phase comparison unit 551 outputs the switching pattern signal 56 with reference to the voltage command phase signal 544 and the switching phase signal 550.
  • the switching pattern signal 56 is output to the inverter unit 22. That is, each semiconductor switching element of the inverter unit 22 is controlled according to the switching pattern signal 56.
  • the switching phase signal 550 and the switching pattern signal 56 are indicated by a plurality of arrows, but correspond to control signals for the respective semiconductor switching elements of the inverter unit 22. That is, the number of outputs of the switching phase signal 550 and the switching pattern signal 56 varies depending on the number of phases and the number of levels of the power converter.
  • the switching phase signal 550 is calculated from the voltage command norm signal 546.
  • the average value of the output voltage output from the inverter unit 22 (hereinafter simply referred to as “output voltage average value”). ) Is introduced.
  • the output voltage average value and the voltage command are preferably values in the dq coordinate system. This is because the dq coordinate system is a rotational coordinate, and therefore it is possible to incorporate a phase change with the progress of time when considering the output voltage average value. By this control, an error when compared with the average value in the ⁇ coordinate system is suppressed, and the phase delay of the inverter output voltage can be suppressed as a result of the control.
  • the switching pattern calculation can be simplified by using the output voltage average value as a component in the voltage command vector direction of the dq coordinate system.
  • the voltage command vector direction component is not used, it is necessary to consider the average values of the d-axis component and the q-axis component. However, there are cases where both cannot be satisfied at the same time in the switching pattern calculation. In this case, it is necessary to set the priority of both.
  • this type of calculation can be omitted by using the voltage command vector direction component.
  • the output voltage average value is preferably calculated based on the phase of the ⁇ coordinate system.
  • FIGS. 4 is a diagram for explaining the operation of the control device according to the first embodiment
  • FIG. 5 is a timing diagram illustrating the switching operation of the inverter unit controlled by the control device according to the first embodiment. It is the chart classified by.
  • a two-level / three-phase inverter is taken as an example, and a case where this inverter is controlled in a synchronous three-pulse mode will be described.
  • FIGS. 4A is a diagram in which the horizontal axis represents time and the vertical axis represents the phase of the U-phase voltage command (U-phase voltage command phase).
  • the horizontal axis represents time
  • the vertical axis represents the P-side switching pattern of each phase and each inverter output voltage at that time.
  • the relationship between time and the U-phase voltage command is proportional, so each diagram in FIGS. 5B to 5D is regarded as a relationship to the U-phase voltage command phase. be able to.
  • 4C and 4D show waveforms obtained by observing the output voltage of the inverter on the dq coordinate system.
  • 4C shows a waveform of a component in the voltage command vector direction (hereinafter referred to as “voltage command vector direction component”)
  • FIG. 4D shows a component in the direction orthogonal to the voltage command vector direction (hereinafter referred to as “voltage”). This is a waveform of “command vector orthogonal direction component”.
  • the U-phase voltage command waveform can be obtained by cosine calculation with respect to the phase of FIG.
  • these sections are the minimum sections in which the output voltage average value can be controlled. This is because, in each section defined as above, the operating point of group ii is a fixed point that determines the start or end of each section, whereas the operating point of group i is an operation that can be changed within each section. Because it becomes a point.
  • is introduced as a parameter for determining the switching timing in the section A.
  • the phase timing of each switching takes a value as shown in FIG.
  • These values correspond to the switching phase signal 550 output from the switching phase calculation unit 549 (see FIG. 2).
  • the switching timing (phase: ⁇ ) in section A is controlled so that the voltage command vector direction component of the inverter output shown in FIG. 4C matches the voltage command.
  • the timing control by the operating point (3) can be performed by the operation of ⁇ .
  • Convert this to a value on the rotating coordinate.
  • a voltage command vector direction component hereinafter referred to as “dv axis”
  • qv axis voltage command vector orthogonal direction component
  • each voltage is expressed by the following equation. Note that ⁇ vu corresponds to the voltage command phase signal 544 output from the adder 543 (see FIG. 2).
  • control is performed so that the following expression is established.
  • this equation it is considered that the voltage is zero in the phase after the operating point (3).
  • becomes the following equation. This ⁇ may be calculated each time, or may be prepared as a table for the voltage command norm Vn *.
  • the switching phase calculation unit 549 calculates ⁇ from the voltage command norm signal 548 (Vn *) according to the equation (1-11), and outputs a switching phase signal 550 as shown in FIG. To do. Further, the phase comparison unit 551 refers to the switching phase signal 550 and the voltage command phase signal 544, as shown in FIGS. 4A, 4B, and 5, and supplies the switching pattern signal 56 to be applied to each phase. calculate.
  • the S / H unit 547 is not necessarily a necessary component.
  • the voltage command fluctuates finely, such as when the voltage command generation unit 51 performs current control, a phenomenon called chattering may occur, and a plurality of switching operations may occur.
  • the S / H unit 547 is effective for preventing such chattering, and can contribute to stable operation of the power converter.
  • the timing of the sample hold in the S / H unit 547 is convenient, for example, when the output voltage average value shown in FIG. It is.
  • an appropriate setting may be performed in accordance with the control mode in the load or voltage command generation unit 51. For example, if the sample hold is performed more finely than the above timing, the dead time is suppressed and the responsiveness is improved.
  • the control device for the power converter since the switching pattern in which the output voltage average value coincides with the voltage command is calculated and output, even when the synchronous PWM control is applied. An error between the voltage command and the inverter output voltage is suppressed, and a highly accurate voltage can be obtained.
  • the output voltage average value used as the evaluation index in the switching pattern calculation is calculated using the value on the dq coordinate system. Voltage phase delay can be suppressed.
  • the component in the direction of the voltage command vector is used as the output voltage average value, so that the calculation of the switching pattern can be simplified.
  • the average value in the section obtained by dividing the phase of the voltage command into a plurality of sections is used as the output voltage average value. Response can be speeded up.
  • control apparatus for the power converter according to the first embodiment it is possible to effectively realize both voltage command accuracy and responsiveness which are not found in the conventional synchronous PWM control system.
  • Embodiment 2 the case where the two-level / three-phase inverter is controlled in the synchronous three-pulse mode has been described as an example. However, in the case where the control is performed in other pulse modes, the switching is performed using the same guidelines as in the first embodiment. Pattern calculations can be performed.
  • FIG. 6 (a) is a diagram showing the U-phase voltage command phase as in FIG. 4 (a).
  • FIGS. 6B to 6D show the P-side switching pattern in each phase and the inverter output voltage at that time when the two-level / three-phase inverter is controlled in the synchronous 5-pulse mode. Yes.
  • the switching operation occurs 30 times for one period of the voltage command, and the voltage command phase is divided into 24.
  • numbers (1) to (30) are given to the respective operating points, and symbols A to X are given to the respective sections.
  • FIG. 7 is an enlarged view of sections A to G shown in FIG. 6, and FIG. 8 is a chart in which switching operations in the synchronous 5-pulse mode are classified by phase timing. Note that the description of the operation here will be made focusing on the section C and the section D.
  • the inverter output voltage waveform in the voltage command vector direction component is different from that in the synchronous three-pulse mode (see FIG. 4) of the first embodiment.
  • the synchronous 5-pulse mode of the second embodiment two types of ⁇ for determining timing are required, ⁇ 1 and ⁇ 2.
  • the phase timing of each switching takes a value as shown in FIG. 8, and each of these values corresponds to the switching phase signal 550 output from the switching phase calculation unit 549. (See FIG. 2).
  • the P-side switch state of each UVW phase is “ON”, “ON”, “ON”. It has become.
  • the N-side switch state of each UVW phase is “off”, “off”, and “off”, and thus is a zero voltage interval.
  • the P-side switch state of each UVW phase is “ON”, “ON”, and “OFF”, which is the same as the interval B described in the first embodiment. Therefore, the inverter output voltage waveform excluding the zero voltage section can be expressed by the above-described equations (1-8) and (1-9) in the dv-axis direction and the qv-axis direction, respectively. Therefore, in the section C, in order to make the average value in the dv-axis direction coincide with the voltage command norm Vn *, the following equation may be calculated in consideration of the zero voltage section.
  • ⁇ 1 and ⁇ 2 become the following equations, respectively.
  • these ⁇ 1 and ⁇ 2 may be calculated each time or may be prepared as a table for the voltage command norm Vn *.
  • section C and section D have been described, but the same applies to other sections. Specifically, by performing switching control as shown in FIG. 6B at the switching phase shown in FIG. 8, the output voltage average value can be matched with the voltage command.
  • the output voltage average value is calculated in the two-level / three-phase inverter described in the first embodiment, when the number of synchronization pulses is n, the voltage command phase is divided by “6n-6”. Become. That is, the number of switching of the semiconductor switching element is increased by increasing the number of synchronization pulses, and an operable amount (degree of freedom) other than the amplitude / phase of the output voltage appears.
  • a freedom degree is utilized for harmonic reduction. This embodiment is greatly different from Non-Patent Documents 1 and 2 in that the degree of freedom is used to increase the number of inverter output voltage updates.
  • Embodiment 3 In the first embodiment described above, the embodiment in which the voltage command phase section for calculating the output voltage average value is divided into twelve when the two-level / three-phase inverter is controlled in the synchronous three-pulse mode is shown as an example.
  • the second embodiment an example in which the voltage command phase interval for calculating the output voltage average value is divided into 24 when the two-level / three-phase inverter is controlled in the synchronous five-pulse mode is shown as an example.
  • the number of divisions is set to half, that is, by setting two adjacent sections as one new section, the number of sections is reduced, and calculation time and processing time are reduced. The embodiment to shorten is shown.
  • Section setting that satisfies the two conditions that the waveforms of adjacent sections are point-symmetric when the point where the output voltage becomes zero is used as the boundary point of the section may be performed.
  • the boundary point between the section B and the section C satisfies the above two conditions as shown in FIG. Therefore, the sections A and B are set as one section, and the sections C and D are set as one section.
  • the response performance decreases because the number of times the output voltage average value is updated decreases.
  • the voltage command vector orthogonal component (qv axis in the output voltage average value). Since the average value of the component) can be set to 0, the accuracy of the output voltage can be improved. This can be explained as follows.
  • the case where the power converter is controlled by the two-level / three-phase inverter in the synchronous three-pulse mode is used as an example.
  • qv-axis voltage calculation is performed in a section AB that is a combination of the sections A and B. Since the calculation procedure is the same as the procedure shown in the first embodiment, detailed description thereof is omitted.
  • the section (original section A) before the operating point (2) can be expressed by the following equation (3-1). However, this expression is a value in the phase after the operating point (1), and the qv-axis voltage is 0 in the phase before the operating point (1).
  • the section (original section B) after the operating point (2) can be expressed by the following equation (3-2). In this case, the qv-axis voltage is zero at the phase after the operating point (3).
  • the average value is calculated from the above equations (3-1) and (3-2).
  • the output voltage average value (Vqv_AV) in the qv-axis direction is represented by the expression (3-3) in the section A and is represented by the expression (3-4) in the section B.
  • the inverter output voltage average value in the qv-axis direction in the sections A and B is the same except for the polarity. For this reason, if ⁇ in both equations is the same, the inverter output voltage average value in the section AB becomes zero.
  • the average of the voltage command vector orthogonal component (qv axis component) in the output voltage average value is changed by changing the section of the output voltage average value. Since the value can be set to 0, the accuracy of the output voltage of the power converter can be improved.
  • Embodiment 4 In the synchronous PWM control described in the first to third embodiments, the embodiment in the same pulse mode such as the synchronous three-pulse mode or the synchronous five-pulse mode is shown as an example, but in this embodiment, different pulses are used.
  • the embodiment shows a combination of modes, that is, pulse modes having different numbers of synchronization pulses.
  • the switch state of each phase does not change before and after switching of the synchronization pulse mode, and This is based on the idea that if the switching is performed freely as long as it is a boundary point of the section for calculating the voltage average value described in 3, there is no adverse effect.
  • FIG. 9 is a diagram for explaining the operation of the control device according to the fourth embodiment.
  • FIG. 9B shows each phase switching pattern in the synchronous 3-pulse mode shown in FIG. 4
  • FIG. 9C shows each phase switching pattern in the synchronous 5-pulse mode shown in FIG. Is shown.
  • subscripts “3” and “5” are added for distinguishing between the section of the synchronous 3-pulse mode and the section of the synchronous 5-pulse mode.
  • the boundary point between the section A3 and the section B3 is the boundary point (the operating point of the ii group) of the section for calculating the voltage average value described in the first to third embodiments.
  • the switch state of each phase does not change between the pulse modes before and after the boundary point. Therefore, this boundary point can be used as the switching timing of both pulse modes.
  • the boundary points of “section C3 and section D3”, “section E3 and section F3”, “section G3 and section H3”, “section I3 and section J3”, and “section K3 and section L3” are also used as switching timings. Can be used. That is, there are a plurality of switchable timings in one cycle of the voltage command.
  • the power converter is a two-level / three-phase inverter and is controlled using the synchronous three-pulse mode and the synchronous five-pulse mode
  • these pulse modes are selected at arbitrary boundary points indicated by the broken line portion in FIG. It is possible to suitably perform switching between them.
  • a pulse mode operation in which the number of synchronization pulses is equivalently changed can be realized by continuously using pulse modes having different numbers of synchronization pulses at an appropriate ratio. More specifically, for example, when the synchronous 3-pulse mode and the synchronous 5-pulse mode are used at a ratio of 1: 1, the 4-pulse mode can be equivalently realized from the viewpoint of the number of times of switching per unit time. In this case, by using the synchronous 3 pulse mode and the synchronous 5 pulse mode alternately for each section, the reproduction accuracy can be improved as compared with switching for each cycle of the voltage command phase.
  • the use ratio of the synchronous pulse mode may not be the 1: 1 ratio shown above, and any ratio can be applied.
  • the synchronous 3-pulse mode and the 5-pulse mode there are 6 sections that can be selected in one cycle of the voltage command phase (see FIG. 9). Now, focusing on the number of times of use of the synchronous three-pulse mode, seven ratios from 0 to 6 can be selected.
  • the selection pattern of both pulse modes may be, for example, a fixed pattern in which the synchronous 3-pulse mode is first selected twice, then the synchronous 5-pulse mode is selected once, and this is repeated. You may make it select at random, maintaining the used ratio.
  • the switching of the synchronous pulse mode is in principle performed every voltage command phase.
  • control device for the power converter when a combination of pulse modes having different numbers of synchronization pulses is used, a plurality of switchable timings in one cycle of the voltage command. Therefore, other pulse modes can be executed with high accuracy by combining a plurality of sync pulse modes, and the dead time for switching the sync pulse mode itself can be suppressed.
  • the switching pattern calculation has been described in the case where the two-level / three-phase inverter is controlled in the synchronous three-pulse mode or in the synchronous five-pulse mode.
  • the present invention can also be applied to multilevel inverters, multiphase inverters other than three phases, and inverters having a larger number of synchronization pulses. That is, according to the control device for a power converter according to the above-described embodiment, any type of power converter that can supply an AC voltage to a load using synchronous PWM control can be applied. Become.
  • control device for the power converter according to the present invention is useful as an invention capable of suppressing an error between the voltage command and the inverter output voltage and responding to the voltage command at a high speed. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

 複数の半導体スイッチング素子で構成されたインバータ部を具備する電力変換器の制御装置において、電圧指令とインバータ出力電圧との間の誤差を抑制するとともに、電圧指令に対して高速に応答すること。電圧指令信号52,53を生成する電圧指令発生部51と、電圧指令信号52,53に基づき、インバータ出力電圧の平均値が電圧指令信号と一致するような、同期PWM方式のスイッチングパターンを計算して出力するスイッチングパターン計算部54と、を備える。

Description

電力変換器の制御装置
 本発明は、複数の半導体スイッチング素子で構成された電力変換器の制御装置に関するものであり、特に、パルス幅変調(以下「PWM」と称する)を用いて制御されるPWMインバータに対する電圧指令とスイッチングパターンとの間の同期をとる同期PWM制御に関するものである。
 同期PWM制御では、PWMインバータを制御するためのスイッチングパターンを計算する。ここで、スイッチングパターンを計算する方式として、例えば三角波などのキャリア波を電圧指令の位相角に同期させる方式(以下「キャリア波比較方式」と称する)や、電圧指令の位相を直接参照する方式(以下「位相参照方式」と称する)などが代表的なものとして挙げられる。これらの方式の中で、キャリア波比較方式は、制御系を簡易に構成でき、電圧指令に対する応答性に優れるという特徴を有しているのに対し、位相参照方式は、インバータ出力電圧に含まれる高調波成分を効果的に抑制することができるという特徴を有している。なお、キャリア波比較方式については、従来から数多くの技術文献が存在する。また、位相参照方式については、下記非特許文献1,2および特許文献1などが代表的な技術文献として存在する。
 ところで、同期PWM制御を行う際、多くの場合では、スイッチングパターンの大まかな形状を把握することができる。このことは、同期PWM制御では、インバータ出力電圧の形状を予め把握できるということを意味している。それゆえ、同期PWM制御では、電圧指令一周期分のインバータ出力電圧波形に対し、所望の特性が得られるような切替位相を予め得ることが可能となる。
 なお、非特許文献1,2では、インバータ出力電圧に含まれる高調波成分の抑制、および任意の基本波成分の指定を可能とする切替位相の設定手法について開示されている。また、特許文献1では、インバータ出力電圧波形に含まれる基本波成分が電圧指令と一致するような切替位相の設定手法について開示されている。
特開平6-253546号公報 IEEE Transactions On Industry  Applications (1973,Vol.IA-9,No.3),Generalized Techniques of Harmonic Elimination and Voltage Control in Thyristor Inverters Part I-Harmonic Elimination IEEE Transactions On Industry  Applications (1974,Vol,10,No.5),Generalized Techniques of Harmonic Elimination and Voltage Control in Thyristor Inverters PartII-Voltage Control Techniques
 以上、代表的な同期PWM制御方式であるキャリア波比較方式および位相参照方式の特徴について簡単に説明したが、これらの制御方式には、つぎに示すような技術的課題が存在していた。
 まず、キャリア波比較方式では、インバータ出力電圧の基本波成分における振幅と位相とに着目した場合、位相に関しては電圧指令の位相と一致するものの、振幅に関しては電圧指令との間に、比較的大きな誤差が発生するという問題点があった。なお、この誤差の問題では、次のような影響が懸念されていた。
 (1)例えば負荷であるモータをV/f制御などのオープンループ制御方式を適用して制御する場合には、インバータ電圧出力の過不足によりモータトルク精度が低下する。
 (2)例えば負荷であるモータの電流制御を行う場合には、電流制御ゲインが等価的に変動する。
 (3)インバータ出力電圧を電圧指令で代用する制御を行う場合には、例えば電圧リミッタ処理等が影響を受け、電流制御系が不安定化する。
 このため、キャリア波比較方式では、電圧指令に対してゲイン補償を行なう等の対策が取られてきた。
 これに対し、上記非特許文献1,2および特許文献1などに示される位相参照方式では、電圧指令に対する応答性が低下するという問題点があった。例えば負荷であるモータの電流制御を行う場合、電圧指令は所定の電流を流すべく細かく変動する。一方、非特許文献1,2および特許文献1などの位相参照方式では、所望の特性を得るためのスイッチングパターンの切替位相は、フーリエ解析等を用いて計算される。このため、制御系におけるスイッチングパターンの切替位相は、電圧指令振幅に対する関数またはテーブル化されることが一般的である。他方、電圧指令の変動に伴い、上記の切替位相も細かく変動することになり、所望の特性が得られるように設定された切替位相が再現されないこととなって、切替位相に関する優先制御を行う必要性が生ずる。しかしながら、予め設定した切替位相を優先する制御を行うと、電圧指令振幅変化の切替位相に対する反映は、電圧指令一周期または半周期に一度に制限されるという制約を受けるので、電圧指令に対する応答性が低下するという問題点が生ずる。
 以上を纏めると、キャリア波比較方式では、電圧指令の変化に対しては比較的早く追従するものの、電圧指令とインバータ出力電圧の基本波成分との間に比較的大きな誤差が発生するという問題があった。一方、位相参照方式では、特にフーリエ解析を用いて設定された切替位相によって、所望の特性を得るものでは、電圧指令に対する応答性が低下するという問題点があった。
 本発明は、上記に鑑みてなされたものであり、位相参照方式を適用した場合であっても、電圧指令とインバータ出力電圧との間の誤差を抑制するとともに、電圧指令に対して高速に応答できる電力変換器の制御装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するため、本発明にかかる電力変換器の制御装置は、複数の半導体スイッチング素子で構成されたインバータ部を具備する電力変換器に適用され、パルス幅変調を用いて該インバータ部のスイッチング素子を制御する電力変換器の制御装置において、電圧指令信号を生成する電圧指令発生部と、前記電圧指令信号に基づいて前記インバータ部のスイッチング素子を制御するためのスイッチングパターンを計算するスイッチングパターン計算部と、を備え、前記スイッチングパターン計算部は、同期PWM方式のスイッチングパターン計算を行い、前記インバータ部から出力される出力電圧の平均値(出力電圧平均値)が前記電圧指令と一致するようなスイッチングパターンを出力することを特徴とする。
 本発明にかかる電力変換器の制御装置によれば、スイッチングパターン計算部は、同期PWM方式のスイッチングパターン計算を行い、インバータ出力電圧の平均値が電圧指令と一致するようなスイッチングパターンを出力するので、位相参照方式を適用した場合であっても、電圧指令とインバータ出力電圧との間の誤差を抑制するとともに、電圧指令に対して高速に応答させることができるという効果を奏する。
図1は、本発明の実施の形態1にかかる電力変換器の基本的構成を示す図である。 図2は、本発明の実施の形態1にかかる電力変換器の制御装置の機能構成を示すブロック図である。 図3は、スイッチングパターン計算部に入力される電圧指令ベクトルおよびスイッチングパターン計算部で処理される各信号のdq座標系における関係を示す図である。 図4は、実施の形態1にかかる制御装置の動作を説明するための図である。 図5は、実施の形態1にかかる制御装置によって制御されるインバータ部のスイッチング動作を位相タイミングで分類した図表である。 図6は、実施の形態2にかかる制御装置の動作を説明するための図である。 図7は、図6に示す区間A~Gを拡大して示した図である。 図8は、同期5パルスモードにおけるスイッチング動作を位相タイミングで分類した図表である。 図9は、実施の形態4にかかる制御装置の動作を説明するための図である。
符号の説明
 10 電力変換器
 21 直流電源部
 22 インバータ部
 221 半導体スイッチング素子(U相P側)
 222 半導体スイッチング素子(V相P側)
 223 半導体スイッチング素子(W相P側)
 224 半導体スイッチング素子(U相N側)
 225 半導体スイッチング素子(V相N側)
 226 半導体スイッチング素子(W相N側)
 23 負荷
 50 制御部
 51 電圧指令発生部
 52 電圧指令信号(2軸直交回転座標上におけるd軸)
 53 電圧指令信号(2軸直交回転座標上におけるq軸)
 54 スイッチングパターン計算部
 541 位相計算部
 542 位相信号(dq座標系上)
 544 電圧指令位相信号(U相)
 546 電圧指令ノルム信号
 548 サンプルホールドされた電圧指令ノルム信号
 543 加算部
 545 ノルム計算部
 547 サンプルホールド(S/H)部
 549 切替位相計算部
 55 座標変換用位相信号
 550 切替位相信号
 551 位相比較部
 56 スイッチングパターン信号
 以下添付図面を参照し、本発明にかかる電力変換器の制御装置の実施の形態について詳細に説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1にかかる電力変換器の基本的構成を示す図である。同図に示すように、直流電源部21、インバータ部22およびPWMを用いてインバータ部22の半導体スイッチング素子221~226を制御する制御部50を備え、負荷23に接続される電力変換器10が構成されている。直流電源部21は、インバータ部22に直流電力を供給する。また、インバータ部22は、P側の半導体スイッチング素子である半導体スイッチング素子221~223と、N側の半導体スイッチング素子である半導体スイッチング素子224~226を備えて成るとともに、P側の半導体スイッチング素子である半導体スイッチング素子221とN側の半導体スイッチング素子である半導体スイッチング素子224とが直列に接続された直列回路を構成し、この直列回路の両端が直流電源部21の正負電源端子に接続されている。なお、半導体スイッチング素子222と半導体スイッチング素子225、および半導体スイッチング素子223と半導体スイッチング素子226の関係についても同様であり、それぞれの直列回路の両端が直流電源部21の正負電源端子に接続されている。なお、図1では、2レベル・3相インバータの構成を一例として示しているが、この構成に限定されるものではなく、2レベル・3相インバータ以外の電力変換器であっても構わない。
 図2は、本発明の実施の形態1にかかる電力変換器の制御装置の機能構成を示すブロック図であり、図1に示す制御部50の構成を具現化して示した図である。図2において、制御部50は、電圧指令発生部51およびスイッチングパターン計算部54を備えている。また、スイッチングパターン計算部54は、位相計算部541、加算部543、ノルム計算部545、サンプルホールド部(以下「S/H部」と表記)547、切替位相計算部549、および位相比較部551を備えている。
 つぎに、実施の形態1にかかる制御装置の動作について図2および図3を参照して説明する。なお、図3は、スイッチングパターン計算部54に入力される電圧指令ベクトルおよびスイッチングパターン計算部54で処理される各信号の2軸直交回転座標系(以下「dq座標系」と表記)における関係を示す図である。
 図2において、電圧指令発生部51は、dq座標系における電圧指令信号52,53をスイッチングパターン計算部54に出力する。なお、電圧指令信号52は、d軸方向の電圧指令成分であり、電圧指令信号53は、q軸方向の電圧指令成分である。入力された電圧指令信号52,53は位相計算部541に入力され、位相信号542が計算される。なお、位相計算部541は、逆正接計算を実施する機能部であり、位相計算部541で計算された位相信号542と、入力された電圧指令信号52,53とは、図3に示す関係がある。
 ここで、電圧指令信号52をVd*、電圧指令信号53をVq*、位相信号542をθvとすると、次式の関係がある。なお、位相計算部541は、この数式を直接計算してもよいし、予め作成されたテーブルを参照して位相信号542を求めてもよい。
Figure JPOXMLDOC01-appb-M000001
 位相信号542は、加算部543にて座標変換用位相信号55と加算され、2相静止座標系(以下「αβ座標系」と表記)上の電圧指令位相信号544が得られる。なお、加算部543は、加算処理だけではなく、加算後の位相信号を0~2πの範囲に収める処理も行う。ノルム計算部545は、電圧指令信号52,53から電圧指令ノルム信号546を計算する。なお、電圧指令ノルム信号546と他の信号との関係も図3に示している。
 ここで、電圧指令ノルム信号546をVn*とすると、次式の関係がある。なお、電圧指令ノルム信号546についても、位相信号542のときと同様に、直接計算、テーブル参照の何れの手法を用いてもよい。
Figure JPOXMLDOC01-appb-M000002
 ノルム計算部545で得られた電圧指令ノルム信号546は、S/H部547でサンプルホールドされた後、切替位相計算部549に入力される。切替位相計算部549は、切替位相信号550を計算する。位相比較部551は、電圧指令位相信号544と切替位相信号550を参照してスイッチングパターン信号56を出力する。なお、このスイッチングパターン信号56はインバータ部22に出力される。すなわち、スイッチングパターン信号56に従ってインバータ部22の各半導体スイッチング素子が制御される。
 なお、図2において、切替位相信号550とスイッチングパターン信号56は複数の矢印で示しているが、インバータ部22の各半導体スイッチング素子に対する制御信号に対応している。すなわち、切替位相信号550およびスイッチングパターン信号56の出力数は、電力変換器の相数やレベル数などの種類によって、その数が変化する。
 つぎに、切替位相計算部549の動作について詳細に説明する。なお、ここでは、電圧指令ノルム信号546から切替位相信号550を計算するが、スイッチングパターン計算における評価指標として、インバータ部22から出力される出力電圧の平均値(以下単に「出力電圧平均値」という)という指標を導入する。この出力電圧平均値が電圧指令に一致するスイッチングパターンとすることで出力電圧の高精度化が実現できる。
 なお、出力電圧平均値と電圧指令については、dq座標系での値とすることが好ましい。なぜなら、dq座標系は回転座標であるため、出力電圧平均値を考慮する際に、時間の進行に伴う位相変化を織り込むことができるからである。この制御により、αβ座標系での平均値と比較した場合の誤差が抑制され、制御の結果としてインバータ出力電圧の位相遅れを抑制することができる。
 また、出力電圧平均値をdq座標系の電圧指令ベクトル方向の成分とすることで、スイッチングパターン計算を簡素化できる。逆に電圧指令ベクトル方向成分としなかった場合、d軸成分、q軸成分におけるそれぞれの平均値を考慮する必要がある。ただし、スイッチングパターン計算において両者を同時に満足できない場合もあるので、そのときは両者の優先度を設定する作業が必要となる。一方、電圧指令ベクトル方向成分を用いることで、この種の計算を省略できる。なお、同期PWM制御では、αβ座標系の電圧指令位相に同期してスイッチングパターンが出力されるため、出力電圧平均値の計算は、αβ座標系の位相を基準として行うことが好ましい。
 つぎに、切替位相計算部549および位相比較部551の動作について図4および図5を用いて説明する。ここで、図4は、実施の形態1にかかる制御装置の動作を説明するための図であり、図5は、実施の形態1にかかる制御装置によって制御されるインバータ部のスイッチング動作を位相タイミングで分類した図表である。なお、ここでは説明の便宜上、2レベル・3相のインバータを一例とし、このインバータを同期3パルスモードで制御する場合について説明する。
 図4において、同図(a)は、横軸を時間とし、縦軸にU相電圧指令の位相(U相電圧指令位相)を示した図である。また、同図(b)~(d)は、横軸を時間とし、縦軸に各相のP側スイッチングパターンと、そのときの各インバータ出力電圧をそれぞれ示している。なお、同図(a)に示すように、時間とU相電圧指令の関係は比例関係にあるので、同図(b)~(d)の各図は、U相電圧指令位相に対する関係と見ることができる。
 また、図4(c)および図4(d)は、インバータの出力電圧をdq座標系上で観測した波形である。ただし、図4(c)は電圧指令ベクトル方向の成分(以下「電圧指令ベクトル方向成分」という)の波形であり、図4(d)は電圧指令ベクトル方向に直交する方向の成分(以下「電圧指令ベクトル直交方向成分」という)の波形である。なお、図4では図示を省略しているが、U相の電圧指令波形は、図4(a)の位相に対する余弦計算で得ることができる。
 2レベル・3相インバータを同期3パルスモードで制御する場合、図4に示すように、電圧指令位相一周期に対して18回のスイッチングが発生する。また、図4(b)に着目すると、電圧指令の大きさによって位相タイミングが変化するスイッチング群(以下「i群」と記述)と、位相タイミングが変化しないスイッチング群(以下「ii群」と記述)に分類できる。ここで、説明の便宜上、スイッチング動作点(以下単に「動作点」という)に(1)から(18)の番号を与えるとともに(図4(b)および図5を参照)、ii群の動作点と、その中間点に着目すると、図4(b)に示すような区間A~Lからなる12個の区間に分割できる。
 これらの区間では、開始または終了がii群の動作点となり、区間内に必ず一箇所のi群の動作点を含んでいる。このため、これらの区間が出力電圧平均値を制御できる最小の区間となる。なぜなら、上記のように定義した各区間において、ii群の動作点は、各区間の開始または終了を決める固定点であるのに対し、i群の動作点は、各区間内で変更可能な動作点となるからである。
 ここで、図4(b)に示すように、区間Aにおけるスイッチングのタイミングを決定するパラメータとしてΔθを導入する。このΔθを用いると、各スイッチングの位相タイミングは、図5に示すような値をとる。なお、これらの各値が、切替位相計算部549から出力される切替位相信号550に相当する(図2参照)。
 すなわち、これらの各区間内において、図4(c)に示したインバータ出力の電圧指令ベクトル方向成分が電圧指令と一致するように、区間Aにおけるスイッチングのタイミング(位相:Δθ)を制御することになる。例えば、動作点(2)からスタートする区間、つまり区間Bでは、Δθの操作により、動作点(3)によるタイミング制御が可能となる。
 なお、区間Bにおいて、動作点(3)より前では、UVW各相のスイッチングは、「オン」、「オン」、「オフ」となる。このとき負荷がバランスしていればインバータ各相の出力電圧は、次式で表せる。ただし、Vdcは直流電源部21の出力電圧である。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 この値をαβ座標系上の値に変換すると、次式で表現される。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 これを座標変換して、回転座標上の値に変換する。ここで図4(a)に示したU相電圧指令の位相を用いると、電圧指令ベクトル方向成分(以下「dv軸」と表記)と電圧指令ベクトル直交方向成分(以下「qv軸」と表記)に分離できる。なお、dv軸およびqv軸については、図3にその詳細を示している。
 図4(a)のU相電圧指令位相をθvuとすると、各電圧は次式で表現される。なお、θvuは、加算部543から出力される電圧指令位相信号544に相当する(図2参照)。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 dv軸での平均電圧を計算するには、各区間において積分を行い、その結果を位相で除算する。なお、このdv軸平均値が、電圧指令ノルムVn*と一致するように制御される。
 例えば区間Bにおいては、次式が成り立つように制御される。なお、この式では、動作点(3)より後の位相では、電圧がゼロであることを考慮している。
Figure JPOXMLDOC01-appb-M000010
 上記(1-10)式を解くと、Δθは次式となる。なお、このΔθは、その都度計算してもよいし、電圧指令ノルムVn*に対するテーブルとして準備してもよい。
Figure JPOXMLDOC01-appb-M000011
 上記(1-11)式では、区間Bについて説明したが、他の区間についても同様である。なお、他の区間の波形も、区間Bの波形と同一か、左右対称であるかなどの違いになるため、(1-11)式または、これと同等な式を用いて、Δθを計算することができる。
 なお、説明の順序が前後したが、切替位相計算部549は、電圧指令ノルム信号548(Vn*)から(1-11)式に従ってΔθを求め、図5に示すような切替位相信号550を出力する。また、位相比較部551は、図4(a),(b)および図5に示すように、切替位相信号550および電圧指令位相信号544を参照して、各相に付与するスイッチングパターン信号56を算出する。
 また、図2に示した制御装置の構成において、S/H部547は、必ずしも必要な構成部ではない。例えば電圧指令発生部51が電流制御を行う場合のように、電圧指令が細かく変動する場合では、チャタリングと呼ばれる現象が生起し、複数回のスイッチング動作が発生する可能性がある。このS/H部547は、このようなチャタリングを防止するために有効であり、電力変換器の安定動作に貢献することが可能となる。
 なお、S/H部547におけるサンプルホールドのタイミングであるが、例えば図4に示した出力電圧平均値を計算する区間の境界とする場合には、インバータ出力電圧の更新との整合がとれて好都合である。また、このタイミング以外でも、負荷や電圧指令発生部51における制御形態に合わせ、適切な設定を行うことでもよい。例えば、上記のタイミングよりも、より細かなサンプルホールドを行えば、無駄時間が抑制され、応答性の向上につながる。
 以上説明したように、この実施の形態にかかる電力変換器の制御装置によれば、出力電圧平均値が電圧指令と一致するようなスイッチングパターンを計算して出力するので、同期PWM制御適用時でも電圧指令とインバータ出力電圧の間の誤差が抑制され、精度の良い電圧を得ることができる。
 また、この実施の形態にかかる電力変換器の制御装置によれば、スイッチングパターン演算における評価指標として用いた出力電圧平均値の計算を、dq座標系上の値を用いるようにしているので、出力電圧の位相遅れを抑制することができる。
 また、この実施の形態にかかる電力変換器の制御装置によれば、出力電圧平均値として、電圧指令ベクトル方向の成分を用いるようにしているので、スイッチングパターンの計算を簡素化することができる。
 さらに、この実施の形態にかかる電力変換器の制御装置によれば、出力電圧平均値として、電圧指令の位相を複数個に分割した区間における平均値を用いるようにしているので、電圧指令への応答を高速化することができる。
 このように、実施の形態1にかかる電力変換器の制御装置によれば、従来の同期PWM制御系にはない、電圧指令精度と応答性との両立を効果的に実現することができる。
実施の形態2.
 実施の形態1では、2レベル・3相インバータを同期3パルスモードで制御する場合を一例として説明したが、他のパルスモードで制御する場合についても、実施の形態1と同様な指針で、スイッチングパターンの計算を実行することができる。
 図6(a)は、図4(a)と同様にU相電圧指令位相を示した図である。一方、図6(b)~(d)は、2レベル・3相インバータを同期5パルスモードで制御する場合の、各相におけるP側スイッチングパターンと、そのときの各インバータ出力電圧をそれぞれ示している。これらの図に示すように、同期5パルスモードでは、電圧指令一周期に対し、スイッチング動作は30回発生し、電圧指令位相は24分割されている。ここで、説明の便宜上、各動作点に対して(1)から(30)の番号を与えるとともに、それぞれの区間に対してAからXまでの記号を与える。
 つぎに実施の形態2にかかる制御装置の動作について図7および図8を参照して説明する。ここで、図7は、図6に示す区間A~Gを拡大して示した図であり、図8は、同期5パルスモードにおけるスイッチング動作を位相タイミングで分類した図表である。なお、ここでの動作説明は、区間Cおよび区間Dに着目して行う。
 図7において、区間Cおよび区間Dでは、電圧指令ベクトル方向成分におけるインバータ出力電圧波形は、実施の形態1の同期3パルスモード(図4参照)の場合とは異なる。図7(b)と図4(b)との比較から明らかように、実施の形態2の同期5パルスモードでは、タイミングを決定するΔθは、Δθ1,Δθ2の2種類必要となる。これらのΔθ1,Δθ2を用いると、各スイッチングの位相タイミングは、図8に示すような値をとるとともに、これらの各値が、切替位相計算部549から出力される切替位相信号550に対応するする(図2参照)。
 なお、区間Cおよび区間Dにおいて、動作点(4)より後で、かつ、動作点(5)より前では、UVW各相のP側スイッチ状態は「オン」、「オン」、「オン」となっている。このとき、UVW各相のN側スイッチ状態は「オフ」、「オフ」、「オフ」となっているので、ゼロ電圧区間となる。逆に、このゼロ電圧区間以外では、UVW各相のP側スイッチ状態は「オン」、「オン」、「オフ」であり、実施の形態1において説明した区間Bと同じである。従って、ゼロ電圧区間を除くインバータ出力電圧波形は、dv軸方向、qv軸方向のそれぞれにおいて、上述の(1-8)式および(1-9)式で表現することができる。よって、区間Cにおいて、dv軸方向の平均値を電圧指令ノルムVn*と一致させるには、ゼロ電圧区間を考慮した次式の計算を行えばよい。
Figure JPOXMLDOC01-appb-M000012
 同様に、区間Dにおいて、dv軸方向の平均値を電圧指令ノルムVn*と一致させるには、ゼロ電圧区間を考慮した次式の計算を行えばよい。
Figure JPOXMLDOC01-appb-M000013
 上記(2-1)式および(2-2)式を解くと、Δθ1およびΔθ2は、それぞれ次式となる。なお、実施の形態1と同様に、これらのΔθ1,Δθ2は、その都度計算してもよいし、電圧指令ノルムVn*に対するテーブルとして準備してもよい。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 上記(2-3)式および(2-4)式では、区間Cおよび区間Dについて説明したが、他の区間についても同様である。具体的には、図8に示す切替位相で、図6(b)に示すようなスイッチング制御を行うことで、出力電圧平均値を電圧指令と一致させることができる。
 なお、出力電圧平均値を計算する区間であるが、実施の形態1で説明した2レベル・3相インバータでは、同期パルス数をnとすると、電圧指令位相を「6n-6」分割した区間となる。つまり、同期パルス数の増加によって半導体スイッチング素子のスイッチング回数が増え、出力電圧の振幅・位相以外に操作可能な量(自由度)が表れる。上記非特許文献1,2では、自由度を高調波低減に利用している。本実施の形態では、その自由度を、インバータ出力電圧の更新回数の増加に用いる点が非特許文献1,2とは大きく異なる。
実施の形態3.
 上記実施の形態1では、2レベル・3相インバータを同期3パルスモードで制御する場合において、出力電圧平均値を計算する電圧指令位相区間を12分割する実施形態を一例として示した。また、上記実施の形態2では、2レベル・3相インバータを同期5パルスモードで制御する場合において、出力電圧平均値を計算する電圧指令位相区間を24分割する実施形態を一例として示した。一方、実施の形態3では、これらの分割数を半分に設定する実施形態、すなわち隣接する2つの区間を新たな1つの区間として設定することにより、区間数を削減し、計算時間や処理時間を短縮する実施形態を示すものである。
 ここで、隣接する2つの区間を新たな1つの区間として設定する考え方として、
 (1)qv軸におけるインバータ出力電圧が零であり、
 (2)当該出力電圧が零となる点を区間の境界点としたときに隣接区間同士の波形が点対称となる
 という2つの条件を満足させた区間設定を行えばよい。例えば、図4に示す実施例を参照して説明すると、区間Bと区間Cとの境界点では、図4(d)に示されるように、上記2つの条件を満足している。したがって、区間Aおよび区間Bを1つの区間に設定するとともに、区間Cおよび区間Dを1つの区間に設定する。このようにして、電圧指令位相一周期における電圧位相区間では「A,B」「C,D」「E,F」「G,H」「I,J」「K,L」が新たな区間となり、これらの各区間においては、同一のΔθを用いることができる。
 なお、上記のような制御を行う場合、出力電圧平均値の更新回数が低下するため、応答性能が低下することになるが、その一方で、出力電圧平均値における電圧指令ベクトル直交成分(qv軸成分)の平均値を0とすることができるので、出力電圧の精度を向上させることができる。この点については、つぎのように説明することができる。
 上記と同様に、電力変換器を2レベル・3相インバータを同期3パルスモードで制御する場合を一例として用いる。例えば、図4(b)において、区間Aと区間Bとを合わせた区間ABにおいて、qv軸の電圧計算を行う。なお、計算手順は、実施の形態1で示した手順と同一であるため、その詳細な説明は省略する。ここで、動作点(2)よりも前の区間(元の区間A)では、下記(3-1)式で表すことができる。ただし、この式は、動作点(1)以降の位相における値であり、動作点(1)以前の位相では、qv軸電圧は0となる。また、動作点(2)よりも後の区間(元の区間B)では、下記(3-2)式で表すことができる。この場合、動作点(3)以降の位相では、qv軸電圧がゼロとなる。
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
 つぎに、上記(3-1)式および(3-2)式から、平均値を計算する。ゼロ電圧区間を考慮するとqv軸方向の出力電圧平均値(Vqv_AV)は、区間Aでは(3-3)式となり、区間Bでは(3-4)式となる。
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
 このように区間A、区間Bにおけるqv軸方向のインバータ出力電圧平均値は、その極性を除いて同じとなる。このため両式のΔθが同じであれば、区間ABにおけるインバータ出力電圧平均値がゼロになる。
 以上説明したように、この実施の形態にかかる電力変換器の制御装置によれば、出力電圧平均値の区間を変更することで出力電圧平均値における電圧指令ベクトル直交成分(qv軸成分)の平均値を0とすることができるので、電力変変換器の出力電圧の精度を向上させることが可能となる。
実施の形態4.
 実施の形態1~3で説明した同期PWM制御では、例えば同期3パルスモード、あるいは同期5パルスモードといった同一のパルスモードでの実施形態を一例として示したが、この実施の形態では、異なったパルスモード、すなわち同期パルス数の異なるパルスモードを組み合わせた実施形態について示すものであり、具体的には、各相のスイッチ状態が同期パルスモードの切替前後で変化せず、かつ、実施の形態1~3にて説明した電圧平均値を計算する区間の境界点ならば自由に切替を行っても悪影響が出ない、という考え方に基づいている。
 図9は、実施の形態4にかかる制御装置の動作を説明するための図である。ここで、図9(b)には、図4に示した同期3パルスモードにおける各相スイッチングパターンを示し、図9(c)には、図6に示した同期5パルスモードにおける各相スイッチングパターンを示している。また、これらの図において、同期3パルスモードの区間と同期5パルスモードの区間とを区別するための添字「3」,「5」を付加している。
 図9において、区間A3と区間B3との間の境界点は、実施の形態1~3にて説明した電圧平均値を計算する区間の境界点(ii群の動作点)であり、かつ、この境界点の前後で各相のスイッチ状態が各パルスモード間で変化していない。したがって、この境界点を両パルスモードの切替タイミングとして使用することができる。同様に、「区間C3と区間D3」、「区間E3と区間F3」、「区間G3と区間H3」、「区間I3と区間J3」、「区間K3と区間L3」の各境界点も切替タイミングとして使用することができる。すなわち電圧指令一周期中に、複数の切替可能なタイミングが存在することになる。したがって、例えば電力変換器を2レベル・3相インバータとし、同期3パルスモードおよび同期5パルスモードを用いて制御する場合には、図9の破線部に示す任意の境界点において、これらのパルスモード間の切替を好適に行うことができる。
 なお、同期パルス数の異なるパルスモードを組み合わせた制御を行う場合であって、電圧指令一周期中に複数の切替タイミングが存在する場合には、次のような利点が存在する。
 例えば、同期パルス数の異なるパルスモードを適当な割合で連続して用いることにより、等価的に同期パルス数を変更したパルスモード動作を実現することができる。より具体的には、例えば同期3パルスモードと同期5パルスモードを1:1の割合で用いた場合には、単位時間あたりのスイッチング回数の観点からは等価的に4パルスモードが実現できる。この場合、上記の区間毎に交互に同期3パルスモードと同期5パルスモードを用いることで、電圧指令位相一周期毎に切り替えるよりも再現精度を向上させることができる。
 ここで、同期パルスモードの使用割合は、上記に示した1:1の比率でなくてもよく、任意の比率を適用することができる。同期3パルスモードと5パルスモードの場合、選択できる区間は電圧指令位相一周期中に6区間存在する(図9参照)。いま、同期3パルスモードの使用回数に着目すると、0回~6回までの7通りの比率が選択できる。また、両パルスモードの選択パターンに関しては、例えば、最初に同期3パルスモードを2回選択し、つぎに同期5パルスモードを1回選択して、これを繰り返すといった固定したパターンでもよいし、設定した使用割合を保ちつつランダムに選択するようにしてもよい。
 なお「背景技術」の項において説明した、キャリア波比較方式や位相参照方式では、同期パルスモードの切替は、電圧指令位相一周期毎に行うことが原則となる。これらの方式において、電圧指令位相一周期中に複数回の同期パルスモードの切り替えを行うことは不可能ではないが、再現精度が著しく低下するとともに、同期パルスモードの切替時に出力電圧の変化が大きくなったり、不要なスイッチングが発生したりする可能性があるため、好ましい制御手法であるとは言い難い。
 また、他の利点として、例えば、インバータの電圧精度を高めるため、一時的に同期パルス数の高いパルスモードに切り替えるような場合、電圧指令位相の一周期分が経過するまで待機する必要はなく、無駄時間の抑制につながる。
 一方、比較的長い時間レンジで同期パルスモードを切り替えるような場合、切り替え前後の両パルスモードの使用割合を徐々に変化させるように制御すれば、滑らかな切替を高速に行うといった動作も実現できる。
 以上説明したように、この実施の形態にかかる電力変換器の制御装置によれば、異なった同期パルス数のパルスモードを組み合わせて使用する際に、電圧指令一周期中に複数の切替可能なタイミングを持つことができるので、複数の同期パルスモードを組み合わせて他のパルスモードを高精度に実行することができるとともに、同期パルスモードの切替そのものの無駄時間も抑制することができる。
 なお、上記実施の形態1~4では、2レベル・3相インバータを同期3パルスモードで制御する場合、あるいは同期5パルスモードで制御する場合のスイッチングパターン演算について説明してきたが、3レベルインバータといったマルチレベルインバータや、3相以外の多相インバータ、さらに多くの同期パルス数を有するインバータに対しても適用することができる。つまり、上記実施の形態にかかる電力変換器の制御装置によれば、同期PWM制御を用いて交流電圧を負荷に供給する電力変換器ならば、どのような種類のものでも適用することが可能となる。
 以上のように、本発明にかかる電力変換器の制御装置は、電圧指令とインバータ出力電圧との間の誤差を抑制するとともに、電圧指令に対して高速に応答させることができる発明として有用である。

Claims (6)

  1.  複数の半導体スイッチング素子で構成されたインバータ部を具備する電力変換器に適用され、パルス幅変調を用いて該インバータ部の半導体スイッチング素子を制御する電力変換器の制御装置において、
     電圧指令信号を生成する電圧指令信号発生部と、
     前記電圧指令信号に基づいて前記インバータ部の半導体スイッチング素子を制御するためのスイッチングパターンを計算するスイッチングパターン計算部と、
     を備え、
     前記スイッチングパターン計算部は、同期PWM方式のスイッチングパターン計算を行い、前記インバータ部から出力される出力電圧の平均値(出力電圧平均値)が前記電圧指令信号と一致するようなスイッチングパターンを出力することを特徴とする電力変換器の制御装置。
  2.  前記電圧指令信号および前記出力電圧平均値として、2軸直交回転座標系上の値を用いることを特徴とする請求項1に記載の電力変換器の制御装置。
  3.  前記出力電圧平均値として、前記電圧指令信号の静止座標系上の位相をx個(xは自然数)に分割した区間における平均値を用いることを特徴とする請求項2に記載の電力変換器の制御装置。
  4.  前記出力電圧平均値として、2軸直交回転座標上における電圧指令信号ベクトル方向の成分を用いることを特徴とする請求項2または3に記載の電力変換器の制御装置。
  5.  前記スイッチングパターン計算部は、同期PWM方式のスイッチングパターン計算を行う際に、複数の同期パルス数から少なくとも一つ以上の同期パルス数を選択し、該選択された同期パルス数を切り替えて行うことを特徴とする請求項1ないし4のいずれか1項に記載の電力変換器の制御装置。
  6.  前記スイッチングパターン計算部は、同期パルス数を切り替えるタイミングを、静止座標系上における前記電圧指令信号の位相区間において、少なくとも一つ以上有することを特徴とする請求項5に記載の電力変換器の制御装置。
PCT/JP2007/075206 2007-12-27 2007-12-27 電力変換器の制御装置 WO2009084097A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE112007003741T DE112007003741T5 (de) 2007-12-27 2007-12-27 Steuergerät eines Leistungswandlers
US12/810,072 US8750009B2 (en) 2007-12-27 2007-12-27 Controller of a power converter that uses pulse width modulation
PCT/JP2007/075206 WO2009084097A1 (ja) 2007-12-27 2007-12-27 電力変換器の制御装置
CN200780102097.5A CN101911464B (zh) 2007-12-27 2007-12-27 电力变换器的控制装置
JP2009547841A JP5220031B2 (ja) 2007-12-27 2007-12-27 電力変換器の制御装置
TW097127751A TWI366975B (en) 2007-12-27 2008-07-22 Control device of electric power inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/075206 WO2009084097A1 (ja) 2007-12-27 2007-12-27 電力変換器の制御装置

Publications (1)

Publication Number Publication Date
WO2009084097A1 true WO2009084097A1 (ja) 2009-07-09

Family

ID=40823837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/075206 WO2009084097A1 (ja) 2007-12-27 2007-12-27 電力変換器の制御装置

Country Status (6)

Country Link
US (1) US8750009B2 (ja)
JP (1) JP5220031B2 (ja)
CN (1) CN101911464B (ja)
DE (1) DE112007003741T5 (ja)
TW (1) TWI366975B (ja)
WO (1) WO2009084097A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4710963B2 (ja) * 2008-11-28 2011-06-29 株式会社デンソー 回転機の制御装置及び制御システム
DK2487780T3 (da) * 2011-02-14 2020-03-02 Siemens Ag Styreenhed til en effektkonverter og fremgangsmåde til drift deraf
US9853496B2 (en) * 2012-11-29 2017-12-26 Schneider Electriic It Corporation Backup power supply control
FR3006129B1 (fr) * 2013-05-27 2015-05-01 Renault Sa Procede de commande d'une machine electrique synchrone, systeme correspondant et vehicule automobile comprenant le systeme
KR101764949B1 (ko) 2013-10-29 2017-08-03 엘에스산전 주식회사 인버터 출력전압의 위상보상장치
US10137790B2 (en) * 2017-02-17 2018-11-27 Ford Global Technologies, Llc System and method for noise reduction in electrified vehicle powertrain with multi-three-phase electric drive
KR20190094843A (ko) * 2018-02-06 2019-08-14 엘에스산전 주식회사 인버터 제어장치
WO2020208829A1 (ja) * 2019-04-12 2020-10-15 株式会社日立産機システム 電力変換装置、及び、その制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005020838A (ja) * 2003-06-24 2005-01-20 Takahashi Yuko 多相電流供給回路及びその制御方法
JP2005110335A (ja) * 2003-09-26 2005-04-21 Toshiba Mitsubishi-Electric Industrial System Corp 電力変換装置
JP2006320160A (ja) * 2005-05-16 2006-11-24 Mitsubishi Electric Corp 電力変換器の制御装置
JP2007252143A (ja) * 2006-03-17 2007-09-27 Nissan Motor Co Ltd 電力変換装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03171505A (ja) 1989-11-29 1991-07-25 Tokyo Electric Co Ltd 照明器具
JP2679411B2 (ja) * 1990-12-19 1997-11-19 三菱電機株式会社 交流出力変換器の並列運転制御装置
JP2708648B2 (ja) 1991-04-22 1998-02-04 三菱電機株式会社 並列運転制御装置
KR960000802B1 (ko) 1991-04-22 1996-01-12 미쓰비시 뎅끼 가부시끼가이샤 3상 교류 출력 변환기의 병렬 운전 제어장치
JP3171505B2 (ja) 1993-03-02 2001-05-28 株式会社東芝 Pwmインバータ制御装置
JP3411462B2 (ja) * 1997-02-05 2003-06-03 三菱電機株式会社 電力変換器の制御装置
JPH1189242A (ja) 1997-09-08 1999-03-30 Yaskawa Electric Corp 電力変換装置
CN100373769C (zh) * 1997-10-31 2008-03-05 株式会社日立制作所 电源转换设备
EP1720242A1 (en) * 2003-11-26 2006-11-08 Nsk Ltd., Device for controlling motor-driven power steering device
EP1672775B1 (en) * 2004-08-27 2017-04-12 Mitsubishi Denki Kabushiki Kaisha Three-phase pwm signal generator
JP4674516B2 (ja) * 2005-09-27 2011-04-20 株式会社デンソー 同期モータの磁極位置推定方法
US7626836B2 (en) * 2005-10-26 2009-12-01 Rockwell Automation Technologies, Inc. Method and apparatus for adjustable voltage/adjustable frequency inverter control
JP4717114B2 (ja) * 2006-06-16 2011-07-06 三菱電機株式会社 電力変換器の制御装置
JP5157356B2 (ja) * 2006-11-17 2013-03-06 日産自動車株式会社 電力変換装置およびその制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005020838A (ja) * 2003-06-24 2005-01-20 Takahashi Yuko 多相電流供給回路及びその制御方法
JP2005110335A (ja) * 2003-09-26 2005-04-21 Toshiba Mitsubishi-Electric Industrial System Corp 電力変換装置
JP2006320160A (ja) * 2005-05-16 2006-11-24 Mitsubishi Electric Corp 電力変換器の制御装置
JP2007252143A (ja) * 2006-03-17 2007-09-27 Nissan Motor Co Ltd 電力変換装置

Also Published As

Publication number Publication date
CN101911464B (zh) 2013-04-10
TW200929832A (en) 2009-07-01
JP5220031B2 (ja) 2013-06-26
US20100271853A1 (en) 2010-10-28
JPWO2009084097A1 (ja) 2011-05-12
TWI366975B (en) 2012-06-21
US8750009B2 (en) 2014-06-10
DE112007003741T5 (de) 2011-03-17
CN101911464A (zh) 2010-12-08

Similar Documents

Publication Publication Date Title
JP5220031B2 (ja) 電力変換器の制御装置
JP5892955B2 (ja) 電力変換装置
JP5599538B1 (ja) 電力変換装置
KR100611340B1 (ko) 영구 자석 모터 드라이브를 위한 공간 벡터 pwm 변조기
EP2017947B1 (en) Matrix converter, and control method for the matrix converter
WO2018098975A1 (zh) 一种脉冲宽度调制方法、脉冲宽度调制系统及控制器
JP6326832B2 (ja) インバータ制御方法および電圧型インバータ
JP6695598B2 (ja) インバータ制御装置
JP3259571B2 (ja) Pwm制御装置とそれを用いたシステム
JP2011211818A (ja) 電力変換装置,電力変換方法及び電動機駆動システム
CN108322074B (zh) 一种基于十二边形空间电压矢量的级联二电平逆变器svpwm调制方法
JP2008220106A (ja) Pwm制御装置
JP4893152B2 (ja) 交流−交流直接変換装置の空間ベクトル変調方法
JP2008048530A (ja) 交流−交流直接変換装置の空間ベクトル変調方法
JP7109670B2 (ja) 電力変換装置および電力変換装置の駆動方法
WO2017159072A1 (ja) モータの制御装置および駆動システム
JP6221815B2 (ja) インバータの制御方法およびインバータ
JP6287636B2 (ja) 回転機の制御装置
Corzine et al. Distributed control of hybrid motor drives
KR100933393B1 (ko) 유도 전동기의 직접 토크 제어 장치 및 방법
JP5251344B2 (ja) 二相交流回転機の制御装置
JP3781069B2 (ja) インバータ制御方法及びその装置
JP2011172387A (ja) 電力変換制御装置、コンバータ制御回路、電力変換制御方法、電力変換制御用プログラム及び記録媒体
JP2023124720A (ja) 電力変換装置
JP4503937B2 (ja) 電力変換装置の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780102097.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07860427

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009547841

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120070037415

Country of ref document: DE

Ref document number: 12810072

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 07860427

Country of ref document: EP

Kind code of ref document: A1

RET De translation (de og part 6b)

Ref document number: 112007003741

Country of ref document: DE

Date of ref document: 20110317

Kind code of ref document: P